X86ISelLowering.cpp revision a395f4df5b6d9c2feb661091ca75be2500d07cb0
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
162
163  RegInfo = TM.getRegisterInfo();
164  TD = getDataLayout();
165
166  // Set up the TargetLowering object.
167  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
168
169  // X86 is weird, it always uses i8 for shift amounts and setcc results.
170  setBooleanContents(ZeroOrOneBooleanContent);
171  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
172  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
173
174  // For 64-bit since we have so many registers use the ILP scheduler, for
175  // 32-bit code use the register pressure specific scheduling.
176  // For Atom, always use ILP scheduling.
177  if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::ILP);
179  else if (Subtarget->is64Bit())
180    setSchedulingPreference(Sched::ILP);
181  else
182    setSchedulingPreference(Sched::RegPressure);
183  setStackPointerRegisterToSaveRestore(X86StackPtr);
184
185  // Bypass i32 with i8 on Atom when compiling with O2
186  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
187    addBypassSlowDiv(32, 8);
188
189  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
190    // Setup Windows compiler runtime calls.
191    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
192    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
193    setLibcallName(RTLIB::SREM_I64, "_allrem");
194    setLibcallName(RTLIB::UREM_I64, "_aullrem");
195    setLibcallName(RTLIB::MUL_I64, "_allmul");
196    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
200    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
201
202    // The _ftol2 runtime function has an unusual calling conv, which
203    // is modeled by a special pseudo-instruction.
204    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
205    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
206    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
207    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, &X86::GR8RegClass);
225  addRegisterClass(MVT::i16, &X86::GR16RegClass);
226  addRegisterClass(MVT::i32, &X86::GR32RegClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, &X86::GR64RegClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
257  } else if (!TM.Options.UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!TM.Options.UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!TM.Options.UseSoftFloat) {
315    // Since AVX is a superset of SSE3, only check for SSE here.
316    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
317      // Expand FP_TO_UINT into a select.
318      // FIXME: We would like to use a Custom expander here eventually to do
319      // the optimal thing for SSE vs. the default expansion in the legalizer.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
321    else
322      // With SSE3 we can use fisttpll to convert to a signed i64; without
323      // SSE, we're stuck with a fistpll.
324      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
325  }
326
327  if (isTargetFTOL()) {
328    // Use the _ftol2 runtime function, which has a pseudo-instruction
329    // to handle its weird calling convention.
330    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
331  }
332
333  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
334  if (!X86ScalarSSEf64) {
335    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
336    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
337    if (Subtarget->is64Bit()) {
338      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
339      // Without SSE, i64->f64 goes through memory.
340      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
341    }
342  }
343
344  // Scalar integer divide and remainder are lowered to use operations that
345  // produce two results, to match the available instructions. This exposes
346  // the two-result form to trivial CSE, which is able to combine x/y and x%y
347  // into a single instruction.
348  //
349  // Scalar integer multiply-high is also lowered to use two-result
350  // operations, to match the available instructions. However, plain multiply
351  // (low) operations are left as Legal, as there are single-result
352  // instructions for this in x86. Using the two-result multiply instructions
353  // when both high and low results are needed must be arranged by dagcombine.
354  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
355    MVT VT = IntVTs[i];
356    setOperationAction(ISD::MULHS, VT, Expand);
357    setOperationAction(ISD::MULHU, VT, Expand);
358    setOperationAction(ISD::SDIV, VT, Expand);
359    setOperationAction(ISD::UDIV, VT, Expand);
360    setOperationAction(ISD::SREM, VT, Expand);
361    setOperationAction(ISD::UREM, VT, Expand);
362
363    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
364    setOperationAction(ISD::ADDC, VT, Custom);
365    setOperationAction(ISD::ADDE, VT, Custom);
366    setOperationAction(ISD::SUBC, VT, Custom);
367    setOperationAction(ISD::SUBE, VT, Custom);
368  }
369
370  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
371  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
372  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
373  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
374  if (Subtarget->is64Bit())
375    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
378  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
379  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
382  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
383  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
384
385  // Promote the i8 variants and force them on up to i32 which has a shorter
386  // encoding.
387  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
388  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
389  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
390  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
391  if (Subtarget->hasBMI()) {
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
393    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
396  } else {
397    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
398    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
399    if (Subtarget->is64Bit())
400      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
401  }
402
403  if (Subtarget->hasLZCNT()) {
404    // When promoting the i8 variants, force them to i32 for a shorter
405    // encoding.
406    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
407    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
409    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
411    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
412    if (Subtarget->is64Bit())
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
414  } else {
415    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
417    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
420    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
421    if (Subtarget->is64Bit()) {
422      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
423      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
424    }
425  }
426
427  if (Subtarget->hasPOPCNT()) {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
429  } else {
430    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
432    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
433    if (Subtarget->is64Bit())
434      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
435  }
436
437  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
438  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
439
440  // These should be promoted to a larger select which is supported.
441  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
442  // X86 wants to expand cmov itself.
443  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
448  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
454  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
457    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
458  }
459  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
460
461  // Darwin ABI issue.
462  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
463  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
464  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
465  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
466  if (Subtarget->is64Bit())
467    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
468  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
469  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
470  if (Subtarget->is64Bit()) {
471    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
472    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
473    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
474    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
475    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
476  }
477  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
478  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
479  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
480  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
481  if (Subtarget->is64Bit()) {
482    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
483    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
484    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
485  }
486
487  if (Subtarget->hasSSE1())
488    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
489
490  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
491  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
492
493  // On X86 and X86-64, atomic operations are lowered to locked instructions.
494  // Locked instructions, in turn, have implicit fence semantics (all memory
495  // operations are flushed before issuing the locked instruction, and they
496  // are not buffered), so we can fold away the common pattern of
497  // fence-atomic-fence.
498  setShouldFoldAtomicFences(true);
499
500  // Expand certain atomics
501  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
502    MVT VT = IntVTs[i];
503    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
505    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
506  }
507
508  if (!Subtarget->is64Bit()) {
509    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
513    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
514    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
515    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
516    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
517    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
518    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
519    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
520    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
521  }
522
523  if (Subtarget->hasCmpxchg16b()) {
524    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
525  }
526
527  // FIXME - use subtarget debug flags
528  if (!Subtarget->isTargetDarwin() &&
529      !Subtarget->isTargetELF() &&
530      !Subtarget->isTargetCygMing()) {
531    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
532  }
533
534  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
535  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
536  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
537  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
538  if (Subtarget->is64Bit()) {
539    setExceptionPointerRegister(X86::RAX);
540    setExceptionSelectorRegister(X86::RDX);
541  } else {
542    setExceptionPointerRegister(X86::EAX);
543    setExceptionSelectorRegister(X86::EDX);
544  }
545  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
546  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
547
548  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
549  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
550
551  setOperationAction(ISD::TRAP, MVT::Other, Legal);
552
553  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
554  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
555  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
556  if (Subtarget->is64Bit()) {
557    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
558    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
559  } else {
560    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
561    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
562  }
563
564  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
565  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
566
567  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
568    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
569                       MVT::i64 : MVT::i32, Custom);
570  else if (TM.Options.EnableSegmentedStacks)
571    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
572                       MVT::i64 : MVT::i32, Custom);
573  else
574    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
575                       MVT::i64 : MVT::i32, Expand);
576
577  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
578    // f32 and f64 use SSE.
579    // Set up the FP register classes.
580    addRegisterClass(MVT::f32, &X86::FR32RegClass);
581    addRegisterClass(MVT::f64, &X86::FR64RegClass);
582
583    // Use ANDPD to simulate FABS.
584    setOperationAction(ISD::FABS , MVT::f64, Custom);
585    setOperationAction(ISD::FABS , MVT::f32, Custom);
586
587    // Use XORP to simulate FNEG.
588    setOperationAction(ISD::FNEG , MVT::f64, Custom);
589    setOperationAction(ISD::FNEG , MVT::f32, Custom);
590
591    // Use ANDPD and ORPD to simulate FCOPYSIGN.
592    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
593    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
594
595    // Lower this to FGETSIGNx86 plus an AND.
596    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
597    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
598
599    // We don't support sin/cos/fmod
600    setOperationAction(ISD::FSIN , MVT::f64, Expand);
601    setOperationAction(ISD::FCOS , MVT::f64, Expand);
602    setOperationAction(ISD::FSIN , MVT::f32, Expand);
603    setOperationAction(ISD::FCOS , MVT::f32, Expand);
604
605    // Expand FP immediates into loads from the stack, except for the special
606    // cases we handle.
607    addLegalFPImmediate(APFloat(+0.0)); // xorpd
608    addLegalFPImmediate(APFloat(+0.0f)); // xorps
609  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
610    // Use SSE for f32, x87 for f64.
611    // Set up the FP register classes.
612    addRegisterClass(MVT::f32, &X86::FR32RegClass);
613    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
614
615    // Use ANDPS to simulate FABS.
616    setOperationAction(ISD::FABS , MVT::f32, Custom);
617
618    // Use XORP to simulate FNEG.
619    setOperationAction(ISD::FNEG , MVT::f32, Custom);
620
621    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
622
623    // Use ANDPS and ORPS to simulate FCOPYSIGN.
624    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
625    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
626
627    // We don't support sin/cos/fmod
628    setOperationAction(ISD::FSIN , MVT::f32, Expand);
629    setOperationAction(ISD::FCOS , MVT::f32, Expand);
630
631    // Special cases we handle for FP constants.
632    addLegalFPImmediate(APFloat(+0.0f)); // xorps
633    addLegalFPImmediate(APFloat(+0.0)); // FLD0
634    addLegalFPImmediate(APFloat(+1.0)); // FLD1
635    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
636    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
637
638    if (!TM.Options.UnsafeFPMath) {
639      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
640      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
641    }
642  } else if (!TM.Options.UseSoftFloat) {
643    // f32 and f64 in x87.
644    // Set up the FP register classes.
645    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
646    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
647
648    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
649    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
650    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
651    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
652
653    if (!TM.Options.UnsafeFPMath) {
654      setOperationAction(ISD::FSIN           , MVT::f32  , Expand);
655      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
656      setOperationAction(ISD::FCOS           , MVT::f32  , Expand);
657      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
658    }
659    addLegalFPImmediate(APFloat(+0.0)); // FLD0
660    addLegalFPImmediate(APFloat(+1.0)); // FLD1
661    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
662    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
663    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
664    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
665    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
666    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
667  }
668
669  // We don't support FMA.
670  setOperationAction(ISD::FMA, MVT::f64, Expand);
671  setOperationAction(ISD::FMA, MVT::f32, Expand);
672
673  // Long double always uses X87.
674  if (!TM.Options.UseSoftFloat) {
675    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
676    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
677    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
678    {
679      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
680      addLegalFPImmediate(TmpFlt);  // FLD0
681      TmpFlt.changeSign();
682      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
683
684      bool ignored;
685      APFloat TmpFlt2(+1.0);
686      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
687                      &ignored);
688      addLegalFPImmediate(TmpFlt2);  // FLD1
689      TmpFlt2.changeSign();
690      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
691    }
692
693    if (!TM.Options.UnsafeFPMath) {
694      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
695      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
696    }
697
698    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
699    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
700    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
701    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
702    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
703    setOperationAction(ISD::FMA, MVT::f80, Expand);
704  }
705
706  // Always use a library call for pow.
707  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
708  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
709  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
710
711  setOperationAction(ISD::FLOG, MVT::f80, Expand);
712  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
713  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
714  setOperationAction(ISD::FEXP, MVT::f80, Expand);
715  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
716
717  // First set operation action for all vector types to either promote
718  // (for widening) or expand (for scalarization). Then we will selectively
719  // turn on ones that can be effectively codegen'd.
720  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
721           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
722    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
737    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
739    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
740    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::FMA,  (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::FFLOOR, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
770    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
771    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
772    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
773    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
774    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
775    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
776    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
777    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
778    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
779    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
780    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
781    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
782             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
783      setTruncStoreAction((MVT::SimpleValueType)VT,
784                          (MVT::SimpleValueType)InnerVT, Expand);
785    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
786    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
787    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
788  }
789
790  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
791  // with -msoft-float, disable use of MMX as well.
792  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
793    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
794    // No operations on x86mmx supported, everything uses intrinsics.
795  }
796
797  // MMX-sized vectors (other than x86mmx) are expected to be expanded
798  // into smaller operations.
799  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
800  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
801  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
802  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
803  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
804  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
805  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
806  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
807  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
808  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
809  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
810  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
811  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
812  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
813  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
814  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
815  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
816  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
817  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
818  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
819  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
820  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
821  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
822  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
823  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
824  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
825  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
826  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
827  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
828
829  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
830    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
831
832    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
833    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
834    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
835    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
836    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
837    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
838    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
839    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
840    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
841    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
842    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
843    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
844  }
845
846  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
847    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
848
849    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
850    // registers cannot be used even for integer operations.
851    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
852    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
853    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
854    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
855
856    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
857    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
858    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
859    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
860    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
861    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
862    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
863    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
864    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
865    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
866    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
867    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
868    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
869    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
870    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
871    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
872    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
873
874    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
875    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
876    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
877    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
878
879    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
880    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
881    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
882    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
883    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
884
885    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
886    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
887      MVT VT = (MVT::SimpleValueType)i;
888      // Do not attempt to custom lower non-power-of-2 vectors
889      if (!isPowerOf2_32(VT.getVectorNumElements()))
890        continue;
891      // Do not attempt to custom lower non-128-bit vectors
892      if (!VT.is128BitVector())
893        continue;
894      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
895      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
896      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
897    }
898
899    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
900    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
901    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
902    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
903    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
904    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
905
906    if (Subtarget->is64Bit()) {
907      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
908      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
909    }
910
911    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
912    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
913      MVT VT = (MVT::SimpleValueType)i;
914
915      // Do not attempt to promote non-128-bit vectors
916      if (!VT.is128BitVector())
917        continue;
918
919      setOperationAction(ISD::AND,    VT, Promote);
920      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
921      setOperationAction(ISD::OR,     VT, Promote);
922      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
923      setOperationAction(ISD::XOR,    VT, Promote);
924      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
925      setOperationAction(ISD::LOAD,   VT, Promote);
926      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
927      setOperationAction(ISD::SELECT, VT, Promote);
928      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
929    }
930
931    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
932
933    // Custom lower v2i64 and v2f64 selects.
934    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
935    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
936    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
937    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
938
939    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
940    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
941
942    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
943    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
944
945    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
946  }
947
948  if (Subtarget->hasSSE41()) {
949    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
950    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
951    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
952    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
953    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
954    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
955    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
956    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
957    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
958    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
959
960    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
961    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
962
963    // FIXME: Do we need to handle scalar-to-vector here?
964    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
965
966    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
967    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
968    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
969    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
970    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
971
972    // i8 and i16 vectors are custom , because the source register and source
973    // source memory operand types are not the same width.  f32 vectors are
974    // custom since the immediate controlling the insert encodes additional
975    // information.
976    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
977    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
978    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
979    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
980
981    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
982    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
983    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
984    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
985
986    // FIXME: these should be Legal but thats only for the case where
987    // the index is constant.  For now custom expand to deal with that.
988    if (Subtarget->is64Bit()) {
989      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
990      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
991    }
992  }
993
994  if (Subtarget->hasSSE2()) {
995    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
996    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
997
998    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
999    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1000
1001    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1002    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1003
1004    if (Subtarget->hasAVX2()) {
1005      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
1006      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1007
1008      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1009      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1010
1011      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1012    } else {
1013      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1014      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1015
1016      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1017      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1018
1019      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1020    }
1021  }
1022
1023  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1024    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1025    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1026    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1027    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1028    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1029    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1030
1031    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1032    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1033    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1034
1035    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1036    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1037    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1038    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1039    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1040    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1041    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1042    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1043
1044    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1045    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1046    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1047    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1048    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1049    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1050    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1051    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1052
1053    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1054    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1055    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1056
1057    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1058
1059    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1060    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1061
1062    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1063    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1064
1065    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1066    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1067
1068    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1069    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1070    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1071    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1072
1073    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1074    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1075    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1076
1077    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1078    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1079    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1080    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1081
1082    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1083      setOperationAction(ISD::FMA,             MVT::v8f32, Custom);
1084      setOperationAction(ISD::FMA,             MVT::v4f64, Custom);
1085      setOperationAction(ISD::FMA,             MVT::v4f32, Custom);
1086      setOperationAction(ISD::FMA,             MVT::v2f64, Custom);
1087      setOperationAction(ISD::FMA,             MVT::f32, Custom);
1088      setOperationAction(ISD::FMA,             MVT::f64, Custom);
1089    }
1090
1091    if (Subtarget->hasAVX2()) {
1092      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1093      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1094      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1095      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1096
1097      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1098      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1099      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1100      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1101
1102      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1103      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1104      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1105      // Don't lower v32i8 because there is no 128-bit byte mul
1106
1107      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1108
1109      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1110      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1111
1112      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1113      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1114
1115      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1116    } else {
1117      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1118      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1119      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1120      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1121
1122      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1123      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1124      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1125      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1126
1127      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1128      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1129      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1130      // Don't lower v32i8 because there is no 128-bit byte mul
1131
1132      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1133      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1134
1135      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1136      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1137
1138      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1139    }
1140
1141    // Custom lower several nodes for 256-bit types.
1142    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1143             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1144      MVT VT = (MVT::SimpleValueType)i;
1145
1146      // Extract subvector is special because the value type
1147      // (result) is 128-bit but the source is 256-bit wide.
1148      if (VT.is128BitVector())
1149        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1150
1151      // Do not attempt to custom lower other non-256-bit vectors
1152      if (!VT.is256BitVector())
1153        continue;
1154
1155      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1156      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1157      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1158      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1159      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1160      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1161      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1162    }
1163
1164    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1165    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1166      MVT VT = (MVT::SimpleValueType)i;
1167
1168      // Do not attempt to promote non-256-bit vectors
1169      if (!VT.is256BitVector())
1170        continue;
1171
1172      setOperationAction(ISD::AND,    VT, Promote);
1173      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1174      setOperationAction(ISD::OR,     VT, Promote);
1175      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1176      setOperationAction(ISD::XOR,    VT, Promote);
1177      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1178      setOperationAction(ISD::LOAD,   VT, Promote);
1179      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1180      setOperationAction(ISD::SELECT, VT, Promote);
1181      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1182    }
1183  }
1184
1185  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1186  // of this type with custom code.
1187  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1188           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1189    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1190                       Custom);
1191  }
1192
1193  // We want to custom lower some of our intrinsics.
1194  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1195  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1196
1197
1198  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1199  // handle type legalization for these operations here.
1200  //
1201  // FIXME: We really should do custom legalization for addition and
1202  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1203  // than generic legalization for 64-bit multiplication-with-overflow, though.
1204  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1205    // Add/Sub/Mul with overflow operations are custom lowered.
1206    MVT VT = IntVTs[i];
1207    setOperationAction(ISD::SADDO, VT, Custom);
1208    setOperationAction(ISD::UADDO, VT, Custom);
1209    setOperationAction(ISD::SSUBO, VT, Custom);
1210    setOperationAction(ISD::USUBO, VT, Custom);
1211    setOperationAction(ISD::SMULO, VT, Custom);
1212    setOperationAction(ISD::UMULO, VT, Custom);
1213  }
1214
1215  // There are no 8-bit 3-address imul/mul instructions
1216  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1217  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1218
1219  if (!Subtarget->is64Bit()) {
1220    // These libcalls are not available in 32-bit.
1221    setLibcallName(RTLIB::SHL_I128, 0);
1222    setLibcallName(RTLIB::SRL_I128, 0);
1223    setLibcallName(RTLIB::SRA_I128, 0);
1224  }
1225
1226  // We have target-specific dag combine patterns for the following nodes:
1227  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1228  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1229  setTargetDAGCombine(ISD::VSELECT);
1230  setTargetDAGCombine(ISD::SELECT);
1231  setTargetDAGCombine(ISD::SHL);
1232  setTargetDAGCombine(ISD::SRA);
1233  setTargetDAGCombine(ISD::SRL);
1234  setTargetDAGCombine(ISD::OR);
1235  setTargetDAGCombine(ISD::AND);
1236  setTargetDAGCombine(ISD::ADD);
1237  setTargetDAGCombine(ISD::FADD);
1238  setTargetDAGCombine(ISD::FSUB);
1239  setTargetDAGCombine(ISD::FMA);
1240  setTargetDAGCombine(ISD::SUB);
1241  setTargetDAGCombine(ISD::LOAD);
1242  setTargetDAGCombine(ISD::STORE);
1243  setTargetDAGCombine(ISD::ZERO_EXTEND);
1244  setTargetDAGCombine(ISD::ANY_EXTEND);
1245  setTargetDAGCombine(ISD::SIGN_EXTEND);
1246  setTargetDAGCombine(ISD::TRUNCATE);
1247  setTargetDAGCombine(ISD::UINT_TO_FP);
1248  setTargetDAGCombine(ISD::SINT_TO_FP);
1249  setTargetDAGCombine(ISD::SETCC);
1250  setTargetDAGCombine(ISD::FP_TO_SINT);
1251  if (Subtarget->is64Bit())
1252    setTargetDAGCombine(ISD::MUL);
1253  setTargetDAGCombine(ISD::XOR);
1254
1255  computeRegisterProperties();
1256
1257  // On Darwin, -Os means optimize for size without hurting performance,
1258  // do not reduce the limit.
1259  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1260  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1261  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1262  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1263  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1264  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1265  setPrefLoopAlignment(4); // 2^4 bytes.
1266  benefitFromCodePlacementOpt = true;
1267
1268  // Predictable cmov don't hurt on atom because it's in-order.
1269  predictableSelectIsExpensive = !Subtarget->isAtom();
1270
1271  setPrefFunctionAlignment(4); // 2^4 bytes.
1272}
1273
1274
1275EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1276  if (!VT.isVector()) return MVT::i8;
1277  return VT.changeVectorElementTypeToInteger();
1278}
1279
1280
1281/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1282/// the desired ByVal argument alignment.
1283static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1284  if (MaxAlign == 16)
1285    return;
1286  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1287    if (VTy->getBitWidth() == 128)
1288      MaxAlign = 16;
1289  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1290    unsigned EltAlign = 0;
1291    getMaxByValAlign(ATy->getElementType(), EltAlign);
1292    if (EltAlign > MaxAlign)
1293      MaxAlign = EltAlign;
1294  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1295    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1296      unsigned EltAlign = 0;
1297      getMaxByValAlign(STy->getElementType(i), EltAlign);
1298      if (EltAlign > MaxAlign)
1299        MaxAlign = EltAlign;
1300      if (MaxAlign == 16)
1301        break;
1302    }
1303  }
1304}
1305
1306/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1307/// function arguments in the caller parameter area. For X86, aggregates
1308/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1309/// are at 4-byte boundaries.
1310unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1311  if (Subtarget->is64Bit()) {
1312    // Max of 8 and alignment of type.
1313    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1314    if (TyAlign > 8)
1315      return TyAlign;
1316    return 8;
1317  }
1318
1319  unsigned Align = 4;
1320  if (Subtarget->hasSSE1())
1321    getMaxByValAlign(Ty, Align);
1322  return Align;
1323}
1324
1325/// getOptimalMemOpType - Returns the target specific optimal type for load
1326/// and store operations as a result of memset, memcpy, and memmove
1327/// lowering. If DstAlign is zero that means it's safe to destination
1328/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1329/// means there isn't a need to check it against alignment requirement,
1330/// probably because the source does not need to be loaded. If
1331/// 'IsZeroVal' is true, that means it's safe to return a
1332/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1333/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1334/// constant so it does not need to be loaded.
1335/// It returns EVT::Other if the type should be determined using generic
1336/// target-independent logic.
1337EVT
1338X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1339                                       unsigned DstAlign, unsigned SrcAlign,
1340                                       bool IsZeroVal,
1341                                       bool MemcpyStrSrc,
1342                                       MachineFunction &MF) const {
1343  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1344  // linux.  This is because the stack realignment code can't handle certain
1345  // cases like PR2962.  This should be removed when PR2962 is fixed.
1346  const Function *F = MF.getFunction();
1347  if (IsZeroVal &&
1348      !F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat)) {
1349    if (Size >= 16 &&
1350        (Subtarget->isUnalignedMemAccessFast() ||
1351         ((DstAlign == 0 || DstAlign >= 16) &&
1352          (SrcAlign == 0 || SrcAlign >= 16))) &&
1353        Subtarget->getStackAlignment() >= 16) {
1354      if (Subtarget->getStackAlignment() >= 32) {
1355        if (Subtarget->hasAVX2())
1356          return MVT::v8i32;
1357        if (Subtarget->hasAVX())
1358          return MVT::v8f32;
1359      }
1360      if (Subtarget->hasSSE2())
1361        return MVT::v4i32;
1362      if (Subtarget->hasSSE1())
1363        return MVT::v4f32;
1364    } else if (!MemcpyStrSrc && Size >= 8 &&
1365               !Subtarget->is64Bit() &&
1366               Subtarget->getStackAlignment() >= 8 &&
1367               Subtarget->hasSSE2()) {
1368      // Do not use f64 to lower memcpy if source is string constant. It's
1369      // better to use i32 to avoid the loads.
1370      return MVT::f64;
1371    }
1372  }
1373  if (Subtarget->is64Bit() && Size >= 8)
1374    return MVT::i64;
1375  return MVT::i32;
1376}
1377
1378/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1379/// current function.  The returned value is a member of the
1380/// MachineJumpTableInfo::JTEntryKind enum.
1381unsigned X86TargetLowering::getJumpTableEncoding() const {
1382  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1383  // symbol.
1384  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1385      Subtarget->isPICStyleGOT())
1386    return MachineJumpTableInfo::EK_Custom32;
1387
1388  // Otherwise, use the normal jump table encoding heuristics.
1389  return TargetLowering::getJumpTableEncoding();
1390}
1391
1392const MCExpr *
1393X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1394                                             const MachineBasicBlock *MBB,
1395                                             unsigned uid,MCContext &Ctx) const{
1396  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1397         Subtarget->isPICStyleGOT());
1398  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1399  // entries.
1400  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1401                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1402}
1403
1404/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1405/// jumptable.
1406SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1407                                                    SelectionDAG &DAG) const {
1408  if (!Subtarget->is64Bit())
1409    // This doesn't have DebugLoc associated with it, but is not really the
1410    // same as a Register.
1411    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1412  return Table;
1413}
1414
1415/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1416/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1417/// MCExpr.
1418const MCExpr *X86TargetLowering::
1419getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1420                             MCContext &Ctx) const {
1421  // X86-64 uses RIP relative addressing based on the jump table label.
1422  if (Subtarget->isPICStyleRIPRel())
1423    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1424
1425  // Otherwise, the reference is relative to the PIC base.
1426  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1427}
1428
1429// FIXME: Why this routine is here? Move to RegInfo!
1430std::pair<const TargetRegisterClass*, uint8_t>
1431X86TargetLowering::findRepresentativeClass(EVT VT) const{
1432  const TargetRegisterClass *RRC = 0;
1433  uint8_t Cost = 1;
1434  switch (VT.getSimpleVT().SimpleTy) {
1435  default:
1436    return TargetLowering::findRepresentativeClass(VT);
1437  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1438    RRC = Subtarget->is64Bit() ?
1439      (const TargetRegisterClass*)&X86::GR64RegClass :
1440      (const TargetRegisterClass*)&X86::GR32RegClass;
1441    break;
1442  case MVT::x86mmx:
1443    RRC = &X86::VR64RegClass;
1444    break;
1445  case MVT::f32: case MVT::f64:
1446  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1447  case MVT::v4f32: case MVT::v2f64:
1448  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1449  case MVT::v4f64:
1450    RRC = &X86::VR128RegClass;
1451    break;
1452  }
1453  return std::make_pair(RRC, Cost);
1454}
1455
1456bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1457                                               unsigned &Offset) const {
1458  if (!Subtarget->isTargetLinux())
1459    return false;
1460
1461  if (Subtarget->is64Bit()) {
1462    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1463    Offset = 0x28;
1464    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1465      AddressSpace = 256;
1466    else
1467      AddressSpace = 257;
1468  } else {
1469    // %gs:0x14 on i386
1470    Offset = 0x14;
1471    AddressSpace = 256;
1472  }
1473  return true;
1474}
1475
1476
1477//===----------------------------------------------------------------------===//
1478//               Return Value Calling Convention Implementation
1479//===----------------------------------------------------------------------===//
1480
1481#include "X86GenCallingConv.inc"
1482
1483bool
1484X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1485                                  MachineFunction &MF, bool isVarArg,
1486                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1487                        LLVMContext &Context) const {
1488  SmallVector<CCValAssign, 16> RVLocs;
1489  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1490                 RVLocs, Context);
1491  return CCInfo.CheckReturn(Outs, RetCC_X86);
1492}
1493
1494SDValue
1495X86TargetLowering::LowerReturn(SDValue Chain,
1496                               CallingConv::ID CallConv, bool isVarArg,
1497                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1498                               const SmallVectorImpl<SDValue> &OutVals,
1499                               DebugLoc dl, SelectionDAG &DAG) const {
1500  MachineFunction &MF = DAG.getMachineFunction();
1501  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1502
1503  SmallVector<CCValAssign, 16> RVLocs;
1504  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1505                 RVLocs, *DAG.getContext());
1506  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1507
1508  // Add the regs to the liveout set for the function.
1509  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1510  for (unsigned i = 0; i != RVLocs.size(); ++i)
1511    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1512      MRI.addLiveOut(RVLocs[i].getLocReg());
1513
1514  SDValue Flag;
1515
1516  SmallVector<SDValue, 6> RetOps;
1517  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1518  // Operand #1 = Bytes To Pop
1519  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1520                   MVT::i16));
1521
1522  // Copy the result values into the output registers.
1523  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1524    CCValAssign &VA = RVLocs[i];
1525    assert(VA.isRegLoc() && "Can only return in registers!");
1526    SDValue ValToCopy = OutVals[i];
1527    EVT ValVT = ValToCopy.getValueType();
1528
1529    // Promote values to the appropriate types
1530    if (VA.getLocInfo() == CCValAssign::SExt)
1531      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1532    else if (VA.getLocInfo() == CCValAssign::ZExt)
1533      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1534    else if (VA.getLocInfo() == CCValAssign::AExt)
1535      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1536    else if (VA.getLocInfo() == CCValAssign::BCvt)
1537      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1538
1539    // If this is x86-64, and we disabled SSE, we can't return FP values,
1540    // or SSE or MMX vectors.
1541    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1542         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1543          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1544      report_fatal_error("SSE register return with SSE disabled");
1545    }
1546    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1547    // llvm-gcc has never done it right and no one has noticed, so this
1548    // should be OK for now.
1549    if (ValVT == MVT::f64 &&
1550        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1551      report_fatal_error("SSE2 register return with SSE2 disabled");
1552
1553    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1554    // the RET instruction and handled by the FP Stackifier.
1555    if (VA.getLocReg() == X86::ST0 ||
1556        VA.getLocReg() == X86::ST1) {
1557      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1558      // change the value to the FP stack register class.
1559      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1560        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1561      RetOps.push_back(ValToCopy);
1562      // Don't emit a copytoreg.
1563      continue;
1564    }
1565
1566    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1567    // which is returned in RAX / RDX.
1568    if (Subtarget->is64Bit()) {
1569      if (ValVT == MVT::x86mmx) {
1570        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1571          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1572          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1573                                  ValToCopy);
1574          // If we don't have SSE2 available, convert to v4f32 so the generated
1575          // register is legal.
1576          if (!Subtarget->hasSSE2())
1577            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1578        }
1579      }
1580    }
1581
1582    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1583    Flag = Chain.getValue(1);
1584  }
1585
1586  // The x86-64 ABI for returning structs by value requires that we copy
1587  // the sret argument into %rax for the return. We saved the argument into
1588  // a virtual register in the entry block, so now we copy the value out
1589  // and into %rax.
1590  if (Subtarget->is64Bit() &&
1591      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1592    MachineFunction &MF = DAG.getMachineFunction();
1593    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1594    unsigned Reg = FuncInfo->getSRetReturnReg();
1595    assert(Reg &&
1596           "SRetReturnReg should have been set in LowerFormalArguments().");
1597    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1598
1599    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1600    Flag = Chain.getValue(1);
1601
1602    // RAX now acts like a return value.
1603    MRI.addLiveOut(X86::RAX);
1604  }
1605
1606  RetOps[0] = Chain;  // Update chain.
1607
1608  // Add the flag if we have it.
1609  if (Flag.getNode())
1610    RetOps.push_back(Flag);
1611
1612  return DAG.getNode(X86ISD::RET_FLAG, dl,
1613                     MVT::Other, &RetOps[0], RetOps.size());
1614}
1615
1616bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1617  if (N->getNumValues() != 1)
1618    return false;
1619  if (!N->hasNUsesOfValue(1, 0))
1620    return false;
1621
1622  SDValue TCChain = Chain;
1623  SDNode *Copy = *N->use_begin();
1624  if (Copy->getOpcode() == ISD::CopyToReg) {
1625    // If the copy has a glue operand, we conservatively assume it isn't safe to
1626    // perform a tail call.
1627    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1628      return false;
1629    TCChain = Copy->getOperand(0);
1630  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1631    return false;
1632
1633  bool HasRet = false;
1634  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1635       UI != UE; ++UI) {
1636    if (UI->getOpcode() != X86ISD::RET_FLAG)
1637      return false;
1638    HasRet = true;
1639  }
1640
1641  if (!HasRet)
1642    return false;
1643
1644  Chain = TCChain;
1645  return true;
1646}
1647
1648EVT
1649X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1650                                            ISD::NodeType ExtendKind) const {
1651  MVT ReturnMVT;
1652  // TODO: Is this also valid on 32-bit?
1653  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1654    ReturnMVT = MVT::i8;
1655  else
1656    ReturnMVT = MVT::i32;
1657
1658  EVT MinVT = getRegisterType(Context, ReturnMVT);
1659  return VT.bitsLT(MinVT) ? MinVT : VT;
1660}
1661
1662/// LowerCallResult - Lower the result values of a call into the
1663/// appropriate copies out of appropriate physical registers.
1664///
1665SDValue
1666X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1667                                   CallingConv::ID CallConv, bool isVarArg,
1668                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1669                                   DebugLoc dl, SelectionDAG &DAG,
1670                                   SmallVectorImpl<SDValue> &InVals) const {
1671
1672  // Assign locations to each value returned by this call.
1673  SmallVector<CCValAssign, 16> RVLocs;
1674  bool Is64Bit = Subtarget->is64Bit();
1675  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1676                 getTargetMachine(), RVLocs, *DAG.getContext());
1677  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1678
1679  // Copy all of the result registers out of their specified physreg.
1680  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1681    CCValAssign &VA = RVLocs[i];
1682    EVT CopyVT = VA.getValVT();
1683
1684    // If this is x86-64, and we disabled SSE, we can't return FP values
1685    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1686        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1687      report_fatal_error("SSE register return with SSE disabled");
1688    }
1689
1690    SDValue Val;
1691
1692    // If this is a call to a function that returns an fp value on the floating
1693    // point stack, we must guarantee the value is popped from the stack, so
1694    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1695    // if the return value is not used. We use the FpPOP_RETVAL instruction
1696    // instead.
1697    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1698      // If we prefer to use the value in xmm registers, copy it out as f80 and
1699      // use a truncate to move it from fp stack reg to xmm reg.
1700      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1701      SDValue Ops[] = { Chain, InFlag };
1702      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1703                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1704      Val = Chain.getValue(0);
1705
1706      // Round the f80 to the right size, which also moves it to the appropriate
1707      // xmm register.
1708      if (CopyVT != VA.getValVT())
1709        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1710                          // This truncation won't change the value.
1711                          DAG.getIntPtrConstant(1));
1712    } else {
1713      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1714                                 CopyVT, InFlag).getValue(1);
1715      Val = Chain.getValue(0);
1716    }
1717    InFlag = Chain.getValue(2);
1718    InVals.push_back(Val);
1719  }
1720
1721  return Chain;
1722}
1723
1724
1725//===----------------------------------------------------------------------===//
1726//                C & StdCall & Fast Calling Convention implementation
1727//===----------------------------------------------------------------------===//
1728//  StdCall calling convention seems to be standard for many Windows' API
1729//  routines and around. It differs from C calling convention just a little:
1730//  callee should clean up the stack, not caller. Symbols should be also
1731//  decorated in some fancy way :) It doesn't support any vector arguments.
1732//  For info on fast calling convention see Fast Calling Convention (tail call)
1733//  implementation LowerX86_32FastCCCallTo.
1734
1735/// CallIsStructReturn - Determines whether a call uses struct return
1736/// semantics.
1737enum StructReturnType {
1738  NotStructReturn,
1739  RegStructReturn,
1740  StackStructReturn
1741};
1742static StructReturnType
1743callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1744  if (Outs.empty())
1745    return NotStructReturn;
1746
1747  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1748  if (!Flags.isSRet())
1749    return NotStructReturn;
1750  if (Flags.isInReg())
1751    return RegStructReturn;
1752  return StackStructReturn;
1753}
1754
1755/// ArgsAreStructReturn - Determines whether a function uses struct
1756/// return semantics.
1757static StructReturnType
1758argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1759  if (Ins.empty())
1760    return NotStructReturn;
1761
1762  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1763  if (!Flags.isSRet())
1764    return NotStructReturn;
1765  if (Flags.isInReg())
1766    return RegStructReturn;
1767  return StackStructReturn;
1768}
1769
1770/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1771/// by "Src" to address "Dst" with size and alignment information specified by
1772/// the specific parameter attribute. The copy will be passed as a byval
1773/// function parameter.
1774static SDValue
1775CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1776                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1777                          DebugLoc dl) {
1778  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1779
1780  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1781                       /*isVolatile*/false, /*AlwaysInline=*/true,
1782                       MachinePointerInfo(), MachinePointerInfo());
1783}
1784
1785/// IsTailCallConvention - Return true if the calling convention is one that
1786/// supports tail call optimization.
1787static bool IsTailCallConvention(CallingConv::ID CC) {
1788  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1789}
1790
1791bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1792  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1793    return false;
1794
1795  CallSite CS(CI);
1796  CallingConv::ID CalleeCC = CS.getCallingConv();
1797  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1798    return false;
1799
1800  return true;
1801}
1802
1803/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1804/// a tailcall target by changing its ABI.
1805static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1806                                   bool GuaranteedTailCallOpt) {
1807  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1808}
1809
1810SDValue
1811X86TargetLowering::LowerMemArgument(SDValue Chain,
1812                                    CallingConv::ID CallConv,
1813                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1814                                    DebugLoc dl, SelectionDAG &DAG,
1815                                    const CCValAssign &VA,
1816                                    MachineFrameInfo *MFI,
1817                                    unsigned i) const {
1818  // Create the nodes corresponding to a load from this parameter slot.
1819  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1820  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1821                              getTargetMachine().Options.GuaranteedTailCallOpt);
1822  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1823  EVT ValVT;
1824
1825  // If value is passed by pointer we have address passed instead of the value
1826  // itself.
1827  if (VA.getLocInfo() == CCValAssign::Indirect)
1828    ValVT = VA.getLocVT();
1829  else
1830    ValVT = VA.getValVT();
1831
1832  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1833  // changed with more analysis.
1834  // In case of tail call optimization mark all arguments mutable. Since they
1835  // could be overwritten by lowering of arguments in case of a tail call.
1836  if (Flags.isByVal()) {
1837    unsigned Bytes = Flags.getByValSize();
1838    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1839    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1840    return DAG.getFrameIndex(FI, getPointerTy());
1841  } else {
1842    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1843                                    VA.getLocMemOffset(), isImmutable);
1844    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1845    return DAG.getLoad(ValVT, dl, Chain, FIN,
1846                       MachinePointerInfo::getFixedStack(FI),
1847                       false, false, false, 0);
1848  }
1849}
1850
1851SDValue
1852X86TargetLowering::LowerFormalArguments(SDValue Chain,
1853                                        CallingConv::ID CallConv,
1854                                        bool isVarArg,
1855                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1856                                        DebugLoc dl,
1857                                        SelectionDAG &DAG,
1858                                        SmallVectorImpl<SDValue> &InVals)
1859                                          const {
1860  MachineFunction &MF = DAG.getMachineFunction();
1861  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1862
1863  const Function* Fn = MF.getFunction();
1864  if (Fn->hasExternalLinkage() &&
1865      Subtarget->isTargetCygMing() &&
1866      Fn->getName() == "main")
1867    FuncInfo->setForceFramePointer(true);
1868
1869  MachineFrameInfo *MFI = MF.getFrameInfo();
1870  bool Is64Bit = Subtarget->is64Bit();
1871  bool IsWindows = Subtarget->isTargetWindows();
1872  bool IsWin64 = Subtarget->isTargetWin64();
1873
1874  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1875         "Var args not supported with calling convention fastcc or ghc");
1876
1877  // Assign locations to all of the incoming arguments.
1878  SmallVector<CCValAssign, 16> ArgLocs;
1879  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1880                 ArgLocs, *DAG.getContext());
1881
1882  // Allocate shadow area for Win64
1883  if (IsWin64) {
1884    CCInfo.AllocateStack(32, 8);
1885  }
1886
1887  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1888
1889  unsigned LastVal = ~0U;
1890  SDValue ArgValue;
1891  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1892    CCValAssign &VA = ArgLocs[i];
1893    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1894    // places.
1895    assert(VA.getValNo() != LastVal &&
1896           "Don't support value assigned to multiple locs yet");
1897    (void)LastVal;
1898    LastVal = VA.getValNo();
1899
1900    if (VA.isRegLoc()) {
1901      EVT RegVT = VA.getLocVT();
1902      const TargetRegisterClass *RC;
1903      if (RegVT == MVT::i32)
1904        RC = &X86::GR32RegClass;
1905      else if (Is64Bit && RegVT == MVT::i64)
1906        RC = &X86::GR64RegClass;
1907      else if (RegVT == MVT::f32)
1908        RC = &X86::FR32RegClass;
1909      else if (RegVT == MVT::f64)
1910        RC = &X86::FR64RegClass;
1911      else if (RegVT.is256BitVector())
1912        RC = &X86::VR256RegClass;
1913      else if (RegVT.is128BitVector())
1914        RC = &X86::VR128RegClass;
1915      else if (RegVT == MVT::x86mmx)
1916        RC = &X86::VR64RegClass;
1917      else
1918        llvm_unreachable("Unknown argument type!");
1919
1920      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1921      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1922
1923      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1924      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1925      // right size.
1926      if (VA.getLocInfo() == CCValAssign::SExt)
1927        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1928                               DAG.getValueType(VA.getValVT()));
1929      else if (VA.getLocInfo() == CCValAssign::ZExt)
1930        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1931                               DAG.getValueType(VA.getValVT()));
1932      else if (VA.getLocInfo() == CCValAssign::BCvt)
1933        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1934
1935      if (VA.isExtInLoc()) {
1936        // Handle MMX values passed in XMM regs.
1937        if (RegVT.isVector()) {
1938          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1939                                 ArgValue);
1940        } else
1941          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1942      }
1943    } else {
1944      assert(VA.isMemLoc());
1945      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1946    }
1947
1948    // If value is passed via pointer - do a load.
1949    if (VA.getLocInfo() == CCValAssign::Indirect)
1950      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1951                             MachinePointerInfo(), false, false, false, 0);
1952
1953    InVals.push_back(ArgValue);
1954  }
1955
1956  // The x86-64 ABI for returning structs by value requires that we copy
1957  // the sret argument into %rax for the return. Save the argument into
1958  // a virtual register so that we can access it from the return points.
1959  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1960    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1961    unsigned Reg = FuncInfo->getSRetReturnReg();
1962    if (!Reg) {
1963      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1964      FuncInfo->setSRetReturnReg(Reg);
1965    }
1966    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1967    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1968  }
1969
1970  unsigned StackSize = CCInfo.getNextStackOffset();
1971  // Align stack specially for tail calls.
1972  if (FuncIsMadeTailCallSafe(CallConv,
1973                             MF.getTarget().Options.GuaranteedTailCallOpt))
1974    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1975
1976  // If the function takes variable number of arguments, make a frame index for
1977  // the start of the first vararg value... for expansion of llvm.va_start.
1978  if (isVarArg) {
1979    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1980                    CallConv != CallingConv::X86_ThisCall)) {
1981      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1982    }
1983    if (Is64Bit) {
1984      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1985
1986      // FIXME: We should really autogenerate these arrays
1987      static const uint16_t GPR64ArgRegsWin64[] = {
1988        X86::RCX, X86::RDX, X86::R8,  X86::R9
1989      };
1990      static const uint16_t GPR64ArgRegs64Bit[] = {
1991        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1992      };
1993      static const uint16_t XMMArgRegs64Bit[] = {
1994        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1995        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1996      };
1997      const uint16_t *GPR64ArgRegs;
1998      unsigned NumXMMRegs = 0;
1999
2000      if (IsWin64) {
2001        // The XMM registers which might contain var arg parameters are shadowed
2002        // in their paired GPR.  So we only need to save the GPR to their home
2003        // slots.
2004        TotalNumIntRegs = 4;
2005        GPR64ArgRegs = GPR64ArgRegsWin64;
2006      } else {
2007        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2008        GPR64ArgRegs = GPR64ArgRegs64Bit;
2009
2010        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2011                                                TotalNumXMMRegs);
2012      }
2013      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2014                                                       TotalNumIntRegs);
2015
2016      bool NoImplicitFloatOps = Fn->getFnAttributes().
2017        hasAttribute(Attributes::NoImplicitFloat);
2018      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2019             "SSE register cannot be used when SSE is disabled!");
2020      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2021               NoImplicitFloatOps) &&
2022             "SSE register cannot be used when SSE is disabled!");
2023      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2024          !Subtarget->hasSSE1())
2025        // Kernel mode asks for SSE to be disabled, so don't push them
2026        // on the stack.
2027        TotalNumXMMRegs = 0;
2028
2029      if (IsWin64) {
2030        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2031        // Get to the caller-allocated home save location.  Add 8 to account
2032        // for the return address.
2033        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2034        FuncInfo->setRegSaveFrameIndex(
2035          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2036        // Fixup to set vararg frame on shadow area (4 x i64).
2037        if (NumIntRegs < 4)
2038          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2039      } else {
2040        // For X86-64, if there are vararg parameters that are passed via
2041        // registers, then we must store them to their spots on the stack so
2042        // they may be loaded by deferencing the result of va_next.
2043        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2044        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2045        FuncInfo->setRegSaveFrameIndex(
2046          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2047                               false));
2048      }
2049
2050      // Store the integer parameter registers.
2051      SmallVector<SDValue, 8> MemOps;
2052      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2053                                        getPointerTy());
2054      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2055      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2056        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2057                                  DAG.getIntPtrConstant(Offset));
2058        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2059                                     &X86::GR64RegClass);
2060        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2061        SDValue Store =
2062          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2063                       MachinePointerInfo::getFixedStack(
2064                         FuncInfo->getRegSaveFrameIndex(), Offset),
2065                       false, false, 0);
2066        MemOps.push_back(Store);
2067        Offset += 8;
2068      }
2069
2070      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2071        // Now store the XMM (fp + vector) parameter registers.
2072        SmallVector<SDValue, 11> SaveXMMOps;
2073        SaveXMMOps.push_back(Chain);
2074
2075        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2076        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2077        SaveXMMOps.push_back(ALVal);
2078
2079        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2080                               FuncInfo->getRegSaveFrameIndex()));
2081        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2082                               FuncInfo->getVarArgsFPOffset()));
2083
2084        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2085          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2086                                       &X86::VR128RegClass);
2087          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2088          SaveXMMOps.push_back(Val);
2089        }
2090        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2091                                     MVT::Other,
2092                                     &SaveXMMOps[0], SaveXMMOps.size()));
2093      }
2094
2095      if (!MemOps.empty())
2096        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2097                            &MemOps[0], MemOps.size());
2098    }
2099  }
2100
2101  // Some CCs need callee pop.
2102  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2103                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2104    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2105  } else {
2106    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2107    // If this is an sret function, the return should pop the hidden pointer.
2108    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2109        argsAreStructReturn(Ins) == StackStructReturn)
2110      FuncInfo->setBytesToPopOnReturn(4);
2111  }
2112
2113  if (!Is64Bit) {
2114    // RegSaveFrameIndex is X86-64 only.
2115    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2116    if (CallConv == CallingConv::X86_FastCall ||
2117        CallConv == CallingConv::X86_ThisCall)
2118      // fastcc functions can't have varargs.
2119      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2120  }
2121
2122  FuncInfo->setArgumentStackSize(StackSize);
2123
2124  return Chain;
2125}
2126
2127SDValue
2128X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2129                                    SDValue StackPtr, SDValue Arg,
2130                                    DebugLoc dl, SelectionDAG &DAG,
2131                                    const CCValAssign &VA,
2132                                    ISD::ArgFlagsTy Flags) const {
2133  unsigned LocMemOffset = VA.getLocMemOffset();
2134  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2135  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2136  if (Flags.isByVal())
2137    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2138
2139  return DAG.getStore(Chain, dl, Arg, PtrOff,
2140                      MachinePointerInfo::getStack(LocMemOffset),
2141                      false, false, 0);
2142}
2143
2144/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2145/// optimization is performed and it is required.
2146SDValue
2147X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2148                                           SDValue &OutRetAddr, SDValue Chain,
2149                                           bool IsTailCall, bool Is64Bit,
2150                                           int FPDiff, DebugLoc dl) const {
2151  // Adjust the Return address stack slot.
2152  EVT VT = getPointerTy();
2153  OutRetAddr = getReturnAddressFrameIndex(DAG);
2154
2155  // Load the "old" Return address.
2156  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2157                           false, false, false, 0);
2158  return SDValue(OutRetAddr.getNode(), 1);
2159}
2160
2161/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2162/// optimization is performed and it is required (FPDiff!=0).
2163static SDValue
2164EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2165                         SDValue Chain, SDValue RetAddrFrIdx,
2166                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2167  // Store the return address to the appropriate stack slot.
2168  if (!FPDiff) return Chain;
2169  // Calculate the new stack slot for the return address.
2170  int SlotSize = Is64Bit ? 8 : 4;
2171  int NewReturnAddrFI =
2172    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2173  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2174  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2175  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2176                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2177                       false, false, 0);
2178  return Chain;
2179}
2180
2181SDValue
2182X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2183                             SmallVectorImpl<SDValue> &InVals) const {
2184  SelectionDAG &DAG                     = CLI.DAG;
2185  DebugLoc &dl                          = CLI.DL;
2186  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2187  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2188  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2189  SDValue Chain                         = CLI.Chain;
2190  SDValue Callee                        = CLI.Callee;
2191  CallingConv::ID CallConv              = CLI.CallConv;
2192  bool &isTailCall                      = CLI.IsTailCall;
2193  bool isVarArg                         = CLI.IsVarArg;
2194
2195  MachineFunction &MF = DAG.getMachineFunction();
2196  bool Is64Bit        = Subtarget->is64Bit();
2197  bool IsWin64        = Subtarget->isTargetWin64();
2198  bool IsWindows      = Subtarget->isTargetWindows();
2199  StructReturnType SR = callIsStructReturn(Outs);
2200  bool IsSibcall      = false;
2201
2202  if (MF.getTarget().Options.DisableTailCalls)
2203    isTailCall = false;
2204
2205  if (isTailCall) {
2206    // Check if it's really possible to do a tail call.
2207    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2208                    isVarArg, SR != NotStructReturn,
2209                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2210                    Outs, OutVals, Ins, DAG);
2211
2212    // Sibcalls are automatically detected tailcalls which do not require
2213    // ABI changes.
2214    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2215      IsSibcall = true;
2216
2217    if (isTailCall)
2218      ++NumTailCalls;
2219  }
2220
2221  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2222         "Var args not supported with calling convention fastcc or ghc");
2223
2224  // Analyze operands of the call, assigning locations to each operand.
2225  SmallVector<CCValAssign, 16> ArgLocs;
2226  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2227                 ArgLocs, *DAG.getContext());
2228
2229  // Allocate shadow area for Win64
2230  if (IsWin64) {
2231    CCInfo.AllocateStack(32, 8);
2232  }
2233
2234  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2235
2236  // Get a count of how many bytes are to be pushed on the stack.
2237  unsigned NumBytes = CCInfo.getNextStackOffset();
2238  if (IsSibcall)
2239    // This is a sibcall. The memory operands are available in caller's
2240    // own caller's stack.
2241    NumBytes = 0;
2242  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2243           IsTailCallConvention(CallConv))
2244    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2245
2246  int FPDiff = 0;
2247  if (isTailCall && !IsSibcall) {
2248    // Lower arguments at fp - stackoffset + fpdiff.
2249    unsigned NumBytesCallerPushed =
2250      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2251    FPDiff = NumBytesCallerPushed - NumBytes;
2252
2253    // Set the delta of movement of the returnaddr stackslot.
2254    // But only set if delta is greater than previous delta.
2255    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2256      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2257  }
2258
2259  if (!IsSibcall)
2260    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2261
2262  SDValue RetAddrFrIdx;
2263  // Load return address for tail calls.
2264  if (isTailCall && FPDiff)
2265    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2266                                    Is64Bit, FPDiff, dl);
2267
2268  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2269  SmallVector<SDValue, 8> MemOpChains;
2270  SDValue StackPtr;
2271
2272  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2273  // of tail call optimization arguments are handle later.
2274  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2275    CCValAssign &VA = ArgLocs[i];
2276    EVT RegVT = VA.getLocVT();
2277    SDValue Arg = OutVals[i];
2278    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2279    bool isByVal = Flags.isByVal();
2280
2281    // Promote the value if needed.
2282    switch (VA.getLocInfo()) {
2283    default: llvm_unreachable("Unknown loc info!");
2284    case CCValAssign::Full: break;
2285    case CCValAssign::SExt:
2286      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2287      break;
2288    case CCValAssign::ZExt:
2289      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2290      break;
2291    case CCValAssign::AExt:
2292      if (RegVT.is128BitVector()) {
2293        // Special case: passing MMX values in XMM registers.
2294        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2295        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2296        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2297      } else
2298        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2299      break;
2300    case CCValAssign::BCvt:
2301      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2302      break;
2303    case CCValAssign::Indirect: {
2304      // Store the argument.
2305      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2306      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2307      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2308                           MachinePointerInfo::getFixedStack(FI),
2309                           false, false, 0);
2310      Arg = SpillSlot;
2311      break;
2312    }
2313    }
2314
2315    if (VA.isRegLoc()) {
2316      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2317      if (isVarArg && IsWin64) {
2318        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2319        // shadow reg if callee is a varargs function.
2320        unsigned ShadowReg = 0;
2321        switch (VA.getLocReg()) {
2322        case X86::XMM0: ShadowReg = X86::RCX; break;
2323        case X86::XMM1: ShadowReg = X86::RDX; break;
2324        case X86::XMM2: ShadowReg = X86::R8; break;
2325        case X86::XMM3: ShadowReg = X86::R9; break;
2326        }
2327        if (ShadowReg)
2328          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2329      }
2330    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2331      assert(VA.isMemLoc());
2332      if (StackPtr.getNode() == 0)
2333        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2334      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2335                                             dl, DAG, VA, Flags));
2336    }
2337  }
2338
2339  if (!MemOpChains.empty())
2340    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2341                        &MemOpChains[0], MemOpChains.size());
2342
2343  if (Subtarget->isPICStyleGOT()) {
2344    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2345    // GOT pointer.
2346    if (!isTailCall) {
2347      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2348               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2349    } else {
2350      // If we are tail calling and generating PIC/GOT style code load the
2351      // address of the callee into ECX. The value in ecx is used as target of
2352      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2353      // for tail calls on PIC/GOT architectures. Normally we would just put the
2354      // address of GOT into ebx and then call target@PLT. But for tail calls
2355      // ebx would be restored (since ebx is callee saved) before jumping to the
2356      // target@PLT.
2357
2358      // Note: The actual moving to ECX is done further down.
2359      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2360      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2361          !G->getGlobal()->hasProtectedVisibility())
2362        Callee = LowerGlobalAddress(Callee, DAG);
2363      else if (isa<ExternalSymbolSDNode>(Callee))
2364        Callee = LowerExternalSymbol(Callee, DAG);
2365    }
2366  }
2367
2368  if (Is64Bit && isVarArg && !IsWin64) {
2369    // From AMD64 ABI document:
2370    // For calls that may call functions that use varargs or stdargs
2371    // (prototype-less calls or calls to functions containing ellipsis (...) in
2372    // the declaration) %al is used as hidden argument to specify the number
2373    // of SSE registers used. The contents of %al do not need to match exactly
2374    // the number of registers, but must be an ubound on the number of SSE
2375    // registers used and is in the range 0 - 8 inclusive.
2376
2377    // Count the number of XMM registers allocated.
2378    static const uint16_t XMMArgRegs[] = {
2379      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2380      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2381    };
2382    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2383    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2384           && "SSE registers cannot be used when SSE is disabled");
2385
2386    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2387                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2388  }
2389
2390  // For tail calls lower the arguments to the 'real' stack slot.
2391  if (isTailCall) {
2392    // Force all the incoming stack arguments to be loaded from the stack
2393    // before any new outgoing arguments are stored to the stack, because the
2394    // outgoing stack slots may alias the incoming argument stack slots, and
2395    // the alias isn't otherwise explicit. This is slightly more conservative
2396    // than necessary, because it means that each store effectively depends
2397    // on every argument instead of just those arguments it would clobber.
2398    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2399
2400    SmallVector<SDValue, 8> MemOpChains2;
2401    SDValue FIN;
2402    int FI = 0;
2403    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2404      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2405        CCValAssign &VA = ArgLocs[i];
2406        if (VA.isRegLoc())
2407          continue;
2408        assert(VA.isMemLoc());
2409        SDValue Arg = OutVals[i];
2410        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2411        // Create frame index.
2412        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2413        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2414        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2415        FIN = DAG.getFrameIndex(FI, getPointerTy());
2416
2417        if (Flags.isByVal()) {
2418          // Copy relative to framepointer.
2419          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2420          if (StackPtr.getNode() == 0)
2421            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2422                                          getPointerTy());
2423          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2424
2425          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2426                                                           ArgChain,
2427                                                           Flags, DAG, dl));
2428        } else {
2429          // Store relative to framepointer.
2430          MemOpChains2.push_back(
2431            DAG.getStore(ArgChain, dl, Arg, FIN,
2432                         MachinePointerInfo::getFixedStack(FI),
2433                         false, false, 0));
2434        }
2435      }
2436    }
2437
2438    if (!MemOpChains2.empty())
2439      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2440                          &MemOpChains2[0], MemOpChains2.size());
2441
2442    // Store the return address to the appropriate stack slot.
2443    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2444                                     FPDiff, dl);
2445  }
2446
2447  // Build a sequence of copy-to-reg nodes chained together with token chain
2448  // and flag operands which copy the outgoing args into registers.
2449  SDValue InFlag;
2450  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2451    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2452                             RegsToPass[i].second, InFlag);
2453    InFlag = Chain.getValue(1);
2454  }
2455
2456  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2457    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2458    // In the 64-bit large code model, we have to make all calls
2459    // through a register, since the call instruction's 32-bit
2460    // pc-relative offset may not be large enough to hold the whole
2461    // address.
2462  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2463    // If the callee is a GlobalAddress node (quite common, every direct call
2464    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2465    // it.
2466
2467    // We should use extra load for direct calls to dllimported functions in
2468    // non-JIT mode.
2469    const GlobalValue *GV = G->getGlobal();
2470    if (!GV->hasDLLImportLinkage()) {
2471      unsigned char OpFlags = 0;
2472      bool ExtraLoad = false;
2473      unsigned WrapperKind = ISD::DELETED_NODE;
2474
2475      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2476      // external symbols most go through the PLT in PIC mode.  If the symbol
2477      // has hidden or protected visibility, or if it is static or local, then
2478      // we don't need to use the PLT - we can directly call it.
2479      if (Subtarget->isTargetELF() &&
2480          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2481          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2482        OpFlags = X86II::MO_PLT;
2483      } else if (Subtarget->isPICStyleStubAny() &&
2484                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2485                 (!Subtarget->getTargetTriple().isMacOSX() ||
2486                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2487        // PC-relative references to external symbols should go through $stub,
2488        // unless we're building with the leopard linker or later, which
2489        // automatically synthesizes these stubs.
2490        OpFlags = X86II::MO_DARWIN_STUB;
2491      } else if (Subtarget->isPICStyleRIPRel() &&
2492                 isa<Function>(GV) &&
2493                 cast<Function>(GV)->getFnAttributes().
2494                   hasAttribute(Attributes::NonLazyBind)) {
2495        // If the function is marked as non-lazy, generate an indirect call
2496        // which loads from the GOT directly. This avoids runtime overhead
2497        // at the cost of eager binding (and one extra byte of encoding).
2498        OpFlags = X86II::MO_GOTPCREL;
2499        WrapperKind = X86ISD::WrapperRIP;
2500        ExtraLoad = true;
2501      }
2502
2503      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2504                                          G->getOffset(), OpFlags);
2505
2506      // Add a wrapper if needed.
2507      if (WrapperKind != ISD::DELETED_NODE)
2508        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2509      // Add extra indirection if needed.
2510      if (ExtraLoad)
2511        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2512                             MachinePointerInfo::getGOT(),
2513                             false, false, false, 0);
2514    }
2515  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2516    unsigned char OpFlags = 0;
2517
2518    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2519    // external symbols should go through the PLT.
2520    if (Subtarget->isTargetELF() &&
2521        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2522      OpFlags = X86II::MO_PLT;
2523    } else if (Subtarget->isPICStyleStubAny() &&
2524               (!Subtarget->getTargetTriple().isMacOSX() ||
2525                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2526      // PC-relative references to external symbols should go through $stub,
2527      // unless we're building with the leopard linker or later, which
2528      // automatically synthesizes these stubs.
2529      OpFlags = X86II::MO_DARWIN_STUB;
2530    }
2531
2532    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2533                                         OpFlags);
2534  }
2535
2536  // Returns a chain & a flag for retval copy to use.
2537  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2538  SmallVector<SDValue, 8> Ops;
2539
2540  if (!IsSibcall && isTailCall) {
2541    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2542                           DAG.getIntPtrConstant(0, true), InFlag);
2543    InFlag = Chain.getValue(1);
2544  }
2545
2546  Ops.push_back(Chain);
2547  Ops.push_back(Callee);
2548
2549  if (isTailCall)
2550    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2551
2552  // Add argument registers to the end of the list so that they are known live
2553  // into the call.
2554  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2555    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2556                                  RegsToPass[i].second.getValueType()));
2557
2558  // Add a register mask operand representing the call-preserved registers.
2559  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2560  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2561  assert(Mask && "Missing call preserved mask for calling convention");
2562  Ops.push_back(DAG.getRegisterMask(Mask));
2563
2564  if (InFlag.getNode())
2565    Ops.push_back(InFlag);
2566
2567  if (isTailCall) {
2568    // We used to do:
2569    //// If this is the first return lowered for this function, add the regs
2570    //// to the liveout set for the function.
2571    // This isn't right, although it's probably harmless on x86; liveouts
2572    // should be computed from returns not tail calls.  Consider a void
2573    // function making a tail call to a function returning int.
2574    return DAG.getNode(X86ISD::TC_RETURN, dl,
2575                       NodeTys, &Ops[0], Ops.size());
2576  }
2577
2578  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2579  InFlag = Chain.getValue(1);
2580
2581  // Create the CALLSEQ_END node.
2582  unsigned NumBytesForCalleeToPush;
2583  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2584                       getTargetMachine().Options.GuaranteedTailCallOpt))
2585    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2586  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2587           SR == StackStructReturn)
2588    // If this is a call to a struct-return function, the callee
2589    // pops the hidden struct pointer, so we have to push it back.
2590    // This is common for Darwin/X86, Linux & Mingw32 targets.
2591    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2592    NumBytesForCalleeToPush = 4;
2593  else
2594    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2595
2596  // Returns a flag for retval copy to use.
2597  if (!IsSibcall) {
2598    Chain = DAG.getCALLSEQ_END(Chain,
2599                               DAG.getIntPtrConstant(NumBytes, true),
2600                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2601                                                     true),
2602                               InFlag);
2603    InFlag = Chain.getValue(1);
2604  }
2605
2606  // Handle result values, copying them out of physregs into vregs that we
2607  // return.
2608  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2609                         Ins, dl, DAG, InVals);
2610}
2611
2612
2613//===----------------------------------------------------------------------===//
2614//                Fast Calling Convention (tail call) implementation
2615//===----------------------------------------------------------------------===//
2616
2617//  Like std call, callee cleans arguments, convention except that ECX is
2618//  reserved for storing the tail called function address. Only 2 registers are
2619//  free for argument passing (inreg). Tail call optimization is performed
2620//  provided:
2621//                * tailcallopt is enabled
2622//                * caller/callee are fastcc
2623//  On X86_64 architecture with GOT-style position independent code only local
2624//  (within module) calls are supported at the moment.
2625//  To keep the stack aligned according to platform abi the function
2626//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2627//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2628//  If a tail called function callee has more arguments than the caller the
2629//  caller needs to make sure that there is room to move the RETADDR to. This is
2630//  achieved by reserving an area the size of the argument delta right after the
2631//  original REtADDR, but before the saved framepointer or the spilled registers
2632//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2633//  stack layout:
2634//    arg1
2635//    arg2
2636//    RETADDR
2637//    [ new RETADDR
2638//      move area ]
2639//    (possible EBP)
2640//    ESI
2641//    EDI
2642//    local1 ..
2643
2644/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2645/// for a 16 byte align requirement.
2646unsigned
2647X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2648                                               SelectionDAG& DAG) const {
2649  MachineFunction &MF = DAG.getMachineFunction();
2650  const TargetMachine &TM = MF.getTarget();
2651  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2652  unsigned StackAlignment = TFI.getStackAlignment();
2653  uint64_t AlignMask = StackAlignment - 1;
2654  int64_t Offset = StackSize;
2655  uint64_t SlotSize = TD->getPointerSize();
2656  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2657    // Number smaller than 12 so just add the difference.
2658    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2659  } else {
2660    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2661    Offset = ((~AlignMask) & Offset) + StackAlignment +
2662      (StackAlignment-SlotSize);
2663  }
2664  return Offset;
2665}
2666
2667/// MatchingStackOffset - Return true if the given stack call argument is
2668/// already available in the same position (relatively) of the caller's
2669/// incoming argument stack.
2670static
2671bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2672                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2673                         const X86InstrInfo *TII) {
2674  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2675  int FI = INT_MAX;
2676  if (Arg.getOpcode() == ISD::CopyFromReg) {
2677    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2678    if (!TargetRegisterInfo::isVirtualRegister(VR))
2679      return false;
2680    MachineInstr *Def = MRI->getVRegDef(VR);
2681    if (!Def)
2682      return false;
2683    if (!Flags.isByVal()) {
2684      if (!TII->isLoadFromStackSlot(Def, FI))
2685        return false;
2686    } else {
2687      unsigned Opcode = Def->getOpcode();
2688      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2689          Def->getOperand(1).isFI()) {
2690        FI = Def->getOperand(1).getIndex();
2691        Bytes = Flags.getByValSize();
2692      } else
2693        return false;
2694    }
2695  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2696    if (Flags.isByVal())
2697      // ByVal argument is passed in as a pointer but it's now being
2698      // dereferenced. e.g.
2699      // define @foo(%struct.X* %A) {
2700      //   tail call @bar(%struct.X* byval %A)
2701      // }
2702      return false;
2703    SDValue Ptr = Ld->getBasePtr();
2704    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2705    if (!FINode)
2706      return false;
2707    FI = FINode->getIndex();
2708  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2709    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2710    FI = FINode->getIndex();
2711    Bytes = Flags.getByValSize();
2712  } else
2713    return false;
2714
2715  assert(FI != INT_MAX);
2716  if (!MFI->isFixedObjectIndex(FI))
2717    return false;
2718  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2719}
2720
2721/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2722/// for tail call optimization. Targets which want to do tail call
2723/// optimization should implement this function.
2724bool
2725X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2726                                                     CallingConv::ID CalleeCC,
2727                                                     bool isVarArg,
2728                                                     bool isCalleeStructRet,
2729                                                     bool isCallerStructRet,
2730                                                     Type *RetTy,
2731                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2732                                    const SmallVectorImpl<SDValue> &OutVals,
2733                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2734                                                     SelectionDAG& DAG) const {
2735  if (!IsTailCallConvention(CalleeCC) &&
2736      CalleeCC != CallingConv::C)
2737    return false;
2738
2739  // If -tailcallopt is specified, make fastcc functions tail-callable.
2740  const MachineFunction &MF = DAG.getMachineFunction();
2741  const Function *CallerF = DAG.getMachineFunction().getFunction();
2742
2743  // If the function return type is x86_fp80 and the callee return type is not,
2744  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2745  // perform a tailcall optimization here.
2746  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2747    return false;
2748
2749  CallingConv::ID CallerCC = CallerF->getCallingConv();
2750  bool CCMatch = CallerCC == CalleeCC;
2751
2752  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2753    if (IsTailCallConvention(CalleeCC) && CCMatch)
2754      return true;
2755    return false;
2756  }
2757
2758  // Look for obvious safe cases to perform tail call optimization that do not
2759  // require ABI changes. This is what gcc calls sibcall.
2760
2761  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2762  // emit a special epilogue.
2763  if (RegInfo->needsStackRealignment(MF))
2764    return false;
2765
2766  // Also avoid sibcall optimization if either caller or callee uses struct
2767  // return semantics.
2768  if (isCalleeStructRet || isCallerStructRet)
2769    return false;
2770
2771  // An stdcall caller is expected to clean up its arguments; the callee
2772  // isn't going to do that.
2773  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2774    return false;
2775
2776  // Do not sibcall optimize vararg calls unless all arguments are passed via
2777  // registers.
2778  if (isVarArg && !Outs.empty()) {
2779
2780    // Optimizing for varargs on Win64 is unlikely to be safe without
2781    // additional testing.
2782    if (Subtarget->isTargetWin64())
2783      return false;
2784
2785    SmallVector<CCValAssign, 16> ArgLocs;
2786    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2787                   getTargetMachine(), ArgLocs, *DAG.getContext());
2788
2789    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2790    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2791      if (!ArgLocs[i].isRegLoc())
2792        return false;
2793  }
2794
2795  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2796  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2797  // this into a sibcall.
2798  bool Unused = false;
2799  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2800    if (!Ins[i].Used) {
2801      Unused = true;
2802      break;
2803    }
2804  }
2805  if (Unused) {
2806    SmallVector<CCValAssign, 16> RVLocs;
2807    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2808                   getTargetMachine(), RVLocs, *DAG.getContext());
2809    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2810    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2811      CCValAssign &VA = RVLocs[i];
2812      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2813        return false;
2814    }
2815  }
2816
2817  // If the calling conventions do not match, then we'd better make sure the
2818  // results are returned in the same way as what the caller expects.
2819  if (!CCMatch) {
2820    SmallVector<CCValAssign, 16> RVLocs1;
2821    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2822                    getTargetMachine(), RVLocs1, *DAG.getContext());
2823    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2824
2825    SmallVector<CCValAssign, 16> RVLocs2;
2826    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2827                    getTargetMachine(), RVLocs2, *DAG.getContext());
2828    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2829
2830    if (RVLocs1.size() != RVLocs2.size())
2831      return false;
2832    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2833      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2834        return false;
2835      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2836        return false;
2837      if (RVLocs1[i].isRegLoc()) {
2838        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2839          return false;
2840      } else {
2841        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2842          return false;
2843      }
2844    }
2845  }
2846
2847  // If the callee takes no arguments then go on to check the results of the
2848  // call.
2849  if (!Outs.empty()) {
2850    // Check if stack adjustment is needed. For now, do not do this if any
2851    // argument is passed on the stack.
2852    SmallVector<CCValAssign, 16> ArgLocs;
2853    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2854                   getTargetMachine(), ArgLocs, *DAG.getContext());
2855
2856    // Allocate shadow area for Win64
2857    if (Subtarget->isTargetWin64()) {
2858      CCInfo.AllocateStack(32, 8);
2859    }
2860
2861    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2862    if (CCInfo.getNextStackOffset()) {
2863      MachineFunction &MF = DAG.getMachineFunction();
2864      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2865        return false;
2866
2867      // Check if the arguments are already laid out in the right way as
2868      // the caller's fixed stack objects.
2869      MachineFrameInfo *MFI = MF.getFrameInfo();
2870      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2871      const X86InstrInfo *TII =
2872        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2873      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2874        CCValAssign &VA = ArgLocs[i];
2875        SDValue Arg = OutVals[i];
2876        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2877        if (VA.getLocInfo() == CCValAssign::Indirect)
2878          return false;
2879        if (!VA.isRegLoc()) {
2880          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2881                                   MFI, MRI, TII))
2882            return false;
2883        }
2884      }
2885    }
2886
2887    // If the tailcall address may be in a register, then make sure it's
2888    // possible to register allocate for it. In 32-bit, the call address can
2889    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2890    // callee-saved registers are restored. These happen to be the same
2891    // registers used to pass 'inreg' arguments so watch out for those.
2892    if (!Subtarget->is64Bit() &&
2893        !isa<GlobalAddressSDNode>(Callee) &&
2894        !isa<ExternalSymbolSDNode>(Callee)) {
2895      unsigned NumInRegs = 0;
2896      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2897        CCValAssign &VA = ArgLocs[i];
2898        if (!VA.isRegLoc())
2899          continue;
2900        unsigned Reg = VA.getLocReg();
2901        switch (Reg) {
2902        default: break;
2903        case X86::EAX: case X86::EDX: case X86::ECX:
2904          if (++NumInRegs == 3)
2905            return false;
2906          break;
2907        }
2908      }
2909    }
2910  }
2911
2912  return true;
2913}
2914
2915FastISel *
2916X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2917                                  const TargetLibraryInfo *libInfo) const {
2918  return X86::createFastISel(funcInfo, libInfo);
2919}
2920
2921
2922//===----------------------------------------------------------------------===//
2923//                           Other Lowering Hooks
2924//===----------------------------------------------------------------------===//
2925
2926static bool MayFoldLoad(SDValue Op) {
2927  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2928}
2929
2930static bool MayFoldIntoStore(SDValue Op) {
2931  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2932}
2933
2934static bool isTargetShuffle(unsigned Opcode) {
2935  switch(Opcode) {
2936  default: return false;
2937  case X86ISD::PSHUFD:
2938  case X86ISD::PSHUFHW:
2939  case X86ISD::PSHUFLW:
2940  case X86ISD::SHUFP:
2941  case X86ISD::PALIGN:
2942  case X86ISD::MOVLHPS:
2943  case X86ISD::MOVLHPD:
2944  case X86ISD::MOVHLPS:
2945  case X86ISD::MOVLPS:
2946  case X86ISD::MOVLPD:
2947  case X86ISD::MOVSHDUP:
2948  case X86ISD::MOVSLDUP:
2949  case X86ISD::MOVDDUP:
2950  case X86ISD::MOVSS:
2951  case X86ISD::MOVSD:
2952  case X86ISD::UNPCKL:
2953  case X86ISD::UNPCKH:
2954  case X86ISD::VPERMILP:
2955  case X86ISD::VPERM2X128:
2956  case X86ISD::VPERMI:
2957    return true;
2958  }
2959}
2960
2961static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2962                                    SDValue V1, SelectionDAG &DAG) {
2963  switch(Opc) {
2964  default: llvm_unreachable("Unknown x86 shuffle node");
2965  case X86ISD::MOVSHDUP:
2966  case X86ISD::MOVSLDUP:
2967  case X86ISD::MOVDDUP:
2968    return DAG.getNode(Opc, dl, VT, V1);
2969  }
2970}
2971
2972static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2973                                    SDValue V1, unsigned TargetMask,
2974                                    SelectionDAG &DAG) {
2975  switch(Opc) {
2976  default: llvm_unreachable("Unknown x86 shuffle node");
2977  case X86ISD::PSHUFD:
2978  case X86ISD::PSHUFHW:
2979  case X86ISD::PSHUFLW:
2980  case X86ISD::VPERMILP:
2981  case X86ISD::VPERMI:
2982    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2983  }
2984}
2985
2986static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2987                                    SDValue V1, SDValue V2, unsigned TargetMask,
2988                                    SelectionDAG &DAG) {
2989  switch(Opc) {
2990  default: llvm_unreachable("Unknown x86 shuffle node");
2991  case X86ISD::PALIGN:
2992  case X86ISD::SHUFP:
2993  case X86ISD::VPERM2X128:
2994    return DAG.getNode(Opc, dl, VT, V1, V2,
2995                       DAG.getConstant(TargetMask, MVT::i8));
2996  }
2997}
2998
2999static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3000                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3001  switch(Opc) {
3002  default: llvm_unreachable("Unknown x86 shuffle node");
3003  case X86ISD::MOVLHPS:
3004  case X86ISD::MOVLHPD:
3005  case X86ISD::MOVHLPS:
3006  case X86ISD::MOVLPS:
3007  case X86ISD::MOVLPD:
3008  case X86ISD::MOVSS:
3009  case X86ISD::MOVSD:
3010  case X86ISD::UNPCKL:
3011  case X86ISD::UNPCKH:
3012    return DAG.getNode(Opc, dl, VT, V1, V2);
3013  }
3014}
3015
3016SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3017  MachineFunction &MF = DAG.getMachineFunction();
3018  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3019  int ReturnAddrIndex = FuncInfo->getRAIndex();
3020
3021  if (ReturnAddrIndex == 0) {
3022    // Set up a frame object for the return address.
3023    uint64_t SlotSize = TD->getPointerSize();
3024    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3025                                                           false);
3026    FuncInfo->setRAIndex(ReturnAddrIndex);
3027  }
3028
3029  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3030}
3031
3032
3033bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3034                                       bool hasSymbolicDisplacement) {
3035  // Offset should fit into 32 bit immediate field.
3036  if (!isInt<32>(Offset))
3037    return false;
3038
3039  // If we don't have a symbolic displacement - we don't have any extra
3040  // restrictions.
3041  if (!hasSymbolicDisplacement)
3042    return true;
3043
3044  // FIXME: Some tweaks might be needed for medium code model.
3045  if (M != CodeModel::Small && M != CodeModel::Kernel)
3046    return false;
3047
3048  // For small code model we assume that latest object is 16MB before end of 31
3049  // bits boundary. We may also accept pretty large negative constants knowing
3050  // that all objects are in the positive half of address space.
3051  if (M == CodeModel::Small && Offset < 16*1024*1024)
3052    return true;
3053
3054  // For kernel code model we know that all object resist in the negative half
3055  // of 32bits address space. We may not accept negative offsets, since they may
3056  // be just off and we may accept pretty large positive ones.
3057  if (M == CodeModel::Kernel && Offset > 0)
3058    return true;
3059
3060  return false;
3061}
3062
3063/// isCalleePop - Determines whether the callee is required to pop its
3064/// own arguments. Callee pop is necessary to support tail calls.
3065bool X86::isCalleePop(CallingConv::ID CallingConv,
3066                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3067  if (IsVarArg)
3068    return false;
3069
3070  switch (CallingConv) {
3071  default:
3072    return false;
3073  case CallingConv::X86_StdCall:
3074    return !is64Bit;
3075  case CallingConv::X86_FastCall:
3076    return !is64Bit;
3077  case CallingConv::X86_ThisCall:
3078    return !is64Bit;
3079  case CallingConv::Fast:
3080    return TailCallOpt;
3081  case CallingConv::GHC:
3082    return TailCallOpt;
3083  }
3084}
3085
3086/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3087/// specific condition code, returning the condition code and the LHS/RHS of the
3088/// comparison to make.
3089static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3090                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3091  if (!isFP) {
3092    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3093      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3094        // X > -1   -> X == 0, jump !sign.
3095        RHS = DAG.getConstant(0, RHS.getValueType());
3096        return X86::COND_NS;
3097      }
3098      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3099        // X < 0   -> X == 0, jump on sign.
3100        return X86::COND_S;
3101      }
3102      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3103        // X < 1   -> X <= 0
3104        RHS = DAG.getConstant(0, RHS.getValueType());
3105        return X86::COND_LE;
3106      }
3107    }
3108
3109    switch (SetCCOpcode) {
3110    default: llvm_unreachable("Invalid integer condition!");
3111    case ISD::SETEQ:  return X86::COND_E;
3112    case ISD::SETGT:  return X86::COND_G;
3113    case ISD::SETGE:  return X86::COND_GE;
3114    case ISD::SETLT:  return X86::COND_L;
3115    case ISD::SETLE:  return X86::COND_LE;
3116    case ISD::SETNE:  return X86::COND_NE;
3117    case ISD::SETULT: return X86::COND_B;
3118    case ISD::SETUGT: return X86::COND_A;
3119    case ISD::SETULE: return X86::COND_BE;
3120    case ISD::SETUGE: return X86::COND_AE;
3121    }
3122  }
3123
3124  // First determine if it is required or is profitable to flip the operands.
3125
3126  // If LHS is a foldable load, but RHS is not, flip the condition.
3127  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3128      !ISD::isNON_EXTLoad(RHS.getNode())) {
3129    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3130    std::swap(LHS, RHS);
3131  }
3132
3133  switch (SetCCOpcode) {
3134  default: break;
3135  case ISD::SETOLT:
3136  case ISD::SETOLE:
3137  case ISD::SETUGT:
3138  case ISD::SETUGE:
3139    std::swap(LHS, RHS);
3140    break;
3141  }
3142
3143  // On a floating point condition, the flags are set as follows:
3144  // ZF  PF  CF   op
3145  //  0 | 0 | 0 | X > Y
3146  //  0 | 0 | 1 | X < Y
3147  //  1 | 0 | 0 | X == Y
3148  //  1 | 1 | 1 | unordered
3149  switch (SetCCOpcode) {
3150  default: llvm_unreachable("Condcode should be pre-legalized away");
3151  case ISD::SETUEQ:
3152  case ISD::SETEQ:   return X86::COND_E;
3153  case ISD::SETOLT:              // flipped
3154  case ISD::SETOGT:
3155  case ISD::SETGT:   return X86::COND_A;
3156  case ISD::SETOLE:              // flipped
3157  case ISD::SETOGE:
3158  case ISD::SETGE:   return X86::COND_AE;
3159  case ISD::SETUGT:              // flipped
3160  case ISD::SETULT:
3161  case ISD::SETLT:   return X86::COND_B;
3162  case ISD::SETUGE:              // flipped
3163  case ISD::SETULE:
3164  case ISD::SETLE:   return X86::COND_BE;
3165  case ISD::SETONE:
3166  case ISD::SETNE:   return X86::COND_NE;
3167  case ISD::SETUO:   return X86::COND_P;
3168  case ISD::SETO:    return X86::COND_NP;
3169  case ISD::SETOEQ:
3170  case ISD::SETUNE:  return X86::COND_INVALID;
3171  }
3172}
3173
3174/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3175/// code. Current x86 isa includes the following FP cmov instructions:
3176/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3177static bool hasFPCMov(unsigned X86CC) {
3178  switch (X86CC) {
3179  default:
3180    return false;
3181  case X86::COND_B:
3182  case X86::COND_BE:
3183  case X86::COND_E:
3184  case X86::COND_P:
3185  case X86::COND_A:
3186  case X86::COND_AE:
3187  case X86::COND_NE:
3188  case X86::COND_NP:
3189    return true;
3190  }
3191}
3192
3193/// isFPImmLegal - Returns true if the target can instruction select the
3194/// specified FP immediate natively. If false, the legalizer will
3195/// materialize the FP immediate as a load from a constant pool.
3196bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3197  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3198    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3199      return true;
3200  }
3201  return false;
3202}
3203
3204/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3205/// the specified range (L, H].
3206static bool isUndefOrInRange(int Val, int Low, int Hi) {
3207  return (Val < 0) || (Val >= Low && Val < Hi);
3208}
3209
3210/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3211/// specified value.
3212static bool isUndefOrEqual(int Val, int CmpVal) {
3213  if (Val < 0 || Val == CmpVal)
3214    return true;
3215  return false;
3216}
3217
3218/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3219/// from position Pos and ending in Pos+Size, falls within the specified
3220/// sequential range (L, L+Pos]. or is undef.
3221static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3222                                       unsigned Pos, unsigned Size, int Low) {
3223  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3224    if (!isUndefOrEqual(Mask[i], Low))
3225      return false;
3226  return true;
3227}
3228
3229/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3230/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3231/// the second operand.
3232static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3233  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3234    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3235  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3236    return (Mask[0] < 2 && Mask[1] < 2);
3237  return false;
3238}
3239
3240/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3241/// is suitable for input to PSHUFHW.
3242static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3243  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3244    return false;
3245
3246  // Lower quadword copied in order or undef.
3247  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3248    return false;
3249
3250  // Upper quadword shuffled.
3251  for (unsigned i = 4; i != 8; ++i)
3252    if (!isUndefOrInRange(Mask[i], 4, 8))
3253      return false;
3254
3255  if (VT == MVT::v16i16) {
3256    // Lower quadword copied in order or undef.
3257    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3258      return false;
3259
3260    // Upper quadword shuffled.
3261    for (unsigned i = 12; i != 16; ++i)
3262      if (!isUndefOrInRange(Mask[i], 12, 16))
3263        return false;
3264  }
3265
3266  return true;
3267}
3268
3269/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3270/// is suitable for input to PSHUFLW.
3271static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3272  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3273    return false;
3274
3275  // Upper quadword copied in order.
3276  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3277    return false;
3278
3279  // Lower quadword shuffled.
3280  for (unsigned i = 0; i != 4; ++i)
3281    if (!isUndefOrInRange(Mask[i], 0, 4))
3282      return false;
3283
3284  if (VT == MVT::v16i16) {
3285    // Upper quadword copied in order.
3286    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3287      return false;
3288
3289    // Lower quadword shuffled.
3290    for (unsigned i = 8; i != 12; ++i)
3291      if (!isUndefOrInRange(Mask[i], 8, 12))
3292        return false;
3293  }
3294
3295  return true;
3296}
3297
3298/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3299/// is suitable for input to PALIGNR.
3300static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3301                          const X86Subtarget *Subtarget) {
3302  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3303      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3304    return false;
3305
3306  unsigned NumElts = VT.getVectorNumElements();
3307  unsigned NumLanes = VT.getSizeInBits()/128;
3308  unsigned NumLaneElts = NumElts/NumLanes;
3309
3310  // Do not handle 64-bit element shuffles with palignr.
3311  if (NumLaneElts == 2)
3312    return false;
3313
3314  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3315    unsigned i;
3316    for (i = 0; i != NumLaneElts; ++i) {
3317      if (Mask[i+l] >= 0)
3318        break;
3319    }
3320
3321    // Lane is all undef, go to next lane
3322    if (i == NumLaneElts)
3323      continue;
3324
3325    int Start = Mask[i+l];
3326
3327    // Make sure its in this lane in one of the sources
3328    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3329        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3330      return false;
3331
3332    // If not lane 0, then we must match lane 0
3333    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3334      return false;
3335
3336    // Correct second source to be contiguous with first source
3337    if (Start >= (int)NumElts)
3338      Start -= NumElts - NumLaneElts;
3339
3340    // Make sure we're shifting in the right direction.
3341    if (Start <= (int)(i+l))
3342      return false;
3343
3344    Start -= i;
3345
3346    // Check the rest of the elements to see if they are consecutive.
3347    for (++i; i != NumLaneElts; ++i) {
3348      int Idx = Mask[i+l];
3349
3350      // Make sure its in this lane
3351      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3352          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3353        return false;
3354
3355      // If not lane 0, then we must match lane 0
3356      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3357        return false;
3358
3359      if (Idx >= (int)NumElts)
3360        Idx -= NumElts - NumLaneElts;
3361
3362      if (!isUndefOrEqual(Idx, Start+i))
3363        return false;
3364
3365    }
3366  }
3367
3368  return true;
3369}
3370
3371/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3372/// the two vector operands have swapped position.
3373static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3374                                     unsigned NumElems) {
3375  for (unsigned i = 0; i != NumElems; ++i) {
3376    int idx = Mask[i];
3377    if (idx < 0)
3378      continue;
3379    else if (idx < (int)NumElems)
3380      Mask[i] = idx + NumElems;
3381    else
3382      Mask[i] = idx - NumElems;
3383  }
3384}
3385
3386/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3387/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3388/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3389/// reverse of what x86 shuffles want.
3390static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3391                        bool Commuted = false) {
3392  if (!HasAVX && VT.getSizeInBits() == 256)
3393    return false;
3394
3395  unsigned NumElems = VT.getVectorNumElements();
3396  unsigned NumLanes = VT.getSizeInBits()/128;
3397  unsigned NumLaneElems = NumElems/NumLanes;
3398
3399  if (NumLaneElems != 2 && NumLaneElems != 4)
3400    return false;
3401
3402  // VSHUFPSY divides the resulting vector into 4 chunks.
3403  // The sources are also splitted into 4 chunks, and each destination
3404  // chunk must come from a different source chunk.
3405  //
3406  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3407  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3408  //
3409  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3410  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3411  //
3412  // VSHUFPDY divides the resulting vector into 4 chunks.
3413  // The sources are also splitted into 4 chunks, and each destination
3414  // chunk must come from a different source chunk.
3415  //
3416  //  SRC1 =>      X3       X2       X1       X0
3417  //  SRC2 =>      Y3       Y2       Y1       Y0
3418  //
3419  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3420  //
3421  unsigned HalfLaneElems = NumLaneElems/2;
3422  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3423    for (unsigned i = 0; i != NumLaneElems; ++i) {
3424      int Idx = Mask[i+l];
3425      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3426      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3427        return false;
3428      // For VSHUFPSY, the mask of the second half must be the same as the
3429      // first but with the appropriate offsets. This works in the same way as
3430      // VPERMILPS works with masks.
3431      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3432        continue;
3433      if (!isUndefOrEqual(Idx, Mask[i]+l))
3434        return false;
3435    }
3436  }
3437
3438  return true;
3439}
3440
3441/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3442/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3443static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3444  if (!VT.is128BitVector())
3445    return false;
3446
3447  unsigned NumElems = VT.getVectorNumElements();
3448
3449  if (NumElems != 4)
3450    return false;
3451
3452  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3453  return isUndefOrEqual(Mask[0], 6) &&
3454         isUndefOrEqual(Mask[1], 7) &&
3455         isUndefOrEqual(Mask[2], 2) &&
3456         isUndefOrEqual(Mask[3], 3);
3457}
3458
3459/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3460/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3461/// <2, 3, 2, 3>
3462static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3463  if (!VT.is128BitVector())
3464    return false;
3465
3466  unsigned NumElems = VT.getVectorNumElements();
3467
3468  if (NumElems != 4)
3469    return false;
3470
3471  return isUndefOrEqual(Mask[0], 2) &&
3472         isUndefOrEqual(Mask[1], 3) &&
3473         isUndefOrEqual(Mask[2], 2) &&
3474         isUndefOrEqual(Mask[3], 3);
3475}
3476
3477/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3478/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3479static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3480  if (!VT.is128BitVector())
3481    return false;
3482
3483  unsigned NumElems = VT.getVectorNumElements();
3484
3485  if (NumElems != 2 && NumElems != 4)
3486    return false;
3487
3488  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3489    if (!isUndefOrEqual(Mask[i], i + NumElems))
3490      return false;
3491
3492  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3493    if (!isUndefOrEqual(Mask[i], i))
3494      return false;
3495
3496  return true;
3497}
3498
3499/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3500/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3501static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3502  if (!VT.is128BitVector())
3503    return false;
3504
3505  unsigned NumElems = VT.getVectorNumElements();
3506
3507  if (NumElems != 2 && NumElems != 4)
3508    return false;
3509
3510  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3511    if (!isUndefOrEqual(Mask[i], i))
3512      return false;
3513
3514  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3515    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3516      return false;
3517
3518  return true;
3519}
3520
3521//
3522// Some special combinations that can be optimized.
3523//
3524static
3525SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3526                               SelectionDAG &DAG) {
3527  EVT VT = SVOp->getValueType(0);
3528  DebugLoc dl = SVOp->getDebugLoc();
3529
3530  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3531    return SDValue();
3532
3533  ArrayRef<int> Mask = SVOp->getMask();
3534
3535  // These are the special masks that may be optimized.
3536  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3537  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3538  bool MatchEvenMask = true;
3539  bool MatchOddMask  = true;
3540  for (int i=0; i<8; ++i) {
3541    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3542      MatchEvenMask = false;
3543    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3544      MatchOddMask = false;
3545  }
3546
3547  if (!MatchEvenMask && !MatchOddMask)
3548    return SDValue();
3549
3550  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3551
3552  SDValue Op0 = SVOp->getOperand(0);
3553  SDValue Op1 = SVOp->getOperand(1);
3554
3555  if (MatchEvenMask) {
3556    // Shift the second operand right to 32 bits.
3557    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3558    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3559  } else {
3560    // Shift the first operand left to 32 bits.
3561    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3562    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3563  }
3564  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3565  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3566}
3567
3568/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3569/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3570static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3571                         bool HasAVX2, bool V2IsSplat = false) {
3572  unsigned NumElts = VT.getVectorNumElements();
3573
3574  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3575         "Unsupported vector type for unpckh");
3576
3577  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3578      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3579    return false;
3580
3581  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3582  // independently on 128-bit lanes.
3583  unsigned NumLanes = VT.getSizeInBits()/128;
3584  unsigned NumLaneElts = NumElts/NumLanes;
3585
3586  for (unsigned l = 0; l != NumLanes; ++l) {
3587    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3588         i != (l+1)*NumLaneElts;
3589         i += 2, ++j) {
3590      int BitI  = Mask[i];
3591      int BitI1 = Mask[i+1];
3592      if (!isUndefOrEqual(BitI, j))
3593        return false;
3594      if (V2IsSplat) {
3595        if (!isUndefOrEqual(BitI1, NumElts))
3596          return false;
3597      } else {
3598        if (!isUndefOrEqual(BitI1, j + NumElts))
3599          return false;
3600      }
3601    }
3602  }
3603
3604  return true;
3605}
3606
3607/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3608/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3609static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3610                         bool HasAVX2, bool V2IsSplat = false) {
3611  unsigned NumElts = VT.getVectorNumElements();
3612
3613  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3614         "Unsupported vector type for unpckh");
3615
3616  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3617      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3618    return false;
3619
3620  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3621  // independently on 128-bit lanes.
3622  unsigned NumLanes = VT.getSizeInBits()/128;
3623  unsigned NumLaneElts = NumElts/NumLanes;
3624
3625  for (unsigned l = 0; l != NumLanes; ++l) {
3626    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3627         i != (l+1)*NumLaneElts; i += 2, ++j) {
3628      int BitI  = Mask[i];
3629      int BitI1 = Mask[i+1];
3630      if (!isUndefOrEqual(BitI, j))
3631        return false;
3632      if (V2IsSplat) {
3633        if (isUndefOrEqual(BitI1, NumElts))
3634          return false;
3635      } else {
3636        if (!isUndefOrEqual(BitI1, j+NumElts))
3637          return false;
3638      }
3639    }
3640  }
3641  return true;
3642}
3643
3644/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3645/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3646/// <0, 0, 1, 1>
3647static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3648                                  bool HasAVX2) {
3649  unsigned NumElts = VT.getVectorNumElements();
3650
3651  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3652         "Unsupported vector type for unpckh");
3653
3654  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3655      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3656    return false;
3657
3658  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3659  // FIXME: Need a better way to get rid of this, there's no latency difference
3660  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3661  // the former later. We should also remove the "_undef" special mask.
3662  if (NumElts == 4 && VT.getSizeInBits() == 256)
3663    return false;
3664
3665  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3666  // independently on 128-bit lanes.
3667  unsigned NumLanes = VT.getSizeInBits()/128;
3668  unsigned NumLaneElts = NumElts/NumLanes;
3669
3670  for (unsigned l = 0; l != NumLanes; ++l) {
3671    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3672         i != (l+1)*NumLaneElts;
3673         i += 2, ++j) {
3674      int BitI  = Mask[i];
3675      int BitI1 = Mask[i+1];
3676
3677      if (!isUndefOrEqual(BitI, j))
3678        return false;
3679      if (!isUndefOrEqual(BitI1, j))
3680        return false;
3681    }
3682  }
3683
3684  return true;
3685}
3686
3687/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3688/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3689/// <2, 2, 3, 3>
3690static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3691  unsigned NumElts = VT.getVectorNumElements();
3692
3693  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3694         "Unsupported vector type for unpckh");
3695
3696  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3697      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3698    return false;
3699
3700  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3701  // independently on 128-bit lanes.
3702  unsigned NumLanes = VT.getSizeInBits()/128;
3703  unsigned NumLaneElts = NumElts/NumLanes;
3704
3705  for (unsigned l = 0; l != NumLanes; ++l) {
3706    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3707         i != (l+1)*NumLaneElts; i += 2, ++j) {
3708      int BitI  = Mask[i];
3709      int BitI1 = Mask[i+1];
3710      if (!isUndefOrEqual(BitI, j))
3711        return false;
3712      if (!isUndefOrEqual(BitI1, j))
3713        return false;
3714    }
3715  }
3716  return true;
3717}
3718
3719/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3720/// specifies a shuffle of elements that is suitable for input to MOVSS,
3721/// MOVSD, and MOVD, i.e. setting the lowest element.
3722static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3723  if (VT.getVectorElementType().getSizeInBits() < 32)
3724    return false;
3725  if (!VT.is128BitVector())
3726    return false;
3727
3728  unsigned NumElts = VT.getVectorNumElements();
3729
3730  if (!isUndefOrEqual(Mask[0], NumElts))
3731    return false;
3732
3733  for (unsigned i = 1; i != NumElts; ++i)
3734    if (!isUndefOrEqual(Mask[i], i))
3735      return false;
3736
3737  return true;
3738}
3739
3740/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3741/// as permutations between 128-bit chunks or halves. As an example: this
3742/// shuffle bellow:
3743///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3744/// The first half comes from the second half of V1 and the second half from the
3745/// the second half of V2.
3746static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3747  if (!HasAVX || !VT.is256BitVector())
3748    return false;
3749
3750  // The shuffle result is divided into half A and half B. In total the two
3751  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3752  // B must come from C, D, E or F.
3753  unsigned HalfSize = VT.getVectorNumElements()/2;
3754  bool MatchA = false, MatchB = false;
3755
3756  // Check if A comes from one of C, D, E, F.
3757  for (unsigned Half = 0; Half != 4; ++Half) {
3758    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3759      MatchA = true;
3760      break;
3761    }
3762  }
3763
3764  // Check if B comes from one of C, D, E, F.
3765  for (unsigned Half = 0; Half != 4; ++Half) {
3766    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3767      MatchB = true;
3768      break;
3769    }
3770  }
3771
3772  return MatchA && MatchB;
3773}
3774
3775/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3776/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3777static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3778  EVT VT = SVOp->getValueType(0);
3779
3780  unsigned HalfSize = VT.getVectorNumElements()/2;
3781
3782  unsigned FstHalf = 0, SndHalf = 0;
3783  for (unsigned i = 0; i < HalfSize; ++i) {
3784    if (SVOp->getMaskElt(i) > 0) {
3785      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3786      break;
3787    }
3788  }
3789  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3790    if (SVOp->getMaskElt(i) > 0) {
3791      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3792      break;
3793    }
3794  }
3795
3796  return (FstHalf | (SndHalf << 4));
3797}
3798
3799/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3800/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3801/// Note that VPERMIL mask matching is different depending whether theunderlying
3802/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3803/// to the same elements of the low, but to the higher half of the source.
3804/// In VPERMILPD the two lanes could be shuffled independently of each other
3805/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3806static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3807  if (!HasAVX)
3808    return false;
3809
3810  unsigned NumElts = VT.getVectorNumElements();
3811  // Only match 256-bit with 32/64-bit types
3812  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3813    return false;
3814
3815  unsigned NumLanes = VT.getSizeInBits()/128;
3816  unsigned LaneSize = NumElts/NumLanes;
3817  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3818    for (unsigned i = 0; i != LaneSize; ++i) {
3819      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3820        return false;
3821      if (NumElts != 8 || l == 0)
3822        continue;
3823      // VPERMILPS handling
3824      if (Mask[i] < 0)
3825        continue;
3826      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3827        return false;
3828    }
3829  }
3830
3831  return true;
3832}
3833
3834/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3835/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3836/// element of vector 2 and the other elements to come from vector 1 in order.
3837static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3838                               bool V2IsSplat = false, bool V2IsUndef = false) {
3839  if (!VT.is128BitVector())
3840    return false;
3841
3842  unsigned NumOps = VT.getVectorNumElements();
3843  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3844    return false;
3845
3846  if (!isUndefOrEqual(Mask[0], 0))
3847    return false;
3848
3849  for (unsigned i = 1; i != NumOps; ++i)
3850    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3851          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3852          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3853      return false;
3854
3855  return true;
3856}
3857
3858/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3859/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3860/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3861static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3862                           const X86Subtarget *Subtarget) {
3863  if (!Subtarget->hasSSE3())
3864    return false;
3865
3866  unsigned NumElems = VT.getVectorNumElements();
3867
3868  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3869      (VT.getSizeInBits() == 256 && NumElems != 8))
3870    return false;
3871
3872  // "i+1" is the value the indexed mask element must have
3873  for (unsigned i = 0; i != NumElems; i += 2)
3874    if (!isUndefOrEqual(Mask[i], i+1) ||
3875        !isUndefOrEqual(Mask[i+1], i+1))
3876      return false;
3877
3878  return true;
3879}
3880
3881/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3882/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3883/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3884static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3885                           const X86Subtarget *Subtarget) {
3886  if (!Subtarget->hasSSE3())
3887    return false;
3888
3889  unsigned NumElems = VT.getVectorNumElements();
3890
3891  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3892      (VT.getSizeInBits() == 256 && NumElems != 8))
3893    return false;
3894
3895  // "i" is the value the indexed mask element must have
3896  for (unsigned i = 0; i != NumElems; i += 2)
3897    if (!isUndefOrEqual(Mask[i], i) ||
3898        !isUndefOrEqual(Mask[i+1], i))
3899      return false;
3900
3901  return true;
3902}
3903
3904/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3905/// specifies a shuffle of elements that is suitable for input to 256-bit
3906/// version of MOVDDUP.
3907static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3908  if (!HasAVX || !VT.is256BitVector())
3909    return false;
3910
3911  unsigned NumElts = VT.getVectorNumElements();
3912  if (NumElts != 4)
3913    return false;
3914
3915  for (unsigned i = 0; i != NumElts/2; ++i)
3916    if (!isUndefOrEqual(Mask[i], 0))
3917      return false;
3918  for (unsigned i = NumElts/2; i != NumElts; ++i)
3919    if (!isUndefOrEqual(Mask[i], NumElts/2))
3920      return false;
3921  return true;
3922}
3923
3924/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3925/// specifies a shuffle of elements that is suitable for input to 128-bit
3926/// version of MOVDDUP.
3927static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3928  if (!VT.is128BitVector())
3929    return false;
3930
3931  unsigned e = VT.getVectorNumElements() / 2;
3932  for (unsigned i = 0; i != e; ++i)
3933    if (!isUndefOrEqual(Mask[i], i))
3934      return false;
3935  for (unsigned i = 0; i != e; ++i)
3936    if (!isUndefOrEqual(Mask[e+i], i))
3937      return false;
3938  return true;
3939}
3940
3941/// isVEXTRACTF128Index - Return true if the specified
3942/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3943/// suitable for input to VEXTRACTF128.
3944bool X86::isVEXTRACTF128Index(SDNode *N) {
3945  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3946    return false;
3947
3948  // The index should be aligned on a 128-bit boundary.
3949  uint64_t Index =
3950    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3951
3952  unsigned VL = N->getValueType(0).getVectorNumElements();
3953  unsigned VBits = N->getValueType(0).getSizeInBits();
3954  unsigned ElSize = VBits / VL;
3955  bool Result = (Index * ElSize) % 128 == 0;
3956
3957  return Result;
3958}
3959
3960/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3961/// operand specifies a subvector insert that is suitable for input to
3962/// VINSERTF128.
3963bool X86::isVINSERTF128Index(SDNode *N) {
3964  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3965    return false;
3966
3967  // The index should be aligned on a 128-bit boundary.
3968  uint64_t Index =
3969    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3970
3971  unsigned VL = N->getValueType(0).getVectorNumElements();
3972  unsigned VBits = N->getValueType(0).getSizeInBits();
3973  unsigned ElSize = VBits / VL;
3974  bool Result = (Index * ElSize) % 128 == 0;
3975
3976  return Result;
3977}
3978
3979/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3980/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3981/// Handles 128-bit and 256-bit.
3982static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3983  EVT VT = N->getValueType(0);
3984
3985  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3986         "Unsupported vector type for PSHUF/SHUFP");
3987
3988  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3989  // independently on 128-bit lanes.
3990  unsigned NumElts = VT.getVectorNumElements();
3991  unsigned NumLanes = VT.getSizeInBits()/128;
3992  unsigned NumLaneElts = NumElts/NumLanes;
3993
3994  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3995         "Only supports 2 or 4 elements per lane");
3996
3997  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3998  unsigned Mask = 0;
3999  for (unsigned i = 0; i != NumElts; ++i) {
4000    int Elt = N->getMaskElt(i);
4001    if (Elt < 0) continue;
4002    Elt &= NumLaneElts - 1;
4003    unsigned ShAmt = (i << Shift) % 8;
4004    Mask |= Elt << ShAmt;
4005  }
4006
4007  return Mask;
4008}
4009
4010/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4011/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4012static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4013  EVT VT = N->getValueType(0);
4014
4015  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4016         "Unsupported vector type for PSHUFHW");
4017
4018  unsigned NumElts = VT.getVectorNumElements();
4019
4020  unsigned Mask = 0;
4021  for (unsigned l = 0; l != NumElts; l += 8) {
4022    // 8 nodes per lane, but we only care about the last 4.
4023    for (unsigned i = 0; i < 4; ++i) {
4024      int Elt = N->getMaskElt(l+i+4);
4025      if (Elt < 0) continue;
4026      Elt &= 0x3; // only 2-bits.
4027      Mask |= Elt << (i * 2);
4028    }
4029  }
4030
4031  return Mask;
4032}
4033
4034/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4035/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4036static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4037  EVT VT = N->getValueType(0);
4038
4039  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4040         "Unsupported vector type for PSHUFHW");
4041
4042  unsigned NumElts = VT.getVectorNumElements();
4043
4044  unsigned Mask = 0;
4045  for (unsigned l = 0; l != NumElts; l += 8) {
4046    // 8 nodes per lane, but we only care about the first 4.
4047    for (unsigned i = 0; i < 4; ++i) {
4048      int Elt = N->getMaskElt(l+i);
4049      if (Elt < 0) continue;
4050      Elt &= 0x3; // only 2-bits
4051      Mask |= Elt << (i * 2);
4052    }
4053  }
4054
4055  return Mask;
4056}
4057
4058/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4059/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4060static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4061  EVT VT = SVOp->getValueType(0);
4062  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4063
4064  unsigned NumElts = VT.getVectorNumElements();
4065  unsigned NumLanes = VT.getSizeInBits()/128;
4066  unsigned NumLaneElts = NumElts/NumLanes;
4067
4068  int Val = 0;
4069  unsigned i;
4070  for (i = 0; i != NumElts; ++i) {
4071    Val = SVOp->getMaskElt(i);
4072    if (Val >= 0)
4073      break;
4074  }
4075  if (Val >= (int)NumElts)
4076    Val -= NumElts - NumLaneElts;
4077
4078  assert(Val - i > 0 && "PALIGNR imm should be positive");
4079  return (Val - i) * EltSize;
4080}
4081
4082/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4083/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4084/// instructions.
4085unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4086  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4087    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4088
4089  uint64_t Index =
4090    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4091
4092  EVT VecVT = N->getOperand(0).getValueType();
4093  EVT ElVT = VecVT.getVectorElementType();
4094
4095  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4096  return Index / NumElemsPerChunk;
4097}
4098
4099/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4100/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4101/// instructions.
4102unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4103  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4104    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4105
4106  uint64_t Index =
4107    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4108
4109  EVT VecVT = N->getValueType(0);
4110  EVT ElVT = VecVT.getVectorElementType();
4111
4112  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4113  return Index / NumElemsPerChunk;
4114}
4115
4116/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4117/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4118/// Handles 256-bit.
4119static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4120  EVT VT = N->getValueType(0);
4121
4122  unsigned NumElts = VT.getVectorNumElements();
4123
4124  assert((VT.is256BitVector() && NumElts == 4) &&
4125         "Unsupported vector type for VPERMQ/VPERMPD");
4126
4127  unsigned Mask = 0;
4128  for (unsigned i = 0; i != NumElts; ++i) {
4129    int Elt = N->getMaskElt(i);
4130    if (Elt < 0)
4131      continue;
4132    Mask |= Elt << (i*2);
4133  }
4134
4135  return Mask;
4136}
4137/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4138/// constant +0.0.
4139bool X86::isZeroNode(SDValue Elt) {
4140  return ((isa<ConstantSDNode>(Elt) &&
4141           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4142          (isa<ConstantFPSDNode>(Elt) &&
4143           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4144}
4145
4146/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4147/// their permute mask.
4148static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4149                                    SelectionDAG &DAG) {
4150  EVT VT = SVOp->getValueType(0);
4151  unsigned NumElems = VT.getVectorNumElements();
4152  SmallVector<int, 8> MaskVec;
4153
4154  for (unsigned i = 0; i != NumElems; ++i) {
4155    int Idx = SVOp->getMaskElt(i);
4156    if (Idx >= 0) {
4157      if (Idx < (int)NumElems)
4158        Idx += NumElems;
4159      else
4160        Idx -= NumElems;
4161    }
4162    MaskVec.push_back(Idx);
4163  }
4164  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4165                              SVOp->getOperand(0), &MaskVec[0]);
4166}
4167
4168/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4169/// match movhlps. The lower half elements should come from upper half of
4170/// V1 (and in order), and the upper half elements should come from the upper
4171/// half of V2 (and in order).
4172static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4173  if (!VT.is128BitVector())
4174    return false;
4175  if (VT.getVectorNumElements() != 4)
4176    return false;
4177  for (unsigned i = 0, e = 2; i != e; ++i)
4178    if (!isUndefOrEqual(Mask[i], i+2))
4179      return false;
4180  for (unsigned i = 2; i != 4; ++i)
4181    if (!isUndefOrEqual(Mask[i], i+4))
4182      return false;
4183  return true;
4184}
4185
4186/// isScalarLoadToVector - Returns true if the node is a scalar load that
4187/// is promoted to a vector. It also returns the LoadSDNode by reference if
4188/// required.
4189static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4190  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4191    return false;
4192  N = N->getOperand(0).getNode();
4193  if (!ISD::isNON_EXTLoad(N))
4194    return false;
4195  if (LD)
4196    *LD = cast<LoadSDNode>(N);
4197  return true;
4198}
4199
4200// Test whether the given value is a vector value which will be legalized
4201// into a load.
4202static bool WillBeConstantPoolLoad(SDNode *N) {
4203  if (N->getOpcode() != ISD::BUILD_VECTOR)
4204    return false;
4205
4206  // Check for any non-constant elements.
4207  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4208    switch (N->getOperand(i).getNode()->getOpcode()) {
4209    case ISD::UNDEF:
4210    case ISD::ConstantFP:
4211    case ISD::Constant:
4212      break;
4213    default:
4214      return false;
4215    }
4216
4217  // Vectors of all-zeros and all-ones are materialized with special
4218  // instructions rather than being loaded.
4219  return !ISD::isBuildVectorAllZeros(N) &&
4220         !ISD::isBuildVectorAllOnes(N);
4221}
4222
4223/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4224/// match movlp{s|d}. The lower half elements should come from lower half of
4225/// V1 (and in order), and the upper half elements should come from the upper
4226/// half of V2 (and in order). And since V1 will become the source of the
4227/// MOVLP, it must be either a vector load or a scalar load to vector.
4228static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4229                               ArrayRef<int> Mask, EVT VT) {
4230  if (!VT.is128BitVector())
4231    return false;
4232
4233  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4234    return false;
4235  // Is V2 is a vector load, don't do this transformation. We will try to use
4236  // load folding shufps op.
4237  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4238    return false;
4239
4240  unsigned NumElems = VT.getVectorNumElements();
4241
4242  if (NumElems != 2 && NumElems != 4)
4243    return false;
4244  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4245    if (!isUndefOrEqual(Mask[i], i))
4246      return false;
4247  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4248    if (!isUndefOrEqual(Mask[i], i+NumElems))
4249      return false;
4250  return true;
4251}
4252
4253/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4254/// all the same.
4255static bool isSplatVector(SDNode *N) {
4256  if (N->getOpcode() != ISD::BUILD_VECTOR)
4257    return false;
4258
4259  SDValue SplatValue = N->getOperand(0);
4260  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4261    if (N->getOperand(i) != SplatValue)
4262      return false;
4263  return true;
4264}
4265
4266/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4267/// to an zero vector.
4268/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4269static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4270  SDValue V1 = N->getOperand(0);
4271  SDValue V2 = N->getOperand(1);
4272  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4273  for (unsigned i = 0; i != NumElems; ++i) {
4274    int Idx = N->getMaskElt(i);
4275    if (Idx >= (int)NumElems) {
4276      unsigned Opc = V2.getOpcode();
4277      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4278        continue;
4279      if (Opc != ISD::BUILD_VECTOR ||
4280          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4281        return false;
4282    } else if (Idx >= 0) {
4283      unsigned Opc = V1.getOpcode();
4284      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4285        continue;
4286      if (Opc != ISD::BUILD_VECTOR ||
4287          !X86::isZeroNode(V1.getOperand(Idx)))
4288        return false;
4289    }
4290  }
4291  return true;
4292}
4293
4294/// getZeroVector - Returns a vector of specified type with all zero elements.
4295///
4296static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4297                             SelectionDAG &DAG, DebugLoc dl) {
4298  assert(VT.isVector() && "Expected a vector type");
4299  unsigned Size = VT.getSizeInBits();
4300
4301  // Always build SSE zero vectors as <4 x i32> bitcasted
4302  // to their dest type. This ensures they get CSE'd.
4303  SDValue Vec;
4304  if (Size == 128) {  // SSE
4305    if (Subtarget->hasSSE2()) {  // SSE2
4306      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4307      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4308    } else { // SSE1
4309      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4310      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4311    }
4312  } else if (Size == 256) { // AVX
4313    if (Subtarget->hasAVX2()) { // AVX2
4314      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4315      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4316      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4317    } else {
4318      // 256-bit logic and arithmetic instructions in AVX are all
4319      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4320      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4321      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4322      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4323    }
4324  } else
4325    llvm_unreachable("Unexpected vector type");
4326
4327  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4328}
4329
4330/// getOnesVector - Returns a vector of specified type with all bits set.
4331/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4332/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4333/// Then bitcast to their original type, ensuring they get CSE'd.
4334static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4335                             DebugLoc dl) {
4336  assert(VT.isVector() && "Expected a vector type");
4337  unsigned Size = VT.getSizeInBits();
4338
4339  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4340  SDValue Vec;
4341  if (Size == 256) {
4342    if (HasAVX2) { // AVX2
4343      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4344      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4345    } else { // AVX
4346      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4347      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4348    }
4349  } else if (Size == 128) {
4350    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4351  } else
4352    llvm_unreachable("Unexpected vector type");
4353
4354  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4355}
4356
4357/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4358/// that point to V2 points to its first element.
4359static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4360  for (unsigned i = 0; i != NumElems; ++i) {
4361    if (Mask[i] > (int)NumElems) {
4362      Mask[i] = NumElems;
4363    }
4364  }
4365}
4366
4367/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4368/// operation of specified width.
4369static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4370                       SDValue V2) {
4371  unsigned NumElems = VT.getVectorNumElements();
4372  SmallVector<int, 8> Mask;
4373  Mask.push_back(NumElems);
4374  for (unsigned i = 1; i != NumElems; ++i)
4375    Mask.push_back(i);
4376  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4377}
4378
4379/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4380static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4381                          SDValue V2) {
4382  unsigned NumElems = VT.getVectorNumElements();
4383  SmallVector<int, 8> Mask;
4384  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4385    Mask.push_back(i);
4386    Mask.push_back(i + NumElems);
4387  }
4388  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4389}
4390
4391/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4392static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4393                          SDValue V2) {
4394  unsigned NumElems = VT.getVectorNumElements();
4395  SmallVector<int, 8> Mask;
4396  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4397    Mask.push_back(i + Half);
4398    Mask.push_back(i + NumElems + Half);
4399  }
4400  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4401}
4402
4403// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4404// a generic shuffle instruction because the target has no such instructions.
4405// Generate shuffles which repeat i16 and i8 several times until they can be
4406// represented by v4f32 and then be manipulated by target suported shuffles.
4407static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4408  EVT VT = V.getValueType();
4409  int NumElems = VT.getVectorNumElements();
4410  DebugLoc dl = V.getDebugLoc();
4411
4412  while (NumElems > 4) {
4413    if (EltNo < NumElems/2) {
4414      V = getUnpackl(DAG, dl, VT, V, V);
4415    } else {
4416      V = getUnpackh(DAG, dl, VT, V, V);
4417      EltNo -= NumElems/2;
4418    }
4419    NumElems >>= 1;
4420  }
4421  return V;
4422}
4423
4424/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4425static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4426  EVT VT = V.getValueType();
4427  DebugLoc dl = V.getDebugLoc();
4428  unsigned Size = VT.getSizeInBits();
4429
4430  if (Size == 128) {
4431    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4432    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4433    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4434                             &SplatMask[0]);
4435  } else if (Size == 256) {
4436    // To use VPERMILPS to splat scalars, the second half of indicies must
4437    // refer to the higher part, which is a duplication of the lower one,
4438    // because VPERMILPS can only handle in-lane permutations.
4439    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4440                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4441
4442    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4443    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4444                             &SplatMask[0]);
4445  } else
4446    llvm_unreachable("Vector size not supported");
4447
4448  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4449}
4450
4451/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4452static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4453  EVT SrcVT = SV->getValueType(0);
4454  SDValue V1 = SV->getOperand(0);
4455  DebugLoc dl = SV->getDebugLoc();
4456
4457  int EltNo = SV->getSplatIndex();
4458  int NumElems = SrcVT.getVectorNumElements();
4459  unsigned Size = SrcVT.getSizeInBits();
4460
4461  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4462          "Unknown how to promote splat for type");
4463
4464  // Extract the 128-bit part containing the splat element and update
4465  // the splat element index when it refers to the higher register.
4466  if (Size == 256) {
4467    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4468    if (EltNo >= NumElems/2)
4469      EltNo -= NumElems/2;
4470  }
4471
4472  // All i16 and i8 vector types can't be used directly by a generic shuffle
4473  // instruction because the target has no such instruction. Generate shuffles
4474  // which repeat i16 and i8 several times until they fit in i32, and then can
4475  // be manipulated by target suported shuffles.
4476  EVT EltVT = SrcVT.getVectorElementType();
4477  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4478    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4479
4480  // Recreate the 256-bit vector and place the same 128-bit vector
4481  // into the low and high part. This is necessary because we want
4482  // to use VPERM* to shuffle the vectors
4483  if (Size == 256) {
4484    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4485  }
4486
4487  return getLegalSplat(DAG, V1, EltNo);
4488}
4489
4490/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4491/// vector of zero or undef vector.  This produces a shuffle where the low
4492/// element of V2 is swizzled into the zero/undef vector, landing at element
4493/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4494static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4495                                           bool IsZero,
4496                                           const X86Subtarget *Subtarget,
4497                                           SelectionDAG &DAG) {
4498  EVT VT = V2.getValueType();
4499  SDValue V1 = IsZero
4500    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4501  unsigned NumElems = VT.getVectorNumElements();
4502  SmallVector<int, 16> MaskVec;
4503  for (unsigned i = 0; i != NumElems; ++i)
4504    // If this is the insertion idx, put the low elt of V2 here.
4505    MaskVec.push_back(i == Idx ? NumElems : i);
4506  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4507}
4508
4509/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4510/// target specific opcode. Returns true if the Mask could be calculated.
4511/// Sets IsUnary to true if only uses one source.
4512static bool getTargetShuffleMask(SDNode *N, MVT VT,
4513                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4514  unsigned NumElems = VT.getVectorNumElements();
4515  SDValue ImmN;
4516
4517  IsUnary = false;
4518  switch(N->getOpcode()) {
4519  case X86ISD::SHUFP:
4520    ImmN = N->getOperand(N->getNumOperands()-1);
4521    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4522    break;
4523  case X86ISD::UNPCKH:
4524    DecodeUNPCKHMask(VT, Mask);
4525    break;
4526  case X86ISD::UNPCKL:
4527    DecodeUNPCKLMask(VT, Mask);
4528    break;
4529  case X86ISD::MOVHLPS:
4530    DecodeMOVHLPSMask(NumElems, Mask);
4531    break;
4532  case X86ISD::MOVLHPS:
4533    DecodeMOVLHPSMask(NumElems, Mask);
4534    break;
4535  case X86ISD::PSHUFD:
4536  case X86ISD::VPERMILP:
4537    ImmN = N->getOperand(N->getNumOperands()-1);
4538    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4539    IsUnary = true;
4540    break;
4541  case X86ISD::PSHUFHW:
4542    ImmN = N->getOperand(N->getNumOperands()-1);
4543    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4544    IsUnary = true;
4545    break;
4546  case X86ISD::PSHUFLW:
4547    ImmN = N->getOperand(N->getNumOperands()-1);
4548    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4549    IsUnary = true;
4550    break;
4551  case X86ISD::VPERMI:
4552    ImmN = N->getOperand(N->getNumOperands()-1);
4553    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4554    IsUnary = true;
4555    break;
4556  case X86ISD::MOVSS:
4557  case X86ISD::MOVSD: {
4558    // The index 0 always comes from the first element of the second source,
4559    // this is why MOVSS and MOVSD are used in the first place. The other
4560    // elements come from the other positions of the first source vector
4561    Mask.push_back(NumElems);
4562    for (unsigned i = 1; i != NumElems; ++i) {
4563      Mask.push_back(i);
4564    }
4565    break;
4566  }
4567  case X86ISD::VPERM2X128:
4568    ImmN = N->getOperand(N->getNumOperands()-1);
4569    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4570    if (Mask.empty()) return false;
4571    break;
4572  case X86ISD::MOVDDUP:
4573  case X86ISD::MOVLHPD:
4574  case X86ISD::MOVLPD:
4575  case X86ISD::MOVLPS:
4576  case X86ISD::MOVSHDUP:
4577  case X86ISD::MOVSLDUP:
4578  case X86ISD::PALIGN:
4579    // Not yet implemented
4580    return false;
4581  default: llvm_unreachable("unknown target shuffle node");
4582  }
4583
4584  return true;
4585}
4586
4587/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4588/// element of the result of the vector shuffle.
4589static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4590                                   unsigned Depth) {
4591  if (Depth == 6)
4592    return SDValue();  // Limit search depth.
4593
4594  SDValue V = SDValue(N, 0);
4595  EVT VT = V.getValueType();
4596  unsigned Opcode = V.getOpcode();
4597
4598  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4599  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4600    int Elt = SV->getMaskElt(Index);
4601
4602    if (Elt < 0)
4603      return DAG.getUNDEF(VT.getVectorElementType());
4604
4605    unsigned NumElems = VT.getVectorNumElements();
4606    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4607                                         : SV->getOperand(1);
4608    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4609  }
4610
4611  // Recurse into target specific vector shuffles to find scalars.
4612  if (isTargetShuffle(Opcode)) {
4613    MVT ShufVT = V.getValueType().getSimpleVT();
4614    unsigned NumElems = ShufVT.getVectorNumElements();
4615    SmallVector<int, 16> ShuffleMask;
4616    SDValue ImmN;
4617    bool IsUnary;
4618
4619    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4620      return SDValue();
4621
4622    int Elt = ShuffleMask[Index];
4623    if (Elt < 0)
4624      return DAG.getUNDEF(ShufVT.getVectorElementType());
4625
4626    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4627                                         : N->getOperand(1);
4628    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4629                               Depth+1);
4630  }
4631
4632  // Actual nodes that may contain scalar elements
4633  if (Opcode == ISD::BITCAST) {
4634    V = V.getOperand(0);
4635    EVT SrcVT = V.getValueType();
4636    unsigned NumElems = VT.getVectorNumElements();
4637
4638    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4639      return SDValue();
4640  }
4641
4642  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4643    return (Index == 0) ? V.getOperand(0)
4644                        : DAG.getUNDEF(VT.getVectorElementType());
4645
4646  if (V.getOpcode() == ISD::BUILD_VECTOR)
4647    return V.getOperand(Index);
4648
4649  return SDValue();
4650}
4651
4652/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4653/// shuffle operation which come from a consecutively from a zero. The
4654/// search can start in two different directions, from left or right.
4655static
4656unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4657                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4658  unsigned i;
4659  for (i = 0; i != NumElems; ++i) {
4660    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4661    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4662    if (!(Elt.getNode() &&
4663         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4664      break;
4665  }
4666
4667  return i;
4668}
4669
4670/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4671/// correspond consecutively to elements from one of the vector operands,
4672/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4673static
4674bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4675                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4676                              unsigned NumElems, unsigned &OpNum) {
4677  bool SeenV1 = false;
4678  bool SeenV2 = false;
4679
4680  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4681    int Idx = SVOp->getMaskElt(i);
4682    // Ignore undef indicies
4683    if (Idx < 0)
4684      continue;
4685
4686    if (Idx < (int)NumElems)
4687      SeenV1 = true;
4688    else
4689      SeenV2 = true;
4690
4691    // Only accept consecutive elements from the same vector
4692    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4693      return false;
4694  }
4695
4696  OpNum = SeenV1 ? 0 : 1;
4697  return true;
4698}
4699
4700/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4701/// logical left shift of a vector.
4702static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4703                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4704  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4705  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4706              false /* check zeros from right */, DAG);
4707  unsigned OpSrc;
4708
4709  if (!NumZeros)
4710    return false;
4711
4712  // Considering the elements in the mask that are not consecutive zeros,
4713  // check if they consecutively come from only one of the source vectors.
4714  //
4715  //               V1 = {X, A, B, C}     0
4716  //                         \  \  \    /
4717  //   vector_shuffle V1, V2 <1, 2, 3, X>
4718  //
4719  if (!isShuffleMaskConsecutive(SVOp,
4720            0,                   // Mask Start Index
4721            NumElems-NumZeros,   // Mask End Index(exclusive)
4722            NumZeros,            // Where to start looking in the src vector
4723            NumElems,            // Number of elements in vector
4724            OpSrc))              // Which source operand ?
4725    return false;
4726
4727  isLeft = false;
4728  ShAmt = NumZeros;
4729  ShVal = SVOp->getOperand(OpSrc);
4730  return true;
4731}
4732
4733/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4734/// logical left shift of a vector.
4735static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4736                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4737  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4738  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4739              true /* check zeros from left */, DAG);
4740  unsigned OpSrc;
4741
4742  if (!NumZeros)
4743    return false;
4744
4745  // Considering the elements in the mask that are not consecutive zeros,
4746  // check if they consecutively come from only one of the source vectors.
4747  //
4748  //                           0    { A, B, X, X } = V2
4749  //                          / \    /  /
4750  //   vector_shuffle V1, V2 <X, X, 4, 5>
4751  //
4752  if (!isShuffleMaskConsecutive(SVOp,
4753            NumZeros,     // Mask Start Index
4754            NumElems,     // Mask End Index(exclusive)
4755            0,            // Where to start looking in the src vector
4756            NumElems,     // Number of elements in vector
4757            OpSrc))       // Which source operand ?
4758    return false;
4759
4760  isLeft = true;
4761  ShAmt = NumZeros;
4762  ShVal = SVOp->getOperand(OpSrc);
4763  return true;
4764}
4765
4766/// isVectorShift - Returns true if the shuffle can be implemented as a
4767/// logical left or right shift of a vector.
4768static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4769                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4770  // Although the logic below support any bitwidth size, there are no
4771  // shift instructions which handle more than 128-bit vectors.
4772  if (!SVOp->getValueType(0).is128BitVector())
4773    return false;
4774
4775  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4776      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4777    return true;
4778
4779  return false;
4780}
4781
4782/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4783///
4784static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4785                                       unsigned NumNonZero, unsigned NumZero,
4786                                       SelectionDAG &DAG,
4787                                       const X86Subtarget* Subtarget,
4788                                       const TargetLowering &TLI) {
4789  if (NumNonZero > 8)
4790    return SDValue();
4791
4792  DebugLoc dl = Op.getDebugLoc();
4793  SDValue V(0, 0);
4794  bool First = true;
4795  for (unsigned i = 0; i < 16; ++i) {
4796    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4797    if (ThisIsNonZero && First) {
4798      if (NumZero)
4799        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4800      else
4801        V = DAG.getUNDEF(MVT::v8i16);
4802      First = false;
4803    }
4804
4805    if ((i & 1) != 0) {
4806      SDValue ThisElt(0, 0), LastElt(0, 0);
4807      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4808      if (LastIsNonZero) {
4809        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4810                              MVT::i16, Op.getOperand(i-1));
4811      }
4812      if (ThisIsNonZero) {
4813        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4814        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4815                              ThisElt, DAG.getConstant(8, MVT::i8));
4816        if (LastIsNonZero)
4817          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4818      } else
4819        ThisElt = LastElt;
4820
4821      if (ThisElt.getNode())
4822        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4823                        DAG.getIntPtrConstant(i/2));
4824    }
4825  }
4826
4827  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4828}
4829
4830/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4831///
4832static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4833                                     unsigned NumNonZero, unsigned NumZero,
4834                                     SelectionDAG &DAG,
4835                                     const X86Subtarget* Subtarget,
4836                                     const TargetLowering &TLI) {
4837  if (NumNonZero > 4)
4838    return SDValue();
4839
4840  DebugLoc dl = Op.getDebugLoc();
4841  SDValue V(0, 0);
4842  bool First = true;
4843  for (unsigned i = 0; i < 8; ++i) {
4844    bool isNonZero = (NonZeros & (1 << i)) != 0;
4845    if (isNonZero) {
4846      if (First) {
4847        if (NumZero)
4848          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4849        else
4850          V = DAG.getUNDEF(MVT::v8i16);
4851        First = false;
4852      }
4853      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4854                      MVT::v8i16, V, Op.getOperand(i),
4855                      DAG.getIntPtrConstant(i));
4856    }
4857  }
4858
4859  return V;
4860}
4861
4862/// getVShift - Return a vector logical shift node.
4863///
4864static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4865                         unsigned NumBits, SelectionDAG &DAG,
4866                         const TargetLowering &TLI, DebugLoc dl) {
4867  assert(VT.is128BitVector() && "Unknown type for VShift");
4868  EVT ShVT = MVT::v2i64;
4869  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4870  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4871  return DAG.getNode(ISD::BITCAST, dl, VT,
4872                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4873                             DAG.getConstant(NumBits,
4874                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4875}
4876
4877SDValue
4878X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4879                                          SelectionDAG &DAG) const {
4880
4881  // Check if the scalar load can be widened into a vector load. And if
4882  // the address is "base + cst" see if the cst can be "absorbed" into
4883  // the shuffle mask.
4884  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4885    SDValue Ptr = LD->getBasePtr();
4886    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4887      return SDValue();
4888    EVT PVT = LD->getValueType(0);
4889    if (PVT != MVT::i32 && PVT != MVT::f32)
4890      return SDValue();
4891
4892    int FI = -1;
4893    int64_t Offset = 0;
4894    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4895      FI = FINode->getIndex();
4896      Offset = 0;
4897    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4898               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4899      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4900      Offset = Ptr.getConstantOperandVal(1);
4901      Ptr = Ptr.getOperand(0);
4902    } else {
4903      return SDValue();
4904    }
4905
4906    // FIXME: 256-bit vector instructions don't require a strict alignment,
4907    // improve this code to support it better.
4908    unsigned RequiredAlign = VT.getSizeInBits()/8;
4909    SDValue Chain = LD->getChain();
4910    // Make sure the stack object alignment is at least 16 or 32.
4911    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4912    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4913      if (MFI->isFixedObjectIndex(FI)) {
4914        // Can't change the alignment. FIXME: It's possible to compute
4915        // the exact stack offset and reference FI + adjust offset instead.
4916        // If someone *really* cares about this. That's the way to implement it.
4917        return SDValue();
4918      } else {
4919        MFI->setObjectAlignment(FI, RequiredAlign);
4920      }
4921    }
4922
4923    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4924    // Ptr + (Offset & ~15).
4925    if (Offset < 0)
4926      return SDValue();
4927    if ((Offset % RequiredAlign) & 3)
4928      return SDValue();
4929    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4930    if (StartOffset)
4931      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4932                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4933
4934    int EltNo = (Offset - StartOffset) >> 2;
4935    unsigned NumElems = VT.getVectorNumElements();
4936
4937    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4938    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4939                             LD->getPointerInfo().getWithOffset(StartOffset),
4940                             false, false, false, 0);
4941
4942    SmallVector<int, 8> Mask;
4943    for (unsigned i = 0; i != NumElems; ++i)
4944      Mask.push_back(EltNo);
4945
4946    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4947  }
4948
4949  return SDValue();
4950}
4951
4952/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4953/// vector of type 'VT', see if the elements can be replaced by a single large
4954/// load which has the same value as a build_vector whose operands are 'elts'.
4955///
4956/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4957///
4958/// FIXME: we'd also like to handle the case where the last elements are zero
4959/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4960/// There's even a handy isZeroNode for that purpose.
4961static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4962                                        DebugLoc &DL, SelectionDAG &DAG) {
4963  EVT EltVT = VT.getVectorElementType();
4964  unsigned NumElems = Elts.size();
4965
4966  LoadSDNode *LDBase = NULL;
4967  unsigned LastLoadedElt = -1U;
4968
4969  // For each element in the initializer, see if we've found a load or an undef.
4970  // If we don't find an initial load element, or later load elements are
4971  // non-consecutive, bail out.
4972  for (unsigned i = 0; i < NumElems; ++i) {
4973    SDValue Elt = Elts[i];
4974
4975    if (!Elt.getNode() ||
4976        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4977      return SDValue();
4978    if (!LDBase) {
4979      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4980        return SDValue();
4981      LDBase = cast<LoadSDNode>(Elt.getNode());
4982      LastLoadedElt = i;
4983      continue;
4984    }
4985    if (Elt.getOpcode() == ISD::UNDEF)
4986      continue;
4987
4988    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4989    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4990      return SDValue();
4991    LastLoadedElt = i;
4992  }
4993
4994  // If we have found an entire vector of loads and undefs, then return a large
4995  // load of the entire vector width starting at the base pointer.  If we found
4996  // consecutive loads for the low half, generate a vzext_load node.
4997  if (LastLoadedElt == NumElems - 1) {
4998    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4999      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5000                         LDBase->getPointerInfo(),
5001                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5002                         LDBase->isInvariant(), 0);
5003    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5004                       LDBase->getPointerInfo(),
5005                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5006                       LDBase->isInvariant(), LDBase->getAlignment());
5007  }
5008  if (NumElems == 4 && LastLoadedElt == 1 &&
5009      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5010    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5011    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5012    SDValue ResNode =
5013        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5014                                LDBase->getPointerInfo(),
5015                                LDBase->getAlignment(),
5016                                false/*isVolatile*/, true/*ReadMem*/,
5017                                false/*WriteMem*/);
5018
5019    // Make sure the newly-created LOAD is in the same position as LDBase in
5020    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5021    // update uses of LDBase's output chain to use the TokenFactor.
5022    if (LDBase->hasAnyUseOfValue(1)) {
5023      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5024                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5025      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5026      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5027                             SDValue(ResNode.getNode(), 1));
5028    }
5029
5030    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5031  }
5032  return SDValue();
5033}
5034
5035/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5036/// to generate a splat value for the following cases:
5037/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5038/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5039/// a scalar load, or a constant.
5040/// The VBROADCAST node is returned when a pattern is found,
5041/// or SDValue() otherwise.
5042SDValue
5043X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5044  if (!Subtarget->hasAVX())
5045    return SDValue();
5046
5047  EVT VT = Op.getValueType();
5048  DebugLoc dl = Op.getDebugLoc();
5049
5050  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5051         "Unsupported vector type for broadcast.");
5052
5053  SDValue Ld;
5054  bool ConstSplatVal;
5055
5056  switch (Op.getOpcode()) {
5057    default:
5058      // Unknown pattern found.
5059      return SDValue();
5060
5061    case ISD::BUILD_VECTOR: {
5062      // The BUILD_VECTOR node must be a splat.
5063      if (!isSplatVector(Op.getNode()))
5064        return SDValue();
5065
5066      Ld = Op.getOperand(0);
5067      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5068                     Ld.getOpcode() == ISD::ConstantFP);
5069
5070      // The suspected load node has several users. Make sure that all
5071      // of its users are from the BUILD_VECTOR node.
5072      // Constants may have multiple users.
5073      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5074        return SDValue();
5075      break;
5076    }
5077
5078    case ISD::VECTOR_SHUFFLE: {
5079      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5080
5081      // Shuffles must have a splat mask where the first element is
5082      // broadcasted.
5083      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5084        return SDValue();
5085
5086      SDValue Sc = Op.getOperand(0);
5087      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5088          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5089
5090        if (!Subtarget->hasAVX2())
5091          return SDValue();
5092
5093        // Use the register form of the broadcast instruction available on AVX2.
5094        if (VT.is256BitVector())
5095          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5096        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5097      }
5098
5099      Ld = Sc.getOperand(0);
5100      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5101                       Ld.getOpcode() == ISD::ConstantFP);
5102
5103      // The scalar_to_vector node and the suspected
5104      // load node must have exactly one user.
5105      // Constants may have multiple users.
5106      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5107        return SDValue();
5108      break;
5109    }
5110  }
5111
5112  bool Is256 = VT.is256BitVector();
5113
5114  // Handle the broadcasting a single constant scalar from the constant pool
5115  // into a vector. On Sandybridge it is still better to load a constant vector
5116  // from the constant pool and not to broadcast it from a scalar.
5117  if (ConstSplatVal && Subtarget->hasAVX2()) {
5118    EVT CVT = Ld.getValueType();
5119    assert(!CVT.isVector() && "Must not broadcast a vector type");
5120    unsigned ScalarSize = CVT.getSizeInBits();
5121
5122    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5123      const Constant *C = 0;
5124      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5125        C = CI->getConstantIntValue();
5126      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5127        C = CF->getConstantFPValue();
5128
5129      assert(C && "Invalid constant type");
5130
5131      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5132      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5133      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5134                       MachinePointerInfo::getConstantPool(),
5135                       false, false, false, Alignment);
5136
5137      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5138    }
5139  }
5140
5141  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5142  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5143
5144  // Handle AVX2 in-register broadcasts.
5145  if (!IsLoad && Subtarget->hasAVX2() &&
5146      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5147    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5148
5149  // The scalar source must be a normal load.
5150  if (!IsLoad)
5151    return SDValue();
5152
5153  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5154    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5155
5156  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5157  // double since there is no vbroadcastsd xmm
5158  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5159    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5160      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5161  }
5162
5163  // Unsupported broadcast.
5164  return SDValue();
5165}
5166
5167SDValue
5168X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5169  DebugLoc dl = Op.getDebugLoc();
5170
5171  EVT VT = Op.getValueType();
5172  EVT ExtVT = VT.getVectorElementType();
5173  unsigned NumElems = Op.getNumOperands();
5174
5175  // Vectors containing all zeros can be matched by pxor and xorps later
5176  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5177    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5178    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5179    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5180      return Op;
5181
5182    return getZeroVector(VT, Subtarget, DAG, dl);
5183  }
5184
5185  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5186  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5187  // vpcmpeqd on 256-bit vectors.
5188  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5189    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5190      return Op;
5191
5192    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5193  }
5194
5195  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5196  if (Broadcast.getNode())
5197    return Broadcast;
5198
5199  unsigned EVTBits = ExtVT.getSizeInBits();
5200
5201  unsigned NumZero  = 0;
5202  unsigned NumNonZero = 0;
5203  unsigned NonZeros = 0;
5204  bool IsAllConstants = true;
5205  SmallSet<SDValue, 8> Values;
5206  for (unsigned i = 0; i < NumElems; ++i) {
5207    SDValue Elt = Op.getOperand(i);
5208    if (Elt.getOpcode() == ISD::UNDEF)
5209      continue;
5210    Values.insert(Elt);
5211    if (Elt.getOpcode() != ISD::Constant &&
5212        Elt.getOpcode() != ISD::ConstantFP)
5213      IsAllConstants = false;
5214    if (X86::isZeroNode(Elt))
5215      NumZero++;
5216    else {
5217      NonZeros |= (1 << i);
5218      NumNonZero++;
5219    }
5220  }
5221
5222  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5223  if (NumNonZero == 0)
5224    return DAG.getUNDEF(VT);
5225
5226  // Special case for single non-zero, non-undef, element.
5227  if (NumNonZero == 1) {
5228    unsigned Idx = CountTrailingZeros_32(NonZeros);
5229    SDValue Item = Op.getOperand(Idx);
5230
5231    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5232    // the value are obviously zero, truncate the value to i32 and do the
5233    // insertion that way.  Only do this if the value is non-constant or if the
5234    // value is a constant being inserted into element 0.  It is cheaper to do
5235    // a constant pool load than it is to do a movd + shuffle.
5236    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5237        (!IsAllConstants || Idx == 0)) {
5238      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5239        // Handle SSE only.
5240        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5241        EVT VecVT = MVT::v4i32;
5242        unsigned VecElts = 4;
5243
5244        // Truncate the value (which may itself be a constant) to i32, and
5245        // convert it to a vector with movd (S2V+shuffle to zero extend).
5246        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5247        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5248        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5249
5250        // Now we have our 32-bit value zero extended in the low element of
5251        // a vector.  If Idx != 0, swizzle it into place.
5252        if (Idx != 0) {
5253          SmallVector<int, 4> Mask;
5254          Mask.push_back(Idx);
5255          for (unsigned i = 1; i != VecElts; ++i)
5256            Mask.push_back(i);
5257          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5258                                      &Mask[0]);
5259        }
5260        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5261      }
5262    }
5263
5264    // If we have a constant or non-constant insertion into the low element of
5265    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5266    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5267    // depending on what the source datatype is.
5268    if (Idx == 0) {
5269      if (NumZero == 0)
5270        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5271
5272      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5273          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5274        if (VT.is256BitVector()) {
5275          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5276          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5277                             Item, DAG.getIntPtrConstant(0));
5278        }
5279        assert(VT.is128BitVector() && "Expected an SSE value type!");
5280        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5281        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5282        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5283      }
5284
5285      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5286        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5287        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5288        if (VT.is256BitVector()) {
5289          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5290          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5291        } else {
5292          assert(VT.is128BitVector() && "Expected an SSE value type!");
5293          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5294        }
5295        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5296      }
5297    }
5298
5299    // Is it a vector logical left shift?
5300    if (NumElems == 2 && Idx == 1 &&
5301        X86::isZeroNode(Op.getOperand(0)) &&
5302        !X86::isZeroNode(Op.getOperand(1))) {
5303      unsigned NumBits = VT.getSizeInBits();
5304      return getVShift(true, VT,
5305                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5306                                   VT, Op.getOperand(1)),
5307                       NumBits/2, DAG, *this, dl);
5308    }
5309
5310    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5311      return SDValue();
5312
5313    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5314    // is a non-constant being inserted into an element other than the low one,
5315    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5316    // movd/movss) to move this into the low element, then shuffle it into
5317    // place.
5318    if (EVTBits == 32) {
5319      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5320
5321      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5322      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5323      SmallVector<int, 8> MaskVec;
5324      for (unsigned i = 0; i != NumElems; ++i)
5325        MaskVec.push_back(i == Idx ? 0 : 1);
5326      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5327    }
5328  }
5329
5330  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5331  if (Values.size() == 1) {
5332    if (EVTBits == 32) {
5333      // Instead of a shuffle like this:
5334      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5335      // Check if it's possible to issue this instead.
5336      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5337      unsigned Idx = CountTrailingZeros_32(NonZeros);
5338      SDValue Item = Op.getOperand(Idx);
5339      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5340        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5341    }
5342    return SDValue();
5343  }
5344
5345  // A vector full of immediates; various special cases are already
5346  // handled, so this is best done with a single constant-pool load.
5347  if (IsAllConstants)
5348    return SDValue();
5349
5350  // For AVX-length vectors, build the individual 128-bit pieces and use
5351  // shuffles to put them in place.
5352  if (VT.is256BitVector()) {
5353    SmallVector<SDValue, 32> V;
5354    for (unsigned i = 0; i != NumElems; ++i)
5355      V.push_back(Op.getOperand(i));
5356
5357    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5358
5359    // Build both the lower and upper subvector.
5360    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5361    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5362                                NumElems/2);
5363
5364    // Recreate the wider vector with the lower and upper part.
5365    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5366  }
5367
5368  // Let legalizer expand 2-wide build_vectors.
5369  if (EVTBits == 64) {
5370    if (NumNonZero == 1) {
5371      // One half is zero or undef.
5372      unsigned Idx = CountTrailingZeros_32(NonZeros);
5373      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5374                                 Op.getOperand(Idx));
5375      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5376    }
5377    return SDValue();
5378  }
5379
5380  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5381  if (EVTBits == 8 && NumElems == 16) {
5382    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5383                                        Subtarget, *this);
5384    if (V.getNode()) return V;
5385  }
5386
5387  if (EVTBits == 16 && NumElems == 8) {
5388    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5389                                      Subtarget, *this);
5390    if (V.getNode()) return V;
5391  }
5392
5393  // If element VT is == 32 bits, turn it into a number of shuffles.
5394  SmallVector<SDValue, 8> V(NumElems);
5395  if (NumElems == 4 && NumZero > 0) {
5396    for (unsigned i = 0; i < 4; ++i) {
5397      bool isZero = !(NonZeros & (1 << i));
5398      if (isZero)
5399        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5400      else
5401        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5402    }
5403
5404    for (unsigned i = 0; i < 2; ++i) {
5405      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5406        default: break;
5407        case 0:
5408          V[i] = V[i*2];  // Must be a zero vector.
5409          break;
5410        case 1:
5411          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5412          break;
5413        case 2:
5414          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5415          break;
5416        case 3:
5417          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5418          break;
5419      }
5420    }
5421
5422    bool Reverse1 = (NonZeros & 0x3) == 2;
5423    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5424    int MaskVec[] = {
5425      Reverse1 ? 1 : 0,
5426      Reverse1 ? 0 : 1,
5427      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5428      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5429    };
5430    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5431  }
5432
5433  if (Values.size() > 1 && VT.is128BitVector()) {
5434    // Check for a build vector of consecutive loads.
5435    for (unsigned i = 0; i < NumElems; ++i)
5436      V[i] = Op.getOperand(i);
5437
5438    // Check for elements which are consecutive loads.
5439    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5440    if (LD.getNode())
5441      return LD;
5442
5443    // For SSE 4.1, use insertps to put the high elements into the low element.
5444    if (getSubtarget()->hasSSE41()) {
5445      SDValue Result;
5446      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5447        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5448      else
5449        Result = DAG.getUNDEF(VT);
5450
5451      for (unsigned i = 1; i < NumElems; ++i) {
5452        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5453        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5454                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5455      }
5456      return Result;
5457    }
5458
5459    // Otherwise, expand into a number of unpckl*, start by extending each of
5460    // our (non-undef) elements to the full vector width with the element in the
5461    // bottom slot of the vector (which generates no code for SSE).
5462    for (unsigned i = 0; i < NumElems; ++i) {
5463      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5464        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5465      else
5466        V[i] = DAG.getUNDEF(VT);
5467    }
5468
5469    // Next, we iteratively mix elements, e.g. for v4f32:
5470    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5471    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5472    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5473    unsigned EltStride = NumElems >> 1;
5474    while (EltStride != 0) {
5475      for (unsigned i = 0; i < EltStride; ++i) {
5476        // If V[i+EltStride] is undef and this is the first round of mixing,
5477        // then it is safe to just drop this shuffle: V[i] is already in the
5478        // right place, the one element (since it's the first round) being
5479        // inserted as undef can be dropped.  This isn't safe for successive
5480        // rounds because they will permute elements within both vectors.
5481        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5482            EltStride == NumElems/2)
5483          continue;
5484
5485        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5486      }
5487      EltStride >>= 1;
5488    }
5489    return V[0];
5490  }
5491  return SDValue();
5492}
5493
5494// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5495// to create 256-bit vectors from two other 128-bit ones.
5496static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5497  DebugLoc dl = Op.getDebugLoc();
5498  EVT ResVT = Op.getValueType();
5499
5500  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5501
5502  SDValue V1 = Op.getOperand(0);
5503  SDValue V2 = Op.getOperand(1);
5504  unsigned NumElems = ResVT.getVectorNumElements();
5505
5506  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5507}
5508
5509static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5510  assert(Op.getNumOperands() == 2);
5511
5512  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5513  // from two other 128-bit ones.
5514  return LowerAVXCONCAT_VECTORS(Op, DAG);
5515}
5516
5517// Try to lower a shuffle node into a simple blend instruction.
5518static SDValue
5519LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5520                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5521  SDValue V1 = SVOp->getOperand(0);
5522  SDValue V2 = SVOp->getOperand(1);
5523  DebugLoc dl = SVOp->getDebugLoc();
5524  MVT VT = SVOp->getValueType(0).getSimpleVT();
5525  unsigned NumElems = VT.getVectorNumElements();
5526
5527  if (!Subtarget->hasSSE41())
5528    return SDValue();
5529
5530  unsigned ISDNo = 0;
5531  MVT OpTy;
5532
5533  switch (VT.SimpleTy) {
5534  default: return SDValue();
5535  case MVT::v8i16:
5536    ISDNo = X86ISD::BLENDPW;
5537    OpTy = MVT::v8i16;
5538    break;
5539  case MVT::v4i32:
5540  case MVT::v4f32:
5541    ISDNo = X86ISD::BLENDPS;
5542    OpTy = MVT::v4f32;
5543    break;
5544  case MVT::v2i64:
5545  case MVT::v2f64:
5546    ISDNo = X86ISD::BLENDPD;
5547    OpTy = MVT::v2f64;
5548    break;
5549  case MVT::v8i32:
5550  case MVT::v8f32:
5551    if (!Subtarget->hasAVX())
5552      return SDValue();
5553    ISDNo = X86ISD::BLENDPS;
5554    OpTy = MVT::v8f32;
5555    break;
5556  case MVT::v4i64:
5557  case MVT::v4f64:
5558    if (!Subtarget->hasAVX())
5559      return SDValue();
5560    ISDNo = X86ISD::BLENDPD;
5561    OpTy = MVT::v4f64;
5562    break;
5563  }
5564  assert(ISDNo && "Invalid Op Number");
5565
5566  unsigned MaskVals = 0;
5567
5568  for (unsigned i = 0; i != NumElems; ++i) {
5569    int EltIdx = SVOp->getMaskElt(i);
5570    if (EltIdx == (int)i || EltIdx < 0)
5571      MaskVals |= (1<<i);
5572    else if (EltIdx == (int)(i + NumElems))
5573      continue; // Bit is set to zero;
5574    else
5575      return SDValue();
5576  }
5577
5578  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5579  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5580  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5581                             DAG.getConstant(MaskVals, MVT::i32));
5582  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5583}
5584
5585// v8i16 shuffles - Prefer shuffles in the following order:
5586// 1. [all]   pshuflw, pshufhw, optional move
5587// 2. [ssse3] 1 x pshufb
5588// 3. [ssse3] 2 x pshufb + 1 x por
5589// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5590static SDValue
5591LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5592                         SelectionDAG &DAG) {
5593  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5594  SDValue V1 = SVOp->getOperand(0);
5595  SDValue V2 = SVOp->getOperand(1);
5596  DebugLoc dl = SVOp->getDebugLoc();
5597  SmallVector<int, 8> MaskVals;
5598
5599  // Determine if more than 1 of the words in each of the low and high quadwords
5600  // of the result come from the same quadword of one of the two inputs.  Undef
5601  // mask values count as coming from any quadword, for better codegen.
5602  unsigned LoQuad[] = { 0, 0, 0, 0 };
5603  unsigned HiQuad[] = { 0, 0, 0, 0 };
5604  std::bitset<4> InputQuads;
5605  for (unsigned i = 0; i < 8; ++i) {
5606    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5607    int EltIdx = SVOp->getMaskElt(i);
5608    MaskVals.push_back(EltIdx);
5609    if (EltIdx < 0) {
5610      ++Quad[0];
5611      ++Quad[1];
5612      ++Quad[2];
5613      ++Quad[3];
5614      continue;
5615    }
5616    ++Quad[EltIdx / 4];
5617    InputQuads.set(EltIdx / 4);
5618  }
5619
5620  int BestLoQuad = -1;
5621  unsigned MaxQuad = 1;
5622  for (unsigned i = 0; i < 4; ++i) {
5623    if (LoQuad[i] > MaxQuad) {
5624      BestLoQuad = i;
5625      MaxQuad = LoQuad[i];
5626    }
5627  }
5628
5629  int BestHiQuad = -1;
5630  MaxQuad = 1;
5631  for (unsigned i = 0; i < 4; ++i) {
5632    if (HiQuad[i] > MaxQuad) {
5633      BestHiQuad = i;
5634      MaxQuad = HiQuad[i];
5635    }
5636  }
5637
5638  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5639  // of the two input vectors, shuffle them into one input vector so only a
5640  // single pshufb instruction is necessary. If There are more than 2 input
5641  // quads, disable the next transformation since it does not help SSSE3.
5642  bool V1Used = InputQuads[0] || InputQuads[1];
5643  bool V2Used = InputQuads[2] || InputQuads[3];
5644  if (Subtarget->hasSSSE3()) {
5645    if (InputQuads.count() == 2 && V1Used && V2Used) {
5646      BestLoQuad = InputQuads[0] ? 0 : 1;
5647      BestHiQuad = InputQuads[2] ? 2 : 3;
5648    }
5649    if (InputQuads.count() > 2) {
5650      BestLoQuad = -1;
5651      BestHiQuad = -1;
5652    }
5653  }
5654
5655  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5656  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5657  // words from all 4 input quadwords.
5658  SDValue NewV;
5659  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5660    int MaskV[] = {
5661      BestLoQuad < 0 ? 0 : BestLoQuad,
5662      BestHiQuad < 0 ? 1 : BestHiQuad
5663    };
5664    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5665                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5666                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5667    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5668
5669    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5670    // source words for the shuffle, to aid later transformations.
5671    bool AllWordsInNewV = true;
5672    bool InOrder[2] = { true, true };
5673    for (unsigned i = 0; i != 8; ++i) {
5674      int idx = MaskVals[i];
5675      if (idx != (int)i)
5676        InOrder[i/4] = false;
5677      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5678        continue;
5679      AllWordsInNewV = false;
5680      break;
5681    }
5682
5683    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5684    if (AllWordsInNewV) {
5685      for (int i = 0; i != 8; ++i) {
5686        int idx = MaskVals[i];
5687        if (idx < 0)
5688          continue;
5689        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5690        if ((idx != i) && idx < 4)
5691          pshufhw = false;
5692        if ((idx != i) && idx > 3)
5693          pshuflw = false;
5694      }
5695      V1 = NewV;
5696      V2Used = false;
5697      BestLoQuad = 0;
5698      BestHiQuad = 1;
5699    }
5700
5701    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5702    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5703    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5704      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5705      unsigned TargetMask = 0;
5706      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5707                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5708      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5709      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5710                             getShufflePSHUFLWImmediate(SVOp);
5711      V1 = NewV.getOperand(0);
5712      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5713    }
5714  }
5715
5716  // If we have SSSE3, and all words of the result are from 1 input vector,
5717  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5718  // is present, fall back to case 4.
5719  if (Subtarget->hasSSSE3()) {
5720    SmallVector<SDValue,16> pshufbMask;
5721
5722    // If we have elements from both input vectors, set the high bit of the
5723    // shuffle mask element to zero out elements that come from V2 in the V1
5724    // mask, and elements that come from V1 in the V2 mask, so that the two
5725    // results can be OR'd together.
5726    bool TwoInputs = V1Used && V2Used;
5727    for (unsigned i = 0; i != 8; ++i) {
5728      int EltIdx = MaskVals[i] * 2;
5729      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5730      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5731      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5732      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5733    }
5734    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5735    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5736                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5737                                 MVT::v16i8, &pshufbMask[0], 16));
5738    if (!TwoInputs)
5739      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5740
5741    // Calculate the shuffle mask for the second input, shuffle it, and
5742    // OR it with the first shuffled input.
5743    pshufbMask.clear();
5744    for (unsigned i = 0; i != 8; ++i) {
5745      int EltIdx = MaskVals[i] * 2;
5746      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5747      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5748      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5749      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5750    }
5751    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5752    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5753                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5754                                 MVT::v16i8, &pshufbMask[0], 16));
5755    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5756    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5757  }
5758
5759  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5760  // and update MaskVals with new element order.
5761  std::bitset<8> InOrder;
5762  if (BestLoQuad >= 0) {
5763    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5764    for (int i = 0; i != 4; ++i) {
5765      int idx = MaskVals[i];
5766      if (idx < 0) {
5767        InOrder.set(i);
5768      } else if ((idx / 4) == BestLoQuad) {
5769        MaskV[i] = idx & 3;
5770        InOrder.set(i);
5771      }
5772    }
5773    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5774                                &MaskV[0]);
5775
5776    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5777      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5778      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5779                                  NewV.getOperand(0),
5780                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5781    }
5782  }
5783
5784  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5785  // and update MaskVals with the new element order.
5786  if (BestHiQuad >= 0) {
5787    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5788    for (unsigned i = 4; i != 8; ++i) {
5789      int idx = MaskVals[i];
5790      if (idx < 0) {
5791        InOrder.set(i);
5792      } else if ((idx / 4) == BestHiQuad) {
5793        MaskV[i] = (idx & 3) + 4;
5794        InOrder.set(i);
5795      }
5796    }
5797    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5798                                &MaskV[0]);
5799
5800    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5801      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5802      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5803                                  NewV.getOperand(0),
5804                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5805    }
5806  }
5807
5808  // In case BestHi & BestLo were both -1, which means each quadword has a word
5809  // from each of the four input quadwords, calculate the InOrder bitvector now
5810  // before falling through to the insert/extract cleanup.
5811  if (BestLoQuad == -1 && BestHiQuad == -1) {
5812    NewV = V1;
5813    for (int i = 0; i != 8; ++i)
5814      if (MaskVals[i] < 0 || MaskVals[i] == i)
5815        InOrder.set(i);
5816  }
5817
5818  // The other elements are put in the right place using pextrw and pinsrw.
5819  for (unsigned i = 0; i != 8; ++i) {
5820    if (InOrder[i])
5821      continue;
5822    int EltIdx = MaskVals[i];
5823    if (EltIdx < 0)
5824      continue;
5825    SDValue ExtOp = (EltIdx < 8) ?
5826      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5827                  DAG.getIntPtrConstant(EltIdx)) :
5828      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5829                  DAG.getIntPtrConstant(EltIdx - 8));
5830    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5831                       DAG.getIntPtrConstant(i));
5832  }
5833  return NewV;
5834}
5835
5836// v16i8 shuffles - Prefer shuffles in the following order:
5837// 1. [ssse3] 1 x pshufb
5838// 2. [ssse3] 2 x pshufb + 1 x por
5839// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5840static
5841SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5842                                 SelectionDAG &DAG,
5843                                 const X86TargetLowering &TLI) {
5844  SDValue V1 = SVOp->getOperand(0);
5845  SDValue V2 = SVOp->getOperand(1);
5846  DebugLoc dl = SVOp->getDebugLoc();
5847  ArrayRef<int> MaskVals = SVOp->getMask();
5848
5849  // If we have SSSE3, case 1 is generated when all result bytes come from
5850  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5851  // present, fall back to case 3.
5852
5853  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5854  if (TLI.getSubtarget()->hasSSSE3()) {
5855    SmallVector<SDValue,16> pshufbMask;
5856
5857    // If all result elements are from one input vector, then only translate
5858    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5859    //
5860    // Otherwise, we have elements from both input vectors, and must zero out
5861    // elements that come from V2 in the first mask, and V1 in the second mask
5862    // so that we can OR them together.
5863    for (unsigned i = 0; i != 16; ++i) {
5864      int EltIdx = MaskVals[i];
5865      if (EltIdx < 0 || EltIdx >= 16)
5866        EltIdx = 0x80;
5867      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5868    }
5869    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5870                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5871                                 MVT::v16i8, &pshufbMask[0], 16));
5872
5873    // As PSHUFB will zero elements with negative indices, it's safe to ignore
5874    // the 2nd operand if it's undefined or zero.
5875    if (V2.getOpcode() == ISD::UNDEF ||
5876        ISD::isBuildVectorAllZeros(V2.getNode()))
5877      return V1;
5878
5879    // Calculate the shuffle mask for the second input, shuffle it, and
5880    // OR it with the first shuffled input.
5881    pshufbMask.clear();
5882    for (unsigned i = 0; i != 16; ++i) {
5883      int EltIdx = MaskVals[i];
5884      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5885      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5886    }
5887    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5888                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5889                                 MVT::v16i8, &pshufbMask[0], 16));
5890    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5891  }
5892
5893  // No SSSE3 - Calculate in place words and then fix all out of place words
5894  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5895  // the 16 different words that comprise the two doublequadword input vectors.
5896  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5897  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5898  SDValue NewV = V1;
5899  for (int i = 0; i != 8; ++i) {
5900    int Elt0 = MaskVals[i*2];
5901    int Elt1 = MaskVals[i*2+1];
5902
5903    // This word of the result is all undef, skip it.
5904    if (Elt0 < 0 && Elt1 < 0)
5905      continue;
5906
5907    // This word of the result is already in the correct place, skip it.
5908    if ((Elt0 == i*2) && (Elt1 == i*2+1))
5909      continue;
5910
5911    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5912    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5913    SDValue InsElt;
5914
5915    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5916    // using a single extract together, load it and store it.
5917    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5918      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5919                           DAG.getIntPtrConstant(Elt1 / 2));
5920      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5921                        DAG.getIntPtrConstant(i));
5922      continue;
5923    }
5924
5925    // If Elt1 is defined, extract it from the appropriate source.  If the
5926    // source byte is not also odd, shift the extracted word left 8 bits
5927    // otherwise clear the bottom 8 bits if we need to do an or.
5928    if (Elt1 >= 0) {
5929      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5930                           DAG.getIntPtrConstant(Elt1 / 2));
5931      if ((Elt1 & 1) == 0)
5932        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5933                             DAG.getConstant(8,
5934                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5935      else if (Elt0 >= 0)
5936        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5937                             DAG.getConstant(0xFF00, MVT::i16));
5938    }
5939    // If Elt0 is defined, extract it from the appropriate source.  If the
5940    // source byte is not also even, shift the extracted word right 8 bits. If
5941    // Elt1 was also defined, OR the extracted values together before
5942    // inserting them in the result.
5943    if (Elt0 >= 0) {
5944      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5945                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5946      if ((Elt0 & 1) != 0)
5947        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5948                              DAG.getConstant(8,
5949                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5950      else if (Elt1 >= 0)
5951        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5952                             DAG.getConstant(0x00FF, MVT::i16));
5953      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5954                         : InsElt0;
5955    }
5956    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5957                       DAG.getIntPtrConstant(i));
5958  }
5959  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5960}
5961
5962// v32i8 shuffles - Translate to VPSHUFB if possible.
5963static
5964SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
5965                                 const X86Subtarget *Subtarget,
5966                                 SelectionDAG &DAG) {
5967  EVT VT = SVOp->getValueType(0);
5968  SDValue V1 = SVOp->getOperand(0);
5969  SDValue V2 = SVOp->getOperand(1);
5970  DebugLoc dl = SVOp->getDebugLoc();
5971  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
5972
5973  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5974  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
5975  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
5976
5977  // VPSHUFB may be generated if
5978  // (1) one of input vector is undefined or zeroinitializer.
5979  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
5980  // And (2) the mask indexes don't cross the 128-bit lane.
5981  if (VT != MVT::v32i8 || !Subtarget->hasAVX2() ||
5982      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
5983    return SDValue();
5984
5985  if (V1IsAllZero && !V2IsAllZero) {
5986    CommuteVectorShuffleMask(MaskVals, 32);
5987    V1 = V2;
5988  }
5989  SmallVector<SDValue, 32> pshufbMask;
5990  for (unsigned i = 0; i != 32; i++) {
5991    int EltIdx = MaskVals[i];
5992    if (EltIdx < 0 || EltIdx >= 32)
5993      EltIdx = 0x80;
5994    else {
5995      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
5996        // Cross lane is not allowed.
5997        return SDValue();
5998      EltIdx &= 0xf;
5999    }
6000    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6001  }
6002  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6003                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6004                                  MVT::v32i8, &pshufbMask[0], 32));
6005}
6006
6007/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6008/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6009/// done when every pair / quad of shuffle mask elements point to elements in
6010/// the right sequence. e.g.
6011/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6012static
6013SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6014                                 SelectionDAG &DAG, DebugLoc dl) {
6015  MVT VT = SVOp->getValueType(0).getSimpleVT();
6016  unsigned NumElems = VT.getVectorNumElements();
6017  MVT NewVT;
6018  unsigned Scale;
6019  switch (VT.SimpleTy) {
6020  default: llvm_unreachable("Unexpected!");
6021  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6022  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6023  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6024  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6025  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6026  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6027  }
6028
6029  SmallVector<int, 8> MaskVec;
6030  for (unsigned i = 0; i != NumElems; i += Scale) {
6031    int StartIdx = -1;
6032    for (unsigned j = 0; j != Scale; ++j) {
6033      int EltIdx = SVOp->getMaskElt(i+j);
6034      if (EltIdx < 0)
6035        continue;
6036      if (StartIdx < 0)
6037        StartIdx = (EltIdx / Scale);
6038      if (EltIdx != (int)(StartIdx*Scale + j))
6039        return SDValue();
6040    }
6041    MaskVec.push_back(StartIdx);
6042  }
6043
6044  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6045  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6046  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6047}
6048
6049/// getVZextMovL - Return a zero-extending vector move low node.
6050///
6051static SDValue getVZextMovL(EVT VT, EVT OpVT,
6052                            SDValue SrcOp, SelectionDAG &DAG,
6053                            const X86Subtarget *Subtarget, DebugLoc dl) {
6054  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6055    LoadSDNode *LD = NULL;
6056    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6057      LD = dyn_cast<LoadSDNode>(SrcOp);
6058    if (!LD) {
6059      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6060      // instead.
6061      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6062      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6063          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6064          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6065          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6066        // PR2108
6067        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6068        return DAG.getNode(ISD::BITCAST, dl, VT,
6069                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6070                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6071                                                   OpVT,
6072                                                   SrcOp.getOperand(0)
6073                                                          .getOperand(0))));
6074      }
6075    }
6076  }
6077
6078  return DAG.getNode(ISD::BITCAST, dl, VT,
6079                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6080                                 DAG.getNode(ISD::BITCAST, dl,
6081                                             OpVT, SrcOp)));
6082}
6083
6084/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6085/// which could not be matched by any known target speficic shuffle
6086static SDValue
6087LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6088
6089  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6090  if (NewOp.getNode())
6091    return NewOp;
6092
6093  EVT VT = SVOp->getValueType(0);
6094
6095  unsigned NumElems = VT.getVectorNumElements();
6096  unsigned NumLaneElems = NumElems / 2;
6097
6098  DebugLoc dl = SVOp->getDebugLoc();
6099  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6100  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6101  SDValue Output[2];
6102
6103  SmallVector<int, 16> Mask;
6104  for (unsigned l = 0; l < 2; ++l) {
6105    // Build a shuffle mask for the output, discovering on the fly which
6106    // input vectors to use as shuffle operands (recorded in InputUsed).
6107    // If building a suitable shuffle vector proves too hard, then bail
6108    // out with UseBuildVector set.
6109    bool UseBuildVector = false;
6110    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6111    unsigned LaneStart = l * NumLaneElems;
6112    for (unsigned i = 0; i != NumLaneElems; ++i) {
6113      // The mask element.  This indexes into the input.
6114      int Idx = SVOp->getMaskElt(i+LaneStart);
6115      if (Idx < 0) {
6116        // the mask element does not index into any input vector.
6117        Mask.push_back(-1);
6118        continue;
6119      }
6120
6121      // The input vector this mask element indexes into.
6122      int Input = Idx / NumLaneElems;
6123
6124      // Turn the index into an offset from the start of the input vector.
6125      Idx -= Input * NumLaneElems;
6126
6127      // Find or create a shuffle vector operand to hold this input.
6128      unsigned OpNo;
6129      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6130        if (InputUsed[OpNo] == Input)
6131          // This input vector is already an operand.
6132          break;
6133        if (InputUsed[OpNo] < 0) {
6134          // Create a new operand for this input vector.
6135          InputUsed[OpNo] = Input;
6136          break;
6137        }
6138      }
6139
6140      if (OpNo >= array_lengthof(InputUsed)) {
6141        // More than two input vectors used!  Give up on trying to create a
6142        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6143        UseBuildVector = true;
6144        break;
6145      }
6146
6147      // Add the mask index for the new shuffle vector.
6148      Mask.push_back(Idx + OpNo * NumLaneElems);
6149    }
6150
6151    if (UseBuildVector) {
6152      SmallVector<SDValue, 16> SVOps;
6153      for (unsigned i = 0; i != NumLaneElems; ++i) {
6154        // The mask element.  This indexes into the input.
6155        int Idx = SVOp->getMaskElt(i+LaneStart);
6156        if (Idx < 0) {
6157          SVOps.push_back(DAG.getUNDEF(EltVT));
6158          continue;
6159        }
6160
6161        // The input vector this mask element indexes into.
6162        int Input = Idx / NumElems;
6163
6164        // Turn the index into an offset from the start of the input vector.
6165        Idx -= Input * NumElems;
6166
6167        // Extract the vector element by hand.
6168        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6169                                    SVOp->getOperand(Input),
6170                                    DAG.getIntPtrConstant(Idx)));
6171      }
6172
6173      // Construct the output using a BUILD_VECTOR.
6174      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6175                              SVOps.size());
6176    } else if (InputUsed[0] < 0) {
6177      // No input vectors were used! The result is undefined.
6178      Output[l] = DAG.getUNDEF(NVT);
6179    } else {
6180      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6181                                        (InputUsed[0] % 2) * NumLaneElems,
6182                                        DAG, dl);
6183      // If only one input was used, use an undefined vector for the other.
6184      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6185        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6186                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6187      // At least one input vector was used. Create a new shuffle vector.
6188      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6189    }
6190
6191    Mask.clear();
6192  }
6193
6194  // Concatenate the result back
6195  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6196}
6197
6198/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6199/// 4 elements, and match them with several different shuffle types.
6200static SDValue
6201LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6202  SDValue V1 = SVOp->getOperand(0);
6203  SDValue V2 = SVOp->getOperand(1);
6204  DebugLoc dl = SVOp->getDebugLoc();
6205  EVT VT = SVOp->getValueType(0);
6206
6207  assert(VT.is128BitVector() && "Unsupported vector size");
6208
6209  std::pair<int, int> Locs[4];
6210  int Mask1[] = { -1, -1, -1, -1 };
6211  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6212
6213  unsigned NumHi = 0;
6214  unsigned NumLo = 0;
6215  for (unsigned i = 0; i != 4; ++i) {
6216    int Idx = PermMask[i];
6217    if (Idx < 0) {
6218      Locs[i] = std::make_pair(-1, -1);
6219    } else {
6220      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6221      if (Idx < 4) {
6222        Locs[i] = std::make_pair(0, NumLo);
6223        Mask1[NumLo] = Idx;
6224        NumLo++;
6225      } else {
6226        Locs[i] = std::make_pair(1, NumHi);
6227        if (2+NumHi < 4)
6228          Mask1[2+NumHi] = Idx;
6229        NumHi++;
6230      }
6231    }
6232  }
6233
6234  if (NumLo <= 2 && NumHi <= 2) {
6235    // If no more than two elements come from either vector. This can be
6236    // implemented with two shuffles. First shuffle gather the elements.
6237    // The second shuffle, which takes the first shuffle as both of its
6238    // vector operands, put the elements into the right order.
6239    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6240
6241    int Mask2[] = { -1, -1, -1, -1 };
6242
6243    for (unsigned i = 0; i != 4; ++i)
6244      if (Locs[i].first != -1) {
6245        unsigned Idx = (i < 2) ? 0 : 4;
6246        Idx += Locs[i].first * 2 + Locs[i].second;
6247        Mask2[i] = Idx;
6248      }
6249
6250    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6251  }
6252
6253  if (NumLo == 3 || NumHi == 3) {
6254    // Otherwise, we must have three elements from one vector, call it X, and
6255    // one element from the other, call it Y.  First, use a shufps to build an
6256    // intermediate vector with the one element from Y and the element from X
6257    // that will be in the same half in the final destination (the indexes don't
6258    // matter). Then, use a shufps to build the final vector, taking the half
6259    // containing the element from Y from the intermediate, and the other half
6260    // from X.
6261    if (NumHi == 3) {
6262      // Normalize it so the 3 elements come from V1.
6263      CommuteVectorShuffleMask(PermMask, 4);
6264      std::swap(V1, V2);
6265    }
6266
6267    // Find the element from V2.
6268    unsigned HiIndex;
6269    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6270      int Val = PermMask[HiIndex];
6271      if (Val < 0)
6272        continue;
6273      if (Val >= 4)
6274        break;
6275    }
6276
6277    Mask1[0] = PermMask[HiIndex];
6278    Mask1[1] = -1;
6279    Mask1[2] = PermMask[HiIndex^1];
6280    Mask1[3] = -1;
6281    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6282
6283    if (HiIndex >= 2) {
6284      Mask1[0] = PermMask[0];
6285      Mask1[1] = PermMask[1];
6286      Mask1[2] = HiIndex & 1 ? 6 : 4;
6287      Mask1[3] = HiIndex & 1 ? 4 : 6;
6288      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6289    }
6290
6291    Mask1[0] = HiIndex & 1 ? 2 : 0;
6292    Mask1[1] = HiIndex & 1 ? 0 : 2;
6293    Mask1[2] = PermMask[2];
6294    Mask1[3] = PermMask[3];
6295    if (Mask1[2] >= 0)
6296      Mask1[2] += 4;
6297    if (Mask1[3] >= 0)
6298      Mask1[3] += 4;
6299    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6300  }
6301
6302  // Break it into (shuffle shuffle_hi, shuffle_lo).
6303  int LoMask[] = { -1, -1, -1, -1 };
6304  int HiMask[] = { -1, -1, -1, -1 };
6305
6306  int *MaskPtr = LoMask;
6307  unsigned MaskIdx = 0;
6308  unsigned LoIdx = 0;
6309  unsigned HiIdx = 2;
6310  for (unsigned i = 0; i != 4; ++i) {
6311    if (i == 2) {
6312      MaskPtr = HiMask;
6313      MaskIdx = 1;
6314      LoIdx = 0;
6315      HiIdx = 2;
6316    }
6317    int Idx = PermMask[i];
6318    if (Idx < 0) {
6319      Locs[i] = std::make_pair(-1, -1);
6320    } else if (Idx < 4) {
6321      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6322      MaskPtr[LoIdx] = Idx;
6323      LoIdx++;
6324    } else {
6325      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6326      MaskPtr[HiIdx] = Idx;
6327      HiIdx++;
6328    }
6329  }
6330
6331  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6332  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6333  int MaskOps[] = { -1, -1, -1, -1 };
6334  for (unsigned i = 0; i != 4; ++i)
6335    if (Locs[i].first != -1)
6336      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6337  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6338}
6339
6340static bool MayFoldVectorLoad(SDValue V) {
6341  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6342    V = V.getOperand(0);
6343  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6344    V = V.getOperand(0);
6345  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6346      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6347    // BUILD_VECTOR (load), undef
6348    V = V.getOperand(0);
6349  if (MayFoldLoad(V))
6350    return true;
6351  return false;
6352}
6353
6354// FIXME: the version above should always be used. Since there's
6355// a bug where several vector shuffles can't be folded because the
6356// DAG is not updated during lowering and a node claims to have two
6357// uses while it only has one, use this version, and let isel match
6358// another instruction if the load really happens to have more than
6359// one use. Remove this version after this bug get fixed.
6360// rdar://8434668, PR8156
6361static bool RelaxedMayFoldVectorLoad(SDValue V) {
6362  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6363    V = V.getOperand(0);
6364  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6365    V = V.getOperand(0);
6366  if (ISD::isNormalLoad(V.getNode()))
6367    return true;
6368  return false;
6369}
6370
6371static
6372SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6373  EVT VT = Op.getValueType();
6374
6375  // Canonizalize to v2f64.
6376  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6377  return DAG.getNode(ISD::BITCAST, dl, VT,
6378                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6379                                          V1, DAG));
6380}
6381
6382static
6383SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6384                        bool HasSSE2) {
6385  SDValue V1 = Op.getOperand(0);
6386  SDValue V2 = Op.getOperand(1);
6387  EVT VT = Op.getValueType();
6388
6389  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6390
6391  if (HasSSE2 && VT == MVT::v2f64)
6392    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6393
6394  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6395  return DAG.getNode(ISD::BITCAST, dl, VT,
6396                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6397                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6398                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6399}
6400
6401static
6402SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6403  SDValue V1 = Op.getOperand(0);
6404  SDValue V2 = Op.getOperand(1);
6405  EVT VT = Op.getValueType();
6406
6407  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6408         "unsupported shuffle type");
6409
6410  if (V2.getOpcode() == ISD::UNDEF)
6411    V2 = V1;
6412
6413  // v4i32 or v4f32
6414  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6415}
6416
6417static
6418SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6419  SDValue V1 = Op.getOperand(0);
6420  SDValue V2 = Op.getOperand(1);
6421  EVT VT = Op.getValueType();
6422  unsigned NumElems = VT.getVectorNumElements();
6423
6424  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6425  // operand of these instructions is only memory, so check if there's a
6426  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6427  // same masks.
6428  bool CanFoldLoad = false;
6429
6430  // Trivial case, when V2 comes from a load.
6431  if (MayFoldVectorLoad(V2))
6432    CanFoldLoad = true;
6433
6434  // When V1 is a load, it can be folded later into a store in isel, example:
6435  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6436  //    turns into:
6437  //  (MOVLPSmr addr:$src1, VR128:$src2)
6438  // So, recognize this potential and also use MOVLPS or MOVLPD
6439  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6440    CanFoldLoad = true;
6441
6442  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6443  if (CanFoldLoad) {
6444    if (HasSSE2 && NumElems == 2)
6445      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6446
6447    if (NumElems == 4)
6448      // If we don't care about the second element, proceed to use movss.
6449      if (SVOp->getMaskElt(1) != -1)
6450        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6451  }
6452
6453  // movl and movlp will both match v2i64, but v2i64 is never matched by
6454  // movl earlier because we make it strict to avoid messing with the movlp load
6455  // folding logic (see the code above getMOVLP call). Match it here then,
6456  // this is horrible, but will stay like this until we move all shuffle
6457  // matching to x86 specific nodes. Note that for the 1st condition all
6458  // types are matched with movsd.
6459  if (HasSSE2) {
6460    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6461    // as to remove this logic from here, as much as possible
6462    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6463      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6464    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6465  }
6466
6467  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6468
6469  // Invert the operand order and use SHUFPS to match it.
6470  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6471                              getShuffleSHUFImmediate(SVOp), DAG);
6472}
6473
6474SDValue
6475X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6476  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6477  EVT VT = Op.getValueType();
6478  DebugLoc dl = Op.getDebugLoc();
6479  SDValue V1 = Op.getOperand(0);
6480  SDValue V2 = Op.getOperand(1);
6481
6482  if (isZeroShuffle(SVOp))
6483    return getZeroVector(VT, Subtarget, DAG, dl);
6484
6485  // Handle splat operations
6486  if (SVOp->isSplat()) {
6487    unsigned NumElem = VT.getVectorNumElements();
6488    int Size = VT.getSizeInBits();
6489
6490    // Use vbroadcast whenever the splat comes from a foldable load
6491    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6492    if (Broadcast.getNode())
6493      return Broadcast;
6494
6495    // Handle splats by matching through known shuffle masks
6496    if ((Size == 128 && NumElem <= 4) ||
6497        (Size == 256 && NumElem < 8))
6498      return SDValue();
6499
6500    // All remaning splats are promoted to target supported vector shuffles.
6501    return PromoteSplat(SVOp, DAG);
6502  }
6503
6504  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6505  // do it!
6506  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6507      VT == MVT::v16i16 || VT == MVT::v32i8) {
6508    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6509    if (NewOp.getNode())
6510      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6511  } else if ((VT == MVT::v4i32 ||
6512             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6513    // FIXME: Figure out a cleaner way to do this.
6514    // Try to make use of movq to zero out the top part.
6515    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6516      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6517      if (NewOp.getNode()) {
6518        EVT NewVT = NewOp.getValueType();
6519        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6520                               NewVT, true, false))
6521          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6522                              DAG, Subtarget, dl);
6523      }
6524    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6525      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6526      if (NewOp.getNode()) {
6527        EVT NewVT = NewOp.getValueType();
6528        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6529          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6530                              DAG, Subtarget, dl);
6531      }
6532    }
6533  }
6534  return SDValue();
6535}
6536
6537SDValue
6538X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6539  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6540  SDValue V1 = Op.getOperand(0);
6541  SDValue V2 = Op.getOperand(1);
6542  EVT VT = Op.getValueType();
6543  DebugLoc dl = Op.getDebugLoc();
6544  unsigned NumElems = VT.getVectorNumElements();
6545  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6546  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6547  bool V1IsSplat = false;
6548  bool V2IsSplat = false;
6549  bool HasSSE2 = Subtarget->hasSSE2();
6550  bool HasAVX    = Subtarget->hasAVX();
6551  bool HasAVX2   = Subtarget->hasAVX2();
6552  MachineFunction &MF = DAG.getMachineFunction();
6553  bool OptForSize = MF.getFunction()->getFnAttributes().
6554    hasAttribute(Attributes::OptimizeForSize);
6555
6556  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6557
6558  if (V1IsUndef && V2IsUndef)
6559    return DAG.getUNDEF(VT);
6560
6561  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6562
6563  // Vector shuffle lowering takes 3 steps:
6564  //
6565  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6566  //    narrowing and commutation of operands should be handled.
6567  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6568  //    shuffle nodes.
6569  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6570  //    so the shuffle can be broken into other shuffles and the legalizer can
6571  //    try the lowering again.
6572  //
6573  // The general idea is that no vector_shuffle operation should be left to
6574  // be matched during isel, all of them must be converted to a target specific
6575  // node here.
6576
6577  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6578  // narrowing and commutation of operands should be handled. The actual code
6579  // doesn't include all of those, work in progress...
6580  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6581  if (NewOp.getNode())
6582    return NewOp;
6583
6584  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6585
6586  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6587  // unpckh_undef). Only use pshufd if speed is more important than size.
6588  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6589    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6590  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6591    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6592
6593  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6594      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6595    return getMOVDDup(Op, dl, V1, DAG);
6596
6597  if (isMOVHLPS_v_undef_Mask(M, VT))
6598    return getMOVHighToLow(Op, dl, DAG);
6599
6600  // Use to match splats
6601  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6602      (VT == MVT::v2f64 || VT == MVT::v2i64))
6603    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6604
6605  if (isPSHUFDMask(M, VT)) {
6606    // The actual implementation will match the mask in the if above and then
6607    // during isel it can match several different instructions, not only pshufd
6608    // as its name says, sad but true, emulate the behavior for now...
6609    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6610      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6611
6612    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6613
6614    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6615      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6616
6617    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6618      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6619
6620    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6621                                TargetMask, DAG);
6622  }
6623
6624  // Check if this can be converted into a logical shift.
6625  bool isLeft = false;
6626  unsigned ShAmt = 0;
6627  SDValue ShVal;
6628  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6629  if (isShift && ShVal.hasOneUse()) {
6630    // If the shifted value has multiple uses, it may be cheaper to use
6631    // v_set0 + movlhps or movhlps, etc.
6632    EVT EltVT = VT.getVectorElementType();
6633    ShAmt *= EltVT.getSizeInBits();
6634    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6635  }
6636
6637  if (isMOVLMask(M, VT)) {
6638    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6639      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6640    if (!isMOVLPMask(M, VT)) {
6641      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6642        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6643
6644      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6645        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6646    }
6647  }
6648
6649  // FIXME: fold these into legal mask.
6650  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6651    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6652
6653  if (isMOVHLPSMask(M, VT))
6654    return getMOVHighToLow(Op, dl, DAG);
6655
6656  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6657    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6658
6659  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6660    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6661
6662  if (isMOVLPMask(M, VT))
6663    return getMOVLP(Op, dl, DAG, HasSSE2);
6664
6665  if (ShouldXformToMOVHLPS(M, VT) ||
6666      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6667    return CommuteVectorShuffle(SVOp, DAG);
6668
6669  if (isShift) {
6670    // No better options. Use a vshldq / vsrldq.
6671    EVT EltVT = VT.getVectorElementType();
6672    ShAmt *= EltVT.getSizeInBits();
6673    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6674  }
6675
6676  bool Commuted = false;
6677  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6678  // 1,1,1,1 -> v8i16 though.
6679  V1IsSplat = isSplatVector(V1.getNode());
6680  V2IsSplat = isSplatVector(V2.getNode());
6681
6682  // Canonicalize the splat or undef, if present, to be on the RHS.
6683  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6684    CommuteVectorShuffleMask(M, NumElems);
6685    std::swap(V1, V2);
6686    std::swap(V1IsSplat, V2IsSplat);
6687    Commuted = true;
6688  }
6689
6690  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6691    // Shuffling low element of v1 into undef, just return v1.
6692    if (V2IsUndef)
6693      return V1;
6694    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6695    // the instruction selector will not match, so get a canonical MOVL with
6696    // swapped operands to undo the commute.
6697    return getMOVL(DAG, dl, VT, V2, V1);
6698  }
6699
6700  if (isUNPCKLMask(M, VT, HasAVX2))
6701    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6702
6703  if (isUNPCKHMask(M, VT, HasAVX2))
6704    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6705
6706  if (V2IsSplat) {
6707    // Normalize mask so all entries that point to V2 points to its first
6708    // element then try to match unpck{h|l} again. If match, return a
6709    // new vector_shuffle with the corrected mask.p
6710    SmallVector<int, 8> NewMask(M.begin(), M.end());
6711    NormalizeMask(NewMask, NumElems);
6712    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6713      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6714    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6715      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6716  }
6717
6718  if (Commuted) {
6719    // Commute is back and try unpck* again.
6720    // FIXME: this seems wrong.
6721    CommuteVectorShuffleMask(M, NumElems);
6722    std::swap(V1, V2);
6723    std::swap(V1IsSplat, V2IsSplat);
6724    Commuted = false;
6725
6726    if (isUNPCKLMask(M, VT, HasAVX2))
6727      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6728
6729    if (isUNPCKHMask(M, VT, HasAVX2))
6730      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6731  }
6732
6733  // Normalize the node to match x86 shuffle ops if needed
6734  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6735    return CommuteVectorShuffle(SVOp, DAG);
6736
6737  // The checks below are all present in isShuffleMaskLegal, but they are
6738  // inlined here right now to enable us to directly emit target specific
6739  // nodes, and remove one by one until they don't return Op anymore.
6740
6741  if (isPALIGNRMask(M, VT, Subtarget))
6742    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6743                                getShufflePALIGNRImmediate(SVOp),
6744                                DAG);
6745
6746  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6747      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6748    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6749      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6750  }
6751
6752  if (isPSHUFHWMask(M, VT, HasAVX2))
6753    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6754                                getShufflePSHUFHWImmediate(SVOp),
6755                                DAG);
6756
6757  if (isPSHUFLWMask(M, VT, HasAVX2))
6758    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6759                                getShufflePSHUFLWImmediate(SVOp),
6760                                DAG);
6761
6762  if (isSHUFPMask(M, VT, HasAVX))
6763    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6764                                getShuffleSHUFImmediate(SVOp), DAG);
6765
6766  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6767    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6768  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6769    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6770
6771  //===--------------------------------------------------------------------===//
6772  // Generate target specific nodes for 128 or 256-bit shuffles only
6773  // supported in the AVX instruction set.
6774  //
6775
6776  // Handle VMOVDDUPY permutations
6777  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6778    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6779
6780  // Handle VPERMILPS/D* permutations
6781  if (isVPERMILPMask(M, VT, HasAVX)) {
6782    if (HasAVX2 && VT == MVT::v8i32)
6783      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6784                                  getShuffleSHUFImmediate(SVOp), DAG);
6785    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6786                                getShuffleSHUFImmediate(SVOp), DAG);
6787  }
6788
6789  // Handle VPERM2F128/VPERM2I128 permutations
6790  if (isVPERM2X128Mask(M, VT, HasAVX))
6791    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6792                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6793
6794  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6795  if (BlendOp.getNode())
6796    return BlendOp;
6797
6798  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6799    SmallVector<SDValue, 8> permclMask;
6800    for (unsigned i = 0; i != 8; ++i) {
6801      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6802    }
6803    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6804                               &permclMask[0], 8);
6805    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6806    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6807                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6808  }
6809
6810  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6811    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6812                                getShuffleCLImmediate(SVOp), DAG);
6813
6814
6815  //===--------------------------------------------------------------------===//
6816  // Since no target specific shuffle was selected for this generic one,
6817  // lower it into other known shuffles. FIXME: this isn't true yet, but
6818  // this is the plan.
6819  //
6820
6821  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6822  if (VT == MVT::v8i16) {
6823    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
6824    if (NewOp.getNode())
6825      return NewOp;
6826  }
6827
6828  if (VT == MVT::v16i8) {
6829    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6830    if (NewOp.getNode())
6831      return NewOp;
6832  }
6833
6834  if (VT == MVT::v32i8) {
6835    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
6836    if (NewOp.getNode())
6837      return NewOp;
6838  }
6839
6840  // Handle all 128-bit wide vectors with 4 elements, and match them with
6841  // several different shuffle types.
6842  if (NumElems == 4 && VT.is128BitVector())
6843    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6844
6845  // Handle general 256-bit shuffles
6846  if (VT.is256BitVector())
6847    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6848
6849  return SDValue();
6850}
6851
6852SDValue
6853X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6854                                                SelectionDAG &DAG) const {
6855  EVT VT = Op.getValueType();
6856  DebugLoc dl = Op.getDebugLoc();
6857
6858  if (!Op.getOperand(0).getValueType().is128BitVector())
6859    return SDValue();
6860
6861  if (VT.getSizeInBits() == 8) {
6862    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6863                                  Op.getOperand(0), Op.getOperand(1));
6864    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6865                                  DAG.getValueType(VT));
6866    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6867  }
6868
6869  if (VT.getSizeInBits() == 16) {
6870    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6871    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6872    if (Idx == 0)
6873      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6874                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6875                                     DAG.getNode(ISD::BITCAST, dl,
6876                                                 MVT::v4i32,
6877                                                 Op.getOperand(0)),
6878                                     Op.getOperand(1)));
6879    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6880                                  Op.getOperand(0), Op.getOperand(1));
6881    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6882                                  DAG.getValueType(VT));
6883    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6884  }
6885
6886  if (VT == MVT::f32) {
6887    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6888    // the result back to FR32 register. It's only worth matching if the
6889    // result has a single use which is a store or a bitcast to i32.  And in
6890    // the case of a store, it's not worth it if the index is a constant 0,
6891    // because a MOVSSmr can be used instead, which is smaller and faster.
6892    if (!Op.hasOneUse())
6893      return SDValue();
6894    SDNode *User = *Op.getNode()->use_begin();
6895    if ((User->getOpcode() != ISD::STORE ||
6896         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6897          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6898        (User->getOpcode() != ISD::BITCAST ||
6899         User->getValueType(0) != MVT::i32))
6900      return SDValue();
6901    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6902                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6903                                              Op.getOperand(0)),
6904                                              Op.getOperand(1));
6905    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6906  }
6907
6908  if (VT == MVT::i32 || VT == MVT::i64) {
6909    // ExtractPS/pextrq works with constant index.
6910    if (isa<ConstantSDNode>(Op.getOperand(1)))
6911      return Op;
6912  }
6913  return SDValue();
6914}
6915
6916
6917SDValue
6918X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6919                                           SelectionDAG &DAG) const {
6920  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6921    return SDValue();
6922
6923  SDValue Vec = Op.getOperand(0);
6924  EVT VecVT = Vec.getValueType();
6925
6926  // If this is a 256-bit vector result, first extract the 128-bit vector and
6927  // then extract the element from the 128-bit vector.
6928  if (VecVT.is256BitVector()) {
6929    DebugLoc dl = Op.getNode()->getDebugLoc();
6930    unsigned NumElems = VecVT.getVectorNumElements();
6931    SDValue Idx = Op.getOperand(1);
6932    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6933
6934    // Get the 128-bit vector.
6935    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
6936
6937    if (IdxVal >= NumElems/2)
6938      IdxVal -= NumElems/2;
6939    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6940                       DAG.getConstant(IdxVal, MVT::i32));
6941  }
6942
6943  assert(VecVT.is128BitVector() && "Unexpected vector length");
6944
6945  if (Subtarget->hasSSE41()) {
6946    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6947    if (Res.getNode())
6948      return Res;
6949  }
6950
6951  EVT VT = Op.getValueType();
6952  DebugLoc dl = Op.getDebugLoc();
6953  // TODO: handle v16i8.
6954  if (VT.getSizeInBits() == 16) {
6955    SDValue Vec = Op.getOperand(0);
6956    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6957    if (Idx == 0)
6958      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6959                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6960                                     DAG.getNode(ISD::BITCAST, dl,
6961                                                 MVT::v4i32, Vec),
6962                                     Op.getOperand(1)));
6963    // Transform it so it match pextrw which produces a 32-bit result.
6964    EVT EltVT = MVT::i32;
6965    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6966                                  Op.getOperand(0), Op.getOperand(1));
6967    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6968                                  DAG.getValueType(VT));
6969    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6970  }
6971
6972  if (VT.getSizeInBits() == 32) {
6973    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6974    if (Idx == 0)
6975      return Op;
6976
6977    // SHUFPS the element to the lowest double word, then movss.
6978    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6979    EVT VVT = Op.getOperand(0).getValueType();
6980    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6981                                       DAG.getUNDEF(VVT), Mask);
6982    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6983                       DAG.getIntPtrConstant(0));
6984  }
6985
6986  if (VT.getSizeInBits() == 64) {
6987    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6988    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6989    //        to match extract_elt for f64.
6990    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6991    if (Idx == 0)
6992      return Op;
6993
6994    // UNPCKHPD the element to the lowest double word, then movsd.
6995    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6996    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6997    int Mask[2] = { 1, -1 };
6998    EVT VVT = Op.getOperand(0).getValueType();
6999    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7000                                       DAG.getUNDEF(VVT), Mask);
7001    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7002                       DAG.getIntPtrConstant(0));
7003  }
7004
7005  return SDValue();
7006}
7007
7008SDValue
7009X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7010                                               SelectionDAG &DAG) const {
7011  EVT VT = Op.getValueType();
7012  EVT EltVT = VT.getVectorElementType();
7013  DebugLoc dl = Op.getDebugLoc();
7014
7015  SDValue N0 = Op.getOperand(0);
7016  SDValue N1 = Op.getOperand(1);
7017  SDValue N2 = Op.getOperand(2);
7018
7019  if (!VT.is128BitVector())
7020    return SDValue();
7021
7022  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7023      isa<ConstantSDNode>(N2)) {
7024    unsigned Opc;
7025    if (VT == MVT::v8i16)
7026      Opc = X86ISD::PINSRW;
7027    else if (VT == MVT::v16i8)
7028      Opc = X86ISD::PINSRB;
7029    else
7030      Opc = X86ISD::PINSRB;
7031
7032    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7033    // argument.
7034    if (N1.getValueType() != MVT::i32)
7035      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7036    if (N2.getValueType() != MVT::i32)
7037      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7038    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7039  }
7040
7041  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7042    // Bits [7:6] of the constant are the source select.  This will always be
7043    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7044    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7045    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7046    // Bits [5:4] of the constant are the destination select.  This is the
7047    //  value of the incoming immediate.
7048    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7049    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7050    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7051    // Create this as a scalar to vector..
7052    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7053    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7054  }
7055
7056  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7057    // PINSR* works with constant index.
7058    return Op;
7059  }
7060  return SDValue();
7061}
7062
7063SDValue
7064X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7065  EVT VT = Op.getValueType();
7066  EVT EltVT = VT.getVectorElementType();
7067
7068  DebugLoc dl = Op.getDebugLoc();
7069  SDValue N0 = Op.getOperand(0);
7070  SDValue N1 = Op.getOperand(1);
7071  SDValue N2 = Op.getOperand(2);
7072
7073  // If this is a 256-bit vector result, first extract the 128-bit vector,
7074  // insert the element into the extracted half and then place it back.
7075  if (VT.is256BitVector()) {
7076    if (!isa<ConstantSDNode>(N2))
7077      return SDValue();
7078
7079    // Get the desired 128-bit vector half.
7080    unsigned NumElems = VT.getVectorNumElements();
7081    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7082    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7083
7084    // Insert the element into the desired half.
7085    bool Upper = IdxVal >= NumElems/2;
7086    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7087                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7088
7089    // Insert the changed part back to the 256-bit vector
7090    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7091  }
7092
7093  if (Subtarget->hasSSE41())
7094    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7095
7096  if (EltVT == MVT::i8)
7097    return SDValue();
7098
7099  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7100    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7101    // as its second argument.
7102    if (N1.getValueType() != MVT::i32)
7103      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7104    if (N2.getValueType() != MVT::i32)
7105      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7106    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7107  }
7108  return SDValue();
7109}
7110
7111static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7112  LLVMContext *Context = DAG.getContext();
7113  DebugLoc dl = Op.getDebugLoc();
7114  EVT OpVT = Op.getValueType();
7115
7116  // If this is a 256-bit vector result, first insert into a 128-bit
7117  // vector and then insert into the 256-bit vector.
7118  if (!OpVT.is128BitVector()) {
7119    // Insert into a 128-bit vector.
7120    EVT VT128 = EVT::getVectorVT(*Context,
7121                                 OpVT.getVectorElementType(),
7122                                 OpVT.getVectorNumElements() / 2);
7123
7124    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7125
7126    // Insert the 128-bit vector.
7127    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7128  }
7129
7130  if (OpVT == MVT::v1i64 &&
7131      Op.getOperand(0).getValueType() == MVT::i64)
7132    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7133
7134  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7135  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7136  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7137                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7138}
7139
7140// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7141// a simple subregister reference or explicit instructions to grab
7142// upper bits of a vector.
7143static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7144                                      SelectionDAG &DAG) {
7145  if (Subtarget->hasAVX()) {
7146    DebugLoc dl = Op.getNode()->getDebugLoc();
7147    SDValue Vec = Op.getNode()->getOperand(0);
7148    SDValue Idx = Op.getNode()->getOperand(1);
7149
7150    if (Op.getNode()->getValueType(0).is128BitVector() &&
7151        Vec.getNode()->getValueType(0).is256BitVector() &&
7152        isa<ConstantSDNode>(Idx)) {
7153      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7154      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7155    }
7156  }
7157  return SDValue();
7158}
7159
7160// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7161// simple superregister reference or explicit instructions to insert
7162// the upper bits of a vector.
7163static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7164                                     SelectionDAG &DAG) {
7165  if (Subtarget->hasAVX()) {
7166    DebugLoc dl = Op.getNode()->getDebugLoc();
7167    SDValue Vec = Op.getNode()->getOperand(0);
7168    SDValue SubVec = Op.getNode()->getOperand(1);
7169    SDValue Idx = Op.getNode()->getOperand(2);
7170
7171    if (Op.getNode()->getValueType(0).is256BitVector() &&
7172        SubVec.getNode()->getValueType(0).is128BitVector() &&
7173        isa<ConstantSDNode>(Idx)) {
7174      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7175      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7176    }
7177  }
7178  return SDValue();
7179}
7180
7181// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7182// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7183// one of the above mentioned nodes. It has to be wrapped because otherwise
7184// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7185// be used to form addressing mode. These wrapped nodes will be selected
7186// into MOV32ri.
7187SDValue
7188X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7189  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7190
7191  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7192  // global base reg.
7193  unsigned char OpFlag = 0;
7194  unsigned WrapperKind = X86ISD::Wrapper;
7195  CodeModel::Model M = getTargetMachine().getCodeModel();
7196
7197  if (Subtarget->isPICStyleRIPRel() &&
7198      (M == CodeModel::Small || M == CodeModel::Kernel))
7199    WrapperKind = X86ISD::WrapperRIP;
7200  else if (Subtarget->isPICStyleGOT())
7201    OpFlag = X86II::MO_GOTOFF;
7202  else if (Subtarget->isPICStyleStubPIC())
7203    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7204
7205  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7206                                             CP->getAlignment(),
7207                                             CP->getOffset(), OpFlag);
7208  DebugLoc DL = CP->getDebugLoc();
7209  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7210  // With PIC, the address is actually $g + Offset.
7211  if (OpFlag) {
7212    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7213                         DAG.getNode(X86ISD::GlobalBaseReg,
7214                                     DebugLoc(), getPointerTy()),
7215                         Result);
7216  }
7217
7218  return Result;
7219}
7220
7221SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7222  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7223
7224  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7225  // global base reg.
7226  unsigned char OpFlag = 0;
7227  unsigned WrapperKind = X86ISD::Wrapper;
7228  CodeModel::Model M = getTargetMachine().getCodeModel();
7229
7230  if (Subtarget->isPICStyleRIPRel() &&
7231      (M == CodeModel::Small || M == CodeModel::Kernel))
7232    WrapperKind = X86ISD::WrapperRIP;
7233  else if (Subtarget->isPICStyleGOT())
7234    OpFlag = X86II::MO_GOTOFF;
7235  else if (Subtarget->isPICStyleStubPIC())
7236    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7237
7238  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7239                                          OpFlag);
7240  DebugLoc DL = JT->getDebugLoc();
7241  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7242
7243  // With PIC, the address is actually $g + Offset.
7244  if (OpFlag)
7245    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7246                         DAG.getNode(X86ISD::GlobalBaseReg,
7247                                     DebugLoc(), getPointerTy()),
7248                         Result);
7249
7250  return Result;
7251}
7252
7253SDValue
7254X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7255  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7256
7257  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7258  // global base reg.
7259  unsigned char OpFlag = 0;
7260  unsigned WrapperKind = X86ISD::Wrapper;
7261  CodeModel::Model M = getTargetMachine().getCodeModel();
7262
7263  if (Subtarget->isPICStyleRIPRel() &&
7264      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7265    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7266      OpFlag = X86II::MO_GOTPCREL;
7267    WrapperKind = X86ISD::WrapperRIP;
7268  } else if (Subtarget->isPICStyleGOT()) {
7269    OpFlag = X86II::MO_GOT;
7270  } else if (Subtarget->isPICStyleStubPIC()) {
7271    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7272  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7273    OpFlag = X86II::MO_DARWIN_NONLAZY;
7274  }
7275
7276  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7277
7278  DebugLoc DL = Op.getDebugLoc();
7279  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7280
7281
7282  // With PIC, the address is actually $g + Offset.
7283  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7284      !Subtarget->is64Bit()) {
7285    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7286                         DAG.getNode(X86ISD::GlobalBaseReg,
7287                                     DebugLoc(), getPointerTy()),
7288                         Result);
7289  }
7290
7291  // For symbols that require a load from a stub to get the address, emit the
7292  // load.
7293  if (isGlobalStubReference(OpFlag))
7294    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7295                         MachinePointerInfo::getGOT(), false, false, false, 0);
7296
7297  return Result;
7298}
7299
7300SDValue
7301X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7302  // Create the TargetBlockAddressAddress node.
7303  unsigned char OpFlags =
7304    Subtarget->ClassifyBlockAddressReference();
7305  CodeModel::Model M = getTargetMachine().getCodeModel();
7306  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7307  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7308  DebugLoc dl = Op.getDebugLoc();
7309  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7310                                             OpFlags);
7311
7312  if (Subtarget->isPICStyleRIPRel() &&
7313      (M == CodeModel::Small || M == CodeModel::Kernel))
7314    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7315  else
7316    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7317
7318  // With PIC, the address is actually $g + Offset.
7319  if (isGlobalRelativeToPICBase(OpFlags)) {
7320    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7321                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7322                         Result);
7323  }
7324
7325  return Result;
7326}
7327
7328SDValue
7329X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7330                                      int64_t Offset,
7331                                      SelectionDAG &DAG) const {
7332  // Create the TargetGlobalAddress node, folding in the constant
7333  // offset if it is legal.
7334  unsigned char OpFlags =
7335    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7336  CodeModel::Model M = getTargetMachine().getCodeModel();
7337  SDValue Result;
7338  if (OpFlags == X86II::MO_NO_FLAG &&
7339      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7340    // A direct static reference to a global.
7341    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7342    Offset = 0;
7343  } else {
7344    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7345  }
7346
7347  if (Subtarget->isPICStyleRIPRel() &&
7348      (M == CodeModel::Small || M == CodeModel::Kernel))
7349    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7350  else
7351    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7352
7353  // With PIC, the address is actually $g + Offset.
7354  if (isGlobalRelativeToPICBase(OpFlags)) {
7355    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7356                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7357                         Result);
7358  }
7359
7360  // For globals that require a load from a stub to get the address, emit the
7361  // load.
7362  if (isGlobalStubReference(OpFlags))
7363    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7364                         MachinePointerInfo::getGOT(), false, false, false, 0);
7365
7366  // If there was a non-zero offset that we didn't fold, create an explicit
7367  // addition for it.
7368  if (Offset != 0)
7369    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7370                         DAG.getConstant(Offset, getPointerTy()));
7371
7372  return Result;
7373}
7374
7375SDValue
7376X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7377  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7378  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7379  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7380}
7381
7382static SDValue
7383GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7384           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7385           unsigned char OperandFlags, bool LocalDynamic = false) {
7386  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7387  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7388  DebugLoc dl = GA->getDebugLoc();
7389  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7390                                           GA->getValueType(0),
7391                                           GA->getOffset(),
7392                                           OperandFlags);
7393
7394  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7395                                           : X86ISD::TLSADDR;
7396
7397  if (InFlag) {
7398    SDValue Ops[] = { Chain,  TGA, *InFlag };
7399    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7400  } else {
7401    SDValue Ops[]  = { Chain, TGA };
7402    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7403  }
7404
7405  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7406  MFI->setAdjustsStack(true);
7407
7408  SDValue Flag = Chain.getValue(1);
7409  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7410}
7411
7412// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7413static SDValue
7414LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7415                                const EVT PtrVT) {
7416  SDValue InFlag;
7417  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7418  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7419                                   DAG.getNode(X86ISD::GlobalBaseReg,
7420                                               DebugLoc(), PtrVT), InFlag);
7421  InFlag = Chain.getValue(1);
7422
7423  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7424}
7425
7426// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7427static SDValue
7428LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7429                                const EVT PtrVT) {
7430  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7431                    X86::RAX, X86II::MO_TLSGD);
7432}
7433
7434static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7435                                           SelectionDAG &DAG,
7436                                           const EVT PtrVT,
7437                                           bool is64Bit) {
7438  DebugLoc dl = GA->getDebugLoc();
7439
7440  // Get the start address of the TLS block for this module.
7441  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7442      .getInfo<X86MachineFunctionInfo>();
7443  MFI->incNumLocalDynamicTLSAccesses();
7444
7445  SDValue Base;
7446  if (is64Bit) {
7447    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7448                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7449  } else {
7450    SDValue InFlag;
7451    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7452        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7453    InFlag = Chain.getValue(1);
7454    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7455                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7456  }
7457
7458  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7459  // of Base.
7460
7461  // Build x@dtpoff.
7462  unsigned char OperandFlags = X86II::MO_DTPOFF;
7463  unsigned WrapperKind = X86ISD::Wrapper;
7464  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7465                                           GA->getValueType(0),
7466                                           GA->getOffset(), OperandFlags);
7467  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7468
7469  // Add x@dtpoff with the base.
7470  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7471}
7472
7473// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7474static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7475                                   const EVT PtrVT, TLSModel::Model model,
7476                                   bool is64Bit, bool isPIC) {
7477  DebugLoc dl = GA->getDebugLoc();
7478
7479  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7480  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7481                                                         is64Bit ? 257 : 256));
7482
7483  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7484                                      DAG.getIntPtrConstant(0),
7485                                      MachinePointerInfo(Ptr),
7486                                      false, false, false, 0);
7487
7488  unsigned char OperandFlags = 0;
7489  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7490  // initialexec.
7491  unsigned WrapperKind = X86ISD::Wrapper;
7492  if (model == TLSModel::LocalExec) {
7493    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7494  } else if (model == TLSModel::InitialExec) {
7495    if (is64Bit) {
7496      OperandFlags = X86II::MO_GOTTPOFF;
7497      WrapperKind = X86ISD::WrapperRIP;
7498    } else {
7499      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7500    }
7501  } else {
7502    llvm_unreachable("Unexpected model");
7503  }
7504
7505  // emit "addl x@ntpoff,%eax" (local exec)
7506  // or "addl x@indntpoff,%eax" (initial exec)
7507  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7508  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7509                                           GA->getValueType(0),
7510                                           GA->getOffset(), OperandFlags);
7511  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7512
7513  if (model == TLSModel::InitialExec) {
7514    if (isPIC && !is64Bit) {
7515      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7516                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7517                           Offset);
7518    }
7519
7520    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7521                         MachinePointerInfo::getGOT(), false, false, false,
7522                         0);
7523  }
7524
7525  // The address of the thread local variable is the add of the thread
7526  // pointer with the offset of the variable.
7527  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7528}
7529
7530SDValue
7531X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7532
7533  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7534  const GlobalValue *GV = GA->getGlobal();
7535
7536  if (Subtarget->isTargetELF()) {
7537    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7538
7539    switch (model) {
7540      case TLSModel::GeneralDynamic:
7541        if (Subtarget->is64Bit())
7542          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7543        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7544      case TLSModel::LocalDynamic:
7545        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7546                                           Subtarget->is64Bit());
7547      case TLSModel::InitialExec:
7548      case TLSModel::LocalExec:
7549        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7550                                   Subtarget->is64Bit(),
7551                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7552    }
7553    llvm_unreachable("Unknown TLS model.");
7554  }
7555
7556  if (Subtarget->isTargetDarwin()) {
7557    // Darwin only has one model of TLS.  Lower to that.
7558    unsigned char OpFlag = 0;
7559    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7560                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7561
7562    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7563    // global base reg.
7564    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7565                  !Subtarget->is64Bit();
7566    if (PIC32)
7567      OpFlag = X86II::MO_TLVP_PIC_BASE;
7568    else
7569      OpFlag = X86II::MO_TLVP;
7570    DebugLoc DL = Op.getDebugLoc();
7571    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7572                                                GA->getValueType(0),
7573                                                GA->getOffset(), OpFlag);
7574    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7575
7576    // With PIC32, the address is actually $g + Offset.
7577    if (PIC32)
7578      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7579                           DAG.getNode(X86ISD::GlobalBaseReg,
7580                                       DebugLoc(), getPointerTy()),
7581                           Offset);
7582
7583    // Lowering the machine isd will make sure everything is in the right
7584    // location.
7585    SDValue Chain = DAG.getEntryNode();
7586    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7587    SDValue Args[] = { Chain, Offset };
7588    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7589
7590    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7591    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7592    MFI->setAdjustsStack(true);
7593
7594    // And our return value (tls address) is in the standard call return value
7595    // location.
7596    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7597    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7598                              Chain.getValue(1));
7599  }
7600
7601  if (Subtarget->isTargetWindows()) {
7602    // Just use the implicit TLS architecture
7603    // Need to generate someting similar to:
7604    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7605    //                                  ; from TEB
7606    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7607    //   mov     rcx, qword [rdx+rcx*8]
7608    //   mov     eax, .tls$:tlsvar
7609    //   [rax+rcx] contains the address
7610    // Windows 64bit: gs:0x58
7611    // Windows 32bit: fs:__tls_array
7612
7613    // If GV is an alias then use the aliasee for determining
7614    // thread-localness.
7615    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7616      GV = GA->resolveAliasedGlobal(false);
7617    DebugLoc dl = GA->getDebugLoc();
7618    SDValue Chain = DAG.getEntryNode();
7619
7620    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7621    // %gs:0x58 (64-bit).
7622    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7623                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7624                                                             256)
7625                                        : Type::getInt32PtrTy(*DAG.getContext(),
7626                                                              257));
7627
7628    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7629                                        Subtarget->is64Bit()
7630                                        ? DAG.getIntPtrConstant(0x58)
7631                                        : DAG.getExternalSymbol("_tls_array",
7632                                                                getPointerTy()),
7633                                        MachinePointerInfo(Ptr),
7634                                        false, false, false, 0);
7635
7636    // Load the _tls_index variable
7637    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7638    if (Subtarget->is64Bit())
7639      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7640                           IDX, MachinePointerInfo(), MVT::i32,
7641                           false, false, 0);
7642    else
7643      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7644                        false, false, false, 0);
7645
7646    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7647                                    getPointerTy());
7648    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7649
7650    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7651    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7652                      false, false, false, 0);
7653
7654    // Get the offset of start of .tls section
7655    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7656                                             GA->getValueType(0),
7657                                             GA->getOffset(), X86II::MO_SECREL);
7658    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7659
7660    // The address of the thread local variable is the add of the thread
7661    // pointer with the offset of the variable.
7662    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7663  }
7664
7665  llvm_unreachable("TLS not implemented for this target.");
7666}
7667
7668
7669/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7670/// and take a 2 x i32 value to shift plus a shift amount.
7671SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7672  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7673  EVT VT = Op.getValueType();
7674  unsigned VTBits = VT.getSizeInBits();
7675  DebugLoc dl = Op.getDebugLoc();
7676  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7677  SDValue ShOpLo = Op.getOperand(0);
7678  SDValue ShOpHi = Op.getOperand(1);
7679  SDValue ShAmt  = Op.getOperand(2);
7680  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7681                                     DAG.getConstant(VTBits - 1, MVT::i8))
7682                       : DAG.getConstant(0, VT);
7683
7684  SDValue Tmp2, Tmp3;
7685  if (Op.getOpcode() == ISD::SHL_PARTS) {
7686    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7687    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7688  } else {
7689    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7690    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7691  }
7692
7693  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7694                                DAG.getConstant(VTBits, MVT::i8));
7695  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7696                             AndNode, DAG.getConstant(0, MVT::i8));
7697
7698  SDValue Hi, Lo;
7699  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7700  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7701  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7702
7703  if (Op.getOpcode() == ISD::SHL_PARTS) {
7704    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7705    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7706  } else {
7707    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7708    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7709  }
7710
7711  SDValue Ops[2] = { Lo, Hi };
7712  return DAG.getMergeValues(Ops, 2, dl);
7713}
7714
7715SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7716                                           SelectionDAG &DAG) const {
7717  EVT SrcVT = Op.getOperand(0).getValueType();
7718
7719  if (SrcVT.isVector())
7720    return SDValue();
7721
7722  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7723         "Unknown SINT_TO_FP to lower!");
7724
7725  // These are really Legal; return the operand so the caller accepts it as
7726  // Legal.
7727  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7728    return Op;
7729  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7730      Subtarget->is64Bit()) {
7731    return Op;
7732  }
7733
7734  DebugLoc dl = Op.getDebugLoc();
7735  unsigned Size = SrcVT.getSizeInBits()/8;
7736  MachineFunction &MF = DAG.getMachineFunction();
7737  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7738  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7739  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7740                               StackSlot,
7741                               MachinePointerInfo::getFixedStack(SSFI),
7742                               false, false, 0);
7743  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7744}
7745
7746SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7747                                     SDValue StackSlot,
7748                                     SelectionDAG &DAG) const {
7749  // Build the FILD
7750  DebugLoc DL = Op.getDebugLoc();
7751  SDVTList Tys;
7752  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7753  if (useSSE)
7754    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7755  else
7756    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7757
7758  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7759
7760  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7761  MachineMemOperand *MMO;
7762  if (FI) {
7763    int SSFI = FI->getIndex();
7764    MMO =
7765      DAG.getMachineFunction()
7766      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7767                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7768  } else {
7769    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7770    StackSlot = StackSlot.getOperand(1);
7771  }
7772  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7773  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7774                                           X86ISD::FILD, DL,
7775                                           Tys, Ops, array_lengthof(Ops),
7776                                           SrcVT, MMO);
7777
7778  if (useSSE) {
7779    Chain = Result.getValue(1);
7780    SDValue InFlag = Result.getValue(2);
7781
7782    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7783    // shouldn't be necessary except that RFP cannot be live across
7784    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7785    MachineFunction &MF = DAG.getMachineFunction();
7786    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7787    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7788    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7789    Tys = DAG.getVTList(MVT::Other);
7790    SDValue Ops[] = {
7791      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7792    };
7793    MachineMemOperand *MMO =
7794      DAG.getMachineFunction()
7795      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7796                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7797
7798    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7799                                    Ops, array_lengthof(Ops),
7800                                    Op.getValueType(), MMO);
7801    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7802                         MachinePointerInfo::getFixedStack(SSFI),
7803                         false, false, false, 0);
7804  }
7805
7806  return Result;
7807}
7808
7809// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7810SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7811                                               SelectionDAG &DAG) const {
7812  // This algorithm is not obvious. Here it is what we're trying to output:
7813  /*
7814     movq       %rax,  %xmm0
7815     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7816     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7817     #ifdef __SSE3__
7818       haddpd   %xmm0, %xmm0
7819     #else
7820       pshufd   $0x4e, %xmm0, %xmm1
7821       addpd    %xmm1, %xmm0
7822     #endif
7823  */
7824
7825  DebugLoc dl = Op.getDebugLoc();
7826  LLVMContext *Context = DAG.getContext();
7827
7828  // Build some magic constants.
7829  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7830  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7831  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7832
7833  SmallVector<Constant*,2> CV1;
7834  CV1.push_back(
7835        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7836  CV1.push_back(
7837        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7838  Constant *C1 = ConstantVector::get(CV1);
7839  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7840
7841  // Load the 64-bit value into an XMM register.
7842  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7843                            Op.getOperand(0));
7844  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7845                              MachinePointerInfo::getConstantPool(),
7846                              false, false, false, 16);
7847  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7848                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7849                              CLod0);
7850
7851  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7852                              MachinePointerInfo::getConstantPool(),
7853                              false, false, false, 16);
7854  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7855  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7856  SDValue Result;
7857
7858  if (Subtarget->hasSSE3()) {
7859    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7860    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7861  } else {
7862    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7863    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7864                                           S2F, 0x4E, DAG);
7865    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7866                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7867                         Sub);
7868  }
7869
7870  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7871                     DAG.getIntPtrConstant(0));
7872}
7873
7874// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7875SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7876                                               SelectionDAG &DAG) const {
7877  DebugLoc dl = Op.getDebugLoc();
7878  // FP constant to bias correct the final result.
7879  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7880                                   MVT::f64);
7881
7882  // Load the 32-bit value into an XMM register.
7883  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7884                             Op.getOperand(0));
7885
7886  // Zero out the upper parts of the register.
7887  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7888
7889  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7890                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7891                     DAG.getIntPtrConstant(0));
7892
7893  // Or the load with the bias.
7894  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7895                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7896                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7897                                                   MVT::v2f64, Load)),
7898                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7899                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7900                                                   MVT::v2f64, Bias)));
7901  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7902                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7903                   DAG.getIntPtrConstant(0));
7904
7905  // Subtract the bias.
7906  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7907
7908  // Handle final rounding.
7909  EVT DestVT = Op.getValueType();
7910
7911  if (DestVT.bitsLT(MVT::f64))
7912    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7913                       DAG.getIntPtrConstant(0));
7914  if (DestVT.bitsGT(MVT::f64))
7915    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7916
7917  // Handle final rounding.
7918  return Sub;
7919}
7920
7921SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7922                                           SelectionDAG &DAG) const {
7923  SDValue N0 = Op.getOperand(0);
7924  DebugLoc dl = Op.getDebugLoc();
7925
7926  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7927  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7928  // the optimization here.
7929  if (DAG.SignBitIsZero(N0))
7930    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7931
7932  EVT SrcVT = N0.getValueType();
7933  EVT DstVT = Op.getValueType();
7934  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7935    return LowerUINT_TO_FP_i64(Op, DAG);
7936  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7937    return LowerUINT_TO_FP_i32(Op, DAG);
7938  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
7939    return SDValue();
7940
7941  // Make a 64-bit buffer, and use it to build an FILD.
7942  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7943  if (SrcVT == MVT::i32) {
7944    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7945    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7946                                     getPointerTy(), StackSlot, WordOff);
7947    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7948                                  StackSlot, MachinePointerInfo(),
7949                                  false, false, 0);
7950    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7951                                  OffsetSlot, MachinePointerInfo(),
7952                                  false, false, 0);
7953    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7954    return Fild;
7955  }
7956
7957  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7958  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7959                               StackSlot, MachinePointerInfo(),
7960                               false, false, 0);
7961  // For i64 source, we need to add the appropriate power of 2 if the input
7962  // was negative.  This is the same as the optimization in
7963  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7964  // we must be careful to do the computation in x87 extended precision, not
7965  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7966  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7967  MachineMemOperand *MMO =
7968    DAG.getMachineFunction()
7969    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7970                          MachineMemOperand::MOLoad, 8, 8);
7971
7972  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7973  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7974  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7975                                         MVT::i64, MMO);
7976
7977  APInt FF(32, 0x5F800000ULL);
7978
7979  // Check whether the sign bit is set.
7980  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7981                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7982                                 ISD::SETLT);
7983
7984  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7985  SDValue FudgePtr = DAG.getConstantPool(
7986                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7987                                         getPointerTy());
7988
7989  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7990  SDValue Zero = DAG.getIntPtrConstant(0);
7991  SDValue Four = DAG.getIntPtrConstant(4);
7992  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7993                               Zero, Four);
7994  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7995
7996  // Load the value out, extending it from f32 to f80.
7997  // FIXME: Avoid the extend by constructing the right constant pool?
7998  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7999                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8000                                 MVT::f32, false, false, 4);
8001  // Extend everything to 80 bits to force it to be done on x87.
8002  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8003  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8004}
8005
8006std::pair<SDValue,SDValue> X86TargetLowering::
8007FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
8008  DebugLoc DL = Op.getDebugLoc();
8009
8010  EVT DstTy = Op.getValueType();
8011
8012  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8013    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8014    DstTy = MVT::i64;
8015  }
8016
8017  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8018         DstTy.getSimpleVT() >= MVT::i16 &&
8019         "Unknown FP_TO_INT to lower!");
8020
8021  // These are really Legal.
8022  if (DstTy == MVT::i32 &&
8023      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8024    return std::make_pair(SDValue(), SDValue());
8025  if (Subtarget->is64Bit() &&
8026      DstTy == MVT::i64 &&
8027      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8028    return std::make_pair(SDValue(), SDValue());
8029
8030  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8031  // stack slot, or into the FTOL runtime function.
8032  MachineFunction &MF = DAG.getMachineFunction();
8033  unsigned MemSize = DstTy.getSizeInBits()/8;
8034  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8035  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8036
8037  unsigned Opc;
8038  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8039    Opc = X86ISD::WIN_FTOL;
8040  else
8041    switch (DstTy.getSimpleVT().SimpleTy) {
8042    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8043    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8044    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8045    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8046    }
8047
8048  SDValue Chain = DAG.getEntryNode();
8049  SDValue Value = Op.getOperand(0);
8050  EVT TheVT = Op.getOperand(0).getValueType();
8051  // FIXME This causes a redundant load/store if the SSE-class value is already
8052  // in memory, such as if it is on the callstack.
8053  if (isScalarFPTypeInSSEReg(TheVT)) {
8054    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8055    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8056                         MachinePointerInfo::getFixedStack(SSFI),
8057                         false, false, 0);
8058    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8059    SDValue Ops[] = {
8060      Chain, StackSlot, DAG.getValueType(TheVT)
8061    };
8062
8063    MachineMemOperand *MMO =
8064      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8065                              MachineMemOperand::MOLoad, MemSize, MemSize);
8066    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8067                                    DstTy, MMO);
8068    Chain = Value.getValue(1);
8069    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8070    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8071  }
8072
8073  MachineMemOperand *MMO =
8074    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8075                            MachineMemOperand::MOStore, MemSize, MemSize);
8076
8077  if (Opc != X86ISD::WIN_FTOL) {
8078    // Build the FP_TO_INT*_IN_MEM
8079    SDValue Ops[] = { Chain, Value, StackSlot };
8080    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8081                                           Ops, 3, DstTy, MMO);
8082    return std::make_pair(FIST, StackSlot);
8083  } else {
8084    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8085      DAG.getVTList(MVT::Other, MVT::Glue),
8086      Chain, Value);
8087    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8088      MVT::i32, ftol.getValue(1));
8089    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8090      MVT::i32, eax.getValue(2));
8091    SDValue Ops[] = { eax, edx };
8092    SDValue pair = IsReplace
8093      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8094      : DAG.getMergeValues(Ops, 2, DL);
8095    return std::make_pair(pair, SDValue());
8096  }
8097}
8098
8099SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8100                                           SelectionDAG &DAG) const {
8101  if (Op.getValueType().isVector())
8102    return SDValue();
8103
8104  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8105    /*IsSigned=*/ true, /*IsReplace=*/ false);
8106  SDValue FIST = Vals.first, StackSlot = Vals.second;
8107  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8108  if (FIST.getNode() == 0) return Op;
8109
8110  if (StackSlot.getNode())
8111    // Load the result.
8112    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8113                       FIST, StackSlot, MachinePointerInfo(),
8114                       false, false, false, 0);
8115
8116  // The node is the result.
8117  return FIST;
8118}
8119
8120SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8121                                           SelectionDAG &DAG) const {
8122  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8123    /*IsSigned=*/ false, /*IsReplace=*/ false);
8124  SDValue FIST = Vals.first, StackSlot = Vals.second;
8125  assert(FIST.getNode() && "Unexpected failure");
8126
8127  if (StackSlot.getNode())
8128    // Load the result.
8129    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8130                       FIST, StackSlot, MachinePointerInfo(),
8131                       false, false, false, 0);
8132
8133  // The node is the result.
8134  return FIST;
8135}
8136
8137SDValue X86TargetLowering::lowerFP_EXTEND(SDValue Op,
8138                                          SelectionDAG &DAG) const {
8139  DebugLoc DL = Op.getDebugLoc();
8140  EVT VT = Op.getValueType();
8141  SDValue In = Op.getOperand(0);
8142  EVT SVT = In.getValueType();
8143
8144  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8145
8146  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8147                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8148                                 In, DAG.getUNDEF(SVT)));
8149}
8150
8151SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8152  LLVMContext *Context = DAG.getContext();
8153  DebugLoc dl = Op.getDebugLoc();
8154  EVT VT = Op.getValueType();
8155  EVT EltVT = VT;
8156  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8157  if (VT.isVector()) {
8158    EltVT = VT.getVectorElementType();
8159    NumElts = VT.getVectorNumElements();
8160  }
8161  Constant *C;
8162  if (EltVT == MVT::f64)
8163    C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8164  else
8165    C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8166  C = ConstantVector::getSplat(NumElts, C);
8167  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8168  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8169  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8170                             MachinePointerInfo::getConstantPool(),
8171                             false, false, false, Alignment);
8172  if (VT.isVector()) {
8173    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8174    return DAG.getNode(ISD::BITCAST, dl, VT,
8175                       DAG.getNode(ISD::AND, dl, ANDVT,
8176                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8177                                               Op.getOperand(0)),
8178                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8179  }
8180  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8181}
8182
8183SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8184  LLVMContext *Context = DAG.getContext();
8185  DebugLoc dl = Op.getDebugLoc();
8186  EVT VT = Op.getValueType();
8187  EVT EltVT = VT;
8188  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8189  if (VT.isVector()) {
8190    EltVT = VT.getVectorElementType();
8191    NumElts = VT.getVectorNumElements();
8192  }
8193  Constant *C;
8194  if (EltVT == MVT::f64)
8195    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8196  else
8197    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8198  C = ConstantVector::getSplat(NumElts, C);
8199  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8200  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8201  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8202                             MachinePointerInfo::getConstantPool(),
8203                             false, false, false, Alignment);
8204  if (VT.isVector()) {
8205    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8206    return DAG.getNode(ISD::BITCAST, dl, VT,
8207                       DAG.getNode(ISD::XOR, dl, XORVT,
8208                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8209                                               Op.getOperand(0)),
8210                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8211  }
8212
8213  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8214}
8215
8216SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8217  LLVMContext *Context = DAG.getContext();
8218  SDValue Op0 = Op.getOperand(0);
8219  SDValue Op1 = Op.getOperand(1);
8220  DebugLoc dl = Op.getDebugLoc();
8221  EVT VT = Op.getValueType();
8222  EVT SrcVT = Op1.getValueType();
8223
8224  // If second operand is smaller, extend it first.
8225  if (SrcVT.bitsLT(VT)) {
8226    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8227    SrcVT = VT;
8228  }
8229  // And if it is bigger, shrink it first.
8230  if (SrcVT.bitsGT(VT)) {
8231    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8232    SrcVT = VT;
8233  }
8234
8235  // At this point the operands and the result should have the same
8236  // type, and that won't be f80 since that is not custom lowered.
8237
8238  // First get the sign bit of second operand.
8239  SmallVector<Constant*,4> CV;
8240  if (SrcVT == MVT::f64) {
8241    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8242    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8243  } else {
8244    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8245    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8246    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8247    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8248  }
8249  Constant *C = ConstantVector::get(CV);
8250  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8251  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8252                              MachinePointerInfo::getConstantPool(),
8253                              false, false, false, 16);
8254  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8255
8256  // Shift sign bit right or left if the two operands have different types.
8257  if (SrcVT.bitsGT(VT)) {
8258    // Op0 is MVT::f32, Op1 is MVT::f64.
8259    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8260    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8261                          DAG.getConstant(32, MVT::i32));
8262    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8263    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8264                          DAG.getIntPtrConstant(0));
8265  }
8266
8267  // Clear first operand sign bit.
8268  CV.clear();
8269  if (VT == MVT::f64) {
8270    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8271    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8272  } else {
8273    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8274    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8275    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8276    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8277  }
8278  C = ConstantVector::get(CV);
8279  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8280  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8281                              MachinePointerInfo::getConstantPool(),
8282                              false, false, false, 16);
8283  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8284
8285  // Or the value with the sign bit.
8286  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8287}
8288
8289static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8290  SDValue N0 = Op.getOperand(0);
8291  DebugLoc dl = Op.getDebugLoc();
8292  EVT VT = Op.getValueType();
8293
8294  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8295  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8296                                  DAG.getConstant(1, VT));
8297  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8298}
8299
8300// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8301//
8302SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const {
8303  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8304
8305  if (!Subtarget->hasSSE41())
8306    return SDValue();
8307
8308  if (!Op->hasOneUse())
8309    return SDValue();
8310
8311  SDNode *N = Op.getNode();
8312  DebugLoc DL = N->getDebugLoc();
8313
8314  SmallVector<SDValue, 8> Opnds;
8315  DenseMap<SDValue, unsigned> VecInMap;
8316  EVT VT = MVT::Other;
8317
8318  // Recognize a special case where a vector is casted into wide integer to
8319  // test all 0s.
8320  Opnds.push_back(N->getOperand(0));
8321  Opnds.push_back(N->getOperand(1));
8322
8323  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8324    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8325    // BFS traverse all OR'd operands.
8326    if (I->getOpcode() == ISD::OR) {
8327      Opnds.push_back(I->getOperand(0));
8328      Opnds.push_back(I->getOperand(1));
8329      // Re-evaluate the number of nodes to be traversed.
8330      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8331      continue;
8332    }
8333
8334    // Quit if a non-EXTRACT_VECTOR_ELT
8335    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8336      return SDValue();
8337
8338    // Quit if without a constant index.
8339    SDValue Idx = I->getOperand(1);
8340    if (!isa<ConstantSDNode>(Idx))
8341      return SDValue();
8342
8343    SDValue ExtractedFromVec = I->getOperand(0);
8344    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8345    if (M == VecInMap.end()) {
8346      VT = ExtractedFromVec.getValueType();
8347      // Quit if not 128/256-bit vector.
8348      if (!VT.is128BitVector() && !VT.is256BitVector())
8349        return SDValue();
8350      // Quit if not the same type.
8351      if (VecInMap.begin() != VecInMap.end() &&
8352          VT != VecInMap.begin()->first.getValueType())
8353        return SDValue();
8354      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8355    }
8356    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8357  }
8358
8359  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8360         "Not extracted from 128-/256-bit vector.");
8361
8362  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8363  SmallVector<SDValue, 8> VecIns;
8364
8365  for (DenseMap<SDValue, unsigned>::const_iterator
8366        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8367    // Quit if not all elements are used.
8368    if (I->second != FullMask)
8369      return SDValue();
8370    VecIns.push_back(I->first);
8371  }
8372
8373  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8374
8375  // Cast all vectors into TestVT for PTEST.
8376  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8377    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8378
8379  // If more than one full vectors are evaluated, OR them first before PTEST.
8380  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8381    // Each iteration will OR 2 nodes and append the result until there is only
8382    // 1 node left, i.e. the final OR'd value of all vectors.
8383    SDValue LHS = VecIns[Slot];
8384    SDValue RHS = VecIns[Slot + 1];
8385    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8386  }
8387
8388  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8389                     VecIns.back(), VecIns.back());
8390}
8391
8392/// Emit nodes that will be selected as "test Op0,Op0", or something
8393/// equivalent.
8394SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8395                                    SelectionDAG &DAG) const {
8396  DebugLoc dl = Op.getDebugLoc();
8397
8398  // CF and OF aren't always set the way we want. Determine which
8399  // of these we need.
8400  bool NeedCF = false;
8401  bool NeedOF = false;
8402  switch (X86CC) {
8403  default: break;
8404  case X86::COND_A: case X86::COND_AE:
8405  case X86::COND_B: case X86::COND_BE:
8406    NeedCF = true;
8407    break;
8408  case X86::COND_G: case X86::COND_GE:
8409  case X86::COND_L: case X86::COND_LE:
8410  case X86::COND_O: case X86::COND_NO:
8411    NeedOF = true;
8412    break;
8413  }
8414
8415  // See if we can use the EFLAGS value from the operand instead of
8416  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8417  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8418  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8419    // Emit a CMP with 0, which is the TEST pattern.
8420    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8421                       DAG.getConstant(0, Op.getValueType()));
8422
8423  unsigned Opcode = 0;
8424  unsigned NumOperands = 0;
8425
8426  // Truncate operations may prevent the merge of the SETCC instruction
8427  // and the arithmetic intruction before it. Attempt to truncate the operands
8428  // of the arithmetic instruction and use a reduced bit-width instruction.
8429  bool NeedTruncation = false;
8430  SDValue ArithOp = Op;
8431  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8432    SDValue Arith = Op->getOperand(0);
8433    // Both the trunc and the arithmetic op need to have one user each.
8434    if (Arith->hasOneUse())
8435      switch (Arith.getOpcode()) {
8436        default: break;
8437        case ISD::ADD:
8438        case ISD::SUB:
8439        case ISD::AND:
8440        case ISD::OR:
8441        case ISD::XOR: {
8442          NeedTruncation = true;
8443          ArithOp = Arith;
8444        }
8445      }
8446  }
8447
8448  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8449  // which may be the result of a CAST.  We use the variable 'Op', which is the
8450  // non-casted variable when we check for possible users.
8451  switch (ArithOp.getOpcode()) {
8452  case ISD::ADD:
8453    // Due to an isel shortcoming, be conservative if this add is likely to be
8454    // selected as part of a load-modify-store instruction. When the root node
8455    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8456    // uses of other nodes in the match, such as the ADD in this case. This
8457    // leads to the ADD being left around and reselected, with the result being
8458    // two adds in the output.  Alas, even if none our users are stores, that
8459    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8460    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8461    // climbing the DAG back to the root, and it doesn't seem to be worth the
8462    // effort.
8463    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8464         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8465      if (UI->getOpcode() != ISD::CopyToReg &&
8466          UI->getOpcode() != ISD::SETCC &&
8467          UI->getOpcode() != ISD::STORE)
8468        goto default_case;
8469
8470    if (ConstantSDNode *C =
8471        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8472      // An add of one will be selected as an INC.
8473      if (C->getAPIntValue() == 1) {
8474        Opcode = X86ISD::INC;
8475        NumOperands = 1;
8476        break;
8477      }
8478
8479      // An add of negative one (subtract of one) will be selected as a DEC.
8480      if (C->getAPIntValue().isAllOnesValue()) {
8481        Opcode = X86ISD::DEC;
8482        NumOperands = 1;
8483        break;
8484      }
8485    }
8486
8487    // Otherwise use a regular EFLAGS-setting add.
8488    Opcode = X86ISD::ADD;
8489    NumOperands = 2;
8490    break;
8491  case ISD::AND: {
8492    // If the primary and result isn't used, don't bother using X86ISD::AND,
8493    // because a TEST instruction will be better.
8494    bool NonFlagUse = false;
8495    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8496           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8497      SDNode *User = *UI;
8498      unsigned UOpNo = UI.getOperandNo();
8499      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8500        // Look pass truncate.
8501        UOpNo = User->use_begin().getOperandNo();
8502        User = *User->use_begin();
8503      }
8504
8505      if (User->getOpcode() != ISD::BRCOND &&
8506          User->getOpcode() != ISD::SETCC &&
8507          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8508        NonFlagUse = true;
8509        break;
8510      }
8511    }
8512
8513    if (!NonFlagUse)
8514      break;
8515  }
8516    // FALL THROUGH
8517  case ISD::SUB:
8518  case ISD::OR:
8519  case ISD::XOR:
8520    // Due to the ISEL shortcoming noted above, be conservative if this op is
8521    // likely to be selected as part of a load-modify-store instruction.
8522    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8523           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8524      if (UI->getOpcode() == ISD::STORE)
8525        goto default_case;
8526
8527    // Otherwise use a regular EFLAGS-setting instruction.
8528    switch (ArithOp.getOpcode()) {
8529    default: llvm_unreachable("unexpected operator!");
8530    case ISD::SUB: Opcode = X86ISD::SUB; break;
8531    case ISD::XOR: Opcode = X86ISD::XOR; break;
8532    case ISD::AND: Opcode = X86ISD::AND; break;
8533    case ISD::OR: {
8534      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8535        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8536        if (EFLAGS.getNode())
8537          return EFLAGS;
8538      }
8539      Opcode = X86ISD::OR;
8540      break;
8541    }
8542    }
8543
8544    NumOperands = 2;
8545    break;
8546  case X86ISD::ADD:
8547  case X86ISD::SUB:
8548  case X86ISD::INC:
8549  case X86ISD::DEC:
8550  case X86ISD::OR:
8551  case X86ISD::XOR:
8552  case X86ISD::AND:
8553    return SDValue(Op.getNode(), 1);
8554  default:
8555  default_case:
8556    break;
8557  }
8558
8559  // If we found that truncation is beneficial, perform the truncation and
8560  // update 'Op'.
8561  if (NeedTruncation) {
8562    EVT VT = Op.getValueType();
8563    SDValue WideVal = Op->getOperand(0);
8564    EVT WideVT = WideVal.getValueType();
8565    unsigned ConvertedOp = 0;
8566    // Use a target machine opcode to prevent further DAGCombine
8567    // optimizations that may separate the arithmetic operations
8568    // from the setcc node.
8569    switch (WideVal.getOpcode()) {
8570      default: break;
8571      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8572      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8573      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8574      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8575      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8576    }
8577
8578    if (ConvertedOp) {
8579      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8580      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8581        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8582        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8583        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8584      }
8585    }
8586  }
8587
8588  if (Opcode == 0)
8589    // Emit a CMP with 0, which is the TEST pattern.
8590    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8591                       DAG.getConstant(0, Op.getValueType()));
8592
8593  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8594  SmallVector<SDValue, 4> Ops;
8595  for (unsigned i = 0; i != NumOperands; ++i)
8596    Ops.push_back(Op.getOperand(i));
8597
8598  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8599  DAG.ReplaceAllUsesWith(Op, New);
8600  return SDValue(New.getNode(), 1);
8601}
8602
8603/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8604/// equivalent.
8605SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8606                                   SelectionDAG &DAG) const {
8607  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8608    if (C->getAPIntValue() == 0)
8609      return EmitTest(Op0, X86CC, DAG);
8610
8611  DebugLoc dl = Op0.getDebugLoc();
8612  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
8613       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
8614    // Use SUB instead of CMP to enable CSE between SUB and CMP.
8615    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
8616    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
8617                              Op0, Op1);
8618    return SDValue(Sub.getNode(), 1);
8619  }
8620  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8621}
8622
8623/// Convert a comparison if required by the subtarget.
8624SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8625                                                 SelectionDAG &DAG) const {
8626  // If the subtarget does not support the FUCOMI instruction, floating-point
8627  // comparisons have to be converted.
8628  if (Subtarget->hasCMov() ||
8629      Cmp.getOpcode() != X86ISD::CMP ||
8630      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8631      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8632    return Cmp;
8633
8634  // The instruction selector will select an FUCOM instruction instead of
8635  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8636  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8637  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8638  DebugLoc dl = Cmp.getDebugLoc();
8639  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8640  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8641  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8642                            DAG.getConstant(8, MVT::i8));
8643  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8644  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8645}
8646
8647/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8648/// if it's possible.
8649SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8650                                     DebugLoc dl, SelectionDAG &DAG) const {
8651  SDValue Op0 = And.getOperand(0);
8652  SDValue Op1 = And.getOperand(1);
8653  if (Op0.getOpcode() == ISD::TRUNCATE)
8654    Op0 = Op0.getOperand(0);
8655  if (Op1.getOpcode() == ISD::TRUNCATE)
8656    Op1 = Op1.getOperand(0);
8657
8658  SDValue LHS, RHS;
8659  if (Op1.getOpcode() == ISD::SHL)
8660    std::swap(Op0, Op1);
8661  if (Op0.getOpcode() == ISD::SHL) {
8662    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8663      if (And00C->getZExtValue() == 1) {
8664        // If we looked past a truncate, check that it's only truncating away
8665        // known zeros.
8666        unsigned BitWidth = Op0.getValueSizeInBits();
8667        unsigned AndBitWidth = And.getValueSizeInBits();
8668        if (BitWidth > AndBitWidth) {
8669          APInt Zeros, Ones;
8670          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8671          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8672            return SDValue();
8673        }
8674        LHS = Op1;
8675        RHS = Op0.getOperand(1);
8676      }
8677  } else if (Op1.getOpcode() == ISD::Constant) {
8678    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8679    uint64_t AndRHSVal = AndRHS->getZExtValue();
8680    SDValue AndLHS = Op0;
8681
8682    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8683      LHS = AndLHS.getOperand(0);
8684      RHS = AndLHS.getOperand(1);
8685    }
8686
8687    // Use BT if the immediate can't be encoded in a TEST instruction.
8688    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8689      LHS = AndLHS;
8690      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8691    }
8692  }
8693
8694  if (LHS.getNode()) {
8695    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8696    // instruction.  Since the shift amount is in-range-or-undefined, we know
8697    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8698    // the encoding for the i16 version is larger than the i32 version.
8699    // Also promote i16 to i32 for performance / code size reason.
8700    if (LHS.getValueType() == MVT::i8 ||
8701        LHS.getValueType() == MVT::i16)
8702      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8703
8704    // If the operand types disagree, extend the shift amount to match.  Since
8705    // BT ignores high bits (like shifts) we can use anyextend.
8706    if (LHS.getValueType() != RHS.getValueType())
8707      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8708
8709    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8710    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8711    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8712                       DAG.getConstant(Cond, MVT::i8), BT);
8713  }
8714
8715  return SDValue();
8716}
8717
8718SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8719
8720  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8721
8722  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8723  SDValue Op0 = Op.getOperand(0);
8724  SDValue Op1 = Op.getOperand(1);
8725  DebugLoc dl = Op.getDebugLoc();
8726  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8727
8728  // Optimize to BT if possible.
8729  // Lower (X & (1 << N)) == 0 to BT(X, N).
8730  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8731  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8732  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8733      Op1.getOpcode() == ISD::Constant &&
8734      cast<ConstantSDNode>(Op1)->isNullValue() &&
8735      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8736    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8737    if (NewSetCC.getNode())
8738      return NewSetCC;
8739  }
8740
8741  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8742  // these.
8743  if (Op1.getOpcode() == ISD::Constant &&
8744      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8745       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8746      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8747
8748    // If the input is a setcc, then reuse the input setcc or use a new one with
8749    // the inverted condition.
8750    if (Op0.getOpcode() == X86ISD::SETCC) {
8751      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8752      bool Invert = (CC == ISD::SETNE) ^
8753        cast<ConstantSDNode>(Op1)->isNullValue();
8754      if (!Invert) return Op0;
8755
8756      CCode = X86::GetOppositeBranchCondition(CCode);
8757      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8758                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8759    }
8760  }
8761
8762  bool isFP = Op1.getValueType().isFloatingPoint();
8763  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8764  if (X86CC == X86::COND_INVALID)
8765    return SDValue();
8766
8767  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8768  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8769  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8770                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8771}
8772
8773// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8774// ones, and then concatenate the result back.
8775static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8776  EVT VT = Op.getValueType();
8777
8778  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
8779         "Unsupported value type for operation");
8780
8781  unsigned NumElems = VT.getVectorNumElements();
8782  DebugLoc dl = Op.getDebugLoc();
8783  SDValue CC = Op.getOperand(2);
8784
8785  // Extract the LHS vectors
8786  SDValue LHS = Op.getOperand(0);
8787  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8788  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8789
8790  // Extract the RHS vectors
8791  SDValue RHS = Op.getOperand(1);
8792  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8793  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8794
8795  // Issue the operation on the smaller types and concatenate the result back
8796  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8797  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8798  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8799                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8800                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8801}
8802
8803
8804SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8805  SDValue Cond;
8806  SDValue Op0 = Op.getOperand(0);
8807  SDValue Op1 = Op.getOperand(1);
8808  SDValue CC = Op.getOperand(2);
8809  EVT VT = Op.getValueType();
8810  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8811  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8812  DebugLoc dl = Op.getDebugLoc();
8813
8814  if (isFP) {
8815#ifndef NDEBUG
8816    EVT EltVT = Op0.getValueType().getVectorElementType();
8817    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8818#endif
8819
8820    unsigned SSECC;
8821    bool Swap = false;
8822
8823    // SSE Condition code mapping:
8824    //  0 - EQ
8825    //  1 - LT
8826    //  2 - LE
8827    //  3 - UNORD
8828    //  4 - NEQ
8829    //  5 - NLT
8830    //  6 - NLE
8831    //  7 - ORD
8832    switch (SetCCOpcode) {
8833    default: llvm_unreachable("Unexpected SETCC condition");
8834    case ISD::SETOEQ:
8835    case ISD::SETEQ:  SSECC = 0; break;
8836    case ISD::SETOGT:
8837    case ISD::SETGT: Swap = true; // Fallthrough
8838    case ISD::SETLT:
8839    case ISD::SETOLT: SSECC = 1; break;
8840    case ISD::SETOGE:
8841    case ISD::SETGE: Swap = true; // Fallthrough
8842    case ISD::SETLE:
8843    case ISD::SETOLE: SSECC = 2; break;
8844    case ISD::SETUO:  SSECC = 3; break;
8845    case ISD::SETUNE:
8846    case ISD::SETNE:  SSECC = 4; break;
8847    case ISD::SETULE: Swap = true; // Fallthrough
8848    case ISD::SETUGE: SSECC = 5; break;
8849    case ISD::SETULT: Swap = true; // Fallthrough
8850    case ISD::SETUGT: SSECC = 6; break;
8851    case ISD::SETO:   SSECC = 7; break;
8852    case ISD::SETUEQ:
8853    case ISD::SETONE: SSECC = 8; break;
8854    }
8855    if (Swap)
8856      std::swap(Op0, Op1);
8857
8858    // In the two special cases we can't handle, emit two comparisons.
8859    if (SSECC == 8) {
8860      unsigned CC0, CC1;
8861      unsigned CombineOpc;
8862      if (SetCCOpcode == ISD::SETUEQ) {
8863        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
8864      } else {
8865        assert(SetCCOpcode == ISD::SETONE);
8866        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
8867      }
8868
8869      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8870                                 DAG.getConstant(CC0, MVT::i8));
8871      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8872                                 DAG.getConstant(CC1, MVT::i8));
8873      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
8874    }
8875    // Handle all other FP comparisons here.
8876    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8877                       DAG.getConstant(SSECC, MVT::i8));
8878  }
8879
8880  // Break 256-bit integer vector compare into smaller ones.
8881  if (VT.is256BitVector() && !Subtarget->hasAVX2())
8882    return Lower256IntVSETCC(Op, DAG);
8883
8884  // We are handling one of the integer comparisons here.  Since SSE only has
8885  // GT and EQ comparisons for integer, swapping operands and multiple
8886  // operations may be required for some comparisons.
8887  unsigned Opc;
8888  bool Swap = false, Invert = false, FlipSigns = false;
8889
8890  switch (SetCCOpcode) {
8891  default: llvm_unreachable("Unexpected SETCC condition");
8892  case ISD::SETNE:  Invert = true;
8893  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8894  case ISD::SETLT:  Swap = true;
8895  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8896  case ISD::SETGE:  Swap = true;
8897  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8898  case ISD::SETULT: Swap = true;
8899  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8900  case ISD::SETUGE: Swap = true;
8901  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8902  }
8903  if (Swap)
8904    std::swap(Op0, Op1);
8905
8906  // Check that the operation in question is available (most are plain SSE2,
8907  // but PCMPGTQ and PCMPEQQ have different requirements).
8908  if (VT == MVT::v2i64) {
8909    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
8910      return SDValue();
8911    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41())
8912      return SDValue();
8913  }
8914
8915  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8916  // bits of the inputs before performing those operations.
8917  if (FlipSigns) {
8918    EVT EltVT = VT.getVectorElementType();
8919    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8920                                      EltVT);
8921    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8922    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8923                                    SignBits.size());
8924    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8925    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8926  }
8927
8928  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8929
8930  // If the logical-not of the result is required, perform that now.
8931  if (Invert)
8932    Result = DAG.getNOT(dl, Result, VT);
8933
8934  return Result;
8935}
8936
8937// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8938static bool isX86LogicalCmp(SDValue Op) {
8939  unsigned Opc = Op.getNode()->getOpcode();
8940  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8941      Opc == X86ISD::SAHF)
8942    return true;
8943  if (Op.getResNo() == 1 &&
8944      (Opc == X86ISD::ADD ||
8945       Opc == X86ISD::SUB ||
8946       Opc == X86ISD::ADC ||
8947       Opc == X86ISD::SBB ||
8948       Opc == X86ISD::SMUL ||
8949       Opc == X86ISD::UMUL ||
8950       Opc == X86ISD::INC ||
8951       Opc == X86ISD::DEC ||
8952       Opc == X86ISD::OR ||
8953       Opc == X86ISD::XOR ||
8954       Opc == X86ISD::AND))
8955    return true;
8956
8957  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8958    return true;
8959
8960  return false;
8961}
8962
8963static bool isZero(SDValue V) {
8964  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8965  return C && C->isNullValue();
8966}
8967
8968static bool isAllOnes(SDValue V) {
8969  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8970  return C && C->isAllOnesValue();
8971}
8972
8973static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
8974  if (V.getOpcode() != ISD::TRUNCATE)
8975    return false;
8976
8977  SDValue VOp0 = V.getOperand(0);
8978  unsigned InBits = VOp0.getValueSizeInBits();
8979  unsigned Bits = V.getValueSizeInBits();
8980  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
8981}
8982
8983SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8984  bool addTest = true;
8985  SDValue Cond  = Op.getOperand(0);
8986  SDValue Op1 = Op.getOperand(1);
8987  SDValue Op2 = Op.getOperand(2);
8988  DebugLoc DL = Op.getDebugLoc();
8989  SDValue CC;
8990
8991  if (Cond.getOpcode() == ISD::SETCC) {
8992    SDValue NewCond = LowerSETCC(Cond, DAG);
8993    if (NewCond.getNode())
8994      Cond = NewCond;
8995  }
8996
8997  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8998  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8999  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9000  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9001  if (Cond.getOpcode() == X86ISD::SETCC &&
9002      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9003      isZero(Cond.getOperand(1).getOperand(1))) {
9004    SDValue Cmp = Cond.getOperand(1);
9005
9006    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9007
9008    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9009        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9010      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9011
9012      SDValue CmpOp0 = Cmp.getOperand(0);
9013      // Apply further optimizations for special cases
9014      // (select (x != 0), -1, 0) -> neg & sbb
9015      // (select (x == 0), 0, -1) -> neg & sbb
9016      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9017        if (YC->isNullValue() &&
9018            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9019          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9020          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9021                                    DAG.getConstant(0, CmpOp0.getValueType()),
9022                                    CmpOp0);
9023          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9024                                    DAG.getConstant(X86::COND_B, MVT::i8),
9025                                    SDValue(Neg.getNode(), 1));
9026          return Res;
9027        }
9028
9029      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9030                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9031      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9032
9033      SDValue Res =   // Res = 0 or -1.
9034        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9035                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9036
9037      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9038        Res = DAG.getNOT(DL, Res, Res.getValueType());
9039
9040      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9041      if (N2C == 0 || !N2C->isNullValue())
9042        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9043      return Res;
9044    }
9045  }
9046
9047  // Look past (and (setcc_carry (cmp ...)), 1).
9048  if (Cond.getOpcode() == ISD::AND &&
9049      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9050    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9051    if (C && C->getAPIntValue() == 1)
9052      Cond = Cond.getOperand(0);
9053  }
9054
9055  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9056  // setting operand in place of the X86ISD::SETCC.
9057  unsigned CondOpcode = Cond.getOpcode();
9058  if (CondOpcode == X86ISD::SETCC ||
9059      CondOpcode == X86ISD::SETCC_CARRY) {
9060    CC = Cond.getOperand(0);
9061
9062    SDValue Cmp = Cond.getOperand(1);
9063    unsigned Opc = Cmp.getOpcode();
9064    EVT VT = Op.getValueType();
9065
9066    bool IllegalFPCMov = false;
9067    if (VT.isFloatingPoint() && !VT.isVector() &&
9068        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9069      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9070
9071    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9072        Opc == X86ISD::BT) { // FIXME
9073      Cond = Cmp;
9074      addTest = false;
9075    }
9076  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9077             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9078             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9079              Cond.getOperand(0).getValueType() != MVT::i8)) {
9080    SDValue LHS = Cond.getOperand(0);
9081    SDValue RHS = Cond.getOperand(1);
9082    unsigned X86Opcode;
9083    unsigned X86Cond;
9084    SDVTList VTs;
9085    switch (CondOpcode) {
9086    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9087    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9088    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9089    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9090    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9091    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9092    default: llvm_unreachable("unexpected overflowing operator");
9093    }
9094    if (CondOpcode == ISD::UMULO)
9095      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9096                          MVT::i32);
9097    else
9098      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9099
9100    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9101
9102    if (CondOpcode == ISD::UMULO)
9103      Cond = X86Op.getValue(2);
9104    else
9105      Cond = X86Op.getValue(1);
9106
9107    CC = DAG.getConstant(X86Cond, MVT::i8);
9108    addTest = false;
9109  }
9110
9111  if (addTest) {
9112    // Look pass the truncate if the high bits are known zero.
9113    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9114        Cond = Cond.getOperand(0);
9115
9116    // We know the result of AND is compared against zero. Try to match
9117    // it to BT.
9118    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9119      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9120      if (NewSetCC.getNode()) {
9121        CC = NewSetCC.getOperand(0);
9122        Cond = NewSetCC.getOperand(1);
9123        addTest = false;
9124      }
9125    }
9126  }
9127
9128  if (addTest) {
9129    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9130    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9131  }
9132
9133  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9134  // a <  b ?  0 : -1 -> RES = setcc_carry
9135  // a >= b ? -1 :  0 -> RES = setcc_carry
9136  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9137  if (Cond.getOpcode() == X86ISD::SUB) {
9138    Cond = ConvertCmpIfNecessary(Cond, DAG);
9139    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9140
9141    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9142        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9143      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9144                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9145      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9146        return DAG.getNOT(DL, Res, Res.getValueType());
9147      return Res;
9148    }
9149  }
9150
9151  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9152  // condition is true.
9153  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9154  SDValue Ops[] = { Op2, Op1, CC, Cond };
9155  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9156}
9157
9158// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9159// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9160// from the AND / OR.
9161static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9162  Opc = Op.getOpcode();
9163  if (Opc != ISD::OR && Opc != ISD::AND)
9164    return false;
9165  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9166          Op.getOperand(0).hasOneUse() &&
9167          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9168          Op.getOperand(1).hasOneUse());
9169}
9170
9171// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9172// 1 and that the SETCC node has a single use.
9173static bool isXor1OfSetCC(SDValue Op) {
9174  if (Op.getOpcode() != ISD::XOR)
9175    return false;
9176  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9177  if (N1C && N1C->getAPIntValue() == 1) {
9178    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9179      Op.getOperand(0).hasOneUse();
9180  }
9181  return false;
9182}
9183
9184SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9185  bool addTest = true;
9186  SDValue Chain = Op.getOperand(0);
9187  SDValue Cond  = Op.getOperand(1);
9188  SDValue Dest  = Op.getOperand(2);
9189  DebugLoc dl = Op.getDebugLoc();
9190  SDValue CC;
9191  bool Inverted = false;
9192
9193  if (Cond.getOpcode() == ISD::SETCC) {
9194    // Check for setcc([su]{add,sub,mul}o == 0).
9195    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9196        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9197        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9198        Cond.getOperand(0).getResNo() == 1 &&
9199        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9200         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9201         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9202         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9203         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9204         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9205      Inverted = true;
9206      Cond = Cond.getOperand(0);
9207    } else {
9208      SDValue NewCond = LowerSETCC(Cond, DAG);
9209      if (NewCond.getNode())
9210        Cond = NewCond;
9211    }
9212  }
9213#if 0
9214  // FIXME: LowerXALUO doesn't handle these!!
9215  else if (Cond.getOpcode() == X86ISD::ADD  ||
9216           Cond.getOpcode() == X86ISD::SUB  ||
9217           Cond.getOpcode() == X86ISD::SMUL ||
9218           Cond.getOpcode() == X86ISD::UMUL)
9219    Cond = LowerXALUO(Cond, DAG);
9220#endif
9221
9222  // Look pass (and (setcc_carry (cmp ...)), 1).
9223  if (Cond.getOpcode() == ISD::AND &&
9224      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9225    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9226    if (C && C->getAPIntValue() == 1)
9227      Cond = Cond.getOperand(0);
9228  }
9229
9230  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9231  // setting operand in place of the X86ISD::SETCC.
9232  unsigned CondOpcode = Cond.getOpcode();
9233  if (CondOpcode == X86ISD::SETCC ||
9234      CondOpcode == X86ISD::SETCC_CARRY) {
9235    CC = Cond.getOperand(0);
9236
9237    SDValue Cmp = Cond.getOperand(1);
9238    unsigned Opc = Cmp.getOpcode();
9239    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9240    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9241      Cond = Cmp;
9242      addTest = false;
9243    } else {
9244      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9245      default: break;
9246      case X86::COND_O:
9247      case X86::COND_B:
9248        // These can only come from an arithmetic instruction with overflow,
9249        // e.g. SADDO, UADDO.
9250        Cond = Cond.getNode()->getOperand(1);
9251        addTest = false;
9252        break;
9253      }
9254    }
9255  }
9256  CondOpcode = Cond.getOpcode();
9257  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9258      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9259      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9260       Cond.getOperand(0).getValueType() != MVT::i8)) {
9261    SDValue LHS = Cond.getOperand(0);
9262    SDValue RHS = Cond.getOperand(1);
9263    unsigned X86Opcode;
9264    unsigned X86Cond;
9265    SDVTList VTs;
9266    switch (CondOpcode) {
9267    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9268    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9269    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9270    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9271    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9272    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9273    default: llvm_unreachable("unexpected overflowing operator");
9274    }
9275    if (Inverted)
9276      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9277    if (CondOpcode == ISD::UMULO)
9278      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9279                          MVT::i32);
9280    else
9281      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9282
9283    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9284
9285    if (CondOpcode == ISD::UMULO)
9286      Cond = X86Op.getValue(2);
9287    else
9288      Cond = X86Op.getValue(1);
9289
9290    CC = DAG.getConstant(X86Cond, MVT::i8);
9291    addTest = false;
9292  } else {
9293    unsigned CondOpc;
9294    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9295      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9296      if (CondOpc == ISD::OR) {
9297        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9298        // two branches instead of an explicit OR instruction with a
9299        // separate test.
9300        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9301            isX86LogicalCmp(Cmp)) {
9302          CC = Cond.getOperand(0).getOperand(0);
9303          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9304                              Chain, Dest, CC, Cmp);
9305          CC = Cond.getOperand(1).getOperand(0);
9306          Cond = Cmp;
9307          addTest = false;
9308        }
9309      } else { // ISD::AND
9310        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9311        // two branches instead of an explicit AND instruction with a
9312        // separate test. However, we only do this if this block doesn't
9313        // have a fall-through edge, because this requires an explicit
9314        // jmp when the condition is false.
9315        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9316            isX86LogicalCmp(Cmp) &&
9317            Op.getNode()->hasOneUse()) {
9318          X86::CondCode CCode =
9319            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9320          CCode = X86::GetOppositeBranchCondition(CCode);
9321          CC = DAG.getConstant(CCode, MVT::i8);
9322          SDNode *User = *Op.getNode()->use_begin();
9323          // Look for an unconditional branch following this conditional branch.
9324          // We need this because we need to reverse the successors in order
9325          // to implement FCMP_OEQ.
9326          if (User->getOpcode() == ISD::BR) {
9327            SDValue FalseBB = User->getOperand(1);
9328            SDNode *NewBR =
9329              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9330            assert(NewBR == User);
9331            (void)NewBR;
9332            Dest = FalseBB;
9333
9334            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9335                                Chain, Dest, CC, Cmp);
9336            X86::CondCode CCode =
9337              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9338            CCode = X86::GetOppositeBranchCondition(CCode);
9339            CC = DAG.getConstant(CCode, MVT::i8);
9340            Cond = Cmp;
9341            addTest = false;
9342          }
9343        }
9344      }
9345    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9346      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9347      // It should be transformed during dag combiner except when the condition
9348      // is set by a arithmetics with overflow node.
9349      X86::CondCode CCode =
9350        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9351      CCode = X86::GetOppositeBranchCondition(CCode);
9352      CC = DAG.getConstant(CCode, MVT::i8);
9353      Cond = Cond.getOperand(0).getOperand(1);
9354      addTest = false;
9355    } else if (Cond.getOpcode() == ISD::SETCC &&
9356               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9357      // For FCMP_OEQ, we can emit
9358      // two branches instead of an explicit AND instruction with a
9359      // separate test. However, we only do this if this block doesn't
9360      // have a fall-through edge, because this requires an explicit
9361      // jmp when the condition is false.
9362      if (Op.getNode()->hasOneUse()) {
9363        SDNode *User = *Op.getNode()->use_begin();
9364        // Look for an unconditional branch following this conditional branch.
9365        // We need this because we need to reverse the successors in order
9366        // to implement FCMP_OEQ.
9367        if (User->getOpcode() == ISD::BR) {
9368          SDValue FalseBB = User->getOperand(1);
9369          SDNode *NewBR =
9370            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9371          assert(NewBR == User);
9372          (void)NewBR;
9373          Dest = FalseBB;
9374
9375          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9376                                    Cond.getOperand(0), Cond.getOperand(1));
9377          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9378          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9379          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9380                              Chain, Dest, CC, Cmp);
9381          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9382          Cond = Cmp;
9383          addTest = false;
9384        }
9385      }
9386    } else if (Cond.getOpcode() == ISD::SETCC &&
9387               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9388      // For FCMP_UNE, we can emit
9389      // two branches instead of an explicit AND instruction with a
9390      // separate test. However, we only do this if this block doesn't
9391      // have a fall-through edge, because this requires an explicit
9392      // jmp when the condition is false.
9393      if (Op.getNode()->hasOneUse()) {
9394        SDNode *User = *Op.getNode()->use_begin();
9395        // Look for an unconditional branch following this conditional branch.
9396        // We need this because we need to reverse the successors in order
9397        // to implement FCMP_UNE.
9398        if (User->getOpcode() == ISD::BR) {
9399          SDValue FalseBB = User->getOperand(1);
9400          SDNode *NewBR =
9401            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9402          assert(NewBR == User);
9403          (void)NewBR;
9404
9405          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9406                                    Cond.getOperand(0), Cond.getOperand(1));
9407          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9408          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9409          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9410                              Chain, Dest, CC, Cmp);
9411          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9412          Cond = Cmp;
9413          addTest = false;
9414          Dest = FalseBB;
9415        }
9416      }
9417    }
9418  }
9419
9420  if (addTest) {
9421    // Look pass the truncate if the high bits are known zero.
9422    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9423        Cond = Cond.getOperand(0);
9424
9425    // We know the result of AND is compared against zero. Try to match
9426    // it to BT.
9427    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9428      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9429      if (NewSetCC.getNode()) {
9430        CC = NewSetCC.getOperand(0);
9431        Cond = NewSetCC.getOperand(1);
9432        addTest = false;
9433      }
9434    }
9435  }
9436
9437  if (addTest) {
9438    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9439    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9440  }
9441  Cond = ConvertCmpIfNecessary(Cond, DAG);
9442  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9443                     Chain, Dest, CC, Cond);
9444}
9445
9446
9447// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9448// Calls to _alloca is needed to probe the stack when allocating more than 4k
9449// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9450// that the guard pages used by the OS virtual memory manager are allocated in
9451// correct sequence.
9452SDValue
9453X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9454                                           SelectionDAG &DAG) const {
9455  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9456          getTargetMachine().Options.EnableSegmentedStacks) &&
9457         "This should be used only on Windows targets or when segmented stacks "
9458         "are being used");
9459  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9460  DebugLoc dl = Op.getDebugLoc();
9461
9462  // Get the inputs.
9463  SDValue Chain = Op.getOperand(0);
9464  SDValue Size  = Op.getOperand(1);
9465  // FIXME: Ensure alignment here
9466
9467  bool Is64Bit = Subtarget->is64Bit();
9468  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9469
9470  if (getTargetMachine().Options.EnableSegmentedStacks) {
9471    MachineFunction &MF = DAG.getMachineFunction();
9472    MachineRegisterInfo &MRI = MF.getRegInfo();
9473
9474    if (Is64Bit) {
9475      // The 64 bit implementation of segmented stacks needs to clobber both r10
9476      // r11. This makes it impossible to use it along with nested parameters.
9477      const Function *F = MF.getFunction();
9478
9479      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9480           I != E; ++I)
9481        if (I->hasNestAttr())
9482          report_fatal_error("Cannot use segmented stacks with functions that "
9483                             "have nested arguments.");
9484    }
9485
9486    const TargetRegisterClass *AddrRegClass =
9487      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9488    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9489    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9490    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9491                                DAG.getRegister(Vreg, SPTy));
9492    SDValue Ops1[2] = { Value, Chain };
9493    return DAG.getMergeValues(Ops1, 2, dl);
9494  } else {
9495    SDValue Flag;
9496    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9497
9498    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9499    Flag = Chain.getValue(1);
9500    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9501
9502    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9503    Flag = Chain.getValue(1);
9504
9505    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9506
9507    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9508    return DAG.getMergeValues(Ops1, 2, dl);
9509  }
9510}
9511
9512SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9513  MachineFunction &MF = DAG.getMachineFunction();
9514  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9515
9516  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9517  DebugLoc DL = Op.getDebugLoc();
9518
9519  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9520    // vastart just stores the address of the VarArgsFrameIndex slot into the
9521    // memory location argument.
9522    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9523                                   getPointerTy());
9524    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9525                        MachinePointerInfo(SV), false, false, 0);
9526  }
9527
9528  // __va_list_tag:
9529  //   gp_offset         (0 - 6 * 8)
9530  //   fp_offset         (48 - 48 + 8 * 16)
9531  //   overflow_arg_area (point to parameters coming in memory).
9532  //   reg_save_area
9533  SmallVector<SDValue, 8> MemOps;
9534  SDValue FIN = Op.getOperand(1);
9535  // Store gp_offset
9536  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9537                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9538                                               MVT::i32),
9539                               FIN, MachinePointerInfo(SV), false, false, 0);
9540  MemOps.push_back(Store);
9541
9542  // Store fp_offset
9543  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9544                    FIN, DAG.getIntPtrConstant(4));
9545  Store = DAG.getStore(Op.getOperand(0), DL,
9546                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9547                                       MVT::i32),
9548                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9549  MemOps.push_back(Store);
9550
9551  // Store ptr to overflow_arg_area
9552  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9553                    FIN, DAG.getIntPtrConstant(4));
9554  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9555                                    getPointerTy());
9556  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9557                       MachinePointerInfo(SV, 8),
9558                       false, false, 0);
9559  MemOps.push_back(Store);
9560
9561  // Store ptr to reg_save_area.
9562  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9563                    FIN, DAG.getIntPtrConstant(8));
9564  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9565                                    getPointerTy());
9566  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9567                       MachinePointerInfo(SV, 16), false, false, 0);
9568  MemOps.push_back(Store);
9569  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9570                     &MemOps[0], MemOps.size());
9571}
9572
9573SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9574  assert(Subtarget->is64Bit() &&
9575         "LowerVAARG only handles 64-bit va_arg!");
9576  assert((Subtarget->isTargetLinux() ||
9577          Subtarget->isTargetDarwin()) &&
9578          "Unhandled target in LowerVAARG");
9579  assert(Op.getNode()->getNumOperands() == 4);
9580  SDValue Chain = Op.getOperand(0);
9581  SDValue SrcPtr = Op.getOperand(1);
9582  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9583  unsigned Align = Op.getConstantOperandVal(3);
9584  DebugLoc dl = Op.getDebugLoc();
9585
9586  EVT ArgVT = Op.getNode()->getValueType(0);
9587  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9588  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
9589  uint8_t ArgMode;
9590
9591  // Decide which area this value should be read from.
9592  // TODO: Implement the AMD64 ABI in its entirety. This simple
9593  // selection mechanism works only for the basic types.
9594  if (ArgVT == MVT::f80) {
9595    llvm_unreachable("va_arg for f80 not yet implemented");
9596  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9597    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9598  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9599    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9600  } else {
9601    llvm_unreachable("Unhandled argument type in LowerVAARG");
9602  }
9603
9604  if (ArgMode == 2) {
9605    // Sanity Check: Make sure using fp_offset makes sense.
9606    assert(!getTargetMachine().Options.UseSoftFloat &&
9607           !(DAG.getMachineFunction()
9608                .getFunction()->getFnAttributes()
9609                .hasAttribute(Attributes::NoImplicitFloat)) &&
9610           Subtarget->hasSSE1());
9611  }
9612
9613  // Insert VAARG_64 node into the DAG
9614  // VAARG_64 returns two values: Variable Argument Address, Chain
9615  SmallVector<SDValue, 11> InstOps;
9616  InstOps.push_back(Chain);
9617  InstOps.push_back(SrcPtr);
9618  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9619  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9620  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9621  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9622  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9623                                          VTs, &InstOps[0], InstOps.size(),
9624                                          MVT::i64,
9625                                          MachinePointerInfo(SV),
9626                                          /*Align=*/0,
9627                                          /*Volatile=*/false,
9628                                          /*ReadMem=*/true,
9629                                          /*WriteMem=*/true);
9630  Chain = VAARG.getValue(1);
9631
9632  // Load the next argument and return it
9633  return DAG.getLoad(ArgVT, dl,
9634                     Chain,
9635                     VAARG,
9636                     MachinePointerInfo(),
9637                     false, false, false, 0);
9638}
9639
9640static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
9641                           SelectionDAG &DAG) {
9642  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9643  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9644  SDValue Chain = Op.getOperand(0);
9645  SDValue DstPtr = Op.getOperand(1);
9646  SDValue SrcPtr = Op.getOperand(2);
9647  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9648  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9649  DebugLoc DL = Op.getDebugLoc();
9650
9651  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9652                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9653                       false,
9654                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9655}
9656
9657// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9658// may or may not be a constant. Takes immediate version of shift as input.
9659static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9660                                   SDValue SrcOp, SDValue ShAmt,
9661                                   SelectionDAG &DAG) {
9662  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9663
9664  if (isa<ConstantSDNode>(ShAmt)) {
9665    // Constant may be a TargetConstant. Use a regular constant.
9666    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9667    switch (Opc) {
9668      default: llvm_unreachable("Unknown target vector shift node");
9669      case X86ISD::VSHLI:
9670      case X86ISD::VSRLI:
9671      case X86ISD::VSRAI:
9672        return DAG.getNode(Opc, dl, VT, SrcOp,
9673                           DAG.getConstant(ShiftAmt, MVT::i32));
9674    }
9675  }
9676
9677  // Change opcode to non-immediate version
9678  switch (Opc) {
9679    default: llvm_unreachable("Unknown target vector shift node");
9680    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9681    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9682    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9683  }
9684
9685  // Need to build a vector containing shift amount
9686  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9687  SDValue ShOps[4];
9688  ShOps[0] = ShAmt;
9689  ShOps[1] = DAG.getConstant(0, MVT::i32);
9690  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
9691  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9692
9693  // The return type has to be a 128-bit type with the same element
9694  // type as the input type.
9695  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9696  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9697
9698  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9699  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9700}
9701
9702static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
9703  DebugLoc dl = Op.getDebugLoc();
9704  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9705  switch (IntNo) {
9706  default: return SDValue();    // Don't custom lower most intrinsics.
9707  // Comparison intrinsics.
9708  case Intrinsic::x86_sse_comieq_ss:
9709  case Intrinsic::x86_sse_comilt_ss:
9710  case Intrinsic::x86_sse_comile_ss:
9711  case Intrinsic::x86_sse_comigt_ss:
9712  case Intrinsic::x86_sse_comige_ss:
9713  case Intrinsic::x86_sse_comineq_ss:
9714  case Intrinsic::x86_sse_ucomieq_ss:
9715  case Intrinsic::x86_sse_ucomilt_ss:
9716  case Intrinsic::x86_sse_ucomile_ss:
9717  case Intrinsic::x86_sse_ucomigt_ss:
9718  case Intrinsic::x86_sse_ucomige_ss:
9719  case Intrinsic::x86_sse_ucomineq_ss:
9720  case Intrinsic::x86_sse2_comieq_sd:
9721  case Intrinsic::x86_sse2_comilt_sd:
9722  case Intrinsic::x86_sse2_comile_sd:
9723  case Intrinsic::x86_sse2_comigt_sd:
9724  case Intrinsic::x86_sse2_comige_sd:
9725  case Intrinsic::x86_sse2_comineq_sd:
9726  case Intrinsic::x86_sse2_ucomieq_sd:
9727  case Intrinsic::x86_sse2_ucomilt_sd:
9728  case Intrinsic::x86_sse2_ucomile_sd:
9729  case Intrinsic::x86_sse2_ucomigt_sd:
9730  case Intrinsic::x86_sse2_ucomige_sd:
9731  case Intrinsic::x86_sse2_ucomineq_sd: {
9732    unsigned Opc;
9733    ISD::CondCode CC;
9734    switch (IntNo) {
9735    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9736    case Intrinsic::x86_sse_comieq_ss:
9737    case Intrinsic::x86_sse2_comieq_sd:
9738      Opc = X86ISD::COMI;
9739      CC = ISD::SETEQ;
9740      break;
9741    case Intrinsic::x86_sse_comilt_ss:
9742    case Intrinsic::x86_sse2_comilt_sd:
9743      Opc = X86ISD::COMI;
9744      CC = ISD::SETLT;
9745      break;
9746    case Intrinsic::x86_sse_comile_ss:
9747    case Intrinsic::x86_sse2_comile_sd:
9748      Opc = X86ISD::COMI;
9749      CC = ISD::SETLE;
9750      break;
9751    case Intrinsic::x86_sse_comigt_ss:
9752    case Intrinsic::x86_sse2_comigt_sd:
9753      Opc = X86ISD::COMI;
9754      CC = ISD::SETGT;
9755      break;
9756    case Intrinsic::x86_sse_comige_ss:
9757    case Intrinsic::x86_sse2_comige_sd:
9758      Opc = X86ISD::COMI;
9759      CC = ISD::SETGE;
9760      break;
9761    case Intrinsic::x86_sse_comineq_ss:
9762    case Intrinsic::x86_sse2_comineq_sd:
9763      Opc = X86ISD::COMI;
9764      CC = ISD::SETNE;
9765      break;
9766    case Intrinsic::x86_sse_ucomieq_ss:
9767    case Intrinsic::x86_sse2_ucomieq_sd:
9768      Opc = X86ISD::UCOMI;
9769      CC = ISD::SETEQ;
9770      break;
9771    case Intrinsic::x86_sse_ucomilt_ss:
9772    case Intrinsic::x86_sse2_ucomilt_sd:
9773      Opc = X86ISD::UCOMI;
9774      CC = ISD::SETLT;
9775      break;
9776    case Intrinsic::x86_sse_ucomile_ss:
9777    case Intrinsic::x86_sse2_ucomile_sd:
9778      Opc = X86ISD::UCOMI;
9779      CC = ISD::SETLE;
9780      break;
9781    case Intrinsic::x86_sse_ucomigt_ss:
9782    case Intrinsic::x86_sse2_ucomigt_sd:
9783      Opc = X86ISD::UCOMI;
9784      CC = ISD::SETGT;
9785      break;
9786    case Intrinsic::x86_sse_ucomige_ss:
9787    case Intrinsic::x86_sse2_ucomige_sd:
9788      Opc = X86ISD::UCOMI;
9789      CC = ISD::SETGE;
9790      break;
9791    case Intrinsic::x86_sse_ucomineq_ss:
9792    case Intrinsic::x86_sse2_ucomineq_sd:
9793      Opc = X86ISD::UCOMI;
9794      CC = ISD::SETNE;
9795      break;
9796    }
9797
9798    SDValue LHS = Op.getOperand(1);
9799    SDValue RHS = Op.getOperand(2);
9800    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9801    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9802    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9803    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9804                                DAG.getConstant(X86CC, MVT::i8), Cond);
9805    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9806  }
9807
9808  // Arithmetic intrinsics.
9809  case Intrinsic::x86_sse2_pmulu_dq:
9810  case Intrinsic::x86_avx2_pmulu_dq:
9811    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9812                       Op.getOperand(1), Op.getOperand(2));
9813
9814  // SSE3/AVX horizontal add/sub intrinsics
9815  case Intrinsic::x86_sse3_hadd_ps:
9816  case Intrinsic::x86_sse3_hadd_pd:
9817  case Intrinsic::x86_avx_hadd_ps_256:
9818  case Intrinsic::x86_avx_hadd_pd_256:
9819  case Intrinsic::x86_sse3_hsub_ps:
9820  case Intrinsic::x86_sse3_hsub_pd:
9821  case Intrinsic::x86_avx_hsub_ps_256:
9822  case Intrinsic::x86_avx_hsub_pd_256:
9823  case Intrinsic::x86_ssse3_phadd_w_128:
9824  case Intrinsic::x86_ssse3_phadd_d_128:
9825  case Intrinsic::x86_avx2_phadd_w:
9826  case Intrinsic::x86_avx2_phadd_d:
9827  case Intrinsic::x86_ssse3_phsub_w_128:
9828  case Intrinsic::x86_ssse3_phsub_d_128:
9829  case Intrinsic::x86_avx2_phsub_w:
9830  case Intrinsic::x86_avx2_phsub_d: {
9831    unsigned Opcode;
9832    switch (IntNo) {
9833    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9834    case Intrinsic::x86_sse3_hadd_ps:
9835    case Intrinsic::x86_sse3_hadd_pd:
9836    case Intrinsic::x86_avx_hadd_ps_256:
9837    case Intrinsic::x86_avx_hadd_pd_256:
9838      Opcode = X86ISD::FHADD;
9839      break;
9840    case Intrinsic::x86_sse3_hsub_ps:
9841    case Intrinsic::x86_sse3_hsub_pd:
9842    case Intrinsic::x86_avx_hsub_ps_256:
9843    case Intrinsic::x86_avx_hsub_pd_256:
9844      Opcode = X86ISD::FHSUB;
9845      break;
9846    case Intrinsic::x86_ssse3_phadd_w_128:
9847    case Intrinsic::x86_ssse3_phadd_d_128:
9848    case Intrinsic::x86_avx2_phadd_w:
9849    case Intrinsic::x86_avx2_phadd_d:
9850      Opcode = X86ISD::HADD;
9851      break;
9852    case Intrinsic::x86_ssse3_phsub_w_128:
9853    case Intrinsic::x86_ssse3_phsub_d_128:
9854    case Intrinsic::x86_avx2_phsub_w:
9855    case Intrinsic::x86_avx2_phsub_d:
9856      Opcode = X86ISD::HSUB;
9857      break;
9858    }
9859    return DAG.getNode(Opcode, dl, Op.getValueType(),
9860                       Op.getOperand(1), Op.getOperand(2));
9861  }
9862
9863  // AVX2 variable shift intrinsics
9864  case Intrinsic::x86_avx2_psllv_d:
9865  case Intrinsic::x86_avx2_psllv_q:
9866  case Intrinsic::x86_avx2_psllv_d_256:
9867  case Intrinsic::x86_avx2_psllv_q_256:
9868  case Intrinsic::x86_avx2_psrlv_d:
9869  case Intrinsic::x86_avx2_psrlv_q:
9870  case Intrinsic::x86_avx2_psrlv_d_256:
9871  case Intrinsic::x86_avx2_psrlv_q_256:
9872  case Intrinsic::x86_avx2_psrav_d:
9873  case Intrinsic::x86_avx2_psrav_d_256: {
9874    unsigned Opcode;
9875    switch (IntNo) {
9876    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9877    case Intrinsic::x86_avx2_psllv_d:
9878    case Intrinsic::x86_avx2_psllv_q:
9879    case Intrinsic::x86_avx2_psllv_d_256:
9880    case Intrinsic::x86_avx2_psllv_q_256:
9881      Opcode = ISD::SHL;
9882      break;
9883    case Intrinsic::x86_avx2_psrlv_d:
9884    case Intrinsic::x86_avx2_psrlv_q:
9885    case Intrinsic::x86_avx2_psrlv_d_256:
9886    case Intrinsic::x86_avx2_psrlv_q_256:
9887      Opcode = ISD::SRL;
9888      break;
9889    case Intrinsic::x86_avx2_psrav_d:
9890    case Intrinsic::x86_avx2_psrav_d_256:
9891      Opcode = ISD::SRA;
9892      break;
9893    }
9894    return DAG.getNode(Opcode, dl, Op.getValueType(),
9895                       Op.getOperand(1), Op.getOperand(2));
9896  }
9897
9898  case Intrinsic::x86_ssse3_pshuf_b_128:
9899  case Intrinsic::x86_avx2_pshuf_b:
9900    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9901                       Op.getOperand(1), Op.getOperand(2));
9902
9903  case Intrinsic::x86_ssse3_psign_b_128:
9904  case Intrinsic::x86_ssse3_psign_w_128:
9905  case Intrinsic::x86_ssse3_psign_d_128:
9906  case Intrinsic::x86_avx2_psign_b:
9907  case Intrinsic::x86_avx2_psign_w:
9908  case Intrinsic::x86_avx2_psign_d:
9909    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9910                       Op.getOperand(1), Op.getOperand(2));
9911
9912  case Intrinsic::x86_sse41_insertps:
9913    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9914                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9915
9916  case Intrinsic::x86_avx_vperm2f128_ps_256:
9917  case Intrinsic::x86_avx_vperm2f128_pd_256:
9918  case Intrinsic::x86_avx_vperm2f128_si_256:
9919  case Intrinsic::x86_avx2_vperm2i128:
9920    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9921                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9922
9923  case Intrinsic::x86_avx2_permd:
9924  case Intrinsic::x86_avx2_permps:
9925    // Operands intentionally swapped. Mask is last operand to intrinsic,
9926    // but second operand for node/intruction.
9927    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9928                       Op.getOperand(2), Op.getOperand(1));
9929
9930  // ptest and testp intrinsics. The intrinsic these come from are designed to
9931  // return an integer value, not just an instruction so lower it to the ptest
9932  // or testp pattern and a setcc for the result.
9933  case Intrinsic::x86_sse41_ptestz:
9934  case Intrinsic::x86_sse41_ptestc:
9935  case Intrinsic::x86_sse41_ptestnzc:
9936  case Intrinsic::x86_avx_ptestz_256:
9937  case Intrinsic::x86_avx_ptestc_256:
9938  case Intrinsic::x86_avx_ptestnzc_256:
9939  case Intrinsic::x86_avx_vtestz_ps:
9940  case Intrinsic::x86_avx_vtestc_ps:
9941  case Intrinsic::x86_avx_vtestnzc_ps:
9942  case Intrinsic::x86_avx_vtestz_pd:
9943  case Intrinsic::x86_avx_vtestc_pd:
9944  case Intrinsic::x86_avx_vtestnzc_pd:
9945  case Intrinsic::x86_avx_vtestz_ps_256:
9946  case Intrinsic::x86_avx_vtestc_ps_256:
9947  case Intrinsic::x86_avx_vtestnzc_ps_256:
9948  case Intrinsic::x86_avx_vtestz_pd_256:
9949  case Intrinsic::x86_avx_vtestc_pd_256:
9950  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9951    bool IsTestPacked = false;
9952    unsigned X86CC;
9953    switch (IntNo) {
9954    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9955    case Intrinsic::x86_avx_vtestz_ps:
9956    case Intrinsic::x86_avx_vtestz_pd:
9957    case Intrinsic::x86_avx_vtestz_ps_256:
9958    case Intrinsic::x86_avx_vtestz_pd_256:
9959      IsTestPacked = true; // Fallthrough
9960    case Intrinsic::x86_sse41_ptestz:
9961    case Intrinsic::x86_avx_ptestz_256:
9962      // ZF = 1
9963      X86CC = X86::COND_E;
9964      break;
9965    case Intrinsic::x86_avx_vtestc_ps:
9966    case Intrinsic::x86_avx_vtestc_pd:
9967    case Intrinsic::x86_avx_vtestc_ps_256:
9968    case Intrinsic::x86_avx_vtestc_pd_256:
9969      IsTestPacked = true; // Fallthrough
9970    case Intrinsic::x86_sse41_ptestc:
9971    case Intrinsic::x86_avx_ptestc_256:
9972      // CF = 1
9973      X86CC = X86::COND_B;
9974      break;
9975    case Intrinsic::x86_avx_vtestnzc_ps:
9976    case Intrinsic::x86_avx_vtestnzc_pd:
9977    case Intrinsic::x86_avx_vtestnzc_ps_256:
9978    case Intrinsic::x86_avx_vtestnzc_pd_256:
9979      IsTestPacked = true; // Fallthrough
9980    case Intrinsic::x86_sse41_ptestnzc:
9981    case Intrinsic::x86_avx_ptestnzc_256:
9982      // ZF and CF = 0
9983      X86CC = X86::COND_A;
9984      break;
9985    }
9986
9987    SDValue LHS = Op.getOperand(1);
9988    SDValue RHS = Op.getOperand(2);
9989    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9990    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9991    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9992    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9993    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9994  }
9995
9996  // SSE/AVX shift intrinsics
9997  case Intrinsic::x86_sse2_psll_w:
9998  case Intrinsic::x86_sse2_psll_d:
9999  case Intrinsic::x86_sse2_psll_q:
10000  case Intrinsic::x86_avx2_psll_w:
10001  case Intrinsic::x86_avx2_psll_d:
10002  case Intrinsic::x86_avx2_psll_q:
10003  case Intrinsic::x86_sse2_psrl_w:
10004  case Intrinsic::x86_sse2_psrl_d:
10005  case Intrinsic::x86_sse2_psrl_q:
10006  case Intrinsic::x86_avx2_psrl_w:
10007  case Intrinsic::x86_avx2_psrl_d:
10008  case Intrinsic::x86_avx2_psrl_q:
10009  case Intrinsic::x86_sse2_psra_w:
10010  case Intrinsic::x86_sse2_psra_d:
10011  case Intrinsic::x86_avx2_psra_w:
10012  case Intrinsic::x86_avx2_psra_d: {
10013    unsigned Opcode;
10014    switch (IntNo) {
10015    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10016    case Intrinsic::x86_sse2_psll_w:
10017    case Intrinsic::x86_sse2_psll_d:
10018    case Intrinsic::x86_sse2_psll_q:
10019    case Intrinsic::x86_avx2_psll_w:
10020    case Intrinsic::x86_avx2_psll_d:
10021    case Intrinsic::x86_avx2_psll_q:
10022      Opcode = X86ISD::VSHL;
10023      break;
10024    case Intrinsic::x86_sse2_psrl_w:
10025    case Intrinsic::x86_sse2_psrl_d:
10026    case Intrinsic::x86_sse2_psrl_q:
10027    case Intrinsic::x86_avx2_psrl_w:
10028    case Intrinsic::x86_avx2_psrl_d:
10029    case Intrinsic::x86_avx2_psrl_q:
10030      Opcode = X86ISD::VSRL;
10031      break;
10032    case Intrinsic::x86_sse2_psra_w:
10033    case Intrinsic::x86_sse2_psra_d:
10034    case Intrinsic::x86_avx2_psra_w:
10035    case Intrinsic::x86_avx2_psra_d:
10036      Opcode = X86ISD::VSRA;
10037      break;
10038    }
10039    return DAG.getNode(Opcode, dl, Op.getValueType(),
10040                       Op.getOperand(1), Op.getOperand(2));
10041  }
10042
10043  // SSE/AVX immediate shift intrinsics
10044  case Intrinsic::x86_sse2_pslli_w:
10045  case Intrinsic::x86_sse2_pslli_d:
10046  case Intrinsic::x86_sse2_pslli_q:
10047  case Intrinsic::x86_avx2_pslli_w:
10048  case Intrinsic::x86_avx2_pslli_d:
10049  case Intrinsic::x86_avx2_pslli_q:
10050  case Intrinsic::x86_sse2_psrli_w:
10051  case Intrinsic::x86_sse2_psrli_d:
10052  case Intrinsic::x86_sse2_psrli_q:
10053  case Intrinsic::x86_avx2_psrli_w:
10054  case Intrinsic::x86_avx2_psrli_d:
10055  case Intrinsic::x86_avx2_psrli_q:
10056  case Intrinsic::x86_sse2_psrai_w:
10057  case Intrinsic::x86_sse2_psrai_d:
10058  case Intrinsic::x86_avx2_psrai_w:
10059  case Intrinsic::x86_avx2_psrai_d: {
10060    unsigned Opcode;
10061    switch (IntNo) {
10062    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10063    case Intrinsic::x86_sse2_pslli_w:
10064    case Intrinsic::x86_sse2_pslli_d:
10065    case Intrinsic::x86_sse2_pslli_q:
10066    case Intrinsic::x86_avx2_pslli_w:
10067    case Intrinsic::x86_avx2_pslli_d:
10068    case Intrinsic::x86_avx2_pslli_q:
10069      Opcode = X86ISD::VSHLI;
10070      break;
10071    case Intrinsic::x86_sse2_psrli_w:
10072    case Intrinsic::x86_sse2_psrli_d:
10073    case Intrinsic::x86_sse2_psrli_q:
10074    case Intrinsic::x86_avx2_psrli_w:
10075    case Intrinsic::x86_avx2_psrli_d:
10076    case Intrinsic::x86_avx2_psrli_q:
10077      Opcode = X86ISD::VSRLI;
10078      break;
10079    case Intrinsic::x86_sse2_psrai_w:
10080    case Intrinsic::x86_sse2_psrai_d:
10081    case Intrinsic::x86_avx2_psrai_w:
10082    case Intrinsic::x86_avx2_psrai_d:
10083      Opcode = X86ISD::VSRAI;
10084      break;
10085    }
10086    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10087                               Op.getOperand(1), Op.getOperand(2), DAG);
10088  }
10089
10090  case Intrinsic::x86_sse42_pcmpistria128:
10091  case Intrinsic::x86_sse42_pcmpestria128:
10092  case Intrinsic::x86_sse42_pcmpistric128:
10093  case Intrinsic::x86_sse42_pcmpestric128:
10094  case Intrinsic::x86_sse42_pcmpistrio128:
10095  case Intrinsic::x86_sse42_pcmpestrio128:
10096  case Intrinsic::x86_sse42_pcmpistris128:
10097  case Intrinsic::x86_sse42_pcmpestris128:
10098  case Intrinsic::x86_sse42_pcmpistriz128:
10099  case Intrinsic::x86_sse42_pcmpestriz128: {
10100    unsigned Opcode;
10101    unsigned X86CC;
10102    switch (IntNo) {
10103    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10104    case Intrinsic::x86_sse42_pcmpistria128:
10105      Opcode = X86ISD::PCMPISTRI;
10106      X86CC = X86::COND_A;
10107      break;
10108    case Intrinsic::x86_sse42_pcmpestria128:
10109      Opcode = X86ISD::PCMPESTRI;
10110      X86CC = X86::COND_A;
10111      break;
10112    case Intrinsic::x86_sse42_pcmpistric128:
10113      Opcode = X86ISD::PCMPISTRI;
10114      X86CC = X86::COND_B;
10115      break;
10116    case Intrinsic::x86_sse42_pcmpestric128:
10117      Opcode = X86ISD::PCMPESTRI;
10118      X86CC = X86::COND_B;
10119      break;
10120    case Intrinsic::x86_sse42_pcmpistrio128:
10121      Opcode = X86ISD::PCMPISTRI;
10122      X86CC = X86::COND_O;
10123      break;
10124    case Intrinsic::x86_sse42_pcmpestrio128:
10125      Opcode = X86ISD::PCMPESTRI;
10126      X86CC = X86::COND_O;
10127      break;
10128    case Intrinsic::x86_sse42_pcmpistris128:
10129      Opcode = X86ISD::PCMPISTRI;
10130      X86CC = X86::COND_S;
10131      break;
10132    case Intrinsic::x86_sse42_pcmpestris128:
10133      Opcode = X86ISD::PCMPESTRI;
10134      X86CC = X86::COND_S;
10135      break;
10136    case Intrinsic::x86_sse42_pcmpistriz128:
10137      Opcode = X86ISD::PCMPISTRI;
10138      X86CC = X86::COND_E;
10139      break;
10140    case Intrinsic::x86_sse42_pcmpestriz128:
10141      Opcode = X86ISD::PCMPESTRI;
10142      X86CC = X86::COND_E;
10143      break;
10144    }
10145    SmallVector<SDValue, 5> NewOps;
10146    NewOps.append(Op->op_begin()+1, Op->op_end());
10147    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10148    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10149    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10150                                DAG.getConstant(X86CC, MVT::i8),
10151                                SDValue(PCMP.getNode(), 1));
10152    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10153  }
10154
10155  case Intrinsic::x86_sse42_pcmpistri128:
10156  case Intrinsic::x86_sse42_pcmpestri128: {
10157    unsigned Opcode;
10158    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10159      Opcode = X86ISD::PCMPISTRI;
10160    else
10161      Opcode = X86ISD::PCMPESTRI;
10162
10163    SmallVector<SDValue, 5> NewOps;
10164    NewOps.append(Op->op_begin()+1, Op->op_end());
10165    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10166    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10167  }
10168  case Intrinsic::x86_fma_vfmadd_ps:
10169  case Intrinsic::x86_fma_vfmadd_pd:
10170  case Intrinsic::x86_fma_vfmsub_ps:
10171  case Intrinsic::x86_fma_vfmsub_pd:
10172  case Intrinsic::x86_fma_vfnmadd_ps:
10173  case Intrinsic::x86_fma_vfnmadd_pd:
10174  case Intrinsic::x86_fma_vfnmsub_ps:
10175  case Intrinsic::x86_fma_vfnmsub_pd:
10176  case Intrinsic::x86_fma_vfmaddsub_ps:
10177  case Intrinsic::x86_fma_vfmaddsub_pd:
10178  case Intrinsic::x86_fma_vfmsubadd_ps:
10179  case Intrinsic::x86_fma_vfmsubadd_pd:
10180  case Intrinsic::x86_fma_vfmadd_ps_256:
10181  case Intrinsic::x86_fma_vfmadd_pd_256:
10182  case Intrinsic::x86_fma_vfmsub_ps_256:
10183  case Intrinsic::x86_fma_vfmsub_pd_256:
10184  case Intrinsic::x86_fma_vfnmadd_ps_256:
10185  case Intrinsic::x86_fma_vfnmadd_pd_256:
10186  case Intrinsic::x86_fma_vfnmsub_ps_256:
10187  case Intrinsic::x86_fma_vfnmsub_pd_256:
10188  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10189  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10190  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10191  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10192    unsigned Opc;
10193    switch (IntNo) {
10194    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10195    case Intrinsic::x86_fma_vfmadd_ps:
10196    case Intrinsic::x86_fma_vfmadd_pd:
10197    case Intrinsic::x86_fma_vfmadd_ps_256:
10198    case Intrinsic::x86_fma_vfmadd_pd_256:
10199      Opc = X86ISD::FMADD;
10200      break;
10201    case Intrinsic::x86_fma_vfmsub_ps:
10202    case Intrinsic::x86_fma_vfmsub_pd:
10203    case Intrinsic::x86_fma_vfmsub_ps_256:
10204    case Intrinsic::x86_fma_vfmsub_pd_256:
10205      Opc = X86ISD::FMSUB;
10206      break;
10207    case Intrinsic::x86_fma_vfnmadd_ps:
10208    case Intrinsic::x86_fma_vfnmadd_pd:
10209    case Intrinsic::x86_fma_vfnmadd_ps_256:
10210    case Intrinsic::x86_fma_vfnmadd_pd_256:
10211      Opc = X86ISD::FNMADD;
10212      break;
10213    case Intrinsic::x86_fma_vfnmsub_ps:
10214    case Intrinsic::x86_fma_vfnmsub_pd:
10215    case Intrinsic::x86_fma_vfnmsub_ps_256:
10216    case Intrinsic::x86_fma_vfnmsub_pd_256:
10217      Opc = X86ISD::FNMSUB;
10218      break;
10219    case Intrinsic::x86_fma_vfmaddsub_ps:
10220    case Intrinsic::x86_fma_vfmaddsub_pd:
10221    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10222    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10223      Opc = X86ISD::FMADDSUB;
10224      break;
10225    case Intrinsic::x86_fma_vfmsubadd_ps:
10226    case Intrinsic::x86_fma_vfmsubadd_pd:
10227    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10228    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10229      Opc = X86ISD::FMSUBADD;
10230      break;
10231    }
10232
10233    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10234                       Op.getOperand(2), Op.getOperand(3));
10235  }
10236  }
10237}
10238
10239static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10240  DebugLoc dl = Op.getDebugLoc();
10241  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10242  switch (IntNo) {
10243  default: return SDValue();    // Don't custom lower most intrinsics.
10244
10245  // RDRAND intrinsics.
10246  case Intrinsic::x86_rdrand_16:
10247  case Intrinsic::x86_rdrand_32:
10248  case Intrinsic::x86_rdrand_64: {
10249    // Emit the node with the right value type.
10250    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10251    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10252
10253    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10254    // return the value from Rand, which is always 0, casted to i32.
10255    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10256                      DAG.getConstant(1, Op->getValueType(1)),
10257                      DAG.getConstant(X86::COND_B, MVT::i32),
10258                      SDValue(Result.getNode(), 1) };
10259    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10260                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10261                                  Ops, 4);
10262
10263    // Return { result, isValid, chain }.
10264    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10265                       SDValue(Result.getNode(), 2));
10266  }
10267  }
10268}
10269
10270SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10271                                           SelectionDAG &DAG) const {
10272  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10273  MFI->setReturnAddressIsTaken(true);
10274
10275  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10276  DebugLoc dl = Op.getDebugLoc();
10277
10278  if (Depth > 0) {
10279    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10280    SDValue Offset =
10281      DAG.getConstant(TD->getPointerSize(),
10282                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
10283    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10284                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
10285                                   FrameAddr, Offset),
10286                       MachinePointerInfo(), false, false, false, 0);
10287  }
10288
10289  // Just load the return address.
10290  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10291  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10292                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10293}
10294
10295SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10296  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10297  MFI->setFrameAddressIsTaken(true);
10298
10299  EVT VT = Op.getValueType();
10300  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10301  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10302  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10303  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10304  while (Depth--)
10305    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10306                            MachinePointerInfo(),
10307                            false, false, false, 0);
10308  return FrameAddr;
10309}
10310
10311SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10312                                                     SelectionDAG &DAG) const {
10313  return DAG.getIntPtrConstant(2*TD->getPointerSize());
10314}
10315
10316SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10317  SDValue Chain     = Op.getOperand(0);
10318  SDValue Offset    = Op.getOperand(1);
10319  SDValue Handler   = Op.getOperand(2);
10320  DebugLoc dl       = Op.getDebugLoc();
10321
10322  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10323                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10324                                     getPointerTy());
10325  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10326
10327  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10328                                  DAG.getIntPtrConstant(TD->getPointerSize()));
10329  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10330  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10331                       false, false, 0);
10332  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10333
10334  return DAG.getNode(X86ISD::EH_RETURN, dl,
10335                     MVT::Other,
10336                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10337}
10338
10339static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
10340  return Op.getOperand(0);
10341}
10342
10343SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10344                                                SelectionDAG &DAG) const {
10345  SDValue Root = Op.getOperand(0);
10346  SDValue Trmp = Op.getOperand(1); // trampoline
10347  SDValue FPtr = Op.getOperand(2); // nested function
10348  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10349  DebugLoc dl  = Op.getDebugLoc();
10350
10351  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10352  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
10353
10354  if (Subtarget->is64Bit()) {
10355    SDValue OutChains[6];
10356
10357    // Large code-model.
10358    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10359    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10360
10361    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
10362    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
10363
10364    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10365
10366    // Load the pointer to the nested function into R11.
10367    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10368    SDValue Addr = Trmp;
10369    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10370                                Addr, MachinePointerInfo(TrmpAddr),
10371                                false, false, 0);
10372
10373    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10374                       DAG.getConstant(2, MVT::i64));
10375    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10376                                MachinePointerInfo(TrmpAddr, 2),
10377                                false, false, 2);
10378
10379    // Load the 'nest' parameter value into R10.
10380    // R10 is specified in X86CallingConv.td
10381    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10382    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10383                       DAG.getConstant(10, MVT::i64));
10384    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10385                                Addr, MachinePointerInfo(TrmpAddr, 10),
10386                                false, false, 0);
10387
10388    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10389                       DAG.getConstant(12, MVT::i64));
10390    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10391                                MachinePointerInfo(TrmpAddr, 12),
10392                                false, false, 2);
10393
10394    // Jump to the nested function.
10395    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10396    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10397                       DAG.getConstant(20, MVT::i64));
10398    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10399                                Addr, MachinePointerInfo(TrmpAddr, 20),
10400                                false, false, 0);
10401
10402    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10403    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10404                       DAG.getConstant(22, MVT::i64));
10405    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10406                                MachinePointerInfo(TrmpAddr, 22),
10407                                false, false, 0);
10408
10409    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10410  } else {
10411    const Function *Func =
10412      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10413    CallingConv::ID CC = Func->getCallingConv();
10414    unsigned NestReg;
10415
10416    switch (CC) {
10417    default:
10418      llvm_unreachable("Unsupported calling convention");
10419    case CallingConv::C:
10420    case CallingConv::X86_StdCall: {
10421      // Pass 'nest' parameter in ECX.
10422      // Must be kept in sync with X86CallingConv.td
10423      NestReg = X86::ECX;
10424
10425      // Check that ECX wasn't needed by an 'inreg' parameter.
10426      FunctionType *FTy = Func->getFunctionType();
10427      const AttrListPtr &Attrs = Func->getAttributes();
10428
10429      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10430        unsigned InRegCount = 0;
10431        unsigned Idx = 1;
10432
10433        for (FunctionType::param_iterator I = FTy->param_begin(),
10434             E = FTy->param_end(); I != E; ++I, ++Idx)
10435          if (Attrs.getParamAttributes(Idx).hasAttribute(Attributes::InReg))
10436            // FIXME: should only count parameters that are lowered to integers.
10437            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10438
10439        if (InRegCount > 2) {
10440          report_fatal_error("Nest register in use - reduce number of inreg"
10441                             " parameters!");
10442        }
10443      }
10444      break;
10445    }
10446    case CallingConv::X86_FastCall:
10447    case CallingConv::X86_ThisCall:
10448    case CallingConv::Fast:
10449      // Pass 'nest' parameter in EAX.
10450      // Must be kept in sync with X86CallingConv.td
10451      NestReg = X86::EAX;
10452      break;
10453    }
10454
10455    SDValue OutChains[4];
10456    SDValue Addr, Disp;
10457
10458    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10459                       DAG.getConstant(10, MVT::i32));
10460    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10461
10462    // This is storing the opcode for MOV32ri.
10463    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10464    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
10465    OutChains[0] = DAG.getStore(Root, dl,
10466                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10467                                Trmp, MachinePointerInfo(TrmpAddr),
10468                                false, false, 0);
10469
10470    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10471                       DAG.getConstant(1, MVT::i32));
10472    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10473                                MachinePointerInfo(TrmpAddr, 1),
10474                                false, false, 1);
10475
10476    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10477    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10478                       DAG.getConstant(5, MVT::i32));
10479    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10480                                MachinePointerInfo(TrmpAddr, 5),
10481                                false, false, 1);
10482
10483    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10484                       DAG.getConstant(6, MVT::i32));
10485    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10486                                MachinePointerInfo(TrmpAddr, 6),
10487                                false, false, 1);
10488
10489    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10490  }
10491}
10492
10493SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10494                                            SelectionDAG &DAG) const {
10495  /*
10496   The rounding mode is in bits 11:10 of FPSR, and has the following
10497   settings:
10498     00 Round to nearest
10499     01 Round to -inf
10500     10 Round to +inf
10501     11 Round to 0
10502
10503  FLT_ROUNDS, on the other hand, expects the following:
10504    -1 Undefined
10505     0 Round to 0
10506     1 Round to nearest
10507     2 Round to +inf
10508     3 Round to -inf
10509
10510  To perform the conversion, we do:
10511    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10512  */
10513
10514  MachineFunction &MF = DAG.getMachineFunction();
10515  const TargetMachine &TM = MF.getTarget();
10516  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10517  unsigned StackAlignment = TFI.getStackAlignment();
10518  EVT VT = Op.getValueType();
10519  DebugLoc DL = Op.getDebugLoc();
10520
10521  // Save FP Control Word to stack slot
10522  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10523  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10524
10525
10526  MachineMemOperand *MMO =
10527   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10528                           MachineMemOperand::MOStore, 2, 2);
10529
10530  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10531  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10532                                          DAG.getVTList(MVT::Other),
10533                                          Ops, 2, MVT::i16, MMO);
10534
10535  // Load FP Control Word from stack slot
10536  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10537                            MachinePointerInfo(), false, false, false, 0);
10538
10539  // Transform as necessary
10540  SDValue CWD1 =
10541    DAG.getNode(ISD::SRL, DL, MVT::i16,
10542                DAG.getNode(ISD::AND, DL, MVT::i16,
10543                            CWD, DAG.getConstant(0x800, MVT::i16)),
10544                DAG.getConstant(11, MVT::i8));
10545  SDValue CWD2 =
10546    DAG.getNode(ISD::SRL, DL, MVT::i16,
10547                DAG.getNode(ISD::AND, DL, MVT::i16,
10548                            CWD, DAG.getConstant(0x400, MVT::i16)),
10549                DAG.getConstant(9, MVT::i8));
10550
10551  SDValue RetVal =
10552    DAG.getNode(ISD::AND, DL, MVT::i16,
10553                DAG.getNode(ISD::ADD, DL, MVT::i16,
10554                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10555                            DAG.getConstant(1, MVT::i16)),
10556                DAG.getConstant(3, MVT::i16));
10557
10558
10559  return DAG.getNode((VT.getSizeInBits() < 16 ?
10560                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10561}
10562
10563static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
10564  EVT VT = Op.getValueType();
10565  EVT OpVT = VT;
10566  unsigned NumBits = VT.getSizeInBits();
10567  DebugLoc dl = Op.getDebugLoc();
10568
10569  Op = Op.getOperand(0);
10570  if (VT == MVT::i8) {
10571    // Zero extend to i32 since there is not an i8 bsr.
10572    OpVT = MVT::i32;
10573    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10574  }
10575
10576  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10577  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10578  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10579
10580  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10581  SDValue Ops[] = {
10582    Op,
10583    DAG.getConstant(NumBits+NumBits-1, OpVT),
10584    DAG.getConstant(X86::COND_E, MVT::i8),
10585    Op.getValue(1)
10586  };
10587  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10588
10589  // Finally xor with NumBits-1.
10590  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10591
10592  if (VT == MVT::i8)
10593    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10594  return Op;
10595}
10596
10597static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
10598  EVT VT = Op.getValueType();
10599  EVT OpVT = VT;
10600  unsigned NumBits = VT.getSizeInBits();
10601  DebugLoc dl = Op.getDebugLoc();
10602
10603  Op = Op.getOperand(0);
10604  if (VT == MVT::i8) {
10605    // Zero extend to i32 since there is not an i8 bsr.
10606    OpVT = MVT::i32;
10607    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10608  }
10609
10610  // Issue a bsr (scan bits in reverse).
10611  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10612  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10613
10614  // And xor with NumBits-1.
10615  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10616
10617  if (VT == MVT::i8)
10618    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10619  return Op;
10620}
10621
10622static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
10623  EVT VT = Op.getValueType();
10624  unsigned NumBits = VT.getSizeInBits();
10625  DebugLoc dl = Op.getDebugLoc();
10626  Op = Op.getOperand(0);
10627
10628  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10629  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10630  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10631
10632  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10633  SDValue Ops[] = {
10634    Op,
10635    DAG.getConstant(NumBits, VT),
10636    DAG.getConstant(X86::COND_E, MVT::i8),
10637    Op.getValue(1)
10638  };
10639  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10640}
10641
10642// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10643// ones, and then concatenate the result back.
10644static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10645  EVT VT = Op.getValueType();
10646
10647  assert(VT.is256BitVector() && VT.isInteger() &&
10648         "Unsupported value type for operation");
10649
10650  unsigned NumElems = VT.getVectorNumElements();
10651  DebugLoc dl = Op.getDebugLoc();
10652
10653  // Extract the LHS vectors
10654  SDValue LHS = Op.getOperand(0);
10655  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10656  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10657
10658  // Extract the RHS vectors
10659  SDValue RHS = Op.getOperand(1);
10660  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10661  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10662
10663  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10664  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10665
10666  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10667                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10668                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10669}
10670
10671static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
10672  assert(Op.getValueType().is256BitVector() &&
10673         Op.getValueType().isInteger() &&
10674         "Only handle AVX 256-bit vector integer operation");
10675  return Lower256IntArith(Op, DAG);
10676}
10677
10678static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
10679  assert(Op.getValueType().is256BitVector() &&
10680         Op.getValueType().isInteger() &&
10681         "Only handle AVX 256-bit vector integer operation");
10682  return Lower256IntArith(Op, DAG);
10683}
10684
10685static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
10686                        SelectionDAG &DAG) {
10687  EVT VT = Op.getValueType();
10688
10689  // Decompose 256-bit ops into smaller 128-bit ops.
10690  if (VT.is256BitVector() && !Subtarget->hasAVX2())
10691    return Lower256IntArith(Op, DAG);
10692
10693  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10694         "Only know how to lower V2I64/V4I64 multiply");
10695
10696  DebugLoc dl = Op.getDebugLoc();
10697
10698  //  Ahi = psrlqi(a, 32);
10699  //  Bhi = psrlqi(b, 32);
10700  //
10701  //  AloBlo = pmuludq(a, b);
10702  //  AloBhi = pmuludq(a, Bhi);
10703  //  AhiBlo = pmuludq(Ahi, b);
10704
10705  //  AloBhi = psllqi(AloBhi, 32);
10706  //  AhiBlo = psllqi(AhiBlo, 32);
10707  //  return AloBlo + AloBhi + AhiBlo;
10708
10709  SDValue A = Op.getOperand(0);
10710  SDValue B = Op.getOperand(1);
10711
10712  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10713
10714  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10715  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10716
10717  // Bit cast to 32-bit vectors for MULUDQ
10718  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10719  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10720  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10721  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10722  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10723
10724  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10725  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10726  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10727
10728  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10729  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10730
10731  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10732  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10733}
10734
10735SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10736
10737  EVT VT = Op.getValueType();
10738  DebugLoc dl = Op.getDebugLoc();
10739  SDValue R = Op.getOperand(0);
10740  SDValue Amt = Op.getOperand(1);
10741  LLVMContext *Context = DAG.getContext();
10742
10743  if (!Subtarget->hasSSE2())
10744    return SDValue();
10745
10746  // Optimize shl/srl/sra with constant shift amount.
10747  if (isSplatVector(Amt.getNode())) {
10748    SDValue SclrAmt = Amt->getOperand(0);
10749    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10750      uint64_t ShiftAmt = C->getZExtValue();
10751
10752      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10753          (Subtarget->hasAVX2() &&
10754           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10755        if (Op.getOpcode() == ISD::SHL)
10756          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10757                             DAG.getConstant(ShiftAmt, MVT::i32));
10758        if (Op.getOpcode() == ISD::SRL)
10759          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10760                             DAG.getConstant(ShiftAmt, MVT::i32));
10761        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10762          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10763                             DAG.getConstant(ShiftAmt, MVT::i32));
10764      }
10765
10766      if (VT == MVT::v16i8) {
10767        if (Op.getOpcode() == ISD::SHL) {
10768          // Make a large shift.
10769          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10770                                    DAG.getConstant(ShiftAmt, MVT::i32));
10771          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10772          // Zero out the rightmost bits.
10773          SmallVector<SDValue, 16> V(16,
10774                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10775                                                     MVT::i8));
10776          return DAG.getNode(ISD::AND, dl, VT, SHL,
10777                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10778        }
10779        if (Op.getOpcode() == ISD::SRL) {
10780          // Make a large shift.
10781          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10782                                    DAG.getConstant(ShiftAmt, MVT::i32));
10783          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10784          // Zero out the leftmost bits.
10785          SmallVector<SDValue, 16> V(16,
10786                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10787                                                     MVT::i8));
10788          return DAG.getNode(ISD::AND, dl, VT, SRL,
10789                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10790        }
10791        if (Op.getOpcode() == ISD::SRA) {
10792          if (ShiftAmt == 7) {
10793            // R s>> 7  ===  R s< 0
10794            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10795            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10796          }
10797
10798          // R s>> a === ((R u>> a) ^ m) - m
10799          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10800          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10801                                                         MVT::i8));
10802          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10803          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10804          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10805          return Res;
10806        }
10807        llvm_unreachable("Unknown shift opcode.");
10808      }
10809
10810      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10811        if (Op.getOpcode() == ISD::SHL) {
10812          // Make a large shift.
10813          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10814                                    DAG.getConstant(ShiftAmt, MVT::i32));
10815          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10816          // Zero out the rightmost bits.
10817          SmallVector<SDValue, 32> V(32,
10818                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10819                                                     MVT::i8));
10820          return DAG.getNode(ISD::AND, dl, VT, SHL,
10821                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10822        }
10823        if (Op.getOpcode() == ISD::SRL) {
10824          // Make a large shift.
10825          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10826                                    DAG.getConstant(ShiftAmt, MVT::i32));
10827          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10828          // Zero out the leftmost bits.
10829          SmallVector<SDValue, 32> V(32,
10830                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10831                                                     MVT::i8));
10832          return DAG.getNode(ISD::AND, dl, VT, SRL,
10833                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10834        }
10835        if (Op.getOpcode() == ISD::SRA) {
10836          if (ShiftAmt == 7) {
10837            // R s>> 7  ===  R s< 0
10838            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10839            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10840          }
10841
10842          // R s>> a === ((R u>> a) ^ m) - m
10843          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10844          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10845                                                         MVT::i8));
10846          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10847          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10848          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10849          return Res;
10850        }
10851        llvm_unreachable("Unknown shift opcode.");
10852      }
10853    }
10854  }
10855
10856  // Lower SHL with variable shift amount.
10857  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10858    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10859                     DAG.getConstant(23, MVT::i32));
10860
10861    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10862    Constant *C = ConstantDataVector::get(*Context, CV);
10863    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10864    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10865                                 MachinePointerInfo::getConstantPool(),
10866                                 false, false, false, 16);
10867
10868    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10869    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10870    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10871    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10872  }
10873  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10874    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10875
10876    // a = a << 5;
10877    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10878                     DAG.getConstant(5, MVT::i32));
10879    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10880
10881    // Turn 'a' into a mask suitable for VSELECT
10882    SDValue VSelM = DAG.getConstant(0x80, VT);
10883    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10884    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10885
10886    SDValue CM1 = DAG.getConstant(0x0f, VT);
10887    SDValue CM2 = DAG.getConstant(0x3f, VT);
10888
10889    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10890    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10891    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10892                            DAG.getConstant(4, MVT::i32), DAG);
10893    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10894    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10895
10896    // a += a
10897    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10898    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10899    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10900
10901    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10902    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10903    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10904                            DAG.getConstant(2, MVT::i32), DAG);
10905    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10906    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10907
10908    // a += a
10909    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10910    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10911    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10912
10913    // return VSELECT(r, r+r, a);
10914    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10915                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10916    return R;
10917  }
10918
10919  // Decompose 256-bit shifts into smaller 128-bit shifts.
10920  if (VT.is256BitVector()) {
10921    unsigned NumElems = VT.getVectorNumElements();
10922    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10923    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10924
10925    // Extract the two vectors
10926    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10927    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10928
10929    // Recreate the shift amount vectors
10930    SDValue Amt1, Amt2;
10931    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10932      // Constant shift amount
10933      SmallVector<SDValue, 4> Amt1Csts;
10934      SmallVector<SDValue, 4> Amt2Csts;
10935      for (unsigned i = 0; i != NumElems/2; ++i)
10936        Amt1Csts.push_back(Amt->getOperand(i));
10937      for (unsigned i = NumElems/2; i != NumElems; ++i)
10938        Amt2Csts.push_back(Amt->getOperand(i));
10939
10940      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10941                                 &Amt1Csts[0], NumElems/2);
10942      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10943                                 &Amt2Csts[0], NumElems/2);
10944    } else {
10945      // Variable shift amount
10946      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
10947      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
10948    }
10949
10950    // Issue new vector shifts for the smaller types
10951    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10952    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10953
10954    // Concatenate the result back
10955    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10956  }
10957
10958  return SDValue();
10959}
10960
10961static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
10962  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10963  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10964  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10965  // has only one use.
10966  SDNode *N = Op.getNode();
10967  SDValue LHS = N->getOperand(0);
10968  SDValue RHS = N->getOperand(1);
10969  unsigned BaseOp = 0;
10970  unsigned Cond = 0;
10971  DebugLoc DL = Op.getDebugLoc();
10972  switch (Op.getOpcode()) {
10973  default: llvm_unreachable("Unknown ovf instruction!");
10974  case ISD::SADDO:
10975    // A subtract of one will be selected as a INC. Note that INC doesn't
10976    // set CF, so we can't do this for UADDO.
10977    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10978      if (C->isOne()) {
10979        BaseOp = X86ISD::INC;
10980        Cond = X86::COND_O;
10981        break;
10982      }
10983    BaseOp = X86ISD::ADD;
10984    Cond = X86::COND_O;
10985    break;
10986  case ISD::UADDO:
10987    BaseOp = X86ISD::ADD;
10988    Cond = X86::COND_B;
10989    break;
10990  case ISD::SSUBO:
10991    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10992    // set CF, so we can't do this for USUBO.
10993    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10994      if (C->isOne()) {
10995        BaseOp = X86ISD::DEC;
10996        Cond = X86::COND_O;
10997        break;
10998      }
10999    BaseOp = X86ISD::SUB;
11000    Cond = X86::COND_O;
11001    break;
11002  case ISD::USUBO:
11003    BaseOp = X86ISD::SUB;
11004    Cond = X86::COND_B;
11005    break;
11006  case ISD::SMULO:
11007    BaseOp = X86ISD::SMUL;
11008    Cond = X86::COND_O;
11009    break;
11010  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11011    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11012                                 MVT::i32);
11013    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11014
11015    SDValue SetCC =
11016      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11017                  DAG.getConstant(X86::COND_O, MVT::i32),
11018                  SDValue(Sum.getNode(), 2));
11019
11020    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11021  }
11022  }
11023
11024  // Also sets EFLAGS.
11025  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11026  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11027
11028  SDValue SetCC =
11029    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11030                DAG.getConstant(Cond, MVT::i32),
11031                SDValue(Sum.getNode(), 1));
11032
11033  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11034}
11035
11036SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11037                                                  SelectionDAG &DAG) const {
11038  DebugLoc dl = Op.getDebugLoc();
11039  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11040  EVT VT = Op.getValueType();
11041
11042  if (!Subtarget->hasSSE2() || !VT.isVector())
11043    return SDValue();
11044
11045  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11046                      ExtraVT.getScalarType().getSizeInBits();
11047  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11048
11049  switch (VT.getSimpleVT().SimpleTy) {
11050    default: return SDValue();
11051    case MVT::v8i32:
11052    case MVT::v16i16:
11053      if (!Subtarget->hasAVX())
11054        return SDValue();
11055      if (!Subtarget->hasAVX2()) {
11056        // needs to be split
11057        unsigned NumElems = VT.getVectorNumElements();
11058
11059        // Extract the LHS vectors
11060        SDValue LHS = Op.getOperand(0);
11061        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11062        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11063
11064        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11065        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11066
11067        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11068        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11069        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11070                                   ExtraNumElems/2);
11071        SDValue Extra = DAG.getValueType(ExtraVT);
11072
11073        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11074        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11075
11076        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11077      }
11078      // fall through
11079    case MVT::v4i32:
11080    case MVT::v8i16: {
11081      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11082                                         Op.getOperand(0), ShAmt, DAG);
11083      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11084    }
11085  }
11086}
11087
11088
11089static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11090                              SelectionDAG &DAG) {
11091  DebugLoc dl = Op.getDebugLoc();
11092
11093  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11094  // There isn't any reason to disable it if the target processor supports it.
11095  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11096    SDValue Chain = Op.getOperand(0);
11097    SDValue Zero = DAG.getConstant(0, MVT::i32);
11098    SDValue Ops[] = {
11099      DAG.getRegister(X86::ESP, MVT::i32), // Base
11100      DAG.getTargetConstant(1, MVT::i8),   // Scale
11101      DAG.getRegister(0, MVT::i32),        // Index
11102      DAG.getTargetConstant(0, MVT::i32),  // Disp
11103      DAG.getRegister(0, MVT::i32),        // Segment.
11104      Zero,
11105      Chain
11106    };
11107    SDNode *Res =
11108      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11109                          array_lengthof(Ops));
11110    return SDValue(Res, 0);
11111  }
11112
11113  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11114  if (!isDev)
11115    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11116
11117  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11118  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11119  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11120  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11121
11122  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11123  if (!Op1 && !Op2 && !Op3 && Op4)
11124    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11125
11126  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11127  if (Op1 && !Op2 && !Op3 && !Op4)
11128    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11129
11130  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11131  //           (MFENCE)>;
11132  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11133}
11134
11135static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11136                                 SelectionDAG &DAG) {
11137  DebugLoc dl = Op.getDebugLoc();
11138  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11139    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11140  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11141    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11142
11143  // The only fence that needs an instruction is a sequentially-consistent
11144  // cross-thread fence.
11145  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11146    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11147    // no-sse2). There isn't any reason to disable it if the target processor
11148    // supports it.
11149    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11150      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11151
11152    SDValue Chain = Op.getOperand(0);
11153    SDValue Zero = DAG.getConstant(0, MVT::i32);
11154    SDValue Ops[] = {
11155      DAG.getRegister(X86::ESP, MVT::i32), // Base
11156      DAG.getTargetConstant(1, MVT::i8),   // Scale
11157      DAG.getRegister(0, MVT::i32),        // Index
11158      DAG.getTargetConstant(0, MVT::i32),  // Disp
11159      DAG.getRegister(0, MVT::i32),        // Segment.
11160      Zero,
11161      Chain
11162    };
11163    SDNode *Res =
11164      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11165                         array_lengthof(Ops));
11166    return SDValue(Res, 0);
11167  }
11168
11169  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11170  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11171}
11172
11173
11174static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11175                             SelectionDAG &DAG) {
11176  EVT T = Op.getValueType();
11177  DebugLoc DL = Op.getDebugLoc();
11178  unsigned Reg = 0;
11179  unsigned size = 0;
11180  switch(T.getSimpleVT().SimpleTy) {
11181  default: llvm_unreachable("Invalid value type!");
11182  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11183  case MVT::i16: Reg = X86::AX;  size = 2; break;
11184  case MVT::i32: Reg = X86::EAX; size = 4; break;
11185  case MVT::i64:
11186    assert(Subtarget->is64Bit() && "Node not type legal!");
11187    Reg = X86::RAX; size = 8;
11188    break;
11189  }
11190  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11191                                    Op.getOperand(2), SDValue());
11192  SDValue Ops[] = { cpIn.getValue(0),
11193                    Op.getOperand(1),
11194                    Op.getOperand(3),
11195                    DAG.getTargetConstant(size, MVT::i8),
11196                    cpIn.getValue(1) };
11197  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11198  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11199  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11200                                           Ops, 5, T, MMO);
11201  SDValue cpOut =
11202    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11203  return cpOut;
11204}
11205
11206static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11207                                     SelectionDAG &DAG) {
11208  assert(Subtarget->is64Bit() && "Result not type legalized?");
11209  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11210  SDValue TheChain = Op.getOperand(0);
11211  DebugLoc dl = Op.getDebugLoc();
11212  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11213  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11214  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11215                                   rax.getValue(2));
11216  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11217                            DAG.getConstant(32, MVT::i8));
11218  SDValue Ops[] = {
11219    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11220    rdx.getValue(1)
11221  };
11222  return DAG.getMergeValues(Ops, 2, dl);
11223}
11224
11225SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11226  EVT SrcVT = Op.getOperand(0).getValueType();
11227  EVT DstVT = Op.getValueType();
11228  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11229         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11230  assert((DstVT == MVT::i64 ||
11231          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11232         "Unexpected custom BITCAST");
11233  // i64 <=> MMX conversions are Legal.
11234  if (SrcVT==MVT::i64 && DstVT.isVector())
11235    return Op;
11236  if (DstVT==MVT::i64 && SrcVT.isVector())
11237    return Op;
11238  // MMX <=> MMX conversions are Legal.
11239  if (SrcVT.isVector() && DstVT.isVector())
11240    return Op;
11241  // All other conversions need to be expanded.
11242  return SDValue();
11243}
11244
11245static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11246  SDNode *Node = Op.getNode();
11247  DebugLoc dl = Node->getDebugLoc();
11248  EVT T = Node->getValueType(0);
11249  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11250                              DAG.getConstant(0, T), Node->getOperand(2));
11251  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11252                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11253                       Node->getOperand(0),
11254                       Node->getOperand(1), negOp,
11255                       cast<AtomicSDNode>(Node)->getSrcValue(),
11256                       cast<AtomicSDNode>(Node)->getAlignment(),
11257                       cast<AtomicSDNode>(Node)->getOrdering(),
11258                       cast<AtomicSDNode>(Node)->getSynchScope());
11259}
11260
11261static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11262  SDNode *Node = Op.getNode();
11263  DebugLoc dl = Node->getDebugLoc();
11264  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11265
11266  // Convert seq_cst store -> xchg
11267  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11268  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11269  //        (The only way to get a 16-byte store is cmpxchg16b)
11270  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11271  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11272      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11273    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11274                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11275                                 Node->getOperand(0),
11276                                 Node->getOperand(1), Node->getOperand(2),
11277                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11278                                 cast<AtomicSDNode>(Node)->getOrdering(),
11279                                 cast<AtomicSDNode>(Node)->getSynchScope());
11280    return Swap.getValue(1);
11281  }
11282  // Other atomic stores have a simple pattern.
11283  return Op;
11284}
11285
11286static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11287  EVT VT = Op.getNode()->getValueType(0);
11288
11289  // Let legalize expand this if it isn't a legal type yet.
11290  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11291    return SDValue();
11292
11293  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11294
11295  unsigned Opc;
11296  bool ExtraOp = false;
11297  switch (Op.getOpcode()) {
11298  default: llvm_unreachable("Invalid code");
11299  case ISD::ADDC: Opc = X86ISD::ADD; break;
11300  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11301  case ISD::SUBC: Opc = X86ISD::SUB; break;
11302  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11303  }
11304
11305  if (!ExtraOp)
11306    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11307                       Op.getOperand(1));
11308  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11309                     Op.getOperand(1), Op.getOperand(2));
11310}
11311
11312/// LowerOperation - Provide custom lowering hooks for some operations.
11313///
11314SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11315  switch (Op.getOpcode()) {
11316  default: llvm_unreachable("Should not custom lower this!");
11317  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
11318  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
11319  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
11320  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
11321  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
11322  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
11323  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11324  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
11325  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11326  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11327  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11328  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
11329  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
11330  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11331  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11332  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11333  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11334  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
11335  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11336  case ISD::SHL_PARTS:
11337  case ISD::SRA_PARTS:
11338  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
11339  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
11340  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
11341  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
11342  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
11343  case ISD::FP_EXTEND:          return lowerFP_EXTEND(Op, DAG);
11344  case ISD::FABS:               return LowerFABS(Op, DAG);
11345  case ISD::FNEG:               return LowerFNEG(Op, DAG);
11346  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
11347  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
11348  case ISD::SETCC:              return LowerSETCC(Op, DAG);
11349  case ISD::SELECT:             return LowerSELECT(Op, DAG);
11350  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
11351  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11352  case ISD::VASTART:            return LowerVASTART(Op, DAG);
11353  case ISD::VAARG:              return LowerVAARG(Op, DAG);
11354  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
11355  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11356  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
11357  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11358  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11359  case ISD::FRAME_TO_ARGS_OFFSET:
11360                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
11361  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11362  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
11363  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11364  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11365  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11366  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
11367  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
11368  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
11369  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
11370  case ISD::SRA:
11371  case ISD::SRL:
11372  case ISD::SHL:                return LowerShift(Op, DAG);
11373  case ISD::SADDO:
11374  case ISD::UADDO:
11375  case ISD::SSUBO:
11376  case ISD::USUBO:
11377  case ISD::SMULO:
11378  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11379  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
11380  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11381  case ISD::ADDC:
11382  case ISD::ADDE:
11383  case ISD::SUBC:
11384  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11385  case ISD::ADD:                return LowerADD(Op, DAG);
11386  case ISD::SUB:                return LowerSUB(Op, DAG);
11387  }
11388}
11389
11390static void ReplaceATOMIC_LOAD(SDNode *Node,
11391                                  SmallVectorImpl<SDValue> &Results,
11392                                  SelectionDAG &DAG) {
11393  DebugLoc dl = Node->getDebugLoc();
11394  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11395
11396  // Convert wide load -> cmpxchg8b/cmpxchg16b
11397  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11398  //        (The only way to get a 16-byte load is cmpxchg16b)
11399  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11400  SDValue Zero = DAG.getConstant(0, VT);
11401  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11402                               Node->getOperand(0),
11403                               Node->getOperand(1), Zero, Zero,
11404                               cast<AtomicSDNode>(Node)->getMemOperand(),
11405                               cast<AtomicSDNode>(Node)->getOrdering(),
11406                               cast<AtomicSDNode>(Node)->getSynchScope());
11407  Results.push_back(Swap.getValue(0));
11408  Results.push_back(Swap.getValue(1));
11409}
11410
11411static void
11412ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11413                        SelectionDAG &DAG, unsigned NewOp) {
11414  DebugLoc dl = Node->getDebugLoc();
11415  assert (Node->getValueType(0) == MVT::i64 &&
11416          "Only know how to expand i64 atomics");
11417
11418  SDValue Chain = Node->getOperand(0);
11419  SDValue In1 = Node->getOperand(1);
11420  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11421                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11422  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11423                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11424  SDValue Ops[] = { Chain, In1, In2L, In2H };
11425  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11426  SDValue Result =
11427    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11428                            cast<MemSDNode>(Node)->getMemOperand());
11429  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11430  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11431  Results.push_back(Result.getValue(2));
11432}
11433
11434/// ReplaceNodeResults - Replace a node with an illegal result type
11435/// with a new node built out of custom code.
11436void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11437                                           SmallVectorImpl<SDValue>&Results,
11438                                           SelectionDAG &DAG) const {
11439  DebugLoc dl = N->getDebugLoc();
11440  switch (N->getOpcode()) {
11441  default:
11442    llvm_unreachable("Do not know how to custom type legalize this operation!");
11443  case ISD::SIGN_EXTEND_INREG:
11444  case ISD::ADDC:
11445  case ISD::ADDE:
11446  case ISD::SUBC:
11447  case ISD::SUBE:
11448    // We don't want to expand or promote these.
11449    return;
11450  case ISD::FP_TO_SINT:
11451  case ISD::FP_TO_UINT: {
11452    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11453
11454    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11455      return;
11456
11457    std::pair<SDValue,SDValue> Vals =
11458        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11459    SDValue FIST = Vals.first, StackSlot = Vals.second;
11460    if (FIST.getNode() != 0) {
11461      EVT VT = N->getValueType(0);
11462      // Return a load from the stack slot.
11463      if (StackSlot.getNode() != 0)
11464        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11465                                      MachinePointerInfo(),
11466                                      false, false, false, 0));
11467      else
11468        Results.push_back(FIST);
11469    }
11470    return;
11471  }
11472  case ISD::FP_ROUND: {
11473    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
11474    Results.push_back(V);
11475    return;
11476  }
11477  case ISD::READCYCLECOUNTER: {
11478    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11479    SDValue TheChain = N->getOperand(0);
11480    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11481    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11482                                     rd.getValue(1));
11483    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11484                                     eax.getValue(2));
11485    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11486    SDValue Ops[] = { eax, edx };
11487    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11488    Results.push_back(edx.getValue(1));
11489    return;
11490  }
11491  case ISD::ATOMIC_CMP_SWAP: {
11492    EVT T = N->getValueType(0);
11493    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11494    bool Regs64bit = T == MVT::i128;
11495    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11496    SDValue cpInL, cpInH;
11497    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11498                        DAG.getConstant(0, HalfT));
11499    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11500                        DAG.getConstant(1, HalfT));
11501    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11502                             Regs64bit ? X86::RAX : X86::EAX,
11503                             cpInL, SDValue());
11504    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11505                             Regs64bit ? X86::RDX : X86::EDX,
11506                             cpInH, cpInL.getValue(1));
11507    SDValue swapInL, swapInH;
11508    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11509                          DAG.getConstant(0, HalfT));
11510    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11511                          DAG.getConstant(1, HalfT));
11512    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11513                               Regs64bit ? X86::RBX : X86::EBX,
11514                               swapInL, cpInH.getValue(1));
11515    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11516                               Regs64bit ? X86::RCX : X86::ECX,
11517                               swapInH, swapInL.getValue(1));
11518    SDValue Ops[] = { swapInH.getValue(0),
11519                      N->getOperand(1),
11520                      swapInH.getValue(1) };
11521    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11522    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11523    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11524                                  X86ISD::LCMPXCHG8_DAG;
11525    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11526                                             Ops, 3, T, MMO);
11527    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11528                                        Regs64bit ? X86::RAX : X86::EAX,
11529                                        HalfT, Result.getValue(1));
11530    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11531                                        Regs64bit ? X86::RDX : X86::EDX,
11532                                        HalfT, cpOutL.getValue(2));
11533    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11534    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11535    Results.push_back(cpOutH.getValue(1));
11536    return;
11537  }
11538  case ISD::ATOMIC_LOAD_ADD:
11539  case ISD::ATOMIC_LOAD_AND:
11540  case ISD::ATOMIC_LOAD_NAND:
11541  case ISD::ATOMIC_LOAD_OR:
11542  case ISD::ATOMIC_LOAD_SUB:
11543  case ISD::ATOMIC_LOAD_XOR:
11544  case ISD::ATOMIC_LOAD_MAX:
11545  case ISD::ATOMIC_LOAD_MIN:
11546  case ISD::ATOMIC_LOAD_UMAX:
11547  case ISD::ATOMIC_LOAD_UMIN:
11548  case ISD::ATOMIC_SWAP: {
11549    unsigned Opc;
11550    switch (N->getOpcode()) {
11551    default: llvm_unreachable("Unexpected opcode");
11552    case ISD::ATOMIC_LOAD_ADD:
11553      Opc = X86ISD::ATOMADD64_DAG;
11554      break;
11555    case ISD::ATOMIC_LOAD_AND:
11556      Opc = X86ISD::ATOMAND64_DAG;
11557      break;
11558    case ISD::ATOMIC_LOAD_NAND:
11559      Opc = X86ISD::ATOMNAND64_DAG;
11560      break;
11561    case ISD::ATOMIC_LOAD_OR:
11562      Opc = X86ISD::ATOMOR64_DAG;
11563      break;
11564    case ISD::ATOMIC_LOAD_SUB:
11565      Opc = X86ISD::ATOMSUB64_DAG;
11566      break;
11567    case ISD::ATOMIC_LOAD_XOR:
11568      Opc = X86ISD::ATOMXOR64_DAG;
11569      break;
11570    case ISD::ATOMIC_LOAD_MAX:
11571      Opc = X86ISD::ATOMMAX64_DAG;
11572      break;
11573    case ISD::ATOMIC_LOAD_MIN:
11574      Opc = X86ISD::ATOMMIN64_DAG;
11575      break;
11576    case ISD::ATOMIC_LOAD_UMAX:
11577      Opc = X86ISD::ATOMUMAX64_DAG;
11578      break;
11579    case ISD::ATOMIC_LOAD_UMIN:
11580      Opc = X86ISD::ATOMUMIN64_DAG;
11581      break;
11582    case ISD::ATOMIC_SWAP:
11583      Opc = X86ISD::ATOMSWAP64_DAG;
11584      break;
11585    }
11586    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
11587    return;
11588  }
11589  case ISD::ATOMIC_LOAD:
11590    ReplaceATOMIC_LOAD(N, Results, DAG);
11591  }
11592}
11593
11594const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11595  switch (Opcode) {
11596  default: return NULL;
11597  case X86ISD::BSF:                return "X86ISD::BSF";
11598  case X86ISD::BSR:                return "X86ISD::BSR";
11599  case X86ISD::SHLD:               return "X86ISD::SHLD";
11600  case X86ISD::SHRD:               return "X86ISD::SHRD";
11601  case X86ISD::FAND:               return "X86ISD::FAND";
11602  case X86ISD::FOR:                return "X86ISD::FOR";
11603  case X86ISD::FXOR:               return "X86ISD::FXOR";
11604  case X86ISD::FSRL:               return "X86ISD::FSRL";
11605  case X86ISD::FILD:               return "X86ISD::FILD";
11606  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11607  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11608  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11609  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11610  case X86ISD::FLD:                return "X86ISD::FLD";
11611  case X86ISD::FST:                return "X86ISD::FST";
11612  case X86ISD::CALL:               return "X86ISD::CALL";
11613  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11614  case X86ISD::BT:                 return "X86ISD::BT";
11615  case X86ISD::CMP:                return "X86ISD::CMP";
11616  case X86ISD::COMI:               return "X86ISD::COMI";
11617  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11618  case X86ISD::SETCC:              return "X86ISD::SETCC";
11619  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11620  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11621  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11622  case X86ISD::CMOV:               return "X86ISD::CMOV";
11623  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11624  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11625  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11626  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11627  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11628  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11629  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11630  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11631  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11632  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11633  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11634  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11635  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11636  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11637  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11638  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11639  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11640  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11641  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11642  case X86ISD::HADD:               return "X86ISD::HADD";
11643  case X86ISD::HSUB:               return "X86ISD::HSUB";
11644  case X86ISD::FHADD:              return "X86ISD::FHADD";
11645  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11646  case X86ISD::FMAX:               return "X86ISD::FMAX";
11647  case X86ISD::FMIN:               return "X86ISD::FMIN";
11648  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
11649  case X86ISD::FMINC:              return "X86ISD::FMINC";
11650  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11651  case X86ISD::FRCP:               return "X86ISD::FRCP";
11652  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11653  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11654  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11655  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11656  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11657  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11658  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11659  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11660  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11661  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11662  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11663  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11664  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11665  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11666  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11667  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11668  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
11669  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11670  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
11671  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
11672  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11673  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11674  case X86ISD::VSHL:               return "X86ISD::VSHL";
11675  case X86ISD::VSRL:               return "X86ISD::VSRL";
11676  case X86ISD::VSRA:               return "X86ISD::VSRA";
11677  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11678  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11679  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11680  case X86ISD::CMPP:               return "X86ISD::CMPP";
11681  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11682  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11683  case X86ISD::ADD:                return "X86ISD::ADD";
11684  case X86ISD::SUB:                return "X86ISD::SUB";
11685  case X86ISD::ADC:                return "X86ISD::ADC";
11686  case X86ISD::SBB:                return "X86ISD::SBB";
11687  case X86ISD::SMUL:               return "X86ISD::SMUL";
11688  case X86ISD::UMUL:               return "X86ISD::UMUL";
11689  case X86ISD::INC:                return "X86ISD::INC";
11690  case X86ISD::DEC:                return "X86ISD::DEC";
11691  case X86ISD::OR:                 return "X86ISD::OR";
11692  case X86ISD::XOR:                return "X86ISD::XOR";
11693  case X86ISD::AND:                return "X86ISD::AND";
11694  case X86ISD::ANDN:               return "X86ISD::ANDN";
11695  case X86ISD::BLSI:               return "X86ISD::BLSI";
11696  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11697  case X86ISD::BLSR:               return "X86ISD::BLSR";
11698  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11699  case X86ISD::PTEST:              return "X86ISD::PTEST";
11700  case X86ISD::TESTP:              return "X86ISD::TESTP";
11701  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11702  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11703  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11704  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11705  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11706  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11707  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11708  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11709  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11710  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11711  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11712  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11713  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11714  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11715  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11716  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11717  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11718  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11719  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11720  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11721  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11722  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11723  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11724  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11725  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11726  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11727  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11728  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11729  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11730  case X86ISD::SAHF:               return "X86ISD::SAHF";
11731  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
11732  case X86ISD::FMADD:              return "X86ISD::FMADD";
11733  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
11734  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
11735  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
11736  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
11737  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
11738  }
11739}
11740
11741// isLegalAddressingMode - Return true if the addressing mode represented
11742// by AM is legal for this target, for a load/store of the specified type.
11743bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11744                                              Type *Ty) const {
11745  // X86 supports extremely general addressing modes.
11746  CodeModel::Model M = getTargetMachine().getCodeModel();
11747  Reloc::Model R = getTargetMachine().getRelocationModel();
11748
11749  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11750  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11751    return false;
11752
11753  if (AM.BaseGV) {
11754    unsigned GVFlags =
11755      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11756
11757    // If a reference to this global requires an extra load, we can't fold it.
11758    if (isGlobalStubReference(GVFlags))
11759      return false;
11760
11761    // If BaseGV requires a register for the PIC base, we cannot also have a
11762    // BaseReg specified.
11763    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11764      return false;
11765
11766    // If lower 4G is not available, then we must use rip-relative addressing.
11767    if ((M != CodeModel::Small || R != Reloc::Static) &&
11768        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11769      return false;
11770  }
11771
11772  switch (AM.Scale) {
11773  case 0:
11774  case 1:
11775  case 2:
11776  case 4:
11777  case 8:
11778    // These scales always work.
11779    break;
11780  case 3:
11781  case 5:
11782  case 9:
11783    // These scales are formed with basereg+scalereg.  Only accept if there is
11784    // no basereg yet.
11785    if (AM.HasBaseReg)
11786      return false;
11787    break;
11788  default:  // Other stuff never works.
11789    return false;
11790  }
11791
11792  return true;
11793}
11794
11795
11796bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11797  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11798    return false;
11799  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11800  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11801  if (NumBits1 <= NumBits2)
11802    return false;
11803  return true;
11804}
11805
11806bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11807  return Imm == (int32_t)Imm;
11808}
11809
11810bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
11811  // Can also use sub to handle negated immediates.
11812  return Imm == (int32_t)Imm;
11813}
11814
11815bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11816  if (!VT1.isInteger() || !VT2.isInteger())
11817    return false;
11818  unsigned NumBits1 = VT1.getSizeInBits();
11819  unsigned NumBits2 = VT2.getSizeInBits();
11820  if (NumBits1 <= NumBits2)
11821    return false;
11822  return true;
11823}
11824
11825bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11826  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11827  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11828}
11829
11830bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11831  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11832  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11833}
11834
11835bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11836  // i16 instructions are longer (0x66 prefix) and potentially slower.
11837  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11838}
11839
11840/// isShuffleMaskLegal - Targets can use this to indicate that they only
11841/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11842/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11843/// are assumed to be legal.
11844bool
11845X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11846                                      EVT VT) const {
11847  // Very little shuffling can be done for 64-bit vectors right now.
11848  if (VT.getSizeInBits() == 64)
11849    return false;
11850
11851  // FIXME: pshufb, blends, shifts.
11852  return (VT.getVectorNumElements() == 2 ||
11853          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11854          isMOVLMask(M, VT) ||
11855          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11856          isPSHUFDMask(M, VT) ||
11857          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11858          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11859          isPALIGNRMask(M, VT, Subtarget) ||
11860          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11861          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11862          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11863          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11864}
11865
11866bool
11867X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11868                                          EVT VT) const {
11869  unsigned NumElts = VT.getVectorNumElements();
11870  // FIXME: This collection of masks seems suspect.
11871  if (NumElts == 2)
11872    return true;
11873  if (NumElts == 4 && VT.is128BitVector()) {
11874    return (isMOVLMask(Mask, VT)  ||
11875            isCommutedMOVLMask(Mask, VT, true) ||
11876            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11877            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11878  }
11879  return false;
11880}
11881
11882//===----------------------------------------------------------------------===//
11883//                           X86 Scheduler Hooks
11884//===----------------------------------------------------------------------===//
11885
11886// private utility function
11887
11888// Get CMPXCHG opcode for the specified data type.
11889static unsigned getCmpXChgOpcode(EVT VT) {
11890  switch (VT.getSimpleVT().SimpleTy) {
11891  case MVT::i8:  return X86::LCMPXCHG8;
11892  case MVT::i16: return X86::LCMPXCHG16;
11893  case MVT::i32: return X86::LCMPXCHG32;
11894  case MVT::i64: return X86::LCMPXCHG64;
11895  default:
11896    break;
11897  }
11898  llvm_unreachable("Invalid operand size!");
11899}
11900
11901// Get LOAD opcode for the specified data type.
11902static unsigned getLoadOpcode(EVT VT) {
11903  switch (VT.getSimpleVT().SimpleTy) {
11904  case MVT::i8:  return X86::MOV8rm;
11905  case MVT::i16: return X86::MOV16rm;
11906  case MVT::i32: return X86::MOV32rm;
11907  case MVT::i64: return X86::MOV64rm;
11908  default:
11909    break;
11910  }
11911  llvm_unreachable("Invalid operand size!");
11912}
11913
11914// Get opcode of the non-atomic one from the specified atomic instruction.
11915static unsigned getNonAtomicOpcode(unsigned Opc) {
11916  switch (Opc) {
11917  case X86::ATOMAND8:  return X86::AND8rr;
11918  case X86::ATOMAND16: return X86::AND16rr;
11919  case X86::ATOMAND32: return X86::AND32rr;
11920  case X86::ATOMAND64: return X86::AND64rr;
11921  case X86::ATOMOR8:   return X86::OR8rr;
11922  case X86::ATOMOR16:  return X86::OR16rr;
11923  case X86::ATOMOR32:  return X86::OR32rr;
11924  case X86::ATOMOR64:  return X86::OR64rr;
11925  case X86::ATOMXOR8:  return X86::XOR8rr;
11926  case X86::ATOMXOR16: return X86::XOR16rr;
11927  case X86::ATOMXOR32: return X86::XOR32rr;
11928  case X86::ATOMXOR64: return X86::XOR64rr;
11929  }
11930  llvm_unreachable("Unhandled atomic-load-op opcode!");
11931}
11932
11933// Get opcode of the non-atomic one from the specified atomic instruction with
11934// extra opcode.
11935static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
11936                                               unsigned &ExtraOpc) {
11937  switch (Opc) {
11938  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
11939  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
11940  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
11941  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
11942  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
11943  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
11944  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
11945  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
11946  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
11947  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
11948  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
11949  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
11950  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
11951  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
11952  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
11953  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
11954  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
11955  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
11956  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
11957  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
11958  }
11959  llvm_unreachable("Unhandled atomic-load-op opcode!");
11960}
11961
11962// Get opcode of the non-atomic one from the specified atomic instruction for
11963// 64-bit data type on 32-bit target.
11964static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
11965  switch (Opc) {
11966  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
11967  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
11968  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
11969  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
11970  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
11971  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
11972  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
11973  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
11974  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
11975  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
11976  }
11977  llvm_unreachable("Unhandled atomic-load-op opcode!");
11978}
11979
11980// Get opcode of the non-atomic one from the specified atomic instruction for
11981// 64-bit data type on 32-bit target with extra opcode.
11982static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
11983                                                   unsigned &HiOpc,
11984                                                   unsigned &ExtraOpc) {
11985  switch (Opc) {
11986  case X86::ATOMNAND6432:
11987    ExtraOpc = X86::NOT32r;
11988    HiOpc = X86::AND32rr;
11989    return X86::AND32rr;
11990  }
11991  llvm_unreachable("Unhandled atomic-load-op opcode!");
11992}
11993
11994// Get pseudo CMOV opcode from the specified data type.
11995static unsigned getPseudoCMOVOpc(EVT VT) {
11996  switch (VT.getSimpleVT().SimpleTy) {
11997  case MVT::i8:  return X86::CMOV_GR8;
11998  case MVT::i16: return X86::CMOV_GR16;
11999  case MVT::i32: return X86::CMOV_GR32;
12000  default:
12001    break;
12002  }
12003  llvm_unreachable("Unknown CMOV opcode!");
12004}
12005
12006// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12007// They will be translated into a spin-loop or compare-exchange loop from
12008//
12009//    ...
12010//    dst = atomic-fetch-op MI.addr, MI.val
12011//    ...
12012//
12013// to
12014//
12015//    ...
12016//    EAX = LOAD MI.addr
12017// loop:
12018//    t1 = OP MI.val, EAX
12019//    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12020//    JNE loop
12021// sink:
12022//    dst = EAX
12023//    ...
12024MachineBasicBlock *
12025X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12026                                       MachineBasicBlock *MBB) const {
12027  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12028  DebugLoc DL = MI->getDebugLoc();
12029
12030  MachineFunction *MF = MBB->getParent();
12031  MachineRegisterInfo &MRI = MF->getRegInfo();
12032
12033  const BasicBlock *BB = MBB->getBasicBlock();
12034  MachineFunction::iterator I = MBB;
12035  ++I;
12036
12037  assert(MI->getNumOperands() <= X86::AddrNumOperands + 2 &&
12038         "Unexpected number of operands");
12039
12040  assert(MI->hasOneMemOperand() &&
12041         "Expected atomic-load-op to have one memoperand");
12042
12043  // Memory Reference
12044  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12045  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12046
12047  unsigned DstReg, SrcReg;
12048  unsigned MemOpndSlot;
12049
12050  unsigned CurOp = 0;
12051
12052  DstReg = MI->getOperand(CurOp++).getReg();
12053  MemOpndSlot = CurOp;
12054  CurOp += X86::AddrNumOperands;
12055  SrcReg = MI->getOperand(CurOp++).getReg();
12056
12057  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12058  MVT::SimpleValueType VT = *RC->vt_begin();
12059  unsigned AccPhyReg = getX86SubSuperRegister(X86::EAX, VT);
12060
12061  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12062  unsigned LOADOpc = getLoadOpcode(VT);
12063
12064  // For the atomic load-arith operator, we generate
12065  //
12066  //  thisMBB:
12067  //    EAX = LOAD [MI.addr]
12068  //  mainMBB:
12069  //    t1 = OP MI.val, EAX
12070  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12071  //    JNE mainMBB
12072  //  sinkMBB:
12073
12074  MachineBasicBlock *thisMBB = MBB;
12075  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12076  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12077  MF->insert(I, mainMBB);
12078  MF->insert(I, sinkMBB);
12079
12080  MachineInstrBuilder MIB;
12081
12082  // Transfer the remainder of BB and its successor edges to sinkMBB.
12083  sinkMBB->splice(sinkMBB->begin(), MBB,
12084                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12085  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12086
12087  // thisMBB:
12088  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), AccPhyReg);
12089  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12090    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12091  MIB.setMemRefs(MMOBegin, MMOEnd);
12092
12093  thisMBB->addSuccessor(mainMBB);
12094
12095  // mainMBB:
12096  MachineBasicBlock *origMainMBB = mainMBB;
12097  mainMBB->addLiveIn(AccPhyReg);
12098
12099  // Copy AccPhyReg as it is used more than once.
12100  unsigned AccReg = MRI.createVirtualRegister(RC);
12101  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccReg)
12102    .addReg(AccPhyReg);
12103
12104  unsigned t1 = MRI.createVirtualRegister(RC);
12105  unsigned Opc = MI->getOpcode();
12106  switch (Opc) {
12107  default:
12108    llvm_unreachable("Unhandled atomic-load-op opcode!");
12109  case X86::ATOMAND8:
12110  case X86::ATOMAND16:
12111  case X86::ATOMAND32:
12112  case X86::ATOMAND64:
12113  case X86::ATOMOR8:
12114  case X86::ATOMOR16:
12115  case X86::ATOMOR32:
12116  case X86::ATOMOR64:
12117  case X86::ATOMXOR8:
12118  case X86::ATOMXOR16:
12119  case X86::ATOMXOR32:
12120  case X86::ATOMXOR64: {
12121    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
12122    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t1).addReg(SrcReg)
12123      .addReg(AccReg);
12124    break;
12125  }
12126  case X86::ATOMNAND8:
12127  case X86::ATOMNAND16:
12128  case X86::ATOMNAND32:
12129  case X86::ATOMNAND64: {
12130    unsigned t2 = MRI.createVirtualRegister(RC);
12131    unsigned NOTOpc;
12132    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
12133    BuildMI(mainMBB, DL, TII->get(ANDOpc), t2).addReg(SrcReg)
12134      .addReg(AccReg);
12135    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1).addReg(t2);
12136    break;
12137  }
12138  case X86::ATOMMAX8:
12139  case X86::ATOMMAX16:
12140  case X86::ATOMMAX32:
12141  case X86::ATOMMAX64:
12142  case X86::ATOMMIN8:
12143  case X86::ATOMMIN16:
12144  case X86::ATOMMIN32:
12145  case X86::ATOMMIN64:
12146  case X86::ATOMUMAX8:
12147  case X86::ATOMUMAX16:
12148  case X86::ATOMUMAX32:
12149  case X86::ATOMUMAX64:
12150  case X86::ATOMUMIN8:
12151  case X86::ATOMUMIN16:
12152  case X86::ATOMUMIN32:
12153  case X86::ATOMUMIN64: {
12154    unsigned CMPOpc;
12155    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
12156
12157    BuildMI(mainMBB, DL, TII->get(CMPOpc))
12158      .addReg(SrcReg)
12159      .addReg(AccReg);
12160
12161    if (Subtarget->hasCMov()) {
12162      if (VT != MVT::i8) {
12163        // Native support
12164        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t1)
12165          .addReg(SrcReg)
12166          .addReg(AccReg);
12167      } else {
12168        // Promote i8 to i32 to use CMOV32
12169        const TargetRegisterClass *RC32 = getRegClassFor(MVT::i32);
12170        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
12171        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
12172        unsigned t2 = MRI.createVirtualRegister(RC32);
12173
12174        unsigned Undef = MRI.createVirtualRegister(RC32);
12175        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
12176
12177        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
12178          .addReg(Undef)
12179          .addReg(SrcReg)
12180          .addImm(X86::sub_8bit);
12181        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
12182          .addReg(Undef)
12183          .addReg(AccReg)
12184          .addImm(X86::sub_8bit);
12185
12186        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
12187          .addReg(SrcReg32)
12188          .addReg(AccReg32);
12189
12190        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t1)
12191          .addReg(t2, 0, X86::sub_8bit);
12192      }
12193    } else {
12194      // Use pseudo select and lower them.
12195      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
12196             "Invalid atomic-load-op transformation!");
12197      unsigned SelOpc = getPseudoCMOVOpc(VT);
12198      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
12199      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
12200      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t1)
12201              .addReg(SrcReg).addReg(AccReg)
12202              .addImm(CC);
12203      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12204    }
12205    break;
12206  }
12207  }
12208
12209  // Copy AccPhyReg back from virtual register.
12210  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccPhyReg)
12211    .addReg(AccReg);
12212
12213  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12214  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12215    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12216  MIB.addReg(t1);
12217  MIB.setMemRefs(MMOBegin, MMOEnd);
12218
12219  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12220
12221  mainMBB->addSuccessor(origMainMBB);
12222  mainMBB->addSuccessor(sinkMBB);
12223
12224  // sinkMBB:
12225  sinkMBB->addLiveIn(AccPhyReg);
12226
12227  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12228          TII->get(TargetOpcode::COPY), DstReg)
12229    .addReg(AccPhyReg);
12230
12231  MI->eraseFromParent();
12232  return sinkMBB;
12233}
12234
12235// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
12236// instructions. They will be translated into a spin-loop or compare-exchange
12237// loop from
12238//
12239//    ...
12240//    dst = atomic-fetch-op MI.addr, MI.val
12241//    ...
12242//
12243// to
12244//
12245//    ...
12246//    EAX = LOAD [MI.addr + 0]
12247//    EDX = LOAD [MI.addr + 4]
12248// loop:
12249//    EBX = OP MI.val.lo, EAX
12250//    ECX = OP MI.val.hi, EDX
12251//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12252//    JNE loop
12253// sink:
12254//    dst = EDX:EAX
12255//    ...
12256MachineBasicBlock *
12257X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
12258                                           MachineBasicBlock *MBB) const {
12259  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12260  DebugLoc DL = MI->getDebugLoc();
12261
12262  MachineFunction *MF = MBB->getParent();
12263  MachineRegisterInfo &MRI = MF->getRegInfo();
12264
12265  const BasicBlock *BB = MBB->getBasicBlock();
12266  MachineFunction::iterator I = MBB;
12267  ++I;
12268
12269  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
12270         "Unexpected number of operands");
12271
12272  assert(MI->hasOneMemOperand() &&
12273         "Expected atomic-load-op32 to have one memoperand");
12274
12275  // Memory Reference
12276  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12277  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12278
12279  unsigned DstLoReg, DstHiReg;
12280  unsigned SrcLoReg, SrcHiReg;
12281  unsigned MemOpndSlot;
12282
12283  unsigned CurOp = 0;
12284
12285  DstLoReg = MI->getOperand(CurOp++).getReg();
12286  DstHiReg = MI->getOperand(CurOp++).getReg();
12287  MemOpndSlot = CurOp;
12288  CurOp += X86::AddrNumOperands;
12289  SrcLoReg = MI->getOperand(CurOp++).getReg();
12290  SrcHiReg = MI->getOperand(CurOp++).getReg();
12291
12292  const TargetRegisterClass *RC = &X86::GR32RegClass;
12293  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
12294
12295  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
12296  unsigned LOADOpc = X86::MOV32rm;
12297
12298  // For the atomic load-arith operator, we generate
12299  //
12300  //  thisMBB:
12301  //    EAX = LOAD [MI.addr + 0]
12302  //    EDX = LOAD [MI.addr + 4]
12303  //  mainMBB:
12304  //    EBX = OP MI.vallo, EAX
12305  //    ECX = OP MI.valhi, EDX
12306  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12307  //    JNE mainMBB
12308  //  sinkMBB:
12309
12310  MachineBasicBlock *thisMBB = MBB;
12311  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12312  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12313  MF->insert(I, mainMBB);
12314  MF->insert(I, sinkMBB);
12315
12316  MachineInstrBuilder MIB;
12317
12318  // Transfer the remainder of BB and its successor edges to sinkMBB.
12319  sinkMBB->splice(sinkMBB->begin(), MBB,
12320                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12321  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12322
12323  // thisMBB:
12324  // Lo
12325  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EAX);
12326  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12327    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12328  MIB.setMemRefs(MMOBegin, MMOEnd);
12329  // Hi
12330  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EDX);
12331  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
12332    if (i == X86::AddrDisp)
12333      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
12334    else
12335      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12336  }
12337  MIB.setMemRefs(MMOBegin, MMOEnd);
12338
12339  thisMBB->addSuccessor(mainMBB);
12340
12341  // mainMBB:
12342  MachineBasicBlock *origMainMBB = mainMBB;
12343  mainMBB->addLiveIn(X86::EAX);
12344  mainMBB->addLiveIn(X86::EDX);
12345
12346  // Copy EDX:EAX as they are used more than once.
12347  unsigned LoReg = MRI.createVirtualRegister(RC);
12348  unsigned HiReg = MRI.createVirtualRegister(RC);
12349  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), LoReg).addReg(X86::EAX);
12350  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), HiReg).addReg(X86::EDX);
12351
12352  unsigned t1L = MRI.createVirtualRegister(RC);
12353  unsigned t1H = MRI.createVirtualRegister(RC);
12354
12355  unsigned Opc = MI->getOpcode();
12356  switch (Opc) {
12357  default:
12358    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
12359  case X86::ATOMAND6432:
12360  case X86::ATOMOR6432:
12361  case X86::ATOMXOR6432:
12362  case X86::ATOMADD6432:
12363  case X86::ATOMSUB6432: {
12364    unsigned HiOpc;
12365    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12366    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg).addReg(LoReg);
12367    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg).addReg(HiReg);
12368    break;
12369  }
12370  case X86::ATOMNAND6432: {
12371    unsigned HiOpc, NOTOpc;
12372    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
12373    unsigned t2L = MRI.createVirtualRegister(RC);
12374    unsigned t2H = MRI.createVirtualRegister(RC);
12375    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg).addReg(LoReg);
12376    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg).addReg(HiReg);
12377    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1L).addReg(t2L);
12378    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1H).addReg(t2H);
12379    break;
12380  }
12381  case X86::ATOMMAX6432:
12382  case X86::ATOMMIN6432:
12383  case X86::ATOMUMAX6432:
12384  case X86::ATOMUMIN6432: {
12385    unsigned HiOpc;
12386    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12387    unsigned cL = MRI.createVirtualRegister(RC8);
12388    unsigned cH = MRI.createVirtualRegister(RC8);
12389    unsigned cL32 = MRI.createVirtualRegister(RC);
12390    unsigned cH32 = MRI.createVirtualRegister(RC);
12391    unsigned cc = MRI.createVirtualRegister(RC);
12392    // cl := cmp src_lo, lo
12393    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12394      .addReg(SrcLoReg).addReg(LoReg);
12395    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
12396    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
12397    // ch := cmp src_hi, hi
12398    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12399      .addReg(SrcHiReg).addReg(HiReg);
12400    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
12401    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
12402    // cc := if (src_hi == hi) ? cl : ch;
12403    if (Subtarget->hasCMov()) {
12404      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
12405        .addReg(cH32).addReg(cL32);
12406    } else {
12407      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
12408              .addReg(cH32).addReg(cL32)
12409              .addImm(X86::COND_E);
12410      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12411    }
12412    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
12413    if (Subtarget->hasCMov()) {
12414      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1L)
12415        .addReg(SrcLoReg).addReg(LoReg);
12416      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1H)
12417        .addReg(SrcHiReg).addReg(HiReg);
12418    } else {
12419      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1L)
12420              .addReg(SrcLoReg).addReg(LoReg)
12421              .addImm(X86::COND_NE);
12422      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12423      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1H)
12424              .addReg(SrcHiReg).addReg(HiReg)
12425              .addImm(X86::COND_NE);
12426      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12427    }
12428    break;
12429  }
12430  case X86::ATOMSWAP6432: {
12431    unsigned HiOpc;
12432    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12433    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg);
12434    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg);
12435    break;
12436  }
12437  }
12438
12439  // Copy EDX:EAX back from HiReg:LoReg
12440  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(LoReg);
12441  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(HiReg);
12442  // Copy ECX:EBX from t1H:t1L
12443  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t1L);
12444  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t1H);
12445
12446  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12447  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12448    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12449  MIB.setMemRefs(MMOBegin, MMOEnd);
12450
12451  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12452
12453  mainMBB->addSuccessor(origMainMBB);
12454  mainMBB->addSuccessor(sinkMBB);
12455
12456  // sinkMBB:
12457  sinkMBB->addLiveIn(X86::EAX);
12458  sinkMBB->addLiveIn(X86::EDX);
12459
12460  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12461          TII->get(TargetOpcode::COPY), DstLoReg)
12462    .addReg(X86::EAX);
12463  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12464          TII->get(TargetOpcode::COPY), DstHiReg)
12465    .addReg(X86::EDX);
12466
12467  MI->eraseFromParent();
12468  return sinkMBB;
12469}
12470
12471// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
12472// or XMM0_V32I8 in AVX all of this code can be replaced with that
12473// in the .td file.
12474MachineBasicBlock *
12475X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
12476                            unsigned numArgs, bool memArg) const {
12477  assert(Subtarget->hasSSE42() &&
12478         "Target must have SSE4.2 or AVX features enabled");
12479
12480  DebugLoc dl = MI->getDebugLoc();
12481  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12482  unsigned Opc;
12483  if (!Subtarget->hasAVX()) {
12484    if (memArg)
12485      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
12486    else
12487      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
12488  } else {
12489    if (memArg)
12490      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
12491    else
12492      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
12493  }
12494
12495  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
12496  for (unsigned i = 0; i < numArgs; ++i) {
12497    MachineOperand &Op = MI->getOperand(i+1);
12498    if (!(Op.isReg() && Op.isImplicit()))
12499      MIB.addOperand(Op);
12500  }
12501  BuildMI(*BB, MI, dl,
12502    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12503    .addReg(X86::XMM0);
12504
12505  MI->eraseFromParent();
12506  return BB;
12507}
12508
12509MachineBasicBlock *
12510X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
12511  DebugLoc dl = MI->getDebugLoc();
12512  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12513
12514  // Address into RAX/EAX, other two args into ECX, EDX.
12515  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
12516  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
12517  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
12518  for (int i = 0; i < X86::AddrNumOperands; ++i)
12519    MIB.addOperand(MI->getOperand(i));
12520
12521  unsigned ValOps = X86::AddrNumOperands;
12522  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
12523    .addReg(MI->getOperand(ValOps).getReg());
12524  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
12525    .addReg(MI->getOperand(ValOps+1).getReg());
12526
12527  // The instruction doesn't actually take any operands though.
12528  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
12529
12530  MI->eraseFromParent(); // The pseudo is gone now.
12531  return BB;
12532}
12533
12534MachineBasicBlock *
12535X86TargetLowering::EmitVAARG64WithCustomInserter(
12536                   MachineInstr *MI,
12537                   MachineBasicBlock *MBB) const {
12538  // Emit va_arg instruction on X86-64.
12539
12540  // Operands to this pseudo-instruction:
12541  // 0  ) Output        : destination address (reg)
12542  // 1-5) Input         : va_list address (addr, i64mem)
12543  // 6  ) ArgSize       : Size (in bytes) of vararg type
12544  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
12545  // 8  ) Align         : Alignment of type
12546  // 9  ) EFLAGS (implicit-def)
12547
12548  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
12549  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
12550
12551  unsigned DestReg = MI->getOperand(0).getReg();
12552  MachineOperand &Base = MI->getOperand(1);
12553  MachineOperand &Scale = MI->getOperand(2);
12554  MachineOperand &Index = MI->getOperand(3);
12555  MachineOperand &Disp = MI->getOperand(4);
12556  MachineOperand &Segment = MI->getOperand(5);
12557  unsigned ArgSize = MI->getOperand(6).getImm();
12558  unsigned ArgMode = MI->getOperand(7).getImm();
12559  unsigned Align = MI->getOperand(8).getImm();
12560
12561  // Memory Reference
12562  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
12563  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12564  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12565
12566  // Machine Information
12567  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12568  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
12569  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
12570  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
12571  DebugLoc DL = MI->getDebugLoc();
12572
12573  // struct va_list {
12574  //   i32   gp_offset
12575  //   i32   fp_offset
12576  //   i64   overflow_area (address)
12577  //   i64   reg_save_area (address)
12578  // }
12579  // sizeof(va_list) = 24
12580  // alignment(va_list) = 8
12581
12582  unsigned TotalNumIntRegs = 6;
12583  unsigned TotalNumXMMRegs = 8;
12584  bool UseGPOffset = (ArgMode == 1);
12585  bool UseFPOffset = (ArgMode == 2);
12586  unsigned MaxOffset = TotalNumIntRegs * 8 +
12587                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
12588
12589  /* Align ArgSize to a multiple of 8 */
12590  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
12591  bool NeedsAlign = (Align > 8);
12592
12593  MachineBasicBlock *thisMBB = MBB;
12594  MachineBasicBlock *overflowMBB;
12595  MachineBasicBlock *offsetMBB;
12596  MachineBasicBlock *endMBB;
12597
12598  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
12599  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
12600  unsigned OffsetReg = 0;
12601
12602  if (!UseGPOffset && !UseFPOffset) {
12603    // If we only pull from the overflow region, we don't create a branch.
12604    // We don't need to alter control flow.
12605    OffsetDestReg = 0; // unused
12606    OverflowDestReg = DestReg;
12607
12608    offsetMBB = NULL;
12609    overflowMBB = thisMBB;
12610    endMBB = thisMBB;
12611  } else {
12612    // First emit code to check if gp_offset (or fp_offset) is below the bound.
12613    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12614    // If not, pull from overflow_area. (branch to overflowMBB)
12615    //
12616    //       thisMBB
12617    //         |     .
12618    //         |        .
12619    //     offsetMBB   overflowMBB
12620    //         |        .
12621    //         |     .
12622    //        endMBB
12623
12624    // Registers for the PHI in endMBB
12625    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12626    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12627
12628    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12629    MachineFunction *MF = MBB->getParent();
12630    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12631    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12632    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12633
12634    MachineFunction::iterator MBBIter = MBB;
12635    ++MBBIter;
12636
12637    // Insert the new basic blocks
12638    MF->insert(MBBIter, offsetMBB);
12639    MF->insert(MBBIter, overflowMBB);
12640    MF->insert(MBBIter, endMBB);
12641
12642    // Transfer the remainder of MBB and its successor edges to endMBB.
12643    endMBB->splice(endMBB->begin(), thisMBB,
12644                    llvm::next(MachineBasicBlock::iterator(MI)),
12645                    thisMBB->end());
12646    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12647
12648    // Make offsetMBB and overflowMBB successors of thisMBB
12649    thisMBB->addSuccessor(offsetMBB);
12650    thisMBB->addSuccessor(overflowMBB);
12651
12652    // endMBB is a successor of both offsetMBB and overflowMBB
12653    offsetMBB->addSuccessor(endMBB);
12654    overflowMBB->addSuccessor(endMBB);
12655
12656    // Load the offset value into a register
12657    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12658    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12659      .addOperand(Base)
12660      .addOperand(Scale)
12661      .addOperand(Index)
12662      .addDisp(Disp, UseFPOffset ? 4 : 0)
12663      .addOperand(Segment)
12664      .setMemRefs(MMOBegin, MMOEnd);
12665
12666    // Check if there is enough room left to pull this argument.
12667    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12668      .addReg(OffsetReg)
12669      .addImm(MaxOffset + 8 - ArgSizeA8);
12670
12671    // Branch to "overflowMBB" if offset >= max
12672    // Fall through to "offsetMBB" otherwise
12673    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12674      .addMBB(overflowMBB);
12675  }
12676
12677  // In offsetMBB, emit code to use the reg_save_area.
12678  if (offsetMBB) {
12679    assert(OffsetReg != 0);
12680
12681    // Read the reg_save_area address.
12682    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12683    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12684      .addOperand(Base)
12685      .addOperand(Scale)
12686      .addOperand(Index)
12687      .addDisp(Disp, 16)
12688      .addOperand(Segment)
12689      .setMemRefs(MMOBegin, MMOEnd);
12690
12691    // Zero-extend the offset
12692    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12693      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12694        .addImm(0)
12695        .addReg(OffsetReg)
12696        .addImm(X86::sub_32bit);
12697
12698    // Add the offset to the reg_save_area to get the final address.
12699    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12700      .addReg(OffsetReg64)
12701      .addReg(RegSaveReg);
12702
12703    // Compute the offset for the next argument
12704    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12705    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12706      .addReg(OffsetReg)
12707      .addImm(UseFPOffset ? 16 : 8);
12708
12709    // Store it back into the va_list.
12710    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12711      .addOperand(Base)
12712      .addOperand(Scale)
12713      .addOperand(Index)
12714      .addDisp(Disp, UseFPOffset ? 4 : 0)
12715      .addOperand(Segment)
12716      .addReg(NextOffsetReg)
12717      .setMemRefs(MMOBegin, MMOEnd);
12718
12719    // Jump to endMBB
12720    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12721      .addMBB(endMBB);
12722  }
12723
12724  //
12725  // Emit code to use overflow area
12726  //
12727
12728  // Load the overflow_area address into a register.
12729  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12730  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12731    .addOperand(Base)
12732    .addOperand(Scale)
12733    .addOperand(Index)
12734    .addDisp(Disp, 8)
12735    .addOperand(Segment)
12736    .setMemRefs(MMOBegin, MMOEnd);
12737
12738  // If we need to align it, do so. Otherwise, just copy the address
12739  // to OverflowDestReg.
12740  if (NeedsAlign) {
12741    // Align the overflow address
12742    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12743    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12744
12745    // aligned_addr = (addr + (align-1)) & ~(align-1)
12746    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12747      .addReg(OverflowAddrReg)
12748      .addImm(Align-1);
12749
12750    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12751      .addReg(TmpReg)
12752      .addImm(~(uint64_t)(Align-1));
12753  } else {
12754    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12755      .addReg(OverflowAddrReg);
12756  }
12757
12758  // Compute the next overflow address after this argument.
12759  // (the overflow address should be kept 8-byte aligned)
12760  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12761  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12762    .addReg(OverflowDestReg)
12763    .addImm(ArgSizeA8);
12764
12765  // Store the new overflow address.
12766  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12767    .addOperand(Base)
12768    .addOperand(Scale)
12769    .addOperand(Index)
12770    .addDisp(Disp, 8)
12771    .addOperand(Segment)
12772    .addReg(NextAddrReg)
12773    .setMemRefs(MMOBegin, MMOEnd);
12774
12775  // If we branched, emit the PHI to the front of endMBB.
12776  if (offsetMBB) {
12777    BuildMI(*endMBB, endMBB->begin(), DL,
12778            TII->get(X86::PHI), DestReg)
12779      .addReg(OffsetDestReg).addMBB(offsetMBB)
12780      .addReg(OverflowDestReg).addMBB(overflowMBB);
12781  }
12782
12783  // Erase the pseudo instruction
12784  MI->eraseFromParent();
12785
12786  return endMBB;
12787}
12788
12789MachineBasicBlock *
12790X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12791                                                 MachineInstr *MI,
12792                                                 MachineBasicBlock *MBB) const {
12793  // Emit code to save XMM registers to the stack. The ABI says that the
12794  // number of registers to save is given in %al, so it's theoretically
12795  // possible to do an indirect jump trick to avoid saving all of them,
12796  // however this code takes a simpler approach and just executes all
12797  // of the stores if %al is non-zero. It's less code, and it's probably
12798  // easier on the hardware branch predictor, and stores aren't all that
12799  // expensive anyway.
12800
12801  // Create the new basic blocks. One block contains all the XMM stores,
12802  // and one block is the final destination regardless of whether any
12803  // stores were performed.
12804  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12805  MachineFunction *F = MBB->getParent();
12806  MachineFunction::iterator MBBIter = MBB;
12807  ++MBBIter;
12808  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12809  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12810  F->insert(MBBIter, XMMSaveMBB);
12811  F->insert(MBBIter, EndMBB);
12812
12813  // Transfer the remainder of MBB and its successor edges to EndMBB.
12814  EndMBB->splice(EndMBB->begin(), MBB,
12815                 llvm::next(MachineBasicBlock::iterator(MI)),
12816                 MBB->end());
12817  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12818
12819  // The original block will now fall through to the XMM save block.
12820  MBB->addSuccessor(XMMSaveMBB);
12821  // The XMMSaveMBB will fall through to the end block.
12822  XMMSaveMBB->addSuccessor(EndMBB);
12823
12824  // Now add the instructions.
12825  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12826  DebugLoc DL = MI->getDebugLoc();
12827
12828  unsigned CountReg = MI->getOperand(0).getReg();
12829  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12830  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12831
12832  if (!Subtarget->isTargetWin64()) {
12833    // If %al is 0, branch around the XMM save block.
12834    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12835    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12836    MBB->addSuccessor(EndMBB);
12837  }
12838
12839  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12840  // In the XMM save block, save all the XMM argument registers.
12841  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12842    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12843    MachineMemOperand *MMO =
12844      F->getMachineMemOperand(
12845          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12846        MachineMemOperand::MOStore,
12847        /*Size=*/16, /*Align=*/16);
12848    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12849      .addFrameIndex(RegSaveFrameIndex)
12850      .addImm(/*Scale=*/1)
12851      .addReg(/*IndexReg=*/0)
12852      .addImm(/*Disp=*/Offset)
12853      .addReg(/*Segment=*/0)
12854      .addReg(MI->getOperand(i).getReg())
12855      .addMemOperand(MMO);
12856  }
12857
12858  MI->eraseFromParent();   // The pseudo instruction is gone now.
12859
12860  return EndMBB;
12861}
12862
12863// The EFLAGS operand of SelectItr might be missing a kill marker
12864// because there were multiple uses of EFLAGS, and ISel didn't know
12865// which to mark. Figure out whether SelectItr should have had a
12866// kill marker, and set it if it should. Returns the correct kill
12867// marker value.
12868static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12869                                     MachineBasicBlock* BB,
12870                                     const TargetRegisterInfo* TRI) {
12871  // Scan forward through BB for a use/def of EFLAGS.
12872  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12873  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12874    const MachineInstr& mi = *miI;
12875    if (mi.readsRegister(X86::EFLAGS))
12876      return false;
12877    if (mi.definesRegister(X86::EFLAGS))
12878      break; // Should have kill-flag - update below.
12879  }
12880
12881  // If we hit the end of the block, check whether EFLAGS is live into a
12882  // successor.
12883  if (miI == BB->end()) {
12884    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12885                                          sEnd = BB->succ_end();
12886         sItr != sEnd; ++sItr) {
12887      MachineBasicBlock* succ = *sItr;
12888      if (succ->isLiveIn(X86::EFLAGS))
12889        return false;
12890    }
12891  }
12892
12893  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12894  // out. SelectMI should have a kill flag on EFLAGS.
12895  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12896  return true;
12897}
12898
12899MachineBasicBlock *
12900X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12901                                     MachineBasicBlock *BB) const {
12902  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12903  DebugLoc DL = MI->getDebugLoc();
12904
12905  // To "insert" a SELECT_CC instruction, we actually have to insert the
12906  // diamond control-flow pattern.  The incoming instruction knows the
12907  // destination vreg to set, the condition code register to branch on, the
12908  // true/false values to select between, and a branch opcode to use.
12909  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12910  MachineFunction::iterator It = BB;
12911  ++It;
12912
12913  //  thisMBB:
12914  //  ...
12915  //   TrueVal = ...
12916  //   cmpTY ccX, r1, r2
12917  //   bCC copy1MBB
12918  //   fallthrough --> copy0MBB
12919  MachineBasicBlock *thisMBB = BB;
12920  MachineFunction *F = BB->getParent();
12921  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12922  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12923  F->insert(It, copy0MBB);
12924  F->insert(It, sinkMBB);
12925
12926  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12927  // live into the sink and copy blocks.
12928  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12929  if (!MI->killsRegister(X86::EFLAGS) &&
12930      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12931    copy0MBB->addLiveIn(X86::EFLAGS);
12932    sinkMBB->addLiveIn(X86::EFLAGS);
12933  }
12934
12935  // Transfer the remainder of BB and its successor edges to sinkMBB.
12936  sinkMBB->splice(sinkMBB->begin(), BB,
12937                  llvm::next(MachineBasicBlock::iterator(MI)),
12938                  BB->end());
12939  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12940
12941  // Add the true and fallthrough blocks as its successors.
12942  BB->addSuccessor(copy0MBB);
12943  BB->addSuccessor(sinkMBB);
12944
12945  // Create the conditional branch instruction.
12946  unsigned Opc =
12947    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12948  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12949
12950  //  copy0MBB:
12951  //   %FalseValue = ...
12952  //   # fallthrough to sinkMBB
12953  copy0MBB->addSuccessor(sinkMBB);
12954
12955  //  sinkMBB:
12956  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12957  //  ...
12958  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12959          TII->get(X86::PHI), MI->getOperand(0).getReg())
12960    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12961    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12962
12963  MI->eraseFromParent();   // The pseudo instruction is gone now.
12964  return sinkMBB;
12965}
12966
12967MachineBasicBlock *
12968X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12969                                        bool Is64Bit) const {
12970  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12971  DebugLoc DL = MI->getDebugLoc();
12972  MachineFunction *MF = BB->getParent();
12973  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12974
12975  assert(getTargetMachine().Options.EnableSegmentedStacks);
12976
12977  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12978  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12979
12980  // BB:
12981  //  ... [Till the alloca]
12982  // If stacklet is not large enough, jump to mallocMBB
12983  //
12984  // bumpMBB:
12985  //  Allocate by subtracting from RSP
12986  //  Jump to continueMBB
12987  //
12988  // mallocMBB:
12989  //  Allocate by call to runtime
12990  //
12991  // continueMBB:
12992  //  ...
12993  //  [rest of original BB]
12994  //
12995
12996  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12997  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12998  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12999
13000  MachineRegisterInfo &MRI = MF->getRegInfo();
13001  const TargetRegisterClass *AddrRegClass =
13002    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
13003
13004  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13005    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13006    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
13007    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
13008    sizeVReg = MI->getOperand(1).getReg(),
13009    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
13010
13011  MachineFunction::iterator MBBIter = BB;
13012  ++MBBIter;
13013
13014  MF->insert(MBBIter, bumpMBB);
13015  MF->insert(MBBIter, mallocMBB);
13016  MF->insert(MBBIter, continueMBB);
13017
13018  continueMBB->splice(continueMBB->begin(), BB, llvm::next
13019                      (MachineBasicBlock::iterator(MI)), BB->end());
13020  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
13021
13022  // Add code to the main basic block to check if the stack limit has been hit,
13023  // and if so, jump to mallocMBB otherwise to bumpMBB.
13024  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
13025  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
13026    .addReg(tmpSPVReg).addReg(sizeVReg);
13027  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
13028    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
13029    .addReg(SPLimitVReg);
13030  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
13031
13032  // bumpMBB simply decreases the stack pointer, since we know the current
13033  // stacklet has enough space.
13034  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
13035    .addReg(SPLimitVReg);
13036  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
13037    .addReg(SPLimitVReg);
13038  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13039
13040  // Calls into a routine in libgcc to allocate more space from the heap.
13041  const uint32_t *RegMask =
13042    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13043  if (Is64Bit) {
13044    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
13045      .addReg(sizeVReg);
13046    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
13047      .addExternalSymbol("__morestack_allocate_stack_space")
13048      .addRegMask(RegMask)
13049      .addReg(X86::RDI, RegState::Implicit)
13050      .addReg(X86::RAX, RegState::ImplicitDefine);
13051  } else {
13052    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
13053      .addImm(12);
13054    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
13055    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
13056      .addExternalSymbol("__morestack_allocate_stack_space")
13057      .addRegMask(RegMask)
13058      .addReg(X86::EAX, RegState::ImplicitDefine);
13059  }
13060
13061  if (!Is64Bit)
13062    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
13063      .addImm(16);
13064
13065  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
13066    .addReg(Is64Bit ? X86::RAX : X86::EAX);
13067  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13068
13069  // Set up the CFG correctly.
13070  BB->addSuccessor(bumpMBB);
13071  BB->addSuccessor(mallocMBB);
13072  mallocMBB->addSuccessor(continueMBB);
13073  bumpMBB->addSuccessor(continueMBB);
13074
13075  // Take care of the PHI nodes.
13076  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
13077          MI->getOperand(0).getReg())
13078    .addReg(mallocPtrVReg).addMBB(mallocMBB)
13079    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
13080
13081  // Delete the original pseudo instruction.
13082  MI->eraseFromParent();
13083
13084  // And we're done.
13085  return continueMBB;
13086}
13087
13088MachineBasicBlock *
13089X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
13090                                          MachineBasicBlock *BB) const {
13091  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13092  DebugLoc DL = MI->getDebugLoc();
13093
13094  assert(!Subtarget->isTargetEnvMacho());
13095
13096  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
13097  // non-trivial part is impdef of ESP.
13098
13099  if (Subtarget->isTargetWin64()) {
13100    if (Subtarget->isTargetCygMing()) {
13101      // ___chkstk(Mingw64):
13102      // Clobbers R10, R11, RAX and EFLAGS.
13103      // Updates RSP.
13104      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13105        .addExternalSymbol("___chkstk")
13106        .addReg(X86::RAX, RegState::Implicit)
13107        .addReg(X86::RSP, RegState::Implicit)
13108        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
13109        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
13110        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13111    } else {
13112      // __chkstk(MSVCRT): does not update stack pointer.
13113      // Clobbers R10, R11 and EFLAGS.
13114      // FIXME: RAX(allocated size) might be reused and not killed.
13115      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13116        .addExternalSymbol("__chkstk")
13117        .addReg(X86::RAX, RegState::Implicit)
13118        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13119      // RAX has the offset to subtracted from RSP.
13120      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
13121        .addReg(X86::RSP)
13122        .addReg(X86::RAX);
13123    }
13124  } else {
13125    const char *StackProbeSymbol =
13126      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
13127
13128    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
13129      .addExternalSymbol(StackProbeSymbol)
13130      .addReg(X86::EAX, RegState::Implicit)
13131      .addReg(X86::ESP, RegState::Implicit)
13132      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
13133      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
13134      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13135  }
13136
13137  MI->eraseFromParent();   // The pseudo instruction is gone now.
13138  return BB;
13139}
13140
13141MachineBasicBlock *
13142X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
13143                                      MachineBasicBlock *BB) const {
13144  // This is pretty easy.  We're taking the value that we received from
13145  // our load from the relocation, sticking it in either RDI (x86-64)
13146  // or EAX and doing an indirect call.  The return value will then
13147  // be in the normal return register.
13148  const X86InstrInfo *TII
13149    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
13150  DebugLoc DL = MI->getDebugLoc();
13151  MachineFunction *F = BB->getParent();
13152
13153  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
13154  assert(MI->getOperand(3).isGlobal() && "This should be a global");
13155
13156  // Get a register mask for the lowered call.
13157  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
13158  // proper register mask.
13159  const uint32_t *RegMask =
13160    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13161  if (Subtarget->is64Bit()) {
13162    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13163                                      TII->get(X86::MOV64rm), X86::RDI)
13164    .addReg(X86::RIP)
13165    .addImm(0).addReg(0)
13166    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13167                      MI->getOperand(3).getTargetFlags())
13168    .addReg(0);
13169    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
13170    addDirectMem(MIB, X86::RDI);
13171    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
13172  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
13173    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13174                                      TII->get(X86::MOV32rm), X86::EAX)
13175    .addReg(0)
13176    .addImm(0).addReg(0)
13177    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13178                      MI->getOperand(3).getTargetFlags())
13179    .addReg(0);
13180    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13181    addDirectMem(MIB, X86::EAX);
13182    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13183  } else {
13184    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13185                                      TII->get(X86::MOV32rm), X86::EAX)
13186    .addReg(TII->getGlobalBaseReg(F))
13187    .addImm(0).addReg(0)
13188    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13189                      MI->getOperand(3).getTargetFlags())
13190    .addReg(0);
13191    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13192    addDirectMem(MIB, X86::EAX);
13193    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13194  }
13195
13196  MI->eraseFromParent(); // The pseudo instruction is gone now.
13197  return BB;
13198}
13199
13200MachineBasicBlock *
13201X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
13202                                               MachineBasicBlock *BB) const {
13203  switch (MI->getOpcode()) {
13204  default: llvm_unreachable("Unexpected instr type to insert");
13205  case X86::TAILJMPd64:
13206  case X86::TAILJMPr64:
13207  case X86::TAILJMPm64:
13208    llvm_unreachable("TAILJMP64 would not be touched here.");
13209  case X86::TCRETURNdi64:
13210  case X86::TCRETURNri64:
13211  case X86::TCRETURNmi64:
13212    return BB;
13213  case X86::WIN_ALLOCA:
13214    return EmitLoweredWinAlloca(MI, BB);
13215  case X86::SEG_ALLOCA_32:
13216    return EmitLoweredSegAlloca(MI, BB, false);
13217  case X86::SEG_ALLOCA_64:
13218    return EmitLoweredSegAlloca(MI, BB, true);
13219  case X86::TLSCall_32:
13220  case X86::TLSCall_64:
13221    return EmitLoweredTLSCall(MI, BB);
13222  case X86::CMOV_GR8:
13223  case X86::CMOV_FR32:
13224  case X86::CMOV_FR64:
13225  case X86::CMOV_V4F32:
13226  case X86::CMOV_V2F64:
13227  case X86::CMOV_V2I64:
13228  case X86::CMOV_V8F32:
13229  case X86::CMOV_V4F64:
13230  case X86::CMOV_V4I64:
13231  case X86::CMOV_GR16:
13232  case X86::CMOV_GR32:
13233  case X86::CMOV_RFP32:
13234  case X86::CMOV_RFP64:
13235  case X86::CMOV_RFP80:
13236    return EmitLoweredSelect(MI, BB);
13237
13238  case X86::FP32_TO_INT16_IN_MEM:
13239  case X86::FP32_TO_INT32_IN_MEM:
13240  case X86::FP32_TO_INT64_IN_MEM:
13241  case X86::FP64_TO_INT16_IN_MEM:
13242  case X86::FP64_TO_INT32_IN_MEM:
13243  case X86::FP64_TO_INT64_IN_MEM:
13244  case X86::FP80_TO_INT16_IN_MEM:
13245  case X86::FP80_TO_INT32_IN_MEM:
13246  case X86::FP80_TO_INT64_IN_MEM: {
13247    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13248    DebugLoc DL = MI->getDebugLoc();
13249
13250    // Change the floating point control register to use "round towards zero"
13251    // mode when truncating to an integer value.
13252    MachineFunction *F = BB->getParent();
13253    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
13254    addFrameReference(BuildMI(*BB, MI, DL,
13255                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
13256
13257    // Load the old value of the high byte of the control word...
13258    unsigned OldCW =
13259      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
13260    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
13261                      CWFrameIdx);
13262
13263    // Set the high part to be round to zero...
13264    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
13265      .addImm(0xC7F);
13266
13267    // Reload the modified control word now...
13268    addFrameReference(BuildMI(*BB, MI, DL,
13269                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13270
13271    // Restore the memory image of control word to original value
13272    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
13273      .addReg(OldCW);
13274
13275    // Get the X86 opcode to use.
13276    unsigned Opc;
13277    switch (MI->getOpcode()) {
13278    default: llvm_unreachable("illegal opcode!");
13279    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
13280    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
13281    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
13282    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
13283    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
13284    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
13285    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
13286    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
13287    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
13288    }
13289
13290    X86AddressMode AM;
13291    MachineOperand &Op = MI->getOperand(0);
13292    if (Op.isReg()) {
13293      AM.BaseType = X86AddressMode::RegBase;
13294      AM.Base.Reg = Op.getReg();
13295    } else {
13296      AM.BaseType = X86AddressMode::FrameIndexBase;
13297      AM.Base.FrameIndex = Op.getIndex();
13298    }
13299    Op = MI->getOperand(1);
13300    if (Op.isImm())
13301      AM.Scale = Op.getImm();
13302    Op = MI->getOperand(2);
13303    if (Op.isImm())
13304      AM.IndexReg = Op.getImm();
13305    Op = MI->getOperand(3);
13306    if (Op.isGlobal()) {
13307      AM.GV = Op.getGlobal();
13308    } else {
13309      AM.Disp = Op.getImm();
13310    }
13311    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
13312                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
13313
13314    // Reload the original control word now.
13315    addFrameReference(BuildMI(*BB, MI, DL,
13316                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13317
13318    MI->eraseFromParent();   // The pseudo instruction is gone now.
13319    return BB;
13320  }
13321    // String/text processing lowering.
13322  case X86::PCMPISTRM128REG:
13323  case X86::VPCMPISTRM128REG:
13324  case X86::PCMPISTRM128MEM:
13325  case X86::VPCMPISTRM128MEM:
13326  case X86::PCMPESTRM128REG:
13327  case X86::VPCMPESTRM128REG:
13328  case X86::PCMPESTRM128MEM:
13329  case X86::VPCMPESTRM128MEM: {
13330    unsigned NumArgs;
13331    bool MemArg;
13332    switch (MI->getOpcode()) {
13333    default: llvm_unreachable("illegal opcode!");
13334    case X86::PCMPISTRM128REG:
13335    case X86::VPCMPISTRM128REG:
13336      NumArgs = 3; MemArg = false; break;
13337    case X86::PCMPISTRM128MEM:
13338    case X86::VPCMPISTRM128MEM:
13339      NumArgs = 3; MemArg = true; break;
13340    case X86::PCMPESTRM128REG:
13341    case X86::VPCMPESTRM128REG:
13342      NumArgs = 5; MemArg = false; break;
13343    case X86::PCMPESTRM128MEM:
13344    case X86::VPCMPESTRM128MEM:
13345      NumArgs = 5; MemArg = true; break;
13346    }
13347    return EmitPCMP(MI, BB, NumArgs, MemArg);
13348  }
13349
13350    // Thread synchronization.
13351  case X86::MONITOR:
13352    return EmitMonitor(MI, BB);
13353
13354    // Atomic Lowering.
13355  case X86::ATOMAND8:
13356  case X86::ATOMAND16:
13357  case X86::ATOMAND32:
13358  case X86::ATOMAND64:
13359    // Fall through
13360  case X86::ATOMOR8:
13361  case X86::ATOMOR16:
13362  case X86::ATOMOR32:
13363  case X86::ATOMOR64:
13364    // Fall through
13365  case X86::ATOMXOR16:
13366  case X86::ATOMXOR8:
13367  case X86::ATOMXOR32:
13368  case X86::ATOMXOR64:
13369    // Fall through
13370  case X86::ATOMNAND8:
13371  case X86::ATOMNAND16:
13372  case X86::ATOMNAND32:
13373  case X86::ATOMNAND64:
13374    // Fall through
13375  case X86::ATOMMAX8:
13376  case X86::ATOMMAX16:
13377  case X86::ATOMMAX32:
13378  case X86::ATOMMAX64:
13379    // Fall through
13380  case X86::ATOMMIN8:
13381  case X86::ATOMMIN16:
13382  case X86::ATOMMIN32:
13383  case X86::ATOMMIN64:
13384    // Fall through
13385  case X86::ATOMUMAX8:
13386  case X86::ATOMUMAX16:
13387  case X86::ATOMUMAX32:
13388  case X86::ATOMUMAX64:
13389    // Fall through
13390  case X86::ATOMUMIN8:
13391  case X86::ATOMUMIN16:
13392  case X86::ATOMUMIN32:
13393  case X86::ATOMUMIN64:
13394    return EmitAtomicLoadArith(MI, BB);
13395
13396  // This group does 64-bit operations on a 32-bit host.
13397  case X86::ATOMAND6432:
13398  case X86::ATOMOR6432:
13399  case X86::ATOMXOR6432:
13400  case X86::ATOMNAND6432:
13401  case X86::ATOMADD6432:
13402  case X86::ATOMSUB6432:
13403  case X86::ATOMMAX6432:
13404  case X86::ATOMMIN6432:
13405  case X86::ATOMUMAX6432:
13406  case X86::ATOMUMIN6432:
13407  case X86::ATOMSWAP6432:
13408    return EmitAtomicLoadArith6432(MI, BB);
13409
13410  case X86::VASTART_SAVE_XMM_REGS:
13411    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
13412
13413  case X86::VAARG_64:
13414    return EmitVAARG64WithCustomInserter(MI, BB);
13415  }
13416}
13417
13418//===----------------------------------------------------------------------===//
13419//                           X86 Optimization Hooks
13420//===----------------------------------------------------------------------===//
13421
13422void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
13423                                                       APInt &KnownZero,
13424                                                       APInt &KnownOne,
13425                                                       const SelectionDAG &DAG,
13426                                                       unsigned Depth) const {
13427  unsigned BitWidth = KnownZero.getBitWidth();
13428  unsigned Opc = Op.getOpcode();
13429  assert((Opc >= ISD::BUILTIN_OP_END ||
13430          Opc == ISD::INTRINSIC_WO_CHAIN ||
13431          Opc == ISD::INTRINSIC_W_CHAIN ||
13432          Opc == ISD::INTRINSIC_VOID) &&
13433         "Should use MaskedValueIsZero if you don't know whether Op"
13434         " is a target node!");
13435
13436  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
13437  switch (Opc) {
13438  default: break;
13439  case X86ISD::ADD:
13440  case X86ISD::SUB:
13441  case X86ISD::ADC:
13442  case X86ISD::SBB:
13443  case X86ISD::SMUL:
13444  case X86ISD::UMUL:
13445  case X86ISD::INC:
13446  case X86ISD::DEC:
13447  case X86ISD::OR:
13448  case X86ISD::XOR:
13449  case X86ISD::AND:
13450    // These nodes' second result is a boolean.
13451    if (Op.getResNo() == 0)
13452      break;
13453    // Fallthrough
13454  case X86ISD::SETCC:
13455    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13456    break;
13457  case ISD::INTRINSIC_WO_CHAIN: {
13458    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13459    unsigned NumLoBits = 0;
13460    switch (IntId) {
13461    default: break;
13462    case Intrinsic::x86_sse_movmsk_ps:
13463    case Intrinsic::x86_avx_movmsk_ps_256:
13464    case Intrinsic::x86_sse2_movmsk_pd:
13465    case Intrinsic::x86_avx_movmsk_pd_256:
13466    case Intrinsic::x86_mmx_pmovmskb:
13467    case Intrinsic::x86_sse2_pmovmskb_128:
13468    case Intrinsic::x86_avx2_pmovmskb: {
13469      // High bits of movmskp{s|d}, pmovmskb are known zero.
13470      switch (IntId) {
13471        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13472        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
13473        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
13474        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
13475        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
13476        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
13477        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
13478        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
13479      }
13480      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
13481      break;
13482    }
13483    }
13484    break;
13485  }
13486  }
13487}
13488
13489unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
13490                                                         unsigned Depth) const {
13491  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
13492  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
13493    return Op.getValueType().getScalarType().getSizeInBits();
13494
13495  // Fallback case.
13496  return 1;
13497}
13498
13499/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
13500/// node is a GlobalAddress + offset.
13501bool X86TargetLowering::isGAPlusOffset(SDNode *N,
13502                                       const GlobalValue* &GA,
13503                                       int64_t &Offset) const {
13504  if (N->getOpcode() == X86ISD::Wrapper) {
13505    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
13506      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
13507      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
13508      return true;
13509    }
13510  }
13511  return TargetLowering::isGAPlusOffset(N, GA, Offset);
13512}
13513
13514/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
13515/// same as extracting the high 128-bit part of 256-bit vector and then
13516/// inserting the result into the low part of a new 256-bit vector
13517static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
13518  EVT VT = SVOp->getValueType(0);
13519  unsigned NumElems = VT.getVectorNumElements();
13520
13521  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13522  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
13523    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13524        SVOp->getMaskElt(j) >= 0)
13525      return false;
13526
13527  return true;
13528}
13529
13530/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
13531/// same as extracting the low 128-bit part of 256-bit vector and then
13532/// inserting the result into the high part of a new 256-bit vector
13533static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
13534  EVT VT = SVOp->getValueType(0);
13535  unsigned NumElems = VT.getVectorNumElements();
13536
13537  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13538  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
13539    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13540        SVOp->getMaskElt(j) >= 0)
13541      return false;
13542
13543  return true;
13544}
13545
13546/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
13547static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13548                                        TargetLowering::DAGCombinerInfo &DCI,
13549                                        const X86Subtarget* Subtarget) {
13550  DebugLoc dl = N->getDebugLoc();
13551  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13552  SDValue V1 = SVOp->getOperand(0);
13553  SDValue V2 = SVOp->getOperand(1);
13554  EVT VT = SVOp->getValueType(0);
13555  unsigned NumElems = VT.getVectorNumElements();
13556
13557  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13558      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13559    //
13560    //                   0,0,0,...
13561    //                      |
13562    //    V      UNDEF    BUILD_VECTOR    UNDEF
13563    //     \      /           \           /
13564    //  CONCAT_VECTOR         CONCAT_VECTOR
13565    //         \                  /
13566    //          \                /
13567    //          RESULT: V + zero extended
13568    //
13569    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13570        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13571        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13572      return SDValue();
13573
13574    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13575      return SDValue();
13576
13577    // To match the shuffle mask, the first half of the mask should
13578    // be exactly the first vector, and all the rest a splat with the
13579    // first element of the second one.
13580    for (unsigned i = 0; i != NumElems/2; ++i)
13581      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13582          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13583        return SDValue();
13584
13585    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13586    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13587      if (Ld->hasNUsesOfValue(1, 0)) {
13588        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13589        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13590        SDValue ResNode =
13591          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13592                                  Ld->getMemoryVT(),
13593                                  Ld->getPointerInfo(),
13594                                  Ld->getAlignment(),
13595                                  false/*isVolatile*/, true/*ReadMem*/,
13596                                  false/*WriteMem*/);
13597        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13598      }
13599    }
13600
13601    // Emit a zeroed vector and insert the desired subvector on its
13602    // first half.
13603    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13604    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13605    return DCI.CombineTo(N, InsV);
13606  }
13607
13608  //===--------------------------------------------------------------------===//
13609  // Combine some shuffles into subvector extracts and inserts:
13610  //
13611
13612  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13613  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13614    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13615    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13616    return DCI.CombineTo(N, InsV);
13617  }
13618
13619  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13620  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13621    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13622    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13623    return DCI.CombineTo(N, InsV);
13624  }
13625
13626  return SDValue();
13627}
13628
13629/// PerformShuffleCombine - Performs several different shuffle combines.
13630static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13631                                     TargetLowering::DAGCombinerInfo &DCI,
13632                                     const X86Subtarget *Subtarget) {
13633  DebugLoc dl = N->getDebugLoc();
13634  EVT VT = N->getValueType(0);
13635
13636  // Don't create instructions with illegal types after legalize types has run.
13637  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13638  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13639    return SDValue();
13640
13641  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13642  if (Subtarget->hasAVX() && VT.is256BitVector() &&
13643      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13644    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13645
13646  // Only handle 128 wide vector from here on.
13647  if (!VT.is128BitVector())
13648    return SDValue();
13649
13650  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13651  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13652  // consecutive, non-overlapping, and in the right order.
13653  SmallVector<SDValue, 16> Elts;
13654  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13655    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13656
13657  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13658}
13659
13660
13661/// PerformTruncateCombine - Converts truncate operation to
13662/// a sequence of vector shuffle operations.
13663/// It is possible when we truncate 256-bit vector to 128-bit vector
13664static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13665                                      TargetLowering::DAGCombinerInfo &DCI,
13666                                      const X86Subtarget *Subtarget)  {
13667  if (!DCI.isBeforeLegalizeOps())
13668    return SDValue();
13669
13670  if (!Subtarget->hasAVX())
13671    return SDValue();
13672
13673  EVT VT = N->getValueType(0);
13674  SDValue Op = N->getOperand(0);
13675  EVT OpVT = Op.getValueType();
13676  DebugLoc dl = N->getDebugLoc();
13677
13678  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13679
13680    if (Subtarget->hasAVX2()) {
13681      // AVX2: v4i64 -> v4i32
13682
13683      // VPERMD
13684      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13685
13686      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13687      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13688                                ShufMask);
13689
13690      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13691                         DAG.getIntPtrConstant(0));
13692    }
13693
13694    // AVX: v4i64 -> v4i32
13695    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13696                               DAG.getIntPtrConstant(0));
13697
13698    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13699                               DAG.getIntPtrConstant(2));
13700
13701    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13702    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13703
13704    // PSHUFD
13705    static const int ShufMask1[] = {0, 2, 0, 0};
13706
13707    SDValue Undef = DAG.getUNDEF(VT);
13708    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1);
13709    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1);
13710
13711    // MOVLHPS
13712    static const int ShufMask2[] = {0, 1, 4, 5};
13713
13714    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13715  }
13716
13717  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13718
13719    if (Subtarget->hasAVX2()) {
13720      // AVX2: v8i32 -> v8i16
13721
13722      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13723
13724      // PSHUFB
13725      SmallVector<SDValue,32> pshufbMask;
13726      for (unsigned i = 0; i < 2; ++i) {
13727        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13728        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13729        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13730        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13731        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13732        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13733        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13734        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13735        for (unsigned j = 0; j < 8; ++j)
13736          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13737      }
13738      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13739                               &pshufbMask[0], 32);
13740      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13741
13742      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13743
13744      static const int ShufMask[] = {0,  2,  -1,  -1};
13745      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13746                                &ShufMask[0]);
13747
13748      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13749                       DAG.getIntPtrConstant(0));
13750
13751      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13752    }
13753
13754    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13755                               DAG.getIntPtrConstant(0));
13756
13757    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13758                               DAG.getIntPtrConstant(4));
13759
13760    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13761    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13762
13763    // PSHUFB
13764    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13765                                   -1, -1, -1, -1, -1, -1, -1, -1};
13766
13767    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
13768    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1);
13769    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1);
13770
13771    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13772    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13773
13774    // MOVLHPS
13775    static const int ShufMask2[] = {0, 1, 4, 5};
13776
13777    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13778    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13779  }
13780
13781  return SDValue();
13782}
13783
13784/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13785/// specific shuffle of a load can be folded into a single element load.
13786/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13787/// shuffles have been customed lowered so we need to handle those here.
13788static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13789                                         TargetLowering::DAGCombinerInfo &DCI) {
13790  if (DCI.isBeforeLegalizeOps())
13791    return SDValue();
13792
13793  SDValue InVec = N->getOperand(0);
13794  SDValue EltNo = N->getOperand(1);
13795
13796  if (!isa<ConstantSDNode>(EltNo))
13797    return SDValue();
13798
13799  EVT VT = InVec.getValueType();
13800
13801  bool HasShuffleIntoBitcast = false;
13802  if (InVec.getOpcode() == ISD::BITCAST) {
13803    // Don't duplicate a load with other uses.
13804    if (!InVec.hasOneUse())
13805      return SDValue();
13806    EVT BCVT = InVec.getOperand(0).getValueType();
13807    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13808      return SDValue();
13809    InVec = InVec.getOperand(0);
13810    HasShuffleIntoBitcast = true;
13811  }
13812
13813  if (!isTargetShuffle(InVec.getOpcode()))
13814    return SDValue();
13815
13816  // Don't duplicate a load with other uses.
13817  if (!InVec.hasOneUse())
13818    return SDValue();
13819
13820  SmallVector<int, 16> ShuffleMask;
13821  bool UnaryShuffle;
13822  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
13823                            UnaryShuffle))
13824    return SDValue();
13825
13826  // Select the input vector, guarding against out of range extract vector.
13827  unsigned NumElems = VT.getVectorNumElements();
13828  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13829  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13830  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13831                                         : InVec.getOperand(1);
13832
13833  // If inputs to shuffle are the same for both ops, then allow 2 uses
13834  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13835
13836  if (LdNode.getOpcode() == ISD::BITCAST) {
13837    // Don't duplicate a load with other uses.
13838    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13839      return SDValue();
13840
13841    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13842    LdNode = LdNode.getOperand(0);
13843  }
13844
13845  if (!ISD::isNormalLoad(LdNode.getNode()))
13846    return SDValue();
13847
13848  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13849
13850  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13851    return SDValue();
13852
13853  if (HasShuffleIntoBitcast) {
13854    // If there's a bitcast before the shuffle, check if the load type and
13855    // alignment is valid.
13856    unsigned Align = LN0->getAlignment();
13857    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13858    unsigned NewAlign = TLI.getDataLayout()->
13859      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13860
13861    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13862      return SDValue();
13863  }
13864
13865  // All checks match so transform back to vector_shuffle so that DAG combiner
13866  // can finish the job
13867  DebugLoc dl = N->getDebugLoc();
13868
13869  // Create shuffle node taking into account the case that its a unary shuffle
13870  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13871  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13872                                 InVec.getOperand(0), Shuffle,
13873                                 &ShuffleMask[0]);
13874  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13875  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13876                     EltNo);
13877}
13878
13879/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13880/// generation and convert it from being a bunch of shuffles and extracts
13881/// to a simple store and scalar loads to extract the elements.
13882static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13883                                         TargetLowering::DAGCombinerInfo &DCI) {
13884  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13885  if (NewOp.getNode())
13886    return NewOp;
13887
13888  SDValue InputVector = N->getOperand(0);
13889
13890  // Only operate on vectors of 4 elements, where the alternative shuffling
13891  // gets to be more expensive.
13892  if (InputVector.getValueType() != MVT::v4i32)
13893    return SDValue();
13894
13895  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13896  // single use which is a sign-extend or zero-extend, and all elements are
13897  // used.
13898  SmallVector<SDNode *, 4> Uses;
13899  unsigned ExtractedElements = 0;
13900  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13901       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13902    if (UI.getUse().getResNo() != InputVector.getResNo())
13903      return SDValue();
13904
13905    SDNode *Extract = *UI;
13906    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13907      return SDValue();
13908
13909    if (Extract->getValueType(0) != MVT::i32)
13910      return SDValue();
13911    if (!Extract->hasOneUse())
13912      return SDValue();
13913    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13914        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13915      return SDValue();
13916    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13917      return SDValue();
13918
13919    // Record which element was extracted.
13920    ExtractedElements |=
13921      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13922
13923    Uses.push_back(Extract);
13924  }
13925
13926  // If not all the elements were used, this may not be worthwhile.
13927  if (ExtractedElements != 15)
13928    return SDValue();
13929
13930  // Ok, we've now decided to do the transformation.
13931  DebugLoc dl = InputVector.getDebugLoc();
13932
13933  // Store the value to a temporary stack slot.
13934  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13935  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13936                            MachinePointerInfo(), false, false, 0);
13937
13938  // Replace each use (extract) with a load of the appropriate element.
13939  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13940       UE = Uses.end(); UI != UE; ++UI) {
13941    SDNode *Extract = *UI;
13942
13943    // cOMpute the element's address.
13944    SDValue Idx = Extract->getOperand(1);
13945    unsigned EltSize =
13946        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13947    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13948    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13949    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13950
13951    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13952                                     StackPtr, OffsetVal);
13953
13954    // Load the scalar.
13955    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13956                                     ScalarAddr, MachinePointerInfo(),
13957                                     false, false, false, 0);
13958
13959    // Replace the exact with the load.
13960    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13961  }
13962
13963  // The replacement was made in place; don't return anything.
13964  return SDValue();
13965}
13966
13967/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13968/// nodes.
13969static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13970                                    TargetLowering::DAGCombinerInfo &DCI,
13971                                    const X86Subtarget *Subtarget) {
13972  DebugLoc DL = N->getDebugLoc();
13973  SDValue Cond = N->getOperand(0);
13974  // Get the LHS/RHS of the select.
13975  SDValue LHS = N->getOperand(1);
13976  SDValue RHS = N->getOperand(2);
13977  EVT VT = LHS.getValueType();
13978
13979  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13980  // instructions match the semantics of the common C idiom x<y?x:y but not
13981  // x<=y?x:y, because of how they handle negative zero (which can be
13982  // ignored in unsafe-math mode).
13983  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13984      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13985      (Subtarget->hasSSE2() ||
13986       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13987    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13988
13989    unsigned Opcode = 0;
13990    // Check for x CC y ? x : y.
13991    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13992        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13993      switch (CC) {
13994      default: break;
13995      case ISD::SETULT:
13996        // Converting this to a min would handle NaNs incorrectly, and swapping
13997        // the operands would cause it to handle comparisons between positive
13998        // and negative zero incorrectly.
13999        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14000          if (!DAG.getTarget().Options.UnsafeFPMath &&
14001              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14002            break;
14003          std::swap(LHS, RHS);
14004        }
14005        Opcode = X86ISD::FMIN;
14006        break;
14007      case ISD::SETOLE:
14008        // Converting this to a min would handle comparisons between positive
14009        // and negative zero incorrectly.
14010        if (!DAG.getTarget().Options.UnsafeFPMath &&
14011            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14012          break;
14013        Opcode = X86ISD::FMIN;
14014        break;
14015      case ISD::SETULE:
14016        // Converting this to a min would handle both negative zeros and NaNs
14017        // incorrectly, but we can swap the operands to fix both.
14018        std::swap(LHS, RHS);
14019      case ISD::SETOLT:
14020      case ISD::SETLT:
14021      case ISD::SETLE:
14022        Opcode = X86ISD::FMIN;
14023        break;
14024
14025      case ISD::SETOGE:
14026        // Converting this to a max would handle comparisons between positive
14027        // and negative zero incorrectly.
14028        if (!DAG.getTarget().Options.UnsafeFPMath &&
14029            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14030          break;
14031        Opcode = X86ISD::FMAX;
14032        break;
14033      case ISD::SETUGT:
14034        // Converting this to a max would handle NaNs incorrectly, and swapping
14035        // the operands would cause it to handle comparisons between positive
14036        // and negative zero incorrectly.
14037        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14038          if (!DAG.getTarget().Options.UnsafeFPMath &&
14039              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14040            break;
14041          std::swap(LHS, RHS);
14042        }
14043        Opcode = X86ISD::FMAX;
14044        break;
14045      case ISD::SETUGE:
14046        // Converting this to a max would handle both negative zeros and NaNs
14047        // incorrectly, but we can swap the operands to fix both.
14048        std::swap(LHS, RHS);
14049      case ISD::SETOGT:
14050      case ISD::SETGT:
14051      case ISD::SETGE:
14052        Opcode = X86ISD::FMAX;
14053        break;
14054      }
14055    // Check for x CC y ? y : x -- a min/max with reversed arms.
14056    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
14057               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
14058      switch (CC) {
14059      default: break;
14060      case ISD::SETOGE:
14061        // Converting this to a min would handle comparisons between positive
14062        // and negative zero incorrectly, and swapping the operands would
14063        // cause it to handle NaNs incorrectly.
14064        if (!DAG.getTarget().Options.UnsafeFPMath &&
14065            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
14066          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14067            break;
14068          std::swap(LHS, RHS);
14069        }
14070        Opcode = X86ISD::FMIN;
14071        break;
14072      case ISD::SETUGT:
14073        // Converting this to a min would handle NaNs incorrectly.
14074        if (!DAG.getTarget().Options.UnsafeFPMath &&
14075            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
14076          break;
14077        Opcode = X86ISD::FMIN;
14078        break;
14079      case ISD::SETUGE:
14080        // Converting this to a min would handle both negative zeros and NaNs
14081        // incorrectly, but we can swap the operands to fix both.
14082        std::swap(LHS, RHS);
14083      case ISD::SETOGT:
14084      case ISD::SETGT:
14085      case ISD::SETGE:
14086        Opcode = X86ISD::FMIN;
14087        break;
14088
14089      case ISD::SETULT:
14090        // Converting this to a max would handle NaNs incorrectly.
14091        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14092          break;
14093        Opcode = X86ISD::FMAX;
14094        break;
14095      case ISD::SETOLE:
14096        // Converting this to a max would handle comparisons between positive
14097        // and negative zero incorrectly, and swapping the operands would
14098        // cause it to handle NaNs incorrectly.
14099        if (!DAG.getTarget().Options.UnsafeFPMath &&
14100            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
14101          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14102            break;
14103          std::swap(LHS, RHS);
14104        }
14105        Opcode = X86ISD::FMAX;
14106        break;
14107      case ISD::SETULE:
14108        // Converting this to a max would handle both negative zeros and NaNs
14109        // incorrectly, but we can swap the operands to fix both.
14110        std::swap(LHS, RHS);
14111      case ISD::SETOLT:
14112      case ISD::SETLT:
14113      case ISD::SETLE:
14114        Opcode = X86ISD::FMAX;
14115        break;
14116      }
14117    }
14118
14119    if (Opcode)
14120      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
14121  }
14122
14123  // If this is a select between two integer constants, try to do some
14124  // optimizations.
14125  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
14126    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
14127      // Don't do this for crazy integer types.
14128      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
14129        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
14130        // so that TrueC (the true value) is larger than FalseC.
14131        bool NeedsCondInvert = false;
14132
14133        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
14134            // Efficiently invertible.
14135            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
14136             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
14137              isa<ConstantSDNode>(Cond.getOperand(1))))) {
14138          NeedsCondInvert = true;
14139          std::swap(TrueC, FalseC);
14140        }
14141
14142        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
14143        if (FalseC->getAPIntValue() == 0 &&
14144            TrueC->getAPIntValue().isPowerOf2()) {
14145          if (NeedsCondInvert) // Invert the condition if needed.
14146            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14147                               DAG.getConstant(1, Cond.getValueType()));
14148
14149          // Zero extend the condition if needed.
14150          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
14151
14152          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14153          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
14154                             DAG.getConstant(ShAmt, MVT::i8));
14155        }
14156
14157        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
14158        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14159          if (NeedsCondInvert) // Invert the condition if needed.
14160            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14161                               DAG.getConstant(1, Cond.getValueType()));
14162
14163          // Zero extend the condition if needed.
14164          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14165                             FalseC->getValueType(0), Cond);
14166          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14167                             SDValue(FalseC, 0));
14168        }
14169
14170        // Optimize cases that will turn into an LEA instruction.  This requires
14171        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14172        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14173          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14174          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14175
14176          bool isFastMultiplier = false;
14177          if (Diff < 10) {
14178            switch ((unsigned char)Diff) {
14179              default: break;
14180              case 1:  // result = add base, cond
14181              case 2:  // result = lea base(    , cond*2)
14182              case 3:  // result = lea base(cond, cond*2)
14183              case 4:  // result = lea base(    , cond*4)
14184              case 5:  // result = lea base(cond, cond*4)
14185              case 8:  // result = lea base(    , cond*8)
14186              case 9:  // result = lea base(cond, cond*8)
14187                isFastMultiplier = true;
14188                break;
14189            }
14190          }
14191
14192          if (isFastMultiplier) {
14193            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14194            if (NeedsCondInvert) // Invert the condition if needed.
14195              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14196                                 DAG.getConstant(1, Cond.getValueType()));
14197
14198            // Zero extend the condition if needed.
14199            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14200                               Cond);
14201            // Scale the condition by the difference.
14202            if (Diff != 1)
14203              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14204                                 DAG.getConstant(Diff, Cond.getValueType()));
14205
14206            // Add the base if non-zero.
14207            if (FalseC->getAPIntValue() != 0)
14208              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14209                                 SDValue(FalseC, 0));
14210            return Cond;
14211          }
14212        }
14213      }
14214  }
14215
14216  // Canonicalize max and min:
14217  // (x > y) ? x : y -> (x >= y) ? x : y
14218  // (x < y) ? x : y -> (x <= y) ? x : y
14219  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
14220  // the need for an extra compare
14221  // against zero. e.g.
14222  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
14223  // subl   %esi, %edi
14224  // testl  %edi, %edi
14225  // movl   $0, %eax
14226  // cmovgl %edi, %eax
14227  // =>
14228  // xorl   %eax, %eax
14229  // subl   %esi, $edi
14230  // cmovsl %eax, %edi
14231  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
14232      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14233      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14234    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14235    switch (CC) {
14236    default: break;
14237    case ISD::SETLT:
14238    case ISD::SETGT: {
14239      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
14240      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
14241                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
14242      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
14243    }
14244    }
14245  }
14246
14247  // If we know that this node is legal then we know that it is going to be
14248  // matched by one of the SSE/AVX BLEND instructions. These instructions only
14249  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
14250  // to simplify previous instructions.
14251  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14252  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
14253      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
14254    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
14255
14256    // Don't optimize vector selects that map to mask-registers.
14257    if (BitWidth == 1)
14258      return SDValue();
14259
14260    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
14261    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
14262
14263    APInt KnownZero, KnownOne;
14264    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
14265                                          DCI.isBeforeLegalizeOps());
14266    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
14267        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
14268      DCI.CommitTargetLoweringOpt(TLO);
14269  }
14270
14271  return SDValue();
14272}
14273
14274// Check whether a boolean test is testing a boolean value generated by
14275// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
14276// code.
14277//
14278// Simplify the following patterns:
14279// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
14280// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
14281// to (Op EFLAGS Cond)
14282//
14283// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
14284// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
14285// to (Op EFLAGS !Cond)
14286//
14287// where Op could be BRCOND or CMOV.
14288//
14289static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
14290  // Quit if not CMP and SUB with its value result used.
14291  if (Cmp.getOpcode() != X86ISD::CMP &&
14292      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
14293      return SDValue();
14294
14295  // Quit if not used as a boolean value.
14296  if (CC != X86::COND_E && CC != X86::COND_NE)
14297    return SDValue();
14298
14299  // Check CMP operands. One of them should be 0 or 1 and the other should be
14300  // an SetCC or extended from it.
14301  SDValue Op1 = Cmp.getOperand(0);
14302  SDValue Op2 = Cmp.getOperand(1);
14303
14304  SDValue SetCC;
14305  const ConstantSDNode* C = 0;
14306  bool needOppositeCond = (CC == X86::COND_E);
14307
14308  if ((C = dyn_cast<ConstantSDNode>(Op1)))
14309    SetCC = Op2;
14310  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
14311    SetCC = Op1;
14312  else // Quit if all operands are not constants.
14313    return SDValue();
14314
14315  if (C->getZExtValue() == 1)
14316    needOppositeCond = !needOppositeCond;
14317  else if (C->getZExtValue() != 0)
14318    // Quit if the constant is neither 0 or 1.
14319    return SDValue();
14320
14321  // Skip 'zext' node.
14322  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
14323    SetCC = SetCC.getOperand(0);
14324
14325  switch (SetCC.getOpcode()) {
14326  case X86ISD::SETCC:
14327    // Set the condition code or opposite one if necessary.
14328    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
14329    if (needOppositeCond)
14330      CC = X86::GetOppositeBranchCondition(CC);
14331    return SetCC.getOperand(1);
14332  case X86ISD::CMOV: {
14333    // Check whether false/true value has canonical one, i.e. 0 or 1.
14334    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
14335    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
14336    // Quit if true value is not a constant.
14337    if (!TVal)
14338      return SDValue();
14339    // Quit if false value is not a constant.
14340    if (!FVal) {
14341      // A special case for rdrand, where 0 is set if false cond is found.
14342      SDValue Op = SetCC.getOperand(0);
14343      if (Op.getOpcode() != X86ISD::RDRAND)
14344        return SDValue();
14345    }
14346    // Quit if false value is not the constant 0 or 1.
14347    bool FValIsFalse = true;
14348    if (FVal && FVal->getZExtValue() != 0) {
14349      if (FVal->getZExtValue() != 1)
14350        return SDValue();
14351      // If FVal is 1, opposite cond is needed.
14352      needOppositeCond = !needOppositeCond;
14353      FValIsFalse = false;
14354    }
14355    // Quit if TVal is not the constant opposite of FVal.
14356    if (FValIsFalse && TVal->getZExtValue() != 1)
14357      return SDValue();
14358    if (!FValIsFalse && TVal->getZExtValue() != 0)
14359      return SDValue();
14360    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
14361    if (needOppositeCond)
14362      CC = X86::GetOppositeBranchCondition(CC);
14363    return SetCC.getOperand(3);
14364  }
14365  }
14366
14367  return SDValue();
14368}
14369
14370/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
14371static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
14372                                  TargetLowering::DAGCombinerInfo &DCI,
14373                                  const X86Subtarget *Subtarget) {
14374  DebugLoc DL = N->getDebugLoc();
14375
14376  // If the flag operand isn't dead, don't touch this CMOV.
14377  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
14378    return SDValue();
14379
14380  SDValue FalseOp = N->getOperand(0);
14381  SDValue TrueOp = N->getOperand(1);
14382  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
14383  SDValue Cond = N->getOperand(3);
14384
14385  if (CC == X86::COND_E || CC == X86::COND_NE) {
14386    switch (Cond.getOpcode()) {
14387    default: break;
14388    case X86ISD::BSR:
14389    case X86ISD::BSF:
14390      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
14391      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
14392        return (CC == X86::COND_E) ? FalseOp : TrueOp;
14393    }
14394  }
14395
14396  SDValue Flags;
14397
14398  Flags = checkBoolTestSetCCCombine(Cond, CC);
14399  if (Flags.getNode() &&
14400      // Extra check as FCMOV only supports a subset of X86 cond.
14401      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
14402    SDValue Ops[] = { FalseOp, TrueOp,
14403                      DAG.getConstant(CC, MVT::i8), Flags };
14404    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
14405                       Ops, array_lengthof(Ops));
14406  }
14407
14408  // If this is a select between two integer constants, try to do some
14409  // optimizations.  Note that the operands are ordered the opposite of SELECT
14410  // operands.
14411  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
14412    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
14413      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
14414      // larger than FalseC (the false value).
14415      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
14416        CC = X86::GetOppositeBranchCondition(CC);
14417        std::swap(TrueC, FalseC);
14418        std::swap(TrueOp, FalseOp);
14419      }
14420
14421      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
14422      // This is efficient for any integer data type (including i8/i16) and
14423      // shift amount.
14424      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
14425        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14426                           DAG.getConstant(CC, MVT::i8), Cond);
14427
14428        // Zero extend the condition if needed.
14429        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
14430
14431        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14432        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
14433                           DAG.getConstant(ShAmt, MVT::i8));
14434        if (N->getNumValues() == 2)  // Dead flag value?
14435          return DCI.CombineTo(N, Cond, SDValue());
14436        return Cond;
14437      }
14438
14439      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
14440      // for any integer data type, including i8/i16.
14441      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14442        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14443                           DAG.getConstant(CC, MVT::i8), Cond);
14444
14445        // Zero extend the condition if needed.
14446        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14447                           FalseC->getValueType(0), Cond);
14448        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14449                           SDValue(FalseC, 0));
14450
14451        if (N->getNumValues() == 2)  // Dead flag value?
14452          return DCI.CombineTo(N, Cond, SDValue());
14453        return Cond;
14454      }
14455
14456      // Optimize cases that will turn into an LEA instruction.  This requires
14457      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14458      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14459        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14460        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14461
14462        bool isFastMultiplier = false;
14463        if (Diff < 10) {
14464          switch ((unsigned char)Diff) {
14465          default: break;
14466          case 1:  // result = add base, cond
14467          case 2:  // result = lea base(    , cond*2)
14468          case 3:  // result = lea base(cond, cond*2)
14469          case 4:  // result = lea base(    , cond*4)
14470          case 5:  // result = lea base(cond, cond*4)
14471          case 8:  // result = lea base(    , cond*8)
14472          case 9:  // result = lea base(cond, cond*8)
14473            isFastMultiplier = true;
14474            break;
14475          }
14476        }
14477
14478        if (isFastMultiplier) {
14479          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14480          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14481                             DAG.getConstant(CC, MVT::i8), Cond);
14482          // Zero extend the condition if needed.
14483          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14484                             Cond);
14485          // Scale the condition by the difference.
14486          if (Diff != 1)
14487            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14488                               DAG.getConstant(Diff, Cond.getValueType()));
14489
14490          // Add the base if non-zero.
14491          if (FalseC->getAPIntValue() != 0)
14492            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14493                               SDValue(FalseC, 0));
14494          if (N->getNumValues() == 2)  // Dead flag value?
14495            return DCI.CombineTo(N, Cond, SDValue());
14496          return Cond;
14497        }
14498      }
14499    }
14500  }
14501
14502  // Handle these cases:
14503  //   (select (x != c), e, c) -> select (x != c), e, x),
14504  //   (select (x == c), c, e) -> select (x == c), x, e)
14505  // where the c is an integer constant, and the "select" is the combination
14506  // of CMOV and CMP.
14507  //
14508  // The rationale for this change is that the conditional-move from a constant
14509  // needs two instructions, however, conditional-move from a register needs
14510  // only one instruction.
14511  //
14512  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
14513  //  some instruction-combining opportunities. This opt needs to be
14514  //  postponed as late as possible.
14515  //
14516  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
14517    // the DCI.xxxx conditions are provided to postpone the optimization as
14518    // late as possible.
14519
14520    ConstantSDNode *CmpAgainst = 0;
14521    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
14522        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
14523        dyn_cast<ConstantSDNode>(Cond.getOperand(0)) == 0) {
14524
14525      if (CC == X86::COND_NE &&
14526          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
14527        CC = X86::GetOppositeBranchCondition(CC);
14528        std::swap(TrueOp, FalseOp);
14529      }
14530
14531      if (CC == X86::COND_E &&
14532          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
14533        SDValue Ops[] = { FalseOp, Cond.getOperand(0), N->getOperand(2), Cond };
14534        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
14535                           array_lengthof(Ops));
14536      }
14537    }
14538  }
14539
14540  return SDValue();
14541}
14542
14543
14544/// PerformMulCombine - Optimize a single multiply with constant into two
14545/// in order to implement it with two cheaper instructions, e.g.
14546/// LEA + SHL, LEA + LEA.
14547static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
14548                                 TargetLowering::DAGCombinerInfo &DCI) {
14549  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14550    return SDValue();
14551
14552  EVT VT = N->getValueType(0);
14553  if (VT != MVT::i64)
14554    return SDValue();
14555
14556  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14557  if (!C)
14558    return SDValue();
14559  uint64_t MulAmt = C->getZExtValue();
14560  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
14561    return SDValue();
14562
14563  uint64_t MulAmt1 = 0;
14564  uint64_t MulAmt2 = 0;
14565  if ((MulAmt % 9) == 0) {
14566    MulAmt1 = 9;
14567    MulAmt2 = MulAmt / 9;
14568  } else if ((MulAmt % 5) == 0) {
14569    MulAmt1 = 5;
14570    MulAmt2 = MulAmt / 5;
14571  } else if ((MulAmt % 3) == 0) {
14572    MulAmt1 = 3;
14573    MulAmt2 = MulAmt / 3;
14574  }
14575  if (MulAmt2 &&
14576      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
14577    DebugLoc DL = N->getDebugLoc();
14578
14579    if (isPowerOf2_64(MulAmt2) &&
14580        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
14581      // If second multiplifer is pow2, issue it first. We want the multiply by
14582      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
14583      // is an add.
14584      std::swap(MulAmt1, MulAmt2);
14585
14586    SDValue NewMul;
14587    if (isPowerOf2_64(MulAmt1))
14588      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14589                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
14590    else
14591      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
14592                           DAG.getConstant(MulAmt1, VT));
14593
14594    if (isPowerOf2_64(MulAmt2))
14595      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
14596                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
14597    else
14598      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
14599                           DAG.getConstant(MulAmt2, VT));
14600
14601    // Do not add new nodes to DAG combiner worklist.
14602    DCI.CombineTo(N, NewMul, false);
14603  }
14604  return SDValue();
14605}
14606
14607static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
14608  SDValue N0 = N->getOperand(0);
14609  SDValue N1 = N->getOperand(1);
14610  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14611  EVT VT = N0.getValueType();
14612
14613  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
14614  // since the result of setcc_c is all zero's or all ones.
14615  if (VT.isInteger() && !VT.isVector() &&
14616      N1C && N0.getOpcode() == ISD::AND &&
14617      N0.getOperand(1).getOpcode() == ISD::Constant) {
14618    SDValue N00 = N0.getOperand(0);
14619    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
14620        ((N00.getOpcode() == ISD::ANY_EXTEND ||
14621          N00.getOpcode() == ISD::ZERO_EXTEND) &&
14622         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
14623      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
14624      APInt ShAmt = N1C->getAPIntValue();
14625      Mask = Mask.shl(ShAmt);
14626      if (Mask != 0)
14627        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
14628                           N00, DAG.getConstant(Mask, VT));
14629    }
14630  }
14631
14632
14633  // Hardware support for vector shifts is sparse which makes us scalarize the
14634  // vector operations in many cases. Also, on sandybridge ADD is faster than
14635  // shl.
14636  // (shl V, 1) -> add V,V
14637  if (isSplatVector(N1.getNode())) {
14638    assert(N0.getValueType().isVector() && "Invalid vector shift type");
14639    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
14640    // We shift all of the values by one. In many cases we do not have
14641    // hardware support for this operation. This is better expressed as an ADD
14642    // of two values.
14643    if (N1C && (1 == N1C->getZExtValue())) {
14644      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
14645    }
14646  }
14647
14648  return SDValue();
14649}
14650
14651/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
14652///                       when possible.
14653static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
14654                                   TargetLowering::DAGCombinerInfo &DCI,
14655                                   const X86Subtarget *Subtarget) {
14656  EVT VT = N->getValueType(0);
14657  if (N->getOpcode() == ISD::SHL) {
14658    SDValue V = PerformSHLCombine(N, DAG);
14659    if (V.getNode()) return V;
14660  }
14661
14662  // On X86 with SSE2 support, we can transform this to a vector shift if
14663  // all elements are shifted by the same amount.  We can't do this in legalize
14664  // because the a constant vector is typically transformed to a constant pool
14665  // so we have no knowledge of the shift amount.
14666  if (!Subtarget->hasSSE2())
14667    return SDValue();
14668
14669  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
14670      (!Subtarget->hasAVX2() ||
14671       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
14672    return SDValue();
14673
14674  SDValue ShAmtOp = N->getOperand(1);
14675  EVT EltVT = VT.getVectorElementType();
14676  DebugLoc DL = N->getDebugLoc();
14677  SDValue BaseShAmt = SDValue();
14678  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
14679    unsigned NumElts = VT.getVectorNumElements();
14680    unsigned i = 0;
14681    for (; i != NumElts; ++i) {
14682      SDValue Arg = ShAmtOp.getOperand(i);
14683      if (Arg.getOpcode() == ISD::UNDEF) continue;
14684      BaseShAmt = Arg;
14685      break;
14686    }
14687    // Handle the case where the build_vector is all undef
14688    // FIXME: Should DAG allow this?
14689    if (i == NumElts)
14690      return SDValue();
14691
14692    for (; i != NumElts; ++i) {
14693      SDValue Arg = ShAmtOp.getOperand(i);
14694      if (Arg.getOpcode() == ISD::UNDEF) continue;
14695      if (Arg != BaseShAmt) {
14696        return SDValue();
14697      }
14698    }
14699  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
14700             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
14701    SDValue InVec = ShAmtOp.getOperand(0);
14702    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
14703      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14704      unsigned i = 0;
14705      for (; i != NumElts; ++i) {
14706        SDValue Arg = InVec.getOperand(i);
14707        if (Arg.getOpcode() == ISD::UNDEF) continue;
14708        BaseShAmt = Arg;
14709        break;
14710      }
14711    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14712       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14713         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14714         if (C->getZExtValue() == SplatIdx)
14715           BaseShAmt = InVec.getOperand(1);
14716       }
14717    }
14718    if (BaseShAmt.getNode() == 0) {
14719      // Don't create instructions with illegal types after legalize
14720      // types has run.
14721      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14722          !DCI.isBeforeLegalize())
14723        return SDValue();
14724
14725      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14726                              DAG.getIntPtrConstant(0));
14727    }
14728  } else
14729    return SDValue();
14730
14731  // The shift amount is an i32.
14732  if (EltVT.bitsGT(MVT::i32))
14733    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14734  else if (EltVT.bitsLT(MVT::i32))
14735    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14736
14737  // The shift amount is identical so we can do a vector shift.
14738  SDValue  ValOp = N->getOperand(0);
14739  switch (N->getOpcode()) {
14740  default:
14741    llvm_unreachable("Unknown shift opcode!");
14742  case ISD::SHL:
14743    switch (VT.getSimpleVT().SimpleTy) {
14744    default: return SDValue();
14745    case MVT::v2i64:
14746    case MVT::v4i32:
14747    case MVT::v8i16:
14748    case MVT::v4i64:
14749    case MVT::v8i32:
14750    case MVT::v16i16:
14751      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14752    }
14753  case ISD::SRA:
14754    switch (VT.getSimpleVT().SimpleTy) {
14755    default: return SDValue();
14756    case MVT::v4i32:
14757    case MVT::v8i16:
14758    case MVT::v8i32:
14759    case MVT::v16i16:
14760      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14761    }
14762  case ISD::SRL:
14763    switch (VT.getSimpleVT().SimpleTy) {
14764    default: return SDValue();
14765    case MVT::v2i64:
14766    case MVT::v4i32:
14767    case MVT::v8i16:
14768    case MVT::v4i64:
14769    case MVT::v8i32:
14770    case MVT::v16i16:
14771      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14772    }
14773  }
14774}
14775
14776
14777// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14778// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14779// and friends.  Likewise for OR -> CMPNEQSS.
14780static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14781                            TargetLowering::DAGCombinerInfo &DCI,
14782                            const X86Subtarget *Subtarget) {
14783  unsigned opcode;
14784
14785  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14786  // we're requiring SSE2 for both.
14787  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14788    SDValue N0 = N->getOperand(0);
14789    SDValue N1 = N->getOperand(1);
14790    SDValue CMP0 = N0->getOperand(1);
14791    SDValue CMP1 = N1->getOperand(1);
14792    DebugLoc DL = N->getDebugLoc();
14793
14794    // The SETCCs should both refer to the same CMP.
14795    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14796      return SDValue();
14797
14798    SDValue CMP00 = CMP0->getOperand(0);
14799    SDValue CMP01 = CMP0->getOperand(1);
14800    EVT     VT    = CMP00.getValueType();
14801
14802    if (VT == MVT::f32 || VT == MVT::f64) {
14803      bool ExpectingFlags = false;
14804      // Check for any users that want flags:
14805      for (SDNode::use_iterator UI = N->use_begin(),
14806             UE = N->use_end();
14807           !ExpectingFlags && UI != UE; ++UI)
14808        switch (UI->getOpcode()) {
14809        default:
14810        case ISD::BR_CC:
14811        case ISD::BRCOND:
14812        case ISD::SELECT:
14813          ExpectingFlags = true;
14814          break;
14815        case ISD::CopyToReg:
14816        case ISD::SIGN_EXTEND:
14817        case ISD::ZERO_EXTEND:
14818        case ISD::ANY_EXTEND:
14819          break;
14820        }
14821
14822      if (!ExpectingFlags) {
14823        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14824        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14825
14826        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14827          X86::CondCode tmp = cc0;
14828          cc0 = cc1;
14829          cc1 = tmp;
14830        }
14831
14832        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14833            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14834          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14835          X86ISD::NodeType NTOperator = is64BitFP ?
14836            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14837          // FIXME: need symbolic constants for these magic numbers.
14838          // See X86ATTInstPrinter.cpp:printSSECC().
14839          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14840          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14841                                              DAG.getConstant(x86cc, MVT::i8));
14842          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14843                                              OnesOrZeroesF);
14844          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14845                                      DAG.getConstant(1, MVT::i32));
14846          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14847          return OneBitOfTruth;
14848        }
14849      }
14850    }
14851  }
14852  return SDValue();
14853}
14854
14855/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14856/// so it can be folded inside ANDNP.
14857static bool CanFoldXORWithAllOnes(const SDNode *N) {
14858  EVT VT = N->getValueType(0);
14859
14860  // Match direct AllOnes for 128 and 256-bit vectors
14861  if (ISD::isBuildVectorAllOnes(N))
14862    return true;
14863
14864  // Look through a bit convert.
14865  if (N->getOpcode() == ISD::BITCAST)
14866    N = N->getOperand(0).getNode();
14867
14868  // Sometimes the operand may come from a insert_subvector building a 256-bit
14869  // allones vector
14870  if (VT.is256BitVector() &&
14871      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14872    SDValue V1 = N->getOperand(0);
14873    SDValue V2 = N->getOperand(1);
14874
14875    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14876        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14877        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14878        ISD::isBuildVectorAllOnes(V2.getNode()))
14879      return true;
14880  }
14881
14882  return false;
14883}
14884
14885static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14886                                 TargetLowering::DAGCombinerInfo &DCI,
14887                                 const X86Subtarget *Subtarget) {
14888  if (DCI.isBeforeLegalizeOps())
14889    return SDValue();
14890
14891  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14892  if (R.getNode())
14893    return R;
14894
14895  EVT VT = N->getValueType(0);
14896
14897  // Create ANDN, BLSI, and BLSR instructions
14898  // BLSI is X & (-X)
14899  // BLSR is X & (X-1)
14900  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14901    SDValue N0 = N->getOperand(0);
14902    SDValue N1 = N->getOperand(1);
14903    DebugLoc DL = N->getDebugLoc();
14904
14905    // Check LHS for not
14906    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14907      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14908    // Check RHS for not
14909    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14910      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14911
14912    // Check LHS for neg
14913    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14914        isZero(N0.getOperand(0)))
14915      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14916
14917    // Check RHS for neg
14918    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14919        isZero(N1.getOperand(0)))
14920      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14921
14922    // Check LHS for X-1
14923    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14924        isAllOnes(N0.getOperand(1)))
14925      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14926
14927    // Check RHS for X-1
14928    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14929        isAllOnes(N1.getOperand(1)))
14930      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14931
14932    return SDValue();
14933  }
14934
14935  // Want to form ANDNP nodes:
14936  // 1) In the hopes of then easily combining them with OR and AND nodes
14937  //    to form PBLEND/PSIGN.
14938  // 2) To match ANDN packed intrinsics
14939  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14940    return SDValue();
14941
14942  SDValue N0 = N->getOperand(0);
14943  SDValue N1 = N->getOperand(1);
14944  DebugLoc DL = N->getDebugLoc();
14945
14946  // Check LHS for vnot
14947  if (N0.getOpcode() == ISD::XOR &&
14948      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14949      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14950    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14951
14952  // Check RHS for vnot
14953  if (N1.getOpcode() == ISD::XOR &&
14954      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14955      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14956    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14957
14958  return SDValue();
14959}
14960
14961static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14962                                TargetLowering::DAGCombinerInfo &DCI,
14963                                const X86Subtarget *Subtarget) {
14964  if (DCI.isBeforeLegalizeOps())
14965    return SDValue();
14966
14967  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14968  if (R.getNode())
14969    return R;
14970
14971  EVT VT = N->getValueType(0);
14972
14973  SDValue N0 = N->getOperand(0);
14974  SDValue N1 = N->getOperand(1);
14975
14976  // look for psign/blend
14977  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14978    if (!Subtarget->hasSSSE3() ||
14979        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14980      return SDValue();
14981
14982    // Canonicalize pandn to RHS
14983    if (N0.getOpcode() == X86ISD::ANDNP)
14984      std::swap(N0, N1);
14985    // or (and (m, y), (pandn m, x))
14986    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14987      SDValue Mask = N1.getOperand(0);
14988      SDValue X    = N1.getOperand(1);
14989      SDValue Y;
14990      if (N0.getOperand(0) == Mask)
14991        Y = N0.getOperand(1);
14992      if (N0.getOperand(1) == Mask)
14993        Y = N0.getOperand(0);
14994
14995      // Check to see if the mask appeared in both the AND and ANDNP and
14996      if (!Y.getNode())
14997        return SDValue();
14998
14999      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
15000      // Look through mask bitcast.
15001      if (Mask.getOpcode() == ISD::BITCAST)
15002        Mask = Mask.getOperand(0);
15003      if (X.getOpcode() == ISD::BITCAST)
15004        X = X.getOperand(0);
15005      if (Y.getOpcode() == ISD::BITCAST)
15006        Y = Y.getOperand(0);
15007
15008      EVT MaskVT = Mask.getValueType();
15009
15010      // Validate that the Mask operand is a vector sra node.
15011      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
15012      // there is no psrai.b
15013      if (Mask.getOpcode() != X86ISD::VSRAI)
15014        return SDValue();
15015
15016      // Check that the SRA is all signbits.
15017      SDValue SraC = Mask.getOperand(1);
15018      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
15019      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
15020      if ((SraAmt + 1) != EltBits)
15021        return SDValue();
15022
15023      DebugLoc DL = N->getDebugLoc();
15024
15025      // Now we know we at least have a plendvb with the mask val.  See if
15026      // we can form a psignb/w/d.
15027      // psign = x.type == y.type == mask.type && y = sub(0, x);
15028      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
15029          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
15030          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
15031        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
15032               "Unsupported VT for PSIGN");
15033        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
15034        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15035      }
15036      // PBLENDVB only available on SSE 4.1
15037      if (!Subtarget->hasSSE41())
15038        return SDValue();
15039
15040      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
15041
15042      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
15043      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
15044      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
15045      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
15046      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15047    }
15048  }
15049
15050  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
15051    return SDValue();
15052
15053  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
15054  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
15055    std::swap(N0, N1);
15056  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
15057    return SDValue();
15058  if (!N0.hasOneUse() || !N1.hasOneUse())
15059    return SDValue();
15060
15061  SDValue ShAmt0 = N0.getOperand(1);
15062  if (ShAmt0.getValueType() != MVT::i8)
15063    return SDValue();
15064  SDValue ShAmt1 = N1.getOperand(1);
15065  if (ShAmt1.getValueType() != MVT::i8)
15066    return SDValue();
15067  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
15068    ShAmt0 = ShAmt0.getOperand(0);
15069  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
15070    ShAmt1 = ShAmt1.getOperand(0);
15071
15072  DebugLoc DL = N->getDebugLoc();
15073  unsigned Opc = X86ISD::SHLD;
15074  SDValue Op0 = N0.getOperand(0);
15075  SDValue Op1 = N1.getOperand(0);
15076  if (ShAmt0.getOpcode() == ISD::SUB) {
15077    Opc = X86ISD::SHRD;
15078    std::swap(Op0, Op1);
15079    std::swap(ShAmt0, ShAmt1);
15080  }
15081
15082  unsigned Bits = VT.getSizeInBits();
15083  if (ShAmt1.getOpcode() == ISD::SUB) {
15084    SDValue Sum = ShAmt1.getOperand(0);
15085    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
15086      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
15087      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
15088        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
15089      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
15090        return DAG.getNode(Opc, DL, VT,
15091                           Op0, Op1,
15092                           DAG.getNode(ISD::TRUNCATE, DL,
15093                                       MVT::i8, ShAmt0));
15094    }
15095  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
15096    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
15097    if (ShAmt0C &&
15098        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
15099      return DAG.getNode(Opc, DL, VT,
15100                         N0.getOperand(0), N1.getOperand(0),
15101                         DAG.getNode(ISD::TRUNCATE, DL,
15102                                       MVT::i8, ShAmt0));
15103  }
15104
15105  return SDValue();
15106}
15107
15108// Generate NEG and CMOV for integer abs.
15109static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
15110  EVT VT = N->getValueType(0);
15111
15112  // Since X86 does not have CMOV for 8-bit integer, we don't convert
15113  // 8-bit integer abs to NEG and CMOV.
15114  if (VT.isInteger() && VT.getSizeInBits() == 8)
15115    return SDValue();
15116
15117  SDValue N0 = N->getOperand(0);
15118  SDValue N1 = N->getOperand(1);
15119  DebugLoc DL = N->getDebugLoc();
15120
15121  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
15122  // and change it to SUB and CMOV.
15123  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
15124      N0.getOpcode() == ISD::ADD &&
15125      N0.getOperand(1) == N1 &&
15126      N1.getOpcode() == ISD::SRA &&
15127      N1.getOperand(0) == N0.getOperand(0))
15128    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
15129      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
15130        // Generate SUB & CMOV.
15131        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
15132                                  DAG.getConstant(0, VT), N0.getOperand(0));
15133
15134        SDValue Ops[] = { N0.getOperand(0), Neg,
15135                          DAG.getConstant(X86::COND_GE, MVT::i8),
15136                          SDValue(Neg.getNode(), 1) };
15137        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
15138                           Ops, array_lengthof(Ops));
15139      }
15140  return SDValue();
15141}
15142
15143// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
15144static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
15145                                 TargetLowering::DAGCombinerInfo &DCI,
15146                                 const X86Subtarget *Subtarget) {
15147  if (DCI.isBeforeLegalizeOps())
15148    return SDValue();
15149
15150  if (Subtarget->hasCMov()) {
15151    SDValue RV = performIntegerAbsCombine(N, DAG);
15152    if (RV.getNode())
15153      return RV;
15154  }
15155
15156  // Try forming BMI if it is available.
15157  if (!Subtarget->hasBMI())
15158    return SDValue();
15159
15160  EVT VT = N->getValueType(0);
15161
15162  if (VT != MVT::i32 && VT != MVT::i64)
15163    return SDValue();
15164
15165  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
15166
15167  // Create BLSMSK instructions by finding X ^ (X-1)
15168  SDValue N0 = N->getOperand(0);
15169  SDValue N1 = N->getOperand(1);
15170  DebugLoc DL = N->getDebugLoc();
15171
15172  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15173      isAllOnes(N0.getOperand(1)))
15174    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
15175
15176  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15177      isAllOnes(N1.getOperand(1)))
15178    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
15179
15180  return SDValue();
15181}
15182
15183/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
15184static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
15185                                  TargetLowering::DAGCombinerInfo &DCI,
15186                                  const X86Subtarget *Subtarget) {
15187  LoadSDNode *Ld = cast<LoadSDNode>(N);
15188  EVT RegVT = Ld->getValueType(0);
15189  EVT MemVT = Ld->getMemoryVT();
15190  DebugLoc dl = Ld->getDebugLoc();
15191  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15192
15193  ISD::LoadExtType Ext = Ld->getExtensionType();
15194
15195  // If this is a vector EXT Load then attempt to optimize it using a
15196  // shuffle. We need SSE4 for the shuffles.
15197  // TODO: It is possible to support ZExt by zeroing the undef values
15198  // during the shuffle phase or after the shuffle.
15199  if (RegVT.isVector() && RegVT.isInteger() &&
15200      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
15201    assert(MemVT != RegVT && "Cannot extend to the same type");
15202    assert(MemVT.isVector() && "Must load a vector from memory");
15203
15204    unsigned NumElems = RegVT.getVectorNumElements();
15205    unsigned RegSz = RegVT.getSizeInBits();
15206    unsigned MemSz = MemVT.getSizeInBits();
15207    assert(RegSz > MemSz && "Register size must be greater than the mem size");
15208
15209    // All sizes must be a power of two.
15210    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
15211      return SDValue();
15212
15213    // Attempt to load the original value using scalar loads.
15214    // Find the largest scalar type that divides the total loaded size.
15215    MVT SclrLoadTy = MVT::i8;
15216    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15217         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15218      MVT Tp = (MVT::SimpleValueType)tp;
15219      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
15220        SclrLoadTy = Tp;
15221      }
15222    }
15223
15224    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15225    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
15226        (64 <= MemSz))
15227      SclrLoadTy = MVT::f64;
15228
15229    // Calculate the number of scalar loads that we need to perform
15230    // in order to load our vector from memory.
15231    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
15232
15233    // Represent our vector as a sequence of elements which are the
15234    // largest scalar that we can load.
15235    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
15236      RegSz/SclrLoadTy.getSizeInBits());
15237
15238    // Represent the data using the same element type that is stored in
15239    // memory. In practice, we ''widen'' MemVT.
15240    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
15241                                  RegSz/MemVT.getScalarType().getSizeInBits());
15242
15243    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
15244      "Invalid vector type");
15245
15246    // We can't shuffle using an illegal type.
15247    if (!TLI.isTypeLegal(WideVecVT))
15248      return SDValue();
15249
15250    SmallVector<SDValue, 8> Chains;
15251    SDValue Ptr = Ld->getBasePtr();
15252    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
15253                                        TLI.getPointerTy());
15254    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
15255
15256    for (unsigned i = 0; i < NumLoads; ++i) {
15257      // Perform a single load.
15258      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
15259                                       Ptr, Ld->getPointerInfo(),
15260                                       Ld->isVolatile(), Ld->isNonTemporal(),
15261                                       Ld->isInvariant(), Ld->getAlignment());
15262      Chains.push_back(ScalarLoad.getValue(1));
15263      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
15264      // another round of DAGCombining.
15265      if (i == 0)
15266        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
15267      else
15268        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
15269                          ScalarLoad, DAG.getIntPtrConstant(i));
15270
15271      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15272    }
15273
15274    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15275                               Chains.size());
15276
15277    // Bitcast the loaded value to a vector of the original element type, in
15278    // the size of the target vector type.
15279    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
15280    unsigned SizeRatio = RegSz/MemSz;
15281
15282    // Redistribute the loaded elements into the different locations.
15283    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15284    for (unsigned i = 0; i != NumElems; ++i)
15285      ShuffleVec[i*SizeRatio] = i;
15286
15287    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
15288                                         DAG.getUNDEF(WideVecVT),
15289                                         &ShuffleVec[0]);
15290
15291    // Bitcast to the requested type.
15292    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
15293    // Replace the original load with the new sequence
15294    // and return the new chain.
15295    return DCI.CombineTo(N, Shuff, TF, true);
15296  }
15297
15298  return SDValue();
15299}
15300
15301/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
15302static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
15303                                   const X86Subtarget *Subtarget) {
15304  StoreSDNode *St = cast<StoreSDNode>(N);
15305  EVT VT = St->getValue().getValueType();
15306  EVT StVT = St->getMemoryVT();
15307  DebugLoc dl = St->getDebugLoc();
15308  SDValue StoredVal = St->getOperand(1);
15309  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15310
15311  // If we are saving a concatenation of two XMM registers, perform two stores.
15312  // On Sandy Bridge, 256-bit memory operations are executed by two
15313  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
15314  // memory  operation.
15315  if (VT.is256BitVector() && !Subtarget->hasAVX2() &&
15316      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
15317      StoredVal.getNumOperands() == 2) {
15318    SDValue Value0 = StoredVal.getOperand(0);
15319    SDValue Value1 = StoredVal.getOperand(1);
15320
15321    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
15322    SDValue Ptr0 = St->getBasePtr();
15323    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
15324
15325    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
15326                                St->getPointerInfo(), St->isVolatile(),
15327                                St->isNonTemporal(), St->getAlignment());
15328    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
15329                                St->getPointerInfo(), St->isVolatile(),
15330                                St->isNonTemporal(), St->getAlignment());
15331    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
15332  }
15333
15334  // Optimize trunc store (of multiple scalars) to shuffle and store.
15335  // First, pack all of the elements in one place. Next, store to memory
15336  // in fewer chunks.
15337  if (St->isTruncatingStore() && VT.isVector()) {
15338    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15339    unsigned NumElems = VT.getVectorNumElements();
15340    assert(StVT != VT && "Cannot truncate to the same type");
15341    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
15342    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
15343
15344    // From, To sizes and ElemCount must be pow of two
15345    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
15346    // We are going to use the original vector elt for storing.
15347    // Accumulated smaller vector elements must be a multiple of the store size.
15348    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
15349
15350    unsigned SizeRatio  = FromSz / ToSz;
15351
15352    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
15353
15354    // Create a type on which we perform the shuffle
15355    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
15356            StVT.getScalarType(), NumElems*SizeRatio);
15357
15358    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
15359
15360    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
15361    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15362    for (unsigned i = 0; i != NumElems; ++i)
15363      ShuffleVec[i] = i * SizeRatio;
15364
15365    // Can't shuffle using an illegal type.
15366    if (!TLI.isTypeLegal(WideVecVT))
15367      return SDValue();
15368
15369    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
15370                                         DAG.getUNDEF(WideVecVT),
15371                                         &ShuffleVec[0]);
15372    // At this point all of the data is stored at the bottom of the
15373    // register. We now need to save it to mem.
15374
15375    // Find the largest store unit
15376    MVT StoreType = MVT::i8;
15377    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15378         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15379      MVT Tp = (MVT::SimpleValueType)tp;
15380      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
15381        StoreType = Tp;
15382    }
15383
15384    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15385    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
15386        (64 <= NumElems * ToSz))
15387      StoreType = MVT::f64;
15388
15389    // Bitcast the original vector into a vector of store-size units
15390    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
15391            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
15392    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
15393    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
15394    SmallVector<SDValue, 8> Chains;
15395    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
15396                                        TLI.getPointerTy());
15397    SDValue Ptr = St->getBasePtr();
15398
15399    // Perform one or more big stores into memory.
15400    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
15401      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
15402                                   StoreType, ShuffWide,
15403                                   DAG.getIntPtrConstant(i));
15404      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
15405                                St->getPointerInfo(), St->isVolatile(),
15406                                St->isNonTemporal(), St->getAlignment());
15407      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15408      Chains.push_back(Ch);
15409    }
15410
15411    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15412                               Chains.size());
15413  }
15414
15415
15416  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
15417  // the FP state in cases where an emms may be missing.
15418  // A preferable solution to the general problem is to figure out the right
15419  // places to insert EMMS.  This qualifies as a quick hack.
15420
15421  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
15422  if (VT.getSizeInBits() != 64)
15423    return SDValue();
15424
15425  const Function *F = DAG.getMachineFunction().getFunction();
15426  bool NoImplicitFloatOps = F->getFnAttributes().
15427    hasAttribute(Attributes::NoImplicitFloat);
15428  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
15429                     && Subtarget->hasSSE2();
15430  if ((VT.isVector() ||
15431       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
15432      isa<LoadSDNode>(St->getValue()) &&
15433      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
15434      St->getChain().hasOneUse() && !St->isVolatile()) {
15435    SDNode* LdVal = St->getValue().getNode();
15436    LoadSDNode *Ld = 0;
15437    int TokenFactorIndex = -1;
15438    SmallVector<SDValue, 8> Ops;
15439    SDNode* ChainVal = St->getChain().getNode();
15440    // Must be a store of a load.  We currently handle two cases:  the load
15441    // is a direct child, and it's under an intervening TokenFactor.  It is
15442    // possible to dig deeper under nested TokenFactors.
15443    if (ChainVal == LdVal)
15444      Ld = cast<LoadSDNode>(St->getChain());
15445    else if (St->getValue().hasOneUse() &&
15446             ChainVal->getOpcode() == ISD::TokenFactor) {
15447      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
15448        if (ChainVal->getOperand(i).getNode() == LdVal) {
15449          TokenFactorIndex = i;
15450          Ld = cast<LoadSDNode>(St->getValue());
15451        } else
15452          Ops.push_back(ChainVal->getOperand(i));
15453      }
15454    }
15455
15456    if (!Ld || !ISD::isNormalLoad(Ld))
15457      return SDValue();
15458
15459    // If this is not the MMX case, i.e. we are just turning i64 load/store
15460    // into f64 load/store, avoid the transformation if there are multiple
15461    // uses of the loaded value.
15462    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
15463      return SDValue();
15464
15465    DebugLoc LdDL = Ld->getDebugLoc();
15466    DebugLoc StDL = N->getDebugLoc();
15467    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
15468    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
15469    // pair instead.
15470    if (Subtarget->is64Bit() || F64IsLegal) {
15471      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
15472      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
15473                                  Ld->getPointerInfo(), Ld->isVolatile(),
15474                                  Ld->isNonTemporal(), Ld->isInvariant(),
15475                                  Ld->getAlignment());
15476      SDValue NewChain = NewLd.getValue(1);
15477      if (TokenFactorIndex != -1) {
15478        Ops.push_back(NewChain);
15479        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15480                               Ops.size());
15481      }
15482      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
15483                          St->getPointerInfo(),
15484                          St->isVolatile(), St->isNonTemporal(),
15485                          St->getAlignment());
15486    }
15487
15488    // Otherwise, lower to two pairs of 32-bit loads / stores.
15489    SDValue LoAddr = Ld->getBasePtr();
15490    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
15491                                 DAG.getConstant(4, MVT::i32));
15492
15493    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
15494                               Ld->getPointerInfo(),
15495                               Ld->isVolatile(), Ld->isNonTemporal(),
15496                               Ld->isInvariant(), Ld->getAlignment());
15497    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
15498                               Ld->getPointerInfo().getWithOffset(4),
15499                               Ld->isVolatile(), Ld->isNonTemporal(),
15500                               Ld->isInvariant(),
15501                               MinAlign(Ld->getAlignment(), 4));
15502
15503    SDValue NewChain = LoLd.getValue(1);
15504    if (TokenFactorIndex != -1) {
15505      Ops.push_back(LoLd);
15506      Ops.push_back(HiLd);
15507      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15508                             Ops.size());
15509    }
15510
15511    LoAddr = St->getBasePtr();
15512    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
15513                         DAG.getConstant(4, MVT::i32));
15514
15515    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
15516                                St->getPointerInfo(),
15517                                St->isVolatile(), St->isNonTemporal(),
15518                                St->getAlignment());
15519    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
15520                                St->getPointerInfo().getWithOffset(4),
15521                                St->isVolatile(),
15522                                St->isNonTemporal(),
15523                                MinAlign(St->getAlignment(), 4));
15524    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
15525  }
15526  return SDValue();
15527}
15528
15529/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
15530/// and return the operands for the horizontal operation in LHS and RHS.  A
15531/// horizontal operation performs the binary operation on successive elements
15532/// of its first operand, then on successive elements of its second operand,
15533/// returning the resulting values in a vector.  For example, if
15534///   A = < float a0, float a1, float a2, float a3 >
15535/// and
15536///   B = < float b0, float b1, float b2, float b3 >
15537/// then the result of doing a horizontal operation on A and B is
15538///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
15539/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
15540/// A horizontal-op B, for some already available A and B, and if so then LHS is
15541/// set to A, RHS to B, and the routine returns 'true'.
15542/// Note that the binary operation should have the property that if one of the
15543/// operands is UNDEF then the result is UNDEF.
15544static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
15545  // Look for the following pattern: if
15546  //   A = < float a0, float a1, float a2, float a3 >
15547  //   B = < float b0, float b1, float b2, float b3 >
15548  // and
15549  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
15550  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
15551  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
15552  // which is A horizontal-op B.
15553
15554  // At least one of the operands should be a vector shuffle.
15555  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
15556      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
15557    return false;
15558
15559  EVT VT = LHS.getValueType();
15560
15561  assert((VT.is128BitVector() || VT.is256BitVector()) &&
15562         "Unsupported vector type for horizontal add/sub");
15563
15564  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
15565  // operate independently on 128-bit lanes.
15566  unsigned NumElts = VT.getVectorNumElements();
15567  unsigned NumLanes = VT.getSizeInBits()/128;
15568  unsigned NumLaneElts = NumElts / NumLanes;
15569  assert((NumLaneElts % 2 == 0) &&
15570         "Vector type should have an even number of elements in each lane");
15571  unsigned HalfLaneElts = NumLaneElts/2;
15572
15573  // View LHS in the form
15574  //   LHS = VECTOR_SHUFFLE A, B, LMask
15575  // If LHS is not a shuffle then pretend it is the shuffle
15576  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
15577  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
15578  // type VT.
15579  SDValue A, B;
15580  SmallVector<int, 16> LMask(NumElts);
15581  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15582    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
15583      A = LHS.getOperand(0);
15584    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
15585      B = LHS.getOperand(1);
15586    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
15587    std::copy(Mask.begin(), Mask.end(), LMask.begin());
15588  } else {
15589    if (LHS.getOpcode() != ISD::UNDEF)
15590      A = LHS;
15591    for (unsigned i = 0; i != NumElts; ++i)
15592      LMask[i] = i;
15593  }
15594
15595  // Likewise, view RHS in the form
15596  //   RHS = VECTOR_SHUFFLE C, D, RMask
15597  SDValue C, D;
15598  SmallVector<int, 16> RMask(NumElts);
15599  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15600    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
15601      C = RHS.getOperand(0);
15602    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
15603      D = RHS.getOperand(1);
15604    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
15605    std::copy(Mask.begin(), Mask.end(), RMask.begin());
15606  } else {
15607    if (RHS.getOpcode() != ISD::UNDEF)
15608      C = RHS;
15609    for (unsigned i = 0; i != NumElts; ++i)
15610      RMask[i] = i;
15611  }
15612
15613  // Check that the shuffles are both shuffling the same vectors.
15614  if (!(A == C && B == D) && !(A == D && B == C))
15615    return false;
15616
15617  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
15618  if (!A.getNode() && !B.getNode())
15619    return false;
15620
15621  // If A and B occur in reverse order in RHS, then "swap" them (which means
15622  // rewriting the mask).
15623  if (A != C)
15624    CommuteVectorShuffleMask(RMask, NumElts);
15625
15626  // At this point LHS and RHS are equivalent to
15627  //   LHS = VECTOR_SHUFFLE A, B, LMask
15628  //   RHS = VECTOR_SHUFFLE A, B, RMask
15629  // Check that the masks correspond to performing a horizontal operation.
15630  for (unsigned i = 0; i != NumElts; ++i) {
15631    int LIdx = LMask[i], RIdx = RMask[i];
15632
15633    // Ignore any UNDEF components.
15634    if (LIdx < 0 || RIdx < 0 ||
15635        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
15636        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
15637      continue;
15638
15639    // Check that successive elements are being operated on.  If not, this is
15640    // not a horizontal operation.
15641    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
15642    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
15643    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
15644    if (!(LIdx == Index && RIdx == Index + 1) &&
15645        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
15646      return false;
15647  }
15648
15649  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
15650  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
15651  return true;
15652}
15653
15654/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
15655static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
15656                                  const X86Subtarget *Subtarget) {
15657  EVT VT = N->getValueType(0);
15658  SDValue LHS = N->getOperand(0);
15659  SDValue RHS = N->getOperand(1);
15660
15661  // Try to synthesize horizontal adds from adds of shuffles.
15662  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15663       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15664      isHorizontalBinOp(LHS, RHS, true))
15665    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
15666  return SDValue();
15667}
15668
15669/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
15670static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
15671                                  const X86Subtarget *Subtarget) {
15672  EVT VT = N->getValueType(0);
15673  SDValue LHS = N->getOperand(0);
15674  SDValue RHS = N->getOperand(1);
15675
15676  // Try to synthesize horizontal subs from subs of shuffles.
15677  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15678       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15679      isHorizontalBinOp(LHS, RHS, false))
15680    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
15681  return SDValue();
15682}
15683
15684/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
15685/// X86ISD::FXOR nodes.
15686static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
15687  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
15688  // F[X]OR(0.0, x) -> x
15689  // F[X]OR(x, 0.0) -> x
15690  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15691    if (C->getValueAPF().isPosZero())
15692      return N->getOperand(1);
15693  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15694    if (C->getValueAPF().isPosZero())
15695      return N->getOperand(0);
15696  return SDValue();
15697}
15698
15699/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
15700/// X86ISD::FMAX nodes.
15701static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
15702  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
15703
15704  // Only perform optimizations if UnsafeMath is used.
15705  if (!DAG.getTarget().Options.UnsafeFPMath)
15706    return SDValue();
15707
15708  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
15709  // into FMINC and FMAXC, which are Commutative operations.
15710  unsigned NewOp = 0;
15711  switch (N->getOpcode()) {
15712    default: llvm_unreachable("unknown opcode");
15713    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
15714    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
15715  }
15716
15717  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
15718                     N->getOperand(0), N->getOperand(1));
15719}
15720
15721
15722/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
15723static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
15724  // FAND(0.0, x) -> 0.0
15725  // FAND(x, 0.0) -> 0.0
15726  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15727    if (C->getValueAPF().isPosZero())
15728      return N->getOperand(0);
15729  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15730    if (C->getValueAPF().isPosZero())
15731      return N->getOperand(1);
15732  return SDValue();
15733}
15734
15735static SDValue PerformBTCombine(SDNode *N,
15736                                SelectionDAG &DAG,
15737                                TargetLowering::DAGCombinerInfo &DCI) {
15738  // BT ignores high bits in the bit index operand.
15739  SDValue Op1 = N->getOperand(1);
15740  if (Op1.hasOneUse()) {
15741    unsigned BitWidth = Op1.getValueSizeInBits();
15742    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
15743    APInt KnownZero, KnownOne;
15744    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
15745                                          !DCI.isBeforeLegalizeOps());
15746    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15747    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
15748        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
15749      DCI.CommitTargetLoweringOpt(TLO);
15750  }
15751  return SDValue();
15752}
15753
15754static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
15755  SDValue Op = N->getOperand(0);
15756  if (Op.getOpcode() == ISD::BITCAST)
15757    Op = Op.getOperand(0);
15758  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
15759  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
15760      VT.getVectorElementType().getSizeInBits() ==
15761      OpVT.getVectorElementType().getSizeInBits()) {
15762    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
15763  }
15764  return SDValue();
15765}
15766
15767static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
15768                                  TargetLowering::DAGCombinerInfo &DCI,
15769                                  const X86Subtarget *Subtarget) {
15770  if (!DCI.isBeforeLegalizeOps())
15771    return SDValue();
15772
15773  if (!Subtarget->hasAVX())
15774    return SDValue();
15775
15776  EVT VT = N->getValueType(0);
15777  SDValue Op = N->getOperand(0);
15778  EVT OpVT = Op.getValueType();
15779  DebugLoc dl = N->getDebugLoc();
15780
15781  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
15782      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
15783
15784    if (Subtarget->hasAVX2())
15785      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
15786
15787    // Optimize vectors in AVX mode
15788    // Sign extend  v8i16 to v8i32 and
15789    //              v4i32 to v4i64
15790    //
15791    // Divide input vector into two parts
15792    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
15793    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
15794    // concat the vectors to original VT
15795
15796    unsigned NumElems = OpVT.getVectorNumElements();
15797    SDValue Undef = DAG.getUNDEF(OpVT);
15798
15799    SmallVector<int,8> ShufMask1(NumElems, -1);
15800    for (unsigned i = 0; i != NumElems/2; ++i)
15801      ShufMask1[i] = i;
15802
15803    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]);
15804
15805    SmallVector<int,8> ShufMask2(NumElems, -1);
15806    for (unsigned i = 0; i != NumElems/2; ++i)
15807      ShufMask2[i] = i + NumElems/2;
15808
15809    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]);
15810
15811    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15812                                  VT.getVectorNumElements()/2);
15813
15814    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15815    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15816
15817    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15818  }
15819  return SDValue();
15820}
15821
15822static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
15823                                 const X86Subtarget* Subtarget) {
15824  DebugLoc dl = N->getDebugLoc();
15825  EVT VT = N->getValueType(0);
15826
15827  // Let legalize expand this if it isn't a legal type yet.
15828  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
15829    return SDValue();
15830
15831  EVT ScalarVT = VT.getScalarType();
15832  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
15833      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
15834    return SDValue();
15835
15836  SDValue A = N->getOperand(0);
15837  SDValue B = N->getOperand(1);
15838  SDValue C = N->getOperand(2);
15839
15840  bool NegA = (A.getOpcode() == ISD::FNEG);
15841  bool NegB = (B.getOpcode() == ISD::FNEG);
15842  bool NegC = (C.getOpcode() == ISD::FNEG);
15843
15844  // Negative multiplication when NegA xor NegB
15845  bool NegMul = (NegA != NegB);
15846  if (NegA)
15847    A = A.getOperand(0);
15848  if (NegB)
15849    B = B.getOperand(0);
15850  if (NegC)
15851    C = C.getOperand(0);
15852
15853  unsigned Opcode;
15854  if (!NegMul)
15855    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
15856  else
15857    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
15858
15859  return DAG.getNode(Opcode, dl, VT, A, B, C);
15860}
15861
15862static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15863                                  TargetLowering::DAGCombinerInfo &DCI,
15864                                  const X86Subtarget *Subtarget) {
15865  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15866  //           (and (i32 x86isd::setcc_carry), 1)
15867  // This eliminates the zext. This transformation is necessary because
15868  // ISD::SETCC is always legalized to i8.
15869  DebugLoc dl = N->getDebugLoc();
15870  SDValue N0 = N->getOperand(0);
15871  EVT VT = N->getValueType(0);
15872  EVT OpVT = N0.getValueType();
15873
15874  if (N0.getOpcode() == ISD::AND &&
15875      N0.hasOneUse() &&
15876      N0.getOperand(0).hasOneUse()) {
15877    SDValue N00 = N0.getOperand(0);
15878    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15879      return SDValue();
15880    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15881    if (!C || C->getZExtValue() != 1)
15882      return SDValue();
15883    return DAG.getNode(ISD::AND, dl, VT,
15884                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15885                                   N00.getOperand(0), N00.getOperand(1)),
15886                       DAG.getConstant(1, VT));
15887  }
15888
15889  // Optimize vectors in AVX mode:
15890  //
15891  //   v8i16 -> v8i32
15892  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15893  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15894  //   Concat upper and lower parts.
15895  //
15896  //   v4i32 -> v4i64
15897  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15898  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15899  //   Concat upper and lower parts.
15900  //
15901  if (!DCI.isBeforeLegalizeOps())
15902    return SDValue();
15903
15904  if (!Subtarget->hasAVX())
15905    return SDValue();
15906
15907  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15908      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15909
15910    if (Subtarget->hasAVX2())
15911      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15912
15913    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15914    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15915    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15916
15917    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15918                               VT.getVectorNumElements()/2);
15919
15920    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15921    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15922
15923    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15924  }
15925
15926  return SDValue();
15927}
15928
15929// Optimize x == -y --> x+y == 0
15930//          x != -y --> x+y != 0
15931static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15932  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15933  SDValue LHS = N->getOperand(0);
15934  SDValue RHS = N->getOperand(1);
15935
15936  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15937    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15938      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15939        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15940                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15941        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15942                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15943      }
15944  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15945    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15946      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15947        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15948                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15949        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15950                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15951      }
15952  return SDValue();
15953}
15954
15955// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15956static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
15957                                   TargetLowering::DAGCombinerInfo &DCI,
15958                                   const X86Subtarget *Subtarget) {
15959  DebugLoc DL = N->getDebugLoc();
15960  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
15961  SDValue EFLAGS = N->getOperand(1);
15962
15963  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15964  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15965  // cases.
15966  if (CC == X86::COND_B)
15967    return DAG.getNode(ISD::AND, DL, MVT::i8,
15968                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15969                                   DAG.getConstant(CC, MVT::i8), EFLAGS),
15970                       DAG.getConstant(1, MVT::i8));
15971
15972  SDValue Flags;
15973
15974  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
15975  if (Flags.getNode()) {
15976    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15977    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
15978  }
15979
15980  return SDValue();
15981}
15982
15983// Optimize branch condition evaluation.
15984//
15985static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
15986                                    TargetLowering::DAGCombinerInfo &DCI,
15987                                    const X86Subtarget *Subtarget) {
15988  DebugLoc DL = N->getDebugLoc();
15989  SDValue Chain = N->getOperand(0);
15990  SDValue Dest = N->getOperand(1);
15991  SDValue EFLAGS = N->getOperand(3);
15992  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
15993
15994  SDValue Flags;
15995
15996  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
15997  if (Flags.getNode()) {
15998    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15999    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
16000                       Flags);
16001  }
16002
16003  return SDValue();
16004}
16005
16006static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
16007  SDValue Op0 = N->getOperand(0);
16008  EVT InVT = Op0->getValueType(0);
16009
16010  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
16011  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
16012    DebugLoc dl = N->getDebugLoc();
16013    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
16014    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
16015    // Notice that we use SINT_TO_FP because we know that the high bits
16016    // are zero and SINT_TO_FP is better supported by the hardware.
16017    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
16018  }
16019
16020  return SDValue();
16021}
16022
16023static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
16024                                        const X86TargetLowering *XTLI) {
16025  SDValue Op0 = N->getOperand(0);
16026  EVT InVT = Op0->getValueType(0);
16027
16028  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
16029  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
16030    DebugLoc dl = N->getDebugLoc();
16031    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
16032    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
16033    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
16034  }
16035
16036  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
16037  // a 32-bit target where SSE doesn't support i64->FP operations.
16038  if (Op0.getOpcode() == ISD::LOAD) {
16039    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
16040    EVT VT = Ld->getValueType(0);
16041    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
16042        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
16043        !XTLI->getSubtarget()->is64Bit() &&
16044        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
16045      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
16046                                          Ld->getChain(), Op0, DAG);
16047      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
16048      return FILDChain;
16049    }
16050  }
16051  return SDValue();
16052}
16053
16054static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
16055  EVT VT = N->getValueType(0);
16056
16057  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
16058  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
16059    DebugLoc dl = N->getDebugLoc();
16060    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
16061    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
16062    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
16063  }
16064
16065  return SDValue();
16066}
16067
16068// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
16069static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
16070                                 X86TargetLowering::DAGCombinerInfo &DCI) {
16071  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
16072  // the result is either zero or one (depending on the input carry bit).
16073  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
16074  if (X86::isZeroNode(N->getOperand(0)) &&
16075      X86::isZeroNode(N->getOperand(1)) &&
16076      // We don't have a good way to replace an EFLAGS use, so only do this when
16077      // dead right now.
16078      SDValue(N, 1).use_empty()) {
16079    DebugLoc DL = N->getDebugLoc();
16080    EVT VT = N->getValueType(0);
16081    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
16082    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
16083                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
16084                                           DAG.getConstant(X86::COND_B,MVT::i8),
16085                                           N->getOperand(2)),
16086                               DAG.getConstant(1, VT));
16087    return DCI.CombineTo(N, Res1, CarryOut);
16088  }
16089
16090  return SDValue();
16091}
16092
16093// fold (add Y, (sete  X, 0)) -> adc  0, Y
16094//      (add Y, (setne X, 0)) -> sbb -1, Y
16095//      (sub (sete  X, 0), Y) -> sbb  0, Y
16096//      (sub (setne X, 0), Y) -> adc -1, Y
16097static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
16098  DebugLoc DL = N->getDebugLoc();
16099
16100  // Look through ZExts.
16101  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
16102  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
16103    return SDValue();
16104
16105  SDValue SetCC = Ext.getOperand(0);
16106  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
16107    return SDValue();
16108
16109  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
16110  if (CC != X86::COND_E && CC != X86::COND_NE)
16111    return SDValue();
16112
16113  SDValue Cmp = SetCC.getOperand(1);
16114  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
16115      !X86::isZeroNode(Cmp.getOperand(1)) ||
16116      !Cmp.getOperand(0).getValueType().isInteger())
16117    return SDValue();
16118
16119  SDValue CmpOp0 = Cmp.getOperand(0);
16120  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
16121                               DAG.getConstant(1, CmpOp0.getValueType()));
16122
16123  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
16124  if (CC == X86::COND_NE)
16125    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
16126                       DL, OtherVal.getValueType(), OtherVal,
16127                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
16128  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
16129                     DL, OtherVal.getValueType(), OtherVal,
16130                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
16131}
16132
16133/// PerformADDCombine - Do target-specific dag combines on integer adds.
16134static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
16135                                 const X86Subtarget *Subtarget) {
16136  EVT VT = N->getValueType(0);
16137  SDValue Op0 = N->getOperand(0);
16138  SDValue Op1 = N->getOperand(1);
16139
16140  // Try to synthesize horizontal adds from adds of shuffles.
16141  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16142       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16143      isHorizontalBinOp(Op0, Op1, true))
16144    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
16145
16146  return OptimizeConditionalInDecrement(N, DAG);
16147}
16148
16149static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
16150                                 const X86Subtarget *Subtarget) {
16151  SDValue Op0 = N->getOperand(0);
16152  SDValue Op1 = N->getOperand(1);
16153
16154  // X86 can't encode an immediate LHS of a sub. See if we can push the
16155  // negation into a preceding instruction.
16156  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
16157    // If the RHS of the sub is a XOR with one use and a constant, invert the
16158    // immediate. Then add one to the LHS of the sub so we can turn
16159    // X-Y -> X+~Y+1, saving one register.
16160    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
16161        isa<ConstantSDNode>(Op1.getOperand(1))) {
16162      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
16163      EVT VT = Op0.getValueType();
16164      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
16165                                   Op1.getOperand(0),
16166                                   DAG.getConstant(~XorC, VT));
16167      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
16168                         DAG.getConstant(C->getAPIntValue()+1, VT));
16169    }
16170  }
16171
16172  // Try to synthesize horizontal adds from adds of shuffles.
16173  EVT VT = N->getValueType(0);
16174  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16175       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16176      isHorizontalBinOp(Op0, Op1, true))
16177    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
16178
16179  return OptimizeConditionalInDecrement(N, DAG);
16180}
16181
16182SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
16183                                             DAGCombinerInfo &DCI) const {
16184  SelectionDAG &DAG = DCI.DAG;
16185  switch (N->getOpcode()) {
16186  default: break;
16187  case ISD::EXTRACT_VECTOR_ELT:
16188    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
16189  case ISD::VSELECT:
16190  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
16191  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
16192  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
16193  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
16194  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
16195  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
16196  case ISD::SHL:
16197  case ISD::SRA:
16198  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
16199  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
16200  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
16201  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
16202  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
16203  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
16204  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
16205  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
16206  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
16207  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
16208  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
16209  case X86ISD::FXOR:
16210  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
16211  case X86ISD::FMIN:
16212  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
16213  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
16214  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
16215  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
16216  case ISD::ANY_EXTEND:
16217  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
16218  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
16219  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
16220  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
16221  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
16222  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
16223  case X86ISD::SHUFP:       // Handle all target specific shuffles
16224  case X86ISD::PALIGN:
16225  case X86ISD::UNPCKH:
16226  case X86ISD::UNPCKL:
16227  case X86ISD::MOVHLPS:
16228  case X86ISD::MOVLHPS:
16229  case X86ISD::PSHUFD:
16230  case X86ISD::PSHUFHW:
16231  case X86ISD::PSHUFLW:
16232  case X86ISD::MOVSS:
16233  case X86ISD::MOVSD:
16234  case X86ISD::VPERMILP:
16235  case X86ISD::VPERM2X128:
16236  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
16237  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
16238  }
16239
16240  return SDValue();
16241}
16242
16243/// isTypeDesirableForOp - Return true if the target has native support for
16244/// the specified value type and it is 'desirable' to use the type for the
16245/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
16246/// instruction encodings are longer and some i16 instructions are slow.
16247bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
16248  if (!isTypeLegal(VT))
16249    return false;
16250  if (VT != MVT::i16)
16251    return true;
16252
16253  switch (Opc) {
16254  default:
16255    return true;
16256  case ISD::LOAD:
16257  case ISD::SIGN_EXTEND:
16258  case ISD::ZERO_EXTEND:
16259  case ISD::ANY_EXTEND:
16260  case ISD::SHL:
16261  case ISD::SRL:
16262  case ISD::SUB:
16263  case ISD::ADD:
16264  case ISD::MUL:
16265  case ISD::AND:
16266  case ISD::OR:
16267  case ISD::XOR:
16268    return false;
16269  }
16270}
16271
16272/// IsDesirableToPromoteOp - This method query the target whether it is
16273/// beneficial for dag combiner to promote the specified node. If true, it
16274/// should return the desired promotion type by reference.
16275bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
16276  EVT VT = Op.getValueType();
16277  if (VT != MVT::i16)
16278    return false;
16279
16280  bool Promote = false;
16281  bool Commute = false;
16282  switch (Op.getOpcode()) {
16283  default: break;
16284  case ISD::LOAD: {
16285    LoadSDNode *LD = cast<LoadSDNode>(Op);
16286    // If the non-extending load has a single use and it's not live out, then it
16287    // might be folded.
16288    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
16289                                                     Op.hasOneUse()*/) {
16290      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
16291             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
16292        // The only case where we'd want to promote LOAD (rather then it being
16293        // promoted as an operand is when it's only use is liveout.
16294        if (UI->getOpcode() != ISD::CopyToReg)
16295          return false;
16296      }
16297    }
16298    Promote = true;
16299    break;
16300  }
16301  case ISD::SIGN_EXTEND:
16302  case ISD::ZERO_EXTEND:
16303  case ISD::ANY_EXTEND:
16304    Promote = true;
16305    break;
16306  case ISD::SHL:
16307  case ISD::SRL: {
16308    SDValue N0 = Op.getOperand(0);
16309    // Look out for (store (shl (load), x)).
16310    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
16311      return false;
16312    Promote = true;
16313    break;
16314  }
16315  case ISD::ADD:
16316  case ISD::MUL:
16317  case ISD::AND:
16318  case ISD::OR:
16319  case ISD::XOR:
16320    Commute = true;
16321    // fallthrough
16322  case ISD::SUB: {
16323    SDValue N0 = Op.getOperand(0);
16324    SDValue N1 = Op.getOperand(1);
16325    if (!Commute && MayFoldLoad(N1))
16326      return false;
16327    // Avoid disabling potential load folding opportunities.
16328    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
16329      return false;
16330    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
16331      return false;
16332    Promote = true;
16333  }
16334  }
16335
16336  PVT = MVT::i32;
16337  return Promote;
16338}
16339
16340//===----------------------------------------------------------------------===//
16341//                           X86 Inline Assembly Support
16342//===----------------------------------------------------------------------===//
16343
16344namespace {
16345  // Helper to match a string separated by whitespace.
16346  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
16347    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
16348
16349    for (unsigned i = 0, e = args.size(); i != e; ++i) {
16350      StringRef piece(*args[i]);
16351      if (!s.startswith(piece)) // Check if the piece matches.
16352        return false;
16353
16354      s = s.substr(piece.size());
16355      StringRef::size_type pos = s.find_first_not_of(" \t");
16356      if (pos == 0) // We matched a prefix.
16357        return false;
16358
16359      s = s.substr(pos);
16360    }
16361
16362    return s.empty();
16363  }
16364  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
16365}
16366
16367bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
16368  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
16369
16370  std::string AsmStr = IA->getAsmString();
16371
16372  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
16373  if (!Ty || Ty->getBitWidth() % 16 != 0)
16374    return false;
16375
16376  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
16377  SmallVector<StringRef, 4> AsmPieces;
16378  SplitString(AsmStr, AsmPieces, ";\n");
16379
16380  switch (AsmPieces.size()) {
16381  default: return false;
16382  case 1:
16383    // FIXME: this should verify that we are targeting a 486 or better.  If not,
16384    // we will turn this bswap into something that will be lowered to logical
16385    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
16386    // lower so don't worry about this.
16387    // bswap $0
16388    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
16389        matchAsm(AsmPieces[0], "bswapl", "$0") ||
16390        matchAsm(AsmPieces[0], "bswapq", "$0") ||
16391        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
16392        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
16393        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
16394      // No need to check constraints, nothing other than the equivalent of
16395      // "=r,0" would be valid here.
16396      return IntrinsicLowering::LowerToByteSwap(CI);
16397    }
16398
16399    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
16400    if (CI->getType()->isIntegerTy(16) &&
16401        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16402        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
16403         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
16404      AsmPieces.clear();
16405      const std::string &ConstraintsStr = IA->getConstraintString();
16406      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16407      std::sort(AsmPieces.begin(), AsmPieces.end());
16408      if (AsmPieces.size() == 4 &&
16409          AsmPieces[0] == "~{cc}" &&
16410          AsmPieces[1] == "~{dirflag}" &&
16411          AsmPieces[2] == "~{flags}" &&
16412          AsmPieces[3] == "~{fpsr}")
16413      return IntrinsicLowering::LowerToByteSwap(CI);
16414    }
16415    break;
16416  case 3:
16417    if (CI->getType()->isIntegerTy(32) &&
16418        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16419        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
16420        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
16421        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
16422      AsmPieces.clear();
16423      const std::string &ConstraintsStr = IA->getConstraintString();
16424      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16425      std::sort(AsmPieces.begin(), AsmPieces.end());
16426      if (AsmPieces.size() == 4 &&
16427          AsmPieces[0] == "~{cc}" &&
16428          AsmPieces[1] == "~{dirflag}" &&
16429          AsmPieces[2] == "~{flags}" &&
16430          AsmPieces[3] == "~{fpsr}")
16431        return IntrinsicLowering::LowerToByteSwap(CI);
16432    }
16433
16434    if (CI->getType()->isIntegerTy(64)) {
16435      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
16436      if (Constraints.size() >= 2 &&
16437          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
16438          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
16439        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
16440        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
16441            matchAsm(AsmPieces[1], "bswap", "%edx") &&
16442            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
16443          return IntrinsicLowering::LowerToByteSwap(CI);
16444      }
16445    }
16446    break;
16447  }
16448  return false;
16449}
16450
16451
16452
16453/// getConstraintType - Given a constraint letter, return the type of
16454/// constraint it is for this target.
16455X86TargetLowering::ConstraintType
16456X86TargetLowering::getConstraintType(const std::string &Constraint) const {
16457  if (Constraint.size() == 1) {
16458    switch (Constraint[0]) {
16459    case 'R':
16460    case 'q':
16461    case 'Q':
16462    case 'f':
16463    case 't':
16464    case 'u':
16465    case 'y':
16466    case 'x':
16467    case 'Y':
16468    case 'l':
16469      return C_RegisterClass;
16470    case 'a':
16471    case 'b':
16472    case 'c':
16473    case 'd':
16474    case 'S':
16475    case 'D':
16476    case 'A':
16477      return C_Register;
16478    case 'I':
16479    case 'J':
16480    case 'K':
16481    case 'L':
16482    case 'M':
16483    case 'N':
16484    case 'G':
16485    case 'C':
16486    case 'e':
16487    case 'Z':
16488      return C_Other;
16489    default:
16490      break;
16491    }
16492  }
16493  return TargetLowering::getConstraintType(Constraint);
16494}
16495
16496/// Examine constraint type and operand type and determine a weight value.
16497/// This object must already have been set up with the operand type
16498/// and the current alternative constraint selected.
16499TargetLowering::ConstraintWeight
16500  X86TargetLowering::getSingleConstraintMatchWeight(
16501    AsmOperandInfo &info, const char *constraint) const {
16502  ConstraintWeight weight = CW_Invalid;
16503  Value *CallOperandVal = info.CallOperandVal;
16504    // If we don't have a value, we can't do a match,
16505    // but allow it at the lowest weight.
16506  if (CallOperandVal == NULL)
16507    return CW_Default;
16508  Type *type = CallOperandVal->getType();
16509  // Look at the constraint type.
16510  switch (*constraint) {
16511  default:
16512    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
16513  case 'R':
16514  case 'q':
16515  case 'Q':
16516  case 'a':
16517  case 'b':
16518  case 'c':
16519  case 'd':
16520  case 'S':
16521  case 'D':
16522  case 'A':
16523    if (CallOperandVal->getType()->isIntegerTy())
16524      weight = CW_SpecificReg;
16525    break;
16526  case 'f':
16527  case 't':
16528  case 'u':
16529      if (type->isFloatingPointTy())
16530        weight = CW_SpecificReg;
16531      break;
16532  case 'y':
16533      if (type->isX86_MMXTy() && Subtarget->hasMMX())
16534        weight = CW_SpecificReg;
16535      break;
16536  case 'x':
16537  case 'Y':
16538    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
16539        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
16540      weight = CW_Register;
16541    break;
16542  case 'I':
16543    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
16544      if (C->getZExtValue() <= 31)
16545        weight = CW_Constant;
16546    }
16547    break;
16548  case 'J':
16549    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16550      if (C->getZExtValue() <= 63)
16551        weight = CW_Constant;
16552    }
16553    break;
16554  case 'K':
16555    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16556      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
16557        weight = CW_Constant;
16558    }
16559    break;
16560  case 'L':
16561    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16562      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
16563        weight = CW_Constant;
16564    }
16565    break;
16566  case 'M':
16567    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16568      if (C->getZExtValue() <= 3)
16569        weight = CW_Constant;
16570    }
16571    break;
16572  case 'N':
16573    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16574      if (C->getZExtValue() <= 0xff)
16575        weight = CW_Constant;
16576    }
16577    break;
16578  case 'G':
16579  case 'C':
16580    if (dyn_cast<ConstantFP>(CallOperandVal)) {
16581      weight = CW_Constant;
16582    }
16583    break;
16584  case 'e':
16585    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16586      if ((C->getSExtValue() >= -0x80000000LL) &&
16587          (C->getSExtValue() <= 0x7fffffffLL))
16588        weight = CW_Constant;
16589    }
16590    break;
16591  case 'Z':
16592    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16593      if (C->getZExtValue() <= 0xffffffff)
16594        weight = CW_Constant;
16595    }
16596    break;
16597  }
16598  return weight;
16599}
16600
16601/// LowerXConstraint - try to replace an X constraint, which matches anything,
16602/// with another that has more specific requirements based on the type of the
16603/// corresponding operand.
16604const char *X86TargetLowering::
16605LowerXConstraint(EVT ConstraintVT) const {
16606  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
16607  // 'f' like normal targets.
16608  if (ConstraintVT.isFloatingPoint()) {
16609    if (Subtarget->hasSSE2())
16610      return "Y";
16611    if (Subtarget->hasSSE1())
16612      return "x";
16613  }
16614
16615  return TargetLowering::LowerXConstraint(ConstraintVT);
16616}
16617
16618/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16619/// vector.  If it is invalid, don't add anything to Ops.
16620void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16621                                                     std::string &Constraint,
16622                                                     std::vector<SDValue>&Ops,
16623                                                     SelectionDAG &DAG) const {
16624  SDValue Result(0, 0);
16625
16626  // Only support length 1 constraints for now.
16627  if (Constraint.length() > 1) return;
16628
16629  char ConstraintLetter = Constraint[0];
16630  switch (ConstraintLetter) {
16631  default: break;
16632  case 'I':
16633    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16634      if (C->getZExtValue() <= 31) {
16635        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16636        break;
16637      }
16638    }
16639    return;
16640  case 'J':
16641    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16642      if (C->getZExtValue() <= 63) {
16643        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16644        break;
16645      }
16646    }
16647    return;
16648  case 'K':
16649    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16650      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
16651        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16652        break;
16653      }
16654    }
16655    return;
16656  case 'N':
16657    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16658      if (C->getZExtValue() <= 255) {
16659        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16660        break;
16661      }
16662    }
16663    return;
16664  case 'e': {
16665    // 32-bit signed value
16666    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16667      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16668                                           C->getSExtValue())) {
16669        // Widen to 64 bits here to get it sign extended.
16670        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
16671        break;
16672      }
16673    // FIXME gcc accepts some relocatable values here too, but only in certain
16674    // memory models; it's complicated.
16675    }
16676    return;
16677  }
16678  case 'Z': {
16679    // 32-bit unsigned value
16680    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16681      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16682                                           C->getZExtValue())) {
16683        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16684        break;
16685      }
16686    }
16687    // FIXME gcc accepts some relocatable values here too, but only in certain
16688    // memory models; it's complicated.
16689    return;
16690  }
16691  case 'i': {
16692    // Literal immediates are always ok.
16693    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
16694      // Widen to 64 bits here to get it sign extended.
16695      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
16696      break;
16697    }
16698
16699    // In any sort of PIC mode addresses need to be computed at runtime by
16700    // adding in a register or some sort of table lookup.  These can't
16701    // be used as immediates.
16702    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
16703      return;
16704
16705    // If we are in non-pic codegen mode, we allow the address of a global (with
16706    // an optional displacement) to be used with 'i'.
16707    GlobalAddressSDNode *GA = 0;
16708    int64_t Offset = 0;
16709
16710    // Match either (GA), (GA+C), (GA+C1+C2), etc.
16711    while (1) {
16712      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
16713        Offset += GA->getOffset();
16714        break;
16715      } else if (Op.getOpcode() == ISD::ADD) {
16716        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16717          Offset += C->getZExtValue();
16718          Op = Op.getOperand(0);
16719          continue;
16720        }
16721      } else if (Op.getOpcode() == ISD::SUB) {
16722        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16723          Offset += -C->getZExtValue();
16724          Op = Op.getOperand(0);
16725          continue;
16726        }
16727      }
16728
16729      // Otherwise, this isn't something we can handle, reject it.
16730      return;
16731    }
16732
16733    const GlobalValue *GV = GA->getGlobal();
16734    // If we require an extra load to get this address, as in PIC mode, we
16735    // can't accept it.
16736    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
16737                                                        getTargetMachine())))
16738      return;
16739
16740    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
16741                                        GA->getValueType(0), Offset);
16742    break;
16743  }
16744  }
16745
16746  if (Result.getNode()) {
16747    Ops.push_back(Result);
16748    return;
16749  }
16750  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16751}
16752
16753std::pair<unsigned, const TargetRegisterClass*>
16754X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
16755                                                EVT VT) const {
16756  // First, see if this is a constraint that directly corresponds to an LLVM
16757  // register class.
16758  if (Constraint.size() == 1) {
16759    // GCC Constraint Letters
16760    switch (Constraint[0]) {
16761    default: break;
16762      // TODO: Slight differences here in allocation order and leaving
16763      // RIP in the class. Do they matter any more here than they do
16764      // in the normal allocation?
16765    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
16766      if (Subtarget->is64Bit()) {
16767        if (VT == MVT::i32 || VT == MVT::f32)
16768          return std::make_pair(0U, &X86::GR32RegClass);
16769        if (VT == MVT::i16)
16770          return std::make_pair(0U, &X86::GR16RegClass);
16771        if (VT == MVT::i8 || VT == MVT::i1)
16772          return std::make_pair(0U, &X86::GR8RegClass);
16773        if (VT == MVT::i64 || VT == MVT::f64)
16774          return std::make_pair(0U, &X86::GR64RegClass);
16775        break;
16776      }
16777      // 32-bit fallthrough
16778    case 'Q':   // Q_REGS
16779      if (VT == MVT::i32 || VT == MVT::f32)
16780        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
16781      if (VT == MVT::i16)
16782        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
16783      if (VT == MVT::i8 || VT == MVT::i1)
16784        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
16785      if (VT == MVT::i64)
16786        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
16787      break;
16788    case 'r':   // GENERAL_REGS
16789    case 'l':   // INDEX_REGS
16790      if (VT == MVT::i8 || VT == MVT::i1)
16791        return std::make_pair(0U, &X86::GR8RegClass);
16792      if (VT == MVT::i16)
16793        return std::make_pair(0U, &X86::GR16RegClass);
16794      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
16795        return std::make_pair(0U, &X86::GR32RegClass);
16796      return std::make_pair(0U, &X86::GR64RegClass);
16797    case 'R':   // LEGACY_REGS
16798      if (VT == MVT::i8 || VT == MVT::i1)
16799        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
16800      if (VT == MVT::i16)
16801        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
16802      if (VT == MVT::i32 || !Subtarget->is64Bit())
16803        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
16804      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
16805    case 'f':  // FP Stack registers.
16806      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
16807      // value to the correct fpstack register class.
16808      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
16809        return std::make_pair(0U, &X86::RFP32RegClass);
16810      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
16811        return std::make_pair(0U, &X86::RFP64RegClass);
16812      return std::make_pair(0U, &X86::RFP80RegClass);
16813    case 'y':   // MMX_REGS if MMX allowed.
16814      if (!Subtarget->hasMMX()) break;
16815      return std::make_pair(0U, &X86::VR64RegClass);
16816    case 'Y':   // SSE_REGS if SSE2 allowed
16817      if (!Subtarget->hasSSE2()) break;
16818      // FALL THROUGH.
16819    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
16820      if (!Subtarget->hasSSE1()) break;
16821
16822      switch (VT.getSimpleVT().SimpleTy) {
16823      default: break;
16824      // Scalar SSE types.
16825      case MVT::f32:
16826      case MVT::i32:
16827        return std::make_pair(0U, &X86::FR32RegClass);
16828      case MVT::f64:
16829      case MVT::i64:
16830        return std::make_pair(0U, &X86::FR64RegClass);
16831      // Vector types.
16832      case MVT::v16i8:
16833      case MVT::v8i16:
16834      case MVT::v4i32:
16835      case MVT::v2i64:
16836      case MVT::v4f32:
16837      case MVT::v2f64:
16838        return std::make_pair(0U, &X86::VR128RegClass);
16839      // AVX types.
16840      case MVT::v32i8:
16841      case MVT::v16i16:
16842      case MVT::v8i32:
16843      case MVT::v4i64:
16844      case MVT::v8f32:
16845      case MVT::v4f64:
16846        return std::make_pair(0U, &X86::VR256RegClass);
16847      }
16848      break;
16849    }
16850  }
16851
16852  // Use the default implementation in TargetLowering to convert the register
16853  // constraint into a member of a register class.
16854  std::pair<unsigned, const TargetRegisterClass*> Res;
16855  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
16856
16857  // Not found as a standard register?
16858  if (Res.second == 0) {
16859    // Map st(0) -> st(7) -> ST0
16860    if (Constraint.size() == 7 && Constraint[0] == '{' &&
16861        tolower(Constraint[1]) == 's' &&
16862        tolower(Constraint[2]) == 't' &&
16863        Constraint[3] == '(' &&
16864        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
16865        Constraint[5] == ')' &&
16866        Constraint[6] == '}') {
16867
16868      Res.first = X86::ST0+Constraint[4]-'0';
16869      Res.second = &X86::RFP80RegClass;
16870      return Res;
16871    }
16872
16873    // GCC allows "st(0)" to be called just plain "st".
16874    if (StringRef("{st}").equals_lower(Constraint)) {
16875      Res.first = X86::ST0;
16876      Res.second = &X86::RFP80RegClass;
16877      return Res;
16878    }
16879
16880    // flags -> EFLAGS
16881    if (StringRef("{flags}").equals_lower(Constraint)) {
16882      Res.first = X86::EFLAGS;
16883      Res.second = &X86::CCRRegClass;
16884      return Res;
16885    }
16886
16887    // 'A' means EAX + EDX.
16888    if (Constraint == "A") {
16889      Res.first = X86::EAX;
16890      Res.second = &X86::GR32_ADRegClass;
16891      return Res;
16892    }
16893    return Res;
16894  }
16895
16896  // Otherwise, check to see if this is a register class of the wrong value
16897  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16898  // turn into {ax},{dx}.
16899  if (Res.second->hasType(VT))
16900    return Res;   // Correct type already, nothing to do.
16901
16902  // All of the single-register GCC register classes map their values onto
16903  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16904  // really want an 8-bit or 32-bit register, map to the appropriate register
16905  // class and return the appropriate register.
16906  if (Res.second == &X86::GR16RegClass) {
16907    if (VT == MVT::i8) {
16908      unsigned DestReg = 0;
16909      switch (Res.first) {
16910      default: break;
16911      case X86::AX: DestReg = X86::AL; break;
16912      case X86::DX: DestReg = X86::DL; break;
16913      case X86::CX: DestReg = X86::CL; break;
16914      case X86::BX: DestReg = X86::BL; break;
16915      }
16916      if (DestReg) {
16917        Res.first = DestReg;
16918        Res.second = &X86::GR8RegClass;
16919      }
16920    } else if (VT == MVT::i32) {
16921      unsigned DestReg = 0;
16922      switch (Res.first) {
16923      default: break;
16924      case X86::AX: DestReg = X86::EAX; break;
16925      case X86::DX: DestReg = X86::EDX; break;
16926      case X86::CX: DestReg = X86::ECX; break;
16927      case X86::BX: DestReg = X86::EBX; break;
16928      case X86::SI: DestReg = X86::ESI; break;
16929      case X86::DI: DestReg = X86::EDI; break;
16930      case X86::BP: DestReg = X86::EBP; break;
16931      case X86::SP: DestReg = X86::ESP; break;
16932      }
16933      if (DestReg) {
16934        Res.first = DestReg;
16935        Res.second = &X86::GR32RegClass;
16936      }
16937    } else if (VT == MVT::i64) {
16938      unsigned DestReg = 0;
16939      switch (Res.first) {
16940      default: break;
16941      case X86::AX: DestReg = X86::RAX; break;
16942      case X86::DX: DestReg = X86::RDX; break;
16943      case X86::CX: DestReg = X86::RCX; break;
16944      case X86::BX: DestReg = X86::RBX; break;
16945      case X86::SI: DestReg = X86::RSI; break;
16946      case X86::DI: DestReg = X86::RDI; break;
16947      case X86::BP: DestReg = X86::RBP; break;
16948      case X86::SP: DestReg = X86::RSP; break;
16949      }
16950      if (DestReg) {
16951        Res.first = DestReg;
16952        Res.second = &X86::GR64RegClass;
16953      }
16954    }
16955  } else if (Res.second == &X86::FR32RegClass ||
16956             Res.second == &X86::FR64RegClass ||
16957             Res.second == &X86::VR128RegClass) {
16958    // Handle references to XMM physical registers that got mapped into the
16959    // wrong class.  This can happen with constraints like {xmm0} where the
16960    // target independent register mapper will just pick the first match it can
16961    // find, ignoring the required type.
16962
16963    if (VT == MVT::f32 || VT == MVT::i32)
16964      Res.second = &X86::FR32RegClass;
16965    else if (VT == MVT::f64 || VT == MVT::i64)
16966      Res.second = &X86::FR64RegClass;
16967    else if (X86::VR128RegClass.hasType(VT))
16968      Res.second = &X86::VR128RegClass;
16969    else if (X86::VR256RegClass.hasType(VT))
16970      Res.second = &X86::VR256RegClass;
16971  }
16972
16973  return Res;
16974}
16975