X86ISelLowering.cpp revision a24262a0f5c54f59e3362dd8a050589c508c9923
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
162
163  RegInfo = TM.getRegisterInfo();
164  TD = getDataLayout();
165
166  // Set up the TargetLowering object.
167  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
168
169  // X86 is weird, it always uses i8 for shift amounts and setcc results.
170  setBooleanContents(ZeroOrOneBooleanContent);
171  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
172  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
173
174  // For 64-bit since we have so many registers use the ILP scheduler, for
175  // 32-bit code use the register pressure specific scheduling.
176  // For Atom, always use ILP scheduling.
177  if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::ILP);
179  else if (Subtarget->is64Bit())
180    setSchedulingPreference(Sched::ILP);
181  else
182    setSchedulingPreference(Sched::RegPressure);
183  setStackPointerRegisterToSaveRestore(X86StackPtr);
184
185  // Bypass i32 with i8 on Atom when compiling with O2
186  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
187    addBypassSlowDiv(32, 8);
188
189  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
190    // Setup Windows compiler runtime calls.
191    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
192    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
193    setLibcallName(RTLIB::SREM_I64, "_allrem");
194    setLibcallName(RTLIB::UREM_I64, "_aullrem");
195    setLibcallName(RTLIB::MUL_I64, "_allmul");
196    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
200    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
201
202    // The _ftol2 runtime function has an unusual calling conv, which
203    // is modeled by a special pseudo-instruction.
204    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
205    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
206    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
207    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, &X86::GR8RegClass);
225  addRegisterClass(MVT::i16, &X86::GR16RegClass);
226  addRegisterClass(MVT::i32, &X86::GR32RegClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, &X86::GR64RegClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
257  } else if (!TM.Options.UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!TM.Options.UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!TM.Options.UseSoftFloat) {
315    // Since AVX is a superset of SSE3, only check for SSE here.
316    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
317      // Expand FP_TO_UINT into a select.
318      // FIXME: We would like to use a Custom expander here eventually to do
319      // the optimal thing for SSE vs. the default expansion in the legalizer.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
321    else
322      // With SSE3 we can use fisttpll to convert to a signed i64; without
323      // SSE, we're stuck with a fistpll.
324      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
325  }
326
327  if (isTargetFTOL()) {
328    // Use the _ftol2 runtime function, which has a pseudo-instruction
329    // to handle its weird calling convention.
330    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
331  }
332
333  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
334  if (!X86ScalarSSEf64) {
335    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
336    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
337    if (Subtarget->is64Bit()) {
338      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
339      // Without SSE, i64->f64 goes through memory.
340      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
341    }
342  }
343
344  // Scalar integer divide and remainder are lowered to use operations that
345  // produce two results, to match the available instructions. This exposes
346  // the two-result form to trivial CSE, which is able to combine x/y and x%y
347  // into a single instruction.
348  //
349  // Scalar integer multiply-high is also lowered to use two-result
350  // operations, to match the available instructions. However, plain multiply
351  // (low) operations are left as Legal, as there are single-result
352  // instructions for this in x86. Using the two-result multiply instructions
353  // when both high and low results are needed must be arranged by dagcombine.
354  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
355    MVT VT = IntVTs[i];
356    setOperationAction(ISD::MULHS, VT, Expand);
357    setOperationAction(ISD::MULHU, VT, Expand);
358    setOperationAction(ISD::SDIV, VT, Expand);
359    setOperationAction(ISD::UDIV, VT, Expand);
360    setOperationAction(ISD::SREM, VT, Expand);
361    setOperationAction(ISD::UREM, VT, Expand);
362
363    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
364    setOperationAction(ISD::ADDC, VT, Custom);
365    setOperationAction(ISD::ADDE, VT, Custom);
366    setOperationAction(ISD::SUBC, VT, Custom);
367    setOperationAction(ISD::SUBE, VT, Custom);
368  }
369
370  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
371  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
372  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
373  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
374  if (Subtarget->is64Bit())
375    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
378  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
379  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
382  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
383  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
384
385  // Promote the i8 variants and force them on up to i32 which has a shorter
386  // encoding.
387  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
388  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
389  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
390  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
391  if (Subtarget->hasBMI()) {
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
393    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
396  } else {
397    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
398    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
399    if (Subtarget->is64Bit())
400      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
401  }
402
403  if (Subtarget->hasLZCNT()) {
404    // When promoting the i8 variants, force them to i32 for a shorter
405    // encoding.
406    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
407    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
409    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
411    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
412    if (Subtarget->is64Bit())
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
414  } else {
415    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
417    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
420    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
421    if (Subtarget->is64Bit()) {
422      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
423      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
424    }
425  }
426
427  if (Subtarget->hasPOPCNT()) {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
429  } else {
430    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
432    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
433    if (Subtarget->is64Bit())
434      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
435  }
436
437  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
438  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
439
440  // These should be promoted to a larger select which is supported.
441  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
442  // X86 wants to expand cmov itself.
443  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
448  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
454  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
457    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
458  }
459  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
460  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intened to support
461  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
462  // support continuation, user-level threading, and etc.. As a result, no
463  // other SjLj exception interfaces are implemented and please don't build
464  // your own exception handling based on them.
465  // LLVM/Clang supports zero-cost DWARF exception handling.
466  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
467  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
468
469  // Darwin ABI issue.
470  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
471  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
472  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
473  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
474  if (Subtarget->is64Bit())
475    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
476  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
477  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
478  if (Subtarget->is64Bit()) {
479    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
480    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
481    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
482    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
483    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
484  }
485  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
486  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
487  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
488  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
489  if (Subtarget->is64Bit()) {
490    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
491    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
492    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
493  }
494
495  if (Subtarget->hasSSE1())
496    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
497
498  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
499  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
500
501  // On X86 and X86-64, atomic operations are lowered to locked instructions.
502  // Locked instructions, in turn, have implicit fence semantics (all memory
503  // operations are flushed before issuing the locked instruction, and they
504  // are not buffered), so we can fold away the common pattern of
505  // fence-atomic-fence.
506  setShouldFoldAtomicFences(true);
507
508  // Expand certain atomics
509  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
510    MVT VT = IntVTs[i];
511    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
512    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
513    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
514  }
515
516  if (!Subtarget->is64Bit()) {
517    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
518    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
519    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
520    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
521    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
522    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
523    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
524    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
525    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
526    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
527    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
528    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
529  }
530
531  if (Subtarget->hasCmpxchg16b()) {
532    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
533  }
534
535  // FIXME - use subtarget debug flags
536  if (!Subtarget->isTargetDarwin() &&
537      !Subtarget->isTargetELF() &&
538      !Subtarget->isTargetCygMing()) {
539    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
540  }
541
542  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
543  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
544  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
545  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
546  if (Subtarget->is64Bit()) {
547    setExceptionPointerRegister(X86::RAX);
548    setExceptionSelectorRegister(X86::RDX);
549  } else {
550    setExceptionPointerRegister(X86::EAX);
551    setExceptionSelectorRegister(X86::EDX);
552  }
553  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
554  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
555
556  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
557  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
558
559  setOperationAction(ISD::TRAP, MVT::Other, Legal);
560  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
561
562  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
563  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
564  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
565  if (Subtarget->is64Bit()) {
566    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
567    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
568  } else {
569    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
570    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
571  }
572
573  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
574  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
575
576  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
577    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
578                       MVT::i64 : MVT::i32, Custom);
579  else if (TM.Options.EnableSegmentedStacks)
580    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
581                       MVT::i64 : MVT::i32, Custom);
582  else
583    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
584                       MVT::i64 : MVT::i32, Expand);
585
586  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
587    // f32 and f64 use SSE.
588    // Set up the FP register classes.
589    addRegisterClass(MVT::f32, &X86::FR32RegClass);
590    addRegisterClass(MVT::f64, &X86::FR64RegClass);
591
592    // Use ANDPD to simulate FABS.
593    setOperationAction(ISD::FABS , MVT::f64, Custom);
594    setOperationAction(ISD::FABS , MVT::f32, Custom);
595
596    // Use XORP to simulate FNEG.
597    setOperationAction(ISD::FNEG , MVT::f64, Custom);
598    setOperationAction(ISD::FNEG , MVT::f32, Custom);
599
600    // Use ANDPD and ORPD to simulate FCOPYSIGN.
601    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
602    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
603
604    // Lower this to FGETSIGNx86 plus an AND.
605    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
606    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
607
608    // We don't support sin/cos/fmod
609    setOperationAction(ISD::FSIN , MVT::f64, Expand);
610    setOperationAction(ISD::FCOS , MVT::f64, Expand);
611    setOperationAction(ISD::FSIN , MVT::f32, Expand);
612    setOperationAction(ISD::FCOS , MVT::f32, Expand);
613
614    // Expand FP immediates into loads from the stack, except for the special
615    // cases we handle.
616    addLegalFPImmediate(APFloat(+0.0)); // xorpd
617    addLegalFPImmediate(APFloat(+0.0f)); // xorps
618  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
619    // Use SSE for f32, x87 for f64.
620    // Set up the FP register classes.
621    addRegisterClass(MVT::f32, &X86::FR32RegClass);
622    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
623
624    // Use ANDPS to simulate FABS.
625    setOperationAction(ISD::FABS , MVT::f32, Custom);
626
627    // Use XORP to simulate FNEG.
628    setOperationAction(ISD::FNEG , MVT::f32, Custom);
629
630    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
631
632    // Use ANDPS and ORPS to simulate FCOPYSIGN.
633    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
634    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
635
636    // We don't support sin/cos/fmod
637    setOperationAction(ISD::FSIN , MVT::f32, Expand);
638    setOperationAction(ISD::FCOS , MVT::f32, Expand);
639
640    // Special cases we handle for FP constants.
641    addLegalFPImmediate(APFloat(+0.0f)); // xorps
642    addLegalFPImmediate(APFloat(+0.0)); // FLD0
643    addLegalFPImmediate(APFloat(+1.0)); // FLD1
644    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
645    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
646
647    if (!TM.Options.UnsafeFPMath) {
648      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
649      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
650    }
651  } else if (!TM.Options.UseSoftFloat) {
652    // f32 and f64 in x87.
653    // Set up the FP register classes.
654    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
655    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
656
657    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
658    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
659    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
660    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
661
662    if (!TM.Options.UnsafeFPMath) {
663      setOperationAction(ISD::FSIN           , MVT::f32  , Expand);
664      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
665      setOperationAction(ISD::FCOS           , MVT::f32  , Expand);
666      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
667    }
668    addLegalFPImmediate(APFloat(+0.0)); // FLD0
669    addLegalFPImmediate(APFloat(+1.0)); // FLD1
670    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
671    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
672    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
673    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
674    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
675    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
676  }
677
678  // We don't support FMA.
679  setOperationAction(ISD::FMA, MVT::f64, Expand);
680  setOperationAction(ISD::FMA, MVT::f32, Expand);
681
682  // Long double always uses X87.
683  if (!TM.Options.UseSoftFloat) {
684    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
685    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
686    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
687    {
688      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
689      addLegalFPImmediate(TmpFlt);  // FLD0
690      TmpFlt.changeSign();
691      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
692
693      bool ignored;
694      APFloat TmpFlt2(+1.0);
695      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
696                      &ignored);
697      addLegalFPImmediate(TmpFlt2);  // FLD1
698      TmpFlt2.changeSign();
699      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
700    }
701
702    if (!TM.Options.UnsafeFPMath) {
703      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
704      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
705    }
706
707    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
708    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
709    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
710    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
711    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
712    setOperationAction(ISD::FMA, MVT::f80, Expand);
713  }
714
715  // Always use a library call for pow.
716  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
717  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
718  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
719
720  setOperationAction(ISD::FLOG, MVT::f80, Expand);
721  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
722  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
723  setOperationAction(ISD::FEXP, MVT::f80, Expand);
724  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
725
726  // First set operation action for all vector types to either promote
727  // (for widening) or expand (for scalarization). Then we will selectively
728  // turn on ones that can be effectively codegen'd.
729  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
730           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
731    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
746    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
748    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
749    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FMA,  (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FFLOOR, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
770    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
771    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
772    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
773    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
774    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
775    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
776    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
777    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
778    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
779    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
780    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
781    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
782    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
783    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
784    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
785    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
786    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
787    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
788    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
789    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
790    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
791             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
792      setTruncStoreAction((MVT::SimpleValueType)VT,
793                          (MVT::SimpleValueType)InnerVT, Expand);
794    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
795    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
796    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
797  }
798
799  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
800  // with -msoft-float, disable use of MMX as well.
801  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
802    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
803    // No operations on x86mmx supported, everything uses intrinsics.
804  }
805
806  // MMX-sized vectors (other than x86mmx) are expected to be expanded
807  // into smaller operations.
808  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
809  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
810  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
811  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
812  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
813  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
814  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
815  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
816  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
817  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
818  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
819  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
820  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
821  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
822  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
823  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
824  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
825  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
826  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
827  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
828  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
829  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
830  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
831  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
832  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
833  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
834  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
835  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
836  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
837
838  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
839    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
840
841    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
842    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
843    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
844    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
845    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
846    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
847    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
848    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
849    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
850    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
851    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
852    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
853  }
854
855  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
856    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
857
858    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
859    // registers cannot be used even for integer operations.
860    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
861    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
862    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
863    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
864
865    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
866    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
867    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
868    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
869    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
870    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
871    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
872    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
873    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
874    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
875    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
876    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
877    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
878    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
879    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
880    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
881    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
882
883    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
884    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
885    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
886    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
887
888    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
889    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
890    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
891    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
892    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
893
894    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
895    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
896      MVT VT = (MVT::SimpleValueType)i;
897      // Do not attempt to custom lower non-power-of-2 vectors
898      if (!isPowerOf2_32(VT.getVectorNumElements()))
899        continue;
900      // Do not attempt to custom lower non-128-bit vectors
901      if (!VT.is128BitVector())
902        continue;
903      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
904      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
905      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
906    }
907
908    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
909    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
910    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
911    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
913    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
914
915    if (Subtarget->is64Bit()) {
916      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
917      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
918    }
919
920    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
921    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
922      MVT VT = (MVT::SimpleValueType)i;
923
924      // Do not attempt to promote non-128-bit vectors
925      if (!VT.is128BitVector())
926        continue;
927
928      setOperationAction(ISD::AND,    VT, Promote);
929      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
930      setOperationAction(ISD::OR,     VT, Promote);
931      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
932      setOperationAction(ISD::XOR,    VT, Promote);
933      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
934      setOperationAction(ISD::LOAD,   VT, Promote);
935      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
936      setOperationAction(ISD::SELECT, VT, Promote);
937      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
938    }
939
940    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
941
942    // Custom lower v2i64 and v2f64 selects.
943    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
944    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
945    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
946    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
947
948    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
949    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
950
951    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
952    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
953    // As there is no 64-bit GPR available, we need build a special custom
954    // sequence to convert from v2i32 to v2f32.
955    if (!Subtarget->is64Bit())
956      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
957
958    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
959    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
960
961    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
962  }
963
964  if (Subtarget->hasSSE41()) {
965    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
966    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
967    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
968    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
969    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
970    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
971    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
972    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
973    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
974    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
975
976    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
977    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
978
979    // FIXME: Do we need to handle scalar-to-vector here?
980    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
981
982    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
983    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
984    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
985    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
986    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
987
988    // i8 and i16 vectors are custom , because the source register and source
989    // source memory operand types are not the same width.  f32 vectors are
990    // custom since the immediate controlling the insert encodes additional
991    // information.
992    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
993    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
994    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
995    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
996
997    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
998    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
999    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1000    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1001
1002    // FIXME: these should be Legal but thats only for the case where
1003    // the index is constant.  For now custom expand to deal with that.
1004    if (Subtarget->is64Bit()) {
1005      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1006      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1007    }
1008  }
1009
1010  if (Subtarget->hasSSE2()) {
1011    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1012    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1013
1014    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1015    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1016
1017    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1018    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1019
1020    if (Subtarget->hasAVX2()) {
1021      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
1022      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1023
1024      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1025      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1026
1027      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1028    } else {
1029      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1030      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1031
1032      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1033      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1034
1035      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1036    }
1037  }
1038
1039  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1040    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1041    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1042    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1043    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1044    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1045    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1046
1047    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1048    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1049    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1050
1051    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1052    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1053    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1054    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1055    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1056    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1057    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1058    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1059
1060    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1061    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1062    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1063    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1064    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1065    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1066    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1067    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1068
1069    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1070
1071    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1072
1073    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1074    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1075    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1076
1077    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1078    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1079    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1080
1081    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1082
1083    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1084    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1085
1086    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1087    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1088
1089    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1090    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1091
1092    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1093    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1094    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1095    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1096
1097    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1098    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1099    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1100
1101    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1102    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1103    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1104    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1105
1106    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1107      setOperationAction(ISD::FMA,             MVT::v8f32, Custom);
1108      setOperationAction(ISD::FMA,             MVT::v4f64, Custom);
1109      setOperationAction(ISD::FMA,             MVT::v4f32, Custom);
1110      setOperationAction(ISD::FMA,             MVT::v2f64, Custom);
1111      setOperationAction(ISD::FMA,             MVT::f32, Custom);
1112      setOperationAction(ISD::FMA,             MVT::f64, Custom);
1113    }
1114
1115    if (Subtarget->hasAVX2()) {
1116      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1117      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1118      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1119      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1120
1121      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1122      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1123      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1124      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1125
1126      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1127      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1128      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1129      // Don't lower v32i8 because there is no 128-bit byte mul
1130
1131      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1132
1133      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1134      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1135
1136      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1137      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1138
1139      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1140    } else {
1141      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1142      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1143      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1144      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1145
1146      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1147      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1148      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1149      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1150
1151      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1152      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1153      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1154      // Don't lower v32i8 because there is no 128-bit byte mul
1155
1156      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1157      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1158
1159      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1160      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1161
1162      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1163    }
1164
1165    // Custom lower several nodes for 256-bit types.
1166    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1167             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1168      MVT VT = (MVT::SimpleValueType)i;
1169
1170      // Extract subvector is special because the value type
1171      // (result) is 128-bit but the source is 256-bit wide.
1172      if (VT.is128BitVector())
1173        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1174
1175      // Do not attempt to custom lower other non-256-bit vectors
1176      if (!VT.is256BitVector())
1177        continue;
1178
1179      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1180      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1181      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1182      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1183      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1184      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1185      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1186    }
1187
1188    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1189    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1190      MVT VT = (MVT::SimpleValueType)i;
1191
1192      // Do not attempt to promote non-256-bit vectors
1193      if (!VT.is256BitVector())
1194        continue;
1195
1196      setOperationAction(ISD::AND,    VT, Promote);
1197      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1198      setOperationAction(ISD::OR,     VT, Promote);
1199      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1200      setOperationAction(ISD::XOR,    VT, Promote);
1201      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1202      setOperationAction(ISD::LOAD,   VT, Promote);
1203      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1204      setOperationAction(ISD::SELECT, VT, Promote);
1205      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1206    }
1207  }
1208
1209  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1210  // of this type with custom code.
1211  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1212           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1213    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1214                       Custom);
1215  }
1216
1217  // We want to custom lower some of our intrinsics.
1218  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1219  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1220
1221
1222  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1223  // handle type legalization for these operations here.
1224  //
1225  // FIXME: We really should do custom legalization for addition and
1226  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1227  // than generic legalization for 64-bit multiplication-with-overflow, though.
1228  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1229    // Add/Sub/Mul with overflow operations are custom lowered.
1230    MVT VT = IntVTs[i];
1231    setOperationAction(ISD::SADDO, VT, Custom);
1232    setOperationAction(ISD::UADDO, VT, Custom);
1233    setOperationAction(ISD::SSUBO, VT, Custom);
1234    setOperationAction(ISD::USUBO, VT, Custom);
1235    setOperationAction(ISD::SMULO, VT, Custom);
1236    setOperationAction(ISD::UMULO, VT, Custom);
1237  }
1238
1239  // There are no 8-bit 3-address imul/mul instructions
1240  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1241  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1242
1243  if (!Subtarget->is64Bit()) {
1244    // These libcalls are not available in 32-bit.
1245    setLibcallName(RTLIB::SHL_I128, 0);
1246    setLibcallName(RTLIB::SRL_I128, 0);
1247    setLibcallName(RTLIB::SRA_I128, 0);
1248  }
1249
1250  // We have target-specific dag combine patterns for the following nodes:
1251  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1252  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1253  setTargetDAGCombine(ISD::VSELECT);
1254  setTargetDAGCombine(ISD::SELECT);
1255  setTargetDAGCombine(ISD::SHL);
1256  setTargetDAGCombine(ISD::SRA);
1257  setTargetDAGCombine(ISD::SRL);
1258  setTargetDAGCombine(ISD::OR);
1259  setTargetDAGCombine(ISD::AND);
1260  setTargetDAGCombine(ISD::ADD);
1261  setTargetDAGCombine(ISD::FADD);
1262  setTargetDAGCombine(ISD::FSUB);
1263  setTargetDAGCombine(ISD::FMA);
1264  setTargetDAGCombine(ISD::SUB);
1265  setTargetDAGCombine(ISD::LOAD);
1266  setTargetDAGCombine(ISD::STORE);
1267  setTargetDAGCombine(ISD::ZERO_EXTEND);
1268  setTargetDAGCombine(ISD::ANY_EXTEND);
1269  setTargetDAGCombine(ISD::SIGN_EXTEND);
1270  setTargetDAGCombine(ISD::TRUNCATE);
1271  setTargetDAGCombine(ISD::SINT_TO_FP);
1272  setTargetDAGCombine(ISD::SETCC);
1273  if (Subtarget->is64Bit())
1274    setTargetDAGCombine(ISD::MUL);
1275  setTargetDAGCombine(ISD::XOR);
1276
1277  computeRegisterProperties();
1278
1279  // On Darwin, -Os means optimize for size without hurting performance,
1280  // do not reduce the limit.
1281  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1282  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1283  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1284  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1285  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1286  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1287  setPrefLoopAlignment(4); // 2^4 bytes.
1288  benefitFromCodePlacementOpt = true;
1289
1290  // Predictable cmov don't hurt on atom because it's in-order.
1291  predictableSelectIsExpensive = !Subtarget->isAtom();
1292
1293  setPrefFunctionAlignment(4); // 2^4 bytes.
1294}
1295
1296
1297EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1298  if (!VT.isVector()) return MVT::i8;
1299  return VT.changeVectorElementTypeToInteger();
1300}
1301
1302
1303/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1304/// the desired ByVal argument alignment.
1305static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1306  if (MaxAlign == 16)
1307    return;
1308  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1309    if (VTy->getBitWidth() == 128)
1310      MaxAlign = 16;
1311  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1312    unsigned EltAlign = 0;
1313    getMaxByValAlign(ATy->getElementType(), EltAlign);
1314    if (EltAlign > MaxAlign)
1315      MaxAlign = EltAlign;
1316  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1317    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1318      unsigned EltAlign = 0;
1319      getMaxByValAlign(STy->getElementType(i), EltAlign);
1320      if (EltAlign > MaxAlign)
1321        MaxAlign = EltAlign;
1322      if (MaxAlign == 16)
1323        break;
1324    }
1325  }
1326}
1327
1328/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1329/// function arguments in the caller parameter area. For X86, aggregates
1330/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1331/// are at 4-byte boundaries.
1332unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1333  if (Subtarget->is64Bit()) {
1334    // Max of 8 and alignment of type.
1335    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1336    if (TyAlign > 8)
1337      return TyAlign;
1338    return 8;
1339  }
1340
1341  unsigned Align = 4;
1342  if (Subtarget->hasSSE1())
1343    getMaxByValAlign(Ty, Align);
1344  return Align;
1345}
1346
1347/// getOptimalMemOpType - Returns the target specific optimal type for load
1348/// and store operations as a result of memset, memcpy, and memmove
1349/// lowering. If DstAlign is zero that means it's safe to destination
1350/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1351/// means there isn't a need to check it against alignment requirement,
1352/// probably because the source does not need to be loaded. If
1353/// 'IsZeroVal' is true, that means it's safe to return a
1354/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1355/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1356/// constant so it does not need to be loaded.
1357/// It returns EVT::Other if the type should be determined using generic
1358/// target-independent logic.
1359EVT
1360X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1361                                       unsigned DstAlign, unsigned SrcAlign,
1362                                       bool IsZeroVal,
1363                                       bool MemcpyStrSrc,
1364                                       MachineFunction &MF) const {
1365  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1366  // linux.  This is because the stack realignment code can't handle certain
1367  // cases like PR2962.  This should be removed when PR2962 is fixed.
1368  const Function *F = MF.getFunction();
1369  if (IsZeroVal &&
1370      !F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat)) {
1371    if (Size >= 16 &&
1372        (Subtarget->isUnalignedMemAccessFast() ||
1373         ((DstAlign == 0 || DstAlign >= 16) &&
1374          (SrcAlign == 0 || SrcAlign >= 16))) &&
1375        Subtarget->getStackAlignment() >= 16) {
1376      if (Subtarget->getStackAlignment() >= 32) {
1377        if (Subtarget->hasAVX2())
1378          return MVT::v8i32;
1379        if (Subtarget->hasAVX())
1380          return MVT::v8f32;
1381      }
1382      if (Subtarget->hasSSE2())
1383        return MVT::v4i32;
1384      if (Subtarget->hasSSE1())
1385        return MVT::v4f32;
1386    } else if (!MemcpyStrSrc && Size >= 8 &&
1387               !Subtarget->is64Bit() &&
1388               Subtarget->getStackAlignment() >= 8 &&
1389               Subtarget->hasSSE2()) {
1390      // Do not use f64 to lower memcpy if source is string constant. It's
1391      // better to use i32 to avoid the loads.
1392      return MVT::f64;
1393    }
1394  }
1395  if (Subtarget->is64Bit() && Size >= 8)
1396    return MVT::i64;
1397  return MVT::i32;
1398}
1399
1400/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1401/// current function.  The returned value is a member of the
1402/// MachineJumpTableInfo::JTEntryKind enum.
1403unsigned X86TargetLowering::getJumpTableEncoding() const {
1404  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1405  // symbol.
1406  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1407      Subtarget->isPICStyleGOT())
1408    return MachineJumpTableInfo::EK_Custom32;
1409
1410  // Otherwise, use the normal jump table encoding heuristics.
1411  return TargetLowering::getJumpTableEncoding();
1412}
1413
1414const MCExpr *
1415X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1416                                             const MachineBasicBlock *MBB,
1417                                             unsigned uid,MCContext &Ctx) const{
1418  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1419         Subtarget->isPICStyleGOT());
1420  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1421  // entries.
1422  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1423                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1424}
1425
1426/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1427/// jumptable.
1428SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1429                                                    SelectionDAG &DAG) const {
1430  if (!Subtarget->is64Bit())
1431    // This doesn't have DebugLoc associated with it, but is not really the
1432    // same as a Register.
1433    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1434  return Table;
1435}
1436
1437/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1438/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1439/// MCExpr.
1440const MCExpr *X86TargetLowering::
1441getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1442                             MCContext &Ctx) const {
1443  // X86-64 uses RIP relative addressing based on the jump table label.
1444  if (Subtarget->isPICStyleRIPRel())
1445    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1446
1447  // Otherwise, the reference is relative to the PIC base.
1448  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1449}
1450
1451// FIXME: Why this routine is here? Move to RegInfo!
1452std::pair<const TargetRegisterClass*, uint8_t>
1453X86TargetLowering::findRepresentativeClass(EVT VT) const{
1454  const TargetRegisterClass *RRC = 0;
1455  uint8_t Cost = 1;
1456  switch (VT.getSimpleVT().SimpleTy) {
1457  default:
1458    return TargetLowering::findRepresentativeClass(VT);
1459  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1460    RRC = Subtarget->is64Bit() ?
1461      (const TargetRegisterClass*)&X86::GR64RegClass :
1462      (const TargetRegisterClass*)&X86::GR32RegClass;
1463    break;
1464  case MVT::x86mmx:
1465    RRC = &X86::VR64RegClass;
1466    break;
1467  case MVT::f32: case MVT::f64:
1468  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1469  case MVT::v4f32: case MVT::v2f64:
1470  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1471  case MVT::v4f64:
1472    RRC = &X86::VR128RegClass;
1473    break;
1474  }
1475  return std::make_pair(RRC, Cost);
1476}
1477
1478bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1479                                               unsigned &Offset) const {
1480  if (!Subtarget->isTargetLinux())
1481    return false;
1482
1483  if (Subtarget->is64Bit()) {
1484    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1485    Offset = 0x28;
1486    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1487      AddressSpace = 256;
1488    else
1489      AddressSpace = 257;
1490  } else {
1491    // %gs:0x14 on i386
1492    Offset = 0x14;
1493    AddressSpace = 256;
1494  }
1495  return true;
1496}
1497
1498
1499//===----------------------------------------------------------------------===//
1500//               Return Value Calling Convention Implementation
1501//===----------------------------------------------------------------------===//
1502
1503#include "X86GenCallingConv.inc"
1504
1505bool
1506X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1507                                  MachineFunction &MF, bool isVarArg,
1508                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1509                        LLVMContext &Context) const {
1510  SmallVector<CCValAssign, 16> RVLocs;
1511  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1512                 RVLocs, Context);
1513  return CCInfo.CheckReturn(Outs, RetCC_X86);
1514}
1515
1516SDValue
1517X86TargetLowering::LowerReturn(SDValue Chain,
1518                               CallingConv::ID CallConv, bool isVarArg,
1519                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1520                               const SmallVectorImpl<SDValue> &OutVals,
1521                               DebugLoc dl, SelectionDAG &DAG) const {
1522  MachineFunction &MF = DAG.getMachineFunction();
1523  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1524
1525  SmallVector<CCValAssign, 16> RVLocs;
1526  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1527                 RVLocs, *DAG.getContext());
1528  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1529
1530  // Add the regs to the liveout set for the function.
1531  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1532  for (unsigned i = 0; i != RVLocs.size(); ++i)
1533    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1534      MRI.addLiveOut(RVLocs[i].getLocReg());
1535
1536  SDValue Flag;
1537
1538  SmallVector<SDValue, 6> RetOps;
1539  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1540  // Operand #1 = Bytes To Pop
1541  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1542                   MVT::i16));
1543
1544  // Copy the result values into the output registers.
1545  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1546    CCValAssign &VA = RVLocs[i];
1547    assert(VA.isRegLoc() && "Can only return in registers!");
1548    SDValue ValToCopy = OutVals[i];
1549    EVT ValVT = ValToCopy.getValueType();
1550
1551    // Promote values to the appropriate types
1552    if (VA.getLocInfo() == CCValAssign::SExt)
1553      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1554    else if (VA.getLocInfo() == CCValAssign::ZExt)
1555      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1556    else if (VA.getLocInfo() == CCValAssign::AExt)
1557      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1558    else if (VA.getLocInfo() == CCValAssign::BCvt)
1559      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1560
1561    // If this is x86-64, and we disabled SSE, we can't return FP values,
1562    // or SSE or MMX vectors.
1563    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1564         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1565          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1566      report_fatal_error("SSE register return with SSE disabled");
1567    }
1568    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1569    // llvm-gcc has never done it right and no one has noticed, so this
1570    // should be OK for now.
1571    if (ValVT == MVT::f64 &&
1572        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1573      report_fatal_error("SSE2 register return with SSE2 disabled");
1574
1575    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1576    // the RET instruction and handled by the FP Stackifier.
1577    if (VA.getLocReg() == X86::ST0 ||
1578        VA.getLocReg() == X86::ST1) {
1579      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1580      // change the value to the FP stack register class.
1581      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1582        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1583      RetOps.push_back(ValToCopy);
1584      // Don't emit a copytoreg.
1585      continue;
1586    }
1587
1588    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1589    // which is returned in RAX / RDX.
1590    if (Subtarget->is64Bit()) {
1591      if (ValVT == MVT::x86mmx) {
1592        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1593          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1594          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1595                                  ValToCopy);
1596          // If we don't have SSE2 available, convert to v4f32 so the generated
1597          // register is legal.
1598          if (!Subtarget->hasSSE2())
1599            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1600        }
1601      }
1602    }
1603
1604    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1605    Flag = Chain.getValue(1);
1606  }
1607
1608  // The x86-64 ABI for returning structs by value requires that we copy
1609  // the sret argument into %rax for the return. We saved the argument into
1610  // a virtual register in the entry block, so now we copy the value out
1611  // and into %rax.
1612  if (Subtarget->is64Bit() &&
1613      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1614    MachineFunction &MF = DAG.getMachineFunction();
1615    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1616    unsigned Reg = FuncInfo->getSRetReturnReg();
1617    assert(Reg &&
1618           "SRetReturnReg should have been set in LowerFormalArguments().");
1619    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1620
1621    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1622    Flag = Chain.getValue(1);
1623
1624    // RAX now acts like a return value.
1625    MRI.addLiveOut(X86::RAX);
1626  }
1627
1628  RetOps[0] = Chain;  // Update chain.
1629
1630  // Add the flag if we have it.
1631  if (Flag.getNode())
1632    RetOps.push_back(Flag);
1633
1634  return DAG.getNode(X86ISD::RET_FLAG, dl,
1635                     MVT::Other, &RetOps[0], RetOps.size());
1636}
1637
1638bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1639  if (N->getNumValues() != 1)
1640    return false;
1641  if (!N->hasNUsesOfValue(1, 0))
1642    return false;
1643
1644  SDValue TCChain = Chain;
1645  SDNode *Copy = *N->use_begin();
1646  if (Copy->getOpcode() == ISD::CopyToReg) {
1647    // If the copy has a glue operand, we conservatively assume it isn't safe to
1648    // perform a tail call.
1649    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1650      return false;
1651    TCChain = Copy->getOperand(0);
1652  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1653    return false;
1654
1655  bool HasRet = false;
1656  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1657       UI != UE; ++UI) {
1658    if (UI->getOpcode() != X86ISD::RET_FLAG)
1659      return false;
1660    HasRet = true;
1661  }
1662
1663  if (!HasRet)
1664    return false;
1665
1666  Chain = TCChain;
1667  return true;
1668}
1669
1670EVT
1671X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1672                                            ISD::NodeType ExtendKind) const {
1673  MVT ReturnMVT;
1674  // TODO: Is this also valid on 32-bit?
1675  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1676    ReturnMVT = MVT::i8;
1677  else
1678    ReturnMVT = MVT::i32;
1679
1680  EVT MinVT = getRegisterType(Context, ReturnMVT);
1681  return VT.bitsLT(MinVT) ? MinVT : VT;
1682}
1683
1684/// LowerCallResult - Lower the result values of a call into the
1685/// appropriate copies out of appropriate physical registers.
1686///
1687SDValue
1688X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1689                                   CallingConv::ID CallConv, bool isVarArg,
1690                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1691                                   DebugLoc dl, SelectionDAG &DAG,
1692                                   SmallVectorImpl<SDValue> &InVals) const {
1693
1694  // Assign locations to each value returned by this call.
1695  SmallVector<CCValAssign, 16> RVLocs;
1696  bool Is64Bit = Subtarget->is64Bit();
1697  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1698                 getTargetMachine(), RVLocs, *DAG.getContext());
1699  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1700
1701  // Copy all of the result registers out of their specified physreg.
1702  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1703    CCValAssign &VA = RVLocs[i];
1704    EVT CopyVT = VA.getValVT();
1705
1706    // If this is x86-64, and we disabled SSE, we can't return FP values
1707    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1708        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1709      report_fatal_error("SSE register return with SSE disabled");
1710    }
1711
1712    SDValue Val;
1713
1714    // If this is a call to a function that returns an fp value on the floating
1715    // point stack, we must guarantee the value is popped from the stack, so
1716    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1717    // if the return value is not used. We use the FpPOP_RETVAL instruction
1718    // instead.
1719    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1720      // If we prefer to use the value in xmm registers, copy it out as f80 and
1721      // use a truncate to move it from fp stack reg to xmm reg.
1722      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1723      SDValue Ops[] = { Chain, InFlag };
1724      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1725                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1726      Val = Chain.getValue(0);
1727
1728      // Round the f80 to the right size, which also moves it to the appropriate
1729      // xmm register.
1730      if (CopyVT != VA.getValVT())
1731        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1732                          // This truncation won't change the value.
1733                          DAG.getIntPtrConstant(1));
1734    } else {
1735      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1736                                 CopyVT, InFlag).getValue(1);
1737      Val = Chain.getValue(0);
1738    }
1739    InFlag = Chain.getValue(2);
1740    InVals.push_back(Val);
1741  }
1742
1743  return Chain;
1744}
1745
1746
1747//===----------------------------------------------------------------------===//
1748//                C & StdCall & Fast Calling Convention implementation
1749//===----------------------------------------------------------------------===//
1750//  StdCall calling convention seems to be standard for many Windows' API
1751//  routines and around. It differs from C calling convention just a little:
1752//  callee should clean up the stack, not caller. Symbols should be also
1753//  decorated in some fancy way :) It doesn't support any vector arguments.
1754//  For info on fast calling convention see Fast Calling Convention (tail call)
1755//  implementation LowerX86_32FastCCCallTo.
1756
1757/// CallIsStructReturn - Determines whether a call uses struct return
1758/// semantics.
1759enum StructReturnType {
1760  NotStructReturn,
1761  RegStructReturn,
1762  StackStructReturn
1763};
1764static StructReturnType
1765callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1766  if (Outs.empty())
1767    return NotStructReturn;
1768
1769  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1770  if (!Flags.isSRet())
1771    return NotStructReturn;
1772  if (Flags.isInReg())
1773    return RegStructReturn;
1774  return StackStructReturn;
1775}
1776
1777/// ArgsAreStructReturn - Determines whether a function uses struct
1778/// return semantics.
1779static StructReturnType
1780argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1781  if (Ins.empty())
1782    return NotStructReturn;
1783
1784  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1785  if (!Flags.isSRet())
1786    return NotStructReturn;
1787  if (Flags.isInReg())
1788    return RegStructReturn;
1789  return StackStructReturn;
1790}
1791
1792/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1793/// by "Src" to address "Dst" with size and alignment information specified by
1794/// the specific parameter attribute. The copy will be passed as a byval
1795/// function parameter.
1796static SDValue
1797CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1798                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1799                          DebugLoc dl) {
1800  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1801
1802  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1803                       /*isVolatile*/false, /*AlwaysInline=*/true,
1804                       MachinePointerInfo(), MachinePointerInfo());
1805}
1806
1807/// IsTailCallConvention - Return true if the calling convention is one that
1808/// supports tail call optimization.
1809static bool IsTailCallConvention(CallingConv::ID CC) {
1810  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1811}
1812
1813bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1814  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1815    return false;
1816
1817  CallSite CS(CI);
1818  CallingConv::ID CalleeCC = CS.getCallingConv();
1819  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1820    return false;
1821
1822  return true;
1823}
1824
1825/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1826/// a tailcall target by changing its ABI.
1827static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1828                                   bool GuaranteedTailCallOpt) {
1829  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1830}
1831
1832SDValue
1833X86TargetLowering::LowerMemArgument(SDValue Chain,
1834                                    CallingConv::ID CallConv,
1835                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1836                                    DebugLoc dl, SelectionDAG &DAG,
1837                                    const CCValAssign &VA,
1838                                    MachineFrameInfo *MFI,
1839                                    unsigned i) const {
1840  // Create the nodes corresponding to a load from this parameter slot.
1841  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1842  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1843                              getTargetMachine().Options.GuaranteedTailCallOpt);
1844  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1845  EVT ValVT;
1846
1847  // If value is passed by pointer we have address passed instead of the value
1848  // itself.
1849  if (VA.getLocInfo() == CCValAssign::Indirect)
1850    ValVT = VA.getLocVT();
1851  else
1852    ValVT = VA.getValVT();
1853
1854  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1855  // changed with more analysis.
1856  // In case of tail call optimization mark all arguments mutable. Since they
1857  // could be overwritten by lowering of arguments in case of a tail call.
1858  if (Flags.isByVal()) {
1859    unsigned Bytes = Flags.getByValSize();
1860    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1861    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1862    return DAG.getFrameIndex(FI, getPointerTy());
1863  } else {
1864    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1865                                    VA.getLocMemOffset(), isImmutable);
1866    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1867    return DAG.getLoad(ValVT, dl, Chain, FIN,
1868                       MachinePointerInfo::getFixedStack(FI),
1869                       false, false, false, 0);
1870  }
1871}
1872
1873SDValue
1874X86TargetLowering::LowerFormalArguments(SDValue Chain,
1875                                        CallingConv::ID CallConv,
1876                                        bool isVarArg,
1877                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1878                                        DebugLoc dl,
1879                                        SelectionDAG &DAG,
1880                                        SmallVectorImpl<SDValue> &InVals)
1881                                          const {
1882  MachineFunction &MF = DAG.getMachineFunction();
1883  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1884
1885  const Function* Fn = MF.getFunction();
1886  if (Fn->hasExternalLinkage() &&
1887      Subtarget->isTargetCygMing() &&
1888      Fn->getName() == "main")
1889    FuncInfo->setForceFramePointer(true);
1890
1891  MachineFrameInfo *MFI = MF.getFrameInfo();
1892  bool Is64Bit = Subtarget->is64Bit();
1893  bool IsWindows = Subtarget->isTargetWindows();
1894  bool IsWin64 = Subtarget->isTargetWin64();
1895
1896  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1897         "Var args not supported with calling convention fastcc or ghc");
1898
1899  // Assign locations to all of the incoming arguments.
1900  SmallVector<CCValAssign, 16> ArgLocs;
1901  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1902                 ArgLocs, *DAG.getContext());
1903
1904  // Allocate shadow area for Win64
1905  if (IsWin64) {
1906    CCInfo.AllocateStack(32, 8);
1907  }
1908
1909  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1910
1911  unsigned LastVal = ~0U;
1912  SDValue ArgValue;
1913  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1914    CCValAssign &VA = ArgLocs[i];
1915    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1916    // places.
1917    assert(VA.getValNo() != LastVal &&
1918           "Don't support value assigned to multiple locs yet");
1919    (void)LastVal;
1920    LastVal = VA.getValNo();
1921
1922    if (VA.isRegLoc()) {
1923      EVT RegVT = VA.getLocVT();
1924      const TargetRegisterClass *RC;
1925      if (RegVT == MVT::i32)
1926        RC = &X86::GR32RegClass;
1927      else if (Is64Bit && RegVT == MVT::i64)
1928        RC = &X86::GR64RegClass;
1929      else if (RegVT == MVT::f32)
1930        RC = &X86::FR32RegClass;
1931      else if (RegVT == MVT::f64)
1932        RC = &X86::FR64RegClass;
1933      else if (RegVT.is256BitVector())
1934        RC = &X86::VR256RegClass;
1935      else if (RegVT.is128BitVector())
1936        RC = &X86::VR128RegClass;
1937      else if (RegVT == MVT::x86mmx)
1938        RC = &X86::VR64RegClass;
1939      else
1940        llvm_unreachable("Unknown argument type!");
1941
1942      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1943      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1944
1945      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1946      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1947      // right size.
1948      if (VA.getLocInfo() == CCValAssign::SExt)
1949        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1950                               DAG.getValueType(VA.getValVT()));
1951      else if (VA.getLocInfo() == CCValAssign::ZExt)
1952        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1953                               DAG.getValueType(VA.getValVT()));
1954      else if (VA.getLocInfo() == CCValAssign::BCvt)
1955        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1956
1957      if (VA.isExtInLoc()) {
1958        // Handle MMX values passed in XMM regs.
1959        if (RegVT.isVector()) {
1960          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1961                                 ArgValue);
1962        } else
1963          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1964      }
1965    } else {
1966      assert(VA.isMemLoc());
1967      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1968    }
1969
1970    // If value is passed via pointer - do a load.
1971    if (VA.getLocInfo() == CCValAssign::Indirect)
1972      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1973                             MachinePointerInfo(), false, false, false, 0);
1974
1975    InVals.push_back(ArgValue);
1976  }
1977
1978  // The x86-64 ABI for returning structs by value requires that we copy
1979  // the sret argument into %rax for the return. Save the argument into
1980  // a virtual register so that we can access it from the return points.
1981  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1982    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1983    unsigned Reg = FuncInfo->getSRetReturnReg();
1984    if (!Reg) {
1985      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1986      FuncInfo->setSRetReturnReg(Reg);
1987    }
1988    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1989    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1990  }
1991
1992  unsigned StackSize = CCInfo.getNextStackOffset();
1993  // Align stack specially for tail calls.
1994  if (FuncIsMadeTailCallSafe(CallConv,
1995                             MF.getTarget().Options.GuaranteedTailCallOpt))
1996    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1997
1998  // If the function takes variable number of arguments, make a frame index for
1999  // the start of the first vararg value... for expansion of llvm.va_start.
2000  if (isVarArg) {
2001    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2002                    CallConv != CallingConv::X86_ThisCall)) {
2003      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2004    }
2005    if (Is64Bit) {
2006      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2007
2008      // FIXME: We should really autogenerate these arrays
2009      static const uint16_t GPR64ArgRegsWin64[] = {
2010        X86::RCX, X86::RDX, X86::R8,  X86::R9
2011      };
2012      static const uint16_t GPR64ArgRegs64Bit[] = {
2013        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2014      };
2015      static const uint16_t XMMArgRegs64Bit[] = {
2016        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2017        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2018      };
2019      const uint16_t *GPR64ArgRegs;
2020      unsigned NumXMMRegs = 0;
2021
2022      if (IsWin64) {
2023        // The XMM registers which might contain var arg parameters are shadowed
2024        // in their paired GPR.  So we only need to save the GPR to their home
2025        // slots.
2026        TotalNumIntRegs = 4;
2027        GPR64ArgRegs = GPR64ArgRegsWin64;
2028      } else {
2029        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2030        GPR64ArgRegs = GPR64ArgRegs64Bit;
2031
2032        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2033                                                TotalNumXMMRegs);
2034      }
2035      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2036                                                       TotalNumIntRegs);
2037
2038      bool NoImplicitFloatOps = Fn->getFnAttributes().
2039        hasAttribute(Attributes::NoImplicitFloat);
2040      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2041             "SSE register cannot be used when SSE is disabled!");
2042      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2043               NoImplicitFloatOps) &&
2044             "SSE register cannot be used when SSE is disabled!");
2045      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2046          !Subtarget->hasSSE1())
2047        // Kernel mode asks for SSE to be disabled, so don't push them
2048        // on the stack.
2049        TotalNumXMMRegs = 0;
2050
2051      if (IsWin64) {
2052        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2053        // Get to the caller-allocated home save location.  Add 8 to account
2054        // for the return address.
2055        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2056        FuncInfo->setRegSaveFrameIndex(
2057          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2058        // Fixup to set vararg frame on shadow area (4 x i64).
2059        if (NumIntRegs < 4)
2060          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2061      } else {
2062        // For X86-64, if there are vararg parameters that are passed via
2063        // registers, then we must store them to their spots on the stack so
2064        // they may be loaded by deferencing the result of va_next.
2065        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2066        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2067        FuncInfo->setRegSaveFrameIndex(
2068          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2069                               false));
2070      }
2071
2072      // Store the integer parameter registers.
2073      SmallVector<SDValue, 8> MemOps;
2074      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2075                                        getPointerTy());
2076      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2077      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2078        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2079                                  DAG.getIntPtrConstant(Offset));
2080        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2081                                     &X86::GR64RegClass);
2082        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2083        SDValue Store =
2084          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2085                       MachinePointerInfo::getFixedStack(
2086                         FuncInfo->getRegSaveFrameIndex(), Offset),
2087                       false, false, 0);
2088        MemOps.push_back(Store);
2089        Offset += 8;
2090      }
2091
2092      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2093        // Now store the XMM (fp + vector) parameter registers.
2094        SmallVector<SDValue, 11> SaveXMMOps;
2095        SaveXMMOps.push_back(Chain);
2096
2097        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2098        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2099        SaveXMMOps.push_back(ALVal);
2100
2101        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2102                               FuncInfo->getRegSaveFrameIndex()));
2103        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2104                               FuncInfo->getVarArgsFPOffset()));
2105
2106        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2107          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2108                                       &X86::VR128RegClass);
2109          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2110          SaveXMMOps.push_back(Val);
2111        }
2112        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2113                                     MVT::Other,
2114                                     &SaveXMMOps[0], SaveXMMOps.size()));
2115      }
2116
2117      if (!MemOps.empty())
2118        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2119                            &MemOps[0], MemOps.size());
2120    }
2121  }
2122
2123  // Some CCs need callee pop.
2124  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2125                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2126    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2127  } else {
2128    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2129    // If this is an sret function, the return should pop the hidden pointer.
2130    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2131        argsAreStructReturn(Ins) == StackStructReturn)
2132      FuncInfo->setBytesToPopOnReturn(4);
2133  }
2134
2135  if (!Is64Bit) {
2136    // RegSaveFrameIndex is X86-64 only.
2137    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2138    if (CallConv == CallingConv::X86_FastCall ||
2139        CallConv == CallingConv::X86_ThisCall)
2140      // fastcc functions can't have varargs.
2141      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2142  }
2143
2144  FuncInfo->setArgumentStackSize(StackSize);
2145
2146  return Chain;
2147}
2148
2149SDValue
2150X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2151                                    SDValue StackPtr, SDValue Arg,
2152                                    DebugLoc dl, SelectionDAG &DAG,
2153                                    const CCValAssign &VA,
2154                                    ISD::ArgFlagsTy Flags) const {
2155  unsigned LocMemOffset = VA.getLocMemOffset();
2156  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2157  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2158  if (Flags.isByVal())
2159    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2160
2161  return DAG.getStore(Chain, dl, Arg, PtrOff,
2162                      MachinePointerInfo::getStack(LocMemOffset),
2163                      false, false, 0);
2164}
2165
2166/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2167/// optimization is performed and it is required.
2168SDValue
2169X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2170                                           SDValue &OutRetAddr, SDValue Chain,
2171                                           bool IsTailCall, bool Is64Bit,
2172                                           int FPDiff, DebugLoc dl) const {
2173  // Adjust the Return address stack slot.
2174  EVT VT = getPointerTy();
2175  OutRetAddr = getReturnAddressFrameIndex(DAG);
2176
2177  // Load the "old" Return address.
2178  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2179                           false, false, false, 0);
2180  return SDValue(OutRetAddr.getNode(), 1);
2181}
2182
2183/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2184/// optimization is performed and it is required (FPDiff!=0).
2185static SDValue
2186EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2187                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2188                         unsigned SlotSize, int FPDiff, DebugLoc dl) {
2189  // Store the return address to the appropriate stack slot.
2190  if (!FPDiff) return Chain;
2191  // Calculate the new stack slot for the return address.
2192  int NewReturnAddrFI =
2193    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2194  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2195  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2196                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2197                       false, false, 0);
2198  return Chain;
2199}
2200
2201SDValue
2202X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2203                             SmallVectorImpl<SDValue> &InVals) const {
2204  SelectionDAG &DAG                     = CLI.DAG;
2205  DebugLoc &dl                          = CLI.DL;
2206  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2207  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2208  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2209  SDValue Chain                         = CLI.Chain;
2210  SDValue Callee                        = CLI.Callee;
2211  CallingConv::ID CallConv              = CLI.CallConv;
2212  bool &isTailCall                      = CLI.IsTailCall;
2213  bool isVarArg                         = CLI.IsVarArg;
2214
2215  MachineFunction &MF = DAG.getMachineFunction();
2216  bool Is64Bit        = Subtarget->is64Bit();
2217  bool IsWin64        = Subtarget->isTargetWin64();
2218  bool IsWindows      = Subtarget->isTargetWindows();
2219  StructReturnType SR = callIsStructReturn(Outs);
2220  bool IsSibcall      = false;
2221
2222  if (MF.getTarget().Options.DisableTailCalls)
2223    isTailCall = false;
2224
2225  if (isTailCall) {
2226    // Check if it's really possible to do a tail call.
2227    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2228                    isVarArg, SR != NotStructReturn,
2229                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2230                    Outs, OutVals, Ins, DAG);
2231
2232    // Sibcalls are automatically detected tailcalls which do not require
2233    // ABI changes.
2234    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2235      IsSibcall = true;
2236
2237    if (isTailCall)
2238      ++NumTailCalls;
2239  }
2240
2241  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2242         "Var args not supported with calling convention fastcc or ghc");
2243
2244  // Analyze operands of the call, assigning locations to each operand.
2245  SmallVector<CCValAssign, 16> ArgLocs;
2246  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2247                 ArgLocs, *DAG.getContext());
2248
2249  // Allocate shadow area for Win64
2250  if (IsWin64) {
2251    CCInfo.AllocateStack(32, 8);
2252  }
2253
2254  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2255
2256  // Get a count of how many bytes are to be pushed on the stack.
2257  unsigned NumBytes = CCInfo.getNextStackOffset();
2258  if (IsSibcall)
2259    // This is a sibcall. The memory operands are available in caller's
2260    // own caller's stack.
2261    NumBytes = 0;
2262  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2263           IsTailCallConvention(CallConv))
2264    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2265
2266  int FPDiff = 0;
2267  if (isTailCall && !IsSibcall) {
2268    // Lower arguments at fp - stackoffset + fpdiff.
2269    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2270    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2271
2272    FPDiff = NumBytesCallerPushed - NumBytes;
2273
2274    // Set the delta of movement of the returnaddr stackslot.
2275    // But only set if delta is greater than previous delta.
2276    if (FPDiff < X86Info->getTCReturnAddrDelta())
2277      X86Info->setTCReturnAddrDelta(FPDiff);
2278  }
2279
2280  if (!IsSibcall)
2281    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2282
2283  SDValue RetAddrFrIdx;
2284  // Load return address for tail calls.
2285  if (isTailCall && FPDiff)
2286    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2287                                    Is64Bit, FPDiff, dl);
2288
2289  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2290  SmallVector<SDValue, 8> MemOpChains;
2291  SDValue StackPtr;
2292
2293  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2294  // of tail call optimization arguments are handle later.
2295  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2296    CCValAssign &VA = ArgLocs[i];
2297    EVT RegVT = VA.getLocVT();
2298    SDValue Arg = OutVals[i];
2299    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2300    bool isByVal = Flags.isByVal();
2301
2302    // Promote the value if needed.
2303    switch (VA.getLocInfo()) {
2304    default: llvm_unreachable("Unknown loc info!");
2305    case CCValAssign::Full: break;
2306    case CCValAssign::SExt:
2307      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2308      break;
2309    case CCValAssign::ZExt:
2310      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2311      break;
2312    case CCValAssign::AExt:
2313      if (RegVT.is128BitVector()) {
2314        // Special case: passing MMX values in XMM registers.
2315        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2316        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2317        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2318      } else
2319        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2320      break;
2321    case CCValAssign::BCvt:
2322      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2323      break;
2324    case CCValAssign::Indirect: {
2325      // Store the argument.
2326      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2327      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2328      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2329                           MachinePointerInfo::getFixedStack(FI),
2330                           false, false, 0);
2331      Arg = SpillSlot;
2332      break;
2333    }
2334    }
2335
2336    if (VA.isRegLoc()) {
2337      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2338      if (isVarArg && IsWin64) {
2339        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2340        // shadow reg if callee is a varargs function.
2341        unsigned ShadowReg = 0;
2342        switch (VA.getLocReg()) {
2343        case X86::XMM0: ShadowReg = X86::RCX; break;
2344        case X86::XMM1: ShadowReg = X86::RDX; break;
2345        case X86::XMM2: ShadowReg = X86::R8; break;
2346        case X86::XMM3: ShadowReg = X86::R9; break;
2347        }
2348        if (ShadowReg)
2349          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2350      }
2351    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2352      assert(VA.isMemLoc());
2353      if (StackPtr.getNode() == 0)
2354        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2355      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2356                                             dl, DAG, VA, Flags));
2357    }
2358  }
2359
2360  if (!MemOpChains.empty())
2361    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2362                        &MemOpChains[0], MemOpChains.size());
2363
2364  if (Subtarget->isPICStyleGOT()) {
2365    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2366    // GOT pointer.
2367    if (!isTailCall) {
2368      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2369               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2370    } else {
2371      // If we are tail calling and generating PIC/GOT style code load the
2372      // address of the callee into ECX. The value in ecx is used as target of
2373      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2374      // for tail calls on PIC/GOT architectures. Normally we would just put the
2375      // address of GOT into ebx and then call target@PLT. But for tail calls
2376      // ebx would be restored (since ebx is callee saved) before jumping to the
2377      // target@PLT.
2378
2379      // Note: The actual moving to ECX is done further down.
2380      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2381      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2382          !G->getGlobal()->hasProtectedVisibility())
2383        Callee = LowerGlobalAddress(Callee, DAG);
2384      else if (isa<ExternalSymbolSDNode>(Callee))
2385        Callee = LowerExternalSymbol(Callee, DAG);
2386    }
2387  }
2388
2389  if (Is64Bit && isVarArg && !IsWin64) {
2390    // From AMD64 ABI document:
2391    // For calls that may call functions that use varargs or stdargs
2392    // (prototype-less calls or calls to functions containing ellipsis (...) in
2393    // the declaration) %al is used as hidden argument to specify the number
2394    // of SSE registers used. The contents of %al do not need to match exactly
2395    // the number of registers, but must be an ubound on the number of SSE
2396    // registers used and is in the range 0 - 8 inclusive.
2397
2398    // Count the number of XMM registers allocated.
2399    static const uint16_t XMMArgRegs[] = {
2400      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2401      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2402    };
2403    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2404    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2405           && "SSE registers cannot be used when SSE is disabled");
2406
2407    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2408                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2409  }
2410
2411  // For tail calls lower the arguments to the 'real' stack slot.
2412  if (isTailCall) {
2413    // Force all the incoming stack arguments to be loaded from the stack
2414    // before any new outgoing arguments are stored to the stack, because the
2415    // outgoing stack slots may alias the incoming argument stack slots, and
2416    // the alias isn't otherwise explicit. This is slightly more conservative
2417    // than necessary, because it means that each store effectively depends
2418    // on every argument instead of just those arguments it would clobber.
2419    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2420
2421    SmallVector<SDValue, 8> MemOpChains2;
2422    SDValue FIN;
2423    int FI = 0;
2424    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2425      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2426        CCValAssign &VA = ArgLocs[i];
2427        if (VA.isRegLoc())
2428          continue;
2429        assert(VA.isMemLoc());
2430        SDValue Arg = OutVals[i];
2431        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2432        // Create frame index.
2433        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2434        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2435        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2436        FIN = DAG.getFrameIndex(FI, getPointerTy());
2437
2438        if (Flags.isByVal()) {
2439          // Copy relative to framepointer.
2440          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2441          if (StackPtr.getNode() == 0)
2442            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2443                                          getPointerTy());
2444          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2445
2446          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2447                                                           ArgChain,
2448                                                           Flags, DAG, dl));
2449        } else {
2450          // Store relative to framepointer.
2451          MemOpChains2.push_back(
2452            DAG.getStore(ArgChain, dl, Arg, FIN,
2453                         MachinePointerInfo::getFixedStack(FI),
2454                         false, false, 0));
2455        }
2456      }
2457    }
2458
2459    if (!MemOpChains2.empty())
2460      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2461                          &MemOpChains2[0], MemOpChains2.size());
2462
2463    // Store the return address to the appropriate stack slot.
2464    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2465                                     getPointerTy(), RegInfo->getSlotSize(),
2466                                     FPDiff, dl);
2467  }
2468
2469  // Build a sequence of copy-to-reg nodes chained together with token chain
2470  // and flag operands which copy the outgoing args into registers.
2471  SDValue InFlag;
2472  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2473    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2474                             RegsToPass[i].second, InFlag);
2475    InFlag = Chain.getValue(1);
2476  }
2477
2478  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2479    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2480    // In the 64-bit large code model, we have to make all calls
2481    // through a register, since the call instruction's 32-bit
2482    // pc-relative offset may not be large enough to hold the whole
2483    // address.
2484  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2485    // If the callee is a GlobalAddress node (quite common, every direct call
2486    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2487    // it.
2488
2489    // We should use extra load for direct calls to dllimported functions in
2490    // non-JIT mode.
2491    const GlobalValue *GV = G->getGlobal();
2492    if (!GV->hasDLLImportLinkage()) {
2493      unsigned char OpFlags = 0;
2494      bool ExtraLoad = false;
2495      unsigned WrapperKind = ISD::DELETED_NODE;
2496
2497      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2498      // external symbols most go through the PLT in PIC mode.  If the symbol
2499      // has hidden or protected visibility, or if it is static or local, then
2500      // we don't need to use the PLT - we can directly call it.
2501      if (Subtarget->isTargetELF() &&
2502          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2503          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2504        OpFlags = X86II::MO_PLT;
2505      } else if (Subtarget->isPICStyleStubAny() &&
2506                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2507                 (!Subtarget->getTargetTriple().isMacOSX() ||
2508                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2509        // PC-relative references to external symbols should go through $stub,
2510        // unless we're building with the leopard linker or later, which
2511        // automatically synthesizes these stubs.
2512        OpFlags = X86II::MO_DARWIN_STUB;
2513      } else if (Subtarget->isPICStyleRIPRel() &&
2514                 isa<Function>(GV) &&
2515                 cast<Function>(GV)->getFnAttributes().
2516                   hasAttribute(Attributes::NonLazyBind)) {
2517        // If the function is marked as non-lazy, generate an indirect call
2518        // which loads from the GOT directly. This avoids runtime overhead
2519        // at the cost of eager binding (and one extra byte of encoding).
2520        OpFlags = X86II::MO_GOTPCREL;
2521        WrapperKind = X86ISD::WrapperRIP;
2522        ExtraLoad = true;
2523      }
2524
2525      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2526                                          G->getOffset(), OpFlags);
2527
2528      // Add a wrapper if needed.
2529      if (WrapperKind != ISD::DELETED_NODE)
2530        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2531      // Add extra indirection if needed.
2532      if (ExtraLoad)
2533        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2534                             MachinePointerInfo::getGOT(),
2535                             false, false, false, 0);
2536    }
2537  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2538    unsigned char OpFlags = 0;
2539
2540    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2541    // external symbols should go through the PLT.
2542    if (Subtarget->isTargetELF() &&
2543        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2544      OpFlags = X86II::MO_PLT;
2545    } else if (Subtarget->isPICStyleStubAny() &&
2546               (!Subtarget->getTargetTriple().isMacOSX() ||
2547                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2548      // PC-relative references to external symbols should go through $stub,
2549      // unless we're building with the leopard linker or later, which
2550      // automatically synthesizes these stubs.
2551      OpFlags = X86II::MO_DARWIN_STUB;
2552    }
2553
2554    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2555                                         OpFlags);
2556  }
2557
2558  // Returns a chain & a flag for retval copy to use.
2559  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2560  SmallVector<SDValue, 8> Ops;
2561
2562  if (!IsSibcall && isTailCall) {
2563    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2564                           DAG.getIntPtrConstant(0, true), InFlag);
2565    InFlag = Chain.getValue(1);
2566  }
2567
2568  Ops.push_back(Chain);
2569  Ops.push_back(Callee);
2570
2571  if (isTailCall)
2572    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2573
2574  // Add argument registers to the end of the list so that they are known live
2575  // into the call.
2576  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2577    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2578                                  RegsToPass[i].second.getValueType()));
2579
2580  // Add a register mask operand representing the call-preserved registers.
2581  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2582  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2583  assert(Mask && "Missing call preserved mask for calling convention");
2584  Ops.push_back(DAG.getRegisterMask(Mask));
2585
2586  if (InFlag.getNode())
2587    Ops.push_back(InFlag);
2588
2589  if (isTailCall) {
2590    // We used to do:
2591    //// If this is the first return lowered for this function, add the regs
2592    //// to the liveout set for the function.
2593    // This isn't right, although it's probably harmless on x86; liveouts
2594    // should be computed from returns not tail calls.  Consider a void
2595    // function making a tail call to a function returning int.
2596    return DAG.getNode(X86ISD::TC_RETURN, dl,
2597                       NodeTys, &Ops[0], Ops.size());
2598  }
2599
2600  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2601  InFlag = Chain.getValue(1);
2602
2603  // Create the CALLSEQ_END node.
2604  unsigned NumBytesForCalleeToPush;
2605  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2606                       getTargetMachine().Options.GuaranteedTailCallOpt))
2607    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2608  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2609           SR == StackStructReturn)
2610    // If this is a call to a struct-return function, the callee
2611    // pops the hidden struct pointer, so we have to push it back.
2612    // This is common for Darwin/X86, Linux & Mingw32 targets.
2613    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2614    NumBytesForCalleeToPush = 4;
2615  else
2616    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2617
2618  // Returns a flag for retval copy to use.
2619  if (!IsSibcall) {
2620    Chain = DAG.getCALLSEQ_END(Chain,
2621                               DAG.getIntPtrConstant(NumBytes, true),
2622                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2623                                                     true),
2624                               InFlag);
2625    InFlag = Chain.getValue(1);
2626  }
2627
2628  // Handle result values, copying them out of physregs into vregs that we
2629  // return.
2630  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2631                         Ins, dl, DAG, InVals);
2632}
2633
2634
2635//===----------------------------------------------------------------------===//
2636//                Fast Calling Convention (tail call) implementation
2637//===----------------------------------------------------------------------===//
2638
2639//  Like std call, callee cleans arguments, convention except that ECX is
2640//  reserved for storing the tail called function address. Only 2 registers are
2641//  free for argument passing (inreg). Tail call optimization is performed
2642//  provided:
2643//                * tailcallopt is enabled
2644//                * caller/callee are fastcc
2645//  On X86_64 architecture with GOT-style position independent code only local
2646//  (within module) calls are supported at the moment.
2647//  To keep the stack aligned according to platform abi the function
2648//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2649//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2650//  If a tail called function callee has more arguments than the caller the
2651//  caller needs to make sure that there is room to move the RETADDR to. This is
2652//  achieved by reserving an area the size of the argument delta right after the
2653//  original REtADDR, but before the saved framepointer or the spilled registers
2654//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2655//  stack layout:
2656//    arg1
2657//    arg2
2658//    RETADDR
2659//    [ new RETADDR
2660//      move area ]
2661//    (possible EBP)
2662//    ESI
2663//    EDI
2664//    local1 ..
2665
2666/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2667/// for a 16 byte align requirement.
2668unsigned
2669X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2670                                               SelectionDAG& DAG) const {
2671  MachineFunction &MF = DAG.getMachineFunction();
2672  const TargetMachine &TM = MF.getTarget();
2673  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2674  unsigned StackAlignment = TFI.getStackAlignment();
2675  uint64_t AlignMask = StackAlignment - 1;
2676  int64_t Offset = StackSize;
2677  unsigned SlotSize = RegInfo->getSlotSize();
2678  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2679    // Number smaller than 12 so just add the difference.
2680    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2681  } else {
2682    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2683    Offset = ((~AlignMask) & Offset) + StackAlignment +
2684      (StackAlignment-SlotSize);
2685  }
2686  return Offset;
2687}
2688
2689/// MatchingStackOffset - Return true if the given stack call argument is
2690/// already available in the same position (relatively) of the caller's
2691/// incoming argument stack.
2692static
2693bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2694                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2695                         const X86InstrInfo *TII) {
2696  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2697  int FI = INT_MAX;
2698  if (Arg.getOpcode() == ISD::CopyFromReg) {
2699    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2700    if (!TargetRegisterInfo::isVirtualRegister(VR))
2701      return false;
2702    MachineInstr *Def = MRI->getVRegDef(VR);
2703    if (!Def)
2704      return false;
2705    if (!Flags.isByVal()) {
2706      if (!TII->isLoadFromStackSlot(Def, FI))
2707        return false;
2708    } else {
2709      unsigned Opcode = Def->getOpcode();
2710      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2711          Def->getOperand(1).isFI()) {
2712        FI = Def->getOperand(1).getIndex();
2713        Bytes = Flags.getByValSize();
2714      } else
2715        return false;
2716    }
2717  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2718    if (Flags.isByVal())
2719      // ByVal argument is passed in as a pointer but it's now being
2720      // dereferenced. e.g.
2721      // define @foo(%struct.X* %A) {
2722      //   tail call @bar(%struct.X* byval %A)
2723      // }
2724      return false;
2725    SDValue Ptr = Ld->getBasePtr();
2726    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2727    if (!FINode)
2728      return false;
2729    FI = FINode->getIndex();
2730  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2731    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2732    FI = FINode->getIndex();
2733    Bytes = Flags.getByValSize();
2734  } else
2735    return false;
2736
2737  assert(FI != INT_MAX);
2738  if (!MFI->isFixedObjectIndex(FI))
2739    return false;
2740  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2741}
2742
2743/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2744/// for tail call optimization. Targets which want to do tail call
2745/// optimization should implement this function.
2746bool
2747X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2748                                                     CallingConv::ID CalleeCC,
2749                                                     bool isVarArg,
2750                                                     bool isCalleeStructRet,
2751                                                     bool isCallerStructRet,
2752                                                     Type *RetTy,
2753                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2754                                    const SmallVectorImpl<SDValue> &OutVals,
2755                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2756                                                     SelectionDAG& DAG) const {
2757  if (!IsTailCallConvention(CalleeCC) &&
2758      CalleeCC != CallingConv::C)
2759    return false;
2760
2761  // If -tailcallopt is specified, make fastcc functions tail-callable.
2762  const MachineFunction &MF = DAG.getMachineFunction();
2763  const Function *CallerF = DAG.getMachineFunction().getFunction();
2764
2765  // If the function return type is x86_fp80 and the callee return type is not,
2766  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2767  // perform a tailcall optimization here.
2768  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2769    return false;
2770
2771  CallingConv::ID CallerCC = CallerF->getCallingConv();
2772  bool CCMatch = CallerCC == CalleeCC;
2773
2774  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2775    if (IsTailCallConvention(CalleeCC) && CCMatch)
2776      return true;
2777    return false;
2778  }
2779
2780  // Look for obvious safe cases to perform tail call optimization that do not
2781  // require ABI changes. This is what gcc calls sibcall.
2782
2783  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2784  // emit a special epilogue.
2785  if (RegInfo->needsStackRealignment(MF))
2786    return false;
2787
2788  // Also avoid sibcall optimization if either caller or callee uses struct
2789  // return semantics.
2790  if (isCalleeStructRet || isCallerStructRet)
2791    return false;
2792
2793  // An stdcall caller is expected to clean up its arguments; the callee
2794  // isn't going to do that.
2795  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2796    return false;
2797
2798  // Do not sibcall optimize vararg calls unless all arguments are passed via
2799  // registers.
2800  if (isVarArg && !Outs.empty()) {
2801
2802    // Optimizing for varargs on Win64 is unlikely to be safe without
2803    // additional testing.
2804    if (Subtarget->isTargetWin64())
2805      return false;
2806
2807    SmallVector<CCValAssign, 16> ArgLocs;
2808    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2809                   getTargetMachine(), ArgLocs, *DAG.getContext());
2810
2811    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2812    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2813      if (!ArgLocs[i].isRegLoc())
2814        return false;
2815  }
2816
2817  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2818  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2819  // this into a sibcall.
2820  bool Unused = false;
2821  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2822    if (!Ins[i].Used) {
2823      Unused = true;
2824      break;
2825    }
2826  }
2827  if (Unused) {
2828    SmallVector<CCValAssign, 16> RVLocs;
2829    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2830                   getTargetMachine(), RVLocs, *DAG.getContext());
2831    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2832    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2833      CCValAssign &VA = RVLocs[i];
2834      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2835        return false;
2836    }
2837  }
2838
2839  // If the calling conventions do not match, then we'd better make sure the
2840  // results are returned in the same way as what the caller expects.
2841  if (!CCMatch) {
2842    SmallVector<CCValAssign, 16> RVLocs1;
2843    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2844                    getTargetMachine(), RVLocs1, *DAG.getContext());
2845    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2846
2847    SmallVector<CCValAssign, 16> RVLocs2;
2848    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2849                    getTargetMachine(), RVLocs2, *DAG.getContext());
2850    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2851
2852    if (RVLocs1.size() != RVLocs2.size())
2853      return false;
2854    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2855      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2856        return false;
2857      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2858        return false;
2859      if (RVLocs1[i].isRegLoc()) {
2860        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2861          return false;
2862      } else {
2863        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2864          return false;
2865      }
2866    }
2867  }
2868
2869  // If the callee takes no arguments then go on to check the results of the
2870  // call.
2871  if (!Outs.empty()) {
2872    // Check if stack adjustment is needed. For now, do not do this if any
2873    // argument is passed on the stack.
2874    SmallVector<CCValAssign, 16> ArgLocs;
2875    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2876                   getTargetMachine(), ArgLocs, *DAG.getContext());
2877
2878    // Allocate shadow area for Win64
2879    if (Subtarget->isTargetWin64()) {
2880      CCInfo.AllocateStack(32, 8);
2881    }
2882
2883    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2884    if (CCInfo.getNextStackOffset()) {
2885      MachineFunction &MF = DAG.getMachineFunction();
2886      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2887        return false;
2888
2889      // Check if the arguments are already laid out in the right way as
2890      // the caller's fixed stack objects.
2891      MachineFrameInfo *MFI = MF.getFrameInfo();
2892      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2893      const X86InstrInfo *TII =
2894        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2895      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2896        CCValAssign &VA = ArgLocs[i];
2897        SDValue Arg = OutVals[i];
2898        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2899        if (VA.getLocInfo() == CCValAssign::Indirect)
2900          return false;
2901        if (!VA.isRegLoc()) {
2902          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2903                                   MFI, MRI, TII))
2904            return false;
2905        }
2906      }
2907    }
2908
2909    // If the tailcall address may be in a register, then make sure it's
2910    // possible to register allocate for it. In 32-bit, the call address can
2911    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2912    // callee-saved registers are restored. These happen to be the same
2913    // registers used to pass 'inreg' arguments so watch out for those.
2914    if (!Subtarget->is64Bit() &&
2915        !isa<GlobalAddressSDNode>(Callee) &&
2916        !isa<ExternalSymbolSDNode>(Callee)) {
2917      unsigned NumInRegs = 0;
2918      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2919        CCValAssign &VA = ArgLocs[i];
2920        if (!VA.isRegLoc())
2921          continue;
2922        unsigned Reg = VA.getLocReg();
2923        switch (Reg) {
2924        default: break;
2925        case X86::EAX: case X86::EDX: case X86::ECX:
2926          if (++NumInRegs == 3)
2927            return false;
2928          break;
2929        }
2930      }
2931    }
2932  }
2933
2934  return true;
2935}
2936
2937FastISel *
2938X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2939                                  const TargetLibraryInfo *libInfo) const {
2940  return X86::createFastISel(funcInfo, libInfo);
2941}
2942
2943
2944//===----------------------------------------------------------------------===//
2945//                           Other Lowering Hooks
2946//===----------------------------------------------------------------------===//
2947
2948static bool MayFoldLoad(SDValue Op) {
2949  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2950}
2951
2952static bool MayFoldIntoStore(SDValue Op) {
2953  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2954}
2955
2956static bool isTargetShuffle(unsigned Opcode) {
2957  switch(Opcode) {
2958  default: return false;
2959  case X86ISD::PSHUFD:
2960  case X86ISD::PSHUFHW:
2961  case X86ISD::PSHUFLW:
2962  case X86ISD::SHUFP:
2963  case X86ISD::PALIGN:
2964  case X86ISD::MOVLHPS:
2965  case X86ISD::MOVLHPD:
2966  case X86ISD::MOVHLPS:
2967  case X86ISD::MOVLPS:
2968  case X86ISD::MOVLPD:
2969  case X86ISD::MOVSHDUP:
2970  case X86ISD::MOVSLDUP:
2971  case X86ISD::MOVDDUP:
2972  case X86ISD::MOVSS:
2973  case X86ISD::MOVSD:
2974  case X86ISD::UNPCKL:
2975  case X86ISD::UNPCKH:
2976  case X86ISD::VPERMILP:
2977  case X86ISD::VPERM2X128:
2978  case X86ISD::VPERMI:
2979    return true;
2980  }
2981}
2982
2983static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2984                                    SDValue V1, SelectionDAG &DAG) {
2985  switch(Opc) {
2986  default: llvm_unreachable("Unknown x86 shuffle node");
2987  case X86ISD::MOVSHDUP:
2988  case X86ISD::MOVSLDUP:
2989  case X86ISD::MOVDDUP:
2990    return DAG.getNode(Opc, dl, VT, V1);
2991  }
2992}
2993
2994static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2995                                    SDValue V1, unsigned TargetMask,
2996                                    SelectionDAG &DAG) {
2997  switch(Opc) {
2998  default: llvm_unreachable("Unknown x86 shuffle node");
2999  case X86ISD::PSHUFD:
3000  case X86ISD::PSHUFHW:
3001  case X86ISD::PSHUFLW:
3002  case X86ISD::VPERMILP:
3003  case X86ISD::VPERMI:
3004    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3005  }
3006}
3007
3008static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3009                                    SDValue V1, SDValue V2, unsigned TargetMask,
3010                                    SelectionDAG &DAG) {
3011  switch(Opc) {
3012  default: llvm_unreachable("Unknown x86 shuffle node");
3013  case X86ISD::PALIGN:
3014  case X86ISD::SHUFP:
3015  case X86ISD::VPERM2X128:
3016    return DAG.getNode(Opc, dl, VT, V1, V2,
3017                       DAG.getConstant(TargetMask, MVT::i8));
3018  }
3019}
3020
3021static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3022                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3023  switch(Opc) {
3024  default: llvm_unreachable("Unknown x86 shuffle node");
3025  case X86ISD::MOVLHPS:
3026  case X86ISD::MOVLHPD:
3027  case X86ISD::MOVHLPS:
3028  case X86ISD::MOVLPS:
3029  case X86ISD::MOVLPD:
3030  case X86ISD::MOVSS:
3031  case X86ISD::MOVSD:
3032  case X86ISD::UNPCKL:
3033  case X86ISD::UNPCKH:
3034    return DAG.getNode(Opc, dl, VT, V1, V2);
3035  }
3036}
3037
3038SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3039  MachineFunction &MF = DAG.getMachineFunction();
3040  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3041  int ReturnAddrIndex = FuncInfo->getRAIndex();
3042
3043  if (ReturnAddrIndex == 0) {
3044    // Set up a frame object for the return address.
3045    unsigned SlotSize = RegInfo->getSlotSize();
3046    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3047                                                           false);
3048    FuncInfo->setRAIndex(ReturnAddrIndex);
3049  }
3050
3051  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3052}
3053
3054
3055bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3056                                       bool hasSymbolicDisplacement) {
3057  // Offset should fit into 32 bit immediate field.
3058  if (!isInt<32>(Offset))
3059    return false;
3060
3061  // If we don't have a symbolic displacement - we don't have any extra
3062  // restrictions.
3063  if (!hasSymbolicDisplacement)
3064    return true;
3065
3066  // FIXME: Some tweaks might be needed for medium code model.
3067  if (M != CodeModel::Small && M != CodeModel::Kernel)
3068    return false;
3069
3070  // For small code model we assume that latest object is 16MB before end of 31
3071  // bits boundary. We may also accept pretty large negative constants knowing
3072  // that all objects are in the positive half of address space.
3073  if (M == CodeModel::Small && Offset < 16*1024*1024)
3074    return true;
3075
3076  // For kernel code model we know that all object resist in the negative half
3077  // of 32bits address space. We may not accept negative offsets, since they may
3078  // be just off and we may accept pretty large positive ones.
3079  if (M == CodeModel::Kernel && Offset > 0)
3080    return true;
3081
3082  return false;
3083}
3084
3085/// isCalleePop - Determines whether the callee is required to pop its
3086/// own arguments. Callee pop is necessary to support tail calls.
3087bool X86::isCalleePop(CallingConv::ID CallingConv,
3088                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3089  if (IsVarArg)
3090    return false;
3091
3092  switch (CallingConv) {
3093  default:
3094    return false;
3095  case CallingConv::X86_StdCall:
3096    return !is64Bit;
3097  case CallingConv::X86_FastCall:
3098    return !is64Bit;
3099  case CallingConv::X86_ThisCall:
3100    return !is64Bit;
3101  case CallingConv::Fast:
3102    return TailCallOpt;
3103  case CallingConv::GHC:
3104    return TailCallOpt;
3105  }
3106}
3107
3108/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3109/// specific condition code, returning the condition code and the LHS/RHS of the
3110/// comparison to make.
3111static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3112                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3113  if (!isFP) {
3114    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3115      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3116        // X > -1   -> X == 0, jump !sign.
3117        RHS = DAG.getConstant(0, RHS.getValueType());
3118        return X86::COND_NS;
3119      }
3120      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3121        // X < 0   -> X == 0, jump on sign.
3122        return X86::COND_S;
3123      }
3124      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3125        // X < 1   -> X <= 0
3126        RHS = DAG.getConstant(0, RHS.getValueType());
3127        return X86::COND_LE;
3128      }
3129    }
3130
3131    switch (SetCCOpcode) {
3132    default: llvm_unreachable("Invalid integer condition!");
3133    case ISD::SETEQ:  return X86::COND_E;
3134    case ISD::SETGT:  return X86::COND_G;
3135    case ISD::SETGE:  return X86::COND_GE;
3136    case ISD::SETLT:  return X86::COND_L;
3137    case ISD::SETLE:  return X86::COND_LE;
3138    case ISD::SETNE:  return X86::COND_NE;
3139    case ISD::SETULT: return X86::COND_B;
3140    case ISD::SETUGT: return X86::COND_A;
3141    case ISD::SETULE: return X86::COND_BE;
3142    case ISD::SETUGE: return X86::COND_AE;
3143    }
3144  }
3145
3146  // First determine if it is required or is profitable to flip the operands.
3147
3148  // If LHS is a foldable load, but RHS is not, flip the condition.
3149  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3150      !ISD::isNON_EXTLoad(RHS.getNode())) {
3151    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3152    std::swap(LHS, RHS);
3153  }
3154
3155  switch (SetCCOpcode) {
3156  default: break;
3157  case ISD::SETOLT:
3158  case ISD::SETOLE:
3159  case ISD::SETUGT:
3160  case ISD::SETUGE:
3161    std::swap(LHS, RHS);
3162    break;
3163  }
3164
3165  // On a floating point condition, the flags are set as follows:
3166  // ZF  PF  CF   op
3167  //  0 | 0 | 0 | X > Y
3168  //  0 | 0 | 1 | X < Y
3169  //  1 | 0 | 0 | X == Y
3170  //  1 | 1 | 1 | unordered
3171  switch (SetCCOpcode) {
3172  default: llvm_unreachable("Condcode should be pre-legalized away");
3173  case ISD::SETUEQ:
3174  case ISD::SETEQ:   return X86::COND_E;
3175  case ISD::SETOLT:              // flipped
3176  case ISD::SETOGT:
3177  case ISD::SETGT:   return X86::COND_A;
3178  case ISD::SETOLE:              // flipped
3179  case ISD::SETOGE:
3180  case ISD::SETGE:   return X86::COND_AE;
3181  case ISD::SETUGT:              // flipped
3182  case ISD::SETULT:
3183  case ISD::SETLT:   return X86::COND_B;
3184  case ISD::SETUGE:              // flipped
3185  case ISD::SETULE:
3186  case ISD::SETLE:   return X86::COND_BE;
3187  case ISD::SETONE:
3188  case ISD::SETNE:   return X86::COND_NE;
3189  case ISD::SETUO:   return X86::COND_P;
3190  case ISD::SETO:    return X86::COND_NP;
3191  case ISD::SETOEQ:
3192  case ISD::SETUNE:  return X86::COND_INVALID;
3193  }
3194}
3195
3196/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3197/// code. Current x86 isa includes the following FP cmov instructions:
3198/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3199static bool hasFPCMov(unsigned X86CC) {
3200  switch (X86CC) {
3201  default:
3202    return false;
3203  case X86::COND_B:
3204  case X86::COND_BE:
3205  case X86::COND_E:
3206  case X86::COND_P:
3207  case X86::COND_A:
3208  case X86::COND_AE:
3209  case X86::COND_NE:
3210  case X86::COND_NP:
3211    return true;
3212  }
3213}
3214
3215/// isFPImmLegal - Returns true if the target can instruction select the
3216/// specified FP immediate natively. If false, the legalizer will
3217/// materialize the FP immediate as a load from a constant pool.
3218bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3219  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3220    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3221      return true;
3222  }
3223  return false;
3224}
3225
3226/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3227/// the specified range (L, H].
3228static bool isUndefOrInRange(int Val, int Low, int Hi) {
3229  return (Val < 0) || (Val >= Low && Val < Hi);
3230}
3231
3232/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3233/// specified value.
3234static bool isUndefOrEqual(int Val, int CmpVal) {
3235  if (Val < 0 || Val == CmpVal)
3236    return true;
3237  return false;
3238}
3239
3240/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3241/// from position Pos and ending in Pos+Size, falls within the specified
3242/// sequential range (L, L+Pos]. or is undef.
3243static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3244                                       unsigned Pos, unsigned Size, int Low) {
3245  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3246    if (!isUndefOrEqual(Mask[i], Low))
3247      return false;
3248  return true;
3249}
3250
3251/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3252/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3253/// the second operand.
3254static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3255  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3256    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3257  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3258    return (Mask[0] < 2 && Mask[1] < 2);
3259  return false;
3260}
3261
3262/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3263/// is suitable for input to PSHUFHW.
3264static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3265  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3266    return false;
3267
3268  // Lower quadword copied in order or undef.
3269  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3270    return false;
3271
3272  // Upper quadword shuffled.
3273  for (unsigned i = 4; i != 8; ++i)
3274    if (!isUndefOrInRange(Mask[i], 4, 8))
3275      return false;
3276
3277  if (VT == MVT::v16i16) {
3278    // Lower quadword copied in order or undef.
3279    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3280      return false;
3281
3282    // Upper quadword shuffled.
3283    for (unsigned i = 12; i != 16; ++i)
3284      if (!isUndefOrInRange(Mask[i], 12, 16))
3285        return false;
3286  }
3287
3288  return true;
3289}
3290
3291/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3292/// is suitable for input to PSHUFLW.
3293static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3294  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3295    return false;
3296
3297  // Upper quadword copied in order.
3298  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3299    return false;
3300
3301  // Lower quadword shuffled.
3302  for (unsigned i = 0; i != 4; ++i)
3303    if (!isUndefOrInRange(Mask[i], 0, 4))
3304      return false;
3305
3306  if (VT == MVT::v16i16) {
3307    // Upper quadword copied in order.
3308    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3309      return false;
3310
3311    // Lower quadword shuffled.
3312    for (unsigned i = 8; i != 12; ++i)
3313      if (!isUndefOrInRange(Mask[i], 8, 12))
3314        return false;
3315  }
3316
3317  return true;
3318}
3319
3320/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3321/// is suitable for input to PALIGNR.
3322static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3323                          const X86Subtarget *Subtarget) {
3324  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3325      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3326    return false;
3327
3328  unsigned NumElts = VT.getVectorNumElements();
3329  unsigned NumLanes = VT.getSizeInBits()/128;
3330  unsigned NumLaneElts = NumElts/NumLanes;
3331
3332  // Do not handle 64-bit element shuffles with palignr.
3333  if (NumLaneElts == 2)
3334    return false;
3335
3336  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3337    unsigned i;
3338    for (i = 0; i != NumLaneElts; ++i) {
3339      if (Mask[i+l] >= 0)
3340        break;
3341    }
3342
3343    // Lane is all undef, go to next lane
3344    if (i == NumLaneElts)
3345      continue;
3346
3347    int Start = Mask[i+l];
3348
3349    // Make sure its in this lane in one of the sources
3350    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3351        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3352      return false;
3353
3354    // If not lane 0, then we must match lane 0
3355    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3356      return false;
3357
3358    // Correct second source to be contiguous with first source
3359    if (Start >= (int)NumElts)
3360      Start -= NumElts - NumLaneElts;
3361
3362    // Make sure we're shifting in the right direction.
3363    if (Start <= (int)(i+l))
3364      return false;
3365
3366    Start -= i;
3367
3368    // Check the rest of the elements to see if they are consecutive.
3369    for (++i; i != NumLaneElts; ++i) {
3370      int Idx = Mask[i+l];
3371
3372      // Make sure its in this lane
3373      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3374          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3375        return false;
3376
3377      // If not lane 0, then we must match lane 0
3378      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3379        return false;
3380
3381      if (Idx >= (int)NumElts)
3382        Idx -= NumElts - NumLaneElts;
3383
3384      if (!isUndefOrEqual(Idx, Start+i))
3385        return false;
3386
3387    }
3388  }
3389
3390  return true;
3391}
3392
3393/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3394/// the two vector operands have swapped position.
3395static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3396                                     unsigned NumElems) {
3397  for (unsigned i = 0; i != NumElems; ++i) {
3398    int idx = Mask[i];
3399    if (idx < 0)
3400      continue;
3401    else if (idx < (int)NumElems)
3402      Mask[i] = idx + NumElems;
3403    else
3404      Mask[i] = idx - NumElems;
3405  }
3406}
3407
3408/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3409/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3410/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3411/// reverse of what x86 shuffles want.
3412static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3413                        bool Commuted = false) {
3414  if (!HasAVX && VT.getSizeInBits() == 256)
3415    return false;
3416
3417  unsigned NumElems = VT.getVectorNumElements();
3418  unsigned NumLanes = VT.getSizeInBits()/128;
3419  unsigned NumLaneElems = NumElems/NumLanes;
3420
3421  if (NumLaneElems != 2 && NumLaneElems != 4)
3422    return false;
3423
3424  // VSHUFPSY divides the resulting vector into 4 chunks.
3425  // The sources are also splitted into 4 chunks, and each destination
3426  // chunk must come from a different source chunk.
3427  //
3428  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3429  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3430  //
3431  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3432  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3433  //
3434  // VSHUFPDY divides the resulting vector into 4 chunks.
3435  // The sources are also splitted into 4 chunks, and each destination
3436  // chunk must come from a different source chunk.
3437  //
3438  //  SRC1 =>      X3       X2       X1       X0
3439  //  SRC2 =>      Y3       Y2       Y1       Y0
3440  //
3441  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3442  //
3443  unsigned HalfLaneElems = NumLaneElems/2;
3444  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3445    for (unsigned i = 0; i != NumLaneElems; ++i) {
3446      int Idx = Mask[i+l];
3447      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3448      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3449        return false;
3450      // For VSHUFPSY, the mask of the second half must be the same as the
3451      // first but with the appropriate offsets. This works in the same way as
3452      // VPERMILPS works with masks.
3453      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3454        continue;
3455      if (!isUndefOrEqual(Idx, Mask[i]+l))
3456        return false;
3457    }
3458  }
3459
3460  return true;
3461}
3462
3463/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3464/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3465static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3466  if (!VT.is128BitVector())
3467    return false;
3468
3469  unsigned NumElems = VT.getVectorNumElements();
3470
3471  if (NumElems != 4)
3472    return false;
3473
3474  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3475  return isUndefOrEqual(Mask[0], 6) &&
3476         isUndefOrEqual(Mask[1], 7) &&
3477         isUndefOrEqual(Mask[2], 2) &&
3478         isUndefOrEqual(Mask[3], 3);
3479}
3480
3481/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3482/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3483/// <2, 3, 2, 3>
3484static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3485  if (!VT.is128BitVector())
3486    return false;
3487
3488  unsigned NumElems = VT.getVectorNumElements();
3489
3490  if (NumElems != 4)
3491    return false;
3492
3493  return isUndefOrEqual(Mask[0], 2) &&
3494         isUndefOrEqual(Mask[1], 3) &&
3495         isUndefOrEqual(Mask[2], 2) &&
3496         isUndefOrEqual(Mask[3], 3);
3497}
3498
3499/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3500/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3501static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3502  if (!VT.is128BitVector())
3503    return false;
3504
3505  unsigned NumElems = VT.getVectorNumElements();
3506
3507  if (NumElems != 2 && NumElems != 4)
3508    return false;
3509
3510  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3511    if (!isUndefOrEqual(Mask[i], i + NumElems))
3512      return false;
3513
3514  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3515    if (!isUndefOrEqual(Mask[i], i))
3516      return false;
3517
3518  return true;
3519}
3520
3521/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3522/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3523static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3524  if (!VT.is128BitVector())
3525    return false;
3526
3527  unsigned NumElems = VT.getVectorNumElements();
3528
3529  if (NumElems != 2 && NumElems != 4)
3530    return false;
3531
3532  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3533    if (!isUndefOrEqual(Mask[i], i))
3534      return false;
3535
3536  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3537    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3538      return false;
3539
3540  return true;
3541}
3542
3543//
3544// Some special combinations that can be optimized.
3545//
3546static
3547SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3548                               SelectionDAG &DAG) {
3549  EVT VT = SVOp->getValueType(0);
3550  DebugLoc dl = SVOp->getDebugLoc();
3551
3552  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3553    return SDValue();
3554
3555  ArrayRef<int> Mask = SVOp->getMask();
3556
3557  // These are the special masks that may be optimized.
3558  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3559  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3560  bool MatchEvenMask = true;
3561  bool MatchOddMask  = true;
3562  for (int i=0; i<8; ++i) {
3563    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3564      MatchEvenMask = false;
3565    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3566      MatchOddMask = false;
3567  }
3568
3569  if (!MatchEvenMask && !MatchOddMask)
3570    return SDValue();
3571
3572  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3573
3574  SDValue Op0 = SVOp->getOperand(0);
3575  SDValue Op1 = SVOp->getOperand(1);
3576
3577  if (MatchEvenMask) {
3578    // Shift the second operand right to 32 bits.
3579    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3580    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3581  } else {
3582    // Shift the first operand left to 32 bits.
3583    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3584    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3585  }
3586  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3587  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3588}
3589
3590/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3591/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3592static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3593                         bool HasAVX2, bool V2IsSplat = false) {
3594  unsigned NumElts = VT.getVectorNumElements();
3595
3596  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3597         "Unsupported vector type for unpckh");
3598
3599  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3600      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3601    return false;
3602
3603  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3604  // independently on 128-bit lanes.
3605  unsigned NumLanes = VT.getSizeInBits()/128;
3606  unsigned NumLaneElts = NumElts/NumLanes;
3607
3608  for (unsigned l = 0; l != NumLanes; ++l) {
3609    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3610         i != (l+1)*NumLaneElts;
3611         i += 2, ++j) {
3612      int BitI  = Mask[i];
3613      int BitI1 = Mask[i+1];
3614      if (!isUndefOrEqual(BitI, j))
3615        return false;
3616      if (V2IsSplat) {
3617        if (!isUndefOrEqual(BitI1, NumElts))
3618          return false;
3619      } else {
3620        if (!isUndefOrEqual(BitI1, j + NumElts))
3621          return false;
3622      }
3623    }
3624  }
3625
3626  return true;
3627}
3628
3629/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3630/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3631static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3632                         bool HasAVX2, bool V2IsSplat = false) {
3633  unsigned NumElts = VT.getVectorNumElements();
3634
3635  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3636         "Unsupported vector type for unpckh");
3637
3638  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3639      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3640    return false;
3641
3642  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3643  // independently on 128-bit lanes.
3644  unsigned NumLanes = VT.getSizeInBits()/128;
3645  unsigned NumLaneElts = NumElts/NumLanes;
3646
3647  for (unsigned l = 0; l != NumLanes; ++l) {
3648    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3649         i != (l+1)*NumLaneElts; i += 2, ++j) {
3650      int BitI  = Mask[i];
3651      int BitI1 = Mask[i+1];
3652      if (!isUndefOrEqual(BitI, j))
3653        return false;
3654      if (V2IsSplat) {
3655        if (isUndefOrEqual(BitI1, NumElts))
3656          return false;
3657      } else {
3658        if (!isUndefOrEqual(BitI1, j+NumElts))
3659          return false;
3660      }
3661    }
3662  }
3663  return true;
3664}
3665
3666/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3667/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3668/// <0, 0, 1, 1>
3669static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3670                                  bool HasAVX2) {
3671  unsigned NumElts = VT.getVectorNumElements();
3672
3673  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3674         "Unsupported vector type for unpckh");
3675
3676  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3677      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3678    return false;
3679
3680  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3681  // FIXME: Need a better way to get rid of this, there's no latency difference
3682  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3683  // the former later. We should also remove the "_undef" special mask.
3684  if (NumElts == 4 && VT.getSizeInBits() == 256)
3685    return false;
3686
3687  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3688  // independently on 128-bit lanes.
3689  unsigned NumLanes = VT.getSizeInBits()/128;
3690  unsigned NumLaneElts = NumElts/NumLanes;
3691
3692  for (unsigned l = 0; l != NumLanes; ++l) {
3693    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3694         i != (l+1)*NumLaneElts;
3695         i += 2, ++j) {
3696      int BitI  = Mask[i];
3697      int BitI1 = Mask[i+1];
3698
3699      if (!isUndefOrEqual(BitI, j))
3700        return false;
3701      if (!isUndefOrEqual(BitI1, j))
3702        return false;
3703    }
3704  }
3705
3706  return true;
3707}
3708
3709/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3710/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3711/// <2, 2, 3, 3>
3712static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3713  unsigned NumElts = VT.getVectorNumElements();
3714
3715  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3716         "Unsupported vector type for unpckh");
3717
3718  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3719      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3720    return false;
3721
3722  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3723  // independently on 128-bit lanes.
3724  unsigned NumLanes = VT.getSizeInBits()/128;
3725  unsigned NumLaneElts = NumElts/NumLanes;
3726
3727  for (unsigned l = 0; l != NumLanes; ++l) {
3728    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3729         i != (l+1)*NumLaneElts; i += 2, ++j) {
3730      int BitI  = Mask[i];
3731      int BitI1 = Mask[i+1];
3732      if (!isUndefOrEqual(BitI, j))
3733        return false;
3734      if (!isUndefOrEqual(BitI1, j))
3735        return false;
3736    }
3737  }
3738  return true;
3739}
3740
3741/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3742/// specifies a shuffle of elements that is suitable for input to MOVSS,
3743/// MOVSD, and MOVD, i.e. setting the lowest element.
3744static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3745  if (VT.getVectorElementType().getSizeInBits() < 32)
3746    return false;
3747  if (!VT.is128BitVector())
3748    return false;
3749
3750  unsigned NumElts = VT.getVectorNumElements();
3751
3752  if (!isUndefOrEqual(Mask[0], NumElts))
3753    return false;
3754
3755  for (unsigned i = 1; i != NumElts; ++i)
3756    if (!isUndefOrEqual(Mask[i], i))
3757      return false;
3758
3759  return true;
3760}
3761
3762/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3763/// as permutations between 128-bit chunks or halves. As an example: this
3764/// shuffle bellow:
3765///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3766/// The first half comes from the second half of V1 and the second half from the
3767/// the second half of V2.
3768static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3769  if (!HasAVX || !VT.is256BitVector())
3770    return false;
3771
3772  // The shuffle result is divided into half A and half B. In total the two
3773  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3774  // B must come from C, D, E or F.
3775  unsigned HalfSize = VT.getVectorNumElements()/2;
3776  bool MatchA = false, MatchB = false;
3777
3778  // Check if A comes from one of C, D, E, F.
3779  for (unsigned Half = 0; Half != 4; ++Half) {
3780    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3781      MatchA = true;
3782      break;
3783    }
3784  }
3785
3786  // Check if B comes from one of C, D, E, F.
3787  for (unsigned Half = 0; Half != 4; ++Half) {
3788    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3789      MatchB = true;
3790      break;
3791    }
3792  }
3793
3794  return MatchA && MatchB;
3795}
3796
3797/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3798/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3799static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3800  EVT VT = SVOp->getValueType(0);
3801
3802  unsigned HalfSize = VT.getVectorNumElements()/2;
3803
3804  unsigned FstHalf = 0, SndHalf = 0;
3805  for (unsigned i = 0; i < HalfSize; ++i) {
3806    if (SVOp->getMaskElt(i) > 0) {
3807      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3808      break;
3809    }
3810  }
3811  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3812    if (SVOp->getMaskElt(i) > 0) {
3813      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3814      break;
3815    }
3816  }
3817
3818  return (FstHalf | (SndHalf << 4));
3819}
3820
3821/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3822/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3823/// Note that VPERMIL mask matching is different depending whether theunderlying
3824/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3825/// to the same elements of the low, but to the higher half of the source.
3826/// In VPERMILPD the two lanes could be shuffled independently of each other
3827/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3828static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3829  if (!HasAVX)
3830    return false;
3831
3832  unsigned NumElts = VT.getVectorNumElements();
3833  // Only match 256-bit with 32/64-bit types
3834  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3835    return false;
3836
3837  unsigned NumLanes = VT.getSizeInBits()/128;
3838  unsigned LaneSize = NumElts/NumLanes;
3839  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3840    for (unsigned i = 0; i != LaneSize; ++i) {
3841      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3842        return false;
3843      if (NumElts != 8 || l == 0)
3844        continue;
3845      // VPERMILPS handling
3846      if (Mask[i] < 0)
3847        continue;
3848      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3849        return false;
3850    }
3851  }
3852
3853  return true;
3854}
3855
3856/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3857/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3858/// element of vector 2 and the other elements to come from vector 1 in order.
3859static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3860                               bool V2IsSplat = false, bool V2IsUndef = false) {
3861  if (!VT.is128BitVector())
3862    return false;
3863
3864  unsigned NumOps = VT.getVectorNumElements();
3865  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3866    return false;
3867
3868  if (!isUndefOrEqual(Mask[0], 0))
3869    return false;
3870
3871  for (unsigned i = 1; i != NumOps; ++i)
3872    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3873          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3874          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3875      return false;
3876
3877  return true;
3878}
3879
3880/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3881/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3882/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3883static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3884                           const X86Subtarget *Subtarget) {
3885  if (!Subtarget->hasSSE3())
3886    return false;
3887
3888  unsigned NumElems = VT.getVectorNumElements();
3889
3890  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3891      (VT.getSizeInBits() == 256 && NumElems != 8))
3892    return false;
3893
3894  // "i+1" is the value the indexed mask element must have
3895  for (unsigned i = 0; i != NumElems; i += 2)
3896    if (!isUndefOrEqual(Mask[i], i+1) ||
3897        !isUndefOrEqual(Mask[i+1], i+1))
3898      return false;
3899
3900  return true;
3901}
3902
3903/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3904/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3905/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3906static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3907                           const X86Subtarget *Subtarget) {
3908  if (!Subtarget->hasSSE3())
3909    return false;
3910
3911  unsigned NumElems = VT.getVectorNumElements();
3912
3913  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3914      (VT.getSizeInBits() == 256 && NumElems != 8))
3915    return false;
3916
3917  // "i" is the value the indexed mask element must have
3918  for (unsigned i = 0; i != NumElems; i += 2)
3919    if (!isUndefOrEqual(Mask[i], i) ||
3920        !isUndefOrEqual(Mask[i+1], i))
3921      return false;
3922
3923  return true;
3924}
3925
3926/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3927/// specifies a shuffle of elements that is suitable for input to 256-bit
3928/// version of MOVDDUP.
3929static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3930  if (!HasAVX || !VT.is256BitVector())
3931    return false;
3932
3933  unsigned NumElts = VT.getVectorNumElements();
3934  if (NumElts != 4)
3935    return false;
3936
3937  for (unsigned i = 0; i != NumElts/2; ++i)
3938    if (!isUndefOrEqual(Mask[i], 0))
3939      return false;
3940  for (unsigned i = NumElts/2; i != NumElts; ++i)
3941    if (!isUndefOrEqual(Mask[i], NumElts/2))
3942      return false;
3943  return true;
3944}
3945
3946/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3947/// specifies a shuffle of elements that is suitable for input to 128-bit
3948/// version of MOVDDUP.
3949static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3950  if (!VT.is128BitVector())
3951    return false;
3952
3953  unsigned e = VT.getVectorNumElements() / 2;
3954  for (unsigned i = 0; i != e; ++i)
3955    if (!isUndefOrEqual(Mask[i], i))
3956      return false;
3957  for (unsigned i = 0; i != e; ++i)
3958    if (!isUndefOrEqual(Mask[e+i], i))
3959      return false;
3960  return true;
3961}
3962
3963/// isVEXTRACTF128Index - Return true if the specified
3964/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3965/// suitable for input to VEXTRACTF128.
3966bool X86::isVEXTRACTF128Index(SDNode *N) {
3967  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3968    return false;
3969
3970  // The index should be aligned on a 128-bit boundary.
3971  uint64_t Index =
3972    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3973
3974  unsigned VL = N->getValueType(0).getVectorNumElements();
3975  unsigned VBits = N->getValueType(0).getSizeInBits();
3976  unsigned ElSize = VBits / VL;
3977  bool Result = (Index * ElSize) % 128 == 0;
3978
3979  return Result;
3980}
3981
3982/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3983/// operand specifies a subvector insert that is suitable for input to
3984/// VINSERTF128.
3985bool X86::isVINSERTF128Index(SDNode *N) {
3986  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3987    return false;
3988
3989  // The index should be aligned on a 128-bit boundary.
3990  uint64_t Index =
3991    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3992
3993  unsigned VL = N->getValueType(0).getVectorNumElements();
3994  unsigned VBits = N->getValueType(0).getSizeInBits();
3995  unsigned ElSize = VBits / VL;
3996  bool Result = (Index * ElSize) % 128 == 0;
3997
3998  return Result;
3999}
4000
4001/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4002/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4003/// Handles 128-bit and 256-bit.
4004static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4005  EVT VT = N->getValueType(0);
4006
4007  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4008         "Unsupported vector type for PSHUF/SHUFP");
4009
4010  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4011  // independently on 128-bit lanes.
4012  unsigned NumElts = VT.getVectorNumElements();
4013  unsigned NumLanes = VT.getSizeInBits()/128;
4014  unsigned NumLaneElts = NumElts/NumLanes;
4015
4016  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4017         "Only supports 2 or 4 elements per lane");
4018
4019  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4020  unsigned Mask = 0;
4021  for (unsigned i = 0; i != NumElts; ++i) {
4022    int Elt = N->getMaskElt(i);
4023    if (Elt < 0) continue;
4024    Elt &= NumLaneElts - 1;
4025    unsigned ShAmt = (i << Shift) % 8;
4026    Mask |= Elt << ShAmt;
4027  }
4028
4029  return Mask;
4030}
4031
4032/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4033/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4034static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4035  EVT VT = N->getValueType(0);
4036
4037  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4038         "Unsupported vector type for PSHUFHW");
4039
4040  unsigned NumElts = VT.getVectorNumElements();
4041
4042  unsigned Mask = 0;
4043  for (unsigned l = 0; l != NumElts; l += 8) {
4044    // 8 nodes per lane, but we only care about the last 4.
4045    for (unsigned i = 0; i < 4; ++i) {
4046      int Elt = N->getMaskElt(l+i+4);
4047      if (Elt < 0) continue;
4048      Elt &= 0x3; // only 2-bits.
4049      Mask |= Elt << (i * 2);
4050    }
4051  }
4052
4053  return Mask;
4054}
4055
4056/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4057/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4058static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4059  EVT VT = N->getValueType(0);
4060
4061  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4062         "Unsupported vector type for PSHUFHW");
4063
4064  unsigned NumElts = VT.getVectorNumElements();
4065
4066  unsigned Mask = 0;
4067  for (unsigned l = 0; l != NumElts; l += 8) {
4068    // 8 nodes per lane, but we only care about the first 4.
4069    for (unsigned i = 0; i < 4; ++i) {
4070      int Elt = N->getMaskElt(l+i);
4071      if (Elt < 0) continue;
4072      Elt &= 0x3; // only 2-bits
4073      Mask |= Elt << (i * 2);
4074    }
4075  }
4076
4077  return Mask;
4078}
4079
4080/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4081/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4082static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4083  EVT VT = SVOp->getValueType(0);
4084  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4085
4086  unsigned NumElts = VT.getVectorNumElements();
4087  unsigned NumLanes = VT.getSizeInBits()/128;
4088  unsigned NumLaneElts = NumElts/NumLanes;
4089
4090  int Val = 0;
4091  unsigned i;
4092  for (i = 0; i != NumElts; ++i) {
4093    Val = SVOp->getMaskElt(i);
4094    if (Val >= 0)
4095      break;
4096  }
4097  if (Val >= (int)NumElts)
4098    Val -= NumElts - NumLaneElts;
4099
4100  assert(Val - i > 0 && "PALIGNR imm should be positive");
4101  return (Val - i) * EltSize;
4102}
4103
4104/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4105/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4106/// instructions.
4107unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4108  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4109    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4110
4111  uint64_t Index =
4112    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4113
4114  EVT VecVT = N->getOperand(0).getValueType();
4115  EVT ElVT = VecVT.getVectorElementType();
4116
4117  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4118  return Index / NumElemsPerChunk;
4119}
4120
4121/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4122/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4123/// instructions.
4124unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4125  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4126    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4127
4128  uint64_t Index =
4129    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4130
4131  EVT VecVT = N->getValueType(0);
4132  EVT ElVT = VecVT.getVectorElementType();
4133
4134  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4135  return Index / NumElemsPerChunk;
4136}
4137
4138/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4139/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4140/// Handles 256-bit.
4141static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4142  EVT VT = N->getValueType(0);
4143
4144  unsigned NumElts = VT.getVectorNumElements();
4145
4146  assert((VT.is256BitVector() && NumElts == 4) &&
4147         "Unsupported vector type for VPERMQ/VPERMPD");
4148
4149  unsigned Mask = 0;
4150  for (unsigned i = 0; i != NumElts; ++i) {
4151    int Elt = N->getMaskElt(i);
4152    if (Elt < 0)
4153      continue;
4154    Mask |= Elt << (i*2);
4155  }
4156
4157  return Mask;
4158}
4159/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4160/// constant +0.0.
4161bool X86::isZeroNode(SDValue Elt) {
4162  return ((isa<ConstantSDNode>(Elt) &&
4163           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4164          (isa<ConstantFPSDNode>(Elt) &&
4165           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4166}
4167
4168/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4169/// their permute mask.
4170static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4171                                    SelectionDAG &DAG) {
4172  EVT VT = SVOp->getValueType(0);
4173  unsigned NumElems = VT.getVectorNumElements();
4174  SmallVector<int, 8> MaskVec;
4175
4176  for (unsigned i = 0; i != NumElems; ++i) {
4177    int Idx = SVOp->getMaskElt(i);
4178    if (Idx >= 0) {
4179      if (Idx < (int)NumElems)
4180        Idx += NumElems;
4181      else
4182        Idx -= NumElems;
4183    }
4184    MaskVec.push_back(Idx);
4185  }
4186  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4187                              SVOp->getOperand(0), &MaskVec[0]);
4188}
4189
4190/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4191/// match movhlps. The lower half elements should come from upper half of
4192/// V1 (and in order), and the upper half elements should come from the upper
4193/// half of V2 (and in order).
4194static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4195  if (!VT.is128BitVector())
4196    return false;
4197  if (VT.getVectorNumElements() != 4)
4198    return false;
4199  for (unsigned i = 0, e = 2; i != e; ++i)
4200    if (!isUndefOrEqual(Mask[i], i+2))
4201      return false;
4202  for (unsigned i = 2; i != 4; ++i)
4203    if (!isUndefOrEqual(Mask[i], i+4))
4204      return false;
4205  return true;
4206}
4207
4208/// isScalarLoadToVector - Returns true if the node is a scalar load that
4209/// is promoted to a vector. It also returns the LoadSDNode by reference if
4210/// required.
4211static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4212  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4213    return false;
4214  N = N->getOperand(0).getNode();
4215  if (!ISD::isNON_EXTLoad(N))
4216    return false;
4217  if (LD)
4218    *LD = cast<LoadSDNode>(N);
4219  return true;
4220}
4221
4222// Test whether the given value is a vector value which will be legalized
4223// into a load.
4224static bool WillBeConstantPoolLoad(SDNode *N) {
4225  if (N->getOpcode() != ISD::BUILD_VECTOR)
4226    return false;
4227
4228  // Check for any non-constant elements.
4229  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4230    switch (N->getOperand(i).getNode()->getOpcode()) {
4231    case ISD::UNDEF:
4232    case ISD::ConstantFP:
4233    case ISD::Constant:
4234      break;
4235    default:
4236      return false;
4237    }
4238
4239  // Vectors of all-zeros and all-ones are materialized with special
4240  // instructions rather than being loaded.
4241  return !ISD::isBuildVectorAllZeros(N) &&
4242         !ISD::isBuildVectorAllOnes(N);
4243}
4244
4245/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4246/// match movlp{s|d}. The lower half elements should come from lower half of
4247/// V1 (and in order), and the upper half elements should come from the upper
4248/// half of V2 (and in order). And since V1 will become the source of the
4249/// MOVLP, it must be either a vector load or a scalar load to vector.
4250static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4251                               ArrayRef<int> Mask, EVT VT) {
4252  if (!VT.is128BitVector())
4253    return false;
4254
4255  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4256    return false;
4257  // Is V2 is a vector load, don't do this transformation. We will try to use
4258  // load folding shufps op.
4259  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4260    return false;
4261
4262  unsigned NumElems = VT.getVectorNumElements();
4263
4264  if (NumElems != 2 && NumElems != 4)
4265    return false;
4266  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4267    if (!isUndefOrEqual(Mask[i], i))
4268      return false;
4269  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4270    if (!isUndefOrEqual(Mask[i], i+NumElems))
4271      return false;
4272  return true;
4273}
4274
4275/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4276/// all the same.
4277static bool isSplatVector(SDNode *N) {
4278  if (N->getOpcode() != ISD::BUILD_VECTOR)
4279    return false;
4280
4281  SDValue SplatValue = N->getOperand(0);
4282  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4283    if (N->getOperand(i) != SplatValue)
4284      return false;
4285  return true;
4286}
4287
4288/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4289/// to an zero vector.
4290/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4291static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4292  SDValue V1 = N->getOperand(0);
4293  SDValue V2 = N->getOperand(1);
4294  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4295  for (unsigned i = 0; i != NumElems; ++i) {
4296    int Idx = N->getMaskElt(i);
4297    if (Idx >= (int)NumElems) {
4298      unsigned Opc = V2.getOpcode();
4299      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4300        continue;
4301      if (Opc != ISD::BUILD_VECTOR ||
4302          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4303        return false;
4304    } else if (Idx >= 0) {
4305      unsigned Opc = V1.getOpcode();
4306      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4307        continue;
4308      if (Opc != ISD::BUILD_VECTOR ||
4309          !X86::isZeroNode(V1.getOperand(Idx)))
4310        return false;
4311    }
4312  }
4313  return true;
4314}
4315
4316/// getZeroVector - Returns a vector of specified type with all zero elements.
4317///
4318static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4319                             SelectionDAG &DAG, DebugLoc dl) {
4320  assert(VT.isVector() && "Expected a vector type");
4321  unsigned Size = VT.getSizeInBits();
4322
4323  // Always build SSE zero vectors as <4 x i32> bitcasted
4324  // to their dest type. This ensures they get CSE'd.
4325  SDValue Vec;
4326  if (Size == 128) {  // SSE
4327    if (Subtarget->hasSSE2()) {  // SSE2
4328      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4329      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4330    } else { // SSE1
4331      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4332      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4333    }
4334  } else if (Size == 256) { // AVX
4335    if (Subtarget->hasAVX2()) { // AVX2
4336      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4337      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4338      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4339    } else {
4340      // 256-bit logic and arithmetic instructions in AVX are all
4341      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4342      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4343      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4344      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4345    }
4346  } else
4347    llvm_unreachable("Unexpected vector type");
4348
4349  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4350}
4351
4352/// getOnesVector - Returns a vector of specified type with all bits set.
4353/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4354/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4355/// Then bitcast to their original type, ensuring they get CSE'd.
4356static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4357                             DebugLoc dl) {
4358  assert(VT.isVector() && "Expected a vector type");
4359  unsigned Size = VT.getSizeInBits();
4360
4361  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4362  SDValue Vec;
4363  if (Size == 256) {
4364    if (HasAVX2) { // AVX2
4365      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4366      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4367    } else { // AVX
4368      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4369      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4370    }
4371  } else if (Size == 128) {
4372    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4373  } else
4374    llvm_unreachable("Unexpected vector type");
4375
4376  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4377}
4378
4379/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4380/// that point to V2 points to its first element.
4381static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4382  for (unsigned i = 0; i != NumElems; ++i) {
4383    if (Mask[i] > (int)NumElems) {
4384      Mask[i] = NumElems;
4385    }
4386  }
4387}
4388
4389/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4390/// operation of specified width.
4391static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4392                       SDValue V2) {
4393  unsigned NumElems = VT.getVectorNumElements();
4394  SmallVector<int, 8> Mask;
4395  Mask.push_back(NumElems);
4396  for (unsigned i = 1; i != NumElems; ++i)
4397    Mask.push_back(i);
4398  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4399}
4400
4401/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4402static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4403                          SDValue V2) {
4404  unsigned NumElems = VT.getVectorNumElements();
4405  SmallVector<int, 8> Mask;
4406  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4407    Mask.push_back(i);
4408    Mask.push_back(i + NumElems);
4409  }
4410  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4411}
4412
4413/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4414static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4415                          SDValue V2) {
4416  unsigned NumElems = VT.getVectorNumElements();
4417  SmallVector<int, 8> Mask;
4418  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4419    Mask.push_back(i + Half);
4420    Mask.push_back(i + NumElems + Half);
4421  }
4422  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4423}
4424
4425// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4426// a generic shuffle instruction because the target has no such instructions.
4427// Generate shuffles which repeat i16 and i8 several times until they can be
4428// represented by v4f32 and then be manipulated by target suported shuffles.
4429static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4430  EVT VT = V.getValueType();
4431  int NumElems = VT.getVectorNumElements();
4432  DebugLoc dl = V.getDebugLoc();
4433
4434  while (NumElems > 4) {
4435    if (EltNo < NumElems/2) {
4436      V = getUnpackl(DAG, dl, VT, V, V);
4437    } else {
4438      V = getUnpackh(DAG, dl, VT, V, V);
4439      EltNo -= NumElems/2;
4440    }
4441    NumElems >>= 1;
4442  }
4443  return V;
4444}
4445
4446/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4447static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4448  EVT VT = V.getValueType();
4449  DebugLoc dl = V.getDebugLoc();
4450  unsigned Size = VT.getSizeInBits();
4451
4452  if (Size == 128) {
4453    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4454    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4455    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4456                             &SplatMask[0]);
4457  } else if (Size == 256) {
4458    // To use VPERMILPS to splat scalars, the second half of indicies must
4459    // refer to the higher part, which is a duplication of the lower one,
4460    // because VPERMILPS can only handle in-lane permutations.
4461    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4462                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4463
4464    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4465    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4466                             &SplatMask[0]);
4467  } else
4468    llvm_unreachable("Vector size not supported");
4469
4470  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4471}
4472
4473/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4474static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4475  EVT SrcVT = SV->getValueType(0);
4476  SDValue V1 = SV->getOperand(0);
4477  DebugLoc dl = SV->getDebugLoc();
4478
4479  int EltNo = SV->getSplatIndex();
4480  int NumElems = SrcVT.getVectorNumElements();
4481  unsigned Size = SrcVT.getSizeInBits();
4482
4483  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4484          "Unknown how to promote splat for type");
4485
4486  // Extract the 128-bit part containing the splat element and update
4487  // the splat element index when it refers to the higher register.
4488  if (Size == 256) {
4489    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4490    if (EltNo >= NumElems/2)
4491      EltNo -= NumElems/2;
4492  }
4493
4494  // All i16 and i8 vector types can't be used directly by a generic shuffle
4495  // instruction because the target has no such instruction. Generate shuffles
4496  // which repeat i16 and i8 several times until they fit in i32, and then can
4497  // be manipulated by target suported shuffles.
4498  EVT EltVT = SrcVT.getVectorElementType();
4499  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4500    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4501
4502  // Recreate the 256-bit vector and place the same 128-bit vector
4503  // into the low and high part. This is necessary because we want
4504  // to use VPERM* to shuffle the vectors
4505  if (Size == 256) {
4506    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4507  }
4508
4509  return getLegalSplat(DAG, V1, EltNo);
4510}
4511
4512/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4513/// vector of zero or undef vector.  This produces a shuffle where the low
4514/// element of V2 is swizzled into the zero/undef vector, landing at element
4515/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4516static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4517                                           bool IsZero,
4518                                           const X86Subtarget *Subtarget,
4519                                           SelectionDAG &DAG) {
4520  EVT VT = V2.getValueType();
4521  SDValue V1 = IsZero
4522    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4523  unsigned NumElems = VT.getVectorNumElements();
4524  SmallVector<int, 16> MaskVec;
4525  for (unsigned i = 0; i != NumElems; ++i)
4526    // If this is the insertion idx, put the low elt of V2 here.
4527    MaskVec.push_back(i == Idx ? NumElems : i);
4528  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4529}
4530
4531/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4532/// target specific opcode. Returns true if the Mask could be calculated.
4533/// Sets IsUnary to true if only uses one source.
4534static bool getTargetShuffleMask(SDNode *N, MVT VT,
4535                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4536  unsigned NumElems = VT.getVectorNumElements();
4537  SDValue ImmN;
4538
4539  IsUnary = false;
4540  switch(N->getOpcode()) {
4541  case X86ISD::SHUFP:
4542    ImmN = N->getOperand(N->getNumOperands()-1);
4543    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4544    break;
4545  case X86ISD::UNPCKH:
4546    DecodeUNPCKHMask(VT, Mask);
4547    break;
4548  case X86ISD::UNPCKL:
4549    DecodeUNPCKLMask(VT, Mask);
4550    break;
4551  case X86ISD::MOVHLPS:
4552    DecodeMOVHLPSMask(NumElems, Mask);
4553    break;
4554  case X86ISD::MOVLHPS:
4555    DecodeMOVLHPSMask(NumElems, Mask);
4556    break;
4557  case X86ISD::PSHUFD:
4558  case X86ISD::VPERMILP:
4559    ImmN = N->getOperand(N->getNumOperands()-1);
4560    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4561    IsUnary = true;
4562    break;
4563  case X86ISD::PSHUFHW:
4564    ImmN = N->getOperand(N->getNumOperands()-1);
4565    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4566    IsUnary = true;
4567    break;
4568  case X86ISD::PSHUFLW:
4569    ImmN = N->getOperand(N->getNumOperands()-1);
4570    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4571    IsUnary = true;
4572    break;
4573  case X86ISD::VPERMI:
4574    ImmN = N->getOperand(N->getNumOperands()-1);
4575    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4576    IsUnary = true;
4577    break;
4578  case X86ISD::MOVSS:
4579  case X86ISD::MOVSD: {
4580    // The index 0 always comes from the first element of the second source,
4581    // this is why MOVSS and MOVSD are used in the first place. The other
4582    // elements come from the other positions of the first source vector
4583    Mask.push_back(NumElems);
4584    for (unsigned i = 1; i != NumElems; ++i) {
4585      Mask.push_back(i);
4586    }
4587    break;
4588  }
4589  case X86ISD::VPERM2X128:
4590    ImmN = N->getOperand(N->getNumOperands()-1);
4591    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4592    if (Mask.empty()) return false;
4593    break;
4594  case X86ISD::MOVDDUP:
4595  case X86ISD::MOVLHPD:
4596  case X86ISD::MOVLPD:
4597  case X86ISD::MOVLPS:
4598  case X86ISD::MOVSHDUP:
4599  case X86ISD::MOVSLDUP:
4600  case X86ISD::PALIGN:
4601    // Not yet implemented
4602    return false;
4603  default: llvm_unreachable("unknown target shuffle node");
4604  }
4605
4606  return true;
4607}
4608
4609/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4610/// element of the result of the vector shuffle.
4611static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4612                                   unsigned Depth) {
4613  if (Depth == 6)
4614    return SDValue();  // Limit search depth.
4615
4616  SDValue V = SDValue(N, 0);
4617  EVT VT = V.getValueType();
4618  unsigned Opcode = V.getOpcode();
4619
4620  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4621  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4622    int Elt = SV->getMaskElt(Index);
4623
4624    if (Elt < 0)
4625      return DAG.getUNDEF(VT.getVectorElementType());
4626
4627    unsigned NumElems = VT.getVectorNumElements();
4628    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4629                                         : SV->getOperand(1);
4630    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4631  }
4632
4633  // Recurse into target specific vector shuffles to find scalars.
4634  if (isTargetShuffle(Opcode)) {
4635    MVT ShufVT = V.getValueType().getSimpleVT();
4636    unsigned NumElems = ShufVT.getVectorNumElements();
4637    SmallVector<int, 16> ShuffleMask;
4638    bool IsUnary;
4639
4640    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4641      return SDValue();
4642
4643    int Elt = ShuffleMask[Index];
4644    if (Elt < 0)
4645      return DAG.getUNDEF(ShufVT.getVectorElementType());
4646
4647    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4648                                         : N->getOperand(1);
4649    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4650                               Depth+1);
4651  }
4652
4653  // Actual nodes that may contain scalar elements
4654  if (Opcode == ISD::BITCAST) {
4655    V = V.getOperand(0);
4656    EVT SrcVT = V.getValueType();
4657    unsigned NumElems = VT.getVectorNumElements();
4658
4659    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4660      return SDValue();
4661  }
4662
4663  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4664    return (Index == 0) ? V.getOperand(0)
4665                        : DAG.getUNDEF(VT.getVectorElementType());
4666
4667  if (V.getOpcode() == ISD::BUILD_VECTOR)
4668    return V.getOperand(Index);
4669
4670  return SDValue();
4671}
4672
4673/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4674/// shuffle operation which come from a consecutively from a zero. The
4675/// search can start in two different directions, from left or right.
4676static
4677unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4678                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4679  unsigned i;
4680  for (i = 0; i != NumElems; ++i) {
4681    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4682    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4683    if (!(Elt.getNode() &&
4684         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4685      break;
4686  }
4687
4688  return i;
4689}
4690
4691/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4692/// correspond consecutively to elements from one of the vector operands,
4693/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4694static
4695bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4696                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4697                              unsigned NumElems, unsigned &OpNum) {
4698  bool SeenV1 = false;
4699  bool SeenV2 = false;
4700
4701  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4702    int Idx = SVOp->getMaskElt(i);
4703    // Ignore undef indicies
4704    if (Idx < 0)
4705      continue;
4706
4707    if (Idx < (int)NumElems)
4708      SeenV1 = true;
4709    else
4710      SeenV2 = true;
4711
4712    // Only accept consecutive elements from the same vector
4713    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4714      return false;
4715  }
4716
4717  OpNum = SeenV1 ? 0 : 1;
4718  return true;
4719}
4720
4721/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4722/// logical left shift of a vector.
4723static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4724                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4725  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4726  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4727              false /* check zeros from right */, DAG);
4728  unsigned OpSrc;
4729
4730  if (!NumZeros)
4731    return false;
4732
4733  // Considering the elements in the mask that are not consecutive zeros,
4734  // check if they consecutively come from only one of the source vectors.
4735  //
4736  //               V1 = {X, A, B, C}     0
4737  //                         \  \  \    /
4738  //   vector_shuffle V1, V2 <1, 2, 3, X>
4739  //
4740  if (!isShuffleMaskConsecutive(SVOp,
4741            0,                   // Mask Start Index
4742            NumElems-NumZeros,   // Mask End Index(exclusive)
4743            NumZeros,            // Where to start looking in the src vector
4744            NumElems,            // Number of elements in vector
4745            OpSrc))              // Which source operand ?
4746    return false;
4747
4748  isLeft = false;
4749  ShAmt = NumZeros;
4750  ShVal = SVOp->getOperand(OpSrc);
4751  return true;
4752}
4753
4754/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4755/// logical left shift of a vector.
4756static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4757                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4758  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4759  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4760              true /* check zeros from left */, DAG);
4761  unsigned OpSrc;
4762
4763  if (!NumZeros)
4764    return false;
4765
4766  // Considering the elements in the mask that are not consecutive zeros,
4767  // check if they consecutively come from only one of the source vectors.
4768  //
4769  //                           0    { A, B, X, X } = V2
4770  //                          / \    /  /
4771  //   vector_shuffle V1, V2 <X, X, 4, 5>
4772  //
4773  if (!isShuffleMaskConsecutive(SVOp,
4774            NumZeros,     // Mask Start Index
4775            NumElems,     // Mask End Index(exclusive)
4776            0,            // Where to start looking in the src vector
4777            NumElems,     // Number of elements in vector
4778            OpSrc))       // Which source operand ?
4779    return false;
4780
4781  isLeft = true;
4782  ShAmt = NumZeros;
4783  ShVal = SVOp->getOperand(OpSrc);
4784  return true;
4785}
4786
4787/// isVectorShift - Returns true if the shuffle can be implemented as a
4788/// logical left or right shift of a vector.
4789static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4790                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4791  // Although the logic below support any bitwidth size, there are no
4792  // shift instructions which handle more than 128-bit vectors.
4793  if (!SVOp->getValueType(0).is128BitVector())
4794    return false;
4795
4796  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4797      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4798    return true;
4799
4800  return false;
4801}
4802
4803/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4804///
4805static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4806                                       unsigned NumNonZero, unsigned NumZero,
4807                                       SelectionDAG &DAG,
4808                                       const X86Subtarget* Subtarget,
4809                                       const TargetLowering &TLI) {
4810  if (NumNonZero > 8)
4811    return SDValue();
4812
4813  DebugLoc dl = Op.getDebugLoc();
4814  SDValue V(0, 0);
4815  bool First = true;
4816  for (unsigned i = 0; i < 16; ++i) {
4817    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4818    if (ThisIsNonZero && First) {
4819      if (NumZero)
4820        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4821      else
4822        V = DAG.getUNDEF(MVT::v8i16);
4823      First = false;
4824    }
4825
4826    if ((i & 1) != 0) {
4827      SDValue ThisElt(0, 0), LastElt(0, 0);
4828      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4829      if (LastIsNonZero) {
4830        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4831                              MVT::i16, Op.getOperand(i-1));
4832      }
4833      if (ThisIsNonZero) {
4834        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4835        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4836                              ThisElt, DAG.getConstant(8, MVT::i8));
4837        if (LastIsNonZero)
4838          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4839      } else
4840        ThisElt = LastElt;
4841
4842      if (ThisElt.getNode())
4843        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4844                        DAG.getIntPtrConstant(i/2));
4845    }
4846  }
4847
4848  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4849}
4850
4851/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4852///
4853static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4854                                     unsigned NumNonZero, unsigned NumZero,
4855                                     SelectionDAG &DAG,
4856                                     const X86Subtarget* Subtarget,
4857                                     const TargetLowering &TLI) {
4858  if (NumNonZero > 4)
4859    return SDValue();
4860
4861  DebugLoc dl = Op.getDebugLoc();
4862  SDValue V(0, 0);
4863  bool First = true;
4864  for (unsigned i = 0; i < 8; ++i) {
4865    bool isNonZero = (NonZeros & (1 << i)) != 0;
4866    if (isNonZero) {
4867      if (First) {
4868        if (NumZero)
4869          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4870        else
4871          V = DAG.getUNDEF(MVT::v8i16);
4872        First = false;
4873      }
4874      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4875                      MVT::v8i16, V, Op.getOperand(i),
4876                      DAG.getIntPtrConstant(i));
4877    }
4878  }
4879
4880  return V;
4881}
4882
4883/// getVShift - Return a vector logical shift node.
4884///
4885static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4886                         unsigned NumBits, SelectionDAG &DAG,
4887                         const TargetLowering &TLI, DebugLoc dl) {
4888  assert(VT.is128BitVector() && "Unknown type for VShift");
4889  EVT ShVT = MVT::v2i64;
4890  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4891  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4892  return DAG.getNode(ISD::BITCAST, dl, VT,
4893                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4894                             DAG.getConstant(NumBits,
4895                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4896}
4897
4898SDValue
4899X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4900                                          SelectionDAG &DAG) const {
4901
4902  // Check if the scalar load can be widened into a vector load. And if
4903  // the address is "base + cst" see if the cst can be "absorbed" into
4904  // the shuffle mask.
4905  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4906    SDValue Ptr = LD->getBasePtr();
4907    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4908      return SDValue();
4909    EVT PVT = LD->getValueType(0);
4910    if (PVT != MVT::i32 && PVT != MVT::f32)
4911      return SDValue();
4912
4913    int FI = -1;
4914    int64_t Offset = 0;
4915    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4916      FI = FINode->getIndex();
4917      Offset = 0;
4918    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4919               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4920      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4921      Offset = Ptr.getConstantOperandVal(1);
4922      Ptr = Ptr.getOperand(0);
4923    } else {
4924      return SDValue();
4925    }
4926
4927    // FIXME: 256-bit vector instructions don't require a strict alignment,
4928    // improve this code to support it better.
4929    unsigned RequiredAlign = VT.getSizeInBits()/8;
4930    SDValue Chain = LD->getChain();
4931    // Make sure the stack object alignment is at least 16 or 32.
4932    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4933    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4934      if (MFI->isFixedObjectIndex(FI)) {
4935        // Can't change the alignment. FIXME: It's possible to compute
4936        // the exact stack offset and reference FI + adjust offset instead.
4937        // If someone *really* cares about this. That's the way to implement it.
4938        return SDValue();
4939      } else {
4940        MFI->setObjectAlignment(FI, RequiredAlign);
4941      }
4942    }
4943
4944    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4945    // Ptr + (Offset & ~15).
4946    if (Offset < 0)
4947      return SDValue();
4948    if ((Offset % RequiredAlign) & 3)
4949      return SDValue();
4950    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4951    if (StartOffset)
4952      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4953                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4954
4955    int EltNo = (Offset - StartOffset) >> 2;
4956    unsigned NumElems = VT.getVectorNumElements();
4957
4958    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4959    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4960                             LD->getPointerInfo().getWithOffset(StartOffset),
4961                             false, false, false, 0);
4962
4963    SmallVector<int, 8> Mask;
4964    for (unsigned i = 0; i != NumElems; ++i)
4965      Mask.push_back(EltNo);
4966
4967    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4968  }
4969
4970  return SDValue();
4971}
4972
4973/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4974/// vector of type 'VT', see if the elements can be replaced by a single large
4975/// load which has the same value as a build_vector whose operands are 'elts'.
4976///
4977/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4978///
4979/// FIXME: we'd also like to handle the case where the last elements are zero
4980/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4981/// There's even a handy isZeroNode for that purpose.
4982static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4983                                        DebugLoc &DL, SelectionDAG &DAG) {
4984  EVT EltVT = VT.getVectorElementType();
4985  unsigned NumElems = Elts.size();
4986
4987  LoadSDNode *LDBase = NULL;
4988  unsigned LastLoadedElt = -1U;
4989
4990  // For each element in the initializer, see if we've found a load or an undef.
4991  // If we don't find an initial load element, or later load elements are
4992  // non-consecutive, bail out.
4993  for (unsigned i = 0; i < NumElems; ++i) {
4994    SDValue Elt = Elts[i];
4995
4996    if (!Elt.getNode() ||
4997        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4998      return SDValue();
4999    if (!LDBase) {
5000      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5001        return SDValue();
5002      LDBase = cast<LoadSDNode>(Elt.getNode());
5003      LastLoadedElt = i;
5004      continue;
5005    }
5006    if (Elt.getOpcode() == ISD::UNDEF)
5007      continue;
5008
5009    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5010    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5011      return SDValue();
5012    LastLoadedElt = i;
5013  }
5014
5015  // If we have found an entire vector of loads and undefs, then return a large
5016  // load of the entire vector width starting at the base pointer.  If we found
5017  // consecutive loads for the low half, generate a vzext_load node.
5018  if (LastLoadedElt == NumElems - 1) {
5019    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5020      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5021                         LDBase->getPointerInfo(),
5022                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5023                         LDBase->isInvariant(), 0);
5024    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5025                       LDBase->getPointerInfo(),
5026                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5027                       LDBase->isInvariant(), LDBase->getAlignment());
5028  }
5029  if (NumElems == 4 && LastLoadedElt == 1 &&
5030      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5031    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5032    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5033    SDValue ResNode =
5034        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5035                                LDBase->getPointerInfo(),
5036                                LDBase->getAlignment(),
5037                                false/*isVolatile*/, true/*ReadMem*/,
5038                                false/*WriteMem*/);
5039
5040    // Make sure the newly-created LOAD is in the same position as LDBase in
5041    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5042    // update uses of LDBase's output chain to use the TokenFactor.
5043    if (LDBase->hasAnyUseOfValue(1)) {
5044      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5045                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5046      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5047      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5048                             SDValue(ResNode.getNode(), 1));
5049    }
5050
5051    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5052  }
5053  return SDValue();
5054}
5055
5056/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5057/// to generate a splat value for the following cases:
5058/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5059/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5060/// a scalar load, or a constant.
5061/// The VBROADCAST node is returned when a pattern is found,
5062/// or SDValue() otherwise.
5063SDValue
5064X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5065  if (!Subtarget->hasAVX())
5066    return SDValue();
5067
5068  EVT VT = Op.getValueType();
5069  DebugLoc dl = Op.getDebugLoc();
5070
5071  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5072         "Unsupported vector type for broadcast.");
5073
5074  SDValue Ld;
5075  bool ConstSplatVal;
5076
5077  switch (Op.getOpcode()) {
5078    default:
5079      // Unknown pattern found.
5080      return SDValue();
5081
5082    case ISD::BUILD_VECTOR: {
5083      // The BUILD_VECTOR node must be a splat.
5084      if (!isSplatVector(Op.getNode()))
5085        return SDValue();
5086
5087      Ld = Op.getOperand(0);
5088      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5089                     Ld.getOpcode() == ISD::ConstantFP);
5090
5091      // The suspected load node has several users. Make sure that all
5092      // of its users are from the BUILD_VECTOR node.
5093      // Constants may have multiple users.
5094      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5095        return SDValue();
5096      break;
5097    }
5098
5099    case ISD::VECTOR_SHUFFLE: {
5100      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5101
5102      // Shuffles must have a splat mask where the first element is
5103      // broadcasted.
5104      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5105        return SDValue();
5106
5107      SDValue Sc = Op.getOperand(0);
5108      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5109          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5110
5111        if (!Subtarget->hasAVX2())
5112          return SDValue();
5113
5114        // Use the register form of the broadcast instruction available on AVX2.
5115        if (VT.is256BitVector())
5116          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5117        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5118      }
5119
5120      Ld = Sc.getOperand(0);
5121      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5122                       Ld.getOpcode() == ISD::ConstantFP);
5123
5124      // The scalar_to_vector node and the suspected
5125      // load node must have exactly one user.
5126      // Constants may have multiple users.
5127      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5128        return SDValue();
5129      break;
5130    }
5131  }
5132
5133  bool Is256 = VT.is256BitVector();
5134
5135  // Handle the broadcasting a single constant scalar from the constant pool
5136  // into a vector. On Sandybridge it is still better to load a constant vector
5137  // from the constant pool and not to broadcast it from a scalar.
5138  if (ConstSplatVal && Subtarget->hasAVX2()) {
5139    EVT CVT = Ld.getValueType();
5140    assert(!CVT.isVector() && "Must not broadcast a vector type");
5141    unsigned ScalarSize = CVT.getSizeInBits();
5142
5143    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5144      const Constant *C = 0;
5145      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5146        C = CI->getConstantIntValue();
5147      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5148        C = CF->getConstantFPValue();
5149
5150      assert(C && "Invalid constant type");
5151
5152      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5153      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5154      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5155                       MachinePointerInfo::getConstantPool(),
5156                       false, false, false, Alignment);
5157
5158      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5159    }
5160  }
5161
5162  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5163  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5164
5165  // Handle AVX2 in-register broadcasts.
5166  if (!IsLoad && Subtarget->hasAVX2() &&
5167      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5168    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5169
5170  // The scalar source must be a normal load.
5171  if (!IsLoad)
5172    return SDValue();
5173
5174  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5175    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5176
5177  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5178  // double since there is no vbroadcastsd xmm
5179  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5180    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5181      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5182  }
5183
5184  // Unsupported broadcast.
5185  return SDValue();
5186}
5187
5188SDValue
5189X86TargetLowering::buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) const {
5190  EVT VT = Op.getValueType();
5191
5192  // Skip if insert_vec_elt is not supported.
5193  if (!isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5194    return SDValue();
5195
5196  DebugLoc DL = Op.getDebugLoc();
5197  unsigned NumElems = Op.getNumOperands();
5198
5199  SDValue VecIn1;
5200  SDValue VecIn2;
5201  SmallVector<unsigned, 4> InsertIndices;
5202  SmallVector<int, 8> Mask(NumElems, -1);
5203
5204  for (unsigned i = 0; i != NumElems; ++i) {
5205    unsigned Opc = Op.getOperand(i).getOpcode();
5206
5207    if (Opc == ISD::UNDEF)
5208      continue;
5209
5210    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5211      // Quit if more than 1 elements need inserting.
5212      if (InsertIndices.size() > 1)
5213        return SDValue();
5214
5215      InsertIndices.push_back(i);
5216      continue;
5217    }
5218
5219    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5220    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5221
5222    // Quit if extracted from vector of different type.
5223    if (ExtractedFromVec.getValueType() != VT)
5224      return SDValue();
5225
5226    // Quit if non-constant index.
5227    if (!isa<ConstantSDNode>(ExtIdx))
5228      return SDValue();
5229
5230    if (VecIn1.getNode() == 0)
5231      VecIn1 = ExtractedFromVec;
5232    else if (VecIn1 != ExtractedFromVec) {
5233      if (VecIn2.getNode() == 0)
5234        VecIn2 = ExtractedFromVec;
5235      else if (VecIn2 != ExtractedFromVec)
5236        // Quit if more than 2 vectors to shuffle
5237        return SDValue();
5238    }
5239
5240    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5241
5242    if (ExtractedFromVec == VecIn1)
5243      Mask[i] = Idx;
5244    else if (ExtractedFromVec == VecIn2)
5245      Mask[i] = Idx + NumElems;
5246  }
5247
5248  if (VecIn1.getNode() == 0)
5249    return SDValue();
5250
5251  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5252  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5253  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5254    unsigned Idx = InsertIndices[i];
5255    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5256                     DAG.getIntPtrConstant(Idx));
5257  }
5258
5259  return NV;
5260}
5261
5262SDValue
5263X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5264  DebugLoc dl = Op.getDebugLoc();
5265
5266  EVT VT = Op.getValueType();
5267  EVT ExtVT = VT.getVectorElementType();
5268  unsigned NumElems = Op.getNumOperands();
5269
5270  // Vectors containing all zeros can be matched by pxor and xorps later
5271  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5272    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5273    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5274    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5275      return Op;
5276
5277    return getZeroVector(VT, Subtarget, DAG, dl);
5278  }
5279
5280  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5281  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5282  // vpcmpeqd on 256-bit vectors.
5283  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5284    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5285      return Op;
5286
5287    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5288  }
5289
5290  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5291  if (Broadcast.getNode())
5292    return Broadcast;
5293
5294  unsigned EVTBits = ExtVT.getSizeInBits();
5295
5296  unsigned NumZero  = 0;
5297  unsigned NumNonZero = 0;
5298  unsigned NonZeros = 0;
5299  bool IsAllConstants = true;
5300  SmallSet<SDValue, 8> Values;
5301  for (unsigned i = 0; i < NumElems; ++i) {
5302    SDValue Elt = Op.getOperand(i);
5303    if (Elt.getOpcode() == ISD::UNDEF)
5304      continue;
5305    Values.insert(Elt);
5306    if (Elt.getOpcode() != ISD::Constant &&
5307        Elt.getOpcode() != ISD::ConstantFP)
5308      IsAllConstants = false;
5309    if (X86::isZeroNode(Elt))
5310      NumZero++;
5311    else {
5312      NonZeros |= (1 << i);
5313      NumNonZero++;
5314    }
5315  }
5316
5317  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5318  if (NumNonZero == 0)
5319    return DAG.getUNDEF(VT);
5320
5321  // Special case for single non-zero, non-undef, element.
5322  if (NumNonZero == 1) {
5323    unsigned Idx = CountTrailingZeros_32(NonZeros);
5324    SDValue Item = Op.getOperand(Idx);
5325
5326    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5327    // the value are obviously zero, truncate the value to i32 and do the
5328    // insertion that way.  Only do this if the value is non-constant or if the
5329    // value is a constant being inserted into element 0.  It is cheaper to do
5330    // a constant pool load than it is to do a movd + shuffle.
5331    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5332        (!IsAllConstants || Idx == 0)) {
5333      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5334        // Handle SSE only.
5335        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5336        EVT VecVT = MVT::v4i32;
5337        unsigned VecElts = 4;
5338
5339        // Truncate the value (which may itself be a constant) to i32, and
5340        // convert it to a vector with movd (S2V+shuffle to zero extend).
5341        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5342        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5343        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5344
5345        // Now we have our 32-bit value zero extended in the low element of
5346        // a vector.  If Idx != 0, swizzle it into place.
5347        if (Idx != 0) {
5348          SmallVector<int, 4> Mask;
5349          Mask.push_back(Idx);
5350          for (unsigned i = 1; i != VecElts; ++i)
5351            Mask.push_back(i);
5352          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5353                                      &Mask[0]);
5354        }
5355        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5356      }
5357    }
5358
5359    // If we have a constant or non-constant insertion into the low element of
5360    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5361    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5362    // depending on what the source datatype is.
5363    if (Idx == 0) {
5364      if (NumZero == 0)
5365        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5366
5367      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5368          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5369        if (VT.is256BitVector()) {
5370          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5371          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5372                             Item, DAG.getIntPtrConstant(0));
5373        }
5374        assert(VT.is128BitVector() && "Expected an SSE value type!");
5375        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5376        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5377        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5378      }
5379
5380      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5381        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5382        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5383        if (VT.is256BitVector()) {
5384          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5385          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5386        } else {
5387          assert(VT.is128BitVector() && "Expected an SSE value type!");
5388          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5389        }
5390        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5391      }
5392    }
5393
5394    // Is it a vector logical left shift?
5395    if (NumElems == 2 && Idx == 1 &&
5396        X86::isZeroNode(Op.getOperand(0)) &&
5397        !X86::isZeroNode(Op.getOperand(1))) {
5398      unsigned NumBits = VT.getSizeInBits();
5399      return getVShift(true, VT,
5400                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5401                                   VT, Op.getOperand(1)),
5402                       NumBits/2, DAG, *this, dl);
5403    }
5404
5405    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5406      return SDValue();
5407
5408    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5409    // is a non-constant being inserted into an element other than the low one,
5410    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5411    // movd/movss) to move this into the low element, then shuffle it into
5412    // place.
5413    if (EVTBits == 32) {
5414      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5415
5416      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5417      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5418      SmallVector<int, 8> MaskVec;
5419      for (unsigned i = 0; i != NumElems; ++i)
5420        MaskVec.push_back(i == Idx ? 0 : 1);
5421      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5422    }
5423  }
5424
5425  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5426  if (Values.size() == 1) {
5427    if (EVTBits == 32) {
5428      // Instead of a shuffle like this:
5429      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5430      // Check if it's possible to issue this instead.
5431      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5432      unsigned Idx = CountTrailingZeros_32(NonZeros);
5433      SDValue Item = Op.getOperand(Idx);
5434      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5435        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5436    }
5437    return SDValue();
5438  }
5439
5440  // A vector full of immediates; various special cases are already
5441  // handled, so this is best done with a single constant-pool load.
5442  if (IsAllConstants)
5443    return SDValue();
5444
5445  // For AVX-length vectors, build the individual 128-bit pieces and use
5446  // shuffles to put them in place.
5447  if (VT.is256BitVector()) {
5448    SmallVector<SDValue, 32> V;
5449    for (unsigned i = 0; i != NumElems; ++i)
5450      V.push_back(Op.getOperand(i));
5451
5452    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5453
5454    // Build both the lower and upper subvector.
5455    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5456    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5457                                NumElems/2);
5458
5459    // Recreate the wider vector with the lower and upper part.
5460    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5461  }
5462
5463  // Let legalizer expand 2-wide build_vectors.
5464  if (EVTBits == 64) {
5465    if (NumNonZero == 1) {
5466      // One half is zero or undef.
5467      unsigned Idx = CountTrailingZeros_32(NonZeros);
5468      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5469                                 Op.getOperand(Idx));
5470      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5471    }
5472    return SDValue();
5473  }
5474
5475  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5476  if (EVTBits == 8 && NumElems == 16) {
5477    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5478                                        Subtarget, *this);
5479    if (V.getNode()) return V;
5480  }
5481
5482  if (EVTBits == 16 && NumElems == 8) {
5483    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5484                                      Subtarget, *this);
5485    if (V.getNode()) return V;
5486  }
5487
5488  // If element VT is == 32 bits, turn it into a number of shuffles.
5489  SmallVector<SDValue, 8> V(NumElems);
5490  if (NumElems == 4 && NumZero > 0) {
5491    for (unsigned i = 0; i < 4; ++i) {
5492      bool isZero = !(NonZeros & (1 << i));
5493      if (isZero)
5494        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5495      else
5496        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5497    }
5498
5499    for (unsigned i = 0; i < 2; ++i) {
5500      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5501        default: break;
5502        case 0:
5503          V[i] = V[i*2];  // Must be a zero vector.
5504          break;
5505        case 1:
5506          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5507          break;
5508        case 2:
5509          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5510          break;
5511        case 3:
5512          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5513          break;
5514      }
5515    }
5516
5517    bool Reverse1 = (NonZeros & 0x3) == 2;
5518    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5519    int MaskVec[] = {
5520      Reverse1 ? 1 : 0,
5521      Reverse1 ? 0 : 1,
5522      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5523      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5524    };
5525    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5526  }
5527
5528  if (Values.size() > 1 && VT.is128BitVector()) {
5529    // Check for a build vector of consecutive loads.
5530    for (unsigned i = 0; i < NumElems; ++i)
5531      V[i] = Op.getOperand(i);
5532
5533    // Check for elements which are consecutive loads.
5534    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5535    if (LD.getNode())
5536      return LD;
5537
5538    // Check for a build vector from mostly shuffle plus few inserting.
5539    SDValue Sh = buildFromShuffleMostly(Op, DAG);
5540    if (Sh.getNode())
5541      return Sh;
5542
5543    // For SSE 4.1, use insertps to put the high elements into the low element.
5544    if (getSubtarget()->hasSSE41()) {
5545      SDValue Result;
5546      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5547        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5548      else
5549        Result = DAG.getUNDEF(VT);
5550
5551      for (unsigned i = 1; i < NumElems; ++i) {
5552        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5553        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5554                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5555      }
5556      return Result;
5557    }
5558
5559    // Otherwise, expand into a number of unpckl*, start by extending each of
5560    // our (non-undef) elements to the full vector width with the element in the
5561    // bottom slot of the vector (which generates no code for SSE).
5562    for (unsigned i = 0; i < NumElems; ++i) {
5563      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5564        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5565      else
5566        V[i] = DAG.getUNDEF(VT);
5567    }
5568
5569    // Next, we iteratively mix elements, e.g. for v4f32:
5570    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5571    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5572    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5573    unsigned EltStride = NumElems >> 1;
5574    while (EltStride != 0) {
5575      for (unsigned i = 0; i < EltStride; ++i) {
5576        // If V[i+EltStride] is undef and this is the first round of mixing,
5577        // then it is safe to just drop this shuffle: V[i] is already in the
5578        // right place, the one element (since it's the first round) being
5579        // inserted as undef can be dropped.  This isn't safe for successive
5580        // rounds because they will permute elements within both vectors.
5581        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5582            EltStride == NumElems/2)
5583          continue;
5584
5585        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5586      }
5587      EltStride >>= 1;
5588    }
5589    return V[0];
5590  }
5591  return SDValue();
5592}
5593
5594// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5595// to create 256-bit vectors from two other 128-bit ones.
5596static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5597  DebugLoc dl = Op.getDebugLoc();
5598  EVT ResVT = Op.getValueType();
5599
5600  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5601
5602  SDValue V1 = Op.getOperand(0);
5603  SDValue V2 = Op.getOperand(1);
5604  unsigned NumElems = ResVT.getVectorNumElements();
5605
5606  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5607}
5608
5609static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5610  assert(Op.getNumOperands() == 2);
5611
5612  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5613  // from two other 128-bit ones.
5614  return LowerAVXCONCAT_VECTORS(Op, DAG);
5615}
5616
5617// Try to lower a shuffle node into a simple blend instruction.
5618static SDValue
5619LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5620                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5621  SDValue V1 = SVOp->getOperand(0);
5622  SDValue V2 = SVOp->getOperand(1);
5623  DebugLoc dl = SVOp->getDebugLoc();
5624  MVT VT = SVOp->getValueType(0).getSimpleVT();
5625  unsigned NumElems = VT.getVectorNumElements();
5626
5627  if (!Subtarget->hasSSE41())
5628    return SDValue();
5629
5630  unsigned ISDNo = 0;
5631  MVT OpTy;
5632
5633  switch (VT.SimpleTy) {
5634  default: return SDValue();
5635  case MVT::v8i16:
5636    ISDNo = X86ISD::BLENDPW;
5637    OpTy = MVT::v8i16;
5638    break;
5639  case MVT::v4i32:
5640  case MVT::v4f32:
5641    ISDNo = X86ISD::BLENDPS;
5642    OpTy = MVT::v4f32;
5643    break;
5644  case MVT::v2i64:
5645  case MVT::v2f64:
5646    ISDNo = X86ISD::BLENDPD;
5647    OpTy = MVT::v2f64;
5648    break;
5649  case MVT::v8i32:
5650  case MVT::v8f32:
5651    if (!Subtarget->hasAVX())
5652      return SDValue();
5653    ISDNo = X86ISD::BLENDPS;
5654    OpTy = MVT::v8f32;
5655    break;
5656  case MVT::v4i64:
5657  case MVT::v4f64:
5658    if (!Subtarget->hasAVX())
5659      return SDValue();
5660    ISDNo = X86ISD::BLENDPD;
5661    OpTy = MVT::v4f64;
5662    break;
5663  }
5664  assert(ISDNo && "Invalid Op Number");
5665
5666  unsigned MaskVals = 0;
5667
5668  for (unsigned i = 0; i != NumElems; ++i) {
5669    int EltIdx = SVOp->getMaskElt(i);
5670    if (EltIdx == (int)i || EltIdx < 0)
5671      MaskVals |= (1<<i);
5672    else if (EltIdx == (int)(i + NumElems))
5673      continue; // Bit is set to zero;
5674    else
5675      return SDValue();
5676  }
5677
5678  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5679  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5680  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5681                             DAG.getConstant(MaskVals, MVT::i32));
5682  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5683}
5684
5685// v8i16 shuffles - Prefer shuffles in the following order:
5686// 1. [all]   pshuflw, pshufhw, optional move
5687// 2. [ssse3] 1 x pshufb
5688// 3. [ssse3] 2 x pshufb + 1 x por
5689// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5690static SDValue
5691LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5692                         SelectionDAG &DAG) {
5693  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5694  SDValue V1 = SVOp->getOperand(0);
5695  SDValue V2 = SVOp->getOperand(1);
5696  DebugLoc dl = SVOp->getDebugLoc();
5697  SmallVector<int, 8> MaskVals;
5698
5699  // Determine if more than 1 of the words in each of the low and high quadwords
5700  // of the result come from the same quadword of one of the two inputs.  Undef
5701  // mask values count as coming from any quadword, for better codegen.
5702  unsigned LoQuad[] = { 0, 0, 0, 0 };
5703  unsigned HiQuad[] = { 0, 0, 0, 0 };
5704  std::bitset<4> InputQuads;
5705  for (unsigned i = 0; i < 8; ++i) {
5706    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5707    int EltIdx = SVOp->getMaskElt(i);
5708    MaskVals.push_back(EltIdx);
5709    if (EltIdx < 0) {
5710      ++Quad[0];
5711      ++Quad[1];
5712      ++Quad[2];
5713      ++Quad[3];
5714      continue;
5715    }
5716    ++Quad[EltIdx / 4];
5717    InputQuads.set(EltIdx / 4);
5718  }
5719
5720  int BestLoQuad = -1;
5721  unsigned MaxQuad = 1;
5722  for (unsigned i = 0; i < 4; ++i) {
5723    if (LoQuad[i] > MaxQuad) {
5724      BestLoQuad = i;
5725      MaxQuad = LoQuad[i];
5726    }
5727  }
5728
5729  int BestHiQuad = -1;
5730  MaxQuad = 1;
5731  for (unsigned i = 0; i < 4; ++i) {
5732    if (HiQuad[i] > MaxQuad) {
5733      BestHiQuad = i;
5734      MaxQuad = HiQuad[i];
5735    }
5736  }
5737
5738  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5739  // of the two input vectors, shuffle them into one input vector so only a
5740  // single pshufb instruction is necessary. If There are more than 2 input
5741  // quads, disable the next transformation since it does not help SSSE3.
5742  bool V1Used = InputQuads[0] || InputQuads[1];
5743  bool V2Used = InputQuads[2] || InputQuads[3];
5744  if (Subtarget->hasSSSE3()) {
5745    if (InputQuads.count() == 2 && V1Used && V2Used) {
5746      BestLoQuad = InputQuads[0] ? 0 : 1;
5747      BestHiQuad = InputQuads[2] ? 2 : 3;
5748    }
5749    if (InputQuads.count() > 2) {
5750      BestLoQuad = -1;
5751      BestHiQuad = -1;
5752    }
5753  }
5754
5755  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5756  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5757  // words from all 4 input quadwords.
5758  SDValue NewV;
5759  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5760    int MaskV[] = {
5761      BestLoQuad < 0 ? 0 : BestLoQuad,
5762      BestHiQuad < 0 ? 1 : BestHiQuad
5763    };
5764    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5765                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5766                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5767    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5768
5769    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5770    // source words for the shuffle, to aid later transformations.
5771    bool AllWordsInNewV = true;
5772    bool InOrder[2] = { true, true };
5773    for (unsigned i = 0; i != 8; ++i) {
5774      int idx = MaskVals[i];
5775      if (idx != (int)i)
5776        InOrder[i/4] = false;
5777      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5778        continue;
5779      AllWordsInNewV = false;
5780      break;
5781    }
5782
5783    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5784    if (AllWordsInNewV) {
5785      for (int i = 0; i != 8; ++i) {
5786        int idx = MaskVals[i];
5787        if (idx < 0)
5788          continue;
5789        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5790        if ((idx != i) && idx < 4)
5791          pshufhw = false;
5792        if ((idx != i) && idx > 3)
5793          pshuflw = false;
5794      }
5795      V1 = NewV;
5796      V2Used = false;
5797      BestLoQuad = 0;
5798      BestHiQuad = 1;
5799    }
5800
5801    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5802    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5803    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5804      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5805      unsigned TargetMask = 0;
5806      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5807                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5808      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5809      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5810                             getShufflePSHUFLWImmediate(SVOp);
5811      V1 = NewV.getOperand(0);
5812      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5813    }
5814  }
5815
5816  // If we have SSSE3, and all words of the result are from 1 input vector,
5817  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5818  // is present, fall back to case 4.
5819  if (Subtarget->hasSSSE3()) {
5820    SmallVector<SDValue,16> pshufbMask;
5821
5822    // If we have elements from both input vectors, set the high bit of the
5823    // shuffle mask element to zero out elements that come from V2 in the V1
5824    // mask, and elements that come from V1 in the V2 mask, so that the two
5825    // results can be OR'd together.
5826    bool TwoInputs = V1Used && V2Used;
5827    for (unsigned i = 0; i != 8; ++i) {
5828      int EltIdx = MaskVals[i] * 2;
5829      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5830      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5831      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5832      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5833    }
5834    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5835    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5836                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5837                                 MVT::v16i8, &pshufbMask[0], 16));
5838    if (!TwoInputs)
5839      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5840
5841    // Calculate the shuffle mask for the second input, shuffle it, and
5842    // OR it with the first shuffled input.
5843    pshufbMask.clear();
5844    for (unsigned i = 0; i != 8; ++i) {
5845      int EltIdx = MaskVals[i] * 2;
5846      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5847      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5848      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5849      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5850    }
5851    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5852    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5853                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5854                                 MVT::v16i8, &pshufbMask[0], 16));
5855    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5856    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5857  }
5858
5859  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5860  // and update MaskVals with new element order.
5861  std::bitset<8> InOrder;
5862  if (BestLoQuad >= 0) {
5863    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5864    for (int i = 0; i != 4; ++i) {
5865      int idx = MaskVals[i];
5866      if (idx < 0) {
5867        InOrder.set(i);
5868      } else if ((idx / 4) == BestLoQuad) {
5869        MaskV[i] = idx & 3;
5870        InOrder.set(i);
5871      }
5872    }
5873    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5874                                &MaskV[0]);
5875
5876    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5877      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5878      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5879                                  NewV.getOperand(0),
5880                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5881    }
5882  }
5883
5884  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5885  // and update MaskVals with the new element order.
5886  if (BestHiQuad >= 0) {
5887    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5888    for (unsigned i = 4; i != 8; ++i) {
5889      int idx = MaskVals[i];
5890      if (idx < 0) {
5891        InOrder.set(i);
5892      } else if ((idx / 4) == BestHiQuad) {
5893        MaskV[i] = (idx & 3) + 4;
5894        InOrder.set(i);
5895      }
5896    }
5897    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5898                                &MaskV[0]);
5899
5900    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5901      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5902      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5903                                  NewV.getOperand(0),
5904                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5905    }
5906  }
5907
5908  // In case BestHi & BestLo were both -1, which means each quadword has a word
5909  // from each of the four input quadwords, calculate the InOrder bitvector now
5910  // before falling through to the insert/extract cleanup.
5911  if (BestLoQuad == -1 && BestHiQuad == -1) {
5912    NewV = V1;
5913    for (int i = 0; i != 8; ++i)
5914      if (MaskVals[i] < 0 || MaskVals[i] == i)
5915        InOrder.set(i);
5916  }
5917
5918  // The other elements are put in the right place using pextrw and pinsrw.
5919  for (unsigned i = 0; i != 8; ++i) {
5920    if (InOrder[i])
5921      continue;
5922    int EltIdx = MaskVals[i];
5923    if (EltIdx < 0)
5924      continue;
5925    SDValue ExtOp = (EltIdx < 8) ?
5926      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5927                  DAG.getIntPtrConstant(EltIdx)) :
5928      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5929                  DAG.getIntPtrConstant(EltIdx - 8));
5930    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5931                       DAG.getIntPtrConstant(i));
5932  }
5933  return NewV;
5934}
5935
5936// v16i8 shuffles - Prefer shuffles in the following order:
5937// 1. [ssse3] 1 x pshufb
5938// 2. [ssse3] 2 x pshufb + 1 x por
5939// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5940static
5941SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5942                                 SelectionDAG &DAG,
5943                                 const X86TargetLowering &TLI) {
5944  SDValue V1 = SVOp->getOperand(0);
5945  SDValue V2 = SVOp->getOperand(1);
5946  DebugLoc dl = SVOp->getDebugLoc();
5947  ArrayRef<int> MaskVals = SVOp->getMask();
5948
5949  // If we have SSSE3, case 1 is generated when all result bytes come from
5950  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5951  // present, fall back to case 3.
5952
5953  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5954  if (TLI.getSubtarget()->hasSSSE3()) {
5955    SmallVector<SDValue,16> pshufbMask;
5956
5957    // If all result elements are from one input vector, then only translate
5958    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5959    //
5960    // Otherwise, we have elements from both input vectors, and must zero out
5961    // elements that come from V2 in the first mask, and V1 in the second mask
5962    // so that we can OR them together.
5963    for (unsigned i = 0; i != 16; ++i) {
5964      int EltIdx = MaskVals[i];
5965      if (EltIdx < 0 || EltIdx >= 16)
5966        EltIdx = 0x80;
5967      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5968    }
5969    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5970                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5971                                 MVT::v16i8, &pshufbMask[0], 16));
5972
5973    // As PSHUFB will zero elements with negative indices, it's safe to ignore
5974    // the 2nd operand if it's undefined or zero.
5975    if (V2.getOpcode() == ISD::UNDEF ||
5976        ISD::isBuildVectorAllZeros(V2.getNode()))
5977      return V1;
5978
5979    // Calculate the shuffle mask for the second input, shuffle it, and
5980    // OR it with the first shuffled input.
5981    pshufbMask.clear();
5982    for (unsigned i = 0; i != 16; ++i) {
5983      int EltIdx = MaskVals[i];
5984      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5985      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5986    }
5987    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5988                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5989                                 MVT::v16i8, &pshufbMask[0], 16));
5990    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5991  }
5992
5993  // No SSSE3 - Calculate in place words and then fix all out of place words
5994  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5995  // the 16 different words that comprise the two doublequadword input vectors.
5996  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5997  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5998  SDValue NewV = V1;
5999  for (int i = 0; i != 8; ++i) {
6000    int Elt0 = MaskVals[i*2];
6001    int Elt1 = MaskVals[i*2+1];
6002
6003    // This word of the result is all undef, skip it.
6004    if (Elt0 < 0 && Elt1 < 0)
6005      continue;
6006
6007    // This word of the result is already in the correct place, skip it.
6008    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6009      continue;
6010
6011    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6012    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6013    SDValue InsElt;
6014
6015    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6016    // using a single extract together, load it and store it.
6017    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6018      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6019                           DAG.getIntPtrConstant(Elt1 / 2));
6020      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6021                        DAG.getIntPtrConstant(i));
6022      continue;
6023    }
6024
6025    // If Elt1 is defined, extract it from the appropriate source.  If the
6026    // source byte is not also odd, shift the extracted word left 8 bits
6027    // otherwise clear the bottom 8 bits if we need to do an or.
6028    if (Elt1 >= 0) {
6029      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6030                           DAG.getIntPtrConstant(Elt1 / 2));
6031      if ((Elt1 & 1) == 0)
6032        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6033                             DAG.getConstant(8,
6034                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6035      else if (Elt0 >= 0)
6036        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6037                             DAG.getConstant(0xFF00, MVT::i16));
6038    }
6039    // If Elt0 is defined, extract it from the appropriate source.  If the
6040    // source byte is not also even, shift the extracted word right 8 bits. If
6041    // Elt1 was also defined, OR the extracted values together before
6042    // inserting them in the result.
6043    if (Elt0 >= 0) {
6044      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6045                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6046      if ((Elt0 & 1) != 0)
6047        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6048                              DAG.getConstant(8,
6049                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6050      else if (Elt1 >= 0)
6051        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6052                             DAG.getConstant(0x00FF, MVT::i16));
6053      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6054                         : InsElt0;
6055    }
6056    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6057                       DAG.getIntPtrConstant(i));
6058  }
6059  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6060}
6061
6062// v32i8 shuffles - Translate to VPSHUFB if possible.
6063static
6064SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6065                                 const X86Subtarget *Subtarget,
6066                                 SelectionDAG &DAG) {
6067  EVT VT = SVOp->getValueType(0);
6068  SDValue V1 = SVOp->getOperand(0);
6069  SDValue V2 = SVOp->getOperand(1);
6070  DebugLoc dl = SVOp->getDebugLoc();
6071  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6072
6073  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6074  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6075  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6076
6077  // VPSHUFB may be generated if
6078  // (1) one of input vector is undefined or zeroinitializer.
6079  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6080  // And (2) the mask indexes don't cross the 128-bit lane.
6081  if (VT != MVT::v32i8 || !Subtarget->hasAVX2() ||
6082      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6083    return SDValue();
6084
6085  if (V1IsAllZero && !V2IsAllZero) {
6086    CommuteVectorShuffleMask(MaskVals, 32);
6087    V1 = V2;
6088  }
6089  SmallVector<SDValue, 32> pshufbMask;
6090  for (unsigned i = 0; i != 32; i++) {
6091    int EltIdx = MaskVals[i];
6092    if (EltIdx < 0 || EltIdx >= 32)
6093      EltIdx = 0x80;
6094    else {
6095      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6096        // Cross lane is not allowed.
6097        return SDValue();
6098      EltIdx &= 0xf;
6099    }
6100    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6101  }
6102  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6103                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6104                                  MVT::v32i8, &pshufbMask[0], 32));
6105}
6106
6107/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6108/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6109/// done when every pair / quad of shuffle mask elements point to elements in
6110/// the right sequence. e.g.
6111/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6112static
6113SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6114                                 SelectionDAG &DAG, DebugLoc dl) {
6115  MVT VT = SVOp->getValueType(0).getSimpleVT();
6116  unsigned NumElems = VT.getVectorNumElements();
6117  MVT NewVT;
6118  unsigned Scale;
6119  switch (VT.SimpleTy) {
6120  default: llvm_unreachable("Unexpected!");
6121  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6122  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6123  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6124  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6125  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6126  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6127  }
6128
6129  SmallVector<int, 8> MaskVec;
6130  for (unsigned i = 0; i != NumElems; i += Scale) {
6131    int StartIdx = -1;
6132    for (unsigned j = 0; j != Scale; ++j) {
6133      int EltIdx = SVOp->getMaskElt(i+j);
6134      if (EltIdx < 0)
6135        continue;
6136      if (StartIdx < 0)
6137        StartIdx = (EltIdx / Scale);
6138      if (EltIdx != (int)(StartIdx*Scale + j))
6139        return SDValue();
6140    }
6141    MaskVec.push_back(StartIdx);
6142  }
6143
6144  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6145  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6146  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6147}
6148
6149/// getVZextMovL - Return a zero-extending vector move low node.
6150///
6151static SDValue getVZextMovL(EVT VT, EVT OpVT,
6152                            SDValue SrcOp, SelectionDAG &DAG,
6153                            const X86Subtarget *Subtarget, DebugLoc dl) {
6154  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6155    LoadSDNode *LD = NULL;
6156    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6157      LD = dyn_cast<LoadSDNode>(SrcOp);
6158    if (!LD) {
6159      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6160      // instead.
6161      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6162      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6163          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6164          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6165          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6166        // PR2108
6167        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6168        return DAG.getNode(ISD::BITCAST, dl, VT,
6169                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6170                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6171                                                   OpVT,
6172                                                   SrcOp.getOperand(0)
6173                                                          .getOperand(0))));
6174      }
6175    }
6176  }
6177
6178  return DAG.getNode(ISD::BITCAST, dl, VT,
6179                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6180                                 DAG.getNode(ISD::BITCAST, dl,
6181                                             OpVT, SrcOp)));
6182}
6183
6184/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6185/// which could not be matched by any known target speficic shuffle
6186static SDValue
6187LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6188
6189  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6190  if (NewOp.getNode())
6191    return NewOp;
6192
6193  EVT VT = SVOp->getValueType(0);
6194
6195  unsigned NumElems = VT.getVectorNumElements();
6196  unsigned NumLaneElems = NumElems / 2;
6197
6198  DebugLoc dl = SVOp->getDebugLoc();
6199  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6200  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6201  SDValue Output[2];
6202
6203  SmallVector<int, 16> Mask;
6204  for (unsigned l = 0; l < 2; ++l) {
6205    // Build a shuffle mask for the output, discovering on the fly which
6206    // input vectors to use as shuffle operands (recorded in InputUsed).
6207    // If building a suitable shuffle vector proves too hard, then bail
6208    // out with UseBuildVector set.
6209    bool UseBuildVector = false;
6210    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6211    unsigned LaneStart = l * NumLaneElems;
6212    for (unsigned i = 0; i != NumLaneElems; ++i) {
6213      // The mask element.  This indexes into the input.
6214      int Idx = SVOp->getMaskElt(i+LaneStart);
6215      if (Idx < 0) {
6216        // the mask element does not index into any input vector.
6217        Mask.push_back(-1);
6218        continue;
6219      }
6220
6221      // The input vector this mask element indexes into.
6222      int Input = Idx / NumLaneElems;
6223
6224      // Turn the index into an offset from the start of the input vector.
6225      Idx -= Input * NumLaneElems;
6226
6227      // Find or create a shuffle vector operand to hold this input.
6228      unsigned OpNo;
6229      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6230        if (InputUsed[OpNo] == Input)
6231          // This input vector is already an operand.
6232          break;
6233        if (InputUsed[OpNo] < 0) {
6234          // Create a new operand for this input vector.
6235          InputUsed[OpNo] = Input;
6236          break;
6237        }
6238      }
6239
6240      if (OpNo >= array_lengthof(InputUsed)) {
6241        // More than two input vectors used!  Give up on trying to create a
6242        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6243        UseBuildVector = true;
6244        break;
6245      }
6246
6247      // Add the mask index for the new shuffle vector.
6248      Mask.push_back(Idx + OpNo * NumLaneElems);
6249    }
6250
6251    if (UseBuildVector) {
6252      SmallVector<SDValue, 16> SVOps;
6253      for (unsigned i = 0; i != NumLaneElems; ++i) {
6254        // The mask element.  This indexes into the input.
6255        int Idx = SVOp->getMaskElt(i+LaneStart);
6256        if (Idx < 0) {
6257          SVOps.push_back(DAG.getUNDEF(EltVT));
6258          continue;
6259        }
6260
6261        // The input vector this mask element indexes into.
6262        int Input = Idx / NumElems;
6263
6264        // Turn the index into an offset from the start of the input vector.
6265        Idx -= Input * NumElems;
6266
6267        // Extract the vector element by hand.
6268        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6269                                    SVOp->getOperand(Input),
6270                                    DAG.getIntPtrConstant(Idx)));
6271      }
6272
6273      // Construct the output using a BUILD_VECTOR.
6274      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6275                              SVOps.size());
6276    } else if (InputUsed[0] < 0) {
6277      // No input vectors were used! The result is undefined.
6278      Output[l] = DAG.getUNDEF(NVT);
6279    } else {
6280      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6281                                        (InputUsed[0] % 2) * NumLaneElems,
6282                                        DAG, dl);
6283      // If only one input was used, use an undefined vector for the other.
6284      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6285        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6286                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6287      // At least one input vector was used. Create a new shuffle vector.
6288      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6289    }
6290
6291    Mask.clear();
6292  }
6293
6294  // Concatenate the result back
6295  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6296}
6297
6298/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6299/// 4 elements, and match them with several different shuffle types.
6300static SDValue
6301LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6302  SDValue V1 = SVOp->getOperand(0);
6303  SDValue V2 = SVOp->getOperand(1);
6304  DebugLoc dl = SVOp->getDebugLoc();
6305  EVT VT = SVOp->getValueType(0);
6306
6307  assert(VT.is128BitVector() && "Unsupported vector size");
6308
6309  std::pair<int, int> Locs[4];
6310  int Mask1[] = { -1, -1, -1, -1 };
6311  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6312
6313  unsigned NumHi = 0;
6314  unsigned NumLo = 0;
6315  for (unsigned i = 0; i != 4; ++i) {
6316    int Idx = PermMask[i];
6317    if (Idx < 0) {
6318      Locs[i] = std::make_pair(-1, -1);
6319    } else {
6320      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6321      if (Idx < 4) {
6322        Locs[i] = std::make_pair(0, NumLo);
6323        Mask1[NumLo] = Idx;
6324        NumLo++;
6325      } else {
6326        Locs[i] = std::make_pair(1, NumHi);
6327        if (2+NumHi < 4)
6328          Mask1[2+NumHi] = Idx;
6329        NumHi++;
6330      }
6331    }
6332  }
6333
6334  if (NumLo <= 2 && NumHi <= 2) {
6335    // If no more than two elements come from either vector. This can be
6336    // implemented with two shuffles. First shuffle gather the elements.
6337    // The second shuffle, which takes the first shuffle as both of its
6338    // vector operands, put the elements into the right order.
6339    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6340
6341    int Mask2[] = { -1, -1, -1, -1 };
6342
6343    for (unsigned i = 0; i != 4; ++i)
6344      if (Locs[i].first != -1) {
6345        unsigned Idx = (i < 2) ? 0 : 4;
6346        Idx += Locs[i].first * 2 + Locs[i].second;
6347        Mask2[i] = Idx;
6348      }
6349
6350    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6351  }
6352
6353  if (NumLo == 3 || NumHi == 3) {
6354    // Otherwise, we must have three elements from one vector, call it X, and
6355    // one element from the other, call it Y.  First, use a shufps to build an
6356    // intermediate vector with the one element from Y and the element from X
6357    // that will be in the same half in the final destination (the indexes don't
6358    // matter). Then, use a shufps to build the final vector, taking the half
6359    // containing the element from Y from the intermediate, and the other half
6360    // from X.
6361    if (NumHi == 3) {
6362      // Normalize it so the 3 elements come from V1.
6363      CommuteVectorShuffleMask(PermMask, 4);
6364      std::swap(V1, V2);
6365    }
6366
6367    // Find the element from V2.
6368    unsigned HiIndex;
6369    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6370      int Val = PermMask[HiIndex];
6371      if (Val < 0)
6372        continue;
6373      if (Val >= 4)
6374        break;
6375    }
6376
6377    Mask1[0] = PermMask[HiIndex];
6378    Mask1[1] = -1;
6379    Mask1[2] = PermMask[HiIndex^1];
6380    Mask1[3] = -1;
6381    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6382
6383    if (HiIndex >= 2) {
6384      Mask1[0] = PermMask[0];
6385      Mask1[1] = PermMask[1];
6386      Mask1[2] = HiIndex & 1 ? 6 : 4;
6387      Mask1[3] = HiIndex & 1 ? 4 : 6;
6388      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6389    }
6390
6391    Mask1[0] = HiIndex & 1 ? 2 : 0;
6392    Mask1[1] = HiIndex & 1 ? 0 : 2;
6393    Mask1[2] = PermMask[2];
6394    Mask1[3] = PermMask[3];
6395    if (Mask1[2] >= 0)
6396      Mask1[2] += 4;
6397    if (Mask1[3] >= 0)
6398      Mask1[3] += 4;
6399    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6400  }
6401
6402  // Break it into (shuffle shuffle_hi, shuffle_lo).
6403  int LoMask[] = { -1, -1, -1, -1 };
6404  int HiMask[] = { -1, -1, -1, -1 };
6405
6406  int *MaskPtr = LoMask;
6407  unsigned MaskIdx = 0;
6408  unsigned LoIdx = 0;
6409  unsigned HiIdx = 2;
6410  for (unsigned i = 0; i != 4; ++i) {
6411    if (i == 2) {
6412      MaskPtr = HiMask;
6413      MaskIdx = 1;
6414      LoIdx = 0;
6415      HiIdx = 2;
6416    }
6417    int Idx = PermMask[i];
6418    if (Idx < 0) {
6419      Locs[i] = std::make_pair(-1, -1);
6420    } else if (Idx < 4) {
6421      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6422      MaskPtr[LoIdx] = Idx;
6423      LoIdx++;
6424    } else {
6425      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6426      MaskPtr[HiIdx] = Idx;
6427      HiIdx++;
6428    }
6429  }
6430
6431  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6432  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6433  int MaskOps[] = { -1, -1, -1, -1 };
6434  for (unsigned i = 0; i != 4; ++i)
6435    if (Locs[i].first != -1)
6436      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6437  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6438}
6439
6440static bool MayFoldVectorLoad(SDValue V) {
6441  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6442    V = V.getOperand(0);
6443
6444  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6445    V = V.getOperand(0);
6446  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6447      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6448    // BUILD_VECTOR (load), undef
6449    V = V.getOperand(0);
6450
6451  return MayFoldLoad(V);
6452}
6453
6454// FIXME: the version above should always be used. Since there's
6455// a bug where several vector shuffles can't be folded because the
6456// DAG is not updated during lowering and a node claims to have two
6457// uses while it only has one, use this version, and let isel match
6458// another instruction if the load really happens to have more than
6459// one use. Remove this version after this bug get fixed.
6460// rdar://8434668, PR8156
6461static bool RelaxedMayFoldVectorLoad(SDValue V) {
6462  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6463    V = V.getOperand(0);
6464  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6465    V = V.getOperand(0);
6466  if (ISD::isNormalLoad(V.getNode()))
6467    return true;
6468  return false;
6469}
6470
6471static
6472SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6473  EVT VT = Op.getValueType();
6474
6475  // Canonizalize to v2f64.
6476  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6477  return DAG.getNode(ISD::BITCAST, dl, VT,
6478                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6479                                          V1, DAG));
6480}
6481
6482static
6483SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6484                        bool HasSSE2) {
6485  SDValue V1 = Op.getOperand(0);
6486  SDValue V2 = Op.getOperand(1);
6487  EVT VT = Op.getValueType();
6488
6489  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6490
6491  if (HasSSE2 && VT == MVT::v2f64)
6492    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6493
6494  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6495  return DAG.getNode(ISD::BITCAST, dl, VT,
6496                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6497                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6498                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6499}
6500
6501static
6502SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6503  SDValue V1 = Op.getOperand(0);
6504  SDValue V2 = Op.getOperand(1);
6505  EVT VT = Op.getValueType();
6506
6507  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6508         "unsupported shuffle type");
6509
6510  if (V2.getOpcode() == ISD::UNDEF)
6511    V2 = V1;
6512
6513  // v4i32 or v4f32
6514  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6515}
6516
6517static
6518SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6519  SDValue V1 = Op.getOperand(0);
6520  SDValue V2 = Op.getOperand(1);
6521  EVT VT = Op.getValueType();
6522  unsigned NumElems = VT.getVectorNumElements();
6523
6524  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6525  // operand of these instructions is only memory, so check if there's a
6526  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6527  // same masks.
6528  bool CanFoldLoad = false;
6529
6530  // Trivial case, when V2 comes from a load.
6531  if (MayFoldVectorLoad(V2))
6532    CanFoldLoad = true;
6533
6534  // When V1 is a load, it can be folded later into a store in isel, example:
6535  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6536  //    turns into:
6537  //  (MOVLPSmr addr:$src1, VR128:$src2)
6538  // So, recognize this potential and also use MOVLPS or MOVLPD
6539  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6540    CanFoldLoad = true;
6541
6542  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6543  if (CanFoldLoad) {
6544    if (HasSSE2 && NumElems == 2)
6545      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6546
6547    if (NumElems == 4)
6548      // If we don't care about the second element, proceed to use movss.
6549      if (SVOp->getMaskElt(1) != -1)
6550        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6551  }
6552
6553  // movl and movlp will both match v2i64, but v2i64 is never matched by
6554  // movl earlier because we make it strict to avoid messing with the movlp load
6555  // folding logic (see the code above getMOVLP call). Match it here then,
6556  // this is horrible, but will stay like this until we move all shuffle
6557  // matching to x86 specific nodes. Note that for the 1st condition all
6558  // types are matched with movsd.
6559  if (HasSSE2) {
6560    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6561    // as to remove this logic from here, as much as possible
6562    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6563      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6564    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6565  }
6566
6567  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6568
6569  // Invert the operand order and use SHUFPS to match it.
6570  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6571                              getShuffleSHUFImmediate(SVOp), DAG);
6572}
6573
6574// Reduce a vector shuffle to zext.
6575SDValue
6576X86TargetLowering::lowerVectorIntExtend(SDValue Op, SelectionDAG &DAG) const {
6577  // PMOVZX is only available from SSE41.
6578  if (!Subtarget->hasSSE41())
6579    return SDValue();
6580
6581  EVT VT = Op.getValueType();
6582
6583  // Only AVX2 support 256-bit vector integer extending.
6584  if (!Subtarget->hasAVX2() && VT.is256BitVector())
6585    return SDValue();
6586
6587  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6588  DebugLoc DL = Op.getDebugLoc();
6589  SDValue V1 = Op.getOperand(0);
6590  SDValue V2 = Op.getOperand(1);
6591  unsigned NumElems = VT.getVectorNumElements();
6592
6593  // Extending is an unary operation and the element type of the source vector
6594  // won't be equal to or larger than i64.
6595  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
6596      VT.getVectorElementType() == MVT::i64)
6597    return SDValue();
6598
6599  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
6600  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
6601  while ((1U << Shift) < NumElems) {
6602    if (SVOp->getMaskElt(1U << Shift) == 1)
6603      break;
6604    Shift += 1;
6605    // The maximal ratio is 8, i.e. from i8 to i64.
6606    if (Shift > 3)
6607      return SDValue();
6608  }
6609
6610  // Check the shuffle mask.
6611  unsigned Mask = (1U << Shift) - 1;
6612  for (unsigned i = 0; i != NumElems; ++i) {
6613    int EltIdx = SVOp->getMaskElt(i);
6614    if ((i & Mask) != 0 && EltIdx != -1)
6615      return SDValue();
6616    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
6617      return SDValue();
6618  }
6619
6620  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
6621  EVT NeVT = EVT::getIntegerVT(*DAG.getContext(), NBits);
6622  EVT NVT = EVT::getVectorVT(*DAG.getContext(), NeVT, NumElems >> Shift);
6623
6624  if (!isTypeLegal(NVT))
6625    return SDValue();
6626
6627  // Simplify the operand as it's prepared to be fed into shuffle.
6628  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
6629  if (V1.getOpcode() == ISD::BITCAST &&
6630      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
6631      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6632      V1.getOperand(0)
6633        .getOperand(0).getValueType().getSizeInBits() == SignificantBits) {
6634    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
6635    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
6636    ConstantSDNode *CIdx =
6637      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
6638    // If it's foldable, i.e. normal load with single use, we will let code
6639    // selection to fold it. Otherwise, we will short the conversion sequence.
6640    if (CIdx && CIdx->getZExtValue() == 0 &&
6641        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse()))
6642      V1 = DAG.getNode(ISD::BITCAST, DL, V1.getValueType(), V);
6643  }
6644
6645  return DAG.getNode(ISD::BITCAST, DL, VT,
6646                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
6647}
6648
6649SDValue
6650X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6651  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6652  EVT VT = Op.getValueType();
6653  DebugLoc dl = Op.getDebugLoc();
6654  SDValue V1 = Op.getOperand(0);
6655  SDValue V2 = Op.getOperand(1);
6656
6657  if (isZeroShuffle(SVOp))
6658    return getZeroVector(VT, Subtarget, DAG, dl);
6659
6660  // Handle splat operations
6661  if (SVOp->isSplat()) {
6662    unsigned NumElem = VT.getVectorNumElements();
6663    int Size = VT.getSizeInBits();
6664
6665    // Use vbroadcast whenever the splat comes from a foldable load
6666    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6667    if (Broadcast.getNode())
6668      return Broadcast;
6669
6670    // Handle splats by matching through known shuffle masks
6671    if ((Size == 128 && NumElem <= 4) ||
6672        (Size == 256 && NumElem < 8))
6673      return SDValue();
6674
6675    // All remaning splats are promoted to target supported vector shuffles.
6676    return PromoteSplat(SVOp, DAG);
6677  }
6678
6679  // Check integer expanding shuffles.
6680  SDValue NewOp = lowerVectorIntExtend(Op, DAG);
6681  if (NewOp.getNode())
6682    return NewOp;
6683
6684  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6685  // do it!
6686  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6687      VT == MVT::v16i16 || VT == MVT::v32i8) {
6688    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6689    if (NewOp.getNode())
6690      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6691  } else if ((VT == MVT::v4i32 ||
6692             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6693    // FIXME: Figure out a cleaner way to do this.
6694    // Try to make use of movq to zero out the top part.
6695    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6696      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6697      if (NewOp.getNode()) {
6698        EVT NewVT = NewOp.getValueType();
6699        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6700                               NewVT, true, false))
6701          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6702                              DAG, Subtarget, dl);
6703      }
6704    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6705      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6706      if (NewOp.getNode()) {
6707        EVT NewVT = NewOp.getValueType();
6708        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6709          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6710                              DAG, Subtarget, dl);
6711      }
6712    }
6713  }
6714  return SDValue();
6715}
6716
6717SDValue
6718X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6719  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6720  SDValue V1 = Op.getOperand(0);
6721  SDValue V2 = Op.getOperand(1);
6722  EVT VT = Op.getValueType();
6723  DebugLoc dl = Op.getDebugLoc();
6724  unsigned NumElems = VT.getVectorNumElements();
6725  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6726  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6727  bool V1IsSplat = false;
6728  bool V2IsSplat = false;
6729  bool HasSSE2 = Subtarget->hasSSE2();
6730  bool HasAVX    = Subtarget->hasAVX();
6731  bool HasAVX2   = Subtarget->hasAVX2();
6732  MachineFunction &MF = DAG.getMachineFunction();
6733  bool OptForSize = MF.getFunction()->getFnAttributes().
6734    hasAttribute(Attributes::OptimizeForSize);
6735
6736  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6737
6738  if (V1IsUndef && V2IsUndef)
6739    return DAG.getUNDEF(VT);
6740
6741  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6742
6743  // Vector shuffle lowering takes 3 steps:
6744  //
6745  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6746  //    narrowing and commutation of operands should be handled.
6747  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6748  //    shuffle nodes.
6749  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6750  //    so the shuffle can be broken into other shuffles and the legalizer can
6751  //    try the lowering again.
6752  //
6753  // The general idea is that no vector_shuffle operation should be left to
6754  // be matched during isel, all of them must be converted to a target specific
6755  // node here.
6756
6757  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6758  // narrowing and commutation of operands should be handled. The actual code
6759  // doesn't include all of those, work in progress...
6760  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6761  if (NewOp.getNode())
6762    return NewOp;
6763
6764  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6765
6766  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6767  // unpckh_undef). Only use pshufd if speed is more important than size.
6768  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6769    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6770  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6771    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6772
6773  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6774      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6775    return getMOVDDup(Op, dl, V1, DAG);
6776
6777  if (isMOVHLPS_v_undef_Mask(M, VT))
6778    return getMOVHighToLow(Op, dl, DAG);
6779
6780  // Use to match splats
6781  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6782      (VT == MVT::v2f64 || VT == MVT::v2i64))
6783    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6784
6785  if (isPSHUFDMask(M, VT)) {
6786    // The actual implementation will match the mask in the if above and then
6787    // during isel it can match several different instructions, not only pshufd
6788    // as its name says, sad but true, emulate the behavior for now...
6789    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6790      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6791
6792    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6793
6794    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6795      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6796
6797    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6798      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6799
6800    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6801                                TargetMask, DAG);
6802  }
6803
6804  // Check if this can be converted into a logical shift.
6805  bool isLeft = false;
6806  unsigned ShAmt = 0;
6807  SDValue ShVal;
6808  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6809  if (isShift && ShVal.hasOneUse()) {
6810    // If the shifted value has multiple uses, it may be cheaper to use
6811    // v_set0 + movlhps or movhlps, etc.
6812    EVT EltVT = VT.getVectorElementType();
6813    ShAmt *= EltVT.getSizeInBits();
6814    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6815  }
6816
6817  if (isMOVLMask(M, VT)) {
6818    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6819      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6820    if (!isMOVLPMask(M, VT)) {
6821      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6822        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6823
6824      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6825        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6826    }
6827  }
6828
6829  // FIXME: fold these into legal mask.
6830  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6831    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6832
6833  if (isMOVHLPSMask(M, VT))
6834    return getMOVHighToLow(Op, dl, DAG);
6835
6836  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6837    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6838
6839  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6840    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6841
6842  if (isMOVLPMask(M, VT))
6843    return getMOVLP(Op, dl, DAG, HasSSE2);
6844
6845  if (ShouldXformToMOVHLPS(M, VT) ||
6846      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6847    return CommuteVectorShuffle(SVOp, DAG);
6848
6849  if (isShift) {
6850    // No better options. Use a vshldq / vsrldq.
6851    EVT EltVT = VT.getVectorElementType();
6852    ShAmt *= EltVT.getSizeInBits();
6853    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6854  }
6855
6856  bool Commuted = false;
6857  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6858  // 1,1,1,1 -> v8i16 though.
6859  V1IsSplat = isSplatVector(V1.getNode());
6860  V2IsSplat = isSplatVector(V2.getNode());
6861
6862  // Canonicalize the splat or undef, if present, to be on the RHS.
6863  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6864    CommuteVectorShuffleMask(M, NumElems);
6865    std::swap(V1, V2);
6866    std::swap(V1IsSplat, V2IsSplat);
6867    Commuted = true;
6868  }
6869
6870  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6871    // Shuffling low element of v1 into undef, just return v1.
6872    if (V2IsUndef)
6873      return V1;
6874    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6875    // the instruction selector will not match, so get a canonical MOVL with
6876    // swapped operands to undo the commute.
6877    return getMOVL(DAG, dl, VT, V2, V1);
6878  }
6879
6880  if (isUNPCKLMask(M, VT, HasAVX2))
6881    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6882
6883  if (isUNPCKHMask(M, VT, HasAVX2))
6884    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6885
6886  if (V2IsSplat) {
6887    // Normalize mask so all entries that point to V2 points to its first
6888    // element then try to match unpck{h|l} again. If match, return a
6889    // new vector_shuffle with the corrected mask.p
6890    SmallVector<int, 8> NewMask(M.begin(), M.end());
6891    NormalizeMask(NewMask, NumElems);
6892    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6893      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6894    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6895      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6896  }
6897
6898  if (Commuted) {
6899    // Commute is back and try unpck* again.
6900    // FIXME: this seems wrong.
6901    CommuteVectorShuffleMask(M, NumElems);
6902    std::swap(V1, V2);
6903    std::swap(V1IsSplat, V2IsSplat);
6904    Commuted = false;
6905
6906    if (isUNPCKLMask(M, VT, HasAVX2))
6907      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6908
6909    if (isUNPCKHMask(M, VT, HasAVX2))
6910      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6911  }
6912
6913  // Normalize the node to match x86 shuffle ops if needed
6914  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6915    return CommuteVectorShuffle(SVOp, DAG);
6916
6917  // The checks below are all present in isShuffleMaskLegal, but they are
6918  // inlined here right now to enable us to directly emit target specific
6919  // nodes, and remove one by one until they don't return Op anymore.
6920
6921  if (isPALIGNRMask(M, VT, Subtarget))
6922    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6923                                getShufflePALIGNRImmediate(SVOp),
6924                                DAG);
6925
6926  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6927      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6928    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6929      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6930  }
6931
6932  if (isPSHUFHWMask(M, VT, HasAVX2))
6933    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6934                                getShufflePSHUFHWImmediate(SVOp),
6935                                DAG);
6936
6937  if (isPSHUFLWMask(M, VT, HasAVX2))
6938    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6939                                getShufflePSHUFLWImmediate(SVOp),
6940                                DAG);
6941
6942  if (isSHUFPMask(M, VT, HasAVX))
6943    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6944                                getShuffleSHUFImmediate(SVOp), DAG);
6945
6946  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6947    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6948  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6949    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6950
6951  //===--------------------------------------------------------------------===//
6952  // Generate target specific nodes for 128 or 256-bit shuffles only
6953  // supported in the AVX instruction set.
6954  //
6955
6956  // Handle VMOVDDUPY permutations
6957  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6958    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6959
6960  // Handle VPERMILPS/D* permutations
6961  if (isVPERMILPMask(M, VT, HasAVX)) {
6962    if (HasAVX2 && VT == MVT::v8i32)
6963      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6964                                  getShuffleSHUFImmediate(SVOp), DAG);
6965    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6966                                getShuffleSHUFImmediate(SVOp), DAG);
6967  }
6968
6969  // Handle VPERM2F128/VPERM2I128 permutations
6970  if (isVPERM2X128Mask(M, VT, HasAVX))
6971    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6972                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6973
6974  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6975  if (BlendOp.getNode())
6976    return BlendOp;
6977
6978  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6979    SmallVector<SDValue, 8> permclMask;
6980    for (unsigned i = 0; i != 8; ++i) {
6981      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6982    }
6983    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6984                               &permclMask[0], 8);
6985    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6986    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6987                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6988  }
6989
6990  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6991    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6992                                getShuffleCLImmediate(SVOp), DAG);
6993
6994
6995  //===--------------------------------------------------------------------===//
6996  // Since no target specific shuffle was selected for this generic one,
6997  // lower it into other known shuffles. FIXME: this isn't true yet, but
6998  // this is the plan.
6999  //
7000
7001  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7002  if (VT == MVT::v8i16) {
7003    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7004    if (NewOp.getNode())
7005      return NewOp;
7006  }
7007
7008  if (VT == MVT::v16i8) {
7009    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
7010    if (NewOp.getNode())
7011      return NewOp;
7012  }
7013
7014  if (VT == MVT::v32i8) {
7015    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7016    if (NewOp.getNode())
7017      return NewOp;
7018  }
7019
7020  // Handle all 128-bit wide vectors with 4 elements, and match them with
7021  // several different shuffle types.
7022  if (NumElems == 4 && VT.is128BitVector())
7023    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7024
7025  // Handle general 256-bit shuffles
7026  if (VT.is256BitVector())
7027    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7028
7029  return SDValue();
7030}
7031
7032SDValue
7033X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
7034                                                SelectionDAG &DAG) const {
7035  EVT VT = Op.getValueType();
7036  DebugLoc dl = Op.getDebugLoc();
7037
7038  if (!Op.getOperand(0).getValueType().is128BitVector())
7039    return SDValue();
7040
7041  if (VT.getSizeInBits() == 8) {
7042    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7043                                  Op.getOperand(0), Op.getOperand(1));
7044    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7045                                  DAG.getValueType(VT));
7046    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7047  }
7048
7049  if (VT.getSizeInBits() == 16) {
7050    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7051    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7052    if (Idx == 0)
7053      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7054                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7055                                     DAG.getNode(ISD::BITCAST, dl,
7056                                                 MVT::v4i32,
7057                                                 Op.getOperand(0)),
7058                                     Op.getOperand(1)));
7059    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7060                                  Op.getOperand(0), Op.getOperand(1));
7061    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7062                                  DAG.getValueType(VT));
7063    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7064  }
7065
7066  if (VT == MVT::f32) {
7067    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7068    // the result back to FR32 register. It's only worth matching if the
7069    // result has a single use which is a store or a bitcast to i32.  And in
7070    // the case of a store, it's not worth it if the index is a constant 0,
7071    // because a MOVSSmr can be used instead, which is smaller and faster.
7072    if (!Op.hasOneUse())
7073      return SDValue();
7074    SDNode *User = *Op.getNode()->use_begin();
7075    if ((User->getOpcode() != ISD::STORE ||
7076         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7077          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7078        (User->getOpcode() != ISD::BITCAST ||
7079         User->getValueType(0) != MVT::i32))
7080      return SDValue();
7081    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7082                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7083                                              Op.getOperand(0)),
7084                                              Op.getOperand(1));
7085    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7086  }
7087
7088  if (VT == MVT::i32 || VT == MVT::i64) {
7089    // ExtractPS/pextrq works with constant index.
7090    if (isa<ConstantSDNode>(Op.getOperand(1)))
7091      return Op;
7092  }
7093  return SDValue();
7094}
7095
7096
7097SDValue
7098X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7099                                           SelectionDAG &DAG) const {
7100  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7101    return SDValue();
7102
7103  SDValue Vec = Op.getOperand(0);
7104  EVT VecVT = Vec.getValueType();
7105
7106  // If this is a 256-bit vector result, first extract the 128-bit vector and
7107  // then extract the element from the 128-bit vector.
7108  if (VecVT.is256BitVector()) {
7109    DebugLoc dl = Op.getNode()->getDebugLoc();
7110    unsigned NumElems = VecVT.getVectorNumElements();
7111    SDValue Idx = Op.getOperand(1);
7112    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7113
7114    // Get the 128-bit vector.
7115    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7116
7117    if (IdxVal >= NumElems/2)
7118      IdxVal -= NumElems/2;
7119    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7120                       DAG.getConstant(IdxVal, MVT::i32));
7121  }
7122
7123  assert(VecVT.is128BitVector() && "Unexpected vector length");
7124
7125  if (Subtarget->hasSSE41()) {
7126    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7127    if (Res.getNode())
7128      return Res;
7129  }
7130
7131  EVT VT = Op.getValueType();
7132  DebugLoc dl = Op.getDebugLoc();
7133  // TODO: handle v16i8.
7134  if (VT.getSizeInBits() == 16) {
7135    SDValue Vec = Op.getOperand(0);
7136    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7137    if (Idx == 0)
7138      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7139                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7140                                     DAG.getNode(ISD::BITCAST, dl,
7141                                                 MVT::v4i32, Vec),
7142                                     Op.getOperand(1)));
7143    // Transform it so it match pextrw which produces a 32-bit result.
7144    EVT EltVT = MVT::i32;
7145    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7146                                  Op.getOperand(0), Op.getOperand(1));
7147    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7148                                  DAG.getValueType(VT));
7149    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7150  }
7151
7152  if (VT.getSizeInBits() == 32) {
7153    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7154    if (Idx == 0)
7155      return Op;
7156
7157    // SHUFPS the element to the lowest double word, then movss.
7158    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7159    EVT VVT = Op.getOperand(0).getValueType();
7160    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7161                                       DAG.getUNDEF(VVT), Mask);
7162    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7163                       DAG.getIntPtrConstant(0));
7164  }
7165
7166  if (VT.getSizeInBits() == 64) {
7167    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7168    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7169    //        to match extract_elt for f64.
7170    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7171    if (Idx == 0)
7172      return Op;
7173
7174    // UNPCKHPD the element to the lowest double word, then movsd.
7175    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7176    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7177    int Mask[2] = { 1, -1 };
7178    EVT VVT = Op.getOperand(0).getValueType();
7179    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7180                                       DAG.getUNDEF(VVT), Mask);
7181    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7182                       DAG.getIntPtrConstant(0));
7183  }
7184
7185  return SDValue();
7186}
7187
7188SDValue
7189X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7190                                               SelectionDAG &DAG) const {
7191  EVT VT = Op.getValueType();
7192  EVT EltVT = VT.getVectorElementType();
7193  DebugLoc dl = Op.getDebugLoc();
7194
7195  SDValue N0 = Op.getOperand(0);
7196  SDValue N1 = Op.getOperand(1);
7197  SDValue N2 = Op.getOperand(2);
7198
7199  if (!VT.is128BitVector())
7200    return SDValue();
7201
7202  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7203      isa<ConstantSDNode>(N2)) {
7204    unsigned Opc;
7205    if (VT == MVT::v8i16)
7206      Opc = X86ISD::PINSRW;
7207    else if (VT == MVT::v16i8)
7208      Opc = X86ISD::PINSRB;
7209    else
7210      Opc = X86ISD::PINSRB;
7211
7212    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7213    // argument.
7214    if (N1.getValueType() != MVT::i32)
7215      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7216    if (N2.getValueType() != MVT::i32)
7217      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7218    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7219  }
7220
7221  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7222    // Bits [7:6] of the constant are the source select.  This will always be
7223    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7224    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7225    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7226    // Bits [5:4] of the constant are the destination select.  This is the
7227    //  value of the incoming immediate.
7228    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7229    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7230    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7231    // Create this as a scalar to vector..
7232    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7233    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7234  }
7235
7236  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7237    // PINSR* works with constant index.
7238    return Op;
7239  }
7240  return SDValue();
7241}
7242
7243SDValue
7244X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7245  EVT VT = Op.getValueType();
7246  EVT EltVT = VT.getVectorElementType();
7247
7248  DebugLoc dl = Op.getDebugLoc();
7249  SDValue N0 = Op.getOperand(0);
7250  SDValue N1 = Op.getOperand(1);
7251  SDValue N2 = Op.getOperand(2);
7252
7253  // If this is a 256-bit vector result, first extract the 128-bit vector,
7254  // insert the element into the extracted half and then place it back.
7255  if (VT.is256BitVector()) {
7256    if (!isa<ConstantSDNode>(N2))
7257      return SDValue();
7258
7259    // Get the desired 128-bit vector half.
7260    unsigned NumElems = VT.getVectorNumElements();
7261    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7262    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7263
7264    // Insert the element into the desired half.
7265    bool Upper = IdxVal >= NumElems/2;
7266    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7267                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7268
7269    // Insert the changed part back to the 256-bit vector
7270    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7271  }
7272
7273  if (Subtarget->hasSSE41())
7274    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7275
7276  if (EltVT == MVT::i8)
7277    return SDValue();
7278
7279  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7280    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7281    // as its second argument.
7282    if (N1.getValueType() != MVT::i32)
7283      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7284    if (N2.getValueType() != MVT::i32)
7285      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7286    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7287  }
7288  return SDValue();
7289}
7290
7291static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7292  LLVMContext *Context = DAG.getContext();
7293  DebugLoc dl = Op.getDebugLoc();
7294  EVT OpVT = Op.getValueType();
7295
7296  // If this is a 256-bit vector result, first insert into a 128-bit
7297  // vector and then insert into the 256-bit vector.
7298  if (!OpVT.is128BitVector()) {
7299    // Insert into a 128-bit vector.
7300    EVT VT128 = EVT::getVectorVT(*Context,
7301                                 OpVT.getVectorElementType(),
7302                                 OpVT.getVectorNumElements() / 2);
7303
7304    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7305
7306    // Insert the 128-bit vector.
7307    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7308  }
7309
7310  if (OpVT == MVT::v1i64 &&
7311      Op.getOperand(0).getValueType() == MVT::i64)
7312    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7313
7314  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7315  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7316  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7317                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7318}
7319
7320// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7321// a simple subregister reference or explicit instructions to grab
7322// upper bits of a vector.
7323static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7324                                      SelectionDAG &DAG) {
7325  if (Subtarget->hasAVX()) {
7326    DebugLoc dl = Op.getNode()->getDebugLoc();
7327    SDValue Vec = Op.getNode()->getOperand(0);
7328    SDValue Idx = Op.getNode()->getOperand(1);
7329
7330    if (Op.getNode()->getValueType(0).is128BitVector() &&
7331        Vec.getNode()->getValueType(0).is256BitVector() &&
7332        isa<ConstantSDNode>(Idx)) {
7333      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7334      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7335    }
7336  }
7337  return SDValue();
7338}
7339
7340// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7341// simple superregister reference or explicit instructions to insert
7342// the upper bits of a vector.
7343static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7344                                     SelectionDAG &DAG) {
7345  if (Subtarget->hasAVX()) {
7346    DebugLoc dl = Op.getNode()->getDebugLoc();
7347    SDValue Vec = Op.getNode()->getOperand(0);
7348    SDValue SubVec = Op.getNode()->getOperand(1);
7349    SDValue Idx = Op.getNode()->getOperand(2);
7350
7351    if (Op.getNode()->getValueType(0).is256BitVector() &&
7352        SubVec.getNode()->getValueType(0).is128BitVector() &&
7353        isa<ConstantSDNode>(Idx)) {
7354      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7355      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7356    }
7357  }
7358  return SDValue();
7359}
7360
7361// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7362// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7363// one of the above mentioned nodes. It has to be wrapped because otherwise
7364// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7365// be used to form addressing mode. These wrapped nodes will be selected
7366// into MOV32ri.
7367SDValue
7368X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7369  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7370
7371  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7372  // global base reg.
7373  unsigned char OpFlag = 0;
7374  unsigned WrapperKind = X86ISD::Wrapper;
7375  CodeModel::Model M = getTargetMachine().getCodeModel();
7376
7377  if (Subtarget->isPICStyleRIPRel() &&
7378      (M == CodeModel::Small || M == CodeModel::Kernel))
7379    WrapperKind = X86ISD::WrapperRIP;
7380  else if (Subtarget->isPICStyleGOT())
7381    OpFlag = X86II::MO_GOTOFF;
7382  else if (Subtarget->isPICStyleStubPIC())
7383    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7384
7385  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7386                                             CP->getAlignment(),
7387                                             CP->getOffset(), OpFlag);
7388  DebugLoc DL = CP->getDebugLoc();
7389  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7390  // With PIC, the address is actually $g + Offset.
7391  if (OpFlag) {
7392    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7393                         DAG.getNode(X86ISD::GlobalBaseReg,
7394                                     DebugLoc(), getPointerTy()),
7395                         Result);
7396  }
7397
7398  return Result;
7399}
7400
7401SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7402  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7403
7404  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7405  // global base reg.
7406  unsigned char OpFlag = 0;
7407  unsigned WrapperKind = X86ISD::Wrapper;
7408  CodeModel::Model M = getTargetMachine().getCodeModel();
7409
7410  if (Subtarget->isPICStyleRIPRel() &&
7411      (M == CodeModel::Small || M == CodeModel::Kernel))
7412    WrapperKind = X86ISD::WrapperRIP;
7413  else if (Subtarget->isPICStyleGOT())
7414    OpFlag = X86II::MO_GOTOFF;
7415  else if (Subtarget->isPICStyleStubPIC())
7416    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7417
7418  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7419                                          OpFlag);
7420  DebugLoc DL = JT->getDebugLoc();
7421  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7422
7423  // With PIC, the address is actually $g + Offset.
7424  if (OpFlag)
7425    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7426                         DAG.getNode(X86ISD::GlobalBaseReg,
7427                                     DebugLoc(), getPointerTy()),
7428                         Result);
7429
7430  return Result;
7431}
7432
7433SDValue
7434X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7435  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7436
7437  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7438  // global base reg.
7439  unsigned char OpFlag = 0;
7440  unsigned WrapperKind = X86ISD::Wrapper;
7441  CodeModel::Model M = getTargetMachine().getCodeModel();
7442
7443  if (Subtarget->isPICStyleRIPRel() &&
7444      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7445    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7446      OpFlag = X86II::MO_GOTPCREL;
7447    WrapperKind = X86ISD::WrapperRIP;
7448  } else if (Subtarget->isPICStyleGOT()) {
7449    OpFlag = X86II::MO_GOT;
7450  } else if (Subtarget->isPICStyleStubPIC()) {
7451    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7452  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7453    OpFlag = X86II::MO_DARWIN_NONLAZY;
7454  }
7455
7456  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7457
7458  DebugLoc DL = Op.getDebugLoc();
7459  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7460
7461
7462  // With PIC, the address is actually $g + Offset.
7463  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7464      !Subtarget->is64Bit()) {
7465    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7466                         DAG.getNode(X86ISD::GlobalBaseReg,
7467                                     DebugLoc(), getPointerTy()),
7468                         Result);
7469  }
7470
7471  // For symbols that require a load from a stub to get the address, emit the
7472  // load.
7473  if (isGlobalStubReference(OpFlag))
7474    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7475                         MachinePointerInfo::getGOT(), false, false, false, 0);
7476
7477  return Result;
7478}
7479
7480SDValue
7481X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7482  // Create the TargetBlockAddressAddress node.
7483  unsigned char OpFlags =
7484    Subtarget->ClassifyBlockAddressReference();
7485  CodeModel::Model M = getTargetMachine().getCodeModel();
7486  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7487  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7488  DebugLoc dl = Op.getDebugLoc();
7489  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7490                                             OpFlags);
7491
7492  if (Subtarget->isPICStyleRIPRel() &&
7493      (M == CodeModel::Small || M == CodeModel::Kernel))
7494    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7495  else
7496    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7497
7498  // With PIC, the address is actually $g + Offset.
7499  if (isGlobalRelativeToPICBase(OpFlags)) {
7500    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7501                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7502                         Result);
7503  }
7504
7505  return Result;
7506}
7507
7508SDValue
7509X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7510                                      int64_t Offset,
7511                                      SelectionDAG &DAG) const {
7512  // Create the TargetGlobalAddress node, folding in the constant
7513  // offset if it is legal.
7514  unsigned char OpFlags =
7515    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7516  CodeModel::Model M = getTargetMachine().getCodeModel();
7517  SDValue Result;
7518  if (OpFlags == X86II::MO_NO_FLAG &&
7519      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7520    // A direct static reference to a global.
7521    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7522    Offset = 0;
7523  } else {
7524    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7525  }
7526
7527  if (Subtarget->isPICStyleRIPRel() &&
7528      (M == CodeModel::Small || M == CodeModel::Kernel))
7529    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7530  else
7531    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7532
7533  // With PIC, the address is actually $g + Offset.
7534  if (isGlobalRelativeToPICBase(OpFlags)) {
7535    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7536                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7537                         Result);
7538  }
7539
7540  // For globals that require a load from a stub to get the address, emit the
7541  // load.
7542  if (isGlobalStubReference(OpFlags))
7543    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7544                         MachinePointerInfo::getGOT(), false, false, false, 0);
7545
7546  // If there was a non-zero offset that we didn't fold, create an explicit
7547  // addition for it.
7548  if (Offset != 0)
7549    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7550                         DAG.getConstant(Offset, getPointerTy()));
7551
7552  return Result;
7553}
7554
7555SDValue
7556X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7557  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7558  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7559  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7560}
7561
7562static SDValue
7563GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7564           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7565           unsigned char OperandFlags, bool LocalDynamic = false) {
7566  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7567  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7568  DebugLoc dl = GA->getDebugLoc();
7569  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7570                                           GA->getValueType(0),
7571                                           GA->getOffset(),
7572                                           OperandFlags);
7573
7574  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7575                                           : X86ISD::TLSADDR;
7576
7577  if (InFlag) {
7578    SDValue Ops[] = { Chain,  TGA, *InFlag };
7579    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7580  } else {
7581    SDValue Ops[]  = { Chain, TGA };
7582    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7583  }
7584
7585  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7586  MFI->setAdjustsStack(true);
7587
7588  SDValue Flag = Chain.getValue(1);
7589  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7590}
7591
7592// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7593static SDValue
7594LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7595                                const EVT PtrVT) {
7596  SDValue InFlag;
7597  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7598  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7599                                   DAG.getNode(X86ISD::GlobalBaseReg,
7600                                               DebugLoc(), PtrVT), InFlag);
7601  InFlag = Chain.getValue(1);
7602
7603  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7604}
7605
7606// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7607static SDValue
7608LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7609                                const EVT PtrVT) {
7610  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7611                    X86::RAX, X86II::MO_TLSGD);
7612}
7613
7614static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7615                                           SelectionDAG &DAG,
7616                                           const EVT PtrVT,
7617                                           bool is64Bit) {
7618  DebugLoc dl = GA->getDebugLoc();
7619
7620  // Get the start address of the TLS block for this module.
7621  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7622      .getInfo<X86MachineFunctionInfo>();
7623  MFI->incNumLocalDynamicTLSAccesses();
7624
7625  SDValue Base;
7626  if (is64Bit) {
7627    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7628                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7629  } else {
7630    SDValue InFlag;
7631    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7632        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7633    InFlag = Chain.getValue(1);
7634    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7635                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7636  }
7637
7638  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7639  // of Base.
7640
7641  // Build x@dtpoff.
7642  unsigned char OperandFlags = X86II::MO_DTPOFF;
7643  unsigned WrapperKind = X86ISD::Wrapper;
7644  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7645                                           GA->getValueType(0),
7646                                           GA->getOffset(), OperandFlags);
7647  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7648
7649  // Add x@dtpoff with the base.
7650  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7651}
7652
7653// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7654static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7655                                   const EVT PtrVT, TLSModel::Model model,
7656                                   bool is64Bit, bool isPIC) {
7657  DebugLoc dl = GA->getDebugLoc();
7658
7659  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7660  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7661                                                         is64Bit ? 257 : 256));
7662
7663  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7664                                      DAG.getIntPtrConstant(0),
7665                                      MachinePointerInfo(Ptr),
7666                                      false, false, false, 0);
7667
7668  unsigned char OperandFlags = 0;
7669  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7670  // initialexec.
7671  unsigned WrapperKind = X86ISD::Wrapper;
7672  if (model == TLSModel::LocalExec) {
7673    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7674  } else if (model == TLSModel::InitialExec) {
7675    if (is64Bit) {
7676      OperandFlags = X86II::MO_GOTTPOFF;
7677      WrapperKind = X86ISD::WrapperRIP;
7678    } else {
7679      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7680    }
7681  } else {
7682    llvm_unreachable("Unexpected model");
7683  }
7684
7685  // emit "addl x@ntpoff,%eax" (local exec)
7686  // or "addl x@indntpoff,%eax" (initial exec)
7687  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7688  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7689                                           GA->getValueType(0),
7690                                           GA->getOffset(), OperandFlags);
7691  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7692
7693  if (model == TLSModel::InitialExec) {
7694    if (isPIC && !is64Bit) {
7695      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7696                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7697                           Offset);
7698    }
7699
7700    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7701                         MachinePointerInfo::getGOT(), false, false, false,
7702                         0);
7703  }
7704
7705  // The address of the thread local variable is the add of the thread
7706  // pointer with the offset of the variable.
7707  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7708}
7709
7710SDValue
7711X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7712
7713  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7714  const GlobalValue *GV = GA->getGlobal();
7715
7716  if (Subtarget->isTargetELF()) {
7717    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7718
7719    switch (model) {
7720      case TLSModel::GeneralDynamic:
7721        if (Subtarget->is64Bit())
7722          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7723        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7724      case TLSModel::LocalDynamic:
7725        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7726                                           Subtarget->is64Bit());
7727      case TLSModel::InitialExec:
7728      case TLSModel::LocalExec:
7729        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7730                                   Subtarget->is64Bit(),
7731                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7732    }
7733    llvm_unreachable("Unknown TLS model.");
7734  }
7735
7736  if (Subtarget->isTargetDarwin()) {
7737    // Darwin only has one model of TLS.  Lower to that.
7738    unsigned char OpFlag = 0;
7739    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7740                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7741
7742    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7743    // global base reg.
7744    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7745                  !Subtarget->is64Bit();
7746    if (PIC32)
7747      OpFlag = X86II::MO_TLVP_PIC_BASE;
7748    else
7749      OpFlag = X86II::MO_TLVP;
7750    DebugLoc DL = Op.getDebugLoc();
7751    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7752                                                GA->getValueType(0),
7753                                                GA->getOffset(), OpFlag);
7754    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7755
7756    // With PIC32, the address is actually $g + Offset.
7757    if (PIC32)
7758      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7759                           DAG.getNode(X86ISD::GlobalBaseReg,
7760                                       DebugLoc(), getPointerTy()),
7761                           Offset);
7762
7763    // Lowering the machine isd will make sure everything is in the right
7764    // location.
7765    SDValue Chain = DAG.getEntryNode();
7766    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7767    SDValue Args[] = { Chain, Offset };
7768    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7769
7770    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7771    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7772    MFI->setAdjustsStack(true);
7773
7774    // And our return value (tls address) is in the standard call return value
7775    // location.
7776    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7777    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7778                              Chain.getValue(1));
7779  }
7780
7781  if (Subtarget->isTargetWindows()) {
7782    // Just use the implicit TLS architecture
7783    // Need to generate someting similar to:
7784    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7785    //                                  ; from TEB
7786    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7787    //   mov     rcx, qword [rdx+rcx*8]
7788    //   mov     eax, .tls$:tlsvar
7789    //   [rax+rcx] contains the address
7790    // Windows 64bit: gs:0x58
7791    // Windows 32bit: fs:__tls_array
7792
7793    // If GV is an alias then use the aliasee for determining
7794    // thread-localness.
7795    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7796      GV = GA->resolveAliasedGlobal(false);
7797    DebugLoc dl = GA->getDebugLoc();
7798    SDValue Chain = DAG.getEntryNode();
7799
7800    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7801    // %gs:0x58 (64-bit).
7802    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7803                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7804                                                             256)
7805                                        : Type::getInt32PtrTy(*DAG.getContext(),
7806                                                              257));
7807
7808    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7809                                        Subtarget->is64Bit()
7810                                        ? DAG.getIntPtrConstant(0x58)
7811                                        : DAG.getExternalSymbol("_tls_array",
7812                                                                getPointerTy()),
7813                                        MachinePointerInfo(Ptr),
7814                                        false, false, false, 0);
7815
7816    // Load the _tls_index variable
7817    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7818    if (Subtarget->is64Bit())
7819      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7820                           IDX, MachinePointerInfo(), MVT::i32,
7821                           false, false, 0);
7822    else
7823      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7824                        false, false, false, 0);
7825
7826    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize(0)),
7827                                    getPointerTy());
7828    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7829
7830    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7831    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7832                      false, false, false, 0);
7833
7834    // Get the offset of start of .tls section
7835    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7836                                             GA->getValueType(0),
7837                                             GA->getOffset(), X86II::MO_SECREL);
7838    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7839
7840    // The address of the thread local variable is the add of the thread
7841    // pointer with the offset of the variable.
7842    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7843  }
7844
7845  llvm_unreachable("TLS not implemented for this target.");
7846}
7847
7848
7849/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7850/// and take a 2 x i32 value to shift plus a shift amount.
7851SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7852  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7853  EVT VT = Op.getValueType();
7854  unsigned VTBits = VT.getSizeInBits();
7855  DebugLoc dl = Op.getDebugLoc();
7856  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7857  SDValue ShOpLo = Op.getOperand(0);
7858  SDValue ShOpHi = Op.getOperand(1);
7859  SDValue ShAmt  = Op.getOperand(2);
7860  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7861                                     DAG.getConstant(VTBits - 1, MVT::i8))
7862                       : DAG.getConstant(0, VT);
7863
7864  SDValue Tmp2, Tmp3;
7865  if (Op.getOpcode() == ISD::SHL_PARTS) {
7866    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7867    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7868  } else {
7869    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7870    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7871  }
7872
7873  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7874                                DAG.getConstant(VTBits, MVT::i8));
7875  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7876                             AndNode, DAG.getConstant(0, MVT::i8));
7877
7878  SDValue Hi, Lo;
7879  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7880  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7881  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7882
7883  if (Op.getOpcode() == ISD::SHL_PARTS) {
7884    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7885    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7886  } else {
7887    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7888    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7889  }
7890
7891  SDValue Ops[2] = { Lo, Hi };
7892  return DAG.getMergeValues(Ops, 2, dl);
7893}
7894
7895SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7896                                           SelectionDAG &DAG) const {
7897  EVT SrcVT = Op.getOperand(0).getValueType();
7898
7899  if (SrcVT.isVector())
7900    return SDValue();
7901
7902  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7903         "Unknown SINT_TO_FP to lower!");
7904
7905  // These are really Legal; return the operand so the caller accepts it as
7906  // Legal.
7907  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7908    return Op;
7909  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7910      Subtarget->is64Bit()) {
7911    return Op;
7912  }
7913
7914  DebugLoc dl = Op.getDebugLoc();
7915  unsigned Size = SrcVT.getSizeInBits()/8;
7916  MachineFunction &MF = DAG.getMachineFunction();
7917  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7918  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7919  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7920                               StackSlot,
7921                               MachinePointerInfo::getFixedStack(SSFI),
7922                               false, false, 0);
7923  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7924}
7925
7926SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7927                                     SDValue StackSlot,
7928                                     SelectionDAG &DAG) const {
7929  // Build the FILD
7930  DebugLoc DL = Op.getDebugLoc();
7931  SDVTList Tys;
7932  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7933  if (useSSE)
7934    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7935  else
7936    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7937
7938  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7939
7940  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7941  MachineMemOperand *MMO;
7942  if (FI) {
7943    int SSFI = FI->getIndex();
7944    MMO =
7945      DAG.getMachineFunction()
7946      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7947                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7948  } else {
7949    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7950    StackSlot = StackSlot.getOperand(1);
7951  }
7952  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7953  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7954                                           X86ISD::FILD, DL,
7955                                           Tys, Ops, array_lengthof(Ops),
7956                                           SrcVT, MMO);
7957
7958  if (useSSE) {
7959    Chain = Result.getValue(1);
7960    SDValue InFlag = Result.getValue(2);
7961
7962    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7963    // shouldn't be necessary except that RFP cannot be live across
7964    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7965    MachineFunction &MF = DAG.getMachineFunction();
7966    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7967    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7968    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7969    Tys = DAG.getVTList(MVT::Other);
7970    SDValue Ops[] = {
7971      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7972    };
7973    MachineMemOperand *MMO =
7974      DAG.getMachineFunction()
7975      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7976                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7977
7978    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7979                                    Ops, array_lengthof(Ops),
7980                                    Op.getValueType(), MMO);
7981    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7982                         MachinePointerInfo::getFixedStack(SSFI),
7983                         false, false, false, 0);
7984  }
7985
7986  return Result;
7987}
7988
7989// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7990SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7991                                               SelectionDAG &DAG) const {
7992  // This algorithm is not obvious. Here it is what we're trying to output:
7993  /*
7994     movq       %rax,  %xmm0
7995     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7996     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7997     #ifdef __SSE3__
7998       haddpd   %xmm0, %xmm0
7999     #else
8000       pshufd   $0x4e, %xmm0, %xmm1
8001       addpd    %xmm1, %xmm0
8002     #endif
8003  */
8004
8005  DebugLoc dl = Op.getDebugLoc();
8006  LLVMContext *Context = DAG.getContext();
8007
8008  // Build some magic constants.
8009  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8010  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8011  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8012
8013  SmallVector<Constant*,2> CV1;
8014  CV1.push_back(
8015        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
8016  CV1.push_back(
8017        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
8018  Constant *C1 = ConstantVector::get(CV1);
8019  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8020
8021  // Load the 64-bit value into an XMM register.
8022  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8023                            Op.getOperand(0));
8024  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8025                              MachinePointerInfo::getConstantPool(),
8026                              false, false, false, 16);
8027  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8028                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8029                              CLod0);
8030
8031  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8032                              MachinePointerInfo::getConstantPool(),
8033                              false, false, false, 16);
8034  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8035  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8036  SDValue Result;
8037
8038  if (Subtarget->hasSSE3()) {
8039    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8040    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8041  } else {
8042    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8043    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8044                                           S2F, 0x4E, DAG);
8045    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8046                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8047                         Sub);
8048  }
8049
8050  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8051                     DAG.getIntPtrConstant(0));
8052}
8053
8054// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8055SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8056                                               SelectionDAG &DAG) const {
8057  DebugLoc dl = Op.getDebugLoc();
8058  // FP constant to bias correct the final result.
8059  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8060                                   MVT::f64);
8061
8062  // Load the 32-bit value into an XMM register.
8063  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8064                             Op.getOperand(0));
8065
8066  // Zero out the upper parts of the register.
8067  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8068
8069  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8070                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8071                     DAG.getIntPtrConstant(0));
8072
8073  // Or the load with the bias.
8074  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8075                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8076                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8077                                                   MVT::v2f64, Load)),
8078                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8079                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8080                                                   MVT::v2f64, Bias)));
8081  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8082                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8083                   DAG.getIntPtrConstant(0));
8084
8085  // Subtract the bias.
8086  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8087
8088  // Handle final rounding.
8089  EVT DestVT = Op.getValueType();
8090
8091  if (DestVT.bitsLT(MVT::f64))
8092    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8093                       DAG.getIntPtrConstant(0));
8094  if (DestVT.bitsGT(MVT::f64))
8095    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8096
8097  // Handle final rounding.
8098  return Sub;
8099}
8100
8101SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8102                                               SelectionDAG &DAG) const {
8103  SDValue N0 = Op.getOperand(0);
8104  EVT SVT = N0.getValueType();
8105  DebugLoc dl = Op.getDebugLoc();
8106
8107  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8108          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8109         "Custom UINT_TO_FP is not supported!");
8110
8111  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, SVT.getVectorNumElements());
8112  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8113                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8114}
8115
8116SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8117                                           SelectionDAG &DAG) const {
8118  SDValue N0 = Op.getOperand(0);
8119  DebugLoc dl = Op.getDebugLoc();
8120
8121  if (Op.getValueType().isVector())
8122    return lowerUINT_TO_FP_vec(Op, DAG);
8123
8124  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8125  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8126  // the optimization here.
8127  if (DAG.SignBitIsZero(N0))
8128    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8129
8130  EVT SrcVT = N0.getValueType();
8131  EVT DstVT = Op.getValueType();
8132  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8133    return LowerUINT_TO_FP_i64(Op, DAG);
8134  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8135    return LowerUINT_TO_FP_i32(Op, DAG);
8136  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8137    return SDValue();
8138
8139  // Make a 64-bit buffer, and use it to build an FILD.
8140  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8141  if (SrcVT == MVT::i32) {
8142    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8143    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8144                                     getPointerTy(), StackSlot, WordOff);
8145    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8146                                  StackSlot, MachinePointerInfo(),
8147                                  false, false, 0);
8148    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8149                                  OffsetSlot, MachinePointerInfo(),
8150                                  false, false, 0);
8151    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8152    return Fild;
8153  }
8154
8155  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8156  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8157                               StackSlot, MachinePointerInfo(),
8158                               false, false, 0);
8159  // For i64 source, we need to add the appropriate power of 2 if the input
8160  // was negative.  This is the same as the optimization in
8161  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8162  // we must be careful to do the computation in x87 extended precision, not
8163  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8164  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8165  MachineMemOperand *MMO =
8166    DAG.getMachineFunction()
8167    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8168                          MachineMemOperand::MOLoad, 8, 8);
8169
8170  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8171  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8172  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8173                                         MVT::i64, MMO);
8174
8175  APInt FF(32, 0x5F800000ULL);
8176
8177  // Check whether the sign bit is set.
8178  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8179                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8180                                 ISD::SETLT);
8181
8182  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8183  SDValue FudgePtr = DAG.getConstantPool(
8184                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8185                                         getPointerTy());
8186
8187  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8188  SDValue Zero = DAG.getIntPtrConstant(0);
8189  SDValue Four = DAG.getIntPtrConstant(4);
8190  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8191                               Zero, Four);
8192  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8193
8194  // Load the value out, extending it from f32 to f80.
8195  // FIXME: Avoid the extend by constructing the right constant pool?
8196  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8197                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8198                                 MVT::f32, false, false, 4);
8199  // Extend everything to 80 bits to force it to be done on x87.
8200  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8201  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8202}
8203
8204std::pair<SDValue,SDValue> X86TargetLowering::
8205FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
8206  DebugLoc DL = Op.getDebugLoc();
8207
8208  EVT DstTy = Op.getValueType();
8209
8210  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8211    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8212    DstTy = MVT::i64;
8213  }
8214
8215  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8216         DstTy.getSimpleVT() >= MVT::i16 &&
8217         "Unknown FP_TO_INT to lower!");
8218
8219  // These are really Legal.
8220  if (DstTy == MVT::i32 &&
8221      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8222    return std::make_pair(SDValue(), SDValue());
8223  if (Subtarget->is64Bit() &&
8224      DstTy == MVT::i64 &&
8225      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8226    return std::make_pair(SDValue(), SDValue());
8227
8228  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8229  // stack slot, or into the FTOL runtime function.
8230  MachineFunction &MF = DAG.getMachineFunction();
8231  unsigned MemSize = DstTy.getSizeInBits()/8;
8232  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8233  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8234
8235  unsigned Opc;
8236  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8237    Opc = X86ISD::WIN_FTOL;
8238  else
8239    switch (DstTy.getSimpleVT().SimpleTy) {
8240    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8241    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8242    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8243    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8244    }
8245
8246  SDValue Chain = DAG.getEntryNode();
8247  SDValue Value = Op.getOperand(0);
8248  EVT TheVT = Op.getOperand(0).getValueType();
8249  // FIXME This causes a redundant load/store if the SSE-class value is already
8250  // in memory, such as if it is on the callstack.
8251  if (isScalarFPTypeInSSEReg(TheVT)) {
8252    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8253    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8254                         MachinePointerInfo::getFixedStack(SSFI),
8255                         false, false, 0);
8256    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8257    SDValue Ops[] = {
8258      Chain, StackSlot, DAG.getValueType(TheVT)
8259    };
8260
8261    MachineMemOperand *MMO =
8262      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8263                              MachineMemOperand::MOLoad, MemSize, MemSize);
8264    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8265                                    DstTy, MMO);
8266    Chain = Value.getValue(1);
8267    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8268    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8269  }
8270
8271  MachineMemOperand *MMO =
8272    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8273                            MachineMemOperand::MOStore, MemSize, MemSize);
8274
8275  if (Opc != X86ISD::WIN_FTOL) {
8276    // Build the FP_TO_INT*_IN_MEM
8277    SDValue Ops[] = { Chain, Value, StackSlot };
8278    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8279                                           Ops, 3, DstTy, MMO);
8280    return std::make_pair(FIST, StackSlot);
8281  } else {
8282    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8283      DAG.getVTList(MVT::Other, MVT::Glue),
8284      Chain, Value);
8285    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8286      MVT::i32, ftol.getValue(1));
8287    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8288      MVT::i32, eax.getValue(2));
8289    SDValue Ops[] = { eax, edx };
8290    SDValue pair = IsReplace
8291      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8292      : DAG.getMergeValues(Ops, 2, DL);
8293    return std::make_pair(pair, SDValue());
8294  }
8295}
8296
8297SDValue X86TargetLowering::lowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const {
8298  DebugLoc DL = Op.getDebugLoc();
8299  EVT VT = Op.getValueType();
8300  SDValue In = Op.getOperand(0);
8301  EVT SVT = In.getValueType();
8302
8303  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8304      VT.getVectorNumElements() != SVT.getVectorNumElements())
8305    return SDValue();
8306
8307  assert(Subtarget->hasAVX() && "256-bit vector is observed without AVX!");
8308
8309  // AVX2 has better support of integer extending.
8310  if (Subtarget->hasAVX2())
8311    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8312
8313  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8314  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8315  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8316                           DAG.getVectorShuffle(MVT::v8i16, DL, In, DAG.getUNDEF(MVT::v8i16), &Mask[0]));
8317
8318  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8319}
8320
8321SDValue X86TargetLowering::lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8322  DebugLoc DL = Op.getDebugLoc();
8323  EVT VT = Op.getValueType();
8324  EVT SVT = Op.getOperand(0).getValueType();
8325
8326  if (!VT.is128BitVector() || !SVT.is256BitVector() ||
8327      VT.getVectorNumElements() != SVT.getVectorNumElements())
8328    return SDValue();
8329
8330  assert(Subtarget->hasAVX() && "256-bit vector is observed without AVX!");
8331
8332  unsigned NumElems = VT.getVectorNumElements();
8333  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8334                             NumElems * 2);
8335
8336  SDValue In = Op.getOperand(0);
8337  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8338  // Prepare truncation shuffle mask
8339  for (unsigned i = 0; i != NumElems; ++i)
8340    MaskVec[i] = i * 2;
8341  SDValue V = DAG.getVectorShuffle(NVT, DL,
8342                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8343                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8344  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8345                     DAG.getIntPtrConstant(0));
8346}
8347
8348SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8349                                           SelectionDAG &DAG) const {
8350  if (Op.getValueType().isVector()) {
8351    if (Op.getValueType() == MVT::v8i16)
8352      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), Op.getValueType(),
8353                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8354                                     MVT::v8i32, Op.getOperand(0)));
8355    return SDValue();
8356  }
8357
8358  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8359    /*IsSigned=*/ true, /*IsReplace=*/ false);
8360  SDValue FIST = Vals.first, StackSlot = Vals.second;
8361  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8362  if (FIST.getNode() == 0) return Op;
8363
8364  if (StackSlot.getNode())
8365    // Load the result.
8366    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8367                       FIST, StackSlot, MachinePointerInfo(),
8368                       false, false, false, 0);
8369
8370  // The node is the result.
8371  return FIST;
8372}
8373
8374SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8375                                           SelectionDAG &DAG) const {
8376  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8377    /*IsSigned=*/ false, /*IsReplace=*/ false);
8378  SDValue FIST = Vals.first, StackSlot = Vals.second;
8379  assert(FIST.getNode() && "Unexpected failure");
8380
8381  if (StackSlot.getNode())
8382    // Load the result.
8383    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8384                       FIST, StackSlot, MachinePointerInfo(),
8385                       false, false, false, 0);
8386
8387  // The node is the result.
8388  return FIST;
8389}
8390
8391SDValue X86TargetLowering::lowerFP_EXTEND(SDValue Op,
8392                                          SelectionDAG &DAG) const {
8393  DebugLoc DL = Op.getDebugLoc();
8394  EVT VT = Op.getValueType();
8395  SDValue In = Op.getOperand(0);
8396  EVT SVT = In.getValueType();
8397
8398  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8399
8400  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8401                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8402                                 In, DAG.getUNDEF(SVT)));
8403}
8404
8405SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8406  LLVMContext *Context = DAG.getContext();
8407  DebugLoc dl = Op.getDebugLoc();
8408  EVT VT = Op.getValueType();
8409  EVT EltVT = VT;
8410  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8411  if (VT.isVector()) {
8412    EltVT = VT.getVectorElementType();
8413    NumElts = VT.getVectorNumElements();
8414  }
8415  Constant *C;
8416  if (EltVT == MVT::f64)
8417    C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8418  else
8419    C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8420  C = ConstantVector::getSplat(NumElts, C);
8421  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8422  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8423  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8424                             MachinePointerInfo::getConstantPool(),
8425                             false, false, false, Alignment);
8426  if (VT.isVector()) {
8427    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8428    return DAG.getNode(ISD::BITCAST, dl, VT,
8429                       DAG.getNode(ISD::AND, dl, ANDVT,
8430                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8431                                               Op.getOperand(0)),
8432                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8433  }
8434  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8435}
8436
8437SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8438  LLVMContext *Context = DAG.getContext();
8439  DebugLoc dl = Op.getDebugLoc();
8440  EVT VT = Op.getValueType();
8441  EVT EltVT = VT;
8442  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8443  if (VT.isVector()) {
8444    EltVT = VT.getVectorElementType();
8445    NumElts = VT.getVectorNumElements();
8446  }
8447  Constant *C;
8448  if (EltVT == MVT::f64)
8449    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8450  else
8451    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8452  C = ConstantVector::getSplat(NumElts, C);
8453  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8454  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8455  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8456                             MachinePointerInfo::getConstantPool(),
8457                             false, false, false, Alignment);
8458  if (VT.isVector()) {
8459    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8460    return DAG.getNode(ISD::BITCAST, dl, VT,
8461                       DAG.getNode(ISD::XOR, dl, XORVT,
8462                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8463                                               Op.getOperand(0)),
8464                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8465  }
8466
8467  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8468}
8469
8470SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8471  LLVMContext *Context = DAG.getContext();
8472  SDValue Op0 = Op.getOperand(0);
8473  SDValue Op1 = Op.getOperand(1);
8474  DebugLoc dl = Op.getDebugLoc();
8475  EVT VT = Op.getValueType();
8476  EVT SrcVT = Op1.getValueType();
8477
8478  // If second operand is smaller, extend it first.
8479  if (SrcVT.bitsLT(VT)) {
8480    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8481    SrcVT = VT;
8482  }
8483  // And if it is bigger, shrink it first.
8484  if (SrcVT.bitsGT(VT)) {
8485    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8486    SrcVT = VT;
8487  }
8488
8489  // At this point the operands and the result should have the same
8490  // type, and that won't be f80 since that is not custom lowered.
8491
8492  // First get the sign bit of second operand.
8493  SmallVector<Constant*,4> CV;
8494  if (SrcVT == MVT::f64) {
8495    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8496    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8497  } else {
8498    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8499    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8500    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8501    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8502  }
8503  Constant *C = ConstantVector::get(CV);
8504  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8505  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8506                              MachinePointerInfo::getConstantPool(),
8507                              false, false, false, 16);
8508  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8509
8510  // Shift sign bit right or left if the two operands have different types.
8511  if (SrcVT.bitsGT(VT)) {
8512    // Op0 is MVT::f32, Op1 is MVT::f64.
8513    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8514    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8515                          DAG.getConstant(32, MVT::i32));
8516    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8517    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8518                          DAG.getIntPtrConstant(0));
8519  }
8520
8521  // Clear first operand sign bit.
8522  CV.clear();
8523  if (VT == MVT::f64) {
8524    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8525    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8526  } else {
8527    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8528    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8529    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8530    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8531  }
8532  C = ConstantVector::get(CV);
8533  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8534  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8535                              MachinePointerInfo::getConstantPool(),
8536                              false, false, false, 16);
8537  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8538
8539  // Or the value with the sign bit.
8540  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8541}
8542
8543static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8544  SDValue N0 = Op.getOperand(0);
8545  DebugLoc dl = Op.getDebugLoc();
8546  EVT VT = Op.getValueType();
8547
8548  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8549  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8550                                  DAG.getConstant(1, VT));
8551  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8552}
8553
8554// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8555//
8556SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const {
8557  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8558
8559  if (!Subtarget->hasSSE41())
8560    return SDValue();
8561
8562  if (!Op->hasOneUse())
8563    return SDValue();
8564
8565  SDNode *N = Op.getNode();
8566  DebugLoc DL = N->getDebugLoc();
8567
8568  SmallVector<SDValue, 8> Opnds;
8569  DenseMap<SDValue, unsigned> VecInMap;
8570  EVT VT = MVT::Other;
8571
8572  // Recognize a special case where a vector is casted into wide integer to
8573  // test all 0s.
8574  Opnds.push_back(N->getOperand(0));
8575  Opnds.push_back(N->getOperand(1));
8576
8577  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8578    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8579    // BFS traverse all OR'd operands.
8580    if (I->getOpcode() == ISD::OR) {
8581      Opnds.push_back(I->getOperand(0));
8582      Opnds.push_back(I->getOperand(1));
8583      // Re-evaluate the number of nodes to be traversed.
8584      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8585      continue;
8586    }
8587
8588    // Quit if a non-EXTRACT_VECTOR_ELT
8589    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8590      return SDValue();
8591
8592    // Quit if without a constant index.
8593    SDValue Idx = I->getOperand(1);
8594    if (!isa<ConstantSDNode>(Idx))
8595      return SDValue();
8596
8597    SDValue ExtractedFromVec = I->getOperand(0);
8598    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8599    if (M == VecInMap.end()) {
8600      VT = ExtractedFromVec.getValueType();
8601      // Quit if not 128/256-bit vector.
8602      if (!VT.is128BitVector() && !VT.is256BitVector())
8603        return SDValue();
8604      // Quit if not the same type.
8605      if (VecInMap.begin() != VecInMap.end() &&
8606          VT != VecInMap.begin()->first.getValueType())
8607        return SDValue();
8608      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8609    }
8610    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8611  }
8612
8613  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8614         "Not extracted from 128-/256-bit vector.");
8615
8616  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8617  SmallVector<SDValue, 8> VecIns;
8618
8619  for (DenseMap<SDValue, unsigned>::const_iterator
8620        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8621    // Quit if not all elements are used.
8622    if (I->second != FullMask)
8623      return SDValue();
8624    VecIns.push_back(I->first);
8625  }
8626
8627  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8628
8629  // Cast all vectors into TestVT for PTEST.
8630  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8631    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8632
8633  // If more than one full vectors are evaluated, OR them first before PTEST.
8634  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8635    // Each iteration will OR 2 nodes and append the result until there is only
8636    // 1 node left, i.e. the final OR'd value of all vectors.
8637    SDValue LHS = VecIns[Slot];
8638    SDValue RHS = VecIns[Slot + 1];
8639    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8640  }
8641
8642  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8643                     VecIns.back(), VecIns.back());
8644}
8645
8646/// Emit nodes that will be selected as "test Op0,Op0", or something
8647/// equivalent.
8648SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8649                                    SelectionDAG &DAG) const {
8650  DebugLoc dl = Op.getDebugLoc();
8651
8652  // CF and OF aren't always set the way we want. Determine which
8653  // of these we need.
8654  bool NeedCF = false;
8655  bool NeedOF = false;
8656  switch (X86CC) {
8657  default: break;
8658  case X86::COND_A: case X86::COND_AE:
8659  case X86::COND_B: case X86::COND_BE:
8660    NeedCF = true;
8661    break;
8662  case X86::COND_G: case X86::COND_GE:
8663  case X86::COND_L: case X86::COND_LE:
8664  case X86::COND_O: case X86::COND_NO:
8665    NeedOF = true;
8666    break;
8667  }
8668
8669  // See if we can use the EFLAGS value from the operand instead of
8670  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8671  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8672  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8673    // Emit a CMP with 0, which is the TEST pattern.
8674    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8675                       DAG.getConstant(0, Op.getValueType()));
8676
8677  unsigned Opcode = 0;
8678  unsigned NumOperands = 0;
8679
8680  // Truncate operations may prevent the merge of the SETCC instruction
8681  // and the arithmetic intruction before it. Attempt to truncate the operands
8682  // of the arithmetic instruction and use a reduced bit-width instruction.
8683  bool NeedTruncation = false;
8684  SDValue ArithOp = Op;
8685  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8686    SDValue Arith = Op->getOperand(0);
8687    // Both the trunc and the arithmetic op need to have one user each.
8688    if (Arith->hasOneUse())
8689      switch (Arith.getOpcode()) {
8690        default: break;
8691        case ISD::ADD:
8692        case ISD::SUB:
8693        case ISD::AND:
8694        case ISD::OR:
8695        case ISD::XOR: {
8696          NeedTruncation = true;
8697          ArithOp = Arith;
8698        }
8699      }
8700  }
8701
8702  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8703  // which may be the result of a CAST.  We use the variable 'Op', which is the
8704  // non-casted variable when we check for possible users.
8705  switch (ArithOp.getOpcode()) {
8706  case ISD::ADD:
8707    // Due to an isel shortcoming, be conservative if this add is likely to be
8708    // selected as part of a load-modify-store instruction. When the root node
8709    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8710    // uses of other nodes in the match, such as the ADD in this case. This
8711    // leads to the ADD being left around and reselected, with the result being
8712    // two adds in the output.  Alas, even if none our users are stores, that
8713    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8714    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8715    // climbing the DAG back to the root, and it doesn't seem to be worth the
8716    // effort.
8717    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8718         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8719      if (UI->getOpcode() != ISD::CopyToReg &&
8720          UI->getOpcode() != ISD::SETCC &&
8721          UI->getOpcode() != ISD::STORE)
8722        goto default_case;
8723
8724    if (ConstantSDNode *C =
8725        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8726      // An add of one will be selected as an INC.
8727      if (C->getAPIntValue() == 1) {
8728        Opcode = X86ISD::INC;
8729        NumOperands = 1;
8730        break;
8731      }
8732
8733      // An add of negative one (subtract of one) will be selected as a DEC.
8734      if (C->getAPIntValue().isAllOnesValue()) {
8735        Opcode = X86ISD::DEC;
8736        NumOperands = 1;
8737        break;
8738      }
8739    }
8740
8741    // Otherwise use a regular EFLAGS-setting add.
8742    Opcode = X86ISD::ADD;
8743    NumOperands = 2;
8744    break;
8745  case ISD::AND: {
8746    // If the primary and result isn't used, don't bother using X86ISD::AND,
8747    // because a TEST instruction will be better.
8748    bool NonFlagUse = false;
8749    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8750           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8751      SDNode *User = *UI;
8752      unsigned UOpNo = UI.getOperandNo();
8753      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8754        // Look pass truncate.
8755        UOpNo = User->use_begin().getOperandNo();
8756        User = *User->use_begin();
8757      }
8758
8759      if (User->getOpcode() != ISD::BRCOND &&
8760          User->getOpcode() != ISD::SETCC &&
8761          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8762        NonFlagUse = true;
8763        break;
8764      }
8765    }
8766
8767    if (!NonFlagUse)
8768      break;
8769  }
8770    // FALL THROUGH
8771  case ISD::SUB:
8772  case ISD::OR:
8773  case ISD::XOR:
8774    // Due to the ISEL shortcoming noted above, be conservative if this op is
8775    // likely to be selected as part of a load-modify-store instruction.
8776    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8777           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8778      if (UI->getOpcode() == ISD::STORE)
8779        goto default_case;
8780
8781    // Otherwise use a regular EFLAGS-setting instruction.
8782    switch (ArithOp.getOpcode()) {
8783    default: llvm_unreachable("unexpected operator!");
8784    case ISD::SUB: Opcode = X86ISD::SUB; break;
8785    case ISD::XOR: Opcode = X86ISD::XOR; break;
8786    case ISD::AND: Opcode = X86ISD::AND; break;
8787    case ISD::OR: {
8788      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8789        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8790        if (EFLAGS.getNode())
8791          return EFLAGS;
8792      }
8793      Opcode = X86ISD::OR;
8794      break;
8795    }
8796    }
8797
8798    NumOperands = 2;
8799    break;
8800  case X86ISD::ADD:
8801  case X86ISD::SUB:
8802  case X86ISD::INC:
8803  case X86ISD::DEC:
8804  case X86ISD::OR:
8805  case X86ISD::XOR:
8806  case X86ISD::AND:
8807    return SDValue(Op.getNode(), 1);
8808  default:
8809  default_case:
8810    break;
8811  }
8812
8813  // If we found that truncation is beneficial, perform the truncation and
8814  // update 'Op'.
8815  if (NeedTruncation) {
8816    EVT VT = Op.getValueType();
8817    SDValue WideVal = Op->getOperand(0);
8818    EVT WideVT = WideVal.getValueType();
8819    unsigned ConvertedOp = 0;
8820    // Use a target machine opcode to prevent further DAGCombine
8821    // optimizations that may separate the arithmetic operations
8822    // from the setcc node.
8823    switch (WideVal.getOpcode()) {
8824      default: break;
8825      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8826      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8827      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8828      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8829      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8830    }
8831
8832    if (ConvertedOp) {
8833      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8834      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8835        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8836        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8837        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8838      }
8839    }
8840  }
8841
8842  if (Opcode == 0)
8843    // Emit a CMP with 0, which is the TEST pattern.
8844    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8845                       DAG.getConstant(0, Op.getValueType()));
8846
8847  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8848  SmallVector<SDValue, 4> Ops;
8849  for (unsigned i = 0; i != NumOperands; ++i)
8850    Ops.push_back(Op.getOperand(i));
8851
8852  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8853  DAG.ReplaceAllUsesWith(Op, New);
8854  return SDValue(New.getNode(), 1);
8855}
8856
8857/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8858/// equivalent.
8859SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8860                                   SelectionDAG &DAG) const {
8861  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8862    if (C->getAPIntValue() == 0)
8863      return EmitTest(Op0, X86CC, DAG);
8864
8865  DebugLoc dl = Op0.getDebugLoc();
8866  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
8867       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
8868    // Use SUB instead of CMP to enable CSE between SUB and CMP.
8869    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
8870    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
8871                              Op0, Op1);
8872    return SDValue(Sub.getNode(), 1);
8873  }
8874  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8875}
8876
8877/// Convert a comparison if required by the subtarget.
8878SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8879                                                 SelectionDAG &DAG) const {
8880  // If the subtarget does not support the FUCOMI instruction, floating-point
8881  // comparisons have to be converted.
8882  if (Subtarget->hasCMov() ||
8883      Cmp.getOpcode() != X86ISD::CMP ||
8884      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8885      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8886    return Cmp;
8887
8888  // The instruction selector will select an FUCOM instruction instead of
8889  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8890  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8891  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8892  DebugLoc dl = Cmp.getDebugLoc();
8893  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8894  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8895  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8896                            DAG.getConstant(8, MVT::i8));
8897  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8898  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8899}
8900
8901/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8902/// if it's possible.
8903SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8904                                     DebugLoc dl, SelectionDAG &DAG) const {
8905  SDValue Op0 = And.getOperand(0);
8906  SDValue Op1 = And.getOperand(1);
8907  if (Op0.getOpcode() == ISD::TRUNCATE)
8908    Op0 = Op0.getOperand(0);
8909  if (Op1.getOpcode() == ISD::TRUNCATE)
8910    Op1 = Op1.getOperand(0);
8911
8912  SDValue LHS, RHS;
8913  if (Op1.getOpcode() == ISD::SHL)
8914    std::swap(Op0, Op1);
8915  if (Op0.getOpcode() == ISD::SHL) {
8916    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8917      if (And00C->getZExtValue() == 1) {
8918        // If we looked past a truncate, check that it's only truncating away
8919        // known zeros.
8920        unsigned BitWidth = Op0.getValueSizeInBits();
8921        unsigned AndBitWidth = And.getValueSizeInBits();
8922        if (BitWidth > AndBitWidth) {
8923          APInt Zeros, Ones;
8924          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8925          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8926            return SDValue();
8927        }
8928        LHS = Op1;
8929        RHS = Op0.getOperand(1);
8930      }
8931  } else if (Op1.getOpcode() == ISD::Constant) {
8932    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8933    uint64_t AndRHSVal = AndRHS->getZExtValue();
8934    SDValue AndLHS = Op0;
8935
8936    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8937      LHS = AndLHS.getOperand(0);
8938      RHS = AndLHS.getOperand(1);
8939    }
8940
8941    // Use BT if the immediate can't be encoded in a TEST instruction.
8942    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8943      LHS = AndLHS;
8944      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8945    }
8946  }
8947
8948  if (LHS.getNode()) {
8949    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8950    // instruction.  Since the shift amount is in-range-or-undefined, we know
8951    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8952    // the encoding for the i16 version is larger than the i32 version.
8953    // Also promote i16 to i32 for performance / code size reason.
8954    if (LHS.getValueType() == MVT::i8 ||
8955        LHS.getValueType() == MVT::i16)
8956      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8957
8958    // If the operand types disagree, extend the shift amount to match.  Since
8959    // BT ignores high bits (like shifts) we can use anyextend.
8960    if (LHS.getValueType() != RHS.getValueType())
8961      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8962
8963    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8964    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8965    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8966                       DAG.getConstant(Cond, MVT::i8), BT);
8967  }
8968
8969  return SDValue();
8970}
8971
8972SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8973
8974  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8975
8976  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8977  SDValue Op0 = Op.getOperand(0);
8978  SDValue Op1 = Op.getOperand(1);
8979  DebugLoc dl = Op.getDebugLoc();
8980  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8981
8982  // Optimize to BT if possible.
8983  // Lower (X & (1 << N)) == 0 to BT(X, N).
8984  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8985  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8986  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8987      Op1.getOpcode() == ISD::Constant &&
8988      cast<ConstantSDNode>(Op1)->isNullValue() &&
8989      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8990    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8991    if (NewSetCC.getNode())
8992      return NewSetCC;
8993  }
8994
8995  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8996  // these.
8997  if (Op1.getOpcode() == ISD::Constant &&
8998      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8999       cast<ConstantSDNode>(Op1)->isNullValue()) &&
9000      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
9001
9002    // If the input is a setcc, then reuse the input setcc or use a new one with
9003    // the inverted condition.
9004    if (Op0.getOpcode() == X86ISD::SETCC) {
9005      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
9006      bool Invert = (CC == ISD::SETNE) ^
9007        cast<ConstantSDNode>(Op1)->isNullValue();
9008      if (!Invert) return Op0;
9009
9010      CCode = X86::GetOppositeBranchCondition(CCode);
9011      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9012                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
9013    }
9014  }
9015
9016  bool isFP = Op1.getValueType().isFloatingPoint();
9017  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
9018  if (X86CC == X86::COND_INVALID)
9019    return SDValue();
9020
9021  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
9022  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
9023  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9024                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
9025}
9026
9027// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9028// ones, and then concatenate the result back.
9029static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9030  EVT VT = Op.getValueType();
9031
9032  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9033         "Unsupported value type for operation");
9034
9035  unsigned NumElems = VT.getVectorNumElements();
9036  DebugLoc dl = Op.getDebugLoc();
9037  SDValue CC = Op.getOperand(2);
9038
9039  // Extract the LHS vectors
9040  SDValue LHS = Op.getOperand(0);
9041  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9042  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9043
9044  // Extract the RHS vectors
9045  SDValue RHS = Op.getOperand(1);
9046  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9047  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9048
9049  // Issue the operation on the smaller types and concatenate the result back
9050  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9051  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9052  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9053                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9054                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9055}
9056
9057
9058SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
9059  SDValue Cond;
9060  SDValue Op0 = Op.getOperand(0);
9061  SDValue Op1 = Op.getOperand(1);
9062  SDValue CC = Op.getOperand(2);
9063  EVT VT = Op.getValueType();
9064  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9065  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
9066  DebugLoc dl = Op.getDebugLoc();
9067
9068  if (isFP) {
9069#ifndef NDEBUG
9070    EVT EltVT = Op0.getValueType().getVectorElementType();
9071    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9072#endif
9073
9074    unsigned SSECC;
9075    bool Swap = false;
9076
9077    // SSE Condition code mapping:
9078    //  0 - EQ
9079    //  1 - LT
9080    //  2 - LE
9081    //  3 - UNORD
9082    //  4 - NEQ
9083    //  5 - NLT
9084    //  6 - NLE
9085    //  7 - ORD
9086    switch (SetCCOpcode) {
9087    default: llvm_unreachable("Unexpected SETCC condition");
9088    case ISD::SETOEQ:
9089    case ISD::SETEQ:  SSECC = 0; break;
9090    case ISD::SETOGT:
9091    case ISD::SETGT: Swap = true; // Fallthrough
9092    case ISD::SETLT:
9093    case ISD::SETOLT: SSECC = 1; break;
9094    case ISD::SETOGE:
9095    case ISD::SETGE: Swap = true; // Fallthrough
9096    case ISD::SETLE:
9097    case ISD::SETOLE: SSECC = 2; break;
9098    case ISD::SETUO:  SSECC = 3; break;
9099    case ISD::SETUNE:
9100    case ISD::SETNE:  SSECC = 4; break;
9101    case ISD::SETULE: Swap = true; // Fallthrough
9102    case ISD::SETUGE: SSECC = 5; break;
9103    case ISD::SETULT: Swap = true; // Fallthrough
9104    case ISD::SETUGT: SSECC = 6; break;
9105    case ISD::SETO:   SSECC = 7; break;
9106    case ISD::SETUEQ:
9107    case ISD::SETONE: SSECC = 8; break;
9108    }
9109    if (Swap)
9110      std::swap(Op0, Op1);
9111
9112    // In the two special cases we can't handle, emit two comparisons.
9113    if (SSECC == 8) {
9114      unsigned CC0, CC1;
9115      unsigned CombineOpc;
9116      if (SetCCOpcode == ISD::SETUEQ) {
9117        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9118      } else {
9119        assert(SetCCOpcode == ISD::SETONE);
9120        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9121      }
9122
9123      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9124                                 DAG.getConstant(CC0, MVT::i8));
9125      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9126                                 DAG.getConstant(CC1, MVT::i8));
9127      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9128    }
9129    // Handle all other FP comparisons here.
9130    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
9131                       DAG.getConstant(SSECC, MVT::i8));
9132  }
9133
9134  // Break 256-bit integer vector compare into smaller ones.
9135  if (VT.is256BitVector() && !Subtarget->hasAVX2())
9136    return Lower256IntVSETCC(Op, DAG);
9137
9138  // We are handling one of the integer comparisons here.  Since SSE only has
9139  // GT and EQ comparisons for integer, swapping operands and multiple
9140  // operations may be required for some comparisons.
9141  unsigned Opc;
9142  bool Swap = false, Invert = false, FlipSigns = false;
9143
9144  switch (SetCCOpcode) {
9145  default: llvm_unreachable("Unexpected SETCC condition");
9146  case ISD::SETNE:  Invert = true;
9147  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
9148  case ISD::SETLT:  Swap = true;
9149  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
9150  case ISD::SETGE:  Swap = true;
9151  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
9152  case ISD::SETULT: Swap = true;
9153  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
9154  case ISD::SETUGE: Swap = true;
9155  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
9156  }
9157  if (Swap)
9158    std::swap(Op0, Op1);
9159
9160  // Check that the operation in question is available (most are plain SSE2,
9161  // but PCMPGTQ and PCMPEQQ have different requirements).
9162  if (VT == MVT::v2i64) {
9163    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
9164      return SDValue();
9165    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41())
9166      return SDValue();
9167  }
9168
9169  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
9170  // bits of the inputs before performing those operations.
9171  if (FlipSigns) {
9172    EVT EltVT = VT.getVectorElementType();
9173    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
9174                                      EltVT);
9175    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
9176    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
9177                                    SignBits.size());
9178    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
9179    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
9180  }
9181
9182  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
9183
9184  // If the logical-not of the result is required, perform that now.
9185  if (Invert)
9186    Result = DAG.getNOT(dl, Result, VT);
9187
9188  return Result;
9189}
9190
9191// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
9192static bool isX86LogicalCmp(SDValue Op) {
9193  unsigned Opc = Op.getNode()->getOpcode();
9194  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9195      Opc == X86ISD::SAHF)
9196    return true;
9197  if (Op.getResNo() == 1 &&
9198      (Opc == X86ISD::ADD ||
9199       Opc == X86ISD::SUB ||
9200       Opc == X86ISD::ADC ||
9201       Opc == X86ISD::SBB ||
9202       Opc == X86ISD::SMUL ||
9203       Opc == X86ISD::UMUL ||
9204       Opc == X86ISD::INC ||
9205       Opc == X86ISD::DEC ||
9206       Opc == X86ISD::OR ||
9207       Opc == X86ISD::XOR ||
9208       Opc == X86ISD::AND))
9209    return true;
9210
9211  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9212    return true;
9213
9214  return false;
9215}
9216
9217static bool isZero(SDValue V) {
9218  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9219  return C && C->isNullValue();
9220}
9221
9222static bool isAllOnes(SDValue V) {
9223  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9224  return C && C->isAllOnesValue();
9225}
9226
9227static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9228  if (V.getOpcode() != ISD::TRUNCATE)
9229    return false;
9230
9231  SDValue VOp0 = V.getOperand(0);
9232  unsigned InBits = VOp0.getValueSizeInBits();
9233  unsigned Bits = V.getValueSizeInBits();
9234  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9235}
9236
9237SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9238  bool addTest = true;
9239  SDValue Cond  = Op.getOperand(0);
9240  SDValue Op1 = Op.getOperand(1);
9241  SDValue Op2 = Op.getOperand(2);
9242  DebugLoc DL = Op.getDebugLoc();
9243  SDValue CC;
9244
9245  if (Cond.getOpcode() == ISD::SETCC) {
9246    SDValue NewCond = LowerSETCC(Cond, DAG);
9247    if (NewCond.getNode())
9248      Cond = NewCond;
9249  }
9250
9251  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9252  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9253  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9254  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9255  if (Cond.getOpcode() == X86ISD::SETCC &&
9256      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9257      isZero(Cond.getOperand(1).getOperand(1))) {
9258    SDValue Cmp = Cond.getOperand(1);
9259
9260    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9261
9262    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9263        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9264      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9265
9266      SDValue CmpOp0 = Cmp.getOperand(0);
9267      // Apply further optimizations for special cases
9268      // (select (x != 0), -1, 0) -> neg & sbb
9269      // (select (x == 0), 0, -1) -> neg & sbb
9270      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9271        if (YC->isNullValue() &&
9272            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9273          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9274          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9275                                    DAG.getConstant(0, CmpOp0.getValueType()),
9276                                    CmpOp0);
9277          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9278                                    DAG.getConstant(X86::COND_B, MVT::i8),
9279                                    SDValue(Neg.getNode(), 1));
9280          return Res;
9281        }
9282
9283      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9284                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9285      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9286
9287      SDValue Res =   // Res = 0 or -1.
9288        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9289                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9290
9291      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9292        Res = DAG.getNOT(DL, Res, Res.getValueType());
9293
9294      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9295      if (N2C == 0 || !N2C->isNullValue())
9296        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9297      return Res;
9298    }
9299  }
9300
9301  // Look past (and (setcc_carry (cmp ...)), 1).
9302  if (Cond.getOpcode() == ISD::AND &&
9303      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9304    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9305    if (C && C->getAPIntValue() == 1)
9306      Cond = Cond.getOperand(0);
9307  }
9308
9309  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9310  // setting operand in place of the X86ISD::SETCC.
9311  unsigned CondOpcode = Cond.getOpcode();
9312  if (CondOpcode == X86ISD::SETCC ||
9313      CondOpcode == X86ISD::SETCC_CARRY) {
9314    CC = Cond.getOperand(0);
9315
9316    SDValue Cmp = Cond.getOperand(1);
9317    unsigned Opc = Cmp.getOpcode();
9318    EVT VT = Op.getValueType();
9319
9320    bool IllegalFPCMov = false;
9321    if (VT.isFloatingPoint() && !VT.isVector() &&
9322        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9323      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9324
9325    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9326        Opc == X86ISD::BT) { // FIXME
9327      Cond = Cmp;
9328      addTest = false;
9329    }
9330  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9331             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9332             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9333              Cond.getOperand(0).getValueType() != MVT::i8)) {
9334    SDValue LHS = Cond.getOperand(0);
9335    SDValue RHS = Cond.getOperand(1);
9336    unsigned X86Opcode;
9337    unsigned X86Cond;
9338    SDVTList VTs;
9339    switch (CondOpcode) {
9340    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9341    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9342    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9343    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9344    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9345    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9346    default: llvm_unreachable("unexpected overflowing operator");
9347    }
9348    if (CondOpcode == ISD::UMULO)
9349      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9350                          MVT::i32);
9351    else
9352      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9353
9354    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9355
9356    if (CondOpcode == ISD::UMULO)
9357      Cond = X86Op.getValue(2);
9358    else
9359      Cond = X86Op.getValue(1);
9360
9361    CC = DAG.getConstant(X86Cond, MVT::i8);
9362    addTest = false;
9363  }
9364
9365  if (addTest) {
9366    // Look pass the truncate if the high bits are known zero.
9367    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9368        Cond = Cond.getOperand(0);
9369
9370    // We know the result of AND is compared against zero. Try to match
9371    // it to BT.
9372    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9373      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9374      if (NewSetCC.getNode()) {
9375        CC = NewSetCC.getOperand(0);
9376        Cond = NewSetCC.getOperand(1);
9377        addTest = false;
9378      }
9379    }
9380  }
9381
9382  if (addTest) {
9383    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9384    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9385  }
9386
9387  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9388  // a <  b ?  0 : -1 -> RES = setcc_carry
9389  // a >= b ? -1 :  0 -> RES = setcc_carry
9390  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9391  if (Cond.getOpcode() == X86ISD::SUB) {
9392    Cond = ConvertCmpIfNecessary(Cond, DAG);
9393    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9394
9395    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9396        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9397      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9398                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9399      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9400        return DAG.getNOT(DL, Res, Res.getValueType());
9401      return Res;
9402    }
9403  }
9404
9405  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9406  // widen the cmov and push the truncate through. This avoids introducing a new
9407  // branch during isel and doesn't add any extensions.
9408  if (Op.getValueType() == MVT::i8 &&
9409      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9410    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9411    if (T1.getValueType() == T2.getValueType() &&
9412        // Blacklist CopyFromReg to avoid partial register stalls.
9413        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9414      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9415      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9416      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9417    }
9418  }
9419
9420  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9421  // condition is true.
9422  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9423  SDValue Ops[] = { Op2, Op1, CC, Cond };
9424  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9425}
9426
9427// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9428// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9429// from the AND / OR.
9430static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9431  Opc = Op.getOpcode();
9432  if (Opc != ISD::OR && Opc != ISD::AND)
9433    return false;
9434  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9435          Op.getOperand(0).hasOneUse() &&
9436          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9437          Op.getOperand(1).hasOneUse());
9438}
9439
9440// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9441// 1 and that the SETCC node has a single use.
9442static bool isXor1OfSetCC(SDValue Op) {
9443  if (Op.getOpcode() != ISD::XOR)
9444    return false;
9445  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9446  if (N1C && N1C->getAPIntValue() == 1) {
9447    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9448      Op.getOperand(0).hasOneUse();
9449  }
9450  return false;
9451}
9452
9453SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9454  bool addTest = true;
9455  SDValue Chain = Op.getOperand(0);
9456  SDValue Cond  = Op.getOperand(1);
9457  SDValue Dest  = Op.getOperand(2);
9458  DebugLoc dl = Op.getDebugLoc();
9459  SDValue CC;
9460  bool Inverted = false;
9461
9462  if (Cond.getOpcode() == ISD::SETCC) {
9463    // Check for setcc([su]{add,sub,mul}o == 0).
9464    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9465        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9466        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9467        Cond.getOperand(0).getResNo() == 1 &&
9468        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9469         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9470         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9471         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9472         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9473         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9474      Inverted = true;
9475      Cond = Cond.getOperand(0);
9476    } else {
9477      SDValue NewCond = LowerSETCC(Cond, DAG);
9478      if (NewCond.getNode())
9479        Cond = NewCond;
9480    }
9481  }
9482#if 0
9483  // FIXME: LowerXALUO doesn't handle these!!
9484  else if (Cond.getOpcode() == X86ISD::ADD  ||
9485           Cond.getOpcode() == X86ISD::SUB  ||
9486           Cond.getOpcode() == X86ISD::SMUL ||
9487           Cond.getOpcode() == X86ISD::UMUL)
9488    Cond = LowerXALUO(Cond, DAG);
9489#endif
9490
9491  // Look pass (and (setcc_carry (cmp ...)), 1).
9492  if (Cond.getOpcode() == ISD::AND &&
9493      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9494    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9495    if (C && C->getAPIntValue() == 1)
9496      Cond = Cond.getOperand(0);
9497  }
9498
9499  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9500  // setting operand in place of the X86ISD::SETCC.
9501  unsigned CondOpcode = Cond.getOpcode();
9502  if (CondOpcode == X86ISD::SETCC ||
9503      CondOpcode == X86ISD::SETCC_CARRY) {
9504    CC = Cond.getOperand(0);
9505
9506    SDValue Cmp = Cond.getOperand(1);
9507    unsigned Opc = Cmp.getOpcode();
9508    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9509    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9510      Cond = Cmp;
9511      addTest = false;
9512    } else {
9513      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9514      default: break;
9515      case X86::COND_O:
9516      case X86::COND_B:
9517        // These can only come from an arithmetic instruction with overflow,
9518        // e.g. SADDO, UADDO.
9519        Cond = Cond.getNode()->getOperand(1);
9520        addTest = false;
9521        break;
9522      }
9523    }
9524  }
9525  CondOpcode = Cond.getOpcode();
9526  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9527      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9528      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9529       Cond.getOperand(0).getValueType() != MVT::i8)) {
9530    SDValue LHS = Cond.getOperand(0);
9531    SDValue RHS = Cond.getOperand(1);
9532    unsigned X86Opcode;
9533    unsigned X86Cond;
9534    SDVTList VTs;
9535    switch (CondOpcode) {
9536    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9537    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9538    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9539    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9540    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9541    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9542    default: llvm_unreachable("unexpected overflowing operator");
9543    }
9544    if (Inverted)
9545      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9546    if (CondOpcode == ISD::UMULO)
9547      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9548                          MVT::i32);
9549    else
9550      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9551
9552    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9553
9554    if (CondOpcode == ISD::UMULO)
9555      Cond = X86Op.getValue(2);
9556    else
9557      Cond = X86Op.getValue(1);
9558
9559    CC = DAG.getConstant(X86Cond, MVT::i8);
9560    addTest = false;
9561  } else {
9562    unsigned CondOpc;
9563    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9564      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9565      if (CondOpc == ISD::OR) {
9566        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9567        // two branches instead of an explicit OR instruction with a
9568        // separate test.
9569        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9570            isX86LogicalCmp(Cmp)) {
9571          CC = Cond.getOperand(0).getOperand(0);
9572          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9573                              Chain, Dest, CC, Cmp);
9574          CC = Cond.getOperand(1).getOperand(0);
9575          Cond = Cmp;
9576          addTest = false;
9577        }
9578      } else { // ISD::AND
9579        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9580        // two branches instead of an explicit AND instruction with a
9581        // separate test. However, we only do this if this block doesn't
9582        // have a fall-through edge, because this requires an explicit
9583        // jmp when the condition is false.
9584        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9585            isX86LogicalCmp(Cmp) &&
9586            Op.getNode()->hasOneUse()) {
9587          X86::CondCode CCode =
9588            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9589          CCode = X86::GetOppositeBranchCondition(CCode);
9590          CC = DAG.getConstant(CCode, MVT::i8);
9591          SDNode *User = *Op.getNode()->use_begin();
9592          // Look for an unconditional branch following this conditional branch.
9593          // We need this because we need to reverse the successors in order
9594          // to implement FCMP_OEQ.
9595          if (User->getOpcode() == ISD::BR) {
9596            SDValue FalseBB = User->getOperand(1);
9597            SDNode *NewBR =
9598              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9599            assert(NewBR == User);
9600            (void)NewBR;
9601            Dest = FalseBB;
9602
9603            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9604                                Chain, Dest, CC, Cmp);
9605            X86::CondCode CCode =
9606              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9607            CCode = X86::GetOppositeBranchCondition(CCode);
9608            CC = DAG.getConstant(CCode, MVT::i8);
9609            Cond = Cmp;
9610            addTest = false;
9611          }
9612        }
9613      }
9614    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9615      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9616      // It should be transformed during dag combiner except when the condition
9617      // is set by a arithmetics with overflow node.
9618      X86::CondCode CCode =
9619        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9620      CCode = X86::GetOppositeBranchCondition(CCode);
9621      CC = DAG.getConstant(CCode, MVT::i8);
9622      Cond = Cond.getOperand(0).getOperand(1);
9623      addTest = false;
9624    } else if (Cond.getOpcode() == ISD::SETCC &&
9625               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9626      // For FCMP_OEQ, we can emit
9627      // two branches instead of an explicit AND instruction with a
9628      // separate test. However, we only do this if this block doesn't
9629      // have a fall-through edge, because this requires an explicit
9630      // jmp when the condition is false.
9631      if (Op.getNode()->hasOneUse()) {
9632        SDNode *User = *Op.getNode()->use_begin();
9633        // Look for an unconditional branch following this conditional branch.
9634        // We need this because we need to reverse the successors in order
9635        // to implement FCMP_OEQ.
9636        if (User->getOpcode() == ISD::BR) {
9637          SDValue FalseBB = User->getOperand(1);
9638          SDNode *NewBR =
9639            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9640          assert(NewBR == User);
9641          (void)NewBR;
9642          Dest = FalseBB;
9643
9644          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9645                                    Cond.getOperand(0), Cond.getOperand(1));
9646          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9647          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9648          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9649                              Chain, Dest, CC, Cmp);
9650          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9651          Cond = Cmp;
9652          addTest = false;
9653        }
9654      }
9655    } else if (Cond.getOpcode() == ISD::SETCC &&
9656               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9657      // For FCMP_UNE, we can emit
9658      // two branches instead of an explicit AND instruction with a
9659      // separate test. However, we only do this if this block doesn't
9660      // have a fall-through edge, because this requires an explicit
9661      // jmp when the condition is false.
9662      if (Op.getNode()->hasOneUse()) {
9663        SDNode *User = *Op.getNode()->use_begin();
9664        // Look for an unconditional branch following this conditional branch.
9665        // We need this because we need to reverse the successors in order
9666        // to implement FCMP_UNE.
9667        if (User->getOpcode() == ISD::BR) {
9668          SDValue FalseBB = User->getOperand(1);
9669          SDNode *NewBR =
9670            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9671          assert(NewBR == User);
9672          (void)NewBR;
9673
9674          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9675                                    Cond.getOperand(0), Cond.getOperand(1));
9676          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9677          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9678          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9679                              Chain, Dest, CC, Cmp);
9680          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9681          Cond = Cmp;
9682          addTest = false;
9683          Dest = FalseBB;
9684        }
9685      }
9686    }
9687  }
9688
9689  if (addTest) {
9690    // Look pass the truncate if the high bits are known zero.
9691    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9692        Cond = Cond.getOperand(0);
9693
9694    // We know the result of AND is compared against zero. Try to match
9695    // it to BT.
9696    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9697      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9698      if (NewSetCC.getNode()) {
9699        CC = NewSetCC.getOperand(0);
9700        Cond = NewSetCC.getOperand(1);
9701        addTest = false;
9702      }
9703    }
9704  }
9705
9706  if (addTest) {
9707    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9708    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9709  }
9710  Cond = ConvertCmpIfNecessary(Cond, DAG);
9711  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9712                     Chain, Dest, CC, Cond);
9713}
9714
9715
9716// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9717// Calls to _alloca is needed to probe the stack when allocating more than 4k
9718// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9719// that the guard pages used by the OS virtual memory manager are allocated in
9720// correct sequence.
9721SDValue
9722X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9723                                           SelectionDAG &DAG) const {
9724  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9725          getTargetMachine().Options.EnableSegmentedStacks) &&
9726         "This should be used only on Windows targets or when segmented stacks "
9727         "are being used");
9728  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9729  DebugLoc dl = Op.getDebugLoc();
9730
9731  // Get the inputs.
9732  SDValue Chain = Op.getOperand(0);
9733  SDValue Size  = Op.getOperand(1);
9734  // FIXME: Ensure alignment here
9735
9736  bool Is64Bit = Subtarget->is64Bit();
9737  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9738
9739  if (getTargetMachine().Options.EnableSegmentedStacks) {
9740    MachineFunction &MF = DAG.getMachineFunction();
9741    MachineRegisterInfo &MRI = MF.getRegInfo();
9742
9743    if (Is64Bit) {
9744      // The 64 bit implementation of segmented stacks needs to clobber both r10
9745      // r11. This makes it impossible to use it along with nested parameters.
9746      const Function *F = MF.getFunction();
9747
9748      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9749           I != E; ++I)
9750        if (I->hasNestAttr())
9751          report_fatal_error("Cannot use segmented stacks with functions that "
9752                             "have nested arguments.");
9753    }
9754
9755    const TargetRegisterClass *AddrRegClass =
9756      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9757    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9758    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9759    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9760                                DAG.getRegister(Vreg, SPTy));
9761    SDValue Ops1[2] = { Value, Chain };
9762    return DAG.getMergeValues(Ops1, 2, dl);
9763  } else {
9764    SDValue Flag;
9765    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9766
9767    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9768    Flag = Chain.getValue(1);
9769    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9770
9771    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9772    Flag = Chain.getValue(1);
9773
9774    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9775
9776    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9777    return DAG.getMergeValues(Ops1, 2, dl);
9778  }
9779}
9780
9781SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9782  MachineFunction &MF = DAG.getMachineFunction();
9783  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9784
9785  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9786  DebugLoc DL = Op.getDebugLoc();
9787
9788  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9789    // vastart just stores the address of the VarArgsFrameIndex slot into the
9790    // memory location argument.
9791    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9792                                   getPointerTy());
9793    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9794                        MachinePointerInfo(SV), false, false, 0);
9795  }
9796
9797  // __va_list_tag:
9798  //   gp_offset         (0 - 6 * 8)
9799  //   fp_offset         (48 - 48 + 8 * 16)
9800  //   overflow_arg_area (point to parameters coming in memory).
9801  //   reg_save_area
9802  SmallVector<SDValue, 8> MemOps;
9803  SDValue FIN = Op.getOperand(1);
9804  // Store gp_offset
9805  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9806                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9807                                               MVT::i32),
9808                               FIN, MachinePointerInfo(SV), false, false, 0);
9809  MemOps.push_back(Store);
9810
9811  // Store fp_offset
9812  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9813                    FIN, DAG.getIntPtrConstant(4));
9814  Store = DAG.getStore(Op.getOperand(0), DL,
9815                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9816                                       MVT::i32),
9817                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9818  MemOps.push_back(Store);
9819
9820  // Store ptr to overflow_arg_area
9821  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9822                    FIN, DAG.getIntPtrConstant(4));
9823  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9824                                    getPointerTy());
9825  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9826                       MachinePointerInfo(SV, 8),
9827                       false, false, 0);
9828  MemOps.push_back(Store);
9829
9830  // Store ptr to reg_save_area.
9831  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9832                    FIN, DAG.getIntPtrConstant(8));
9833  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9834                                    getPointerTy());
9835  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9836                       MachinePointerInfo(SV, 16), false, false, 0);
9837  MemOps.push_back(Store);
9838  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9839                     &MemOps[0], MemOps.size());
9840}
9841
9842SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9843  assert(Subtarget->is64Bit() &&
9844         "LowerVAARG only handles 64-bit va_arg!");
9845  assert((Subtarget->isTargetLinux() ||
9846          Subtarget->isTargetDarwin()) &&
9847          "Unhandled target in LowerVAARG");
9848  assert(Op.getNode()->getNumOperands() == 4);
9849  SDValue Chain = Op.getOperand(0);
9850  SDValue SrcPtr = Op.getOperand(1);
9851  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9852  unsigned Align = Op.getConstantOperandVal(3);
9853  DebugLoc dl = Op.getDebugLoc();
9854
9855  EVT ArgVT = Op.getNode()->getValueType(0);
9856  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9857  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
9858  uint8_t ArgMode;
9859
9860  // Decide which area this value should be read from.
9861  // TODO: Implement the AMD64 ABI in its entirety. This simple
9862  // selection mechanism works only for the basic types.
9863  if (ArgVT == MVT::f80) {
9864    llvm_unreachable("va_arg for f80 not yet implemented");
9865  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9866    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9867  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9868    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9869  } else {
9870    llvm_unreachable("Unhandled argument type in LowerVAARG");
9871  }
9872
9873  if (ArgMode == 2) {
9874    // Sanity Check: Make sure using fp_offset makes sense.
9875    assert(!getTargetMachine().Options.UseSoftFloat &&
9876           !(DAG.getMachineFunction()
9877                .getFunction()->getFnAttributes()
9878                .hasAttribute(Attributes::NoImplicitFloat)) &&
9879           Subtarget->hasSSE1());
9880  }
9881
9882  // Insert VAARG_64 node into the DAG
9883  // VAARG_64 returns two values: Variable Argument Address, Chain
9884  SmallVector<SDValue, 11> InstOps;
9885  InstOps.push_back(Chain);
9886  InstOps.push_back(SrcPtr);
9887  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9888  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9889  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9890  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9891  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9892                                          VTs, &InstOps[0], InstOps.size(),
9893                                          MVT::i64,
9894                                          MachinePointerInfo(SV),
9895                                          /*Align=*/0,
9896                                          /*Volatile=*/false,
9897                                          /*ReadMem=*/true,
9898                                          /*WriteMem=*/true);
9899  Chain = VAARG.getValue(1);
9900
9901  // Load the next argument and return it
9902  return DAG.getLoad(ArgVT, dl,
9903                     Chain,
9904                     VAARG,
9905                     MachinePointerInfo(),
9906                     false, false, false, 0);
9907}
9908
9909static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
9910                           SelectionDAG &DAG) {
9911  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9912  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9913  SDValue Chain = Op.getOperand(0);
9914  SDValue DstPtr = Op.getOperand(1);
9915  SDValue SrcPtr = Op.getOperand(2);
9916  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9917  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9918  DebugLoc DL = Op.getDebugLoc();
9919
9920  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9921                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9922                       false,
9923                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9924}
9925
9926// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9927// may or may not be a constant. Takes immediate version of shift as input.
9928static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9929                                   SDValue SrcOp, SDValue ShAmt,
9930                                   SelectionDAG &DAG) {
9931  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9932
9933  if (isa<ConstantSDNode>(ShAmt)) {
9934    // Constant may be a TargetConstant. Use a regular constant.
9935    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9936    switch (Opc) {
9937      default: llvm_unreachable("Unknown target vector shift node");
9938      case X86ISD::VSHLI:
9939      case X86ISD::VSRLI:
9940      case X86ISD::VSRAI:
9941        return DAG.getNode(Opc, dl, VT, SrcOp,
9942                           DAG.getConstant(ShiftAmt, MVT::i32));
9943    }
9944  }
9945
9946  // Change opcode to non-immediate version
9947  switch (Opc) {
9948    default: llvm_unreachable("Unknown target vector shift node");
9949    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9950    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9951    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9952  }
9953
9954  // Need to build a vector containing shift amount
9955  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9956  SDValue ShOps[4];
9957  ShOps[0] = ShAmt;
9958  ShOps[1] = DAG.getConstant(0, MVT::i32);
9959  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
9960  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9961
9962  // The return type has to be a 128-bit type with the same element
9963  // type as the input type.
9964  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9965  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9966
9967  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9968  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9969}
9970
9971static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
9972  DebugLoc dl = Op.getDebugLoc();
9973  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9974  switch (IntNo) {
9975  default: return SDValue();    // Don't custom lower most intrinsics.
9976  // Comparison intrinsics.
9977  case Intrinsic::x86_sse_comieq_ss:
9978  case Intrinsic::x86_sse_comilt_ss:
9979  case Intrinsic::x86_sse_comile_ss:
9980  case Intrinsic::x86_sse_comigt_ss:
9981  case Intrinsic::x86_sse_comige_ss:
9982  case Intrinsic::x86_sse_comineq_ss:
9983  case Intrinsic::x86_sse_ucomieq_ss:
9984  case Intrinsic::x86_sse_ucomilt_ss:
9985  case Intrinsic::x86_sse_ucomile_ss:
9986  case Intrinsic::x86_sse_ucomigt_ss:
9987  case Intrinsic::x86_sse_ucomige_ss:
9988  case Intrinsic::x86_sse_ucomineq_ss:
9989  case Intrinsic::x86_sse2_comieq_sd:
9990  case Intrinsic::x86_sse2_comilt_sd:
9991  case Intrinsic::x86_sse2_comile_sd:
9992  case Intrinsic::x86_sse2_comigt_sd:
9993  case Intrinsic::x86_sse2_comige_sd:
9994  case Intrinsic::x86_sse2_comineq_sd:
9995  case Intrinsic::x86_sse2_ucomieq_sd:
9996  case Intrinsic::x86_sse2_ucomilt_sd:
9997  case Intrinsic::x86_sse2_ucomile_sd:
9998  case Intrinsic::x86_sse2_ucomigt_sd:
9999  case Intrinsic::x86_sse2_ucomige_sd:
10000  case Intrinsic::x86_sse2_ucomineq_sd: {
10001    unsigned Opc;
10002    ISD::CondCode CC;
10003    switch (IntNo) {
10004    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10005    case Intrinsic::x86_sse_comieq_ss:
10006    case Intrinsic::x86_sse2_comieq_sd:
10007      Opc = X86ISD::COMI;
10008      CC = ISD::SETEQ;
10009      break;
10010    case Intrinsic::x86_sse_comilt_ss:
10011    case Intrinsic::x86_sse2_comilt_sd:
10012      Opc = X86ISD::COMI;
10013      CC = ISD::SETLT;
10014      break;
10015    case Intrinsic::x86_sse_comile_ss:
10016    case Intrinsic::x86_sse2_comile_sd:
10017      Opc = X86ISD::COMI;
10018      CC = ISD::SETLE;
10019      break;
10020    case Intrinsic::x86_sse_comigt_ss:
10021    case Intrinsic::x86_sse2_comigt_sd:
10022      Opc = X86ISD::COMI;
10023      CC = ISD::SETGT;
10024      break;
10025    case Intrinsic::x86_sse_comige_ss:
10026    case Intrinsic::x86_sse2_comige_sd:
10027      Opc = X86ISD::COMI;
10028      CC = ISD::SETGE;
10029      break;
10030    case Intrinsic::x86_sse_comineq_ss:
10031    case Intrinsic::x86_sse2_comineq_sd:
10032      Opc = X86ISD::COMI;
10033      CC = ISD::SETNE;
10034      break;
10035    case Intrinsic::x86_sse_ucomieq_ss:
10036    case Intrinsic::x86_sse2_ucomieq_sd:
10037      Opc = X86ISD::UCOMI;
10038      CC = ISD::SETEQ;
10039      break;
10040    case Intrinsic::x86_sse_ucomilt_ss:
10041    case Intrinsic::x86_sse2_ucomilt_sd:
10042      Opc = X86ISD::UCOMI;
10043      CC = ISD::SETLT;
10044      break;
10045    case Intrinsic::x86_sse_ucomile_ss:
10046    case Intrinsic::x86_sse2_ucomile_sd:
10047      Opc = X86ISD::UCOMI;
10048      CC = ISD::SETLE;
10049      break;
10050    case Intrinsic::x86_sse_ucomigt_ss:
10051    case Intrinsic::x86_sse2_ucomigt_sd:
10052      Opc = X86ISD::UCOMI;
10053      CC = ISD::SETGT;
10054      break;
10055    case Intrinsic::x86_sse_ucomige_ss:
10056    case Intrinsic::x86_sse2_ucomige_sd:
10057      Opc = X86ISD::UCOMI;
10058      CC = ISD::SETGE;
10059      break;
10060    case Intrinsic::x86_sse_ucomineq_ss:
10061    case Intrinsic::x86_sse2_ucomineq_sd:
10062      Opc = X86ISD::UCOMI;
10063      CC = ISD::SETNE;
10064      break;
10065    }
10066
10067    SDValue LHS = Op.getOperand(1);
10068    SDValue RHS = Op.getOperand(2);
10069    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
10070    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
10071    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
10072    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10073                                DAG.getConstant(X86CC, MVT::i8), Cond);
10074    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10075  }
10076
10077  // Arithmetic intrinsics.
10078  case Intrinsic::x86_sse2_pmulu_dq:
10079  case Intrinsic::x86_avx2_pmulu_dq:
10080    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
10081                       Op.getOperand(1), Op.getOperand(2));
10082
10083  // SSE3/AVX horizontal add/sub intrinsics
10084  case Intrinsic::x86_sse3_hadd_ps:
10085  case Intrinsic::x86_sse3_hadd_pd:
10086  case Intrinsic::x86_avx_hadd_ps_256:
10087  case Intrinsic::x86_avx_hadd_pd_256:
10088  case Intrinsic::x86_sse3_hsub_ps:
10089  case Intrinsic::x86_sse3_hsub_pd:
10090  case Intrinsic::x86_avx_hsub_ps_256:
10091  case Intrinsic::x86_avx_hsub_pd_256:
10092  case Intrinsic::x86_ssse3_phadd_w_128:
10093  case Intrinsic::x86_ssse3_phadd_d_128:
10094  case Intrinsic::x86_avx2_phadd_w:
10095  case Intrinsic::x86_avx2_phadd_d:
10096  case Intrinsic::x86_ssse3_phsub_w_128:
10097  case Intrinsic::x86_ssse3_phsub_d_128:
10098  case Intrinsic::x86_avx2_phsub_w:
10099  case Intrinsic::x86_avx2_phsub_d: {
10100    unsigned Opcode;
10101    switch (IntNo) {
10102    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10103    case Intrinsic::x86_sse3_hadd_ps:
10104    case Intrinsic::x86_sse3_hadd_pd:
10105    case Intrinsic::x86_avx_hadd_ps_256:
10106    case Intrinsic::x86_avx_hadd_pd_256:
10107      Opcode = X86ISD::FHADD;
10108      break;
10109    case Intrinsic::x86_sse3_hsub_ps:
10110    case Intrinsic::x86_sse3_hsub_pd:
10111    case Intrinsic::x86_avx_hsub_ps_256:
10112    case Intrinsic::x86_avx_hsub_pd_256:
10113      Opcode = X86ISD::FHSUB;
10114      break;
10115    case Intrinsic::x86_ssse3_phadd_w_128:
10116    case Intrinsic::x86_ssse3_phadd_d_128:
10117    case Intrinsic::x86_avx2_phadd_w:
10118    case Intrinsic::x86_avx2_phadd_d:
10119      Opcode = X86ISD::HADD;
10120      break;
10121    case Intrinsic::x86_ssse3_phsub_w_128:
10122    case Intrinsic::x86_ssse3_phsub_d_128:
10123    case Intrinsic::x86_avx2_phsub_w:
10124    case Intrinsic::x86_avx2_phsub_d:
10125      Opcode = X86ISD::HSUB;
10126      break;
10127    }
10128    return DAG.getNode(Opcode, dl, Op.getValueType(),
10129                       Op.getOperand(1), Op.getOperand(2));
10130  }
10131
10132  // AVX2 variable shift intrinsics
10133  case Intrinsic::x86_avx2_psllv_d:
10134  case Intrinsic::x86_avx2_psllv_q:
10135  case Intrinsic::x86_avx2_psllv_d_256:
10136  case Intrinsic::x86_avx2_psllv_q_256:
10137  case Intrinsic::x86_avx2_psrlv_d:
10138  case Intrinsic::x86_avx2_psrlv_q:
10139  case Intrinsic::x86_avx2_psrlv_d_256:
10140  case Intrinsic::x86_avx2_psrlv_q_256:
10141  case Intrinsic::x86_avx2_psrav_d:
10142  case Intrinsic::x86_avx2_psrav_d_256: {
10143    unsigned Opcode;
10144    switch (IntNo) {
10145    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10146    case Intrinsic::x86_avx2_psllv_d:
10147    case Intrinsic::x86_avx2_psllv_q:
10148    case Intrinsic::x86_avx2_psllv_d_256:
10149    case Intrinsic::x86_avx2_psllv_q_256:
10150      Opcode = ISD::SHL;
10151      break;
10152    case Intrinsic::x86_avx2_psrlv_d:
10153    case Intrinsic::x86_avx2_psrlv_q:
10154    case Intrinsic::x86_avx2_psrlv_d_256:
10155    case Intrinsic::x86_avx2_psrlv_q_256:
10156      Opcode = ISD::SRL;
10157      break;
10158    case Intrinsic::x86_avx2_psrav_d:
10159    case Intrinsic::x86_avx2_psrav_d_256:
10160      Opcode = ISD::SRA;
10161      break;
10162    }
10163    return DAG.getNode(Opcode, dl, Op.getValueType(),
10164                       Op.getOperand(1), Op.getOperand(2));
10165  }
10166
10167  case Intrinsic::x86_ssse3_pshuf_b_128:
10168  case Intrinsic::x86_avx2_pshuf_b:
10169    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
10170                       Op.getOperand(1), Op.getOperand(2));
10171
10172  case Intrinsic::x86_ssse3_psign_b_128:
10173  case Intrinsic::x86_ssse3_psign_w_128:
10174  case Intrinsic::x86_ssse3_psign_d_128:
10175  case Intrinsic::x86_avx2_psign_b:
10176  case Intrinsic::x86_avx2_psign_w:
10177  case Intrinsic::x86_avx2_psign_d:
10178    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
10179                       Op.getOperand(1), Op.getOperand(2));
10180
10181  case Intrinsic::x86_sse41_insertps:
10182    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
10183                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10184
10185  case Intrinsic::x86_avx_vperm2f128_ps_256:
10186  case Intrinsic::x86_avx_vperm2f128_pd_256:
10187  case Intrinsic::x86_avx_vperm2f128_si_256:
10188  case Intrinsic::x86_avx2_vperm2i128:
10189    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
10190                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
10191
10192  case Intrinsic::x86_avx2_permd:
10193  case Intrinsic::x86_avx2_permps:
10194    // Operands intentionally swapped. Mask is last operand to intrinsic,
10195    // but second operand for node/intruction.
10196    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
10197                       Op.getOperand(2), Op.getOperand(1));
10198
10199  // ptest and testp intrinsics. The intrinsic these come from are designed to
10200  // return an integer value, not just an instruction so lower it to the ptest
10201  // or testp pattern and a setcc for the result.
10202  case Intrinsic::x86_sse41_ptestz:
10203  case Intrinsic::x86_sse41_ptestc:
10204  case Intrinsic::x86_sse41_ptestnzc:
10205  case Intrinsic::x86_avx_ptestz_256:
10206  case Intrinsic::x86_avx_ptestc_256:
10207  case Intrinsic::x86_avx_ptestnzc_256:
10208  case Intrinsic::x86_avx_vtestz_ps:
10209  case Intrinsic::x86_avx_vtestc_ps:
10210  case Intrinsic::x86_avx_vtestnzc_ps:
10211  case Intrinsic::x86_avx_vtestz_pd:
10212  case Intrinsic::x86_avx_vtestc_pd:
10213  case Intrinsic::x86_avx_vtestnzc_pd:
10214  case Intrinsic::x86_avx_vtestz_ps_256:
10215  case Intrinsic::x86_avx_vtestc_ps_256:
10216  case Intrinsic::x86_avx_vtestnzc_ps_256:
10217  case Intrinsic::x86_avx_vtestz_pd_256:
10218  case Intrinsic::x86_avx_vtestc_pd_256:
10219  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10220    bool IsTestPacked = false;
10221    unsigned X86CC;
10222    switch (IntNo) {
10223    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10224    case Intrinsic::x86_avx_vtestz_ps:
10225    case Intrinsic::x86_avx_vtestz_pd:
10226    case Intrinsic::x86_avx_vtestz_ps_256:
10227    case Intrinsic::x86_avx_vtestz_pd_256:
10228      IsTestPacked = true; // Fallthrough
10229    case Intrinsic::x86_sse41_ptestz:
10230    case Intrinsic::x86_avx_ptestz_256:
10231      // ZF = 1
10232      X86CC = X86::COND_E;
10233      break;
10234    case Intrinsic::x86_avx_vtestc_ps:
10235    case Intrinsic::x86_avx_vtestc_pd:
10236    case Intrinsic::x86_avx_vtestc_ps_256:
10237    case Intrinsic::x86_avx_vtestc_pd_256:
10238      IsTestPacked = true; // Fallthrough
10239    case Intrinsic::x86_sse41_ptestc:
10240    case Intrinsic::x86_avx_ptestc_256:
10241      // CF = 1
10242      X86CC = X86::COND_B;
10243      break;
10244    case Intrinsic::x86_avx_vtestnzc_ps:
10245    case Intrinsic::x86_avx_vtestnzc_pd:
10246    case Intrinsic::x86_avx_vtestnzc_ps_256:
10247    case Intrinsic::x86_avx_vtestnzc_pd_256:
10248      IsTestPacked = true; // Fallthrough
10249    case Intrinsic::x86_sse41_ptestnzc:
10250    case Intrinsic::x86_avx_ptestnzc_256:
10251      // ZF and CF = 0
10252      X86CC = X86::COND_A;
10253      break;
10254    }
10255
10256    SDValue LHS = Op.getOperand(1);
10257    SDValue RHS = Op.getOperand(2);
10258    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10259    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10260    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10261    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10262    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10263  }
10264
10265  // SSE/AVX shift intrinsics
10266  case Intrinsic::x86_sse2_psll_w:
10267  case Intrinsic::x86_sse2_psll_d:
10268  case Intrinsic::x86_sse2_psll_q:
10269  case Intrinsic::x86_avx2_psll_w:
10270  case Intrinsic::x86_avx2_psll_d:
10271  case Intrinsic::x86_avx2_psll_q:
10272  case Intrinsic::x86_sse2_psrl_w:
10273  case Intrinsic::x86_sse2_psrl_d:
10274  case Intrinsic::x86_sse2_psrl_q:
10275  case Intrinsic::x86_avx2_psrl_w:
10276  case Intrinsic::x86_avx2_psrl_d:
10277  case Intrinsic::x86_avx2_psrl_q:
10278  case Intrinsic::x86_sse2_psra_w:
10279  case Intrinsic::x86_sse2_psra_d:
10280  case Intrinsic::x86_avx2_psra_w:
10281  case Intrinsic::x86_avx2_psra_d: {
10282    unsigned Opcode;
10283    switch (IntNo) {
10284    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10285    case Intrinsic::x86_sse2_psll_w:
10286    case Intrinsic::x86_sse2_psll_d:
10287    case Intrinsic::x86_sse2_psll_q:
10288    case Intrinsic::x86_avx2_psll_w:
10289    case Intrinsic::x86_avx2_psll_d:
10290    case Intrinsic::x86_avx2_psll_q:
10291      Opcode = X86ISD::VSHL;
10292      break;
10293    case Intrinsic::x86_sse2_psrl_w:
10294    case Intrinsic::x86_sse2_psrl_d:
10295    case Intrinsic::x86_sse2_psrl_q:
10296    case Intrinsic::x86_avx2_psrl_w:
10297    case Intrinsic::x86_avx2_psrl_d:
10298    case Intrinsic::x86_avx2_psrl_q:
10299      Opcode = X86ISD::VSRL;
10300      break;
10301    case Intrinsic::x86_sse2_psra_w:
10302    case Intrinsic::x86_sse2_psra_d:
10303    case Intrinsic::x86_avx2_psra_w:
10304    case Intrinsic::x86_avx2_psra_d:
10305      Opcode = X86ISD::VSRA;
10306      break;
10307    }
10308    return DAG.getNode(Opcode, dl, Op.getValueType(),
10309                       Op.getOperand(1), Op.getOperand(2));
10310  }
10311
10312  // SSE/AVX immediate shift intrinsics
10313  case Intrinsic::x86_sse2_pslli_w:
10314  case Intrinsic::x86_sse2_pslli_d:
10315  case Intrinsic::x86_sse2_pslli_q:
10316  case Intrinsic::x86_avx2_pslli_w:
10317  case Intrinsic::x86_avx2_pslli_d:
10318  case Intrinsic::x86_avx2_pslli_q:
10319  case Intrinsic::x86_sse2_psrli_w:
10320  case Intrinsic::x86_sse2_psrli_d:
10321  case Intrinsic::x86_sse2_psrli_q:
10322  case Intrinsic::x86_avx2_psrli_w:
10323  case Intrinsic::x86_avx2_psrli_d:
10324  case Intrinsic::x86_avx2_psrli_q:
10325  case Intrinsic::x86_sse2_psrai_w:
10326  case Intrinsic::x86_sse2_psrai_d:
10327  case Intrinsic::x86_avx2_psrai_w:
10328  case Intrinsic::x86_avx2_psrai_d: {
10329    unsigned Opcode;
10330    switch (IntNo) {
10331    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10332    case Intrinsic::x86_sse2_pslli_w:
10333    case Intrinsic::x86_sse2_pslli_d:
10334    case Intrinsic::x86_sse2_pslli_q:
10335    case Intrinsic::x86_avx2_pslli_w:
10336    case Intrinsic::x86_avx2_pslli_d:
10337    case Intrinsic::x86_avx2_pslli_q:
10338      Opcode = X86ISD::VSHLI;
10339      break;
10340    case Intrinsic::x86_sse2_psrli_w:
10341    case Intrinsic::x86_sse2_psrli_d:
10342    case Intrinsic::x86_sse2_psrli_q:
10343    case Intrinsic::x86_avx2_psrli_w:
10344    case Intrinsic::x86_avx2_psrli_d:
10345    case Intrinsic::x86_avx2_psrli_q:
10346      Opcode = X86ISD::VSRLI;
10347      break;
10348    case Intrinsic::x86_sse2_psrai_w:
10349    case Intrinsic::x86_sse2_psrai_d:
10350    case Intrinsic::x86_avx2_psrai_w:
10351    case Intrinsic::x86_avx2_psrai_d:
10352      Opcode = X86ISD::VSRAI;
10353      break;
10354    }
10355    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10356                               Op.getOperand(1), Op.getOperand(2), DAG);
10357  }
10358
10359  case Intrinsic::x86_sse42_pcmpistria128:
10360  case Intrinsic::x86_sse42_pcmpestria128:
10361  case Intrinsic::x86_sse42_pcmpistric128:
10362  case Intrinsic::x86_sse42_pcmpestric128:
10363  case Intrinsic::x86_sse42_pcmpistrio128:
10364  case Intrinsic::x86_sse42_pcmpestrio128:
10365  case Intrinsic::x86_sse42_pcmpistris128:
10366  case Intrinsic::x86_sse42_pcmpestris128:
10367  case Intrinsic::x86_sse42_pcmpistriz128:
10368  case Intrinsic::x86_sse42_pcmpestriz128: {
10369    unsigned Opcode;
10370    unsigned X86CC;
10371    switch (IntNo) {
10372    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10373    case Intrinsic::x86_sse42_pcmpistria128:
10374      Opcode = X86ISD::PCMPISTRI;
10375      X86CC = X86::COND_A;
10376      break;
10377    case Intrinsic::x86_sse42_pcmpestria128:
10378      Opcode = X86ISD::PCMPESTRI;
10379      X86CC = X86::COND_A;
10380      break;
10381    case Intrinsic::x86_sse42_pcmpistric128:
10382      Opcode = X86ISD::PCMPISTRI;
10383      X86CC = X86::COND_B;
10384      break;
10385    case Intrinsic::x86_sse42_pcmpestric128:
10386      Opcode = X86ISD::PCMPESTRI;
10387      X86CC = X86::COND_B;
10388      break;
10389    case Intrinsic::x86_sse42_pcmpistrio128:
10390      Opcode = X86ISD::PCMPISTRI;
10391      X86CC = X86::COND_O;
10392      break;
10393    case Intrinsic::x86_sse42_pcmpestrio128:
10394      Opcode = X86ISD::PCMPESTRI;
10395      X86CC = X86::COND_O;
10396      break;
10397    case Intrinsic::x86_sse42_pcmpistris128:
10398      Opcode = X86ISD::PCMPISTRI;
10399      X86CC = X86::COND_S;
10400      break;
10401    case Intrinsic::x86_sse42_pcmpestris128:
10402      Opcode = X86ISD::PCMPESTRI;
10403      X86CC = X86::COND_S;
10404      break;
10405    case Intrinsic::x86_sse42_pcmpistriz128:
10406      Opcode = X86ISD::PCMPISTRI;
10407      X86CC = X86::COND_E;
10408      break;
10409    case Intrinsic::x86_sse42_pcmpestriz128:
10410      Opcode = X86ISD::PCMPESTRI;
10411      X86CC = X86::COND_E;
10412      break;
10413    }
10414    SmallVector<SDValue, 5> NewOps;
10415    NewOps.append(Op->op_begin()+1, Op->op_end());
10416    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10417    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10418    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10419                                DAG.getConstant(X86CC, MVT::i8),
10420                                SDValue(PCMP.getNode(), 1));
10421    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10422  }
10423
10424  case Intrinsic::x86_sse42_pcmpistri128:
10425  case Intrinsic::x86_sse42_pcmpestri128: {
10426    unsigned Opcode;
10427    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10428      Opcode = X86ISD::PCMPISTRI;
10429    else
10430      Opcode = X86ISD::PCMPESTRI;
10431
10432    SmallVector<SDValue, 5> NewOps;
10433    NewOps.append(Op->op_begin()+1, Op->op_end());
10434    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10435    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10436  }
10437  case Intrinsic::x86_fma_vfmadd_ps:
10438  case Intrinsic::x86_fma_vfmadd_pd:
10439  case Intrinsic::x86_fma_vfmsub_ps:
10440  case Intrinsic::x86_fma_vfmsub_pd:
10441  case Intrinsic::x86_fma_vfnmadd_ps:
10442  case Intrinsic::x86_fma_vfnmadd_pd:
10443  case Intrinsic::x86_fma_vfnmsub_ps:
10444  case Intrinsic::x86_fma_vfnmsub_pd:
10445  case Intrinsic::x86_fma_vfmaddsub_ps:
10446  case Intrinsic::x86_fma_vfmaddsub_pd:
10447  case Intrinsic::x86_fma_vfmsubadd_ps:
10448  case Intrinsic::x86_fma_vfmsubadd_pd:
10449  case Intrinsic::x86_fma_vfmadd_ps_256:
10450  case Intrinsic::x86_fma_vfmadd_pd_256:
10451  case Intrinsic::x86_fma_vfmsub_ps_256:
10452  case Intrinsic::x86_fma_vfmsub_pd_256:
10453  case Intrinsic::x86_fma_vfnmadd_ps_256:
10454  case Intrinsic::x86_fma_vfnmadd_pd_256:
10455  case Intrinsic::x86_fma_vfnmsub_ps_256:
10456  case Intrinsic::x86_fma_vfnmsub_pd_256:
10457  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10458  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10459  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10460  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10461    unsigned Opc;
10462    switch (IntNo) {
10463    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10464    case Intrinsic::x86_fma_vfmadd_ps:
10465    case Intrinsic::x86_fma_vfmadd_pd:
10466    case Intrinsic::x86_fma_vfmadd_ps_256:
10467    case Intrinsic::x86_fma_vfmadd_pd_256:
10468      Opc = X86ISD::FMADD;
10469      break;
10470    case Intrinsic::x86_fma_vfmsub_ps:
10471    case Intrinsic::x86_fma_vfmsub_pd:
10472    case Intrinsic::x86_fma_vfmsub_ps_256:
10473    case Intrinsic::x86_fma_vfmsub_pd_256:
10474      Opc = X86ISD::FMSUB;
10475      break;
10476    case Intrinsic::x86_fma_vfnmadd_ps:
10477    case Intrinsic::x86_fma_vfnmadd_pd:
10478    case Intrinsic::x86_fma_vfnmadd_ps_256:
10479    case Intrinsic::x86_fma_vfnmadd_pd_256:
10480      Opc = X86ISD::FNMADD;
10481      break;
10482    case Intrinsic::x86_fma_vfnmsub_ps:
10483    case Intrinsic::x86_fma_vfnmsub_pd:
10484    case Intrinsic::x86_fma_vfnmsub_ps_256:
10485    case Intrinsic::x86_fma_vfnmsub_pd_256:
10486      Opc = X86ISD::FNMSUB;
10487      break;
10488    case Intrinsic::x86_fma_vfmaddsub_ps:
10489    case Intrinsic::x86_fma_vfmaddsub_pd:
10490    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10491    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10492      Opc = X86ISD::FMADDSUB;
10493      break;
10494    case Intrinsic::x86_fma_vfmsubadd_ps:
10495    case Intrinsic::x86_fma_vfmsubadd_pd:
10496    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10497    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10498      Opc = X86ISD::FMSUBADD;
10499      break;
10500    }
10501
10502    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10503                       Op.getOperand(2), Op.getOperand(3));
10504  }
10505  }
10506}
10507
10508static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10509  DebugLoc dl = Op.getDebugLoc();
10510  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10511  switch (IntNo) {
10512  default: return SDValue();    // Don't custom lower most intrinsics.
10513
10514  // RDRAND intrinsics.
10515  case Intrinsic::x86_rdrand_16:
10516  case Intrinsic::x86_rdrand_32:
10517  case Intrinsic::x86_rdrand_64: {
10518    // Emit the node with the right value type.
10519    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10520    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10521
10522    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10523    // return the value from Rand, which is always 0, casted to i32.
10524    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10525                      DAG.getConstant(1, Op->getValueType(1)),
10526                      DAG.getConstant(X86::COND_B, MVT::i32),
10527                      SDValue(Result.getNode(), 1) };
10528    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10529                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10530                                  Ops, 4);
10531
10532    // Return { result, isValid, chain }.
10533    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10534                       SDValue(Result.getNode(), 2));
10535  }
10536  }
10537}
10538
10539SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10540                                           SelectionDAG &DAG) const {
10541  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10542  MFI->setReturnAddressIsTaken(true);
10543
10544  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10545  DebugLoc dl = Op.getDebugLoc();
10546  EVT PtrVT = getPointerTy();
10547
10548  if (Depth > 0) {
10549    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10550    SDValue Offset =
10551      DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
10552    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10553                       DAG.getNode(ISD::ADD, dl, PtrVT,
10554                                   FrameAddr, Offset),
10555                       MachinePointerInfo(), false, false, false, 0);
10556  }
10557
10558  // Just load the return address.
10559  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10560  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
10561                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10562}
10563
10564SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10565  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10566  MFI->setFrameAddressIsTaken(true);
10567
10568  EVT VT = Op.getValueType();
10569  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10570  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10571  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10572  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10573  while (Depth--)
10574    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10575                            MachinePointerInfo(),
10576                            false, false, false, 0);
10577  return FrameAddr;
10578}
10579
10580SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10581                                                     SelectionDAG &DAG) const {
10582  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
10583}
10584
10585SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10586  SDValue Chain     = Op.getOperand(0);
10587  SDValue Offset    = Op.getOperand(1);
10588  SDValue Handler   = Op.getOperand(2);
10589  DebugLoc dl       = Op.getDebugLoc();
10590
10591  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10592                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10593                                     getPointerTy());
10594  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10595
10596  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10597                                  DAG.getIntPtrConstant(RegInfo->getSlotSize()));
10598  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10599  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10600                       false, false, 0);
10601  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10602
10603  return DAG.getNode(X86ISD::EH_RETURN, dl,
10604                     MVT::Other,
10605                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10606}
10607
10608SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
10609                                               SelectionDAG &DAG) const {
10610  DebugLoc DL = Op.getDebugLoc();
10611  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
10612                     DAG.getVTList(MVT::i32, MVT::Other),
10613                     Op.getOperand(0), Op.getOperand(1));
10614}
10615
10616SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
10617                                                SelectionDAG &DAG) const {
10618  DebugLoc DL = Op.getDebugLoc();
10619  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
10620                     Op.getOperand(0), Op.getOperand(1));
10621}
10622
10623static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
10624  return Op.getOperand(0);
10625}
10626
10627SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10628                                                SelectionDAG &DAG) const {
10629  SDValue Root = Op.getOperand(0);
10630  SDValue Trmp = Op.getOperand(1); // trampoline
10631  SDValue FPtr = Op.getOperand(2); // nested function
10632  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10633  DebugLoc dl  = Op.getDebugLoc();
10634
10635  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10636  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
10637
10638  if (Subtarget->is64Bit()) {
10639    SDValue OutChains[6];
10640
10641    // Large code-model.
10642    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10643    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10644
10645    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
10646    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
10647
10648    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10649
10650    // Load the pointer to the nested function into R11.
10651    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10652    SDValue Addr = Trmp;
10653    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10654                                Addr, MachinePointerInfo(TrmpAddr),
10655                                false, false, 0);
10656
10657    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10658                       DAG.getConstant(2, MVT::i64));
10659    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10660                                MachinePointerInfo(TrmpAddr, 2),
10661                                false, false, 2);
10662
10663    // Load the 'nest' parameter value into R10.
10664    // R10 is specified in X86CallingConv.td
10665    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10666    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10667                       DAG.getConstant(10, MVT::i64));
10668    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10669                                Addr, MachinePointerInfo(TrmpAddr, 10),
10670                                false, false, 0);
10671
10672    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10673                       DAG.getConstant(12, MVT::i64));
10674    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10675                                MachinePointerInfo(TrmpAddr, 12),
10676                                false, false, 2);
10677
10678    // Jump to the nested function.
10679    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10680    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10681                       DAG.getConstant(20, MVT::i64));
10682    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10683                                Addr, MachinePointerInfo(TrmpAddr, 20),
10684                                false, false, 0);
10685
10686    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10687    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10688                       DAG.getConstant(22, MVT::i64));
10689    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10690                                MachinePointerInfo(TrmpAddr, 22),
10691                                false, false, 0);
10692
10693    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10694  } else {
10695    const Function *Func =
10696      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10697    CallingConv::ID CC = Func->getCallingConv();
10698    unsigned NestReg;
10699
10700    switch (CC) {
10701    default:
10702      llvm_unreachable("Unsupported calling convention");
10703    case CallingConv::C:
10704    case CallingConv::X86_StdCall: {
10705      // Pass 'nest' parameter in ECX.
10706      // Must be kept in sync with X86CallingConv.td
10707      NestReg = X86::ECX;
10708
10709      // Check that ECX wasn't needed by an 'inreg' parameter.
10710      FunctionType *FTy = Func->getFunctionType();
10711      const AttrListPtr &Attrs = Func->getAttributes();
10712
10713      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10714        unsigned InRegCount = 0;
10715        unsigned Idx = 1;
10716
10717        for (FunctionType::param_iterator I = FTy->param_begin(),
10718             E = FTy->param_end(); I != E; ++I, ++Idx)
10719          if (Attrs.getParamAttributes(Idx).hasAttribute(Attributes::InReg))
10720            // FIXME: should only count parameters that are lowered to integers.
10721            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10722
10723        if (InRegCount > 2) {
10724          report_fatal_error("Nest register in use - reduce number of inreg"
10725                             " parameters!");
10726        }
10727      }
10728      break;
10729    }
10730    case CallingConv::X86_FastCall:
10731    case CallingConv::X86_ThisCall:
10732    case CallingConv::Fast:
10733      // Pass 'nest' parameter in EAX.
10734      // Must be kept in sync with X86CallingConv.td
10735      NestReg = X86::EAX;
10736      break;
10737    }
10738
10739    SDValue OutChains[4];
10740    SDValue Addr, Disp;
10741
10742    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10743                       DAG.getConstant(10, MVT::i32));
10744    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10745
10746    // This is storing the opcode for MOV32ri.
10747    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10748    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
10749    OutChains[0] = DAG.getStore(Root, dl,
10750                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10751                                Trmp, MachinePointerInfo(TrmpAddr),
10752                                false, false, 0);
10753
10754    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10755                       DAG.getConstant(1, MVT::i32));
10756    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10757                                MachinePointerInfo(TrmpAddr, 1),
10758                                false, false, 1);
10759
10760    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10761    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10762                       DAG.getConstant(5, MVT::i32));
10763    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10764                                MachinePointerInfo(TrmpAddr, 5),
10765                                false, false, 1);
10766
10767    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10768                       DAG.getConstant(6, MVT::i32));
10769    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10770                                MachinePointerInfo(TrmpAddr, 6),
10771                                false, false, 1);
10772
10773    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10774  }
10775}
10776
10777SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10778                                            SelectionDAG &DAG) const {
10779  /*
10780   The rounding mode is in bits 11:10 of FPSR, and has the following
10781   settings:
10782     00 Round to nearest
10783     01 Round to -inf
10784     10 Round to +inf
10785     11 Round to 0
10786
10787  FLT_ROUNDS, on the other hand, expects the following:
10788    -1 Undefined
10789     0 Round to 0
10790     1 Round to nearest
10791     2 Round to +inf
10792     3 Round to -inf
10793
10794  To perform the conversion, we do:
10795    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10796  */
10797
10798  MachineFunction &MF = DAG.getMachineFunction();
10799  const TargetMachine &TM = MF.getTarget();
10800  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10801  unsigned StackAlignment = TFI.getStackAlignment();
10802  EVT VT = Op.getValueType();
10803  DebugLoc DL = Op.getDebugLoc();
10804
10805  // Save FP Control Word to stack slot
10806  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10807  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10808
10809
10810  MachineMemOperand *MMO =
10811   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10812                           MachineMemOperand::MOStore, 2, 2);
10813
10814  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10815  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10816                                          DAG.getVTList(MVT::Other),
10817                                          Ops, 2, MVT::i16, MMO);
10818
10819  // Load FP Control Word from stack slot
10820  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10821                            MachinePointerInfo(), false, false, false, 0);
10822
10823  // Transform as necessary
10824  SDValue CWD1 =
10825    DAG.getNode(ISD::SRL, DL, MVT::i16,
10826                DAG.getNode(ISD::AND, DL, MVT::i16,
10827                            CWD, DAG.getConstant(0x800, MVT::i16)),
10828                DAG.getConstant(11, MVT::i8));
10829  SDValue CWD2 =
10830    DAG.getNode(ISD::SRL, DL, MVT::i16,
10831                DAG.getNode(ISD::AND, DL, MVT::i16,
10832                            CWD, DAG.getConstant(0x400, MVT::i16)),
10833                DAG.getConstant(9, MVT::i8));
10834
10835  SDValue RetVal =
10836    DAG.getNode(ISD::AND, DL, MVT::i16,
10837                DAG.getNode(ISD::ADD, DL, MVT::i16,
10838                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10839                            DAG.getConstant(1, MVT::i16)),
10840                DAG.getConstant(3, MVT::i16));
10841
10842
10843  return DAG.getNode((VT.getSizeInBits() < 16 ?
10844                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10845}
10846
10847static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
10848  EVT VT = Op.getValueType();
10849  EVT OpVT = VT;
10850  unsigned NumBits = VT.getSizeInBits();
10851  DebugLoc dl = Op.getDebugLoc();
10852
10853  Op = Op.getOperand(0);
10854  if (VT == MVT::i8) {
10855    // Zero extend to i32 since there is not an i8 bsr.
10856    OpVT = MVT::i32;
10857    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10858  }
10859
10860  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10861  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10862  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10863
10864  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10865  SDValue Ops[] = {
10866    Op,
10867    DAG.getConstant(NumBits+NumBits-1, OpVT),
10868    DAG.getConstant(X86::COND_E, MVT::i8),
10869    Op.getValue(1)
10870  };
10871  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10872
10873  // Finally xor with NumBits-1.
10874  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10875
10876  if (VT == MVT::i8)
10877    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10878  return Op;
10879}
10880
10881static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
10882  EVT VT = Op.getValueType();
10883  EVT OpVT = VT;
10884  unsigned NumBits = VT.getSizeInBits();
10885  DebugLoc dl = Op.getDebugLoc();
10886
10887  Op = Op.getOperand(0);
10888  if (VT == MVT::i8) {
10889    // Zero extend to i32 since there is not an i8 bsr.
10890    OpVT = MVT::i32;
10891    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10892  }
10893
10894  // Issue a bsr (scan bits in reverse).
10895  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10896  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10897
10898  // And xor with NumBits-1.
10899  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10900
10901  if (VT == MVT::i8)
10902    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10903  return Op;
10904}
10905
10906static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
10907  EVT VT = Op.getValueType();
10908  unsigned NumBits = VT.getSizeInBits();
10909  DebugLoc dl = Op.getDebugLoc();
10910  Op = Op.getOperand(0);
10911
10912  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10913  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10914  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10915
10916  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10917  SDValue Ops[] = {
10918    Op,
10919    DAG.getConstant(NumBits, VT),
10920    DAG.getConstant(X86::COND_E, MVT::i8),
10921    Op.getValue(1)
10922  };
10923  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10924}
10925
10926// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10927// ones, and then concatenate the result back.
10928static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10929  EVT VT = Op.getValueType();
10930
10931  assert(VT.is256BitVector() && VT.isInteger() &&
10932         "Unsupported value type for operation");
10933
10934  unsigned NumElems = VT.getVectorNumElements();
10935  DebugLoc dl = Op.getDebugLoc();
10936
10937  // Extract the LHS vectors
10938  SDValue LHS = Op.getOperand(0);
10939  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10940  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10941
10942  // Extract the RHS vectors
10943  SDValue RHS = Op.getOperand(1);
10944  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10945  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10946
10947  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10948  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10949
10950  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10951                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10952                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10953}
10954
10955static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
10956  assert(Op.getValueType().is256BitVector() &&
10957         Op.getValueType().isInteger() &&
10958         "Only handle AVX 256-bit vector integer operation");
10959  return Lower256IntArith(Op, DAG);
10960}
10961
10962static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
10963  assert(Op.getValueType().is256BitVector() &&
10964         Op.getValueType().isInteger() &&
10965         "Only handle AVX 256-bit vector integer operation");
10966  return Lower256IntArith(Op, DAG);
10967}
10968
10969static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
10970                        SelectionDAG &DAG) {
10971  EVT VT = Op.getValueType();
10972
10973  // Decompose 256-bit ops into smaller 128-bit ops.
10974  if (VT.is256BitVector() && !Subtarget->hasAVX2())
10975    return Lower256IntArith(Op, DAG);
10976
10977  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10978         "Only know how to lower V2I64/V4I64 multiply");
10979
10980  DebugLoc dl = Op.getDebugLoc();
10981
10982  //  Ahi = psrlqi(a, 32);
10983  //  Bhi = psrlqi(b, 32);
10984  //
10985  //  AloBlo = pmuludq(a, b);
10986  //  AloBhi = pmuludq(a, Bhi);
10987  //  AhiBlo = pmuludq(Ahi, b);
10988
10989  //  AloBhi = psllqi(AloBhi, 32);
10990  //  AhiBlo = psllqi(AhiBlo, 32);
10991  //  return AloBlo + AloBhi + AhiBlo;
10992
10993  SDValue A = Op.getOperand(0);
10994  SDValue B = Op.getOperand(1);
10995
10996  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10997
10998  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10999  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
11000
11001  // Bit cast to 32-bit vectors for MULUDQ
11002  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
11003  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
11004  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
11005  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
11006  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
11007
11008  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
11009  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
11010  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
11011
11012  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
11013  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
11014
11015  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
11016  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
11017}
11018
11019SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
11020
11021  EVT VT = Op.getValueType();
11022  DebugLoc dl = Op.getDebugLoc();
11023  SDValue R = Op.getOperand(0);
11024  SDValue Amt = Op.getOperand(1);
11025  LLVMContext *Context = DAG.getContext();
11026
11027  if (!Subtarget->hasSSE2())
11028    return SDValue();
11029
11030  // Optimize shl/srl/sra with constant shift amount.
11031  if (isSplatVector(Amt.getNode())) {
11032    SDValue SclrAmt = Amt->getOperand(0);
11033    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
11034      uint64_t ShiftAmt = C->getZExtValue();
11035
11036      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
11037          (Subtarget->hasAVX2() &&
11038           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
11039        if (Op.getOpcode() == ISD::SHL)
11040          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
11041                             DAG.getConstant(ShiftAmt, MVT::i32));
11042        if (Op.getOpcode() == ISD::SRL)
11043          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
11044                             DAG.getConstant(ShiftAmt, MVT::i32));
11045        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
11046          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
11047                             DAG.getConstant(ShiftAmt, MVT::i32));
11048      }
11049
11050      if (VT == MVT::v16i8) {
11051        if (Op.getOpcode() == ISD::SHL) {
11052          // Make a large shift.
11053          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
11054                                    DAG.getConstant(ShiftAmt, MVT::i32));
11055          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11056          // Zero out the rightmost bits.
11057          SmallVector<SDValue, 16> V(16,
11058                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11059                                                     MVT::i8));
11060          return DAG.getNode(ISD::AND, dl, VT, SHL,
11061                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11062        }
11063        if (Op.getOpcode() == ISD::SRL) {
11064          // Make a large shift.
11065          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
11066                                    DAG.getConstant(ShiftAmt, MVT::i32));
11067          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11068          // Zero out the leftmost bits.
11069          SmallVector<SDValue, 16> V(16,
11070                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11071                                                     MVT::i8));
11072          return DAG.getNode(ISD::AND, dl, VT, SRL,
11073                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
11074        }
11075        if (Op.getOpcode() == ISD::SRA) {
11076          if (ShiftAmt == 7) {
11077            // R s>> 7  ===  R s< 0
11078            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11079            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11080          }
11081
11082          // R s>> a === ((R u>> a) ^ m) - m
11083          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11084          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
11085                                                         MVT::i8));
11086          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
11087          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11088          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11089          return Res;
11090        }
11091        llvm_unreachable("Unknown shift opcode.");
11092      }
11093
11094      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
11095        if (Op.getOpcode() == ISD::SHL) {
11096          // Make a large shift.
11097          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
11098                                    DAG.getConstant(ShiftAmt, MVT::i32));
11099          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
11100          // Zero out the rightmost bits.
11101          SmallVector<SDValue, 32> V(32,
11102                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
11103                                                     MVT::i8));
11104          return DAG.getNode(ISD::AND, dl, VT, SHL,
11105                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11106        }
11107        if (Op.getOpcode() == ISD::SRL) {
11108          // Make a large shift.
11109          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
11110                                    DAG.getConstant(ShiftAmt, MVT::i32));
11111          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
11112          // Zero out the leftmost bits.
11113          SmallVector<SDValue, 32> V(32,
11114                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
11115                                                     MVT::i8));
11116          return DAG.getNode(ISD::AND, dl, VT, SRL,
11117                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
11118        }
11119        if (Op.getOpcode() == ISD::SRA) {
11120          if (ShiftAmt == 7) {
11121            // R s>> 7  ===  R s< 0
11122            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
11123            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
11124          }
11125
11126          // R s>> a === ((R u>> a) ^ m) - m
11127          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
11128          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
11129                                                         MVT::i8));
11130          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
11131          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
11132          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
11133          return Res;
11134        }
11135        llvm_unreachable("Unknown shift opcode.");
11136      }
11137    }
11138  }
11139
11140  // Lower SHL with variable shift amount.
11141  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
11142    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
11143                     DAG.getConstant(23, MVT::i32));
11144
11145    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
11146    Constant *C = ConstantDataVector::get(*Context, CV);
11147    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
11148    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
11149                                 MachinePointerInfo::getConstantPool(),
11150                                 false, false, false, 16);
11151
11152    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
11153    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
11154    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
11155    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
11156  }
11157  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
11158    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
11159
11160    // a = a << 5;
11161    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
11162                     DAG.getConstant(5, MVT::i32));
11163    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
11164
11165    // Turn 'a' into a mask suitable for VSELECT
11166    SDValue VSelM = DAG.getConstant(0x80, VT);
11167    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11168    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11169
11170    SDValue CM1 = DAG.getConstant(0x0f, VT);
11171    SDValue CM2 = DAG.getConstant(0x3f, VT);
11172
11173    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
11174    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
11175    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11176                            DAG.getConstant(4, MVT::i32), DAG);
11177    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11178    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11179
11180    // a += a
11181    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11182    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11183    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11184
11185    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
11186    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
11187    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
11188                            DAG.getConstant(2, MVT::i32), DAG);
11189    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
11190    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
11191
11192    // a += a
11193    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
11194    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
11195    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
11196
11197    // return VSELECT(r, r+r, a);
11198    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
11199                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
11200    return R;
11201  }
11202
11203  // Decompose 256-bit shifts into smaller 128-bit shifts.
11204  if (VT.is256BitVector()) {
11205    unsigned NumElems = VT.getVectorNumElements();
11206    MVT EltVT = VT.getVectorElementType().getSimpleVT();
11207    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11208
11209    // Extract the two vectors
11210    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11211    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11212
11213    // Recreate the shift amount vectors
11214    SDValue Amt1, Amt2;
11215    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11216      // Constant shift amount
11217      SmallVector<SDValue, 4> Amt1Csts;
11218      SmallVector<SDValue, 4> Amt2Csts;
11219      for (unsigned i = 0; i != NumElems/2; ++i)
11220        Amt1Csts.push_back(Amt->getOperand(i));
11221      for (unsigned i = NumElems/2; i != NumElems; ++i)
11222        Amt2Csts.push_back(Amt->getOperand(i));
11223
11224      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11225                                 &Amt1Csts[0], NumElems/2);
11226      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11227                                 &Amt2Csts[0], NumElems/2);
11228    } else {
11229      // Variable shift amount
11230      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11231      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11232    }
11233
11234    // Issue new vector shifts for the smaller types
11235    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11236    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11237
11238    // Concatenate the result back
11239    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11240  }
11241
11242  return SDValue();
11243}
11244
11245static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11246  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11247  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11248  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11249  // has only one use.
11250  SDNode *N = Op.getNode();
11251  SDValue LHS = N->getOperand(0);
11252  SDValue RHS = N->getOperand(1);
11253  unsigned BaseOp = 0;
11254  unsigned Cond = 0;
11255  DebugLoc DL = Op.getDebugLoc();
11256  switch (Op.getOpcode()) {
11257  default: llvm_unreachable("Unknown ovf instruction!");
11258  case ISD::SADDO:
11259    // A subtract of one will be selected as a INC. Note that INC doesn't
11260    // set CF, so we can't do this for UADDO.
11261    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11262      if (C->isOne()) {
11263        BaseOp = X86ISD::INC;
11264        Cond = X86::COND_O;
11265        break;
11266      }
11267    BaseOp = X86ISD::ADD;
11268    Cond = X86::COND_O;
11269    break;
11270  case ISD::UADDO:
11271    BaseOp = X86ISD::ADD;
11272    Cond = X86::COND_B;
11273    break;
11274  case ISD::SSUBO:
11275    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11276    // set CF, so we can't do this for USUBO.
11277    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11278      if (C->isOne()) {
11279        BaseOp = X86ISD::DEC;
11280        Cond = X86::COND_O;
11281        break;
11282      }
11283    BaseOp = X86ISD::SUB;
11284    Cond = X86::COND_O;
11285    break;
11286  case ISD::USUBO:
11287    BaseOp = X86ISD::SUB;
11288    Cond = X86::COND_B;
11289    break;
11290  case ISD::SMULO:
11291    BaseOp = X86ISD::SMUL;
11292    Cond = X86::COND_O;
11293    break;
11294  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11295    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11296                                 MVT::i32);
11297    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11298
11299    SDValue SetCC =
11300      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11301                  DAG.getConstant(X86::COND_O, MVT::i32),
11302                  SDValue(Sum.getNode(), 2));
11303
11304    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11305  }
11306  }
11307
11308  // Also sets EFLAGS.
11309  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11310  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11311
11312  SDValue SetCC =
11313    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11314                DAG.getConstant(Cond, MVT::i32),
11315                SDValue(Sum.getNode(), 1));
11316
11317  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11318}
11319
11320SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11321                                                  SelectionDAG &DAG) const {
11322  DebugLoc dl = Op.getDebugLoc();
11323  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11324  EVT VT = Op.getValueType();
11325
11326  if (!Subtarget->hasSSE2() || !VT.isVector())
11327    return SDValue();
11328
11329  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11330                      ExtraVT.getScalarType().getSizeInBits();
11331  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11332
11333  switch (VT.getSimpleVT().SimpleTy) {
11334    default: return SDValue();
11335    case MVT::v8i32:
11336    case MVT::v16i16:
11337      if (!Subtarget->hasAVX())
11338        return SDValue();
11339      if (!Subtarget->hasAVX2()) {
11340        // needs to be split
11341        unsigned NumElems = VT.getVectorNumElements();
11342
11343        // Extract the LHS vectors
11344        SDValue LHS = Op.getOperand(0);
11345        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11346        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11347
11348        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11349        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11350
11351        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11352        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11353        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11354                                   ExtraNumElems/2);
11355        SDValue Extra = DAG.getValueType(ExtraVT);
11356
11357        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11358        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11359
11360        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11361      }
11362      // fall through
11363    case MVT::v4i32:
11364    case MVT::v8i16: {
11365      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11366                                         Op.getOperand(0), ShAmt, DAG);
11367      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11368    }
11369  }
11370}
11371
11372
11373static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11374                              SelectionDAG &DAG) {
11375  DebugLoc dl = Op.getDebugLoc();
11376
11377  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11378  // There isn't any reason to disable it if the target processor supports it.
11379  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11380    SDValue Chain = Op.getOperand(0);
11381    SDValue Zero = DAG.getConstant(0, MVT::i32);
11382    SDValue Ops[] = {
11383      DAG.getRegister(X86::ESP, MVT::i32), // Base
11384      DAG.getTargetConstant(1, MVT::i8),   // Scale
11385      DAG.getRegister(0, MVT::i32),        // Index
11386      DAG.getTargetConstant(0, MVT::i32),  // Disp
11387      DAG.getRegister(0, MVT::i32),        // Segment.
11388      Zero,
11389      Chain
11390    };
11391    SDNode *Res =
11392      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11393                          array_lengthof(Ops));
11394    return SDValue(Res, 0);
11395  }
11396
11397  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11398  if (!isDev)
11399    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11400
11401  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11402  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11403  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11404  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11405
11406  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11407  if (!Op1 && !Op2 && !Op3 && Op4)
11408    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11409
11410  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11411  if (Op1 && !Op2 && !Op3 && !Op4)
11412    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11413
11414  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11415  //           (MFENCE)>;
11416  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11417}
11418
11419static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11420                                 SelectionDAG &DAG) {
11421  DebugLoc dl = Op.getDebugLoc();
11422  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11423    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11424  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11425    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11426
11427  // The only fence that needs an instruction is a sequentially-consistent
11428  // cross-thread fence.
11429  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11430    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11431    // no-sse2). There isn't any reason to disable it if the target processor
11432    // supports it.
11433    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11434      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11435
11436    SDValue Chain = Op.getOperand(0);
11437    SDValue Zero = DAG.getConstant(0, MVT::i32);
11438    SDValue Ops[] = {
11439      DAG.getRegister(X86::ESP, MVT::i32), // Base
11440      DAG.getTargetConstant(1, MVT::i8),   // Scale
11441      DAG.getRegister(0, MVT::i32),        // Index
11442      DAG.getTargetConstant(0, MVT::i32),  // Disp
11443      DAG.getRegister(0, MVT::i32),        // Segment.
11444      Zero,
11445      Chain
11446    };
11447    SDNode *Res =
11448      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11449                         array_lengthof(Ops));
11450    return SDValue(Res, 0);
11451  }
11452
11453  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11454  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11455}
11456
11457
11458static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11459                             SelectionDAG &DAG) {
11460  EVT T = Op.getValueType();
11461  DebugLoc DL = Op.getDebugLoc();
11462  unsigned Reg = 0;
11463  unsigned size = 0;
11464  switch(T.getSimpleVT().SimpleTy) {
11465  default: llvm_unreachable("Invalid value type!");
11466  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11467  case MVT::i16: Reg = X86::AX;  size = 2; break;
11468  case MVT::i32: Reg = X86::EAX; size = 4; break;
11469  case MVT::i64:
11470    assert(Subtarget->is64Bit() && "Node not type legal!");
11471    Reg = X86::RAX; size = 8;
11472    break;
11473  }
11474  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11475                                    Op.getOperand(2), SDValue());
11476  SDValue Ops[] = { cpIn.getValue(0),
11477                    Op.getOperand(1),
11478                    Op.getOperand(3),
11479                    DAG.getTargetConstant(size, MVT::i8),
11480                    cpIn.getValue(1) };
11481  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11482  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11483  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11484                                           Ops, 5, T, MMO);
11485  SDValue cpOut =
11486    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11487  return cpOut;
11488}
11489
11490static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11491                                     SelectionDAG &DAG) {
11492  assert(Subtarget->is64Bit() && "Result not type legalized?");
11493  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11494  SDValue TheChain = Op.getOperand(0);
11495  DebugLoc dl = Op.getDebugLoc();
11496  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11497  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11498  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11499                                   rax.getValue(2));
11500  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11501                            DAG.getConstant(32, MVT::i8));
11502  SDValue Ops[] = {
11503    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11504    rdx.getValue(1)
11505  };
11506  return DAG.getMergeValues(Ops, 2, dl);
11507}
11508
11509SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11510  EVT SrcVT = Op.getOperand(0).getValueType();
11511  EVT DstVT = Op.getValueType();
11512  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11513         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11514  assert((DstVT == MVT::i64 ||
11515          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11516         "Unexpected custom BITCAST");
11517  // i64 <=> MMX conversions are Legal.
11518  if (SrcVT==MVT::i64 && DstVT.isVector())
11519    return Op;
11520  if (DstVT==MVT::i64 && SrcVT.isVector())
11521    return Op;
11522  // MMX <=> MMX conversions are Legal.
11523  if (SrcVT.isVector() && DstVT.isVector())
11524    return Op;
11525  // All other conversions need to be expanded.
11526  return SDValue();
11527}
11528
11529static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11530  SDNode *Node = Op.getNode();
11531  DebugLoc dl = Node->getDebugLoc();
11532  EVT T = Node->getValueType(0);
11533  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11534                              DAG.getConstant(0, T), Node->getOperand(2));
11535  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11536                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11537                       Node->getOperand(0),
11538                       Node->getOperand(1), negOp,
11539                       cast<AtomicSDNode>(Node)->getSrcValue(),
11540                       cast<AtomicSDNode>(Node)->getAlignment(),
11541                       cast<AtomicSDNode>(Node)->getOrdering(),
11542                       cast<AtomicSDNode>(Node)->getSynchScope());
11543}
11544
11545static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11546  SDNode *Node = Op.getNode();
11547  DebugLoc dl = Node->getDebugLoc();
11548  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11549
11550  // Convert seq_cst store -> xchg
11551  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11552  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11553  //        (The only way to get a 16-byte store is cmpxchg16b)
11554  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11555  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11556      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11557    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11558                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11559                                 Node->getOperand(0),
11560                                 Node->getOperand(1), Node->getOperand(2),
11561                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11562                                 cast<AtomicSDNode>(Node)->getOrdering(),
11563                                 cast<AtomicSDNode>(Node)->getSynchScope());
11564    return Swap.getValue(1);
11565  }
11566  // Other atomic stores have a simple pattern.
11567  return Op;
11568}
11569
11570static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11571  EVT VT = Op.getNode()->getValueType(0);
11572
11573  // Let legalize expand this if it isn't a legal type yet.
11574  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11575    return SDValue();
11576
11577  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11578
11579  unsigned Opc;
11580  bool ExtraOp = false;
11581  switch (Op.getOpcode()) {
11582  default: llvm_unreachable("Invalid code");
11583  case ISD::ADDC: Opc = X86ISD::ADD; break;
11584  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11585  case ISD::SUBC: Opc = X86ISD::SUB; break;
11586  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11587  }
11588
11589  if (!ExtraOp)
11590    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11591                       Op.getOperand(1));
11592  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11593                     Op.getOperand(1), Op.getOperand(2));
11594}
11595
11596/// LowerOperation - Provide custom lowering hooks for some operations.
11597///
11598SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11599  switch (Op.getOpcode()) {
11600  default: llvm_unreachable("Should not custom lower this!");
11601  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
11602  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
11603  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
11604  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
11605  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
11606  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
11607  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11608  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
11609  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11610  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11611  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11612  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
11613  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
11614  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11615  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11616  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11617  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11618  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
11619  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11620  case ISD::SHL_PARTS:
11621  case ISD::SRA_PARTS:
11622  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
11623  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
11624  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
11625  case ISD::TRUNCATE:           return lowerTRUNCATE(Op, DAG);
11626  case ISD::ZERO_EXTEND:        return lowerZERO_EXTEND(Op, DAG);
11627  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
11628  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
11629  case ISD::FP_EXTEND:          return lowerFP_EXTEND(Op, DAG);
11630  case ISD::FABS:               return LowerFABS(Op, DAG);
11631  case ISD::FNEG:               return LowerFNEG(Op, DAG);
11632  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
11633  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
11634  case ISD::SETCC:              return LowerSETCC(Op, DAG);
11635  case ISD::SELECT:             return LowerSELECT(Op, DAG);
11636  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
11637  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11638  case ISD::VASTART:            return LowerVASTART(Op, DAG);
11639  case ISD::VAARG:              return LowerVAARG(Op, DAG);
11640  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
11641  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11642  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
11643  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11644  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11645  case ISD::FRAME_TO_ARGS_OFFSET:
11646                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
11647  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11648  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
11649  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11650  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11651  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11652  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11653  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11654  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
11655  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
11656  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
11657  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
11658  case ISD::SRA:
11659  case ISD::SRL:
11660  case ISD::SHL:                return LowerShift(Op, DAG);
11661  case ISD::SADDO:
11662  case ISD::UADDO:
11663  case ISD::SSUBO:
11664  case ISD::USUBO:
11665  case ISD::SMULO:
11666  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11667  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
11668  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11669  case ISD::ADDC:
11670  case ISD::ADDE:
11671  case ISD::SUBC:
11672  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11673  case ISD::ADD:                return LowerADD(Op, DAG);
11674  case ISD::SUB:                return LowerSUB(Op, DAG);
11675  }
11676}
11677
11678static void ReplaceATOMIC_LOAD(SDNode *Node,
11679                                  SmallVectorImpl<SDValue> &Results,
11680                                  SelectionDAG &DAG) {
11681  DebugLoc dl = Node->getDebugLoc();
11682  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11683
11684  // Convert wide load -> cmpxchg8b/cmpxchg16b
11685  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11686  //        (The only way to get a 16-byte load is cmpxchg16b)
11687  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11688  SDValue Zero = DAG.getConstant(0, VT);
11689  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11690                               Node->getOperand(0),
11691                               Node->getOperand(1), Zero, Zero,
11692                               cast<AtomicSDNode>(Node)->getMemOperand(),
11693                               cast<AtomicSDNode>(Node)->getOrdering(),
11694                               cast<AtomicSDNode>(Node)->getSynchScope());
11695  Results.push_back(Swap.getValue(0));
11696  Results.push_back(Swap.getValue(1));
11697}
11698
11699static void
11700ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11701                        SelectionDAG &DAG, unsigned NewOp) {
11702  DebugLoc dl = Node->getDebugLoc();
11703  assert (Node->getValueType(0) == MVT::i64 &&
11704          "Only know how to expand i64 atomics");
11705
11706  SDValue Chain = Node->getOperand(0);
11707  SDValue In1 = Node->getOperand(1);
11708  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11709                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11710  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11711                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11712  SDValue Ops[] = { Chain, In1, In2L, In2H };
11713  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11714  SDValue Result =
11715    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11716                            cast<MemSDNode>(Node)->getMemOperand());
11717  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11718  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11719  Results.push_back(Result.getValue(2));
11720}
11721
11722/// ReplaceNodeResults - Replace a node with an illegal result type
11723/// with a new node built out of custom code.
11724void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11725                                           SmallVectorImpl<SDValue>&Results,
11726                                           SelectionDAG &DAG) const {
11727  DebugLoc dl = N->getDebugLoc();
11728  switch (N->getOpcode()) {
11729  default:
11730    llvm_unreachable("Do not know how to custom type legalize this operation!");
11731  case ISD::SIGN_EXTEND_INREG:
11732  case ISD::ADDC:
11733  case ISD::ADDE:
11734  case ISD::SUBC:
11735  case ISD::SUBE:
11736    // We don't want to expand or promote these.
11737    return;
11738  case ISD::FP_TO_SINT:
11739  case ISD::FP_TO_UINT: {
11740    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11741
11742    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11743      return;
11744
11745    std::pair<SDValue,SDValue> Vals =
11746        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11747    SDValue FIST = Vals.first, StackSlot = Vals.second;
11748    if (FIST.getNode() != 0) {
11749      EVT VT = N->getValueType(0);
11750      // Return a load from the stack slot.
11751      if (StackSlot.getNode() != 0)
11752        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11753                                      MachinePointerInfo(),
11754                                      false, false, false, 0));
11755      else
11756        Results.push_back(FIST);
11757    }
11758    return;
11759  }
11760  case ISD::UINT_TO_FP: {
11761    if (N->getOperand(0).getValueType() != MVT::v2i32 &&
11762        N->getValueType(0) != MVT::v2f32)
11763      return;
11764    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
11765                                 N->getOperand(0));
11766    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
11767                                     MVT::f64);
11768    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
11769    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
11770                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
11771    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
11772    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
11773    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
11774    return;
11775  }
11776  case ISD::FP_ROUND: {
11777    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
11778    Results.push_back(V);
11779    return;
11780  }
11781  case ISD::READCYCLECOUNTER: {
11782    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11783    SDValue TheChain = N->getOperand(0);
11784    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11785    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11786                                     rd.getValue(1));
11787    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11788                                     eax.getValue(2));
11789    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11790    SDValue Ops[] = { eax, edx };
11791    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11792    Results.push_back(edx.getValue(1));
11793    return;
11794  }
11795  case ISD::ATOMIC_CMP_SWAP: {
11796    EVT T = N->getValueType(0);
11797    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11798    bool Regs64bit = T == MVT::i128;
11799    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11800    SDValue cpInL, cpInH;
11801    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11802                        DAG.getConstant(0, HalfT));
11803    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11804                        DAG.getConstant(1, HalfT));
11805    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11806                             Regs64bit ? X86::RAX : X86::EAX,
11807                             cpInL, SDValue());
11808    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11809                             Regs64bit ? X86::RDX : X86::EDX,
11810                             cpInH, cpInL.getValue(1));
11811    SDValue swapInL, swapInH;
11812    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11813                          DAG.getConstant(0, HalfT));
11814    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11815                          DAG.getConstant(1, HalfT));
11816    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11817                               Regs64bit ? X86::RBX : X86::EBX,
11818                               swapInL, cpInH.getValue(1));
11819    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11820                               Regs64bit ? X86::RCX : X86::ECX,
11821                               swapInH, swapInL.getValue(1));
11822    SDValue Ops[] = { swapInH.getValue(0),
11823                      N->getOperand(1),
11824                      swapInH.getValue(1) };
11825    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11826    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11827    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11828                                  X86ISD::LCMPXCHG8_DAG;
11829    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11830                                             Ops, 3, T, MMO);
11831    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11832                                        Regs64bit ? X86::RAX : X86::EAX,
11833                                        HalfT, Result.getValue(1));
11834    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11835                                        Regs64bit ? X86::RDX : X86::EDX,
11836                                        HalfT, cpOutL.getValue(2));
11837    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11838    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11839    Results.push_back(cpOutH.getValue(1));
11840    return;
11841  }
11842  case ISD::ATOMIC_LOAD_ADD:
11843  case ISD::ATOMIC_LOAD_AND:
11844  case ISD::ATOMIC_LOAD_NAND:
11845  case ISD::ATOMIC_LOAD_OR:
11846  case ISD::ATOMIC_LOAD_SUB:
11847  case ISD::ATOMIC_LOAD_XOR:
11848  case ISD::ATOMIC_LOAD_MAX:
11849  case ISD::ATOMIC_LOAD_MIN:
11850  case ISD::ATOMIC_LOAD_UMAX:
11851  case ISD::ATOMIC_LOAD_UMIN:
11852  case ISD::ATOMIC_SWAP: {
11853    unsigned Opc;
11854    switch (N->getOpcode()) {
11855    default: llvm_unreachable("Unexpected opcode");
11856    case ISD::ATOMIC_LOAD_ADD:
11857      Opc = X86ISD::ATOMADD64_DAG;
11858      break;
11859    case ISD::ATOMIC_LOAD_AND:
11860      Opc = X86ISD::ATOMAND64_DAG;
11861      break;
11862    case ISD::ATOMIC_LOAD_NAND:
11863      Opc = X86ISD::ATOMNAND64_DAG;
11864      break;
11865    case ISD::ATOMIC_LOAD_OR:
11866      Opc = X86ISD::ATOMOR64_DAG;
11867      break;
11868    case ISD::ATOMIC_LOAD_SUB:
11869      Opc = X86ISD::ATOMSUB64_DAG;
11870      break;
11871    case ISD::ATOMIC_LOAD_XOR:
11872      Opc = X86ISD::ATOMXOR64_DAG;
11873      break;
11874    case ISD::ATOMIC_LOAD_MAX:
11875      Opc = X86ISD::ATOMMAX64_DAG;
11876      break;
11877    case ISD::ATOMIC_LOAD_MIN:
11878      Opc = X86ISD::ATOMMIN64_DAG;
11879      break;
11880    case ISD::ATOMIC_LOAD_UMAX:
11881      Opc = X86ISD::ATOMUMAX64_DAG;
11882      break;
11883    case ISD::ATOMIC_LOAD_UMIN:
11884      Opc = X86ISD::ATOMUMIN64_DAG;
11885      break;
11886    case ISD::ATOMIC_SWAP:
11887      Opc = X86ISD::ATOMSWAP64_DAG;
11888      break;
11889    }
11890    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
11891    return;
11892  }
11893  case ISD::ATOMIC_LOAD:
11894    ReplaceATOMIC_LOAD(N, Results, DAG);
11895  }
11896}
11897
11898const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11899  switch (Opcode) {
11900  default: return NULL;
11901  case X86ISD::BSF:                return "X86ISD::BSF";
11902  case X86ISD::BSR:                return "X86ISD::BSR";
11903  case X86ISD::SHLD:               return "X86ISD::SHLD";
11904  case X86ISD::SHRD:               return "X86ISD::SHRD";
11905  case X86ISD::FAND:               return "X86ISD::FAND";
11906  case X86ISD::FOR:                return "X86ISD::FOR";
11907  case X86ISD::FXOR:               return "X86ISD::FXOR";
11908  case X86ISD::FSRL:               return "X86ISD::FSRL";
11909  case X86ISD::FILD:               return "X86ISD::FILD";
11910  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11911  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11912  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11913  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11914  case X86ISD::FLD:                return "X86ISD::FLD";
11915  case X86ISD::FST:                return "X86ISD::FST";
11916  case X86ISD::CALL:               return "X86ISD::CALL";
11917  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11918  case X86ISD::BT:                 return "X86ISD::BT";
11919  case X86ISD::CMP:                return "X86ISD::CMP";
11920  case X86ISD::COMI:               return "X86ISD::COMI";
11921  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11922  case X86ISD::SETCC:              return "X86ISD::SETCC";
11923  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11924  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11925  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11926  case X86ISD::CMOV:               return "X86ISD::CMOV";
11927  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11928  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11929  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11930  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11931  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11932  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11933  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11934  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11935  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11936  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11937  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11938  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11939  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11940  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11941  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11942  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11943  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11944  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11945  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11946  case X86ISD::HADD:               return "X86ISD::HADD";
11947  case X86ISD::HSUB:               return "X86ISD::HSUB";
11948  case X86ISD::FHADD:              return "X86ISD::FHADD";
11949  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11950  case X86ISD::FMAX:               return "X86ISD::FMAX";
11951  case X86ISD::FMIN:               return "X86ISD::FMIN";
11952  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
11953  case X86ISD::FMINC:              return "X86ISD::FMINC";
11954  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11955  case X86ISD::FRCP:               return "X86ISD::FRCP";
11956  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11957  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11958  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11959  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
11960  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
11961  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11962  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11963  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11964  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11965  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11966  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11967  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11968  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11969  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11970  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11971  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11972  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11973  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11974  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
11975  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11976  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
11977  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
11978  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
11979  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
11980  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11981  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11982  case X86ISD::VSHL:               return "X86ISD::VSHL";
11983  case X86ISD::VSRL:               return "X86ISD::VSRL";
11984  case X86ISD::VSRA:               return "X86ISD::VSRA";
11985  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11986  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11987  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11988  case X86ISD::CMPP:               return "X86ISD::CMPP";
11989  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11990  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11991  case X86ISD::ADD:                return "X86ISD::ADD";
11992  case X86ISD::SUB:                return "X86ISD::SUB";
11993  case X86ISD::ADC:                return "X86ISD::ADC";
11994  case X86ISD::SBB:                return "X86ISD::SBB";
11995  case X86ISD::SMUL:               return "X86ISD::SMUL";
11996  case X86ISD::UMUL:               return "X86ISD::UMUL";
11997  case X86ISD::INC:                return "X86ISD::INC";
11998  case X86ISD::DEC:                return "X86ISD::DEC";
11999  case X86ISD::OR:                 return "X86ISD::OR";
12000  case X86ISD::XOR:                return "X86ISD::XOR";
12001  case X86ISD::AND:                return "X86ISD::AND";
12002  case X86ISD::ANDN:               return "X86ISD::ANDN";
12003  case X86ISD::BLSI:               return "X86ISD::BLSI";
12004  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
12005  case X86ISD::BLSR:               return "X86ISD::BLSR";
12006  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
12007  case X86ISD::PTEST:              return "X86ISD::PTEST";
12008  case X86ISD::TESTP:              return "X86ISD::TESTP";
12009  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
12010  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
12011  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
12012  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
12013  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
12014  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
12015  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
12016  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
12017  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
12018  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
12019  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
12020  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
12021  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
12022  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
12023  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
12024  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
12025  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
12026  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
12027  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
12028  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
12029  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
12030  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
12031  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
12032  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
12033  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
12034  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
12035  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
12036  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
12037  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
12038  case X86ISD::SAHF:               return "X86ISD::SAHF";
12039  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
12040  case X86ISD::FMADD:              return "X86ISD::FMADD";
12041  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
12042  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
12043  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
12044  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
12045  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
12046  }
12047}
12048
12049// isLegalAddressingMode - Return true if the addressing mode represented
12050// by AM is legal for this target, for a load/store of the specified type.
12051bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
12052                                              Type *Ty) const {
12053  // X86 supports extremely general addressing modes.
12054  CodeModel::Model M = getTargetMachine().getCodeModel();
12055  Reloc::Model R = getTargetMachine().getRelocationModel();
12056
12057  // X86 allows a sign-extended 32-bit immediate field as a displacement.
12058  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
12059    return false;
12060
12061  if (AM.BaseGV) {
12062    unsigned GVFlags =
12063      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
12064
12065    // If a reference to this global requires an extra load, we can't fold it.
12066    if (isGlobalStubReference(GVFlags))
12067      return false;
12068
12069    // If BaseGV requires a register for the PIC base, we cannot also have a
12070    // BaseReg specified.
12071    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
12072      return false;
12073
12074    // If lower 4G is not available, then we must use rip-relative addressing.
12075    if ((M != CodeModel::Small || R != Reloc::Static) &&
12076        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
12077      return false;
12078  }
12079
12080  switch (AM.Scale) {
12081  case 0:
12082  case 1:
12083  case 2:
12084  case 4:
12085  case 8:
12086    // These scales always work.
12087    break;
12088  case 3:
12089  case 5:
12090  case 9:
12091    // These scales are formed with basereg+scalereg.  Only accept if there is
12092    // no basereg yet.
12093    if (AM.HasBaseReg)
12094      return false;
12095    break;
12096  default:  // Other stuff never works.
12097    return false;
12098  }
12099
12100  return true;
12101}
12102
12103
12104bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
12105  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
12106    return false;
12107  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
12108  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
12109  if (NumBits1 <= NumBits2)
12110    return false;
12111  return true;
12112}
12113
12114bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
12115  return Imm == (int32_t)Imm;
12116}
12117
12118bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
12119  // Can also use sub to handle negated immediates.
12120  return Imm == (int32_t)Imm;
12121}
12122
12123bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
12124  if (!VT1.isInteger() || !VT2.isInteger())
12125    return false;
12126  unsigned NumBits1 = VT1.getSizeInBits();
12127  unsigned NumBits2 = VT2.getSizeInBits();
12128  if (NumBits1 <= NumBits2)
12129    return false;
12130  return true;
12131}
12132
12133bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
12134  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12135  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
12136}
12137
12138bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
12139  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
12140  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
12141}
12142
12143bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
12144  // i16 instructions are longer (0x66 prefix) and potentially slower.
12145  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
12146}
12147
12148/// isShuffleMaskLegal - Targets can use this to indicate that they only
12149/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
12150/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
12151/// are assumed to be legal.
12152bool
12153X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
12154                                      EVT VT) const {
12155  // Very little shuffling can be done for 64-bit vectors right now.
12156  if (VT.getSizeInBits() == 64)
12157    return false;
12158
12159  // FIXME: pshufb, blends, shifts.
12160  return (VT.getVectorNumElements() == 2 ||
12161          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
12162          isMOVLMask(M, VT) ||
12163          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
12164          isPSHUFDMask(M, VT) ||
12165          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
12166          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
12167          isPALIGNRMask(M, VT, Subtarget) ||
12168          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
12169          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
12170          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
12171          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
12172}
12173
12174bool
12175X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
12176                                          EVT VT) const {
12177  unsigned NumElts = VT.getVectorNumElements();
12178  // FIXME: This collection of masks seems suspect.
12179  if (NumElts == 2)
12180    return true;
12181  if (NumElts == 4 && VT.is128BitVector()) {
12182    return (isMOVLMask(Mask, VT)  ||
12183            isCommutedMOVLMask(Mask, VT, true) ||
12184            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
12185            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
12186  }
12187  return false;
12188}
12189
12190//===----------------------------------------------------------------------===//
12191//                           X86 Scheduler Hooks
12192//===----------------------------------------------------------------------===//
12193
12194// private utility function
12195
12196// Get CMPXCHG opcode for the specified data type.
12197static unsigned getCmpXChgOpcode(EVT VT) {
12198  switch (VT.getSimpleVT().SimpleTy) {
12199  case MVT::i8:  return X86::LCMPXCHG8;
12200  case MVT::i16: return X86::LCMPXCHG16;
12201  case MVT::i32: return X86::LCMPXCHG32;
12202  case MVT::i64: return X86::LCMPXCHG64;
12203  default:
12204    break;
12205  }
12206  llvm_unreachable("Invalid operand size!");
12207}
12208
12209// Get LOAD opcode for the specified data type.
12210static unsigned getLoadOpcode(EVT VT) {
12211  switch (VT.getSimpleVT().SimpleTy) {
12212  case MVT::i8:  return X86::MOV8rm;
12213  case MVT::i16: return X86::MOV16rm;
12214  case MVT::i32: return X86::MOV32rm;
12215  case MVT::i64: return X86::MOV64rm;
12216  default:
12217    break;
12218  }
12219  llvm_unreachable("Invalid operand size!");
12220}
12221
12222// Get opcode of the non-atomic one from the specified atomic instruction.
12223static unsigned getNonAtomicOpcode(unsigned Opc) {
12224  switch (Opc) {
12225  case X86::ATOMAND8:  return X86::AND8rr;
12226  case X86::ATOMAND16: return X86::AND16rr;
12227  case X86::ATOMAND32: return X86::AND32rr;
12228  case X86::ATOMAND64: return X86::AND64rr;
12229  case X86::ATOMOR8:   return X86::OR8rr;
12230  case X86::ATOMOR16:  return X86::OR16rr;
12231  case X86::ATOMOR32:  return X86::OR32rr;
12232  case X86::ATOMOR64:  return X86::OR64rr;
12233  case X86::ATOMXOR8:  return X86::XOR8rr;
12234  case X86::ATOMXOR16: return X86::XOR16rr;
12235  case X86::ATOMXOR32: return X86::XOR32rr;
12236  case X86::ATOMXOR64: return X86::XOR64rr;
12237  }
12238  llvm_unreachable("Unhandled atomic-load-op opcode!");
12239}
12240
12241// Get opcode of the non-atomic one from the specified atomic instruction with
12242// extra opcode.
12243static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
12244                                               unsigned &ExtraOpc) {
12245  switch (Opc) {
12246  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
12247  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
12248  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
12249  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
12250  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
12251  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
12252  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
12253  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
12254  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
12255  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
12256  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
12257  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
12258  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
12259  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
12260  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
12261  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
12262  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
12263  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
12264  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
12265  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
12266  }
12267  llvm_unreachable("Unhandled atomic-load-op opcode!");
12268}
12269
12270// Get opcode of the non-atomic one from the specified atomic instruction for
12271// 64-bit data type on 32-bit target.
12272static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
12273  switch (Opc) {
12274  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
12275  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
12276  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
12277  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
12278  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
12279  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
12280  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
12281  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
12282  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
12283  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
12284  }
12285  llvm_unreachable("Unhandled atomic-load-op opcode!");
12286}
12287
12288// Get opcode of the non-atomic one from the specified atomic instruction for
12289// 64-bit data type on 32-bit target with extra opcode.
12290static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
12291                                                   unsigned &HiOpc,
12292                                                   unsigned &ExtraOpc) {
12293  switch (Opc) {
12294  case X86::ATOMNAND6432:
12295    ExtraOpc = X86::NOT32r;
12296    HiOpc = X86::AND32rr;
12297    return X86::AND32rr;
12298  }
12299  llvm_unreachable("Unhandled atomic-load-op opcode!");
12300}
12301
12302// Get pseudo CMOV opcode from the specified data type.
12303static unsigned getPseudoCMOVOpc(EVT VT) {
12304  switch (VT.getSimpleVT().SimpleTy) {
12305  case MVT::i8:  return X86::CMOV_GR8;
12306  case MVT::i16: return X86::CMOV_GR16;
12307  case MVT::i32: return X86::CMOV_GR32;
12308  default:
12309    break;
12310  }
12311  llvm_unreachable("Unknown CMOV opcode!");
12312}
12313
12314// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12315// They will be translated into a spin-loop or compare-exchange loop from
12316//
12317//    ...
12318//    dst = atomic-fetch-op MI.addr, MI.val
12319//    ...
12320//
12321// to
12322//
12323//    ...
12324//    EAX = LOAD MI.addr
12325// loop:
12326//    t1 = OP MI.val, EAX
12327//    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12328//    JNE loop
12329// sink:
12330//    dst = EAX
12331//    ...
12332MachineBasicBlock *
12333X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12334                                       MachineBasicBlock *MBB) const {
12335  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12336  DebugLoc DL = MI->getDebugLoc();
12337
12338  MachineFunction *MF = MBB->getParent();
12339  MachineRegisterInfo &MRI = MF->getRegInfo();
12340
12341  const BasicBlock *BB = MBB->getBasicBlock();
12342  MachineFunction::iterator I = MBB;
12343  ++I;
12344
12345  assert(MI->getNumOperands() <= X86::AddrNumOperands + 2 &&
12346         "Unexpected number of operands");
12347
12348  assert(MI->hasOneMemOperand() &&
12349         "Expected atomic-load-op to have one memoperand");
12350
12351  // Memory Reference
12352  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12353  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12354
12355  unsigned DstReg, SrcReg;
12356  unsigned MemOpndSlot;
12357
12358  unsigned CurOp = 0;
12359
12360  DstReg = MI->getOperand(CurOp++).getReg();
12361  MemOpndSlot = CurOp;
12362  CurOp += X86::AddrNumOperands;
12363  SrcReg = MI->getOperand(CurOp++).getReg();
12364
12365  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12366  MVT::SimpleValueType VT = *RC->vt_begin();
12367  unsigned AccPhyReg = getX86SubSuperRegister(X86::EAX, VT);
12368
12369  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12370  unsigned LOADOpc = getLoadOpcode(VT);
12371
12372  // For the atomic load-arith operator, we generate
12373  //
12374  //  thisMBB:
12375  //    EAX = LOAD [MI.addr]
12376  //  mainMBB:
12377  //    t1 = OP MI.val, EAX
12378  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12379  //    JNE mainMBB
12380  //  sinkMBB:
12381
12382  MachineBasicBlock *thisMBB = MBB;
12383  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12384  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12385  MF->insert(I, mainMBB);
12386  MF->insert(I, sinkMBB);
12387
12388  MachineInstrBuilder MIB;
12389
12390  // Transfer the remainder of BB and its successor edges to sinkMBB.
12391  sinkMBB->splice(sinkMBB->begin(), MBB,
12392                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12393  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12394
12395  // thisMBB:
12396  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), AccPhyReg);
12397  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12398    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12399  MIB.setMemRefs(MMOBegin, MMOEnd);
12400
12401  thisMBB->addSuccessor(mainMBB);
12402
12403  // mainMBB:
12404  MachineBasicBlock *origMainMBB = mainMBB;
12405  mainMBB->addLiveIn(AccPhyReg);
12406
12407  // Copy AccPhyReg as it is used more than once.
12408  unsigned AccReg = MRI.createVirtualRegister(RC);
12409  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccReg)
12410    .addReg(AccPhyReg);
12411
12412  unsigned t1 = MRI.createVirtualRegister(RC);
12413  unsigned Opc = MI->getOpcode();
12414  switch (Opc) {
12415  default:
12416    llvm_unreachable("Unhandled atomic-load-op opcode!");
12417  case X86::ATOMAND8:
12418  case X86::ATOMAND16:
12419  case X86::ATOMAND32:
12420  case X86::ATOMAND64:
12421  case X86::ATOMOR8:
12422  case X86::ATOMOR16:
12423  case X86::ATOMOR32:
12424  case X86::ATOMOR64:
12425  case X86::ATOMXOR8:
12426  case X86::ATOMXOR16:
12427  case X86::ATOMXOR32:
12428  case X86::ATOMXOR64: {
12429    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
12430    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t1).addReg(SrcReg)
12431      .addReg(AccReg);
12432    break;
12433  }
12434  case X86::ATOMNAND8:
12435  case X86::ATOMNAND16:
12436  case X86::ATOMNAND32:
12437  case X86::ATOMNAND64: {
12438    unsigned t2 = MRI.createVirtualRegister(RC);
12439    unsigned NOTOpc;
12440    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
12441    BuildMI(mainMBB, DL, TII->get(ANDOpc), t2).addReg(SrcReg)
12442      .addReg(AccReg);
12443    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1).addReg(t2);
12444    break;
12445  }
12446  case X86::ATOMMAX8:
12447  case X86::ATOMMAX16:
12448  case X86::ATOMMAX32:
12449  case X86::ATOMMAX64:
12450  case X86::ATOMMIN8:
12451  case X86::ATOMMIN16:
12452  case X86::ATOMMIN32:
12453  case X86::ATOMMIN64:
12454  case X86::ATOMUMAX8:
12455  case X86::ATOMUMAX16:
12456  case X86::ATOMUMAX32:
12457  case X86::ATOMUMAX64:
12458  case X86::ATOMUMIN8:
12459  case X86::ATOMUMIN16:
12460  case X86::ATOMUMIN32:
12461  case X86::ATOMUMIN64: {
12462    unsigned CMPOpc;
12463    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
12464
12465    BuildMI(mainMBB, DL, TII->get(CMPOpc))
12466      .addReg(SrcReg)
12467      .addReg(AccReg);
12468
12469    if (Subtarget->hasCMov()) {
12470      if (VT != MVT::i8) {
12471        // Native support
12472        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t1)
12473          .addReg(SrcReg)
12474          .addReg(AccReg);
12475      } else {
12476        // Promote i8 to i32 to use CMOV32
12477        const TargetRegisterClass *RC32 = getRegClassFor(MVT::i32);
12478        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
12479        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
12480        unsigned t2 = MRI.createVirtualRegister(RC32);
12481
12482        unsigned Undef = MRI.createVirtualRegister(RC32);
12483        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
12484
12485        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
12486          .addReg(Undef)
12487          .addReg(SrcReg)
12488          .addImm(X86::sub_8bit);
12489        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
12490          .addReg(Undef)
12491          .addReg(AccReg)
12492          .addImm(X86::sub_8bit);
12493
12494        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
12495          .addReg(SrcReg32)
12496          .addReg(AccReg32);
12497
12498        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t1)
12499          .addReg(t2, 0, X86::sub_8bit);
12500      }
12501    } else {
12502      // Use pseudo select and lower them.
12503      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
12504             "Invalid atomic-load-op transformation!");
12505      unsigned SelOpc = getPseudoCMOVOpc(VT);
12506      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
12507      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
12508      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t1)
12509              .addReg(SrcReg).addReg(AccReg)
12510              .addImm(CC);
12511      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12512    }
12513    break;
12514  }
12515  }
12516
12517  // Copy AccPhyReg back from virtual register.
12518  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccPhyReg)
12519    .addReg(AccReg);
12520
12521  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12522  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12523    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12524  MIB.addReg(t1);
12525  MIB.setMemRefs(MMOBegin, MMOEnd);
12526
12527  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12528
12529  mainMBB->addSuccessor(origMainMBB);
12530  mainMBB->addSuccessor(sinkMBB);
12531
12532  // sinkMBB:
12533  sinkMBB->addLiveIn(AccPhyReg);
12534
12535  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12536          TII->get(TargetOpcode::COPY), DstReg)
12537    .addReg(AccPhyReg);
12538
12539  MI->eraseFromParent();
12540  return sinkMBB;
12541}
12542
12543// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
12544// instructions. They will be translated into a spin-loop or compare-exchange
12545// loop from
12546//
12547//    ...
12548//    dst = atomic-fetch-op MI.addr, MI.val
12549//    ...
12550//
12551// to
12552//
12553//    ...
12554//    EAX = LOAD [MI.addr + 0]
12555//    EDX = LOAD [MI.addr + 4]
12556// loop:
12557//    EBX = OP MI.val.lo, EAX
12558//    ECX = OP MI.val.hi, EDX
12559//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12560//    JNE loop
12561// sink:
12562//    dst = EDX:EAX
12563//    ...
12564MachineBasicBlock *
12565X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
12566                                           MachineBasicBlock *MBB) const {
12567  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12568  DebugLoc DL = MI->getDebugLoc();
12569
12570  MachineFunction *MF = MBB->getParent();
12571  MachineRegisterInfo &MRI = MF->getRegInfo();
12572
12573  const BasicBlock *BB = MBB->getBasicBlock();
12574  MachineFunction::iterator I = MBB;
12575  ++I;
12576
12577  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
12578         "Unexpected number of operands");
12579
12580  assert(MI->hasOneMemOperand() &&
12581         "Expected atomic-load-op32 to have one memoperand");
12582
12583  // Memory Reference
12584  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12585  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12586
12587  unsigned DstLoReg, DstHiReg;
12588  unsigned SrcLoReg, SrcHiReg;
12589  unsigned MemOpndSlot;
12590
12591  unsigned CurOp = 0;
12592
12593  DstLoReg = MI->getOperand(CurOp++).getReg();
12594  DstHiReg = MI->getOperand(CurOp++).getReg();
12595  MemOpndSlot = CurOp;
12596  CurOp += X86::AddrNumOperands;
12597  SrcLoReg = MI->getOperand(CurOp++).getReg();
12598  SrcHiReg = MI->getOperand(CurOp++).getReg();
12599
12600  const TargetRegisterClass *RC = &X86::GR32RegClass;
12601  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
12602
12603  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
12604  unsigned LOADOpc = X86::MOV32rm;
12605
12606  // For the atomic load-arith operator, we generate
12607  //
12608  //  thisMBB:
12609  //    EAX = LOAD [MI.addr + 0]
12610  //    EDX = LOAD [MI.addr + 4]
12611  //  mainMBB:
12612  //    EBX = OP MI.vallo, EAX
12613  //    ECX = OP MI.valhi, EDX
12614  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12615  //    JNE mainMBB
12616  //  sinkMBB:
12617
12618  MachineBasicBlock *thisMBB = MBB;
12619  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12620  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12621  MF->insert(I, mainMBB);
12622  MF->insert(I, sinkMBB);
12623
12624  MachineInstrBuilder MIB;
12625
12626  // Transfer the remainder of BB and its successor edges to sinkMBB.
12627  sinkMBB->splice(sinkMBB->begin(), MBB,
12628                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12629  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12630
12631  // thisMBB:
12632  // Lo
12633  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EAX);
12634  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12635    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12636  MIB.setMemRefs(MMOBegin, MMOEnd);
12637  // Hi
12638  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EDX);
12639  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
12640    if (i == X86::AddrDisp)
12641      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
12642    else
12643      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12644  }
12645  MIB.setMemRefs(MMOBegin, MMOEnd);
12646
12647  thisMBB->addSuccessor(mainMBB);
12648
12649  // mainMBB:
12650  MachineBasicBlock *origMainMBB = mainMBB;
12651  mainMBB->addLiveIn(X86::EAX);
12652  mainMBB->addLiveIn(X86::EDX);
12653
12654  // Copy EDX:EAX as they are used more than once.
12655  unsigned LoReg = MRI.createVirtualRegister(RC);
12656  unsigned HiReg = MRI.createVirtualRegister(RC);
12657  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), LoReg).addReg(X86::EAX);
12658  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), HiReg).addReg(X86::EDX);
12659
12660  unsigned t1L = MRI.createVirtualRegister(RC);
12661  unsigned t1H = MRI.createVirtualRegister(RC);
12662
12663  unsigned Opc = MI->getOpcode();
12664  switch (Opc) {
12665  default:
12666    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
12667  case X86::ATOMAND6432:
12668  case X86::ATOMOR6432:
12669  case X86::ATOMXOR6432:
12670  case X86::ATOMADD6432:
12671  case X86::ATOMSUB6432: {
12672    unsigned HiOpc;
12673    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12674    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg).addReg(LoReg);
12675    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg).addReg(HiReg);
12676    break;
12677  }
12678  case X86::ATOMNAND6432: {
12679    unsigned HiOpc, NOTOpc;
12680    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
12681    unsigned t2L = MRI.createVirtualRegister(RC);
12682    unsigned t2H = MRI.createVirtualRegister(RC);
12683    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg).addReg(LoReg);
12684    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg).addReg(HiReg);
12685    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1L).addReg(t2L);
12686    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1H).addReg(t2H);
12687    break;
12688  }
12689  case X86::ATOMMAX6432:
12690  case X86::ATOMMIN6432:
12691  case X86::ATOMUMAX6432:
12692  case X86::ATOMUMIN6432: {
12693    unsigned HiOpc;
12694    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12695    unsigned cL = MRI.createVirtualRegister(RC8);
12696    unsigned cH = MRI.createVirtualRegister(RC8);
12697    unsigned cL32 = MRI.createVirtualRegister(RC);
12698    unsigned cH32 = MRI.createVirtualRegister(RC);
12699    unsigned cc = MRI.createVirtualRegister(RC);
12700    // cl := cmp src_lo, lo
12701    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12702      .addReg(SrcLoReg).addReg(LoReg);
12703    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
12704    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
12705    // ch := cmp src_hi, hi
12706    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12707      .addReg(SrcHiReg).addReg(HiReg);
12708    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
12709    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
12710    // cc := if (src_hi == hi) ? cl : ch;
12711    if (Subtarget->hasCMov()) {
12712      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
12713        .addReg(cH32).addReg(cL32);
12714    } else {
12715      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
12716              .addReg(cH32).addReg(cL32)
12717              .addImm(X86::COND_E);
12718      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12719    }
12720    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
12721    if (Subtarget->hasCMov()) {
12722      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1L)
12723        .addReg(SrcLoReg).addReg(LoReg);
12724      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1H)
12725        .addReg(SrcHiReg).addReg(HiReg);
12726    } else {
12727      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1L)
12728              .addReg(SrcLoReg).addReg(LoReg)
12729              .addImm(X86::COND_NE);
12730      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12731      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1H)
12732              .addReg(SrcHiReg).addReg(HiReg)
12733              .addImm(X86::COND_NE);
12734      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12735    }
12736    break;
12737  }
12738  case X86::ATOMSWAP6432: {
12739    unsigned HiOpc;
12740    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12741    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg);
12742    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg);
12743    break;
12744  }
12745  }
12746
12747  // Copy EDX:EAX back from HiReg:LoReg
12748  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(LoReg);
12749  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(HiReg);
12750  // Copy ECX:EBX from t1H:t1L
12751  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t1L);
12752  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t1H);
12753
12754  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12755  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12756    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12757  MIB.setMemRefs(MMOBegin, MMOEnd);
12758
12759  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12760
12761  mainMBB->addSuccessor(origMainMBB);
12762  mainMBB->addSuccessor(sinkMBB);
12763
12764  // sinkMBB:
12765  sinkMBB->addLiveIn(X86::EAX);
12766  sinkMBB->addLiveIn(X86::EDX);
12767
12768  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12769          TII->get(TargetOpcode::COPY), DstLoReg)
12770    .addReg(X86::EAX);
12771  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12772          TII->get(TargetOpcode::COPY), DstHiReg)
12773    .addReg(X86::EDX);
12774
12775  MI->eraseFromParent();
12776  return sinkMBB;
12777}
12778
12779// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
12780// or XMM0_V32I8 in AVX all of this code can be replaced with that
12781// in the .td file.
12782MachineBasicBlock *
12783X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
12784                            unsigned numArgs, bool memArg) const {
12785  assert(Subtarget->hasSSE42() &&
12786         "Target must have SSE4.2 or AVX features enabled");
12787
12788  DebugLoc dl = MI->getDebugLoc();
12789  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12790  unsigned Opc;
12791  if (!Subtarget->hasAVX()) {
12792    if (memArg)
12793      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
12794    else
12795      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
12796  } else {
12797    if (memArg)
12798      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
12799    else
12800      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
12801  }
12802
12803  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
12804  for (unsigned i = 0; i < numArgs; ++i) {
12805    MachineOperand &Op = MI->getOperand(i+1);
12806    if (!(Op.isReg() && Op.isImplicit()))
12807      MIB.addOperand(Op);
12808  }
12809  BuildMI(*BB, MI, dl,
12810    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12811    .addReg(X86::XMM0);
12812
12813  MI->eraseFromParent();
12814  return BB;
12815}
12816
12817MachineBasicBlock *
12818X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
12819  DebugLoc dl = MI->getDebugLoc();
12820  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12821
12822  // Address into RAX/EAX, other two args into ECX, EDX.
12823  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
12824  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
12825  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
12826  for (int i = 0; i < X86::AddrNumOperands; ++i)
12827    MIB.addOperand(MI->getOperand(i));
12828
12829  unsigned ValOps = X86::AddrNumOperands;
12830  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
12831    .addReg(MI->getOperand(ValOps).getReg());
12832  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
12833    .addReg(MI->getOperand(ValOps+1).getReg());
12834
12835  // The instruction doesn't actually take any operands though.
12836  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
12837
12838  MI->eraseFromParent(); // The pseudo is gone now.
12839  return BB;
12840}
12841
12842MachineBasicBlock *
12843X86TargetLowering::EmitVAARG64WithCustomInserter(
12844                   MachineInstr *MI,
12845                   MachineBasicBlock *MBB) const {
12846  // Emit va_arg instruction on X86-64.
12847
12848  // Operands to this pseudo-instruction:
12849  // 0  ) Output        : destination address (reg)
12850  // 1-5) Input         : va_list address (addr, i64mem)
12851  // 6  ) ArgSize       : Size (in bytes) of vararg type
12852  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
12853  // 8  ) Align         : Alignment of type
12854  // 9  ) EFLAGS (implicit-def)
12855
12856  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
12857  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
12858
12859  unsigned DestReg = MI->getOperand(0).getReg();
12860  MachineOperand &Base = MI->getOperand(1);
12861  MachineOperand &Scale = MI->getOperand(2);
12862  MachineOperand &Index = MI->getOperand(3);
12863  MachineOperand &Disp = MI->getOperand(4);
12864  MachineOperand &Segment = MI->getOperand(5);
12865  unsigned ArgSize = MI->getOperand(6).getImm();
12866  unsigned ArgMode = MI->getOperand(7).getImm();
12867  unsigned Align = MI->getOperand(8).getImm();
12868
12869  // Memory Reference
12870  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
12871  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12872  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12873
12874  // Machine Information
12875  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12876  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
12877  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
12878  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
12879  DebugLoc DL = MI->getDebugLoc();
12880
12881  // struct va_list {
12882  //   i32   gp_offset
12883  //   i32   fp_offset
12884  //   i64   overflow_area (address)
12885  //   i64   reg_save_area (address)
12886  // }
12887  // sizeof(va_list) = 24
12888  // alignment(va_list) = 8
12889
12890  unsigned TotalNumIntRegs = 6;
12891  unsigned TotalNumXMMRegs = 8;
12892  bool UseGPOffset = (ArgMode == 1);
12893  bool UseFPOffset = (ArgMode == 2);
12894  unsigned MaxOffset = TotalNumIntRegs * 8 +
12895                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
12896
12897  /* Align ArgSize to a multiple of 8 */
12898  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
12899  bool NeedsAlign = (Align > 8);
12900
12901  MachineBasicBlock *thisMBB = MBB;
12902  MachineBasicBlock *overflowMBB;
12903  MachineBasicBlock *offsetMBB;
12904  MachineBasicBlock *endMBB;
12905
12906  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
12907  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
12908  unsigned OffsetReg = 0;
12909
12910  if (!UseGPOffset && !UseFPOffset) {
12911    // If we only pull from the overflow region, we don't create a branch.
12912    // We don't need to alter control flow.
12913    OffsetDestReg = 0; // unused
12914    OverflowDestReg = DestReg;
12915
12916    offsetMBB = NULL;
12917    overflowMBB = thisMBB;
12918    endMBB = thisMBB;
12919  } else {
12920    // First emit code to check if gp_offset (or fp_offset) is below the bound.
12921    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12922    // If not, pull from overflow_area. (branch to overflowMBB)
12923    //
12924    //       thisMBB
12925    //         |     .
12926    //         |        .
12927    //     offsetMBB   overflowMBB
12928    //         |        .
12929    //         |     .
12930    //        endMBB
12931
12932    // Registers for the PHI in endMBB
12933    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12934    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12935
12936    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12937    MachineFunction *MF = MBB->getParent();
12938    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12939    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12940    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12941
12942    MachineFunction::iterator MBBIter = MBB;
12943    ++MBBIter;
12944
12945    // Insert the new basic blocks
12946    MF->insert(MBBIter, offsetMBB);
12947    MF->insert(MBBIter, overflowMBB);
12948    MF->insert(MBBIter, endMBB);
12949
12950    // Transfer the remainder of MBB and its successor edges to endMBB.
12951    endMBB->splice(endMBB->begin(), thisMBB,
12952                    llvm::next(MachineBasicBlock::iterator(MI)),
12953                    thisMBB->end());
12954    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12955
12956    // Make offsetMBB and overflowMBB successors of thisMBB
12957    thisMBB->addSuccessor(offsetMBB);
12958    thisMBB->addSuccessor(overflowMBB);
12959
12960    // endMBB is a successor of both offsetMBB and overflowMBB
12961    offsetMBB->addSuccessor(endMBB);
12962    overflowMBB->addSuccessor(endMBB);
12963
12964    // Load the offset value into a register
12965    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12966    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12967      .addOperand(Base)
12968      .addOperand(Scale)
12969      .addOperand(Index)
12970      .addDisp(Disp, UseFPOffset ? 4 : 0)
12971      .addOperand(Segment)
12972      .setMemRefs(MMOBegin, MMOEnd);
12973
12974    // Check if there is enough room left to pull this argument.
12975    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12976      .addReg(OffsetReg)
12977      .addImm(MaxOffset + 8 - ArgSizeA8);
12978
12979    // Branch to "overflowMBB" if offset >= max
12980    // Fall through to "offsetMBB" otherwise
12981    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12982      .addMBB(overflowMBB);
12983  }
12984
12985  // In offsetMBB, emit code to use the reg_save_area.
12986  if (offsetMBB) {
12987    assert(OffsetReg != 0);
12988
12989    // Read the reg_save_area address.
12990    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12991    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12992      .addOperand(Base)
12993      .addOperand(Scale)
12994      .addOperand(Index)
12995      .addDisp(Disp, 16)
12996      .addOperand(Segment)
12997      .setMemRefs(MMOBegin, MMOEnd);
12998
12999    // Zero-extend the offset
13000    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
13001      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
13002        .addImm(0)
13003        .addReg(OffsetReg)
13004        .addImm(X86::sub_32bit);
13005
13006    // Add the offset to the reg_save_area to get the final address.
13007    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
13008      .addReg(OffsetReg64)
13009      .addReg(RegSaveReg);
13010
13011    // Compute the offset for the next argument
13012    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
13013    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
13014      .addReg(OffsetReg)
13015      .addImm(UseFPOffset ? 16 : 8);
13016
13017    // Store it back into the va_list.
13018    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
13019      .addOperand(Base)
13020      .addOperand(Scale)
13021      .addOperand(Index)
13022      .addDisp(Disp, UseFPOffset ? 4 : 0)
13023      .addOperand(Segment)
13024      .addReg(NextOffsetReg)
13025      .setMemRefs(MMOBegin, MMOEnd);
13026
13027    // Jump to endMBB
13028    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
13029      .addMBB(endMBB);
13030  }
13031
13032  //
13033  // Emit code to use overflow area
13034  //
13035
13036  // Load the overflow_area address into a register.
13037  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
13038  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
13039    .addOperand(Base)
13040    .addOperand(Scale)
13041    .addOperand(Index)
13042    .addDisp(Disp, 8)
13043    .addOperand(Segment)
13044    .setMemRefs(MMOBegin, MMOEnd);
13045
13046  // If we need to align it, do so. Otherwise, just copy the address
13047  // to OverflowDestReg.
13048  if (NeedsAlign) {
13049    // Align the overflow address
13050    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
13051    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
13052
13053    // aligned_addr = (addr + (align-1)) & ~(align-1)
13054    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
13055      .addReg(OverflowAddrReg)
13056      .addImm(Align-1);
13057
13058    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
13059      .addReg(TmpReg)
13060      .addImm(~(uint64_t)(Align-1));
13061  } else {
13062    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
13063      .addReg(OverflowAddrReg);
13064  }
13065
13066  // Compute the next overflow address after this argument.
13067  // (the overflow address should be kept 8-byte aligned)
13068  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
13069  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
13070    .addReg(OverflowDestReg)
13071    .addImm(ArgSizeA8);
13072
13073  // Store the new overflow address.
13074  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
13075    .addOperand(Base)
13076    .addOperand(Scale)
13077    .addOperand(Index)
13078    .addDisp(Disp, 8)
13079    .addOperand(Segment)
13080    .addReg(NextAddrReg)
13081    .setMemRefs(MMOBegin, MMOEnd);
13082
13083  // If we branched, emit the PHI to the front of endMBB.
13084  if (offsetMBB) {
13085    BuildMI(*endMBB, endMBB->begin(), DL,
13086            TII->get(X86::PHI), DestReg)
13087      .addReg(OffsetDestReg).addMBB(offsetMBB)
13088      .addReg(OverflowDestReg).addMBB(overflowMBB);
13089  }
13090
13091  // Erase the pseudo instruction
13092  MI->eraseFromParent();
13093
13094  return endMBB;
13095}
13096
13097MachineBasicBlock *
13098X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
13099                                                 MachineInstr *MI,
13100                                                 MachineBasicBlock *MBB) const {
13101  // Emit code to save XMM registers to the stack. The ABI says that the
13102  // number of registers to save is given in %al, so it's theoretically
13103  // possible to do an indirect jump trick to avoid saving all of them,
13104  // however this code takes a simpler approach and just executes all
13105  // of the stores if %al is non-zero. It's less code, and it's probably
13106  // easier on the hardware branch predictor, and stores aren't all that
13107  // expensive anyway.
13108
13109  // Create the new basic blocks. One block contains all the XMM stores,
13110  // and one block is the final destination regardless of whether any
13111  // stores were performed.
13112  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
13113  MachineFunction *F = MBB->getParent();
13114  MachineFunction::iterator MBBIter = MBB;
13115  ++MBBIter;
13116  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
13117  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
13118  F->insert(MBBIter, XMMSaveMBB);
13119  F->insert(MBBIter, EndMBB);
13120
13121  // Transfer the remainder of MBB and its successor edges to EndMBB.
13122  EndMBB->splice(EndMBB->begin(), MBB,
13123                 llvm::next(MachineBasicBlock::iterator(MI)),
13124                 MBB->end());
13125  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
13126
13127  // The original block will now fall through to the XMM save block.
13128  MBB->addSuccessor(XMMSaveMBB);
13129  // The XMMSaveMBB will fall through to the end block.
13130  XMMSaveMBB->addSuccessor(EndMBB);
13131
13132  // Now add the instructions.
13133  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13134  DebugLoc DL = MI->getDebugLoc();
13135
13136  unsigned CountReg = MI->getOperand(0).getReg();
13137  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
13138  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
13139
13140  if (!Subtarget->isTargetWin64()) {
13141    // If %al is 0, branch around the XMM save block.
13142    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
13143    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
13144    MBB->addSuccessor(EndMBB);
13145  }
13146
13147  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
13148  // In the XMM save block, save all the XMM argument registers.
13149  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
13150    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
13151    MachineMemOperand *MMO =
13152      F->getMachineMemOperand(
13153          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
13154        MachineMemOperand::MOStore,
13155        /*Size=*/16, /*Align=*/16);
13156    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
13157      .addFrameIndex(RegSaveFrameIndex)
13158      .addImm(/*Scale=*/1)
13159      .addReg(/*IndexReg=*/0)
13160      .addImm(/*Disp=*/Offset)
13161      .addReg(/*Segment=*/0)
13162      .addReg(MI->getOperand(i).getReg())
13163      .addMemOperand(MMO);
13164  }
13165
13166  MI->eraseFromParent();   // The pseudo instruction is gone now.
13167
13168  return EndMBB;
13169}
13170
13171// The EFLAGS operand of SelectItr might be missing a kill marker
13172// because there were multiple uses of EFLAGS, and ISel didn't know
13173// which to mark. Figure out whether SelectItr should have had a
13174// kill marker, and set it if it should. Returns the correct kill
13175// marker value.
13176static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
13177                                     MachineBasicBlock* BB,
13178                                     const TargetRegisterInfo* TRI) {
13179  // Scan forward through BB for a use/def of EFLAGS.
13180  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
13181  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
13182    const MachineInstr& mi = *miI;
13183    if (mi.readsRegister(X86::EFLAGS))
13184      return false;
13185    if (mi.definesRegister(X86::EFLAGS))
13186      break; // Should have kill-flag - update below.
13187  }
13188
13189  // If we hit the end of the block, check whether EFLAGS is live into a
13190  // successor.
13191  if (miI == BB->end()) {
13192    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
13193                                          sEnd = BB->succ_end();
13194         sItr != sEnd; ++sItr) {
13195      MachineBasicBlock* succ = *sItr;
13196      if (succ->isLiveIn(X86::EFLAGS))
13197        return false;
13198    }
13199  }
13200
13201  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
13202  // out. SelectMI should have a kill flag on EFLAGS.
13203  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
13204  return true;
13205}
13206
13207MachineBasicBlock *
13208X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
13209                                     MachineBasicBlock *BB) const {
13210  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13211  DebugLoc DL = MI->getDebugLoc();
13212
13213  // To "insert" a SELECT_CC instruction, we actually have to insert the
13214  // diamond control-flow pattern.  The incoming instruction knows the
13215  // destination vreg to set, the condition code register to branch on, the
13216  // true/false values to select between, and a branch opcode to use.
13217  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13218  MachineFunction::iterator It = BB;
13219  ++It;
13220
13221  //  thisMBB:
13222  //  ...
13223  //   TrueVal = ...
13224  //   cmpTY ccX, r1, r2
13225  //   bCC copy1MBB
13226  //   fallthrough --> copy0MBB
13227  MachineBasicBlock *thisMBB = BB;
13228  MachineFunction *F = BB->getParent();
13229  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
13230  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
13231  F->insert(It, copy0MBB);
13232  F->insert(It, sinkMBB);
13233
13234  // If the EFLAGS register isn't dead in the terminator, then claim that it's
13235  // live into the sink and copy blocks.
13236  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13237  if (!MI->killsRegister(X86::EFLAGS) &&
13238      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
13239    copy0MBB->addLiveIn(X86::EFLAGS);
13240    sinkMBB->addLiveIn(X86::EFLAGS);
13241  }
13242
13243  // Transfer the remainder of BB and its successor edges to sinkMBB.
13244  sinkMBB->splice(sinkMBB->begin(), BB,
13245                  llvm::next(MachineBasicBlock::iterator(MI)),
13246                  BB->end());
13247  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
13248
13249  // Add the true and fallthrough blocks as its successors.
13250  BB->addSuccessor(copy0MBB);
13251  BB->addSuccessor(sinkMBB);
13252
13253  // Create the conditional branch instruction.
13254  unsigned Opc =
13255    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
13256  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
13257
13258  //  copy0MBB:
13259  //   %FalseValue = ...
13260  //   # fallthrough to sinkMBB
13261  copy0MBB->addSuccessor(sinkMBB);
13262
13263  //  sinkMBB:
13264  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
13265  //  ...
13266  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13267          TII->get(X86::PHI), MI->getOperand(0).getReg())
13268    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
13269    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
13270
13271  MI->eraseFromParent();   // The pseudo instruction is gone now.
13272  return sinkMBB;
13273}
13274
13275MachineBasicBlock *
13276X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
13277                                        bool Is64Bit) const {
13278  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13279  DebugLoc DL = MI->getDebugLoc();
13280  MachineFunction *MF = BB->getParent();
13281  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13282
13283  assert(getTargetMachine().Options.EnableSegmentedStacks);
13284
13285  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
13286  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
13287
13288  // BB:
13289  //  ... [Till the alloca]
13290  // If stacklet is not large enough, jump to mallocMBB
13291  //
13292  // bumpMBB:
13293  //  Allocate by subtracting from RSP
13294  //  Jump to continueMBB
13295  //
13296  // mallocMBB:
13297  //  Allocate by call to runtime
13298  //
13299  // continueMBB:
13300  //  ...
13301  //  [rest of original BB]
13302  //
13303
13304  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13305  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13306  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13307
13308  MachineRegisterInfo &MRI = MF->getRegInfo();
13309  const TargetRegisterClass *AddrRegClass =
13310    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
13311
13312  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13313    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13314    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
13315    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
13316    sizeVReg = MI->getOperand(1).getReg(),
13317    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
13318
13319  MachineFunction::iterator MBBIter = BB;
13320  ++MBBIter;
13321
13322  MF->insert(MBBIter, bumpMBB);
13323  MF->insert(MBBIter, mallocMBB);
13324  MF->insert(MBBIter, continueMBB);
13325
13326  continueMBB->splice(continueMBB->begin(), BB, llvm::next
13327                      (MachineBasicBlock::iterator(MI)), BB->end());
13328  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
13329
13330  // Add code to the main basic block to check if the stack limit has been hit,
13331  // and if so, jump to mallocMBB otherwise to bumpMBB.
13332  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
13333  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
13334    .addReg(tmpSPVReg).addReg(sizeVReg);
13335  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
13336    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
13337    .addReg(SPLimitVReg);
13338  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
13339
13340  // bumpMBB simply decreases the stack pointer, since we know the current
13341  // stacklet has enough space.
13342  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
13343    .addReg(SPLimitVReg);
13344  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
13345    .addReg(SPLimitVReg);
13346  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13347
13348  // Calls into a routine in libgcc to allocate more space from the heap.
13349  const uint32_t *RegMask =
13350    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13351  if (Is64Bit) {
13352    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
13353      .addReg(sizeVReg);
13354    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
13355      .addExternalSymbol("__morestack_allocate_stack_space")
13356      .addRegMask(RegMask)
13357      .addReg(X86::RDI, RegState::Implicit)
13358      .addReg(X86::RAX, RegState::ImplicitDefine);
13359  } else {
13360    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
13361      .addImm(12);
13362    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
13363    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
13364      .addExternalSymbol("__morestack_allocate_stack_space")
13365      .addRegMask(RegMask)
13366      .addReg(X86::EAX, RegState::ImplicitDefine);
13367  }
13368
13369  if (!Is64Bit)
13370    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
13371      .addImm(16);
13372
13373  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
13374    .addReg(Is64Bit ? X86::RAX : X86::EAX);
13375  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13376
13377  // Set up the CFG correctly.
13378  BB->addSuccessor(bumpMBB);
13379  BB->addSuccessor(mallocMBB);
13380  mallocMBB->addSuccessor(continueMBB);
13381  bumpMBB->addSuccessor(continueMBB);
13382
13383  // Take care of the PHI nodes.
13384  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
13385          MI->getOperand(0).getReg())
13386    .addReg(mallocPtrVReg).addMBB(mallocMBB)
13387    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
13388
13389  // Delete the original pseudo instruction.
13390  MI->eraseFromParent();
13391
13392  // And we're done.
13393  return continueMBB;
13394}
13395
13396MachineBasicBlock *
13397X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
13398                                          MachineBasicBlock *BB) const {
13399  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13400  DebugLoc DL = MI->getDebugLoc();
13401
13402  assert(!Subtarget->isTargetEnvMacho());
13403
13404  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
13405  // non-trivial part is impdef of ESP.
13406
13407  if (Subtarget->isTargetWin64()) {
13408    if (Subtarget->isTargetCygMing()) {
13409      // ___chkstk(Mingw64):
13410      // Clobbers R10, R11, RAX and EFLAGS.
13411      // Updates RSP.
13412      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13413        .addExternalSymbol("___chkstk")
13414        .addReg(X86::RAX, RegState::Implicit)
13415        .addReg(X86::RSP, RegState::Implicit)
13416        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
13417        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
13418        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13419    } else {
13420      // __chkstk(MSVCRT): does not update stack pointer.
13421      // Clobbers R10, R11 and EFLAGS.
13422      // FIXME: RAX(allocated size) might be reused and not killed.
13423      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13424        .addExternalSymbol("__chkstk")
13425        .addReg(X86::RAX, RegState::Implicit)
13426        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13427      // RAX has the offset to subtracted from RSP.
13428      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
13429        .addReg(X86::RSP)
13430        .addReg(X86::RAX);
13431    }
13432  } else {
13433    const char *StackProbeSymbol =
13434      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
13435
13436    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
13437      .addExternalSymbol(StackProbeSymbol)
13438      .addReg(X86::EAX, RegState::Implicit)
13439      .addReg(X86::ESP, RegState::Implicit)
13440      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
13441      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
13442      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13443  }
13444
13445  MI->eraseFromParent();   // The pseudo instruction is gone now.
13446  return BB;
13447}
13448
13449MachineBasicBlock *
13450X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
13451                                      MachineBasicBlock *BB) const {
13452  // This is pretty easy.  We're taking the value that we received from
13453  // our load from the relocation, sticking it in either RDI (x86-64)
13454  // or EAX and doing an indirect call.  The return value will then
13455  // be in the normal return register.
13456  const X86InstrInfo *TII
13457    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
13458  DebugLoc DL = MI->getDebugLoc();
13459  MachineFunction *F = BB->getParent();
13460
13461  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
13462  assert(MI->getOperand(3).isGlobal() && "This should be a global");
13463
13464  // Get a register mask for the lowered call.
13465  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
13466  // proper register mask.
13467  const uint32_t *RegMask =
13468    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13469  if (Subtarget->is64Bit()) {
13470    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13471                                      TII->get(X86::MOV64rm), X86::RDI)
13472    .addReg(X86::RIP)
13473    .addImm(0).addReg(0)
13474    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13475                      MI->getOperand(3).getTargetFlags())
13476    .addReg(0);
13477    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
13478    addDirectMem(MIB, X86::RDI);
13479    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
13480  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
13481    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13482                                      TII->get(X86::MOV32rm), X86::EAX)
13483    .addReg(0)
13484    .addImm(0).addReg(0)
13485    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13486                      MI->getOperand(3).getTargetFlags())
13487    .addReg(0);
13488    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13489    addDirectMem(MIB, X86::EAX);
13490    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13491  } else {
13492    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13493                                      TII->get(X86::MOV32rm), X86::EAX)
13494    .addReg(TII->getGlobalBaseReg(F))
13495    .addImm(0).addReg(0)
13496    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13497                      MI->getOperand(3).getTargetFlags())
13498    .addReg(0);
13499    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13500    addDirectMem(MIB, X86::EAX);
13501    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13502  }
13503
13504  MI->eraseFromParent(); // The pseudo instruction is gone now.
13505  return BB;
13506}
13507
13508MachineBasicBlock *
13509X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
13510                                    MachineBasicBlock *MBB) const {
13511  DebugLoc DL = MI->getDebugLoc();
13512  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13513
13514  MachineFunction *MF = MBB->getParent();
13515  MachineRegisterInfo &MRI = MF->getRegInfo();
13516
13517  const BasicBlock *BB = MBB->getBasicBlock();
13518  MachineFunction::iterator I = MBB;
13519  ++I;
13520
13521  // Memory Reference
13522  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13523  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13524
13525  unsigned DstReg;
13526  unsigned MemOpndSlot = 0;
13527
13528  unsigned CurOp = 0;
13529
13530  DstReg = MI->getOperand(CurOp++).getReg();
13531  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
13532  assert(RC->hasType(MVT::i32) && "Invalid destination!");
13533  unsigned mainDstReg = MRI.createVirtualRegister(RC);
13534  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
13535
13536  MemOpndSlot = CurOp;
13537
13538  MVT PVT = getPointerTy();
13539  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
13540         "Invalid Pointer Size!");
13541
13542  // For v = setjmp(buf), we generate
13543  //
13544  // thisMBB:
13545  //  buf[LabelOffset] = restoreMBB
13546  //  SjLjSetup restoreMBB
13547  //
13548  // mainMBB:
13549  //  v_main = 0
13550  //
13551  // sinkMBB:
13552  //  v = phi(main, restore)
13553  //
13554  // restoreMBB:
13555  //  v_restore = 1
13556
13557  MachineBasicBlock *thisMBB = MBB;
13558  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13559  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13560  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
13561  MF->insert(I, mainMBB);
13562  MF->insert(I, sinkMBB);
13563  MF->push_back(restoreMBB);
13564
13565  MachineInstrBuilder MIB;
13566
13567  // Transfer the remainder of BB and its successor edges to sinkMBB.
13568  sinkMBB->splice(sinkMBB->begin(), MBB,
13569                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13570  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13571
13572  // thisMBB:
13573  unsigned PtrStoreOpc = 0;
13574  unsigned LabelReg = 0;
13575  const int64_t LabelOffset = 1 * PVT.getStoreSize();
13576  Reloc::Model RM = getTargetMachine().getRelocationModel();
13577  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
13578                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
13579
13580  // Prepare IP either in reg or imm.
13581  if (!UseImmLabel) {
13582    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
13583    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
13584    LabelReg = MRI.createVirtualRegister(PtrRC);
13585    if (Subtarget->is64Bit()) {
13586      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
13587              .addReg(X86::RIP)
13588              .addImm(0)
13589              .addReg(0)
13590              .addMBB(restoreMBB)
13591              .addReg(0);
13592    } else {
13593      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
13594      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
13595              .addReg(XII->getGlobalBaseReg(MF))
13596              .addImm(0)
13597              .addReg(0)
13598              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
13599              .addReg(0);
13600    }
13601  } else
13602    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
13603  // Store IP
13604  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
13605  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13606    if (i == X86::AddrDisp)
13607      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
13608    else
13609      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13610  }
13611  if (!UseImmLabel)
13612    MIB.addReg(LabelReg);
13613  else
13614    MIB.addMBB(restoreMBB);
13615  MIB.setMemRefs(MMOBegin, MMOEnd);
13616  // Setup
13617  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
13618          .addMBB(restoreMBB);
13619  MIB.addRegMask(RegInfo->getNoPreservedMask());
13620  thisMBB->addSuccessor(mainMBB);
13621  thisMBB->addSuccessor(restoreMBB);
13622
13623  // mainMBB:
13624  //  EAX = 0
13625  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
13626  mainMBB->addSuccessor(sinkMBB);
13627
13628  // sinkMBB:
13629  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13630          TII->get(X86::PHI), DstReg)
13631    .addReg(mainDstReg).addMBB(mainMBB)
13632    .addReg(restoreDstReg).addMBB(restoreMBB);
13633
13634  // restoreMBB:
13635  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
13636  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
13637  restoreMBB->addSuccessor(sinkMBB);
13638
13639  MI->eraseFromParent();
13640  return sinkMBB;
13641}
13642
13643MachineBasicBlock *
13644X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
13645                                     MachineBasicBlock *MBB) const {
13646  DebugLoc DL = MI->getDebugLoc();
13647  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13648
13649  MachineFunction *MF = MBB->getParent();
13650  MachineRegisterInfo &MRI = MF->getRegInfo();
13651
13652  // Memory Reference
13653  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13654  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13655
13656  MVT PVT = getPointerTy();
13657  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
13658         "Invalid Pointer Size!");
13659
13660  const TargetRegisterClass *RC =
13661    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
13662  unsigned Tmp = MRI.createVirtualRegister(RC);
13663  // Since FP is only updated here but NOT referenced, it's treated as GPR.
13664  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
13665  unsigned SP = RegInfo->getStackRegister();
13666
13667  MachineInstrBuilder MIB;
13668
13669  const int64_t LabelOffset = 1 * PVT.getStoreSize();
13670  const int64_t SPOffset = 2 * PVT.getStoreSize();
13671
13672  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
13673  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
13674
13675  // Reload FP
13676  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
13677  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13678    MIB.addOperand(MI->getOperand(i));
13679  MIB.setMemRefs(MMOBegin, MMOEnd);
13680  // Reload IP
13681  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
13682  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13683    if (i == X86::AddrDisp)
13684      MIB.addDisp(MI->getOperand(i), LabelOffset);
13685    else
13686      MIB.addOperand(MI->getOperand(i));
13687  }
13688  MIB.setMemRefs(MMOBegin, MMOEnd);
13689  // Reload SP
13690  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
13691  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13692    if (i == X86::AddrDisp)
13693      MIB.addDisp(MI->getOperand(i), SPOffset);
13694    else
13695      MIB.addOperand(MI->getOperand(i));
13696  }
13697  MIB.setMemRefs(MMOBegin, MMOEnd);
13698  // Jump
13699  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
13700
13701  MI->eraseFromParent();
13702  return MBB;
13703}
13704
13705MachineBasicBlock *
13706X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
13707                                               MachineBasicBlock *BB) const {
13708  switch (MI->getOpcode()) {
13709  default: llvm_unreachable("Unexpected instr type to insert");
13710  case X86::TAILJMPd64:
13711  case X86::TAILJMPr64:
13712  case X86::TAILJMPm64:
13713    llvm_unreachable("TAILJMP64 would not be touched here.");
13714  case X86::TCRETURNdi64:
13715  case X86::TCRETURNri64:
13716  case X86::TCRETURNmi64:
13717    return BB;
13718  case X86::WIN_ALLOCA:
13719    return EmitLoweredWinAlloca(MI, BB);
13720  case X86::SEG_ALLOCA_32:
13721    return EmitLoweredSegAlloca(MI, BB, false);
13722  case X86::SEG_ALLOCA_64:
13723    return EmitLoweredSegAlloca(MI, BB, true);
13724  case X86::TLSCall_32:
13725  case X86::TLSCall_64:
13726    return EmitLoweredTLSCall(MI, BB);
13727  case X86::CMOV_GR8:
13728  case X86::CMOV_FR32:
13729  case X86::CMOV_FR64:
13730  case X86::CMOV_V4F32:
13731  case X86::CMOV_V2F64:
13732  case X86::CMOV_V2I64:
13733  case X86::CMOV_V8F32:
13734  case X86::CMOV_V4F64:
13735  case X86::CMOV_V4I64:
13736  case X86::CMOV_GR16:
13737  case X86::CMOV_GR32:
13738  case X86::CMOV_RFP32:
13739  case X86::CMOV_RFP64:
13740  case X86::CMOV_RFP80:
13741    return EmitLoweredSelect(MI, BB);
13742
13743  case X86::FP32_TO_INT16_IN_MEM:
13744  case X86::FP32_TO_INT32_IN_MEM:
13745  case X86::FP32_TO_INT64_IN_MEM:
13746  case X86::FP64_TO_INT16_IN_MEM:
13747  case X86::FP64_TO_INT32_IN_MEM:
13748  case X86::FP64_TO_INT64_IN_MEM:
13749  case X86::FP80_TO_INT16_IN_MEM:
13750  case X86::FP80_TO_INT32_IN_MEM:
13751  case X86::FP80_TO_INT64_IN_MEM: {
13752    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13753    DebugLoc DL = MI->getDebugLoc();
13754
13755    // Change the floating point control register to use "round towards zero"
13756    // mode when truncating to an integer value.
13757    MachineFunction *F = BB->getParent();
13758    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
13759    addFrameReference(BuildMI(*BB, MI, DL,
13760                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
13761
13762    // Load the old value of the high byte of the control word...
13763    unsigned OldCW =
13764      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
13765    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
13766                      CWFrameIdx);
13767
13768    // Set the high part to be round to zero...
13769    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
13770      .addImm(0xC7F);
13771
13772    // Reload the modified control word now...
13773    addFrameReference(BuildMI(*BB, MI, DL,
13774                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13775
13776    // Restore the memory image of control word to original value
13777    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
13778      .addReg(OldCW);
13779
13780    // Get the X86 opcode to use.
13781    unsigned Opc;
13782    switch (MI->getOpcode()) {
13783    default: llvm_unreachable("illegal opcode!");
13784    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
13785    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
13786    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
13787    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
13788    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
13789    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
13790    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
13791    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
13792    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
13793    }
13794
13795    X86AddressMode AM;
13796    MachineOperand &Op = MI->getOperand(0);
13797    if (Op.isReg()) {
13798      AM.BaseType = X86AddressMode::RegBase;
13799      AM.Base.Reg = Op.getReg();
13800    } else {
13801      AM.BaseType = X86AddressMode::FrameIndexBase;
13802      AM.Base.FrameIndex = Op.getIndex();
13803    }
13804    Op = MI->getOperand(1);
13805    if (Op.isImm())
13806      AM.Scale = Op.getImm();
13807    Op = MI->getOperand(2);
13808    if (Op.isImm())
13809      AM.IndexReg = Op.getImm();
13810    Op = MI->getOperand(3);
13811    if (Op.isGlobal()) {
13812      AM.GV = Op.getGlobal();
13813    } else {
13814      AM.Disp = Op.getImm();
13815    }
13816    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
13817                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
13818
13819    // Reload the original control word now.
13820    addFrameReference(BuildMI(*BB, MI, DL,
13821                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13822
13823    MI->eraseFromParent();   // The pseudo instruction is gone now.
13824    return BB;
13825  }
13826    // String/text processing lowering.
13827  case X86::PCMPISTRM128REG:
13828  case X86::VPCMPISTRM128REG:
13829  case X86::PCMPISTRM128MEM:
13830  case X86::VPCMPISTRM128MEM:
13831  case X86::PCMPESTRM128REG:
13832  case X86::VPCMPESTRM128REG:
13833  case X86::PCMPESTRM128MEM:
13834  case X86::VPCMPESTRM128MEM: {
13835    unsigned NumArgs;
13836    bool MemArg;
13837    switch (MI->getOpcode()) {
13838    default: llvm_unreachable("illegal opcode!");
13839    case X86::PCMPISTRM128REG:
13840    case X86::VPCMPISTRM128REG:
13841      NumArgs = 3; MemArg = false; break;
13842    case X86::PCMPISTRM128MEM:
13843    case X86::VPCMPISTRM128MEM:
13844      NumArgs = 3; MemArg = true; break;
13845    case X86::PCMPESTRM128REG:
13846    case X86::VPCMPESTRM128REG:
13847      NumArgs = 5; MemArg = false; break;
13848    case X86::PCMPESTRM128MEM:
13849    case X86::VPCMPESTRM128MEM:
13850      NumArgs = 5; MemArg = true; break;
13851    }
13852    return EmitPCMP(MI, BB, NumArgs, MemArg);
13853  }
13854
13855    // Thread synchronization.
13856  case X86::MONITOR:
13857    return EmitMonitor(MI, BB);
13858
13859    // Atomic Lowering.
13860  case X86::ATOMAND8:
13861  case X86::ATOMAND16:
13862  case X86::ATOMAND32:
13863  case X86::ATOMAND64:
13864    // Fall through
13865  case X86::ATOMOR8:
13866  case X86::ATOMOR16:
13867  case X86::ATOMOR32:
13868  case X86::ATOMOR64:
13869    // Fall through
13870  case X86::ATOMXOR16:
13871  case X86::ATOMXOR8:
13872  case X86::ATOMXOR32:
13873  case X86::ATOMXOR64:
13874    // Fall through
13875  case X86::ATOMNAND8:
13876  case X86::ATOMNAND16:
13877  case X86::ATOMNAND32:
13878  case X86::ATOMNAND64:
13879    // Fall through
13880  case X86::ATOMMAX8:
13881  case X86::ATOMMAX16:
13882  case X86::ATOMMAX32:
13883  case X86::ATOMMAX64:
13884    // Fall through
13885  case X86::ATOMMIN8:
13886  case X86::ATOMMIN16:
13887  case X86::ATOMMIN32:
13888  case X86::ATOMMIN64:
13889    // Fall through
13890  case X86::ATOMUMAX8:
13891  case X86::ATOMUMAX16:
13892  case X86::ATOMUMAX32:
13893  case X86::ATOMUMAX64:
13894    // Fall through
13895  case X86::ATOMUMIN8:
13896  case X86::ATOMUMIN16:
13897  case X86::ATOMUMIN32:
13898  case X86::ATOMUMIN64:
13899    return EmitAtomicLoadArith(MI, BB);
13900
13901  // This group does 64-bit operations on a 32-bit host.
13902  case X86::ATOMAND6432:
13903  case X86::ATOMOR6432:
13904  case X86::ATOMXOR6432:
13905  case X86::ATOMNAND6432:
13906  case X86::ATOMADD6432:
13907  case X86::ATOMSUB6432:
13908  case X86::ATOMMAX6432:
13909  case X86::ATOMMIN6432:
13910  case X86::ATOMUMAX6432:
13911  case X86::ATOMUMIN6432:
13912  case X86::ATOMSWAP6432:
13913    return EmitAtomicLoadArith6432(MI, BB);
13914
13915  case X86::VASTART_SAVE_XMM_REGS:
13916    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
13917
13918  case X86::VAARG_64:
13919    return EmitVAARG64WithCustomInserter(MI, BB);
13920
13921  case X86::EH_SjLj_SetJmp32:
13922  case X86::EH_SjLj_SetJmp64:
13923    return emitEHSjLjSetJmp(MI, BB);
13924
13925  case X86::EH_SjLj_LongJmp32:
13926  case X86::EH_SjLj_LongJmp64:
13927    return emitEHSjLjLongJmp(MI, BB);
13928  }
13929}
13930
13931//===----------------------------------------------------------------------===//
13932//                           X86 Optimization Hooks
13933//===----------------------------------------------------------------------===//
13934
13935void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
13936                                                       APInt &KnownZero,
13937                                                       APInt &KnownOne,
13938                                                       const SelectionDAG &DAG,
13939                                                       unsigned Depth) const {
13940  unsigned BitWidth = KnownZero.getBitWidth();
13941  unsigned Opc = Op.getOpcode();
13942  assert((Opc >= ISD::BUILTIN_OP_END ||
13943          Opc == ISD::INTRINSIC_WO_CHAIN ||
13944          Opc == ISD::INTRINSIC_W_CHAIN ||
13945          Opc == ISD::INTRINSIC_VOID) &&
13946         "Should use MaskedValueIsZero if you don't know whether Op"
13947         " is a target node!");
13948
13949  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
13950  switch (Opc) {
13951  default: break;
13952  case X86ISD::ADD:
13953  case X86ISD::SUB:
13954  case X86ISD::ADC:
13955  case X86ISD::SBB:
13956  case X86ISD::SMUL:
13957  case X86ISD::UMUL:
13958  case X86ISD::INC:
13959  case X86ISD::DEC:
13960  case X86ISD::OR:
13961  case X86ISD::XOR:
13962  case X86ISD::AND:
13963    // These nodes' second result is a boolean.
13964    if (Op.getResNo() == 0)
13965      break;
13966    // Fallthrough
13967  case X86ISD::SETCC:
13968    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13969    break;
13970  case ISD::INTRINSIC_WO_CHAIN: {
13971    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13972    unsigned NumLoBits = 0;
13973    switch (IntId) {
13974    default: break;
13975    case Intrinsic::x86_sse_movmsk_ps:
13976    case Intrinsic::x86_avx_movmsk_ps_256:
13977    case Intrinsic::x86_sse2_movmsk_pd:
13978    case Intrinsic::x86_avx_movmsk_pd_256:
13979    case Intrinsic::x86_mmx_pmovmskb:
13980    case Intrinsic::x86_sse2_pmovmskb_128:
13981    case Intrinsic::x86_avx2_pmovmskb: {
13982      // High bits of movmskp{s|d}, pmovmskb are known zero.
13983      switch (IntId) {
13984        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13985        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
13986        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
13987        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
13988        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
13989        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
13990        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
13991        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
13992      }
13993      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
13994      break;
13995    }
13996    }
13997    break;
13998  }
13999  }
14000}
14001
14002unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
14003                                                         unsigned Depth) const {
14004  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
14005  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
14006    return Op.getValueType().getScalarType().getSizeInBits();
14007
14008  // Fallback case.
14009  return 1;
14010}
14011
14012/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
14013/// node is a GlobalAddress + offset.
14014bool X86TargetLowering::isGAPlusOffset(SDNode *N,
14015                                       const GlobalValue* &GA,
14016                                       int64_t &Offset) const {
14017  if (N->getOpcode() == X86ISD::Wrapper) {
14018    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
14019      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
14020      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
14021      return true;
14022    }
14023  }
14024  return TargetLowering::isGAPlusOffset(N, GA, Offset);
14025}
14026
14027/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
14028/// same as extracting the high 128-bit part of 256-bit vector and then
14029/// inserting the result into the low part of a new 256-bit vector
14030static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
14031  EVT VT = SVOp->getValueType(0);
14032  unsigned NumElems = VT.getVectorNumElements();
14033
14034  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14035  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
14036    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14037        SVOp->getMaskElt(j) >= 0)
14038      return false;
14039
14040  return true;
14041}
14042
14043/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
14044/// same as extracting the low 128-bit part of 256-bit vector and then
14045/// inserting the result into the high part of a new 256-bit vector
14046static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
14047  EVT VT = SVOp->getValueType(0);
14048  unsigned NumElems = VT.getVectorNumElements();
14049
14050  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14051  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
14052    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
14053        SVOp->getMaskElt(j) >= 0)
14054      return false;
14055
14056  return true;
14057}
14058
14059/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
14060static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
14061                                        TargetLowering::DAGCombinerInfo &DCI,
14062                                        const X86Subtarget* Subtarget) {
14063  DebugLoc dl = N->getDebugLoc();
14064  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
14065  SDValue V1 = SVOp->getOperand(0);
14066  SDValue V2 = SVOp->getOperand(1);
14067  EVT VT = SVOp->getValueType(0);
14068  unsigned NumElems = VT.getVectorNumElements();
14069
14070  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
14071      V2.getOpcode() == ISD::CONCAT_VECTORS) {
14072    //
14073    //                   0,0,0,...
14074    //                      |
14075    //    V      UNDEF    BUILD_VECTOR    UNDEF
14076    //     \      /           \           /
14077    //  CONCAT_VECTOR         CONCAT_VECTOR
14078    //         \                  /
14079    //          \                /
14080    //          RESULT: V + zero extended
14081    //
14082    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
14083        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
14084        V1.getOperand(1).getOpcode() != ISD::UNDEF)
14085      return SDValue();
14086
14087    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
14088      return SDValue();
14089
14090    // To match the shuffle mask, the first half of the mask should
14091    // be exactly the first vector, and all the rest a splat with the
14092    // first element of the second one.
14093    for (unsigned i = 0; i != NumElems/2; ++i)
14094      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
14095          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
14096        return SDValue();
14097
14098    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
14099    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
14100      if (Ld->hasNUsesOfValue(1, 0)) {
14101        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
14102        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
14103        SDValue ResNode =
14104          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
14105                                  Ld->getMemoryVT(),
14106                                  Ld->getPointerInfo(),
14107                                  Ld->getAlignment(),
14108                                  false/*isVolatile*/, true/*ReadMem*/,
14109                                  false/*WriteMem*/);
14110        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
14111      }
14112    }
14113
14114    // Emit a zeroed vector and insert the desired subvector on its
14115    // first half.
14116    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
14117    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
14118    return DCI.CombineTo(N, InsV);
14119  }
14120
14121  //===--------------------------------------------------------------------===//
14122  // Combine some shuffles into subvector extracts and inserts:
14123  //
14124
14125  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
14126  if (isShuffleHigh128VectorInsertLow(SVOp)) {
14127    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
14128    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
14129    return DCI.CombineTo(N, InsV);
14130  }
14131
14132  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
14133  if (isShuffleLow128VectorInsertHigh(SVOp)) {
14134    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
14135    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
14136    return DCI.CombineTo(N, InsV);
14137  }
14138
14139  return SDValue();
14140}
14141
14142/// PerformShuffleCombine - Performs several different shuffle combines.
14143static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
14144                                     TargetLowering::DAGCombinerInfo &DCI,
14145                                     const X86Subtarget *Subtarget) {
14146  DebugLoc dl = N->getDebugLoc();
14147  EVT VT = N->getValueType(0);
14148
14149  // Don't create instructions with illegal types after legalize types has run.
14150  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14151  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
14152    return SDValue();
14153
14154  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
14155  if (Subtarget->hasAVX() && VT.is256BitVector() &&
14156      N->getOpcode() == ISD::VECTOR_SHUFFLE)
14157    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
14158
14159  // Only handle 128 wide vector from here on.
14160  if (!VT.is128BitVector())
14161    return SDValue();
14162
14163  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
14164  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
14165  // consecutive, non-overlapping, and in the right order.
14166  SmallVector<SDValue, 16> Elts;
14167  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
14168    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
14169
14170  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
14171}
14172
14173
14174/// PerformTruncateCombine - Converts truncate operation to
14175/// a sequence of vector shuffle operations.
14176/// It is possible when we truncate 256-bit vector to 128-bit vector
14177static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
14178                                      TargetLowering::DAGCombinerInfo &DCI,
14179                                      const X86Subtarget *Subtarget)  {
14180  if (!DCI.isBeforeLegalizeOps())
14181    return SDValue();
14182
14183  if (!Subtarget->hasAVX())
14184    return SDValue();
14185
14186  EVT VT = N->getValueType(0);
14187  SDValue Op = N->getOperand(0);
14188  EVT OpVT = Op.getValueType();
14189  DebugLoc dl = N->getDebugLoc();
14190
14191  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
14192
14193    if (Subtarget->hasAVX2()) {
14194      // AVX2: v4i64 -> v4i32
14195
14196      // VPERMD
14197      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
14198
14199      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
14200      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
14201                                ShufMask);
14202
14203      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
14204                         DAG.getIntPtrConstant(0));
14205    }
14206
14207    // AVX: v4i64 -> v4i32
14208    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
14209                               DAG.getIntPtrConstant(0));
14210
14211    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
14212                               DAG.getIntPtrConstant(2));
14213
14214    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
14215    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
14216
14217    // PSHUFD
14218    static const int ShufMask1[] = {0, 2, 0, 0};
14219
14220    SDValue Undef = DAG.getUNDEF(VT);
14221    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1);
14222    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1);
14223
14224    // MOVLHPS
14225    static const int ShufMask2[] = {0, 1, 4, 5};
14226
14227    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
14228  }
14229
14230  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
14231
14232    if (Subtarget->hasAVX2()) {
14233      // AVX2: v8i32 -> v8i16
14234
14235      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
14236
14237      // PSHUFB
14238      SmallVector<SDValue,32> pshufbMask;
14239      for (unsigned i = 0; i < 2; ++i) {
14240        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
14241        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
14242        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
14243        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
14244        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
14245        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
14246        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
14247        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
14248        for (unsigned j = 0; j < 8; ++j)
14249          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
14250      }
14251      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
14252                               &pshufbMask[0], 32);
14253      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
14254
14255      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
14256
14257      static const int ShufMask[] = {0,  2,  -1,  -1};
14258      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
14259                                &ShufMask[0]);
14260
14261      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
14262                       DAG.getIntPtrConstant(0));
14263
14264      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
14265    }
14266
14267    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
14268                               DAG.getIntPtrConstant(0));
14269
14270    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
14271                               DAG.getIntPtrConstant(4));
14272
14273    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
14274    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
14275
14276    // PSHUFB
14277    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
14278                                   -1, -1, -1, -1, -1, -1, -1, -1};
14279
14280    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
14281    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1);
14282    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1);
14283
14284    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
14285    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
14286
14287    // MOVLHPS
14288    static const int ShufMask2[] = {0, 1, 4, 5};
14289
14290    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
14291    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
14292  }
14293
14294  return SDValue();
14295}
14296
14297/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
14298/// specific shuffle of a load can be folded into a single element load.
14299/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
14300/// shuffles have been customed lowered so we need to handle those here.
14301static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
14302                                         TargetLowering::DAGCombinerInfo &DCI) {
14303  if (DCI.isBeforeLegalizeOps())
14304    return SDValue();
14305
14306  SDValue InVec = N->getOperand(0);
14307  SDValue EltNo = N->getOperand(1);
14308
14309  if (!isa<ConstantSDNode>(EltNo))
14310    return SDValue();
14311
14312  EVT VT = InVec.getValueType();
14313
14314  bool HasShuffleIntoBitcast = false;
14315  if (InVec.getOpcode() == ISD::BITCAST) {
14316    // Don't duplicate a load with other uses.
14317    if (!InVec.hasOneUse())
14318      return SDValue();
14319    EVT BCVT = InVec.getOperand(0).getValueType();
14320    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
14321      return SDValue();
14322    InVec = InVec.getOperand(0);
14323    HasShuffleIntoBitcast = true;
14324  }
14325
14326  if (!isTargetShuffle(InVec.getOpcode()))
14327    return SDValue();
14328
14329  // Don't duplicate a load with other uses.
14330  if (!InVec.hasOneUse())
14331    return SDValue();
14332
14333  SmallVector<int, 16> ShuffleMask;
14334  bool UnaryShuffle;
14335  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
14336                            UnaryShuffle))
14337    return SDValue();
14338
14339  // Select the input vector, guarding against out of range extract vector.
14340  unsigned NumElems = VT.getVectorNumElements();
14341  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
14342  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
14343  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
14344                                         : InVec.getOperand(1);
14345
14346  // If inputs to shuffle are the same for both ops, then allow 2 uses
14347  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
14348
14349  if (LdNode.getOpcode() == ISD::BITCAST) {
14350    // Don't duplicate a load with other uses.
14351    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
14352      return SDValue();
14353
14354    AllowedUses = 1; // only allow 1 load use if we have a bitcast
14355    LdNode = LdNode.getOperand(0);
14356  }
14357
14358  if (!ISD::isNormalLoad(LdNode.getNode()))
14359    return SDValue();
14360
14361  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
14362
14363  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
14364    return SDValue();
14365
14366  if (HasShuffleIntoBitcast) {
14367    // If there's a bitcast before the shuffle, check if the load type and
14368    // alignment is valid.
14369    unsigned Align = LN0->getAlignment();
14370    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14371    unsigned NewAlign = TLI.getDataLayout()->
14372      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
14373
14374    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
14375      return SDValue();
14376  }
14377
14378  // All checks match so transform back to vector_shuffle so that DAG combiner
14379  // can finish the job
14380  DebugLoc dl = N->getDebugLoc();
14381
14382  // Create shuffle node taking into account the case that its a unary shuffle
14383  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
14384  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
14385                                 InVec.getOperand(0), Shuffle,
14386                                 &ShuffleMask[0]);
14387  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
14388  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
14389                     EltNo);
14390}
14391
14392/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
14393/// generation and convert it from being a bunch of shuffles and extracts
14394/// to a simple store and scalar loads to extract the elements.
14395static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
14396                                         TargetLowering::DAGCombinerInfo &DCI) {
14397  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
14398  if (NewOp.getNode())
14399    return NewOp;
14400
14401  SDValue InputVector = N->getOperand(0);
14402
14403  // Only operate on vectors of 4 elements, where the alternative shuffling
14404  // gets to be more expensive.
14405  if (InputVector.getValueType() != MVT::v4i32)
14406    return SDValue();
14407
14408  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
14409  // single use which is a sign-extend or zero-extend, and all elements are
14410  // used.
14411  SmallVector<SDNode *, 4> Uses;
14412  unsigned ExtractedElements = 0;
14413  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
14414       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
14415    if (UI.getUse().getResNo() != InputVector.getResNo())
14416      return SDValue();
14417
14418    SDNode *Extract = *UI;
14419    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14420      return SDValue();
14421
14422    if (Extract->getValueType(0) != MVT::i32)
14423      return SDValue();
14424    if (!Extract->hasOneUse())
14425      return SDValue();
14426    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
14427        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
14428      return SDValue();
14429    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
14430      return SDValue();
14431
14432    // Record which element was extracted.
14433    ExtractedElements |=
14434      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
14435
14436    Uses.push_back(Extract);
14437  }
14438
14439  // If not all the elements were used, this may not be worthwhile.
14440  if (ExtractedElements != 15)
14441    return SDValue();
14442
14443  // Ok, we've now decided to do the transformation.
14444  DebugLoc dl = InputVector.getDebugLoc();
14445
14446  // Store the value to a temporary stack slot.
14447  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
14448  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
14449                            MachinePointerInfo(), false, false, 0);
14450
14451  // Replace each use (extract) with a load of the appropriate element.
14452  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
14453       UE = Uses.end(); UI != UE; ++UI) {
14454    SDNode *Extract = *UI;
14455
14456    // cOMpute the element's address.
14457    SDValue Idx = Extract->getOperand(1);
14458    unsigned EltSize =
14459        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
14460    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
14461    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14462    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
14463
14464    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
14465                                     StackPtr, OffsetVal);
14466
14467    // Load the scalar.
14468    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
14469                                     ScalarAddr, MachinePointerInfo(),
14470                                     false, false, false, 0);
14471
14472    // Replace the exact with the load.
14473    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
14474  }
14475
14476  // The replacement was made in place; don't return anything.
14477  return SDValue();
14478}
14479
14480/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
14481/// nodes.
14482static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
14483                                    TargetLowering::DAGCombinerInfo &DCI,
14484                                    const X86Subtarget *Subtarget) {
14485  DebugLoc DL = N->getDebugLoc();
14486  SDValue Cond = N->getOperand(0);
14487  // Get the LHS/RHS of the select.
14488  SDValue LHS = N->getOperand(1);
14489  SDValue RHS = N->getOperand(2);
14490  EVT VT = LHS.getValueType();
14491
14492  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
14493  // instructions match the semantics of the common C idiom x<y?x:y but not
14494  // x<=y?x:y, because of how they handle negative zero (which can be
14495  // ignored in unsafe-math mode).
14496  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
14497      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
14498      (Subtarget->hasSSE2() ||
14499       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
14500    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14501
14502    unsigned Opcode = 0;
14503    // Check for x CC y ? x : y.
14504    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14505        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14506      switch (CC) {
14507      default: break;
14508      case ISD::SETULT:
14509        // Converting this to a min would handle NaNs incorrectly, and swapping
14510        // the operands would cause it to handle comparisons between positive
14511        // and negative zero incorrectly.
14512        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14513          if (!DAG.getTarget().Options.UnsafeFPMath &&
14514              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14515            break;
14516          std::swap(LHS, RHS);
14517        }
14518        Opcode = X86ISD::FMIN;
14519        break;
14520      case ISD::SETOLE:
14521        // Converting this to a min would handle comparisons between positive
14522        // and negative zero incorrectly.
14523        if (!DAG.getTarget().Options.UnsafeFPMath &&
14524            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14525          break;
14526        Opcode = X86ISD::FMIN;
14527        break;
14528      case ISD::SETULE:
14529        // Converting this to a min would handle both negative zeros and NaNs
14530        // incorrectly, but we can swap the operands to fix both.
14531        std::swap(LHS, RHS);
14532      case ISD::SETOLT:
14533      case ISD::SETLT:
14534      case ISD::SETLE:
14535        Opcode = X86ISD::FMIN;
14536        break;
14537
14538      case ISD::SETOGE:
14539        // Converting this to a max would handle comparisons between positive
14540        // and negative zero incorrectly.
14541        if (!DAG.getTarget().Options.UnsafeFPMath &&
14542            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14543          break;
14544        Opcode = X86ISD::FMAX;
14545        break;
14546      case ISD::SETUGT:
14547        // Converting this to a max would handle NaNs incorrectly, and swapping
14548        // the operands would cause it to handle comparisons between positive
14549        // and negative zero incorrectly.
14550        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14551          if (!DAG.getTarget().Options.UnsafeFPMath &&
14552              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14553            break;
14554          std::swap(LHS, RHS);
14555        }
14556        Opcode = X86ISD::FMAX;
14557        break;
14558      case ISD::SETUGE:
14559        // Converting this to a max would handle both negative zeros and NaNs
14560        // incorrectly, but we can swap the operands to fix both.
14561        std::swap(LHS, RHS);
14562      case ISD::SETOGT:
14563      case ISD::SETGT:
14564      case ISD::SETGE:
14565        Opcode = X86ISD::FMAX;
14566        break;
14567      }
14568    // Check for x CC y ? y : x -- a min/max with reversed arms.
14569    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
14570               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
14571      switch (CC) {
14572      default: break;
14573      case ISD::SETOGE:
14574        // Converting this to a min would handle comparisons between positive
14575        // and negative zero incorrectly, and swapping the operands would
14576        // cause it to handle NaNs incorrectly.
14577        if (!DAG.getTarget().Options.UnsafeFPMath &&
14578            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
14579          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14580            break;
14581          std::swap(LHS, RHS);
14582        }
14583        Opcode = X86ISD::FMIN;
14584        break;
14585      case ISD::SETUGT:
14586        // Converting this to a min would handle NaNs incorrectly.
14587        if (!DAG.getTarget().Options.UnsafeFPMath &&
14588            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
14589          break;
14590        Opcode = X86ISD::FMIN;
14591        break;
14592      case ISD::SETUGE:
14593        // Converting this to a min would handle both negative zeros and NaNs
14594        // incorrectly, but we can swap the operands to fix both.
14595        std::swap(LHS, RHS);
14596      case ISD::SETOGT:
14597      case ISD::SETGT:
14598      case ISD::SETGE:
14599        Opcode = X86ISD::FMIN;
14600        break;
14601
14602      case ISD::SETULT:
14603        // Converting this to a max would handle NaNs incorrectly.
14604        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14605          break;
14606        Opcode = X86ISD::FMAX;
14607        break;
14608      case ISD::SETOLE:
14609        // Converting this to a max would handle comparisons between positive
14610        // and negative zero incorrectly, and swapping the operands would
14611        // cause it to handle NaNs incorrectly.
14612        if (!DAG.getTarget().Options.UnsafeFPMath &&
14613            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
14614          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14615            break;
14616          std::swap(LHS, RHS);
14617        }
14618        Opcode = X86ISD::FMAX;
14619        break;
14620      case ISD::SETULE:
14621        // Converting this to a max would handle both negative zeros and NaNs
14622        // incorrectly, but we can swap the operands to fix both.
14623        std::swap(LHS, RHS);
14624      case ISD::SETOLT:
14625      case ISD::SETLT:
14626      case ISD::SETLE:
14627        Opcode = X86ISD::FMAX;
14628        break;
14629      }
14630    }
14631
14632    if (Opcode)
14633      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
14634  }
14635
14636  // If this is a select between two integer constants, try to do some
14637  // optimizations.
14638  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
14639    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
14640      // Don't do this for crazy integer types.
14641      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
14642        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
14643        // so that TrueC (the true value) is larger than FalseC.
14644        bool NeedsCondInvert = false;
14645
14646        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
14647            // Efficiently invertible.
14648            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
14649             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
14650              isa<ConstantSDNode>(Cond.getOperand(1))))) {
14651          NeedsCondInvert = true;
14652          std::swap(TrueC, FalseC);
14653        }
14654
14655        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
14656        if (FalseC->getAPIntValue() == 0 &&
14657            TrueC->getAPIntValue().isPowerOf2()) {
14658          if (NeedsCondInvert) // Invert the condition if needed.
14659            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14660                               DAG.getConstant(1, Cond.getValueType()));
14661
14662          // Zero extend the condition if needed.
14663          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
14664
14665          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14666          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
14667                             DAG.getConstant(ShAmt, MVT::i8));
14668        }
14669
14670        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
14671        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14672          if (NeedsCondInvert) // Invert the condition if needed.
14673            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14674                               DAG.getConstant(1, Cond.getValueType()));
14675
14676          // Zero extend the condition if needed.
14677          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14678                             FalseC->getValueType(0), Cond);
14679          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14680                             SDValue(FalseC, 0));
14681        }
14682
14683        // Optimize cases that will turn into an LEA instruction.  This requires
14684        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14685        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14686          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14687          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14688
14689          bool isFastMultiplier = false;
14690          if (Diff < 10) {
14691            switch ((unsigned char)Diff) {
14692              default: break;
14693              case 1:  // result = add base, cond
14694              case 2:  // result = lea base(    , cond*2)
14695              case 3:  // result = lea base(cond, cond*2)
14696              case 4:  // result = lea base(    , cond*4)
14697              case 5:  // result = lea base(cond, cond*4)
14698              case 8:  // result = lea base(    , cond*8)
14699              case 9:  // result = lea base(cond, cond*8)
14700                isFastMultiplier = true;
14701                break;
14702            }
14703          }
14704
14705          if (isFastMultiplier) {
14706            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14707            if (NeedsCondInvert) // Invert the condition if needed.
14708              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14709                                 DAG.getConstant(1, Cond.getValueType()));
14710
14711            // Zero extend the condition if needed.
14712            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14713                               Cond);
14714            // Scale the condition by the difference.
14715            if (Diff != 1)
14716              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14717                                 DAG.getConstant(Diff, Cond.getValueType()));
14718
14719            // Add the base if non-zero.
14720            if (FalseC->getAPIntValue() != 0)
14721              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14722                                 SDValue(FalseC, 0));
14723            return Cond;
14724          }
14725        }
14726      }
14727  }
14728
14729  // Canonicalize max and min:
14730  // (x > y) ? x : y -> (x >= y) ? x : y
14731  // (x < y) ? x : y -> (x <= y) ? x : y
14732  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
14733  // the need for an extra compare
14734  // against zero. e.g.
14735  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
14736  // subl   %esi, %edi
14737  // testl  %edi, %edi
14738  // movl   $0, %eax
14739  // cmovgl %edi, %eax
14740  // =>
14741  // xorl   %eax, %eax
14742  // subl   %esi, $edi
14743  // cmovsl %eax, %edi
14744  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
14745      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14746      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14747    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14748    switch (CC) {
14749    default: break;
14750    case ISD::SETLT:
14751    case ISD::SETGT: {
14752      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
14753      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
14754                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
14755      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
14756    }
14757    }
14758  }
14759
14760  // If we know that this node is legal then we know that it is going to be
14761  // matched by one of the SSE/AVX BLEND instructions. These instructions only
14762  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
14763  // to simplify previous instructions.
14764  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14765  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
14766      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
14767    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
14768
14769    // Don't optimize vector selects that map to mask-registers.
14770    if (BitWidth == 1)
14771      return SDValue();
14772
14773    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
14774    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
14775
14776    APInt KnownZero, KnownOne;
14777    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
14778                                          DCI.isBeforeLegalizeOps());
14779    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
14780        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
14781      DCI.CommitTargetLoweringOpt(TLO);
14782  }
14783
14784  return SDValue();
14785}
14786
14787// Check whether a boolean test is testing a boolean value generated by
14788// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
14789// code.
14790//
14791// Simplify the following patterns:
14792// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
14793// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
14794// to (Op EFLAGS Cond)
14795//
14796// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
14797// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
14798// to (Op EFLAGS !Cond)
14799//
14800// where Op could be BRCOND or CMOV.
14801//
14802static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
14803  // Quit if not CMP and SUB with its value result used.
14804  if (Cmp.getOpcode() != X86ISD::CMP &&
14805      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
14806      return SDValue();
14807
14808  // Quit if not used as a boolean value.
14809  if (CC != X86::COND_E && CC != X86::COND_NE)
14810    return SDValue();
14811
14812  // Check CMP operands. One of them should be 0 or 1 and the other should be
14813  // an SetCC or extended from it.
14814  SDValue Op1 = Cmp.getOperand(0);
14815  SDValue Op2 = Cmp.getOperand(1);
14816
14817  SDValue SetCC;
14818  const ConstantSDNode* C = 0;
14819  bool needOppositeCond = (CC == X86::COND_E);
14820
14821  if ((C = dyn_cast<ConstantSDNode>(Op1)))
14822    SetCC = Op2;
14823  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
14824    SetCC = Op1;
14825  else // Quit if all operands are not constants.
14826    return SDValue();
14827
14828  if (C->getZExtValue() == 1)
14829    needOppositeCond = !needOppositeCond;
14830  else if (C->getZExtValue() != 0)
14831    // Quit if the constant is neither 0 or 1.
14832    return SDValue();
14833
14834  // Skip 'zext' node.
14835  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
14836    SetCC = SetCC.getOperand(0);
14837
14838  switch (SetCC.getOpcode()) {
14839  case X86ISD::SETCC:
14840    // Set the condition code or opposite one if necessary.
14841    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
14842    if (needOppositeCond)
14843      CC = X86::GetOppositeBranchCondition(CC);
14844    return SetCC.getOperand(1);
14845  case X86ISD::CMOV: {
14846    // Check whether false/true value has canonical one, i.e. 0 or 1.
14847    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
14848    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
14849    // Quit if true value is not a constant.
14850    if (!TVal)
14851      return SDValue();
14852    // Quit if false value is not a constant.
14853    if (!FVal) {
14854      // A special case for rdrand, where 0 is set if false cond is found.
14855      SDValue Op = SetCC.getOperand(0);
14856      if (Op.getOpcode() != X86ISD::RDRAND)
14857        return SDValue();
14858    }
14859    // Quit if false value is not the constant 0 or 1.
14860    bool FValIsFalse = true;
14861    if (FVal && FVal->getZExtValue() != 0) {
14862      if (FVal->getZExtValue() != 1)
14863        return SDValue();
14864      // If FVal is 1, opposite cond is needed.
14865      needOppositeCond = !needOppositeCond;
14866      FValIsFalse = false;
14867    }
14868    // Quit if TVal is not the constant opposite of FVal.
14869    if (FValIsFalse && TVal->getZExtValue() != 1)
14870      return SDValue();
14871    if (!FValIsFalse && TVal->getZExtValue() != 0)
14872      return SDValue();
14873    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
14874    if (needOppositeCond)
14875      CC = X86::GetOppositeBranchCondition(CC);
14876    return SetCC.getOperand(3);
14877  }
14878  }
14879
14880  return SDValue();
14881}
14882
14883/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
14884static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
14885                                  TargetLowering::DAGCombinerInfo &DCI,
14886                                  const X86Subtarget *Subtarget) {
14887  DebugLoc DL = N->getDebugLoc();
14888
14889  // If the flag operand isn't dead, don't touch this CMOV.
14890  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
14891    return SDValue();
14892
14893  SDValue FalseOp = N->getOperand(0);
14894  SDValue TrueOp = N->getOperand(1);
14895  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
14896  SDValue Cond = N->getOperand(3);
14897
14898  if (CC == X86::COND_E || CC == X86::COND_NE) {
14899    switch (Cond.getOpcode()) {
14900    default: break;
14901    case X86ISD::BSR:
14902    case X86ISD::BSF:
14903      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
14904      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
14905        return (CC == X86::COND_E) ? FalseOp : TrueOp;
14906    }
14907  }
14908
14909  SDValue Flags;
14910
14911  Flags = checkBoolTestSetCCCombine(Cond, CC);
14912  if (Flags.getNode() &&
14913      // Extra check as FCMOV only supports a subset of X86 cond.
14914      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
14915    SDValue Ops[] = { FalseOp, TrueOp,
14916                      DAG.getConstant(CC, MVT::i8), Flags };
14917    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
14918                       Ops, array_lengthof(Ops));
14919  }
14920
14921  // If this is a select between two integer constants, try to do some
14922  // optimizations.  Note that the operands are ordered the opposite of SELECT
14923  // operands.
14924  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
14925    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
14926      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
14927      // larger than FalseC (the false value).
14928      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
14929        CC = X86::GetOppositeBranchCondition(CC);
14930        std::swap(TrueC, FalseC);
14931        std::swap(TrueOp, FalseOp);
14932      }
14933
14934      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
14935      // This is efficient for any integer data type (including i8/i16) and
14936      // shift amount.
14937      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
14938        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14939                           DAG.getConstant(CC, MVT::i8), Cond);
14940
14941        // Zero extend the condition if needed.
14942        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
14943
14944        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14945        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
14946                           DAG.getConstant(ShAmt, MVT::i8));
14947        if (N->getNumValues() == 2)  // Dead flag value?
14948          return DCI.CombineTo(N, Cond, SDValue());
14949        return Cond;
14950      }
14951
14952      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
14953      // for any integer data type, including i8/i16.
14954      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14955        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14956                           DAG.getConstant(CC, MVT::i8), Cond);
14957
14958        // Zero extend the condition if needed.
14959        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14960                           FalseC->getValueType(0), Cond);
14961        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14962                           SDValue(FalseC, 0));
14963
14964        if (N->getNumValues() == 2)  // Dead flag value?
14965          return DCI.CombineTo(N, Cond, SDValue());
14966        return Cond;
14967      }
14968
14969      // Optimize cases that will turn into an LEA instruction.  This requires
14970      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14971      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14972        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14973        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14974
14975        bool isFastMultiplier = false;
14976        if (Diff < 10) {
14977          switch ((unsigned char)Diff) {
14978          default: break;
14979          case 1:  // result = add base, cond
14980          case 2:  // result = lea base(    , cond*2)
14981          case 3:  // result = lea base(cond, cond*2)
14982          case 4:  // result = lea base(    , cond*4)
14983          case 5:  // result = lea base(cond, cond*4)
14984          case 8:  // result = lea base(    , cond*8)
14985          case 9:  // result = lea base(cond, cond*8)
14986            isFastMultiplier = true;
14987            break;
14988          }
14989        }
14990
14991        if (isFastMultiplier) {
14992          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14993          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14994                             DAG.getConstant(CC, MVT::i8), Cond);
14995          // Zero extend the condition if needed.
14996          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14997                             Cond);
14998          // Scale the condition by the difference.
14999          if (Diff != 1)
15000            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
15001                               DAG.getConstant(Diff, Cond.getValueType()));
15002
15003          // Add the base if non-zero.
15004          if (FalseC->getAPIntValue() != 0)
15005            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
15006                               SDValue(FalseC, 0));
15007          if (N->getNumValues() == 2)  // Dead flag value?
15008            return DCI.CombineTo(N, Cond, SDValue());
15009          return Cond;
15010        }
15011      }
15012    }
15013  }
15014
15015  // Handle these cases:
15016  //   (select (x != c), e, c) -> select (x != c), e, x),
15017  //   (select (x == c), c, e) -> select (x == c), x, e)
15018  // where the c is an integer constant, and the "select" is the combination
15019  // of CMOV and CMP.
15020  //
15021  // The rationale for this change is that the conditional-move from a constant
15022  // needs two instructions, however, conditional-move from a register needs
15023  // only one instruction.
15024  //
15025  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
15026  //  some instruction-combining opportunities. This opt needs to be
15027  //  postponed as late as possible.
15028  //
15029  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
15030    // the DCI.xxxx conditions are provided to postpone the optimization as
15031    // late as possible.
15032
15033    ConstantSDNode *CmpAgainst = 0;
15034    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
15035        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
15036        dyn_cast<ConstantSDNode>(Cond.getOperand(0)) == 0) {
15037
15038      if (CC == X86::COND_NE &&
15039          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
15040        CC = X86::GetOppositeBranchCondition(CC);
15041        std::swap(TrueOp, FalseOp);
15042      }
15043
15044      if (CC == X86::COND_E &&
15045          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
15046        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
15047                          DAG.getConstant(CC, MVT::i8), Cond };
15048        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
15049                           array_lengthof(Ops));
15050      }
15051    }
15052  }
15053
15054  return SDValue();
15055}
15056
15057
15058/// PerformMulCombine - Optimize a single multiply with constant into two
15059/// in order to implement it with two cheaper instructions, e.g.
15060/// LEA + SHL, LEA + LEA.
15061static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
15062                                 TargetLowering::DAGCombinerInfo &DCI) {
15063  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15064    return SDValue();
15065
15066  EVT VT = N->getValueType(0);
15067  if (VT != MVT::i64)
15068    return SDValue();
15069
15070  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
15071  if (!C)
15072    return SDValue();
15073  uint64_t MulAmt = C->getZExtValue();
15074  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
15075    return SDValue();
15076
15077  uint64_t MulAmt1 = 0;
15078  uint64_t MulAmt2 = 0;
15079  if ((MulAmt % 9) == 0) {
15080    MulAmt1 = 9;
15081    MulAmt2 = MulAmt / 9;
15082  } else if ((MulAmt % 5) == 0) {
15083    MulAmt1 = 5;
15084    MulAmt2 = MulAmt / 5;
15085  } else if ((MulAmt % 3) == 0) {
15086    MulAmt1 = 3;
15087    MulAmt2 = MulAmt / 3;
15088  }
15089  if (MulAmt2 &&
15090      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
15091    DebugLoc DL = N->getDebugLoc();
15092
15093    if (isPowerOf2_64(MulAmt2) &&
15094        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
15095      // If second multiplifer is pow2, issue it first. We want the multiply by
15096      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
15097      // is an add.
15098      std::swap(MulAmt1, MulAmt2);
15099
15100    SDValue NewMul;
15101    if (isPowerOf2_64(MulAmt1))
15102      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15103                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
15104    else
15105      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
15106                           DAG.getConstant(MulAmt1, VT));
15107
15108    if (isPowerOf2_64(MulAmt2))
15109      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
15110                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
15111    else
15112      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
15113                           DAG.getConstant(MulAmt2, VT));
15114
15115    // Do not add new nodes to DAG combiner worklist.
15116    DCI.CombineTo(N, NewMul, false);
15117  }
15118  return SDValue();
15119}
15120
15121static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
15122  SDValue N0 = N->getOperand(0);
15123  SDValue N1 = N->getOperand(1);
15124  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
15125  EVT VT = N0.getValueType();
15126
15127  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
15128  // since the result of setcc_c is all zero's or all ones.
15129  if (VT.isInteger() && !VT.isVector() &&
15130      N1C && N0.getOpcode() == ISD::AND &&
15131      N0.getOperand(1).getOpcode() == ISD::Constant) {
15132    SDValue N00 = N0.getOperand(0);
15133    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
15134        ((N00.getOpcode() == ISD::ANY_EXTEND ||
15135          N00.getOpcode() == ISD::ZERO_EXTEND) &&
15136         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
15137      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
15138      APInt ShAmt = N1C->getAPIntValue();
15139      Mask = Mask.shl(ShAmt);
15140      if (Mask != 0)
15141        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
15142                           N00, DAG.getConstant(Mask, VT));
15143    }
15144  }
15145
15146
15147  // Hardware support for vector shifts is sparse which makes us scalarize the
15148  // vector operations in many cases. Also, on sandybridge ADD is faster than
15149  // shl.
15150  // (shl V, 1) -> add V,V
15151  if (isSplatVector(N1.getNode())) {
15152    assert(N0.getValueType().isVector() && "Invalid vector shift type");
15153    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
15154    // We shift all of the values by one. In many cases we do not have
15155    // hardware support for this operation. This is better expressed as an ADD
15156    // of two values.
15157    if (N1C && (1 == N1C->getZExtValue())) {
15158      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
15159    }
15160  }
15161
15162  return SDValue();
15163}
15164
15165/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
15166///                       when possible.
15167static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
15168                                   TargetLowering::DAGCombinerInfo &DCI,
15169                                   const X86Subtarget *Subtarget) {
15170  EVT VT = N->getValueType(0);
15171  if (N->getOpcode() == ISD::SHL) {
15172    SDValue V = PerformSHLCombine(N, DAG);
15173    if (V.getNode()) return V;
15174  }
15175
15176  // On X86 with SSE2 support, we can transform this to a vector shift if
15177  // all elements are shifted by the same amount.  We can't do this in legalize
15178  // because the a constant vector is typically transformed to a constant pool
15179  // so we have no knowledge of the shift amount.
15180  if (!Subtarget->hasSSE2())
15181    return SDValue();
15182
15183  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
15184      (!Subtarget->hasAVX2() ||
15185       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
15186    return SDValue();
15187
15188  SDValue ShAmtOp = N->getOperand(1);
15189  EVT EltVT = VT.getVectorElementType();
15190  DebugLoc DL = N->getDebugLoc();
15191  SDValue BaseShAmt = SDValue();
15192  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
15193    unsigned NumElts = VT.getVectorNumElements();
15194    unsigned i = 0;
15195    for (; i != NumElts; ++i) {
15196      SDValue Arg = ShAmtOp.getOperand(i);
15197      if (Arg.getOpcode() == ISD::UNDEF) continue;
15198      BaseShAmt = Arg;
15199      break;
15200    }
15201    // Handle the case where the build_vector is all undef
15202    // FIXME: Should DAG allow this?
15203    if (i == NumElts)
15204      return SDValue();
15205
15206    for (; i != NumElts; ++i) {
15207      SDValue Arg = ShAmtOp.getOperand(i);
15208      if (Arg.getOpcode() == ISD::UNDEF) continue;
15209      if (Arg != BaseShAmt) {
15210        return SDValue();
15211      }
15212    }
15213  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
15214             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
15215    SDValue InVec = ShAmtOp.getOperand(0);
15216    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
15217      unsigned NumElts = InVec.getValueType().getVectorNumElements();
15218      unsigned i = 0;
15219      for (; i != NumElts; ++i) {
15220        SDValue Arg = InVec.getOperand(i);
15221        if (Arg.getOpcode() == ISD::UNDEF) continue;
15222        BaseShAmt = Arg;
15223        break;
15224      }
15225    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
15226       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
15227         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
15228         if (C->getZExtValue() == SplatIdx)
15229           BaseShAmt = InVec.getOperand(1);
15230       }
15231    }
15232    if (BaseShAmt.getNode() == 0) {
15233      // Don't create instructions with illegal types after legalize
15234      // types has run.
15235      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
15236          !DCI.isBeforeLegalize())
15237        return SDValue();
15238
15239      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
15240                              DAG.getIntPtrConstant(0));
15241    }
15242  } else
15243    return SDValue();
15244
15245  // The shift amount is an i32.
15246  if (EltVT.bitsGT(MVT::i32))
15247    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
15248  else if (EltVT.bitsLT(MVT::i32))
15249    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
15250
15251  // The shift amount is identical so we can do a vector shift.
15252  SDValue  ValOp = N->getOperand(0);
15253  switch (N->getOpcode()) {
15254  default:
15255    llvm_unreachable("Unknown shift opcode!");
15256  case ISD::SHL:
15257    switch (VT.getSimpleVT().SimpleTy) {
15258    default: return SDValue();
15259    case MVT::v2i64:
15260    case MVT::v4i32:
15261    case MVT::v8i16:
15262    case MVT::v4i64:
15263    case MVT::v8i32:
15264    case MVT::v16i16:
15265      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
15266    }
15267  case ISD::SRA:
15268    switch (VT.getSimpleVT().SimpleTy) {
15269    default: return SDValue();
15270    case MVT::v4i32:
15271    case MVT::v8i16:
15272    case MVT::v8i32:
15273    case MVT::v16i16:
15274      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
15275    }
15276  case ISD::SRL:
15277    switch (VT.getSimpleVT().SimpleTy) {
15278    default: return SDValue();
15279    case MVT::v2i64:
15280    case MVT::v4i32:
15281    case MVT::v8i16:
15282    case MVT::v4i64:
15283    case MVT::v8i32:
15284    case MVT::v16i16:
15285      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
15286    }
15287  }
15288}
15289
15290
15291// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
15292// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
15293// and friends.  Likewise for OR -> CMPNEQSS.
15294static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
15295                            TargetLowering::DAGCombinerInfo &DCI,
15296                            const X86Subtarget *Subtarget) {
15297  unsigned opcode;
15298
15299  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
15300  // we're requiring SSE2 for both.
15301  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
15302    SDValue N0 = N->getOperand(0);
15303    SDValue N1 = N->getOperand(1);
15304    SDValue CMP0 = N0->getOperand(1);
15305    SDValue CMP1 = N1->getOperand(1);
15306    DebugLoc DL = N->getDebugLoc();
15307
15308    // The SETCCs should both refer to the same CMP.
15309    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
15310      return SDValue();
15311
15312    SDValue CMP00 = CMP0->getOperand(0);
15313    SDValue CMP01 = CMP0->getOperand(1);
15314    EVT     VT    = CMP00.getValueType();
15315
15316    if (VT == MVT::f32 || VT == MVT::f64) {
15317      bool ExpectingFlags = false;
15318      // Check for any users that want flags:
15319      for (SDNode::use_iterator UI = N->use_begin(),
15320             UE = N->use_end();
15321           !ExpectingFlags && UI != UE; ++UI)
15322        switch (UI->getOpcode()) {
15323        default:
15324        case ISD::BR_CC:
15325        case ISD::BRCOND:
15326        case ISD::SELECT:
15327          ExpectingFlags = true;
15328          break;
15329        case ISD::CopyToReg:
15330        case ISD::SIGN_EXTEND:
15331        case ISD::ZERO_EXTEND:
15332        case ISD::ANY_EXTEND:
15333          break;
15334        }
15335
15336      if (!ExpectingFlags) {
15337        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
15338        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
15339
15340        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
15341          X86::CondCode tmp = cc0;
15342          cc0 = cc1;
15343          cc1 = tmp;
15344        }
15345
15346        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
15347            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
15348          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
15349          X86ISD::NodeType NTOperator = is64BitFP ?
15350            X86ISD::FSETCCsd : X86ISD::FSETCCss;
15351          // FIXME: need symbolic constants for these magic numbers.
15352          // See X86ATTInstPrinter.cpp:printSSECC().
15353          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
15354          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
15355                                              DAG.getConstant(x86cc, MVT::i8));
15356          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
15357                                              OnesOrZeroesF);
15358          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
15359                                      DAG.getConstant(1, MVT::i32));
15360          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
15361          return OneBitOfTruth;
15362        }
15363      }
15364    }
15365  }
15366  return SDValue();
15367}
15368
15369/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
15370/// so it can be folded inside ANDNP.
15371static bool CanFoldXORWithAllOnes(const SDNode *N) {
15372  EVT VT = N->getValueType(0);
15373
15374  // Match direct AllOnes for 128 and 256-bit vectors
15375  if (ISD::isBuildVectorAllOnes(N))
15376    return true;
15377
15378  // Look through a bit convert.
15379  if (N->getOpcode() == ISD::BITCAST)
15380    N = N->getOperand(0).getNode();
15381
15382  // Sometimes the operand may come from a insert_subvector building a 256-bit
15383  // allones vector
15384  if (VT.is256BitVector() &&
15385      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
15386    SDValue V1 = N->getOperand(0);
15387    SDValue V2 = N->getOperand(1);
15388
15389    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
15390        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
15391        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
15392        ISD::isBuildVectorAllOnes(V2.getNode()))
15393      return true;
15394  }
15395
15396  return false;
15397}
15398
15399static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
15400                                 TargetLowering::DAGCombinerInfo &DCI,
15401                                 const X86Subtarget *Subtarget) {
15402  if (DCI.isBeforeLegalizeOps())
15403    return SDValue();
15404
15405  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
15406  if (R.getNode())
15407    return R;
15408
15409  EVT VT = N->getValueType(0);
15410
15411  // Create ANDN, BLSI, and BLSR instructions
15412  // BLSI is X & (-X)
15413  // BLSR is X & (X-1)
15414  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
15415    SDValue N0 = N->getOperand(0);
15416    SDValue N1 = N->getOperand(1);
15417    DebugLoc DL = N->getDebugLoc();
15418
15419    // Check LHS for not
15420    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
15421      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
15422    // Check RHS for not
15423    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
15424      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
15425
15426    // Check LHS for neg
15427    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
15428        isZero(N0.getOperand(0)))
15429      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
15430
15431    // Check RHS for neg
15432    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
15433        isZero(N1.getOperand(0)))
15434      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
15435
15436    // Check LHS for X-1
15437    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15438        isAllOnes(N0.getOperand(1)))
15439      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
15440
15441    // Check RHS for X-1
15442    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15443        isAllOnes(N1.getOperand(1)))
15444      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
15445
15446    return SDValue();
15447  }
15448
15449  // Want to form ANDNP nodes:
15450  // 1) In the hopes of then easily combining them with OR and AND nodes
15451  //    to form PBLEND/PSIGN.
15452  // 2) To match ANDN packed intrinsics
15453  if (VT != MVT::v2i64 && VT != MVT::v4i64)
15454    return SDValue();
15455
15456  SDValue N0 = N->getOperand(0);
15457  SDValue N1 = N->getOperand(1);
15458  DebugLoc DL = N->getDebugLoc();
15459
15460  // Check LHS for vnot
15461  if (N0.getOpcode() == ISD::XOR &&
15462      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
15463      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
15464    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
15465
15466  // Check RHS for vnot
15467  if (N1.getOpcode() == ISD::XOR &&
15468      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
15469      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
15470    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
15471
15472  return SDValue();
15473}
15474
15475static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
15476                                TargetLowering::DAGCombinerInfo &DCI,
15477                                const X86Subtarget *Subtarget) {
15478  if (DCI.isBeforeLegalizeOps())
15479    return SDValue();
15480
15481  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
15482  if (R.getNode())
15483    return R;
15484
15485  EVT VT = N->getValueType(0);
15486
15487  SDValue N0 = N->getOperand(0);
15488  SDValue N1 = N->getOperand(1);
15489
15490  // look for psign/blend
15491  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
15492    if (!Subtarget->hasSSSE3() ||
15493        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
15494      return SDValue();
15495
15496    // Canonicalize pandn to RHS
15497    if (N0.getOpcode() == X86ISD::ANDNP)
15498      std::swap(N0, N1);
15499    // or (and (m, y), (pandn m, x))
15500    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
15501      SDValue Mask = N1.getOperand(0);
15502      SDValue X    = N1.getOperand(1);
15503      SDValue Y;
15504      if (N0.getOperand(0) == Mask)
15505        Y = N0.getOperand(1);
15506      if (N0.getOperand(1) == Mask)
15507        Y = N0.getOperand(0);
15508
15509      // Check to see if the mask appeared in both the AND and ANDNP and
15510      if (!Y.getNode())
15511        return SDValue();
15512
15513      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
15514      // Look through mask bitcast.
15515      if (Mask.getOpcode() == ISD::BITCAST)
15516        Mask = Mask.getOperand(0);
15517      if (X.getOpcode() == ISD::BITCAST)
15518        X = X.getOperand(0);
15519      if (Y.getOpcode() == ISD::BITCAST)
15520        Y = Y.getOperand(0);
15521
15522      EVT MaskVT = Mask.getValueType();
15523
15524      // Validate that the Mask operand is a vector sra node.
15525      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
15526      // there is no psrai.b
15527      if (Mask.getOpcode() != X86ISD::VSRAI)
15528        return SDValue();
15529
15530      // Check that the SRA is all signbits.
15531      SDValue SraC = Mask.getOperand(1);
15532      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
15533      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
15534      if ((SraAmt + 1) != EltBits)
15535        return SDValue();
15536
15537      DebugLoc DL = N->getDebugLoc();
15538
15539      // Now we know we at least have a plendvb with the mask val.  See if
15540      // we can form a psignb/w/d.
15541      // psign = x.type == y.type == mask.type && y = sub(0, x);
15542      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
15543          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
15544          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
15545        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
15546               "Unsupported VT for PSIGN");
15547        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
15548        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15549      }
15550      // PBLENDVB only available on SSE 4.1
15551      if (!Subtarget->hasSSE41())
15552        return SDValue();
15553
15554      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
15555
15556      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
15557      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
15558      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
15559      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
15560      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15561    }
15562  }
15563
15564  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
15565    return SDValue();
15566
15567  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
15568  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
15569    std::swap(N0, N1);
15570  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
15571    return SDValue();
15572  if (!N0.hasOneUse() || !N1.hasOneUse())
15573    return SDValue();
15574
15575  SDValue ShAmt0 = N0.getOperand(1);
15576  if (ShAmt0.getValueType() != MVT::i8)
15577    return SDValue();
15578  SDValue ShAmt1 = N1.getOperand(1);
15579  if (ShAmt1.getValueType() != MVT::i8)
15580    return SDValue();
15581  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
15582    ShAmt0 = ShAmt0.getOperand(0);
15583  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
15584    ShAmt1 = ShAmt1.getOperand(0);
15585
15586  DebugLoc DL = N->getDebugLoc();
15587  unsigned Opc = X86ISD::SHLD;
15588  SDValue Op0 = N0.getOperand(0);
15589  SDValue Op1 = N1.getOperand(0);
15590  if (ShAmt0.getOpcode() == ISD::SUB) {
15591    Opc = X86ISD::SHRD;
15592    std::swap(Op0, Op1);
15593    std::swap(ShAmt0, ShAmt1);
15594  }
15595
15596  unsigned Bits = VT.getSizeInBits();
15597  if (ShAmt1.getOpcode() == ISD::SUB) {
15598    SDValue Sum = ShAmt1.getOperand(0);
15599    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
15600      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
15601      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
15602        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
15603      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
15604        return DAG.getNode(Opc, DL, VT,
15605                           Op0, Op1,
15606                           DAG.getNode(ISD::TRUNCATE, DL,
15607                                       MVT::i8, ShAmt0));
15608    }
15609  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
15610    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
15611    if (ShAmt0C &&
15612        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
15613      return DAG.getNode(Opc, DL, VT,
15614                         N0.getOperand(0), N1.getOperand(0),
15615                         DAG.getNode(ISD::TRUNCATE, DL,
15616                                       MVT::i8, ShAmt0));
15617  }
15618
15619  return SDValue();
15620}
15621
15622// Generate NEG and CMOV for integer abs.
15623static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
15624  EVT VT = N->getValueType(0);
15625
15626  // Since X86 does not have CMOV for 8-bit integer, we don't convert
15627  // 8-bit integer abs to NEG and CMOV.
15628  if (VT.isInteger() && VT.getSizeInBits() == 8)
15629    return SDValue();
15630
15631  SDValue N0 = N->getOperand(0);
15632  SDValue N1 = N->getOperand(1);
15633  DebugLoc DL = N->getDebugLoc();
15634
15635  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
15636  // and change it to SUB and CMOV.
15637  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
15638      N0.getOpcode() == ISD::ADD &&
15639      N0.getOperand(1) == N1 &&
15640      N1.getOpcode() == ISD::SRA &&
15641      N1.getOperand(0) == N0.getOperand(0))
15642    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
15643      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
15644        // Generate SUB & CMOV.
15645        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
15646                                  DAG.getConstant(0, VT), N0.getOperand(0));
15647
15648        SDValue Ops[] = { N0.getOperand(0), Neg,
15649                          DAG.getConstant(X86::COND_GE, MVT::i8),
15650                          SDValue(Neg.getNode(), 1) };
15651        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
15652                           Ops, array_lengthof(Ops));
15653      }
15654  return SDValue();
15655}
15656
15657// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
15658static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
15659                                 TargetLowering::DAGCombinerInfo &DCI,
15660                                 const X86Subtarget *Subtarget) {
15661  if (DCI.isBeforeLegalizeOps())
15662    return SDValue();
15663
15664  if (Subtarget->hasCMov()) {
15665    SDValue RV = performIntegerAbsCombine(N, DAG);
15666    if (RV.getNode())
15667      return RV;
15668  }
15669
15670  // Try forming BMI if it is available.
15671  if (!Subtarget->hasBMI())
15672    return SDValue();
15673
15674  EVT VT = N->getValueType(0);
15675
15676  if (VT != MVT::i32 && VT != MVT::i64)
15677    return SDValue();
15678
15679  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
15680
15681  // Create BLSMSK instructions by finding X ^ (X-1)
15682  SDValue N0 = N->getOperand(0);
15683  SDValue N1 = N->getOperand(1);
15684  DebugLoc DL = N->getDebugLoc();
15685
15686  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15687      isAllOnes(N0.getOperand(1)))
15688    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
15689
15690  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15691      isAllOnes(N1.getOperand(1)))
15692    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
15693
15694  return SDValue();
15695}
15696
15697/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
15698static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
15699                                  TargetLowering::DAGCombinerInfo &DCI,
15700                                  const X86Subtarget *Subtarget) {
15701  LoadSDNode *Ld = cast<LoadSDNode>(N);
15702  EVT RegVT = Ld->getValueType(0);
15703  EVT MemVT = Ld->getMemoryVT();
15704  DebugLoc dl = Ld->getDebugLoc();
15705  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15706
15707  ISD::LoadExtType Ext = Ld->getExtensionType();
15708
15709  // If this is a vector EXT Load then attempt to optimize it using a
15710  // shuffle. We need SSSE3 shuffles.
15711  // TODO: It is possible to support ZExt by zeroing the undef values
15712  // during the shuffle phase or after the shuffle.
15713  if (RegVT.isVector() && RegVT.isInteger() &&
15714      Ext == ISD::EXTLOAD && Subtarget->hasSSSE3()) {
15715    assert(MemVT != RegVT && "Cannot extend to the same type");
15716    assert(MemVT.isVector() && "Must load a vector from memory");
15717
15718    unsigned NumElems = RegVT.getVectorNumElements();
15719    unsigned RegSz = RegVT.getSizeInBits();
15720    unsigned MemSz = MemVT.getSizeInBits();
15721    assert(RegSz > MemSz && "Register size must be greater than the mem size");
15722
15723    // All sizes must be a power of two.
15724    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
15725      return SDValue();
15726
15727    // Attempt to load the original value using scalar loads.
15728    // Find the largest scalar type that divides the total loaded size.
15729    MVT SclrLoadTy = MVT::i8;
15730    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15731         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15732      MVT Tp = (MVT::SimpleValueType)tp;
15733      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
15734        SclrLoadTy = Tp;
15735      }
15736    }
15737
15738    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15739    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
15740        (64 <= MemSz))
15741      SclrLoadTy = MVT::f64;
15742
15743    // Calculate the number of scalar loads that we need to perform
15744    // in order to load our vector from memory.
15745    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
15746
15747    // Represent our vector as a sequence of elements which are the
15748    // largest scalar that we can load.
15749    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
15750      RegSz/SclrLoadTy.getSizeInBits());
15751
15752    // Represent the data using the same element type that is stored in
15753    // memory. In practice, we ''widen'' MemVT.
15754    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
15755                                  RegSz/MemVT.getScalarType().getSizeInBits());
15756
15757    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
15758      "Invalid vector type");
15759
15760    // We can't shuffle using an illegal type.
15761    if (!TLI.isTypeLegal(WideVecVT))
15762      return SDValue();
15763
15764    SmallVector<SDValue, 8> Chains;
15765    SDValue Ptr = Ld->getBasePtr();
15766    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
15767                                        TLI.getPointerTy());
15768    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
15769
15770    for (unsigned i = 0; i < NumLoads; ++i) {
15771      // Perform a single load.
15772      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
15773                                       Ptr, Ld->getPointerInfo(),
15774                                       Ld->isVolatile(), Ld->isNonTemporal(),
15775                                       Ld->isInvariant(), Ld->getAlignment());
15776      Chains.push_back(ScalarLoad.getValue(1));
15777      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
15778      // another round of DAGCombining.
15779      if (i == 0)
15780        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
15781      else
15782        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
15783                          ScalarLoad, DAG.getIntPtrConstant(i));
15784
15785      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15786    }
15787
15788    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15789                               Chains.size());
15790
15791    // Bitcast the loaded value to a vector of the original element type, in
15792    // the size of the target vector type.
15793    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
15794    unsigned SizeRatio = RegSz/MemSz;
15795
15796    // Redistribute the loaded elements into the different locations.
15797    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15798    for (unsigned i = 0; i != NumElems; ++i)
15799      ShuffleVec[i*SizeRatio] = i;
15800
15801    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
15802                                         DAG.getUNDEF(WideVecVT),
15803                                         &ShuffleVec[0]);
15804
15805    // Bitcast to the requested type.
15806    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
15807    // Replace the original load with the new sequence
15808    // and return the new chain.
15809    return DCI.CombineTo(N, Shuff, TF, true);
15810  }
15811
15812  return SDValue();
15813}
15814
15815/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
15816static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
15817                                   const X86Subtarget *Subtarget) {
15818  StoreSDNode *St = cast<StoreSDNode>(N);
15819  EVT VT = St->getValue().getValueType();
15820  EVT StVT = St->getMemoryVT();
15821  DebugLoc dl = St->getDebugLoc();
15822  SDValue StoredVal = St->getOperand(1);
15823  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15824
15825  // If we are saving a concatenation of two XMM registers, perform two stores.
15826  // On Sandy Bridge, 256-bit memory operations are executed by two
15827  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
15828  // memory  operation.
15829  if (VT.is256BitVector() && !Subtarget->hasAVX2() &&
15830      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
15831      StoredVal.getNumOperands() == 2) {
15832    SDValue Value0 = StoredVal.getOperand(0);
15833    SDValue Value1 = StoredVal.getOperand(1);
15834
15835    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
15836    SDValue Ptr0 = St->getBasePtr();
15837    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
15838
15839    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
15840                                St->getPointerInfo(), St->isVolatile(),
15841                                St->isNonTemporal(), St->getAlignment());
15842    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
15843                                St->getPointerInfo(), St->isVolatile(),
15844                                St->isNonTemporal(), St->getAlignment());
15845    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
15846  }
15847
15848  // Optimize trunc store (of multiple scalars) to shuffle and store.
15849  // First, pack all of the elements in one place. Next, store to memory
15850  // in fewer chunks.
15851  if (St->isTruncatingStore() && VT.isVector()) {
15852    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15853    unsigned NumElems = VT.getVectorNumElements();
15854    assert(StVT != VT && "Cannot truncate to the same type");
15855    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
15856    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
15857
15858    // From, To sizes and ElemCount must be pow of two
15859    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
15860    // We are going to use the original vector elt for storing.
15861    // Accumulated smaller vector elements must be a multiple of the store size.
15862    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
15863
15864    unsigned SizeRatio  = FromSz / ToSz;
15865
15866    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
15867
15868    // Create a type on which we perform the shuffle
15869    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
15870            StVT.getScalarType(), NumElems*SizeRatio);
15871
15872    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
15873
15874    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
15875    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15876    for (unsigned i = 0; i != NumElems; ++i)
15877      ShuffleVec[i] = i * SizeRatio;
15878
15879    // Can't shuffle using an illegal type.
15880    if (!TLI.isTypeLegal(WideVecVT))
15881      return SDValue();
15882
15883    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
15884                                         DAG.getUNDEF(WideVecVT),
15885                                         &ShuffleVec[0]);
15886    // At this point all of the data is stored at the bottom of the
15887    // register. We now need to save it to mem.
15888
15889    // Find the largest store unit
15890    MVT StoreType = MVT::i8;
15891    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15892         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15893      MVT Tp = (MVT::SimpleValueType)tp;
15894      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
15895        StoreType = Tp;
15896    }
15897
15898    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15899    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
15900        (64 <= NumElems * ToSz))
15901      StoreType = MVT::f64;
15902
15903    // Bitcast the original vector into a vector of store-size units
15904    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
15905            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
15906    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
15907    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
15908    SmallVector<SDValue, 8> Chains;
15909    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
15910                                        TLI.getPointerTy());
15911    SDValue Ptr = St->getBasePtr();
15912
15913    // Perform one or more big stores into memory.
15914    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
15915      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
15916                                   StoreType, ShuffWide,
15917                                   DAG.getIntPtrConstant(i));
15918      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
15919                                St->getPointerInfo(), St->isVolatile(),
15920                                St->isNonTemporal(), St->getAlignment());
15921      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15922      Chains.push_back(Ch);
15923    }
15924
15925    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15926                               Chains.size());
15927  }
15928
15929
15930  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
15931  // the FP state in cases where an emms may be missing.
15932  // A preferable solution to the general problem is to figure out the right
15933  // places to insert EMMS.  This qualifies as a quick hack.
15934
15935  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
15936  if (VT.getSizeInBits() != 64)
15937    return SDValue();
15938
15939  const Function *F = DAG.getMachineFunction().getFunction();
15940  bool NoImplicitFloatOps = F->getFnAttributes().
15941    hasAttribute(Attributes::NoImplicitFloat);
15942  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
15943                     && Subtarget->hasSSE2();
15944  if ((VT.isVector() ||
15945       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
15946      isa<LoadSDNode>(St->getValue()) &&
15947      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
15948      St->getChain().hasOneUse() && !St->isVolatile()) {
15949    SDNode* LdVal = St->getValue().getNode();
15950    LoadSDNode *Ld = 0;
15951    int TokenFactorIndex = -1;
15952    SmallVector<SDValue, 8> Ops;
15953    SDNode* ChainVal = St->getChain().getNode();
15954    // Must be a store of a load.  We currently handle two cases:  the load
15955    // is a direct child, and it's under an intervening TokenFactor.  It is
15956    // possible to dig deeper under nested TokenFactors.
15957    if (ChainVal == LdVal)
15958      Ld = cast<LoadSDNode>(St->getChain());
15959    else if (St->getValue().hasOneUse() &&
15960             ChainVal->getOpcode() == ISD::TokenFactor) {
15961      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
15962        if (ChainVal->getOperand(i).getNode() == LdVal) {
15963          TokenFactorIndex = i;
15964          Ld = cast<LoadSDNode>(St->getValue());
15965        } else
15966          Ops.push_back(ChainVal->getOperand(i));
15967      }
15968    }
15969
15970    if (!Ld || !ISD::isNormalLoad(Ld))
15971      return SDValue();
15972
15973    // If this is not the MMX case, i.e. we are just turning i64 load/store
15974    // into f64 load/store, avoid the transformation if there are multiple
15975    // uses of the loaded value.
15976    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
15977      return SDValue();
15978
15979    DebugLoc LdDL = Ld->getDebugLoc();
15980    DebugLoc StDL = N->getDebugLoc();
15981    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
15982    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
15983    // pair instead.
15984    if (Subtarget->is64Bit() || F64IsLegal) {
15985      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
15986      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
15987                                  Ld->getPointerInfo(), Ld->isVolatile(),
15988                                  Ld->isNonTemporal(), Ld->isInvariant(),
15989                                  Ld->getAlignment());
15990      SDValue NewChain = NewLd.getValue(1);
15991      if (TokenFactorIndex != -1) {
15992        Ops.push_back(NewChain);
15993        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15994                               Ops.size());
15995      }
15996      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
15997                          St->getPointerInfo(),
15998                          St->isVolatile(), St->isNonTemporal(),
15999                          St->getAlignment());
16000    }
16001
16002    // Otherwise, lower to two pairs of 32-bit loads / stores.
16003    SDValue LoAddr = Ld->getBasePtr();
16004    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
16005                                 DAG.getConstant(4, MVT::i32));
16006
16007    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
16008                               Ld->getPointerInfo(),
16009                               Ld->isVolatile(), Ld->isNonTemporal(),
16010                               Ld->isInvariant(), Ld->getAlignment());
16011    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
16012                               Ld->getPointerInfo().getWithOffset(4),
16013                               Ld->isVolatile(), Ld->isNonTemporal(),
16014                               Ld->isInvariant(),
16015                               MinAlign(Ld->getAlignment(), 4));
16016
16017    SDValue NewChain = LoLd.getValue(1);
16018    if (TokenFactorIndex != -1) {
16019      Ops.push_back(LoLd);
16020      Ops.push_back(HiLd);
16021      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
16022                             Ops.size());
16023    }
16024
16025    LoAddr = St->getBasePtr();
16026    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
16027                         DAG.getConstant(4, MVT::i32));
16028
16029    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
16030                                St->getPointerInfo(),
16031                                St->isVolatile(), St->isNonTemporal(),
16032                                St->getAlignment());
16033    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
16034                                St->getPointerInfo().getWithOffset(4),
16035                                St->isVolatile(),
16036                                St->isNonTemporal(),
16037                                MinAlign(St->getAlignment(), 4));
16038    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
16039  }
16040  return SDValue();
16041}
16042
16043/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
16044/// and return the operands for the horizontal operation in LHS and RHS.  A
16045/// horizontal operation performs the binary operation on successive elements
16046/// of its first operand, then on successive elements of its second operand,
16047/// returning the resulting values in a vector.  For example, if
16048///   A = < float a0, float a1, float a2, float a3 >
16049/// and
16050///   B = < float b0, float b1, float b2, float b3 >
16051/// then the result of doing a horizontal operation on A and B is
16052///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
16053/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
16054/// A horizontal-op B, for some already available A and B, and if so then LHS is
16055/// set to A, RHS to B, and the routine returns 'true'.
16056/// Note that the binary operation should have the property that if one of the
16057/// operands is UNDEF then the result is UNDEF.
16058static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
16059  // Look for the following pattern: if
16060  //   A = < float a0, float a1, float a2, float a3 >
16061  //   B = < float b0, float b1, float b2, float b3 >
16062  // and
16063  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
16064  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
16065  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
16066  // which is A horizontal-op B.
16067
16068  // At least one of the operands should be a vector shuffle.
16069  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
16070      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
16071    return false;
16072
16073  EVT VT = LHS.getValueType();
16074
16075  assert((VT.is128BitVector() || VT.is256BitVector()) &&
16076         "Unsupported vector type for horizontal add/sub");
16077
16078  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
16079  // operate independently on 128-bit lanes.
16080  unsigned NumElts = VT.getVectorNumElements();
16081  unsigned NumLanes = VT.getSizeInBits()/128;
16082  unsigned NumLaneElts = NumElts / NumLanes;
16083  assert((NumLaneElts % 2 == 0) &&
16084         "Vector type should have an even number of elements in each lane");
16085  unsigned HalfLaneElts = NumLaneElts/2;
16086
16087  // View LHS in the form
16088  //   LHS = VECTOR_SHUFFLE A, B, LMask
16089  // If LHS is not a shuffle then pretend it is the shuffle
16090  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
16091  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
16092  // type VT.
16093  SDValue A, B;
16094  SmallVector<int, 16> LMask(NumElts);
16095  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16096    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
16097      A = LHS.getOperand(0);
16098    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
16099      B = LHS.getOperand(1);
16100    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
16101    std::copy(Mask.begin(), Mask.end(), LMask.begin());
16102  } else {
16103    if (LHS.getOpcode() != ISD::UNDEF)
16104      A = LHS;
16105    for (unsigned i = 0; i != NumElts; ++i)
16106      LMask[i] = i;
16107  }
16108
16109  // Likewise, view RHS in the form
16110  //   RHS = VECTOR_SHUFFLE C, D, RMask
16111  SDValue C, D;
16112  SmallVector<int, 16> RMask(NumElts);
16113  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
16114    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
16115      C = RHS.getOperand(0);
16116    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
16117      D = RHS.getOperand(1);
16118    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
16119    std::copy(Mask.begin(), Mask.end(), RMask.begin());
16120  } else {
16121    if (RHS.getOpcode() != ISD::UNDEF)
16122      C = RHS;
16123    for (unsigned i = 0; i != NumElts; ++i)
16124      RMask[i] = i;
16125  }
16126
16127  // Check that the shuffles are both shuffling the same vectors.
16128  if (!(A == C && B == D) && !(A == D && B == C))
16129    return false;
16130
16131  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
16132  if (!A.getNode() && !B.getNode())
16133    return false;
16134
16135  // If A and B occur in reverse order in RHS, then "swap" them (which means
16136  // rewriting the mask).
16137  if (A != C)
16138    CommuteVectorShuffleMask(RMask, NumElts);
16139
16140  // At this point LHS and RHS are equivalent to
16141  //   LHS = VECTOR_SHUFFLE A, B, LMask
16142  //   RHS = VECTOR_SHUFFLE A, B, RMask
16143  // Check that the masks correspond to performing a horizontal operation.
16144  for (unsigned i = 0; i != NumElts; ++i) {
16145    int LIdx = LMask[i], RIdx = RMask[i];
16146
16147    // Ignore any UNDEF components.
16148    if (LIdx < 0 || RIdx < 0 ||
16149        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
16150        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
16151      continue;
16152
16153    // Check that successive elements are being operated on.  If not, this is
16154    // not a horizontal operation.
16155    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
16156    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
16157    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
16158    if (!(LIdx == Index && RIdx == Index + 1) &&
16159        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
16160      return false;
16161  }
16162
16163  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
16164  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
16165  return true;
16166}
16167
16168/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
16169static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
16170                                  const X86Subtarget *Subtarget) {
16171  EVT VT = N->getValueType(0);
16172  SDValue LHS = N->getOperand(0);
16173  SDValue RHS = N->getOperand(1);
16174
16175  // Try to synthesize horizontal adds from adds of shuffles.
16176  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16177       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16178      isHorizontalBinOp(LHS, RHS, true))
16179    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
16180  return SDValue();
16181}
16182
16183/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
16184static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
16185                                  const X86Subtarget *Subtarget) {
16186  EVT VT = N->getValueType(0);
16187  SDValue LHS = N->getOperand(0);
16188  SDValue RHS = N->getOperand(1);
16189
16190  // Try to synthesize horizontal subs from subs of shuffles.
16191  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
16192       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
16193      isHorizontalBinOp(LHS, RHS, false))
16194    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
16195  return SDValue();
16196}
16197
16198/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
16199/// X86ISD::FXOR nodes.
16200static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
16201  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
16202  // F[X]OR(0.0, x) -> x
16203  // F[X]OR(x, 0.0) -> x
16204  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16205    if (C->getValueAPF().isPosZero())
16206      return N->getOperand(1);
16207  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16208    if (C->getValueAPF().isPosZero())
16209      return N->getOperand(0);
16210  return SDValue();
16211}
16212
16213/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
16214/// X86ISD::FMAX nodes.
16215static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
16216  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
16217
16218  // Only perform optimizations if UnsafeMath is used.
16219  if (!DAG.getTarget().Options.UnsafeFPMath)
16220    return SDValue();
16221
16222  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
16223  // into FMINC and FMAXC, which are Commutative operations.
16224  unsigned NewOp = 0;
16225  switch (N->getOpcode()) {
16226    default: llvm_unreachable("unknown opcode");
16227    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
16228    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
16229  }
16230
16231  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
16232                     N->getOperand(0), N->getOperand(1));
16233}
16234
16235
16236/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
16237static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
16238  // FAND(0.0, x) -> 0.0
16239  // FAND(x, 0.0) -> 0.0
16240  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
16241    if (C->getValueAPF().isPosZero())
16242      return N->getOperand(0);
16243  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
16244    if (C->getValueAPF().isPosZero())
16245      return N->getOperand(1);
16246  return SDValue();
16247}
16248
16249static SDValue PerformBTCombine(SDNode *N,
16250                                SelectionDAG &DAG,
16251                                TargetLowering::DAGCombinerInfo &DCI) {
16252  // BT ignores high bits in the bit index operand.
16253  SDValue Op1 = N->getOperand(1);
16254  if (Op1.hasOneUse()) {
16255    unsigned BitWidth = Op1.getValueSizeInBits();
16256    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
16257    APInt KnownZero, KnownOne;
16258    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
16259                                          !DCI.isBeforeLegalizeOps());
16260    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16261    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
16262        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
16263      DCI.CommitTargetLoweringOpt(TLO);
16264  }
16265  return SDValue();
16266}
16267
16268static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
16269  SDValue Op = N->getOperand(0);
16270  if (Op.getOpcode() == ISD::BITCAST)
16271    Op = Op.getOperand(0);
16272  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
16273  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
16274      VT.getVectorElementType().getSizeInBits() ==
16275      OpVT.getVectorElementType().getSizeInBits()) {
16276    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
16277  }
16278  return SDValue();
16279}
16280
16281static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
16282                                  TargetLowering::DAGCombinerInfo &DCI,
16283                                  const X86Subtarget *Subtarget) {
16284  if (!DCI.isBeforeLegalizeOps())
16285    return SDValue();
16286
16287  if (!Subtarget->hasAVX())
16288    return SDValue();
16289
16290  EVT VT = N->getValueType(0);
16291  SDValue Op = N->getOperand(0);
16292  EVT OpVT = Op.getValueType();
16293  DebugLoc dl = N->getDebugLoc();
16294
16295  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
16296      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
16297
16298    if (Subtarget->hasAVX2())
16299      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
16300
16301    // Optimize vectors in AVX mode
16302    // Sign extend  v8i16 to v8i32 and
16303    //              v4i32 to v4i64
16304    //
16305    // Divide input vector into two parts
16306    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
16307    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
16308    // concat the vectors to original VT
16309
16310    unsigned NumElems = OpVT.getVectorNumElements();
16311    SDValue Undef = DAG.getUNDEF(OpVT);
16312
16313    SmallVector<int,8> ShufMask1(NumElems, -1);
16314    for (unsigned i = 0; i != NumElems/2; ++i)
16315      ShufMask1[i] = i;
16316
16317    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]);
16318
16319    SmallVector<int,8> ShufMask2(NumElems, -1);
16320    for (unsigned i = 0; i != NumElems/2; ++i)
16321      ShufMask2[i] = i + NumElems/2;
16322
16323    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]);
16324
16325    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
16326                                  VT.getVectorNumElements()/2);
16327
16328    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
16329    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
16330
16331    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
16332  }
16333  return SDValue();
16334}
16335
16336static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
16337                                 const X86Subtarget* Subtarget) {
16338  DebugLoc dl = N->getDebugLoc();
16339  EVT VT = N->getValueType(0);
16340
16341  // Let legalize expand this if it isn't a legal type yet.
16342  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
16343    return SDValue();
16344
16345  EVT ScalarVT = VT.getScalarType();
16346  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
16347      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
16348    return SDValue();
16349
16350  SDValue A = N->getOperand(0);
16351  SDValue B = N->getOperand(1);
16352  SDValue C = N->getOperand(2);
16353
16354  bool NegA = (A.getOpcode() == ISD::FNEG);
16355  bool NegB = (B.getOpcode() == ISD::FNEG);
16356  bool NegC = (C.getOpcode() == ISD::FNEG);
16357
16358  // Negative multiplication when NegA xor NegB
16359  bool NegMul = (NegA != NegB);
16360  if (NegA)
16361    A = A.getOperand(0);
16362  if (NegB)
16363    B = B.getOperand(0);
16364  if (NegC)
16365    C = C.getOperand(0);
16366
16367  unsigned Opcode;
16368  if (!NegMul)
16369    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
16370  else
16371    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
16372
16373  return DAG.getNode(Opcode, dl, VT, A, B, C);
16374}
16375
16376static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
16377                                  TargetLowering::DAGCombinerInfo &DCI,
16378                                  const X86Subtarget *Subtarget) {
16379  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
16380  //           (and (i32 x86isd::setcc_carry), 1)
16381  // This eliminates the zext. This transformation is necessary because
16382  // ISD::SETCC is always legalized to i8.
16383  DebugLoc dl = N->getDebugLoc();
16384  SDValue N0 = N->getOperand(0);
16385  EVT VT = N->getValueType(0);
16386  EVT OpVT = N0.getValueType();
16387
16388  if (N0.getOpcode() == ISD::AND &&
16389      N0.hasOneUse() &&
16390      N0.getOperand(0).hasOneUse()) {
16391    SDValue N00 = N0.getOperand(0);
16392    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
16393      return SDValue();
16394    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
16395    if (!C || C->getZExtValue() != 1)
16396      return SDValue();
16397    return DAG.getNode(ISD::AND, dl, VT,
16398                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
16399                                   N00.getOperand(0), N00.getOperand(1)),
16400                       DAG.getConstant(1, VT));
16401  }
16402
16403  // Optimize vectors in AVX mode:
16404  //
16405  //   v8i16 -> v8i32
16406  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
16407  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
16408  //   Concat upper and lower parts.
16409  //
16410  //   v4i32 -> v4i64
16411  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
16412  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
16413  //   Concat upper and lower parts.
16414  //
16415  if (!DCI.isBeforeLegalizeOps())
16416    return SDValue();
16417
16418  if (!Subtarget->hasAVX())
16419    return SDValue();
16420
16421  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
16422      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
16423
16424    if (Subtarget->hasAVX2())
16425      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
16426
16427    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
16428    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
16429    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
16430
16431    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
16432                               VT.getVectorNumElements()/2);
16433
16434    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
16435    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
16436
16437    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
16438  }
16439
16440  return SDValue();
16441}
16442
16443// Optimize x == -y --> x+y == 0
16444//          x != -y --> x+y != 0
16445static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
16446  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
16447  SDValue LHS = N->getOperand(0);
16448  SDValue RHS = N->getOperand(1);
16449
16450  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
16451    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
16452      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
16453        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
16454                                   LHS.getValueType(), RHS, LHS.getOperand(1));
16455        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
16456                            addV, DAG.getConstant(0, addV.getValueType()), CC);
16457      }
16458  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
16459    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
16460      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
16461        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
16462                                   RHS.getValueType(), LHS, RHS.getOperand(1));
16463        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
16464                            addV, DAG.getConstant(0, addV.getValueType()), CC);
16465      }
16466  return SDValue();
16467}
16468
16469// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
16470static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
16471                                   TargetLowering::DAGCombinerInfo &DCI,
16472                                   const X86Subtarget *Subtarget) {
16473  DebugLoc DL = N->getDebugLoc();
16474  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
16475  SDValue EFLAGS = N->getOperand(1);
16476
16477  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
16478  // a zext and produces an all-ones bit which is more useful than 0/1 in some
16479  // cases.
16480  if (CC == X86::COND_B)
16481    return DAG.getNode(ISD::AND, DL, MVT::i8,
16482                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
16483                                   DAG.getConstant(CC, MVT::i8), EFLAGS),
16484                       DAG.getConstant(1, MVT::i8));
16485
16486  SDValue Flags;
16487
16488  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
16489  if (Flags.getNode()) {
16490    SDValue Cond = DAG.getConstant(CC, MVT::i8);
16491    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
16492  }
16493
16494  return SDValue();
16495}
16496
16497// Optimize branch condition evaluation.
16498//
16499static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
16500                                    TargetLowering::DAGCombinerInfo &DCI,
16501                                    const X86Subtarget *Subtarget) {
16502  DebugLoc DL = N->getDebugLoc();
16503  SDValue Chain = N->getOperand(0);
16504  SDValue Dest = N->getOperand(1);
16505  SDValue EFLAGS = N->getOperand(3);
16506  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
16507
16508  SDValue Flags;
16509
16510  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
16511  if (Flags.getNode()) {
16512    SDValue Cond = DAG.getConstant(CC, MVT::i8);
16513    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
16514                       Flags);
16515  }
16516
16517  return SDValue();
16518}
16519
16520static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
16521                                        const X86TargetLowering *XTLI) {
16522  SDValue Op0 = N->getOperand(0);
16523  EVT InVT = Op0->getValueType(0);
16524
16525  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
16526  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
16527    DebugLoc dl = N->getDebugLoc();
16528    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
16529    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
16530    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
16531  }
16532
16533  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
16534  // a 32-bit target where SSE doesn't support i64->FP operations.
16535  if (Op0.getOpcode() == ISD::LOAD) {
16536    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
16537    EVT VT = Ld->getValueType(0);
16538    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
16539        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
16540        !XTLI->getSubtarget()->is64Bit() &&
16541        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
16542      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
16543                                          Ld->getChain(), Op0, DAG);
16544      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
16545      return FILDChain;
16546    }
16547  }
16548  return SDValue();
16549}
16550
16551// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
16552static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
16553                                 X86TargetLowering::DAGCombinerInfo &DCI) {
16554  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
16555  // the result is either zero or one (depending on the input carry bit).
16556  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
16557  if (X86::isZeroNode(N->getOperand(0)) &&
16558      X86::isZeroNode(N->getOperand(1)) &&
16559      // We don't have a good way to replace an EFLAGS use, so only do this when
16560      // dead right now.
16561      SDValue(N, 1).use_empty()) {
16562    DebugLoc DL = N->getDebugLoc();
16563    EVT VT = N->getValueType(0);
16564    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
16565    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
16566                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
16567                                           DAG.getConstant(X86::COND_B,MVT::i8),
16568                                           N->getOperand(2)),
16569                               DAG.getConstant(1, VT));
16570    return DCI.CombineTo(N, Res1, CarryOut);
16571  }
16572
16573  return SDValue();
16574}
16575
16576// fold (add Y, (sete  X, 0)) -> adc  0, Y
16577//      (add Y, (setne X, 0)) -> sbb -1, Y
16578//      (sub (sete  X, 0), Y) -> sbb  0, Y
16579//      (sub (setne X, 0), Y) -> adc -1, Y
16580static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
16581  DebugLoc DL = N->getDebugLoc();
16582
16583  // Look through ZExts.
16584  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
16585  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
16586    return SDValue();
16587
16588  SDValue SetCC = Ext.getOperand(0);
16589  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
16590    return SDValue();
16591
16592  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
16593  if (CC != X86::COND_E && CC != X86::COND_NE)
16594    return SDValue();
16595
16596  SDValue Cmp = SetCC.getOperand(1);
16597  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
16598      !X86::isZeroNode(Cmp.getOperand(1)) ||
16599      !Cmp.getOperand(0).getValueType().isInteger())
16600    return SDValue();
16601
16602  SDValue CmpOp0 = Cmp.getOperand(0);
16603  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
16604                               DAG.getConstant(1, CmpOp0.getValueType()));
16605
16606  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
16607  if (CC == X86::COND_NE)
16608    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
16609                       DL, OtherVal.getValueType(), OtherVal,
16610                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
16611  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
16612                     DL, OtherVal.getValueType(), OtherVal,
16613                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
16614}
16615
16616/// PerformADDCombine - Do target-specific dag combines on integer adds.
16617static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
16618                                 const X86Subtarget *Subtarget) {
16619  EVT VT = N->getValueType(0);
16620  SDValue Op0 = N->getOperand(0);
16621  SDValue Op1 = N->getOperand(1);
16622
16623  // Try to synthesize horizontal adds from adds of shuffles.
16624  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16625       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16626      isHorizontalBinOp(Op0, Op1, true))
16627    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
16628
16629  return OptimizeConditionalInDecrement(N, DAG);
16630}
16631
16632static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
16633                                 const X86Subtarget *Subtarget) {
16634  SDValue Op0 = N->getOperand(0);
16635  SDValue Op1 = N->getOperand(1);
16636
16637  // X86 can't encode an immediate LHS of a sub. See if we can push the
16638  // negation into a preceding instruction.
16639  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
16640    // If the RHS of the sub is a XOR with one use and a constant, invert the
16641    // immediate. Then add one to the LHS of the sub so we can turn
16642    // X-Y -> X+~Y+1, saving one register.
16643    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
16644        isa<ConstantSDNode>(Op1.getOperand(1))) {
16645      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
16646      EVT VT = Op0.getValueType();
16647      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
16648                                   Op1.getOperand(0),
16649                                   DAG.getConstant(~XorC, VT));
16650      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
16651                         DAG.getConstant(C->getAPIntValue()+1, VT));
16652    }
16653  }
16654
16655  // Try to synthesize horizontal adds from adds of shuffles.
16656  EVT VT = N->getValueType(0);
16657  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16658       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16659      isHorizontalBinOp(Op0, Op1, true))
16660    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
16661
16662  return OptimizeConditionalInDecrement(N, DAG);
16663}
16664
16665/// performVZEXTCombine - Performs build vector combines
16666static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
16667                                        TargetLowering::DAGCombinerInfo &DCI,
16668                                        const X86Subtarget *Subtarget) {
16669  // (vzext (bitcast (vzext (x)) -> (vzext x)
16670  SDValue In = N->getOperand(0);
16671  while (In.getOpcode() == ISD::BITCAST)
16672    In = In.getOperand(0);
16673
16674  if (In.getOpcode() != X86ISD::VZEXT)
16675    return SDValue();
16676
16677  return DAG.getNode(X86ISD::VZEXT, N->getDebugLoc(), N->getValueType(0), In.getOperand(0));
16678}
16679
16680SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
16681                                             DAGCombinerInfo &DCI) const {
16682  SelectionDAG &DAG = DCI.DAG;
16683  switch (N->getOpcode()) {
16684  default: break;
16685  case ISD::EXTRACT_VECTOR_ELT:
16686    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
16687  case ISD::VSELECT:
16688  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
16689  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
16690  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
16691  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
16692  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
16693  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
16694  case ISD::SHL:
16695  case ISD::SRA:
16696  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
16697  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
16698  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
16699  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
16700  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
16701  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
16702  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
16703  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
16704  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
16705  case X86ISD::FXOR:
16706  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
16707  case X86ISD::FMIN:
16708  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
16709  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
16710  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
16711  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
16712  case ISD::ANY_EXTEND:
16713  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
16714  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
16715  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
16716  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
16717  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
16718  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
16719  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
16720  case X86ISD::SHUFP:       // Handle all target specific shuffles
16721  case X86ISD::PALIGN:
16722  case X86ISD::UNPCKH:
16723  case X86ISD::UNPCKL:
16724  case X86ISD::MOVHLPS:
16725  case X86ISD::MOVLHPS:
16726  case X86ISD::PSHUFD:
16727  case X86ISD::PSHUFHW:
16728  case X86ISD::PSHUFLW:
16729  case X86ISD::MOVSS:
16730  case X86ISD::MOVSD:
16731  case X86ISD::VPERMILP:
16732  case X86ISD::VPERM2X128:
16733  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
16734  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
16735  }
16736
16737  return SDValue();
16738}
16739
16740/// isTypeDesirableForOp - Return true if the target has native support for
16741/// the specified value type and it is 'desirable' to use the type for the
16742/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
16743/// instruction encodings are longer and some i16 instructions are slow.
16744bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
16745  if (!isTypeLegal(VT))
16746    return false;
16747  if (VT != MVT::i16)
16748    return true;
16749
16750  switch (Opc) {
16751  default:
16752    return true;
16753  case ISD::LOAD:
16754  case ISD::SIGN_EXTEND:
16755  case ISD::ZERO_EXTEND:
16756  case ISD::ANY_EXTEND:
16757  case ISD::SHL:
16758  case ISD::SRL:
16759  case ISD::SUB:
16760  case ISD::ADD:
16761  case ISD::MUL:
16762  case ISD::AND:
16763  case ISD::OR:
16764  case ISD::XOR:
16765    return false;
16766  }
16767}
16768
16769/// IsDesirableToPromoteOp - This method query the target whether it is
16770/// beneficial for dag combiner to promote the specified node. If true, it
16771/// should return the desired promotion type by reference.
16772bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
16773  EVT VT = Op.getValueType();
16774  if (VT != MVT::i16)
16775    return false;
16776
16777  bool Promote = false;
16778  bool Commute = false;
16779  switch (Op.getOpcode()) {
16780  default: break;
16781  case ISD::LOAD: {
16782    LoadSDNode *LD = cast<LoadSDNode>(Op);
16783    // If the non-extending load has a single use and it's not live out, then it
16784    // might be folded.
16785    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
16786                                                     Op.hasOneUse()*/) {
16787      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
16788             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
16789        // The only case where we'd want to promote LOAD (rather then it being
16790        // promoted as an operand is when it's only use is liveout.
16791        if (UI->getOpcode() != ISD::CopyToReg)
16792          return false;
16793      }
16794    }
16795    Promote = true;
16796    break;
16797  }
16798  case ISD::SIGN_EXTEND:
16799  case ISD::ZERO_EXTEND:
16800  case ISD::ANY_EXTEND:
16801    Promote = true;
16802    break;
16803  case ISD::SHL:
16804  case ISD::SRL: {
16805    SDValue N0 = Op.getOperand(0);
16806    // Look out for (store (shl (load), x)).
16807    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
16808      return false;
16809    Promote = true;
16810    break;
16811  }
16812  case ISD::ADD:
16813  case ISD::MUL:
16814  case ISD::AND:
16815  case ISD::OR:
16816  case ISD::XOR:
16817    Commute = true;
16818    // fallthrough
16819  case ISD::SUB: {
16820    SDValue N0 = Op.getOperand(0);
16821    SDValue N1 = Op.getOperand(1);
16822    if (!Commute && MayFoldLoad(N1))
16823      return false;
16824    // Avoid disabling potential load folding opportunities.
16825    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
16826      return false;
16827    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
16828      return false;
16829    Promote = true;
16830  }
16831  }
16832
16833  PVT = MVT::i32;
16834  return Promote;
16835}
16836
16837//===----------------------------------------------------------------------===//
16838//                           X86 Inline Assembly Support
16839//===----------------------------------------------------------------------===//
16840
16841namespace {
16842  // Helper to match a string separated by whitespace.
16843  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
16844    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
16845
16846    for (unsigned i = 0, e = args.size(); i != e; ++i) {
16847      StringRef piece(*args[i]);
16848      if (!s.startswith(piece)) // Check if the piece matches.
16849        return false;
16850
16851      s = s.substr(piece.size());
16852      StringRef::size_type pos = s.find_first_not_of(" \t");
16853      if (pos == 0) // We matched a prefix.
16854        return false;
16855
16856      s = s.substr(pos);
16857    }
16858
16859    return s.empty();
16860  }
16861  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
16862}
16863
16864bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
16865  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
16866
16867  std::string AsmStr = IA->getAsmString();
16868
16869  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
16870  if (!Ty || Ty->getBitWidth() % 16 != 0)
16871    return false;
16872
16873  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
16874  SmallVector<StringRef, 4> AsmPieces;
16875  SplitString(AsmStr, AsmPieces, ";\n");
16876
16877  switch (AsmPieces.size()) {
16878  default: return false;
16879  case 1:
16880    // FIXME: this should verify that we are targeting a 486 or better.  If not,
16881    // we will turn this bswap into something that will be lowered to logical
16882    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
16883    // lower so don't worry about this.
16884    // bswap $0
16885    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
16886        matchAsm(AsmPieces[0], "bswapl", "$0") ||
16887        matchAsm(AsmPieces[0], "bswapq", "$0") ||
16888        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
16889        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
16890        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
16891      // No need to check constraints, nothing other than the equivalent of
16892      // "=r,0" would be valid here.
16893      return IntrinsicLowering::LowerToByteSwap(CI);
16894    }
16895
16896    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
16897    if (CI->getType()->isIntegerTy(16) &&
16898        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16899        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
16900         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
16901      AsmPieces.clear();
16902      const std::string &ConstraintsStr = IA->getConstraintString();
16903      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16904      std::sort(AsmPieces.begin(), AsmPieces.end());
16905      if (AsmPieces.size() == 4 &&
16906          AsmPieces[0] == "~{cc}" &&
16907          AsmPieces[1] == "~{dirflag}" &&
16908          AsmPieces[2] == "~{flags}" &&
16909          AsmPieces[3] == "~{fpsr}")
16910      return IntrinsicLowering::LowerToByteSwap(CI);
16911    }
16912    break;
16913  case 3:
16914    if (CI->getType()->isIntegerTy(32) &&
16915        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16916        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
16917        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
16918        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
16919      AsmPieces.clear();
16920      const std::string &ConstraintsStr = IA->getConstraintString();
16921      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16922      std::sort(AsmPieces.begin(), AsmPieces.end());
16923      if (AsmPieces.size() == 4 &&
16924          AsmPieces[0] == "~{cc}" &&
16925          AsmPieces[1] == "~{dirflag}" &&
16926          AsmPieces[2] == "~{flags}" &&
16927          AsmPieces[3] == "~{fpsr}")
16928        return IntrinsicLowering::LowerToByteSwap(CI);
16929    }
16930
16931    if (CI->getType()->isIntegerTy(64)) {
16932      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
16933      if (Constraints.size() >= 2 &&
16934          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
16935          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
16936        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
16937        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
16938            matchAsm(AsmPieces[1], "bswap", "%edx") &&
16939            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
16940          return IntrinsicLowering::LowerToByteSwap(CI);
16941      }
16942    }
16943    break;
16944  }
16945  return false;
16946}
16947
16948
16949
16950/// getConstraintType - Given a constraint letter, return the type of
16951/// constraint it is for this target.
16952X86TargetLowering::ConstraintType
16953X86TargetLowering::getConstraintType(const std::string &Constraint) const {
16954  if (Constraint.size() == 1) {
16955    switch (Constraint[0]) {
16956    case 'R':
16957    case 'q':
16958    case 'Q':
16959    case 'f':
16960    case 't':
16961    case 'u':
16962    case 'y':
16963    case 'x':
16964    case 'Y':
16965    case 'l':
16966      return C_RegisterClass;
16967    case 'a':
16968    case 'b':
16969    case 'c':
16970    case 'd':
16971    case 'S':
16972    case 'D':
16973    case 'A':
16974      return C_Register;
16975    case 'I':
16976    case 'J':
16977    case 'K':
16978    case 'L':
16979    case 'M':
16980    case 'N':
16981    case 'G':
16982    case 'C':
16983    case 'e':
16984    case 'Z':
16985      return C_Other;
16986    default:
16987      break;
16988    }
16989  }
16990  return TargetLowering::getConstraintType(Constraint);
16991}
16992
16993/// Examine constraint type and operand type and determine a weight value.
16994/// This object must already have been set up with the operand type
16995/// and the current alternative constraint selected.
16996TargetLowering::ConstraintWeight
16997  X86TargetLowering::getSingleConstraintMatchWeight(
16998    AsmOperandInfo &info, const char *constraint) const {
16999  ConstraintWeight weight = CW_Invalid;
17000  Value *CallOperandVal = info.CallOperandVal;
17001    // If we don't have a value, we can't do a match,
17002    // but allow it at the lowest weight.
17003  if (CallOperandVal == NULL)
17004    return CW_Default;
17005  Type *type = CallOperandVal->getType();
17006  // Look at the constraint type.
17007  switch (*constraint) {
17008  default:
17009    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
17010  case 'R':
17011  case 'q':
17012  case 'Q':
17013  case 'a':
17014  case 'b':
17015  case 'c':
17016  case 'd':
17017  case 'S':
17018  case 'D':
17019  case 'A':
17020    if (CallOperandVal->getType()->isIntegerTy())
17021      weight = CW_SpecificReg;
17022    break;
17023  case 'f':
17024  case 't':
17025  case 'u':
17026      if (type->isFloatingPointTy())
17027        weight = CW_SpecificReg;
17028      break;
17029  case 'y':
17030      if (type->isX86_MMXTy() && Subtarget->hasMMX())
17031        weight = CW_SpecificReg;
17032      break;
17033  case 'x':
17034  case 'Y':
17035    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
17036        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
17037      weight = CW_Register;
17038    break;
17039  case 'I':
17040    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
17041      if (C->getZExtValue() <= 31)
17042        weight = CW_Constant;
17043    }
17044    break;
17045  case 'J':
17046    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17047      if (C->getZExtValue() <= 63)
17048        weight = CW_Constant;
17049    }
17050    break;
17051  case 'K':
17052    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17053      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
17054        weight = CW_Constant;
17055    }
17056    break;
17057  case 'L':
17058    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17059      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
17060        weight = CW_Constant;
17061    }
17062    break;
17063  case 'M':
17064    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17065      if (C->getZExtValue() <= 3)
17066        weight = CW_Constant;
17067    }
17068    break;
17069  case 'N':
17070    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17071      if (C->getZExtValue() <= 0xff)
17072        weight = CW_Constant;
17073    }
17074    break;
17075  case 'G':
17076  case 'C':
17077    if (dyn_cast<ConstantFP>(CallOperandVal)) {
17078      weight = CW_Constant;
17079    }
17080    break;
17081  case 'e':
17082    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17083      if ((C->getSExtValue() >= -0x80000000LL) &&
17084          (C->getSExtValue() <= 0x7fffffffLL))
17085        weight = CW_Constant;
17086    }
17087    break;
17088  case 'Z':
17089    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
17090      if (C->getZExtValue() <= 0xffffffff)
17091        weight = CW_Constant;
17092    }
17093    break;
17094  }
17095  return weight;
17096}
17097
17098/// LowerXConstraint - try to replace an X constraint, which matches anything,
17099/// with another that has more specific requirements based on the type of the
17100/// corresponding operand.
17101const char *X86TargetLowering::
17102LowerXConstraint(EVT ConstraintVT) const {
17103  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
17104  // 'f' like normal targets.
17105  if (ConstraintVT.isFloatingPoint()) {
17106    if (Subtarget->hasSSE2())
17107      return "Y";
17108    if (Subtarget->hasSSE1())
17109      return "x";
17110  }
17111
17112  return TargetLowering::LowerXConstraint(ConstraintVT);
17113}
17114
17115/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
17116/// vector.  If it is invalid, don't add anything to Ops.
17117void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
17118                                                     std::string &Constraint,
17119                                                     std::vector<SDValue>&Ops,
17120                                                     SelectionDAG &DAG) const {
17121  SDValue Result(0, 0);
17122
17123  // Only support length 1 constraints for now.
17124  if (Constraint.length() > 1) return;
17125
17126  char ConstraintLetter = Constraint[0];
17127  switch (ConstraintLetter) {
17128  default: break;
17129  case 'I':
17130    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17131      if (C->getZExtValue() <= 31) {
17132        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17133        break;
17134      }
17135    }
17136    return;
17137  case 'J':
17138    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17139      if (C->getZExtValue() <= 63) {
17140        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17141        break;
17142      }
17143    }
17144    return;
17145  case 'K':
17146    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17147      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
17148        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17149        break;
17150      }
17151    }
17152    return;
17153  case 'N':
17154    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17155      if (C->getZExtValue() <= 255) {
17156        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17157        break;
17158      }
17159    }
17160    return;
17161  case 'e': {
17162    // 32-bit signed value
17163    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17164      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17165                                           C->getSExtValue())) {
17166        // Widen to 64 bits here to get it sign extended.
17167        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
17168        break;
17169      }
17170    // FIXME gcc accepts some relocatable values here too, but only in certain
17171    // memory models; it's complicated.
17172    }
17173    return;
17174  }
17175  case 'Z': {
17176    // 32-bit unsigned value
17177    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
17178      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
17179                                           C->getZExtValue())) {
17180        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
17181        break;
17182      }
17183    }
17184    // FIXME gcc accepts some relocatable values here too, but only in certain
17185    // memory models; it's complicated.
17186    return;
17187  }
17188  case 'i': {
17189    // Literal immediates are always ok.
17190    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
17191      // Widen to 64 bits here to get it sign extended.
17192      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
17193      break;
17194    }
17195
17196    // In any sort of PIC mode addresses need to be computed at runtime by
17197    // adding in a register or some sort of table lookup.  These can't
17198    // be used as immediates.
17199    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
17200      return;
17201
17202    // If we are in non-pic codegen mode, we allow the address of a global (with
17203    // an optional displacement) to be used with 'i'.
17204    GlobalAddressSDNode *GA = 0;
17205    int64_t Offset = 0;
17206
17207    // Match either (GA), (GA+C), (GA+C1+C2), etc.
17208    while (1) {
17209      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
17210        Offset += GA->getOffset();
17211        break;
17212      } else if (Op.getOpcode() == ISD::ADD) {
17213        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17214          Offset += C->getZExtValue();
17215          Op = Op.getOperand(0);
17216          continue;
17217        }
17218      } else if (Op.getOpcode() == ISD::SUB) {
17219        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
17220          Offset += -C->getZExtValue();
17221          Op = Op.getOperand(0);
17222          continue;
17223        }
17224      }
17225
17226      // Otherwise, this isn't something we can handle, reject it.
17227      return;
17228    }
17229
17230    const GlobalValue *GV = GA->getGlobal();
17231    // If we require an extra load to get this address, as in PIC mode, we
17232    // can't accept it.
17233    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
17234                                                        getTargetMachine())))
17235      return;
17236
17237    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
17238                                        GA->getValueType(0), Offset);
17239    break;
17240  }
17241  }
17242
17243  if (Result.getNode()) {
17244    Ops.push_back(Result);
17245    return;
17246  }
17247  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
17248}
17249
17250std::pair<unsigned, const TargetRegisterClass*>
17251X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
17252                                                EVT VT) const {
17253  // First, see if this is a constraint that directly corresponds to an LLVM
17254  // register class.
17255  if (Constraint.size() == 1) {
17256    // GCC Constraint Letters
17257    switch (Constraint[0]) {
17258    default: break;
17259      // TODO: Slight differences here in allocation order and leaving
17260      // RIP in the class. Do they matter any more here than they do
17261      // in the normal allocation?
17262    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
17263      if (Subtarget->is64Bit()) {
17264        if (VT == MVT::i32 || VT == MVT::f32)
17265          return std::make_pair(0U, &X86::GR32RegClass);
17266        if (VT == MVT::i16)
17267          return std::make_pair(0U, &X86::GR16RegClass);
17268        if (VT == MVT::i8 || VT == MVT::i1)
17269          return std::make_pair(0U, &X86::GR8RegClass);
17270        if (VT == MVT::i64 || VT == MVT::f64)
17271          return std::make_pair(0U, &X86::GR64RegClass);
17272        break;
17273      }
17274      // 32-bit fallthrough
17275    case 'Q':   // Q_REGS
17276      if (VT == MVT::i32 || VT == MVT::f32)
17277        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
17278      if (VT == MVT::i16)
17279        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
17280      if (VT == MVT::i8 || VT == MVT::i1)
17281        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
17282      if (VT == MVT::i64)
17283        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
17284      break;
17285    case 'r':   // GENERAL_REGS
17286    case 'l':   // INDEX_REGS
17287      if (VT == MVT::i8 || VT == MVT::i1)
17288        return std::make_pair(0U, &X86::GR8RegClass);
17289      if (VT == MVT::i16)
17290        return std::make_pair(0U, &X86::GR16RegClass);
17291      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
17292        return std::make_pair(0U, &X86::GR32RegClass);
17293      return std::make_pair(0U, &X86::GR64RegClass);
17294    case 'R':   // LEGACY_REGS
17295      if (VT == MVT::i8 || VT == MVT::i1)
17296        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
17297      if (VT == MVT::i16)
17298        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
17299      if (VT == MVT::i32 || !Subtarget->is64Bit())
17300        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
17301      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
17302    case 'f':  // FP Stack registers.
17303      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
17304      // value to the correct fpstack register class.
17305      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
17306        return std::make_pair(0U, &X86::RFP32RegClass);
17307      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
17308        return std::make_pair(0U, &X86::RFP64RegClass);
17309      return std::make_pair(0U, &X86::RFP80RegClass);
17310    case 'y':   // MMX_REGS if MMX allowed.
17311      if (!Subtarget->hasMMX()) break;
17312      return std::make_pair(0U, &X86::VR64RegClass);
17313    case 'Y':   // SSE_REGS if SSE2 allowed
17314      if (!Subtarget->hasSSE2()) break;
17315      // FALL THROUGH.
17316    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
17317      if (!Subtarget->hasSSE1()) break;
17318
17319      switch (VT.getSimpleVT().SimpleTy) {
17320      default: break;
17321      // Scalar SSE types.
17322      case MVT::f32:
17323      case MVT::i32:
17324        return std::make_pair(0U, &X86::FR32RegClass);
17325      case MVT::f64:
17326      case MVT::i64:
17327        return std::make_pair(0U, &X86::FR64RegClass);
17328      // Vector types.
17329      case MVT::v16i8:
17330      case MVT::v8i16:
17331      case MVT::v4i32:
17332      case MVT::v2i64:
17333      case MVT::v4f32:
17334      case MVT::v2f64:
17335        return std::make_pair(0U, &X86::VR128RegClass);
17336      // AVX types.
17337      case MVT::v32i8:
17338      case MVT::v16i16:
17339      case MVT::v8i32:
17340      case MVT::v4i64:
17341      case MVT::v8f32:
17342      case MVT::v4f64:
17343        return std::make_pair(0U, &X86::VR256RegClass);
17344      }
17345      break;
17346    }
17347  }
17348
17349  // Use the default implementation in TargetLowering to convert the register
17350  // constraint into a member of a register class.
17351  std::pair<unsigned, const TargetRegisterClass*> Res;
17352  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
17353
17354  // Not found as a standard register?
17355  if (Res.second == 0) {
17356    // Map st(0) -> st(7) -> ST0
17357    if (Constraint.size() == 7 && Constraint[0] == '{' &&
17358        tolower(Constraint[1]) == 's' &&
17359        tolower(Constraint[2]) == 't' &&
17360        Constraint[3] == '(' &&
17361        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
17362        Constraint[5] == ')' &&
17363        Constraint[6] == '}') {
17364
17365      Res.first = X86::ST0+Constraint[4]-'0';
17366      Res.second = &X86::RFP80RegClass;
17367      return Res;
17368    }
17369
17370    // GCC allows "st(0)" to be called just plain "st".
17371    if (StringRef("{st}").equals_lower(Constraint)) {
17372      Res.first = X86::ST0;
17373      Res.second = &X86::RFP80RegClass;
17374      return Res;
17375    }
17376
17377    // flags -> EFLAGS
17378    if (StringRef("{flags}").equals_lower(Constraint)) {
17379      Res.first = X86::EFLAGS;
17380      Res.second = &X86::CCRRegClass;
17381      return Res;
17382    }
17383
17384    // 'A' means EAX + EDX.
17385    if (Constraint == "A") {
17386      Res.first = X86::EAX;
17387      Res.second = &X86::GR32_ADRegClass;
17388      return Res;
17389    }
17390    return Res;
17391  }
17392
17393  // Otherwise, check to see if this is a register class of the wrong value
17394  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
17395  // turn into {ax},{dx}.
17396  if (Res.second->hasType(VT))
17397    return Res;   // Correct type already, nothing to do.
17398
17399  // All of the single-register GCC register classes map their values onto
17400  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
17401  // really want an 8-bit or 32-bit register, map to the appropriate register
17402  // class and return the appropriate register.
17403  if (Res.second == &X86::GR16RegClass) {
17404    if (VT == MVT::i8) {
17405      unsigned DestReg = 0;
17406      switch (Res.first) {
17407      default: break;
17408      case X86::AX: DestReg = X86::AL; break;
17409      case X86::DX: DestReg = X86::DL; break;
17410      case X86::CX: DestReg = X86::CL; break;
17411      case X86::BX: DestReg = X86::BL; break;
17412      }
17413      if (DestReg) {
17414        Res.first = DestReg;
17415        Res.second = &X86::GR8RegClass;
17416      }
17417    } else if (VT == MVT::i32) {
17418      unsigned DestReg = 0;
17419      switch (Res.first) {
17420      default: break;
17421      case X86::AX: DestReg = X86::EAX; break;
17422      case X86::DX: DestReg = X86::EDX; break;
17423      case X86::CX: DestReg = X86::ECX; break;
17424      case X86::BX: DestReg = X86::EBX; break;
17425      case X86::SI: DestReg = X86::ESI; break;
17426      case X86::DI: DestReg = X86::EDI; break;
17427      case X86::BP: DestReg = X86::EBP; break;
17428      case X86::SP: DestReg = X86::ESP; break;
17429      }
17430      if (DestReg) {
17431        Res.first = DestReg;
17432        Res.second = &X86::GR32RegClass;
17433      }
17434    } else if (VT == MVT::i64) {
17435      unsigned DestReg = 0;
17436      switch (Res.first) {
17437      default: break;
17438      case X86::AX: DestReg = X86::RAX; break;
17439      case X86::DX: DestReg = X86::RDX; break;
17440      case X86::CX: DestReg = X86::RCX; break;
17441      case X86::BX: DestReg = X86::RBX; break;
17442      case X86::SI: DestReg = X86::RSI; break;
17443      case X86::DI: DestReg = X86::RDI; break;
17444      case X86::BP: DestReg = X86::RBP; break;
17445      case X86::SP: DestReg = X86::RSP; break;
17446      }
17447      if (DestReg) {
17448        Res.first = DestReg;
17449        Res.second = &X86::GR64RegClass;
17450      }
17451    }
17452  } else if (Res.second == &X86::FR32RegClass ||
17453             Res.second == &X86::FR64RegClass ||
17454             Res.second == &X86::VR128RegClass) {
17455    // Handle references to XMM physical registers that got mapped into the
17456    // wrong class.  This can happen with constraints like {xmm0} where the
17457    // target independent register mapper will just pick the first match it can
17458    // find, ignoring the required type.
17459
17460    if (VT == MVT::f32 || VT == MVT::i32)
17461      Res.second = &X86::FR32RegClass;
17462    else if (VT == MVT::f64 || VT == MVT::i64)
17463      Res.second = &X86::FR64RegClass;
17464    else if (X86::VR128RegClass.hasType(VT))
17465      Res.second = &X86::VR128RegClass;
17466    else if (X86::VR256RegClass.hasType(VT))
17467      Res.second = &X86::VR256RegClass;
17468  }
17469
17470  return Res;
17471}
17472