X86ISelLowering.cpp revision a6269ee5fbb6e1237648a47d31f96ba3b4a1bb54
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalAlias.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
62                                SelectionDAG &DAG, SDLoc dl,
63                                unsigned vectorWidth) {
64  assert((vectorWidth == 128 || vectorWidth == 256) &&
65         "Unsupported vector width");
66  EVT VT = Vec.getValueType();
67  EVT ElVT = VT.getVectorElementType();
68  unsigned Factor = VT.getSizeInBits()/vectorWidth;
69  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
70                                  VT.getVectorNumElements()/Factor);
71
72  // Extract from UNDEF is UNDEF.
73  if (Vec.getOpcode() == ISD::UNDEF)
74    return DAG.getUNDEF(ResultVT);
75
76  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
77  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
78
79  // This is the index of the first element of the vectorWidth-bit chunk
80  // we want.
81  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
82                               * ElemsPerChunk);
83
84  // If the input is a buildvector just emit a smaller one.
85  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
86    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
87                       Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
88
89  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
90  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
91                               VecIdx);
92
93  return Result;
94
95}
96/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
97/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
98/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
99/// instructions or a simple subregister reference. Idx is an index in the
100/// 128 bits we want.  It need not be aligned to a 128-bit bounday.  That makes
101/// lowering EXTRACT_VECTOR_ELT operations easier.
102static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
103                                   SelectionDAG &DAG, SDLoc dl) {
104  assert((Vec.getValueType().is256BitVector() ||
105          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
106  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
107}
108
109/// Generate a DAG to grab 256-bits from a 512-bit vector.
110static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
111                                   SelectionDAG &DAG, SDLoc dl) {
112  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
113  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
114}
115
116static SDValue InsertSubVector(SDValue Result, SDValue Vec,
117                               unsigned IdxVal, SelectionDAG &DAG,
118                               SDLoc dl, unsigned vectorWidth) {
119  assert((vectorWidth == 128 || vectorWidth == 256) &&
120         "Unsupported vector width");
121  // Inserting UNDEF is Result
122  if (Vec.getOpcode() == ISD::UNDEF)
123    return Result;
124  EVT VT = Vec.getValueType();
125  EVT ElVT = VT.getVectorElementType();
126  EVT ResultVT = Result.getValueType();
127
128  // Insert the relevant vectorWidth bits.
129  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
130
131  // This is the index of the first element of the vectorWidth-bit chunk
132  // we want.
133  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
134                               * ElemsPerChunk);
135
136  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
137  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
138                     VecIdx);
139}
140/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
141/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
142/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
143/// simple superregister reference.  Idx is an index in the 128 bits
144/// we want.  It need not be aligned to a 128-bit bounday.  That makes
145/// lowering INSERT_VECTOR_ELT operations easier.
146static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
147                                  unsigned IdxVal, SelectionDAG &DAG,
148                                  SDLoc dl) {
149  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
150  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
151}
152
153static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
154                                  unsigned IdxVal, SelectionDAG &DAG,
155                                  SDLoc dl) {
156  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
157  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
158}
159
160/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
161/// instructions. This is used because creating CONCAT_VECTOR nodes of
162/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
163/// large BUILD_VECTORS.
164static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
165                                   unsigned NumElems, SelectionDAG &DAG,
166                                   SDLoc dl) {
167  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
168  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
169}
170
171static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
172                                   unsigned NumElems, SelectionDAG &DAG,
173                                   SDLoc dl) {
174  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
175  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
176}
177
178static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
179  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
180  bool is64Bit = Subtarget->is64Bit();
181
182  if (Subtarget->isTargetEnvMacho()) {
183    if (is64Bit)
184      return new X86_64MachoTargetObjectFile();
185    return new TargetLoweringObjectFileMachO();
186  }
187
188  if (Subtarget->isTargetLinux())
189    return new X86LinuxTargetObjectFile();
190  if (Subtarget->isTargetELF())
191    return new TargetLoweringObjectFileELF();
192  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
193    return new TargetLoweringObjectFileCOFF();
194  llvm_unreachable("unknown subtarget type");
195}
196
197X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
198  : TargetLowering(TM, createTLOF(TM)) {
199  Subtarget = &TM.getSubtarget<X86Subtarget>();
200  X86ScalarSSEf64 = Subtarget->hasSSE2();
201  X86ScalarSSEf32 = Subtarget->hasSSE1();
202  TD = getDataLayout();
203
204  resetOperationActions();
205}
206
207void X86TargetLowering::resetOperationActions() {
208  const TargetMachine &TM = getTargetMachine();
209  static bool FirstTimeThrough = true;
210
211  // If none of the target options have changed, then we don't need to reset the
212  // operation actions.
213  if (!FirstTimeThrough && TO == TM.Options) return;
214
215  if (!FirstTimeThrough) {
216    // Reinitialize the actions.
217    initActions();
218    FirstTimeThrough = false;
219  }
220
221  TO = TM.Options;
222
223  // Set up the TargetLowering object.
224  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
225
226  // X86 is weird, it always uses i8 for shift amounts and setcc results.
227  setBooleanContents(ZeroOrOneBooleanContent);
228  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
229  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
230
231  // For 64-bit since we have so many registers use the ILP scheduler, for
232  // 32-bit code use the register pressure specific scheduling.
233  // For Atom, always use ILP scheduling.
234  if (Subtarget->isAtom())
235    setSchedulingPreference(Sched::ILP);
236  else if (Subtarget->is64Bit())
237    setSchedulingPreference(Sched::ILP);
238  else
239    setSchedulingPreference(Sched::RegPressure);
240  const X86RegisterInfo *RegInfo =
241    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
242  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
243
244  // Bypass expensive divides on Atom when compiling with O2
245  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
246    addBypassSlowDiv(32, 8);
247    if (Subtarget->is64Bit())
248      addBypassSlowDiv(64, 16);
249  }
250
251  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
252    // Setup Windows compiler runtime calls.
253    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
254    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
255    setLibcallName(RTLIB::SREM_I64, "_allrem");
256    setLibcallName(RTLIB::UREM_I64, "_aullrem");
257    setLibcallName(RTLIB::MUL_I64, "_allmul");
258    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
259    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
260    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
261    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
262    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
263
264    // The _ftol2 runtime function has an unusual calling conv, which
265    // is modeled by a special pseudo-instruction.
266    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
267    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
268    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
269    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
270  }
271
272  if (Subtarget->isTargetDarwin()) {
273    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
274    setUseUnderscoreSetJmp(false);
275    setUseUnderscoreLongJmp(false);
276  } else if (Subtarget->isTargetMingw()) {
277    // MS runtime is weird: it exports _setjmp, but longjmp!
278    setUseUnderscoreSetJmp(true);
279    setUseUnderscoreLongJmp(false);
280  } else {
281    setUseUnderscoreSetJmp(true);
282    setUseUnderscoreLongJmp(true);
283  }
284
285  // Set up the register classes.
286  addRegisterClass(MVT::i8, &X86::GR8RegClass);
287  addRegisterClass(MVT::i16, &X86::GR16RegClass);
288  addRegisterClass(MVT::i32, &X86::GR32RegClass);
289  if (Subtarget->is64Bit())
290    addRegisterClass(MVT::i64, &X86::GR64RegClass);
291
292  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
293
294  // We don't accept any truncstore of integer registers.
295  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
296  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
297  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
298  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
299  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
300  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
301
302  // SETOEQ and SETUNE require checking two conditions.
303  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
304  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
305  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
306  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
307  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
308  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
309
310  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
311  // operation.
312  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
313  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
314  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
315
316  if (Subtarget->is64Bit()) {
317    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
318    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
319  } else if (!TM.Options.UseSoftFloat) {
320    // We have an algorithm for SSE2->double, and we turn this into a
321    // 64-bit FILD followed by conditional FADD for other targets.
322    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
323    // We have an algorithm for SSE2, and we turn this into a 64-bit
324    // FILD for other targets.
325    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
326  }
327
328  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
329  // this operation.
330  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
331  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
332
333  if (!TM.Options.UseSoftFloat) {
334    // SSE has no i16 to fp conversion, only i32
335    if (X86ScalarSSEf32) {
336      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
337      // f32 and f64 cases are Legal, f80 case is not
338      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
339    } else {
340      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
341      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
342    }
343  } else {
344    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
345    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
346  }
347
348  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
349  // are Legal, f80 is custom lowered.
350  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
351  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
352
353  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
354  // this operation.
355  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
356  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
357
358  if (X86ScalarSSEf32) {
359    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
360    // f32 and f64 cases are Legal, f80 case is not
361    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
362  } else {
363    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
364    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
365  }
366
367  // Handle FP_TO_UINT by promoting the destination to a larger signed
368  // conversion.
369  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
370  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
371  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
372
373  if (Subtarget->is64Bit()) {
374    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
375    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
376  } else if (!TM.Options.UseSoftFloat) {
377    // Since AVX is a superset of SSE3, only check for SSE here.
378    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
379      // Expand FP_TO_UINT into a select.
380      // FIXME: We would like to use a Custom expander here eventually to do
381      // the optimal thing for SSE vs. the default expansion in the legalizer.
382      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
383    else
384      // With SSE3 we can use fisttpll to convert to a signed i64; without
385      // SSE, we're stuck with a fistpll.
386      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
387  }
388
389  if (isTargetFTOL()) {
390    // Use the _ftol2 runtime function, which has a pseudo-instruction
391    // to handle its weird calling convention.
392    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
393  }
394
395  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
396  if (!X86ScalarSSEf64) {
397    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
398    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
399    if (Subtarget->is64Bit()) {
400      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
401      // Without SSE, i64->f64 goes through memory.
402      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
403    }
404  }
405
406  // Scalar integer divide and remainder are lowered to use operations that
407  // produce two results, to match the available instructions. This exposes
408  // the two-result form to trivial CSE, which is able to combine x/y and x%y
409  // into a single instruction.
410  //
411  // Scalar integer multiply-high is also lowered to use two-result
412  // operations, to match the available instructions. However, plain multiply
413  // (low) operations are left as Legal, as there are single-result
414  // instructions for this in x86. Using the two-result multiply instructions
415  // when both high and low results are needed must be arranged by dagcombine.
416  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
417    MVT VT = IntVTs[i];
418    setOperationAction(ISD::MULHS, VT, Expand);
419    setOperationAction(ISD::MULHU, VT, Expand);
420    setOperationAction(ISD::SDIV, VT, Expand);
421    setOperationAction(ISD::UDIV, VT, Expand);
422    setOperationAction(ISD::SREM, VT, Expand);
423    setOperationAction(ISD::UREM, VT, Expand);
424
425    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
426    setOperationAction(ISD::ADDC, VT, Custom);
427    setOperationAction(ISD::ADDE, VT, Custom);
428    setOperationAction(ISD::SUBC, VT, Custom);
429    setOperationAction(ISD::SUBE, VT, Custom);
430  }
431
432  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
433  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
434  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
435  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
436  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
437  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
438  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
439  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
440  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
441  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
442  if (Subtarget->is64Bit())
443    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
444  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
445  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
446  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
447  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
448  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
449  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
450  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
451  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
452
453  // Promote the i8 variants and force them on up to i32 which has a shorter
454  // encoding.
455  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
456  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
457  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
458  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
459  if (Subtarget->hasBMI()) {
460    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
461    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
462    if (Subtarget->is64Bit())
463      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
464  } else {
465    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
466    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
467    if (Subtarget->is64Bit())
468      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
469  }
470
471  if (Subtarget->hasLZCNT()) {
472    // When promoting the i8 variants, force them to i32 for a shorter
473    // encoding.
474    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
475    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
476    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
477    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
478    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
479    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
480    if (Subtarget->is64Bit())
481      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
482  } else {
483    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
484    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
485    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
486    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
487    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
488    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
489    if (Subtarget->is64Bit()) {
490      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
491      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
492    }
493  }
494
495  if (Subtarget->hasPOPCNT()) {
496    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
497  } else {
498    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
499    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
500    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
501    if (Subtarget->is64Bit())
502      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
503  }
504
505  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
506  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
507
508  // These should be promoted to a larger select which is supported.
509  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
510  // X86 wants to expand cmov itself.
511  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
512  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
513  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
514  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
515  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
516  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
517  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
518  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
519  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
520  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
521  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
522  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
523  if (Subtarget->is64Bit()) {
524    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
525    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
526  }
527  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
528  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
529  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
530  // support continuation, user-level threading, and etc.. As a result, no
531  // other SjLj exception interfaces are implemented and please don't build
532  // your own exception handling based on them.
533  // LLVM/Clang supports zero-cost DWARF exception handling.
534  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
535  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
536
537  // Darwin ABI issue.
538  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
539  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
540  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
541  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
542  if (Subtarget->is64Bit())
543    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
544  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
545  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
546  if (Subtarget->is64Bit()) {
547    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
548    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
549    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
550    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
551    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
552  }
553  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
554  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
555  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
556  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
557  if (Subtarget->is64Bit()) {
558    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
559    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
560    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
561  }
562
563  if (Subtarget->hasSSE1())
564    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
565
566  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
567
568  // Expand certain atomics
569  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
570    MVT VT = IntVTs[i];
571    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
572    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
573    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
574  }
575
576  if (!Subtarget->is64Bit()) {
577    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
578    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
579    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
580    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
581    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
582    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
583    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
584    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
585    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
586    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
587    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
588    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
589  }
590
591  if (Subtarget->hasCmpxchg16b()) {
592    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
593  }
594
595  // FIXME - use subtarget debug flags
596  if (!Subtarget->isTargetDarwin() &&
597      !Subtarget->isTargetELF() &&
598      !Subtarget->isTargetCygMing()) {
599    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
600  }
601
602  if (Subtarget->is64Bit()) {
603    setExceptionPointerRegister(X86::RAX);
604    setExceptionSelectorRegister(X86::RDX);
605  } else {
606    setExceptionPointerRegister(X86::EAX);
607    setExceptionSelectorRegister(X86::EDX);
608  }
609  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
610  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
611
612  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
613  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
614
615  setOperationAction(ISD::TRAP, MVT::Other, Legal);
616  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
617
618  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
619  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
620  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
621  if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
622    // TargetInfo::X86_64ABIBuiltinVaList
623    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
624    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
625  } else {
626    // TargetInfo::CharPtrBuiltinVaList
627    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
628    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
629  }
630
631  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
632  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
633
634  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
635    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
636                       MVT::i64 : MVT::i32, Custom);
637  else if (TM.Options.EnableSegmentedStacks)
638    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
639                       MVT::i64 : MVT::i32, Custom);
640  else
641    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
642                       MVT::i64 : MVT::i32, Expand);
643
644  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
645    // f32 and f64 use SSE.
646    // Set up the FP register classes.
647    addRegisterClass(MVT::f32, &X86::FR32RegClass);
648    addRegisterClass(MVT::f64, &X86::FR64RegClass);
649
650    // Use ANDPD to simulate FABS.
651    setOperationAction(ISD::FABS , MVT::f64, Custom);
652    setOperationAction(ISD::FABS , MVT::f32, Custom);
653
654    // Use XORP to simulate FNEG.
655    setOperationAction(ISD::FNEG , MVT::f64, Custom);
656    setOperationAction(ISD::FNEG , MVT::f32, Custom);
657
658    // Use ANDPD and ORPD to simulate FCOPYSIGN.
659    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
660    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
661
662    // Lower this to FGETSIGNx86 plus an AND.
663    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
664    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
665
666    // We don't support sin/cos/fmod
667    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
668    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
669    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
670    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
671    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
672    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
673
674    // Expand FP immediates into loads from the stack, except for the special
675    // cases we handle.
676    addLegalFPImmediate(APFloat(+0.0)); // xorpd
677    addLegalFPImmediate(APFloat(+0.0f)); // xorps
678  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
679    // Use SSE for f32, x87 for f64.
680    // Set up the FP register classes.
681    addRegisterClass(MVT::f32, &X86::FR32RegClass);
682    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
683
684    // Use ANDPS to simulate FABS.
685    setOperationAction(ISD::FABS , MVT::f32, Custom);
686
687    // Use XORP to simulate FNEG.
688    setOperationAction(ISD::FNEG , MVT::f32, Custom);
689
690    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
691
692    // Use ANDPS and ORPS to simulate FCOPYSIGN.
693    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
694    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
695
696    // We don't support sin/cos/fmod
697    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
698    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
699    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
700
701    // Special cases we handle for FP constants.
702    addLegalFPImmediate(APFloat(+0.0f)); // xorps
703    addLegalFPImmediate(APFloat(+0.0)); // FLD0
704    addLegalFPImmediate(APFloat(+1.0)); // FLD1
705    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
706    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
707
708    if (!TM.Options.UnsafeFPMath) {
709      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
710      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
711      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
712    }
713  } else if (!TM.Options.UseSoftFloat) {
714    // f32 and f64 in x87.
715    // Set up the FP register classes.
716    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
717    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
718
719    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
720    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
721    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
722    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
723
724    if (!TM.Options.UnsafeFPMath) {
725      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
726      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
727      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
728      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
729      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
730      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
731    }
732    addLegalFPImmediate(APFloat(+0.0)); // FLD0
733    addLegalFPImmediate(APFloat(+1.0)); // FLD1
734    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
735    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
736    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
737    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
738    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
739    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
740  }
741
742  // We don't support FMA.
743  setOperationAction(ISD::FMA, MVT::f64, Expand);
744  setOperationAction(ISD::FMA, MVT::f32, Expand);
745
746  // Long double always uses X87.
747  if (!TM.Options.UseSoftFloat) {
748    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
749    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
750    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
751    {
752      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
753      addLegalFPImmediate(TmpFlt);  // FLD0
754      TmpFlt.changeSign();
755      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
756
757      bool ignored;
758      APFloat TmpFlt2(+1.0);
759      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
760                      &ignored);
761      addLegalFPImmediate(TmpFlt2);  // FLD1
762      TmpFlt2.changeSign();
763      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
764    }
765
766    if (!TM.Options.UnsafeFPMath) {
767      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
768      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
769      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
770    }
771
772    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
773    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
774    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
775    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
776    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
777    setOperationAction(ISD::FMA, MVT::f80, Expand);
778  }
779
780  // Always use a library call for pow.
781  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
782  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
783  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
784
785  setOperationAction(ISD::FLOG, MVT::f80, Expand);
786  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
787  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
788  setOperationAction(ISD::FEXP, MVT::f80, Expand);
789  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
790
791  // First set operation action for all vector types to either promote
792  // (for widening) or expand (for scalarization). Then we will selectively
793  // turn on ones that can be effectively codegen'd.
794  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
795           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
796    MVT VT = (MVT::SimpleValueType)i;
797    setOperationAction(ISD::ADD , VT, Expand);
798    setOperationAction(ISD::SUB , VT, Expand);
799    setOperationAction(ISD::FADD, VT, Expand);
800    setOperationAction(ISD::FNEG, VT, Expand);
801    setOperationAction(ISD::FSUB, VT, Expand);
802    setOperationAction(ISD::MUL , VT, Expand);
803    setOperationAction(ISD::FMUL, VT, Expand);
804    setOperationAction(ISD::SDIV, VT, Expand);
805    setOperationAction(ISD::UDIV, VT, Expand);
806    setOperationAction(ISD::FDIV, VT, Expand);
807    setOperationAction(ISD::SREM, VT, Expand);
808    setOperationAction(ISD::UREM, VT, Expand);
809    setOperationAction(ISD::LOAD, VT, Expand);
810    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
811    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
812    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
813    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
814    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
815    setOperationAction(ISD::FABS, VT, Expand);
816    setOperationAction(ISD::FSIN, VT, Expand);
817    setOperationAction(ISD::FSINCOS, VT, Expand);
818    setOperationAction(ISD::FCOS, VT, Expand);
819    setOperationAction(ISD::FSINCOS, VT, Expand);
820    setOperationAction(ISD::FREM, VT, Expand);
821    setOperationAction(ISD::FMA,  VT, Expand);
822    setOperationAction(ISD::FPOWI, VT, Expand);
823    setOperationAction(ISD::FSQRT, VT, Expand);
824    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
825    setOperationAction(ISD::FFLOOR, VT, Expand);
826    setOperationAction(ISD::FCEIL, VT, Expand);
827    setOperationAction(ISD::FTRUNC, VT, Expand);
828    setOperationAction(ISD::FRINT, VT, Expand);
829    setOperationAction(ISD::FNEARBYINT, VT, Expand);
830    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
831    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
832    setOperationAction(ISD::SDIVREM, VT, Expand);
833    setOperationAction(ISD::UDIVREM, VT, Expand);
834    setOperationAction(ISD::FPOW, VT, Expand);
835    setOperationAction(ISD::CTPOP, VT, Expand);
836    setOperationAction(ISD::CTTZ, VT, Expand);
837    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
838    setOperationAction(ISD::CTLZ, VT, Expand);
839    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
840    setOperationAction(ISD::SHL, VT, Expand);
841    setOperationAction(ISD::SRA, VT, Expand);
842    setOperationAction(ISD::SRL, VT, Expand);
843    setOperationAction(ISD::ROTL, VT, Expand);
844    setOperationAction(ISD::ROTR, VT, Expand);
845    setOperationAction(ISD::BSWAP, VT, Expand);
846    setOperationAction(ISD::SETCC, VT, Expand);
847    setOperationAction(ISD::FLOG, VT, Expand);
848    setOperationAction(ISD::FLOG2, VT, Expand);
849    setOperationAction(ISD::FLOG10, VT, Expand);
850    setOperationAction(ISD::FEXP, VT, Expand);
851    setOperationAction(ISD::FEXP2, VT, Expand);
852    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
853    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
854    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
855    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
856    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
857    setOperationAction(ISD::TRUNCATE, VT, Expand);
858    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
859    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
860    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
861    setOperationAction(ISD::VSELECT, VT, Expand);
862    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
863             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
864      setTruncStoreAction(VT,
865                          (MVT::SimpleValueType)InnerVT, Expand);
866    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
867    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
868    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
869  }
870
871  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
872  // with -msoft-float, disable use of MMX as well.
873  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
874    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
875    // No operations on x86mmx supported, everything uses intrinsics.
876  }
877
878  // MMX-sized vectors (other than x86mmx) are expected to be expanded
879  // into smaller operations.
880  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
881  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
882  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
883  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
884  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
885  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
886  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
887  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
888  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
889  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
890  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
891  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
892  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
893  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
894  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
895  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
896  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
897  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
898  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
899  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
900  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
901  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
902  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
903  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
904  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
905  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
906  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
907  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
908  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
909
910  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
911    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
912
913    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
914    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
915    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
916    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
917    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
918    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
919    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
920    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
921    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
922    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
923    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
924    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
925  }
926
927  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
928    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
929
930    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
931    // registers cannot be used even for integer operations.
932    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
933    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
934    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
935    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
936
937    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
938    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
939    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
940    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
941    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
942    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
943    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
944    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
945    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
946    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
947    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
948    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
949    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
950    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
951    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
952    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
953    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
954    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
955
956    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
957    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
958    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
959    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
960
961    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
962    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
963    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
966
967    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
968    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
969      MVT VT = (MVT::SimpleValueType)i;
970      // Do not attempt to custom lower non-power-of-2 vectors
971      if (!isPowerOf2_32(VT.getVectorNumElements()))
972        continue;
973      // Do not attempt to custom lower non-128-bit vectors
974      if (!VT.is128BitVector())
975        continue;
976      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
977      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
978      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
979    }
980
981    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
982    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
983    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
984    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
985    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
986    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
987
988    if (Subtarget->is64Bit()) {
989      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
990      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
991    }
992
993    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
994    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
995      MVT VT = (MVT::SimpleValueType)i;
996
997      // Do not attempt to promote non-128-bit vectors
998      if (!VT.is128BitVector())
999        continue;
1000
1001      setOperationAction(ISD::AND,    VT, Promote);
1002      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
1003      setOperationAction(ISD::OR,     VT, Promote);
1004      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
1005      setOperationAction(ISD::XOR,    VT, Promote);
1006      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
1007      setOperationAction(ISD::LOAD,   VT, Promote);
1008      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
1009      setOperationAction(ISD::SELECT, VT, Promote);
1010      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
1011    }
1012
1013    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1014
1015    // Custom lower v2i64 and v2f64 selects.
1016    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
1017    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
1018    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
1019    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
1020
1021    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
1022    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
1023
1024    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
1025    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
1026    // As there is no 64-bit GPR available, we need build a special custom
1027    // sequence to convert from v2i32 to v2f32.
1028    if (!Subtarget->is64Bit())
1029      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
1030
1031    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
1032    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
1033
1034    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
1035  }
1036
1037  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
1038    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
1039    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
1040    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
1041    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
1042    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
1043    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
1044    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1045    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1046    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1047    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1048
1049    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1050    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1051    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1052    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1053    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1054    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1055    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1056    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1057    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1058    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1059
1060    // FIXME: Do we need to handle scalar-to-vector here?
1061    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1062
1063    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
1064    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
1065    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1066    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
1067    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1068
1069    // i8 and i16 vectors are custom , because the source register and source
1070    // source memory operand types are not the same width.  f32 vectors are
1071    // custom since the immediate controlling the insert encodes additional
1072    // information.
1073    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1074    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1075    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1076    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1077
1078    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1079    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1080    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1081    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1082
1083    // FIXME: these should be Legal but thats only for the case where
1084    // the index is constant.  For now custom expand to deal with that.
1085    if (Subtarget->is64Bit()) {
1086      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1087      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1088    }
1089  }
1090
1091  if (Subtarget->hasSSE2()) {
1092    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1093    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1094
1095    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1096    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1097
1098    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1099    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1100
1101    // In the customized shift lowering, the legal cases in AVX2 will be
1102    // recognized.
1103    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1104    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1105
1106    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1107    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1108
1109    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1110
1111    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1112    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1113  }
1114
1115  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1116    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1117    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1118    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1119    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1120    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1121    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1122
1123    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1124    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1125    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1126
1127    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1128    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1129    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1130    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1131    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1132    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1133    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1134    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1135    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1136    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1137    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1138    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1139
1140    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1141    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1142    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1143    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1144    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1145    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1146    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1147    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1148    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1149    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1150    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1151    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1152
1153    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1154    setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
1155
1156    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1157
1158    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1159    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1160    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1161    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1162
1163    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1164    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1165    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1166
1167    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1168
1169    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1170    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1171
1172    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1173    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1174
1175    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1176    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1177
1178    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1179
1180    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1181    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1182    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1183    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1184
1185    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1186    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1187    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1188
1189    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1190    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1191    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1192    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1193
1194    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1195    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1196    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1197    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1198    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1199    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1200
1201    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1202      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1203      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1204      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1205      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1206      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1207      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1208    }
1209
1210    if (Subtarget->hasInt256()) {
1211      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1212      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1213      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1214      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1215
1216      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1217      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1218      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1219      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1220
1221      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1222      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1223      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1224      // Don't lower v32i8 because there is no 128-bit byte mul
1225
1226      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1227
1228      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1229    } else {
1230      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1231      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1232      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1233      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1234
1235      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1236      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1237      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1238      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1239
1240      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1241      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1242      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1243      // Don't lower v32i8 because there is no 128-bit byte mul
1244    }
1245
1246    // In the customized shift lowering, the legal cases in AVX2 will be
1247    // recognized.
1248    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1249    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1250
1251    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1252    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1253
1254    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1255
1256    // Custom lower several nodes for 256-bit types.
1257    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1258             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1259      MVT VT = (MVT::SimpleValueType)i;
1260
1261      // Extract subvector is special because the value type
1262      // (result) is 128-bit but the source is 256-bit wide.
1263      if (VT.is128BitVector())
1264        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1265
1266      // Do not attempt to custom lower other non-256-bit vectors
1267      if (!VT.is256BitVector())
1268        continue;
1269
1270      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1271      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1272      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1273      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1274      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1275      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1276      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1277    }
1278
1279    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1280    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1281      MVT VT = (MVT::SimpleValueType)i;
1282
1283      // Do not attempt to promote non-256-bit vectors
1284      if (!VT.is256BitVector())
1285        continue;
1286
1287      setOperationAction(ISD::AND,    VT, Promote);
1288      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1289      setOperationAction(ISD::OR,     VT, Promote);
1290      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1291      setOperationAction(ISD::XOR,    VT, Promote);
1292      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1293      setOperationAction(ISD::LOAD,   VT, Promote);
1294      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1295      setOperationAction(ISD::SELECT, VT, Promote);
1296      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1297    }
1298  }
1299
1300  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
1301    addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1302    addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1303    addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
1304    addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
1305
1306    addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
1307    addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
1308
1309    setLoadExtAction(ISD::EXTLOAD,              MVT::v8f32, Legal);
1310    setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
1311    setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
1312    setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
1313    setOperationAction(ISD::LOAD,               MVT::v16i32, Legal);
1314    setOperationAction(ISD::LOAD,               MVT::v16i1, Legal);
1315
1316    setOperationAction(ISD::FADD,               MVT::v16f32, Legal);
1317    setOperationAction(ISD::FSUB,               MVT::v16f32, Legal);
1318    setOperationAction(ISD::FMUL,               MVT::v16f32, Legal);
1319    setOperationAction(ISD::FDIV,               MVT::v16f32, Legal);
1320    setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal);
1321    setOperationAction(ISD::FNEG,               MVT::v16f32, Custom);
1322
1323    setOperationAction(ISD::FADD,               MVT::v8f64, Legal);
1324    setOperationAction(ISD::FSUB,               MVT::v8f64, Legal);
1325    setOperationAction(ISD::FMUL,               MVT::v8f64, Legal);
1326    setOperationAction(ISD::FDIV,               MVT::v8f64, Legal);
1327    setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal);
1328    setOperationAction(ISD::FNEG,               MVT::v8f64, Custom);
1329    setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
1330    setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
1331    setOperationAction(ISD::SDIV,               MVT::v16i32, Custom);
1332
1333
1334    setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
1335    setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
1336    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
1337    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
1338    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
1339    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
1340    setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
1341    setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
1342
1343    setOperationAction(ISD::TRUNCATE,           MVT::i1, Legal);
1344    setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
1345    setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
1346    setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
1347    setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
1348    setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
1349    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
1350    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
1351    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
1352    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
1353    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
1354    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
1355
1356    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
1357    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
1358    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
1359    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
1360    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1,    Custom);
1361
1362    setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
1363    setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
1364
1365    setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
1366
1367    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
1368    setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
1369    setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
1370    setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
1371    setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
1372
1373    setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
1374    setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
1375
1376    setOperationAction(ISD::SUB,                MVT::v8i64, Legal);
1377    setOperationAction(ISD::SUB,                MVT::v16i32, Legal);
1378
1379    setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
1380
1381    setOperationAction(ISD::SRL,                MVT::v8i64, Custom);
1382    setOperationAction(ISD::SRL,                MVT::v16i32, Custom);
1383
1384    setOperationAction(ISD::SHL,                MVT::v8i64, Custom);
1385    setOperationAction(ISD::SHL,                MVT::v16i32, Custom);
1386
1387    setOperationAction(ISD::SRA,                MVT::v8i64, Custom);
1388    setOperationAction(ISD::SRA,                MVT::v16i32, Custom);
1389
1390    setOperationAction(ISD::AND,                MVT::v8i64, Legal);
1391    setOperationAction(ISD::OR,                 MVT::v8i64, Legal);
1392    setOperationAction(ISD::XOR,                MVT::v8i64, Legal);
1393    setOperationAction(ISD::AND,                MVT::v16i32, Legal);
1394    setOperationAction(ISD::OR,                 MVT::v16i32, Legal);
1395    setOperationAction(ISD::XOR,                MVT::v16i32, Legal);
1396
1397    // Custom lower several nodes.
1398    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1399             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1400      MVT VT = (MVT::SimpleValueType)i;
1401
1402      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1403      // Extract subvector is special because the value type
1404      // (result) is 256/128-bit but the source is 512-bit wide.
1405      if (VT.is128BitVector() || VT.is256BitVector())
1406        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1407
1408      if (VT.getVectorElementType() == MVT::i1)
1409        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1410
1411      // Do not attempt to custom lower other non-512-bit vectors
1412      if (!VT.is512BitVector())
1413        continue;
1414
1415      if ( EltSize >= 32) {
1416        setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
1417        setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
1418        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1419        setOperationAction(ISD::VSELECT,             VT, Legal);
1420        setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
1421        setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
1422        setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
1423      }
1424    }
1425    for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1426      MVT VT = (MVT::SimpleValueType)i;
1427
1428      // Do not attempt to promote non-256-bit vectors
1429      if (!VT.is512BitVector())
1430        continue;
1431
1432      setOperationAction(ISD::SELECT, VT, Promote);
1433      AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
1434    }
1435  }// has  AVX-512
1436
1437  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1438  // of this type with custom code.
1439  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1440           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1441    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1442                       Custom);
1443  }
1444
1445  // We want to custom lower some of our intrinsics.
1446  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1447  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1448  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1449
1450  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1451  // handle type legalization for these operations here.
1452  //
1453  // FIXME: We really should do custom legalization for addition and
1454  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1455  // than generic legalization for 64-bit multiplication-with-overflow, though.
1456  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1457    // Add/Sub/Mul with overflow operations are custom lowered.
1458    MVT VT = IntVTs[i];
1459    setOperationAction(ISD::SADDO, VT, Custom);
1460    setOperationAction(ISD::UADDO, VT, Custom);
1461    setOperationAction(ISD::SSUBO, VT, Custom);
1462    setOperationAction(ISD::USUBO, VT, Custom);
1463    setOperationAction(ISD::SMULO, VT, Custom);
1464    setOperationAction(ISD::UMULO, VT, Custom);
1465  }
1466
1467  // There are no 8-bit 3-address imul/mul instructions
1468  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1469  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1470
1471  if (!Subtarget->is64Bit()) {
1472    // These libcalls are not available in 32-bit.
1473    setLibcallName(RTLIB::SHL_I128, 0);
1474    setLibcallName(RTLIB::SRL_I128, 0);
1475    setLibcallName(RTLIB::SRA_I128, 0);
1476  }
1477
1478  // Combine sin / cos into one node or libcall if possible.
1479  if (Subtarget->hasSinCos()) {
1480    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1481    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1482    if (Subtarget->isTargetDarwin()) {
1483      // For MacOSX, we don't want to the normal expansion of a libcall to
1484      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1485      // traffic.
1486      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1487      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1488    }
1489  }
1490
1491  // We have target-specific dag combine patterns for the following nodes:
1492  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1493  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1494  setTargetDAGCombine(ISD::VSELECT);
1495  setTargetDAGCombine(ISD::SELECT);
1496  setTargetDAGCombine(ISD::SHL);
1497  setTargetDAGCombine(ISD::SRA);
1498  setTargetDAGCombine(ISD::SRL);
1499  setTargetDAGCombine(ISD::OR);
1500  setTargetDAGCombine(ISD::AND);
1501  setTargetDAGCombine(ISD::ADD);
1502  setTargetDAGCombine(ISD::FADD);
1503  setTargetDAGCombine(ISD::FSUB);
1504  setTargetDAGCombine(ISD::FMA);
1505  setTargetDAGCombine(ISD::SUB);
1506  setTargetDAGCombine(ISD::LOAD);
1507  setTargetDAGCombine(ISD::STORE);
1508  setTargetDAGCombine(ISD::ZERO_EXTEND);
1509  setTargetDAGCombine(ISD::ANY_EXTEND);
1510  setTargetDAGCombine(ISD::SIGN_EXTEND);
1511  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1512  setTargetDAGCombine(ISD::TRUNCATE);
1513  setTargetDAGCombine(ISD::SINT_TO_FP);
1514  setTargetDAGCombine(ISD::SETCC);
1515  if (Subtarget->is64Bit())
1516    setTargetDAGCombine(ISD::MUL);
1517  setTargetDAGCombine(ISD::XOR);
1518
1519  computeRegisterProperties();
1520
1521  // On Darwin, -Os means optimize for size without hurting performance,
1522  // do not reduce the limit.
1523  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1524  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1525  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1526  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1527  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1528  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1529  setPrefLoopAlignment(4); // 2^4 bytes.
1530
1531  // Predictable cmov don't hurt on atom because it's in-order.
1532  PredictableSelectIsExpensive = !Subtarget->isAtom();
1533
1534  setPrefFunctionAlignment(4); // 2^4 bytes.
1535}
1536
1537EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1538  if (!VT.isVector()) return MVT::i8;
1539  return VT.changeVectorElementTypeToInteger();
1540}
1541
1542/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1543/// the desired ByVal argument alignment.
1544static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1545  if (MaxAlign == 16)
1546    return;
1547  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1548    if (VTy->getBitWidth() == 128)
1549      MaxAlign = 16;
1550  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1551    unsigned EltAlign = 0;
1552    getMaxByValAlign(ATy->getElementType(), EltAlign);
1553    if (EltAlign > MaxAlign)
1554      MaxAlign = EltAlign;
1555  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1556    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1557      unsigned EltAlign = 0;
1558      getMaxByValAlign(STy->getElementType(i), EltAlign);
1559      if (EltAlign > MaxAlign)
1560        MaxAlign = EltAlign;
1561      if (MaxAlign == 16)
1562        break;
1563    }
1564  }
1565}
1566
1567/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1568/// function arguments in the caller parameter area. For X86, aggregates
1569/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1570/// are at 4-byte boundaries.
1571unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1572  if (Subtarget->is64Bit()) {
1573    // Max of 8 and alignment of type.
1574    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1575    if (TyAlign > 8)
1576      return TyAlign;
1577    return 8;
1578  }
1579
1580  unsigned Align = 4;
1581  if (Subtarget->hasSSE1())
1582    getMaxByValAlign(Ty, Align);
1583  return Align;
1584}
1585
1586/// getOptimalMemOpType - Returns the target specific optimal type for load
1587/// and store operations as a result of memset, memcpy, and memmove
1588/// lowering. If DstAlign is zero that means it's safe to destination
1589/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1590/// means there isn't a need to check it against alignment requirement,
1591/// probably because the source does not need to be loaded. If 'IsMemset' is
1592/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1593/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1594/// source is constant so it does not need to be loaded.
1595/// It returns EVT::Other if the type should be determined using generic
1596/// target-independent logic.
1597EVT
1598X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1599                                       unsigned DstAlign, unsigned SrcAlign,
1600                                       bool IsMemset, bool ZeroMemset,
1601                                       bool MemcpyStrSrc,
1602                                       MachineFunction &MF) const {
1603  const Function *F = MF.getFunction();
1604  if ((!IsMemset || ZeroMemset) &&
1605      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1606                                       Attribute::NoImplicitFloat)) {
1607    if (Size >= 16 &&
1608        (Subtarget->isUnalignedMemAccessFast() ||
1609         ((DstAlign == 0 || DstAlign >= 16) &&
1610          (SrcAlign == 0 || SrcAlign >= 16)))) {
1611      if (Size >= 32) {
1612        if (Subtarget->hasInt256())
1613          return MVT::v8i32;
1614        if (Subtarget->hasFp256())
1615          return MVT::v8f32;
1616      }
1617      if (Subtarget->hasSSE2())
1618        return MVT::v4i32;
1619      if (Subtarget->hasSSE1())
1620        return MVT::v4f32;
1621    } else if (!MemcpyStrSrc && Size >= 8 &&
1622               !Subtarget->is64Bit() &&
1623               Subtarget->hasSSE2()) {
1624      // Do not use f64 to lower memcpy if source is string constant. It's
1625      // better to use i32 to avoid the loads.
1626      return MVT::f64;
1627    }
1628  }
1629  if (Subtarget->is64Bit() && Size >= 8)
1630    return MVT::i64;
1631  return MVT::i32;
1632}
1633
1634bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1635  if (VT == MVT::f32)
1636    return X86ScalarSSEf32;
1637  else if (VT == MVT::f64)
1638    return X86ScalarSSEf64;
1639  return true;
1640}
1641
1642bool
1643X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1644  if (Fast)
1645    *Fast = Subtarget->isUnalignedMemAccessFast();
1646  return true;
1647}
1648
1649/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1650/// current function.  The returned value is a member of the
1651/// MachineJumpTableInfo::JTEntryKind enum.
1652unsigned X86TargetLowering::getJumpTableEncoding() const {
1653  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1654  // symbol.
1655  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1656      Subtarget->isPICStyleGOT())
1657    return MachineJumpTableInfo::EK_Custom32;
1658
1659  // Otherwise, use the normal jump table encoding heuristics.
1660  return TargetLowering::getJumpTableEncoding();
1661}
1662
1663const MCExpr *
1664X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1665                                             const MachineBasicBlock *MBB,
1666                                             unsigned uid,MCContext &Ctx) const{
1667  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1668         Subtarget->isPICStyleGOT());
1669  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1670  // entries.
1671  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1672                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1673}
1674
1675/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1676/// jumptable.
1677SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1678                                                    SelectionDAG &DAG) const {
1679  if (!Subtarget->is64Bit())
1680    // This doesn't have SDLoc associated with it, but is not really the
1681    // same as a Register.
1682    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
1683  return Table;
1684}
1685
1686/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1687/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1688/// MCExpr.
1689const MCExpr *X86TargetLowering::
1690getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1691                             MCContext &Ctx) const {
1692  // X86-64 uses RIP relative addressing based on the jump table label.
1693  if (Subtarget->isPICStyleRIPRel())
1694    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1695
1696  // Otherwise, the reference is relative to the PIC base.
1697  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1698}
1699
1700// FIXME: Why this routine is here? Move to RegInfo!
1701std::pair<const TargetRegisterClass*, uint8_t>
1702X86TargetLowering::findRepresentativeClass(MVT VT) const{
1703  const TargetRegisterClass *RRC = 0;
1704  uint8_t Cost = 1;
1705  switch (VT.SimpleTy) {
1706  default:
1707    return TargetLowering::findRepresentativeClass(VT);
1708  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1709    RRC = Subtarget->is64Bit() ?
1710      (const TargetRegisterClass*)&X86::GR64RegClass :
1711      (const TargetRegisterClass*)&X86::GR32RegClass;
1712    break;
1713  case MVT::x86mmx:
1714    RRC = &X86::VR64RegClass;
1715    break;
1716  case MVT::f32: case MVT::f64:
1717  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1718  case MVT::v4f32: case MVT::v2f64:
1719  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1720  case MVT::v4f64:
1721    RRC = &X86::VR128RegClass;
1722    break;
1723  }
1724  return std::make_pair(RRC, Cost);
1725}
1726
1727bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1728                                               unsigned &Offset) const {
1729  if (!Subtarget->isTargetLinux())
1730    return false;
1731
1732  if (Subtarget->is64Bit()) {
1733    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1734    Offset = 0x28;
1735    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1736      AddressSpace = 256;
1737    else
1738      AddressSpace = 257;
1739  } else {
1740    // %gs:0x14 on i386
1741    Offset = 0x14;
1742    AddressSpace = 256;
1743  }
1744  return true;
1745}
1746
1747//===----------------------------------------------------------------------===//
1748//               Return Value Calling Convention Implementation
1749//===----------------------------------------------------------------------===//
1750
1751#include "X86GenCallingConv.inc"
1752
1753bool
1754X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1755                                  MachineFunction &MF, bool isVarArg,
1756                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1757                        LLVMContext &Context) const {
1758  SmallVector<CCValAssign, 16> RVLocs;
1759  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1760                 RVLocs, Context);
1761  return CCInfo.CheckReturn(Outs, RetCC_X86);
1762}
1763
1764SDValue
1765X86TargetLowering::LowerReturn(SDValue Chain,
1766                               CallingConv::ID CallConv, bool isVarArg,
1767                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1768                               const SmallVectorImpl<SDValue> &OutVals,
1769                               SDLoc dl, SelectionDAG &DAG) const {
1770  MachineFunction &MF = DAG.getMachineFunction();
1771  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1772
1773  SmallVector<CCValAssign, 16> RVLocs;
1774  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1775                 RVLocs, *DAG.getContext());
1776  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1777
1778  SDValue Flag;
1779  SmallVector<SDValue, 6> RetOps;
1780  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1781  // Operand #1 = Bytes To Pop
1782  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1783                   MVT::i16));
1784
1785  // Copy the result values into the output registers.
1786  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1787    CCValAssign &VA = RVLocs[i];
1788    assert(VA.isRegLoc() && "Can only return in registers!");
1789    SDValue ValToCopy = OutVals[i];
1790    EVT ValVT = ValToCopy.getValueType();
1791
1792    // Promote values to the appropriate types
1793    if (VA.getLocInfo() == CCValAssign::SExt)
1794      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1795    else if (VA.getLocInfo() == CCValAssign::ZExt)
1796      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1797    else if (VA.getLocInfo() == CCValAssign::AExt)
1798      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1799    else if (VA.getLocInfo() == CCValAssign::BCvt)
1800      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1801
1802    // If this is x86-64, and we disabled SSE, we can't return FP values,
1803    // or SSE or MMX vectors.
1804    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1805         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1806          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1807      report_fatal_error("SSE register return with SSE disabled");
1808    }
1809    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1810    // llvm-gcc has never done it right and no one has noticed, so this
1811    // should be OK for now.
1812    if (ValVT == MVT::f64 &&
1813        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1814      report_fatal_error("SSE2 register return with SSE2 disabled");
1815
1816    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1817    // the RET instruction and handled by the FP Stackifier.
1818    if (VA.getLocReg() == X86::ST0 ||
1819        VA.getLocReg() == X86::ST1) {
1820      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1821      // change the value to the FP stack register class.
1822      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1823        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1824      RetOps.push_back(ValToCopy);
1825      // Don't emit a copytoreg.
1826      continue;
1827    }
1828
1829    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1830    // which is returned in RAX / RDX.
1831    if (Subtarget->is64Bit()) {
1832      if (ValVT == MVT::x86mmx) {
1833        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1834          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1835          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1836                                  ValToCopy);
1837          // If we don't have SSE2 available, convert to v4f32 so the generated
1838          // register is legal.
1839          if (!Subtarget->hasSSE2())
1840            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1841        }
1842      }
1843    }
1844
1845    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1846    Flag = Chain.getValue(1);
1847    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1848  }
1849
1850  // The x86-64 ABIs require that for returning structs by value we copy
1851  // the sret argument into %rax/%eax (depending on ABI) for the return.
1852  // Win32 requires us to put the sret argument to %eax as well.
1853  // We saved the argument into a virtual register in the entry block,
1854  // so now we copy the value out and into %rax/%eax.
1855  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
1856      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
1857    MachineFunction &MF = DAG.getMachineFunction();
1858    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1859    unsigned Reg = FuncInfo->getSRetReturnReg();
1860    assert(Reg &&
1861           "SRetReturnReg should have been set in LowerFormalArguments().");
1862    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1863
1864    unsigned RetValReg
1865        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1866          X86::RAX : X86::EAX;
1867    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1868    Flag = Chain.getValue(1);
1869
1870    // RAX/EAX now acts like a return value.
1871    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1872  }
1873
1874  RetOps[0] = Chain;  // Update chain.
1875
1876  // Add the flag if we have it.
1877  if (Flag.getNode())
1878    RetOps.push_back(Flag);
1879
1880  return DAG.getNode(X86ISD::RET_FLAG, dl,
1881                     MVT::Other, &RetOps[0], RetOps.size());
1882}
1883
1884bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1885  if (N->getNumValues() != 1)
1886    return false;
1887  if (!N->hasNUsesOfValue(1, 0))
1888    return false;
1889
1890  SDValue TCChain = Chain;
1891  SDNode *Copy = *N->use_begin();
1892  if (Copy->getOpcode() == ISD::CopyToReg) {
1893    // If the copy has a glue operand, we conservatively assume it isn't safe to
1894    // perform a tail call.
1895    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1896      return false;
1897    TCChain = Copy->getOperand(0);
1898  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1899    return false;
1900
1901  bool HasRet = false;
1902  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1903       UI != UE; ++UI) {
1904    if (UI->getOpcode() != X86ISD::RET_FLAG)
1905      return false;
1906    HasRet = true;
1907  }
1908
1909  if (!HasRet)
1910    return false;
1911
1912  Chain = TCChain;
1913  return true;
1914}
1915
1916MVT
1917X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1918                                            ISD::NodeType ExtendKind) const {
1919  MVT ReturnMVT;
1920  // TODO: Is this also valid on 32-bit?
1921  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1922    ReturnMVT = MVT::i8;
1923  else
1924    ReturnMVT = MVT::i32;
1925
1926  MVT MinVT = getRegisterType(ReturnMVT);
1927  return VT.bitsLT(MinVT) ? MinVT : VT;
1928}
1929
1930/// LowerCallResult - Lower the result values of a call into the
1931/// appropriate copies out of appropriate physical registers.
1932///
1933SDValue
1934X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1935                                   CallingConv::ID CallConv, bool isVarArg,
1936                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1937                                   SDLoc dl, SelectionDAG &DAG,
1938                                   SmallVectorImpl<SDValue> &InVals) const {
1939
1940  // Assign locations to each value returned by this call.
1941  SmallVector<CCValAssign, 16> RVLocs;
1942  bool Is64Bit = Subtarget->is64Bit();
1943  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1944                 getTargetMachine(), RVLocs, *DAG.getContext());
1945  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1946
1947  // Copy all of the result registers out of their specified physreg.
1948  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1949    CCValAssign &VA = RVLocs[i];
1950    EVT CopyVT = VA.getValVT();
1951
1952    // If this is x86-64, and we disabled SSE, we can't return FP values
1953    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1954        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1955      report_fatal_error("SSE register return with SSE disabled");
1956    }
1957
1958    SDValue Val;
1959
1960    // If this is a call to a function that returns an fp value on the floating
1961    // point stack, we must guarantee the value is popped from the stack, so
1962    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1963    // if the return value is not used. We use the FpPOP_RETVAL instruction
1964    // instead.
1965    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1966      // If we prefer to use the value in xmm registers, copy it out as f80 and
1967      // use a truncate to move it from fp stack reg to xmm reg.
1968      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1969      SDValue Ops[] = { Chain, InFlag };
1970      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1971                                         MVT::Other, MVT::Glue, Ops), 1);
1972      Val = Chain.getValue(0);
1973
1974      // Round the f80 to the right size, which also moves it to the appropriate
1975      // xmm register.
1976      if (CopyVT != VA.getValVT())
1977        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1978                          // This truncation won't change the value.
1979                          DAG.getIntPtrConstant(1));
1980    } else {
1981      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1982                                 CopyVT, InFlag).getValue(1);
1983      Val = Chain.getValue(0);
1984    }
1985    InFlag = Chain.getValue(2);
1986    InVals.push_back(Val);
1987  }
1988
1989  return Chain;
1990}
1991
1992//===----------------------------------------------------------------------===//
1993//                C & StdCall & Fast Calling Convention implementation
1994//===----------------------------------------------------------------------===//
1995//  StdCall calling convention seems to be standard for many Windows' API
1996//  routines and around. It differs from C calling convention just a little:
1997//  callee should clean up the stack, not caller. Symbols should be also
1998//  decorated in some fancy way :) It doesn't support any vector arguments.
1999//  For info on fast calling convention see Fast Calling Convention (tail call)
2000//  implementation LowerX86_32FastCCCallTo.
2001
2002/// CallIsStructReturn - Determines whether a call uses struct return
2003/// semantics.
2004enum StructReturnType {
2005  NotStructReturn,
2006  RegStructReturn,
2007  StackStructReturn
2008};
2009static StructReturnType
2010callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
2011  if (Outs.empty())
2012    return NotStructReturn;
2013
2014  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
2015  if (!Flags.isSRet())
2016    return NotStructReturn;
2017  if (Flags.isInReg())
2018    return RegStructReturn;
2019  return StackStructReturn;
2020}
2021
2022/// ArgsAreStructReturn - Determines whether a function uses struct
2023/// return semantics.
2024static StructReturnType
2025argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
2026  if (Ins.empty())
2027    return NotStructReturn;
2028
2029  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
2030  if (!Flags.isSRet())
2031    return NotStructReturn;
2032  if (Flags.isInReg())
2033    return RegStructReturn;
2034  return StackStructReturn;
2035}
2036
2037/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2038/// by "Src" to address "Dst" with size and alignment information specified by
2039/// the specific parameter attribute. The copy will be passed as a byval
2040/// function parameter.
2041static SDValue
2042CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2043                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2044                          SDLoc dl) {
2045  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2046
2047  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2048                       /*isVolatile*/false, /*AlwaysInline=*/true,
2049                       MachinePointerInfo(), MachinePointerInfo());
2050}
2051
2052/// IsTailCallConvention - Return true if the calling convention is one that
2053/// supports tail call optimization.
2054static bool IsTailCallConvention(CallingConv::ID CC) {
2055  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2056          CC == CallingConv::HiPE);
2057}
2058
2059/// \brief Return true if the calling convention is a C calling convention.
2060static bool IsCCallConvention(CallingConv::ID CC) {
2061  return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
2062          CC == CallingConv::X86_64_SysV);
2063}
2064
2065bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2066  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2067    return false;
2068
2069  CallSite CS(CI);
2070  CallingConv::ID CalleeCC = CS.getCallingConv();
2071  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2072    return false;
2073
2074  return true;
2075}
2076
2077/// FuncIsMadeTailCallSafe - Return true if the function is being made into
2078/// a tailcall target by changing its ABI.
2079static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
2080                                   bool GuaranteedTailCallOpt) {
2081  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
2082}
2083
2084SDValue
2085X86TargetLowering::LowerMemArgument(SDValue Chain,
2086                                    CallingConv::ID CallConv,
2087                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2088                                    SDLoc dl, SelectionDAG &DAG,
2089                                    const CCValAssign &VA,
2090                                    MachineFrameInfo *MFI,
2091                                    unsigned i) const {
2092  // Create the nodes corresponding to a load from this parameter slot.
2093  ISD::ArgFlagsTy Flags = Ins[i].Flags;
2094  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
2095                              getTargetMachine().Options.GuaranteedTailCallOpt);
2096  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
2097  EVT ValVT;
2098
2099  // If value is passed by pointer we have address passed instead of the value
2100  // itself.
2101  if (VA.getLocInfo() == CCValAssign::Indirect)
2102    ValVT = VA.getLocVT();
2103  else
2104    ValVT = VA.getValVT();
2105
2106  // FIXME: For now, all byval parameter objects are marked mutable. This can be
2107  // changed with more analysis.
2108  // In case of tail call optimization mark all arguments mutable. Since they
2109  // could be overwritten by lowering of arguments in case of a tail call.
2110  if (Flags.isByVal()) {
2111    unsigned Bytes = Flags.getByValSize();
2112    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2113    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
2114    return DAG.getFrameIndex(FI, getPointerTy());
2115  } else {
2116    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2117                                    VA.getLocMemOffset(), isImmutable);
2118    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2119    return DAG.getLoad(ValVT, dl, Chain, FIN,
2120                       MachinePointerInfo::getFixedStack(FI),
2121                       false, false, false, 0);
2122  }
2123}
2124
2125SDValue
2126X86TargetLowering::LowerFormalArguments(SDValue Chain,
2127                                        CallingConv::ID CallConv,
2128                                        bool isVarArg,
2129                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2130                                        SDLoc dl,
2131                                        SelectionDAG &DAG,
2132                                        SmallVectorImpl<SDValue> &InVals)
2133                                          const {
2134  MachineFunction &MF = DAG.getMachineFunction();
2135  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2136
2137  const Function* Fn = MF.getFunction();
2138  if (Fn->hasExternalLinkage() &&
2139      Subtarget->isTargetCygMing() &&
2140      Fn->getName() == "main")
2141    FuncInfo->setForceFramePointer(true);
2142
2143  MachineFrameInfo *MFI = MF.getFrameInfo();
2144  bool Is64Bit = Subtarget->is64Bit();
2145  bool IsWindows = Subtarget->isTargetWindows();
2146  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2147
2148  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2149         "Var args not supported with calling convention fastcc, ghc or hipe");
2150
2151  // Assign locations to all of the incoming arguments.
2152  SmallVector<CCValAssign, 16> ArgLocs;
2153  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2154                 ArgLocs, *DAG.getContext());
2155
2156  // Allocate shadow area for Win64
2157  if (IsWin64)
2158    CCInfo.AllocateStack(32, 8);
2159
2160  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
2161
2162  unsigned LastVal = ~0U;
2163  SDValue ArgValue;
2164  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2165    CCValAssign &VA = ArgLocs[i];
2166    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
2167    // places.
2168    assert(VA.getValNo() != LastVal &&
2169           "Don't support value assigned to multiple locs yet");
2170    (void)LastVal;
2171    LastVal = VA.getValNo();
2172
2173    if (VA.isRegLoc()) {
2174      EVT RegVT = VA.getLocVT();
2175      const TargetRegisterClass *RC;
2176      if (RegVT == MVT::i32)
2177        RC = &X86::GR32RegClass;
2178      else if (Is64Bit && RegVT == MVT::i64)
2179        RC = &X86::GR64RegClass;
2180      else if (RegVT == MVT::f32)
2181        RC = &X86::FR32RegClass;
2182      else if (RegVT == MVT::f64)
2183        RC = &X86::FR64RegClass;
2184      else if (RegVT.is512BitVector())
2185        RC = &X86::VR512RegClass;
2186      else if (RegVT.is256BitVector())
2187        RC = &X86::VR256RegClass;
2188      else if (RegVT.is128BitVector())
2189        RC = &X86::VR128RegClass;
2190      else if (RegVT == MVT::x86mmx)
2191        RC = &X86::VR64RegClass;
2192      else if (RegVT == MVT::v8i1)
2193        RC = &X86::VK8RegClass;
2194      else if (RegVT == MVT::v16i1)
2195        RC = &X86::VK16RegClass;
2196      else
2197        llvm_unreachable("Unknown argument type!");
2198
2199      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2200      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2201
2202      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2203      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2204      // right size.
2205      if (VA.getLocInfo() == CCValAssign::SExt)
2206        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2207                               DAG.getValueType(VA.getValVT()));
2208      else if (VA.getLocInfo() == CCValAssign::ZExt)
2209        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2210                               DAG.getValueType(VA.getValVT()));
2211      else if (VA.getLocInfo() == CCValAssign::BCvt)
2212        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2213
2214      if (VA.isExtInLoc()) {
2215        // Handle MMX values passed in XMM regs.
2216        if (RegVT.isVector())
2217          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2218        else
2219          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2220      }
2221    } else {
2222      assert(VA.isMemLoc());
2223      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2224    }
2225
2226    // If value is passed via pointer - do a load.
2227    if (VA.getLocInfo() == CCValAssign::Indirect)
2228      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2229                             MachinePointerInfo(), false, false, false, 0);
2230
2231    InVals.push_back(ArgValue);
2232  }
2233
2234  // The x86-64 ABIs require that for returning structs by value we copy
2235  // the sret argument into %rax/%eax (depending on ABI) for the return.
2236  // Win32 requires us to put the sret argument to %eax as well.
2237  // Save the argument into a virtual register so that we can access it
2238  // from the return points.
2239  if (MF.getFunction()->hasStructRetAttr() &&
2240      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
2241    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2242    unsigned Reg = FuncInfo->getSRetReturnReg();
2243    if (!Reg) {
2244      MVT PtrTy = getPointerTy();
2245      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2246      FuncInfo->setSRetReturnReg(Reg);
2247    }
2248    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2249    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2250  }
2251
2252  unsigned StackSize = CCInfo.getNextStackOffset();
2253  // Align stack specially for tail calls.
2254  if (FuncIsMadeTailCallSafe(CallConv,
2255                             MF.getTarget().Options.GuaranteedTailCallOpt))
2256    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2257
2258  // If the function takes variable number of arguments, make a frame index for
2259  // the start of the first vararg value... for expansion of llvm.va_start.
2260  if (isVarArg) {
2261    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2262                    CallConv != CallingConv::X86_ThisCall)) {
2263      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2264    }
2265    if (Is64Bit) {
2266      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2267
2268      // FIXME: We should really autogenerate these arrays
2269      static const uint16_t GPR64ArgRegsWin64[] = {
2270        X86::RCX, X86::RDX, X86::R8,  X86::R9
2271      };
2272      static const uint16_t GPR64ArgRegs64Bit[] = {
2273        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2274      };
2275      static const uint16_t XMMArgRegs64Bit[] = {
2276        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2277        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2278      };
2279      const uint16_t *GPR64ArgRegs;
2280      unsigned NumXMMRegs = 0;
2281
2282      if (IsWin64) {
2283        // The XMM registers which might contain var arg parameters are shadowed
2284        // in their paired GPR.  So we only need to save the GPR to their home
2285        // slots.
2286        TotalNumIntRegs = 4;
2287        GPR64ArgRegs = GPR64ArgRegsWin64;
2288      } else {
2289        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2290        GPR64ArgRegs = GPR64ArgRegs64Bit;
2291
2292        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2293                                                TotalNumXMMRegs);
2294      }
2295      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2296                                                       TotalNumIntRegs);
2297
2298      bool NoImplicitFloatOps = Fn->getAttributes().
2299        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2300      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2301             "SSE register cannot be used when SSE is disabled!");
2302      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2303               NoImplicitFloatOps) &&
2304             "SSE register cannot be used when SSE is disabled!");
2305      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2306          !Subtarget->hasSSE1())
2307        // Kernel mode asks for SSE to be disabled, so don't push them
2308        // on the stack.
2309        TotalNumXMMRegs = 0;
2310
2311      if (IsWin64) {
2312        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2313        // Get to the caller-allocated home save location.  Add 8 to account
2314        // for the return address.
2315        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2316        FuncInfo->setRegSaveFrameIndex(
2317          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2318        // Fixup to set vararg frame on shadow area (4 x i64).
2319        if (NumIntRegs < 4)
2320          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2321      } else {
2322        // For X86-64, if there are vararg parameters that are passed via
2323        // registers, then we must store them to their spots on the stack so
2324        // they may be loaded by deferencing the result of va_next.
2325        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2326        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2327        FuncInfo->setRegSaveFrameIndex(
2328          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2329                               false));
2330      }
2331
2332      // Store the integer parameter registers.
2333      SmallVector<SDValue, 8> MemOps;
2334      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2335                                        getPointerTy());
2336      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2337      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2338        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2339                                  DAG.getIntPtrConstant(Offset));
2340        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2341                                     &X86::GR64RegClass);
2342        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2343        SDValue Store =
2344          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2345                       MachinePointerInfo::getFixedStack(
2346                         FuncInfo->getRegSaveFrameIndex(), Offset),
2347                       false, false, 0);
2348        MemOps.push_back(Store);
2349        Offset += 8;
2350      }
2351
2352      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2353        // Now store the XMM (fp + vector) parameter registers.
2354        SmallVector<SDValue, 11> SaveXMMOps;
2355        SaveXMMOps.push_back(Chain);
2356
2357        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2358        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2359        SaveXMMOps.push_back(ALVal);
2360
2361        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2362                               FuncInfo->getRegSaveFrameIndex()));
2363        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2364                               FuncInfo->getVarArgsFPOffset()));
2365
2366        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2367          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2368                                       &X86::VR128RegClass);
2369          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2370          SaveXMMOps.push_back(Val);
2371        }
2372        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2373                                     MVT::Other,
2374                                     &SaveXMMOps[0], SaveXMMOps.size()));
2375      }
2376
2377      if (!MemOps.empty())
2378        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2379                            &MemOps[0], MemOps.size());
2380    }
2381  }
2382
2383  // Some CCs need callee pop.
2384  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2385                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2386    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2387  } else {
2388    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2389    // If this is an sret function, the return should pop the hidden pointer.
2390    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2391        argsAreStructReturn(Ins) == StackStructReturn)
2392      FuncInfo->setBytesToPopOnReturn(4);
2393  }
2394
2395  if (!Is64Bit) {
2396    // RegSaveFrameIndex is X86-64 only.
2397    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2398    if (CallConv == CallingConv::X86_FastCall ||
2399        CallConv == CallingConv::X86_ThisCall)
2400      // fastcc functions can't have varargs.
2401      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2402  }
2403
2404  FuncInfo->setArgumentStackSize(StackSize);
2405
2406  return Chain;
2407}
2408
2409SDValue
2410X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2411                                    SDValue StackPtr, SDValue Arg,
2412                                    SDLoc dl, SelectionDAG &DAG,
2413                                    const CCValAssign &VA,
2414                                    ISD::ArgFlagsTy Flags) const {
2415  unsigned LocMemOffset = VA.getLocMemOffset();
2416  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2417  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2418  if (Flags.isByVal())
2419    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2420
2421  return DAG.getStore(Chain, dl, Arg, PtrOff,
2422                      MachinePointerInfo::getStack(LocMemOffset),
2423                      false, false, 0);
2424}
2425
2426/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2427/// optimization is performed and it is required.
2428SDValue
2429X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2430                                           SDValue &OutRetAddr, SDValue Chain,
2431                                           bool IsTailCall, bool Is64Bit,
2432                                           int FPDiff, SDLoc dl) const {
2433  // Adjust the Return address stack slot.
2434  EVT VT = getPointerTy();
2435  OutRetAddr = getReturnAddressFrameIndex(DAG);
2436
2437  // Load the "old" Return address.
2438  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2439                           false, false, false, 0);
2440  return SDValue(OutRetAddr.getNode(), 1);
2441}
2442
2443/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2444/// optimization is performed and it is required (FPDiff!=0).
2445static SDValue
2446EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2447                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2448                         unsigned SlotSize, int FPDiff, SDLoc dl) {
2449  // Store the return address to the appropriate stack slot.
2450  if (!FPDiff) return Chain;
2451  // Calculate the new stack slot for the return address.
2452  int NewReturnAddrFI =
2453    MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
2454                                         false);
2455  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2456  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2457                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2458                       false, false, 0);
2459  return Chain;
2460}
2461
2462SDValue
2463X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2464                             SmallVectorImpl<SDValue> &InVals) const {
2465  SelectionDAG &DAG                     = CLI.DAG;
2466  SDLoc &dl                             = CLI.DL;
2467  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2468  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2469  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2470  SDValue Chain                         = CLI.Chain;
2471  SDValue Callee                        = CLI.Callee;
2472  CallingConv::ID CallConv              = CLI.CallConv;
2473  bool &isTailCall                      = CLI.IsTailCall;
2474  bool isVarArg                         = CLI.IsVarArg;
2475
2476  MachineFunction &MF = DAG.getMachineFunction();
2477  bool Is64Bit        = Subtarget->is64Bit();
2478  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
2479  bool IsWindows      = Subtarget->isTargetWindows();
2480  StructReturnType SR = callIsStructReturn(Outs);
2481  bool IsSibcall      = false;
2482
2483  if (MF.getTarget().Options.DisableTailCalls)
2484    isTailCall = false;
2485
2486  if (isTailCall) {
2487    // Check if it's really possible to do a tail call.
2488    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2489                    isVarArg, SR != NotStructReturn,
2490                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2491                    Outs, OutVals, Ins, DAG);
2492
2493    // Sibcalls are automatically detected tailcalls which do not require
2494    // ABI changes.
2495    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2496      IsSibcall = true;
2497
2498    if (isTailCall)
2499      ++NumTailCalls;
2500  }
2501
2502  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2503         "Var args not supported with calling convention fastcc, ghc or hipe");
2504
2505  // Analyze operands of the call, assigning locations to each operand.
2506  SmallVector<CCValAssign, 16> ArgLocs;
2507  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2508                 ArgLocs, *DAG.getContext());
2509
2510  // Allocate shadow area for Win64
2511  if (IsWin64)
2512    CCInfo.AllocateStack(32, 8);
2513
2514  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2515
2516  // Get a count of how many bytes are to be pushed on the stack.
2517  unsigned NumBytes = CCInfo.getNextStackOffset();
2518  if (IsSibcall)
2519    // This is a sibcall. The memory operands are available in caller's
2520    // own caller's stack.
2521    NumBytes = 0;
2522  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2523           IsTailCallConvention(CallConv))
2524    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2525
2526  int FPDiff = 0;
2527  if (isTailCall && !IsSibcall) {
2528    // Lower arguments at fp - stackoffset + fpdiff.
2529    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2530    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2531
2532    FPDiff = NumBytesCallerPushed - NumBytes;
2533
2534    // Set the delta of movement of the returnaddr stackslot.
2535    // But only set if delta is greater than previous delta.
2536    if (FPDiff < X86Info->getTCReturnAddrDelta())
2537      X86Info->setTCReturnAddrDelta(FPDiff);
2538  }
2539
2540  if (!IsSibcall)
2541    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
2542                                 dl);
2543
2544  SDValue RetAddrFrIdx;
2545  // Load return address for tail calls.
2546  if (isTailCall && FPDiff)
2547    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2548                                    Is64Bit, FPDiff, dl);
2549
2550  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2551  SmallVector<SDValue, 8> MemOpChains;
2552  SDValue StackPtr;
2553
2554  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2555  // of tail call optimization arguments are handle later.
2556  const X86RegisterInfo *RegInfo =
2557    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
2558  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2559    CCValAssign &VA = ArgLocs[i];
2560    EVT RegVT = VA.getLocVT();
2561    SDValue Arg = OutVals[i];
2562    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2563    bool isByVal = Flags.isByVal();
2564
2565    // Promote the value if needed.
2566    switch (VA.getLocInfo()) {
2567    default: llvm_unreachable("Unknown loc info!");
2568    case CCValAssign::Full: break;
2569    case CCValAssign::SExt:
2570      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2571      break;
2572    case CCValAssign::ZExt:
2573      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2574      break;
2575    case CCValAssign::AExt:
2576      if (RegVT.is128BitVector()) {
2577        // Special case: passing MMX values in XMM registers.
2578        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2579        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2580        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2581      } else
2582        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2583      break;
2584    case CCValAssign::BCvt:
2585      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2586      break;
2587    case CCValAssign::Indirect: {
2588      // Store the argument.
2589      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2590      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2591      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2592                           MachinePointerInfo::getFixedStack(FI),
2593                           false, false, 0);
2594      Arg = SpillSlot;
2595      break;
2596    }
2597    }
2598
2599    if (VA.isRegLoc()) {
2600      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2601      if (isVarArg && IsWin64) {
2602        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2603        // shadow reg if callee is a varargs function.
2604        unsigned ShadowReg = 0;
2605        switch (VA.getLocReg()) {
2606        case X86::XMM0: ShadowReg = X86::RCX; break;
2607        case X86::XMM1: ShadowReg = X86::RDX; break;
2608        case X86::XMM2: ShadowReg = X86::R8; break;
2609        case X86::XMM3: ShadowReg = X86::R9; break;
2610        }
2611        if (ShadowReg)
2612          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2613      }
2614    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2615      assert(VA.isMemLoc());
2616      if (StackPtr.getNode() == 0)
2617        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2618                                      getPointerTy());
2619      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2620                                             dl, DAG, VA, Flags));
2621    }
2622  }
2623
2624  if (!MemOpChains.empty())
2625    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2626                        &MemOpChains[0], MemOpChains.size());
2627
2628  if (Subtarget->isPICStyleGOT()) {
2629    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2630    // GOT pointer.
2631    if (!isTailCall) {
2632      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2633               DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
2634    } else {
2635      // If we are tail calling and generating PIC/GOT style code load the
2636      // address of the callee into ECX. The value in ecx is used as target of
2637      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2638      // for tail calls on PIC/GOT architectures. Normally we would just put the
2639      // address of GOT into ebx and then call target@PLT. But for tail calls
2640      // ebx would be restored (since ebx is callee saved) before jumping to the
2641      // target@PLT.
2642
2643      // Note: The actual moving to ECX is done further down.
2644      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2645      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2646          !G->getGlobal()->hasProtectedVisibility())
2647        Callee = LowerGlobalAddress(Callee, DAG);
2648      else if (isa<ExternalSymbolSDNode>(Callee))
2649        Callee = LowerExternalSymbol(Callee, DAG);
2650    }
2651  }
2652
2653  if (Is64Bit && isVarArg && !IsWin64) {
2654    // From AMD64 ABI document:
2655    // For calls that may call functions that use varargs or stdargs
2656    // (prototype-less calls or calls to functions containing ellipsis (...) in
2657    // the declaration) %al is used as hidden argument to specify the number
2658    // of SSE registers used. The contents of %al do not need to match exactly
2659    // the number of registers, but must be an ubound on the number of SSE
2660    // registers used and is in the range 0 - 8 inclusive.
2661
2662    // Count the number of XMM registers allocated.
2663    static const uint16_t XMMArgRegs[] = {
2664      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2665      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2666    };
2667    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2668    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2669           && "SSE registers cannot be used when SSE is disabled");
2670
2671    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2672                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2673  }
2674
2675  // For tail calls lower the arguments to the 'real' stack slot.
2676  if (isTailCall) {
2677    // Force all the incoming stack arguments to be loaded from the stack
2678    // before any new outgoing arguments are stored to the stack, because the
2679    // outgoing stack slots may alias the incoming argument stack slots, and
2680    // the alias isn't otherwise explicit. This is slightly more conservative
2681    // than necessary, because it means that each store effectively depends
2682    // on every argument instead of just those arguments it would clobber.
2683    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2684
2685    SmallVector<SDValue, 8> MemOpChains2;
2686    SDValue FIN;
2687    int FI = 0;
2688    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2689      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2690        CCValAssign &VA = ArgLocs[i];
2691        if (VA.isRegLoc())
2692          continue;
2693        assert(VA.isMemLoc());
2694        SDValue Arg = OutVals[i];
2695        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2696        // Create frame index.
2697        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2698        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2699        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2700        FIN = DAG.getFrameIndex(FI, getPointerTy());
2701
2702        if (Flags.isByVal()) {
2703          // Copy relative to framepointer.
2704          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2705          if (StackPtr.getNode() == 0)
2706            StackPtr = DAG.getCopyFromReg(Chain, dl,
2707                                          RegInfo->getStackRegister(),
2708                                          getPointerTy());
2709          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2710
2711          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2712                                                           ArgChain,
2713                                                           Flags, DAG, dl));
2714        } else {
2715          // Store relative to framepointer.
2716          MemOpChains2.push_back(
2717            DAG.getStore(ArgChain, dl, Arg, FIN,
2718                         MachinePointerInfo::getFixedStack(FI),
2719                         false, false, 0));
2720        }
2721      }
2722    }
2723
2724    if (!MemOpChains2.empty())
2725      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2726                          &MemOpChains2[0], MemOpChains2.size());
2727
2728    // Store the return address to the appropriate stack slot.
2729    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2730                                     getPointerTy(), RegInfo->getSlotSize(),
2731                                     FPDiff, dl);
2732  }
2733
2734  // Build a sequence of copy-to-reg nodes chained together with token chain
2735  // and flag operands which copy the outgoing args into registers.
2736  SDValue InFlag;
2737  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2738    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2739                             RegsToPass[i].second, InFlag);
2740    InFlag = Chain.getValue(1);
2741  }
2742
2743  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2744    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2745    // In the 64-bit large code model, we have to make all calls
2746    // through a register, since the call instruction's 32-bit
2747    // pc-relative offset may not be large enough to hold the whole
2748    // address.
2749  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2750    // If the callee is a GlobalAddress node (quite common, every direct call
2751    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2752    // it.
2753
2754    // We should use extra load for direct calls to dllimported functions in
2755    // non-JIT mode.
2756    const GlobalValue *GV = G->getGlobal();
2757    if (!GV->hasDLLImportLinkage()) {
2758      unsigned char OpFlags = 0;
2759      bool ExtraLoad = false;
2760      unsigned WrapperKind = ISD::DELETED_NODE;
2761
2762      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2763      // external symbols most go through the PLT in PIC mode.  If the symbol
2764      // has hidden or protected visibility, or if it is static or local, then
2765      // we don't need to use the PLT - we can directly call it.
2766      if (Subtarget->isTargetELF() &&
2767          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2768          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2769        OpFlags = X86II::MO_PLT;
2770      } else if (Subtarget->isPICStyleStubAny() &&
2771                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2772                 (!Subtarget->getTargetTriple().isMacOSX() ||
2773                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2774        // PC-relative references to external symbols should go through $stub,
2775        // unless we're building with the leopard linker or later, which
2776        // automatically synthesizes these stubs.
2777        OpFlags = X86II::MO_DARWIN_STUB;
2778      } else if (Subtarget->isPICStyleRIPRel() &&
2779                 isa<Function>(GV) &&
2780                 cast<Function>(GV)->getAttributes().
2781                   hasAttribute(AttributeSet::FunctionIndex,
2782                                Attribute::NonLazyBind)) {
2783        // If the function is marked as non-lazy, generate an indirect call
2784        // which loads from the GOT directly. This avoids runtime overhead
2785        // at the cost of eager binding (and one extra byte of encoding).
2786        OpFlags = X86II::MO_GOTPCREL;
2787        WrapperKind = X86ISD::WrapperRIP;
2788        ExtraLoad = true;
2789      }
2790
2791      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2792                                          G->getOffset(), OpFlags);
2793
2794      // Add a wrapper if needed.
2795      if (WrapperKind != ISD::DELETED_NODE)
2796        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2797      // Add extra indirection if needed.
2798      if (ExtraLoad)
2799        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2800                             MachinePointerInfo::getGOT(),
2801                             false, false, false, 0);
2802    }
2803  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2804    unsigned char OpFlags = 0;
2805
2806    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2807    // external symbols should go through the PLT.
2808    if (Subtarget->isTargetELF() &&
2809        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2810      OpFlags = X86II::MO_PLT;
2811    } else if (Subtarget->isPICStyleStubAny() &&
2812               (!Subtarget->getTargetTriple().isMacOSX() ||
2813                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2814      // PC-relative references to external symbols should go through $stub,
2815      // unless we're building with the leopard linker or later, which
2816      // automatically synthesizes these stubs.
2817      OpFlags = X86II::MO_DARWIN_STUB;
2818    }
2819
2820    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2821                                         OpFlags);
2822  }
2823
2824  // Returns a chain & a flag for retval copy to use.
2825  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2826  SmallVector<SDValue, 8> Ops;
2827
2828  if (!IsSibcall && isTailCall) {
2829    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2830                           DAG.getIntPtrConstant(0, true), InFlag, dl);
2831    InFlag = Chain.getValue(1);
2832  }
2833
2834  Ops.push_back(Chain);
2835  Ops.push_back(Callee);
2836
2837  if (isTailCall)
2838    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2839
2840  // Add argument registers to the end of the list so that they are known live
2841  // into the call.
2842  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2843    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2844                                  RegsToPass[i].second.getValueType()));
2845
2846  // Add a register mask operand representing the call-preserved registers.
2847  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2848  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2849  assert(Mask && "Missing call preserved mask for calling convention");
2850  Ops.push_back(DAG.getRegisterMask(Mask));
2851
2852  if (InFlag.getNode())
2853    Ops.push_back(InFlag);
2854
2855  if (isTailCall) {
2856    // We used to do:
2857    //// If this is the first return lowered for this function, add the regs
2858    //// to the liveout set for the function.
2859    // This isn't right, although it's probably harmless on x86; liveouts
2860    // should be computed from returns not tail calls.  Consider a void
2861    // function making a tail call to a function returning int.
2862    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
2863  }
2864
2865  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2866  InFlag = Chain.getValue(1);
2867
2868  // Create the CALLSEQ_END node.
2869  unsigned NumBytesForCalleeToPush;
2870  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2871                       getTargetMachine().Options.GuaranteedTailCallOpt))
2872    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2873  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2874           SR == StackStructReturn)
2875    // If this is a call to a struct-return function, the callee
2876    // pops the hidden struct pointer, so we have to push it back.
2877    // This is common for Darwin/X86, Linux & Mingw32 targets.
2878    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2879    NumBytesForCalleeToPush = 4;
2880  else
2881    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2882
2883  // Returns a flag for retval copy to use.
2884  if (!IsSibcall) {
2885    Chain = DAG.getCALLSEQ_END(Chain,
2886                               DAG.getIntPtrConstant(NumBytes, true),
2887                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2888                                                     true),
2889                               InFlag, dl);
2890    InFlag = Chain.getValue(1);
2891  }
2892
2893  // Handle result values, copying them out of physregs into vregs that we
2894  // return.
2895  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2896                         Ins, dl, DAG, InVals);
2897}
2898
2899//===----------------------------------------------------------------------===//
2900//                Fast Calling Convention (tail call) implementation
2901//===----------------------------------------------------------------------===//
2902
2903//  Like std call, callee cleans arguments, convention except that ECX is
2904//  reserved for storing the tail called function address. Only 2 registers are
2905//  free for argument passing (inreg). Tail call optimization is performed
2906//  provided:
2907//                * tailcallopt is enabled
2908//                * caller/callee are fastcc
2909//  On X86_64 architecture with GOT-style position independent code only local
2910//  (within module) calls are supported at the moment.
2911//  To keep the stack aligned according to platform abi the function
2912//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2913//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2914//  If a tail called function callee has more arguments than the caller the
2915//  caller needs to make sure that there is room to move the RETADDR to. This is
2916//  achieved by reserving an area the size of the argument delta right after the
2917//  original REtADDR, but before the saved framepointer or the spilled registers
2918//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2919//  stack layout:
2920//    arg1
2921//    arg2
2922//    RETADDR
2923//    [ new RETADDR
2924//      move area ]
2925//    (possible EBP)
2926//    ESI
2927//    EDI
2928//    local1 ..
2929
2930/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2931/// for a 16 byte align requirement.
2932unsigned
2933X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2934                                               SelectionDAG& DAG) const {
2935  MachineFunction &MF = DAG.getMachineFunction();
2936  const TargetMachine &TM = MF.getTarget();
2937  const X86RegisterInfo *RegInfo =
2938    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
2939  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2940  unsigned StackAlignment = TFI.getStackAlignment();
2941  uint64_t AlignMask = StackAlignment - 1;
2942  int64_t Offset = StackSize;
2943  unsigned SlotSize = RegInfo->getSlotSize();
2944  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2945    // Number smaller than 12 so just add the difference.
2946    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2947  } else {
2948    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2949    Offset = ((~AlignMask) & Offset) + StackAlignment +
2950      (StackAlignment-SlotSize);
2951  }
2952  return Offset;
2953}
2954
2955/// MatchingStackOffset - Return true if the given stack call argument is
2956/// already available in the same position (relatively) of the caller's
2957/// incoming argument stack.
2958static
2959bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2960                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2961                         const X86InstrInfo *TII) {
2962  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2963  int FI = INT_MAX;
2964  if (Arg.getOpcode() == ISD::CopyFromReg) {
2965    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2966    if (!TargetRegisterInfo::isVirtualRegister(VR))
2967      return false;
2968    MachineInstr *Def = MRI->getVRegDef(VR);
2969    if (!Def)
2970      return false;
2971    if (!Flags.isByVal()) {
2972      if (!TII->isLoadFromStackSlot(Def, FI))
2973        return false;
2974    } else {
2975      unsigned Opcode = Def->getOpcode();
2976      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2977          Def->getOperand(1).isFI()) {
2978        FI = Def->getOperand(1).getIndex();
2979        Bytes = Flags.getByValSize();
2980      } else
2981        return false;
2982    }
2983  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2984    if (Flags.isByVal())
2985      // ByVal argument is passed in as a pointer but it's now being
2986      // dereferenced. e.g.
2987      // define @foo(%struct.X* %A) {
2988      //   tail call @bar(%struct.X* byval %A)
2989      // }
2990      return false;
2991    SDValue Ptr = Ld->getBasePtr();
2992    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2993    if (!FINode)
2994      return false;
2995    FI = FINode->getIndex();
2996  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2997    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2998    FI = FINode->getIndex();
2999    Bytes = Flags.getByValSize();
3000  } else
3001    return false;
3002
3003  assert(FI != INT_MAX);
3004  if (!MFI->isFixedObjectIndex(FI))
3005    return false;
3006  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
3007}
3008
3009/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3010/// for tail call optimization. Targets which want to do tail call
3011/// optimization should implement this function.
3012bool
3013X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3014                                                     CallingConv::ID CalleeCC,
3015                                                     bool isVarArg,
3016                                                     bool isCalleeStructRet,
3017                                                     bool isCallerStructRet,
3018                                                     Type *RetTy,
3019                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3020                                    const SmallVectorImpl<SDValue> &OutVals,
3021                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3022                                                     SelectionDAG &DAG) const {
3023  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
3024    return false;
3025
3026  // If -tailcallopt is specified, make fastcc functions tail-callable.
3027  const MachineFunction &MF = DAG.getMachineFunction();
3028  const Function *CallerF = MF.getFunction();
3029
3030  // If the function return type is x86_fp80 and the callee return type is not,
3031  // then the FP_EXTEND of the call result is not a nop. It's not safe to
3032  // perform a tailcall optimization here.
3033  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
3034    return false;
3035
3036  CallingConv::ID CallerCC = CallerF->getCallingConv();
3037  bool CCMatch = CallerCC == CalleeCC;
3038  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
3039  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
3040
3041  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
3042    if (IsTailCallConvention(CalleeCC) && CCMatch)
3043      return true;
3044    return false;
3045  }
3046
3047  // Look for obvious safe cases to perform tail call optimization that do not
3048  // require ABI changes. This is what gcc calls sibcall.
3049
3050  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
3051  // emit a special epilogue.
3052  const X86RegisterInfo *RegInfo =
3053    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3054  if (RegInfo->needsStackRealignment(MF))
3055    return false;
3056
3057  // Also avoid sibcall optimization if either caller or callee uses struct
3058  // return semantics.
3059  if (isCalleeStructRet || isCallerStructRet)
3060    return false;
3061
3062  // An stdcall caller is expected to clean up its arguments; the callee
3063  // isn't going to do that.
3064  if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
3065    return false;
3066
3067  // Do not sibcall optimize vararg calls unless all arguments are passed via
3068  // registers.
3069  if (isVarArg && !Outs.empty()) {
3070
3071    // Optimizing for varargs on Win64 is unlikely to be safe without
3072    // additional testing.
3073    if (IsCalleeWin64 || IsCallerWin64)
3074      return false;
3075
3076    SmallVector<CCValAssign, 16> ArgLocs;
3077    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3078                   getTargetMachine(), ArgLocs, *DAG.getContext());
3079
3080    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3081    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
3082      if (!ArgLocs[i].isRegLoc())
3083        return false;
3084  }
3085
3086  // If the call result is in ST0 / ST1, it needs to be popped off the x87
3087  // stack.  Therefore, if it's not used by the call it is not safe to optimize
3088  // this into a sibcall.
3089  bool Unused = false;
3090  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3091    if (!Ins[i].Used) {
3092      Unused = true;
3093      break;
3094    }
3095  }
3096  if (Unused) {
3097    SmallVector<CCValAssign, 16> RVLocs;
3098    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
3099                   getTargetMachine(), RVLocs, *DAG.getContext());
3100    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3101    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3102      CCValAssign &VA = RVLocs[i];
3103      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
3104        return false;
3105    }
3106  }
3107
3108  // If the calling conventions do not match, then we'd better make sure the
3109  // results are returned in the same way as what the caller expects.
3110  if (!CCMatch) {
3111    SmallVector<CCValAssign, 16> RVLocs1;
3112    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
3113                    getTargetMachine(), RVLocs1, *DAG.getContext());
3114    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
3115
3116    SmallVector<CCValAssign, 16> RVLocs2;
3117    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
3118                    getTargetMachine(), RVLocs2, *DAG.getContext());
3119    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
3120
3121    if (RVLocs1.size() != RVLocs2.size())
3122      return false;
3123    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
3124      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
3125        return false;
3126      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
3127        return false;
3128      if (RVLocs1[i].isRegLoc()) {
3129        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
3130          return false;
3131      } else {
3132        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
3133          return false;
3134      }
3135    }
3136  }
3137
3138  // If the callee takes no arguments then go on to check the results of the
3139  // call.
3140  if (!Outs.empty()) {
3141    // Check if stack adjustment is needed. For now, do not do this if any
3142    // argument is passed on the stack.
3143    SmallVector<CCValAssign, 16> ArgLocs;
3144    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3145                   getTargetMachine(), ArgLocs, *DAG.getContext());
3146
3147    // Allocate shadow area for Win64
3148    if (IsCalleeWin64)
3149      CCInfo.AllocateStack(32, 8);
3150
3151    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3152    if (CCInfo.getNextStackOffset()) {
3153      MachineFunction &MF = DAG.getMachineFunction();
3154      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
3155        return false;
3156
3157      // Check if the arguments are already laid out in the right way as
3158      // the caller's fixed stack objects.
3159      MachineFrameInfo *MFI = MF.getFrameInfo();
3160      const MachineRegisterInfo *MRI = &MF.getRegInfo();
3161      const X86InstrInfo *TII =
3162        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
3163      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3164        CCValAssign &VA = ArgLocs[i];
3165        SDValue Arg = OutVals[i];
3166        ISD::ArgFlagsTy Flags = Outs[i].Flags;
3167        if (VA.getLocInfo() == CCValAssign::Indirect)
3168          return false;
3169        if (!VA.isRegLoc()) {
3170          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3171                                   MFI, MRI, TII))
3172            return false;
3173        }
3174      }
3175    }
3176
3177    // If the tailcall address may be in a register, then make sure it's
3178    // possible to register allocate for it. In 32-bit, the call address can
3179    // only target EAX, EDX, or ECX since the tail call must be scheduled after
3180    // callee-saved registers are restored. These happen to be the same
3181    // registers used to pass 'inreg' arguments so watch out for those.
3182    if (!Subtarget->is64Bit() &&
3183        ((!isa<GlobalAddressSDNode>(Callee) &&
3184          !isa<ExternalSymbolSDNode>(Callee)) ||
3185         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
3186      unsigned NumInRegs = 0;
3187      // In PIC we need an extra register to formulate the address computation
3188      // for the callee.
3189      unsigned MaxInRegs =
3190          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3191
3192      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3193        CCValAssign &VA = ArgLocs[i];
3194        if (!VA.isRegLoc())
3195          continue;
3196        unsigned Reg = VA.getLocReg();
3197        switch (Reg) {
3198        default: break;
3199        case X86::EAX: case X86::EDX: case X86::ECX:
3200          if (++NumInRegs == MaxInRegs)
3201            return false;
3202          break;
3203        }
3204      }
3205    }
3206  }
3207
3208  return true;
3209}
3210
3211FastISel *
3212X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3213                                  const TargetLibraryInfo *libInfo) const {
3214  return X86::createFastISel(funcInfo, libInfo);
3215}
3216
3217//===----------------------------------------------------------------------===//
3218//                           Other Lowering Hooks
3219//===----------------------------------------------------------------------===//
3220
3221static bool MayFoldLoad(SDValue Op) {
3222  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3223}
3224
3225static bool MayFoldIntoStore(SDValue Op) {
3226  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3227}
3228
3229static bool isTargetShuffle(unsigned Opcode) {
3230  switch(Opcode) {
3231  default: return false;
3232  case X86ISD::PSHUFD:
3233  case X86ISD::PSHUFHW:
3234  case X86ISD::PSHUFLW:
3235  case X86ISD::SHUFP:
3236  case X86ISD::PALIGNR:
3237  case X86ISD::MOVLHPS:
3238  case X86ISD::MOVLHPD:
3239  case X86ISD::MOVHLPS:
3240  case X86ISD::MOVLPS:
3241  case X86ISD::MOVLPD:
3242  case X86ISD::MOVSHDUP:
3243  case X86ISD::MOVSLDUP:
3244  case X86ISD::MOVDDUP:
3245  case X86ISD::MOVSS:
3246  case X86ISD::MOVSD:
3247  case X86ISD::UNPCKL:
3248  case X86ISD::UNPCKH:
3249  case X86ISD::VPERMILP:
3250  case X86ISD::VPERM2X128:
3251  case X86ISD::VPERMI:
3252    return true;
3253  }
3254}
3255
3256static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3257                                    SDValue V1, SelectionDAG &DAG) {
3258  switch(Opc) {
3259  default: llvm_unreachable("Unknown x86 shuffle node");
3260  case X86ISD::MOVSHDUP:
3261  case X86ISD::MOVSLDUP:
3262  case X86ISD::MOVDDUP:
3263    return DAG.getNode(Opc, dl, VT, V1);
3264  }
3265}
3266
3267static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3268                                    SDValue V1, unsigned TargetMask,
3269                                    SelectionDAG &DAG) {
3270  switch(Opc) {
3271  default: llvm_unreachable("Unknown x86 shuffle node");
3272  case X86ISD::PSHUFD:
3273  case X86ISD::PSHUFHW:
3274  case X86ISD::PSHUFLW:
3275  case X86ISD::VPERMILP:
3276  case X86ISD::VPERMI:
3277    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3278  }
3279}
3280
3281static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3282                                    SDValue V1, SDValue V2, unsigned TargetMask,
3283                                    SelectionDAG &DAG) {
3284  switch(Opc) {
3285  default: llvm_unreachable("Unknown x86 shuffle node");
3286  case X86ISD::PALIGNR:
3287  case X86ISD::SHUFP:
3288  case X86ISD::VPERM2X128:
3289    return DAG.getNode(Opc, dl, VT, V1, V2,
3290                       DAG.getConstant(TargetMask, MVT::i8));
3291  }
3292}
3293
3294static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3295                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3296  switch(Opc) {
3297  default: llvm_unreachable("Unknown x86 shuffle node");
3298  case X86ISD::MOVLHPS:
3299  case X86ISD::MOVLHPD:
3300  case X86ISD::MOVHLPS:
3301  case X86ISD::MOVLPS:
3302  case X86ISD::MOVLPD:
3303  case X86ISD::MOVSS:
3304  case X86ISD::MOVSD:
3305  case X86ISD::UNPCKL:
3306  case X86ISD::UNPCKH:
3307    return DAG.getNode(Opc, dl, VT, V1, V2);
3308  }
3309}
3310
3311SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3312  MachineFunction &MF = DAG.getMachineFunction();
3313  const X86RegisterInfo *RegInfo =
3314    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3315  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3316  int ReturnAddrIndex = FuncInfo->getRAIndex();
3317
3318  if (ReturnAddrIndex == 0) {
3319    // Set up a frame object for the return address.
3320    unsigned SlotSize = RegInfo->getSlotSize();
3321    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3322                                                           -(int64_t)SlotSize,
3323                                                           false);
3324    FuncInfo->setRAIndex(ReturnAddrIndex);
3325  }
3326
3327  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3328}
3329
3330bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3331                                       bool hasSymbolicDisplacement) {
3332  // Offset should fit into 32 bit immediate field.
3333  if (!isInt<32>(Offset))
3334    return false;
3335
3336  // If we don't have a symbolic displacement - we don't have any extra
3337  // restrictions.
3338  if (!hasSymbolicDisplacement)
3339    return true;
3340
3341  // FIXME: Some tweaks might be needed for medium code model.
3342  if (M != CodeModel::Small && M != CodeModel::Kernel)
3343    return false;
3344
3345  // For small code model we assume that latest object is 16MB before end of 31
3346  // bits boundary. We may also accept pretty large negative constants knowing
3347  // that all objects are in the positive half of address space.
3348  if (M == CodeModel::Small && Offset < 16*1024*1024)
3349    return true;
3350
3351  // For kernel code model we know that all object resist in the negative half
3352  // of 32bits address space. We may not accept negative offsets, since they may
3353  // be just off and we may accept pretty large positive ones.
3354  if (M == CodeModel::Kernel && Offset > 0)
3355    return true;
3356
3357  return false;
3358}
3359
3360/// isCalleePop - Determines whether the callee is required to pop its
3361/// own arguments. Callee pop is necessary to support tail calls.
3362bool X86::isCalleePop(CallingConv::ID CallingConv,
3363                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3364  if (IsVarArg)
3365    return false;
3366
3367  switch (CallingConv) {
3368  default:
3369    return false;
3370  case CallingConv::X86_StdCall:
3371    return !is64Bit;
3372  case CallingConv::X86_FastCall:
3373    return !is64Bit;
3374  case CallingConv::X86_ThisCall:
3375    return !is64Bit;
3376  case CallingConv::Fast:
3377    return TailCallOpt;
3378  case CallingConv::GHC:
3379    return TailCallOpt;
3380  case CallingConv::HiPE:
3381    return TailCallOpt;
3382  }
3383}
3384
3385/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3386/// specific condition code, returning the condition code and the LHS/RHS of the
3387/// comparison to make.
3388static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3389                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3390  if (!isFP) {
3391    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3392      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3393        // X > -1   -> X == 0, jump !sign.
3394        RHS = DAG.getConstant(0, RHS.getValueType());
3395        return X86::COND_NS;
3396      }
3397      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3398        // X < 0   -> X == 0, jump on sign.
3399        return X86::COND_S;
3400      }
3401      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3402        // X < 1   -> X <= 0
3403        RHS = DAG.getConstant(0, RHS.getValueType());
3404        return X86::COND_LE;
3405      }
3406    }
3407
3408    switch (SetCCOpcode) {
3409    default: llvm_unreachable("Invalid integer condition!");
3410    case ISD::SETEQ:  return X86::COND_E;
3411    case ISD::SETGT:  return X86::COND_G;
3412    case ISD::SETGE:  return X86::COND_GE;
3413    case ISD::SETLT:  return X86::COND_L;
3414    case ISD::SETLE:  return X86::COND_LE;
3415    case ISD::SETNE:  return X86::COND_NE;
3416    case ISD::SETULT: return X86::COND_B;
3417    case ISD::SETUGT: return X86::COND_A;
3418    case ISD::SETULE: return X86::COND_BE;
3419    case ISD::SETUGE: return X86::COND_AE;
3420    }
3421  }
3422
3423  // First determine if it is required or is profitable to flip the operands.
3424
3425  // If LHS is a foldable load, but RHS is not, flip the condition.
3426  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3427      !ISD::isNON_EXTLoad(RHS.getNode())) {
3428    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3429    std::swap(LHS, RHS);
3430  }
3431
3432  switch (SetCCOpcode) {
3433  default: break;
3434  case ISD::SETOLT:
3435  case ISD::SETOLE:
3436  case ISD::SETUGT:
3437  case ISD::SETUGE:
3438    std::swap(LHS, RHS);
3439    break;
3440  }
3441
3442  // On a floating point condition, the flags are set as follows:
3443  // ZF  PF  CF   op
3444  //  0 | 0 | 0 | X > Y
3445  //  0 | 0 | 1 | X < Y
3446  //  1 | 0 | 0 | X == Y
3447  //  1 | 1 | 1 | unordered
3448  switch (SetCCOpcode) {
3449  default: llvm_unreachable("Condcode should be pre-legalized away");
3450  case ISD::SETUEQ:
3451  case ISD::SETEQ:   return X86::COND_E;
3452  case ISD::SETOLT:              // flipped
3453  case ISD::SETOGT:
3454  case ISD::SETGT:   return X86::COND_A;
3455  case ISD::SETOLE:              // flipped
3456  case ISD::SETOGE:
3457  case ISD::SETGE:   return X86::COND_AE;
3458  case ISD::SETUGT:              // flipped
3459  case ISD::SETULT:
3460  case ISD::SETLT:   return X86::COND_B;
3461  case ISD::SETUGE:              // flipped
3462  case ISD::SETULE:
3463  case ISD::SETLE:   return X86::COND_BE;
3464  case ISD::SETONE:
3465  case ISD::SETNE:   return X86::COND_NE;
3466  case ISD::SETUO:   return X86::COND_P;
3467  case ISD::SETO:    return X86::COND_NP;
3468  case ISD::SETOEQ:
3469  case ISD::SETUNE:  return X86::COND_INVALID;
3470  }
3471}
3472
3473/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3474/// code. Current x86 isa includes the following FP cmov instructions:
3475/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3476static bool hasFPCMov(unsigned X86CC) {
3477  switch (X86CC) {
3478  default:
3479    return false;
3480  case X86::COND_B:
3481  case X86::COND_BE:
3482  case X86::COND_E:
3483  case X86::COND_P:
3484  case X86::COND_A:
3485  case X86::COND_AE:
3486  case X86::COND_NE:
3487  case X86::COND_NP:
3488    return true;
3489  }
3490}
3491
3492/// isFPImmLegal - Returns true if the target can instruction select the
3493/// specified FP immediate natively. If false, the legalizer will
3494/// materialize the FP immediate as a load from a constant pool.
3495bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3496  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3497    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3498      return true;
3499  }
3500  return false;
3501}
3502
3503/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3504/// the specified range (L, H].
3505static bool isUndefOrInRange(int Val, int Low, int Hi) {
3506  return (Val < 0) || (Val >= Low && Val < Hi);
3507}
3508
3509/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3510/// specified value.
3511static bool isUndefOrEqual(int Val, int CmpVal) {
3512  return (Val < 0 || Val == CmpVal);
3513}
3514
3515/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3516/// from position Pos and ending in Pos+Size, falls within the specified
3517/// sequential range (L, L+Pos]. or is undef.
3518static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3519                                       unsigned Pos, unsigned Size, int Low) {
3520  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3521    if (!isUndefOrEqual(Mask[i], Low))
3522      return false;
3523  return true;
3524}
3525
3526/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3527/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3528/// the second operand.
3529static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) {
3530  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3531    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3532  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3533    return (Mask[0] < 2 && Mask[1] < 2);
3534  return false;
3535}
3536
3537/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3538/// is suitable for input to PSHUFHW.
3539static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3540  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3541    return false;
3542
3543  // Lower quadword copied in order or undef.
3544  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3545    return false;
3546
3547  // Upper quadword shuffled.
3548  for (unsigned i = 4; i != 8; ++i)
3549    if (!isUndefOrInRange(Mask[i], 4, 8))
3550      return false;
3551
3552  if (VT == MVT::v16i16) {
3553    // Lower quadword copied in order or undef.
3554    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3555      return false;
3556
3557    // Upper quadword shuffled.
3558    for (unsigned i = 12; i != 16; ++i)
3559      if (!isUndefOrInRange(Mask[i], 12, 16))
3560        return false;
3561  }
3562
3563  return true;
3564}
3565
3566/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3567/// is suitable for input to PSHUFLW.
3568static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3569  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3570    return false;
3571
3572  // Upper quadword copied in order.
3573  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3574    return false;
3575
3576  // Lower quadword shuffled.
3577  for (unsigned i = 0; i != 4; ++i)
3578    if (!isUndefOrInRange(Mask[i], 0, 4))
3579      return false;
3580
3581  if (VT == MVT::v16i16) {
3582    // Upper quadword copied in order.
3583    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3584      return false;
3585
3586    // Lower quadword shuffled.
3587    for (unsigned i = 8; i != 12; ++i)
3588      if (!isUndefOrInRange(Mask[i], 8, 12))
3589        return false;
3590  }
3591
3592  return true;
3593}
3594
3595/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3596/// is suitable for input to PALIGNR.
3597static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
3598                          const X86Subtarget *Subtarget) {
3599  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3600      (VT.is256BitVector() && !Subtarget->hasInt256()))
3601    return false;
3602
3603  unsigned NumElts = VT.getVectorNumElements();
3604  unsigned NumLanes = VT.is512BitVector() ? 1: VT.getSizeInBits()/128;
3605  unsigned NumLaneElts = NumElts/NumLanes;
3606
3607  // Do not handle 64-bit element shuffles with palignr.
3608  if (NumLaneElts == 2)
3609    return false;
3610
3611  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3612    unsigned i;
3613    for (i = 0; i != NumLaneElts; ++i) {
3614      if (Mask[i+l] >= 0)
3615        break;
3616    }
3617
3618    // Lane is all undef, go to next lane
3619    if (i == NumLaneElts)
3620      continue;
3621
3622    int Start = Mask[i+l];
3623
3624    // Make sure its in this lane in one of the sources
3625    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3626        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3627      return false;
3628
3629    // If not lane 0, then we must match lane 0
3630    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3631      return false;
3632
3633    // Correct second source to be contiguous with first source
3634    if (Start >= (int)NumElts)
3635      Start -= NumElts - NumLaneElts;
3636
3637    // Make sure we're shifting in the right direction.
3638    if (Start <= (int)(i+l))
3639      return false;
3640
3641    Start -= i;
3642
3643    // Check the rest of the elements to see if they are consecutive.
3644    for (++i; i != NumLaneElts; ++i) {
3645      int Idx = Mask[i+l];
3646
3647      // Make sure its in this lane
3648      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3649          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3650        return false;
3651
3652      // If not lane 0, then we must match lane 0
3653      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3654        return false;
3655
3656      if (Idx >= (int)NumElts)
3657        Idx -= NumElts - NumLaneElts;
3658
3659      if (!isUndefOrEqual(Idx, Start+i))
3660        return false;
3661
3662    }
3663  }
3664
3665  return true;
3666}
3667
3668/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3669/// the two vector operands have swapped position.
3670static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3671                                     unsigned NumElems) {
3672  for (unsigned i = 0; i != NumElems; ++i) {
3673    int idx = Mask[i];
3674    if (idx < 0)
3675      continue;
3676    else if (idx < (int)NumElems)
3677      Mask[i] = idx + NumElems;
3678    else
3679      Mask[i] = idx - NumElems;
3680  }
3681}
3682
3683/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3684/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3685/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3686/// reverse of what x86 shuffles want.
3687static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) {
3688
3689  unsigned NumElems = VT.getVectorNumElements();
3690  unsigned NumLanes = VT.getSizeInBits()/128;
3691  unsigned NumLaneElems = NumElems/NumLanes;
3692
3693  if (NumLaneElems != 2 && NumLaneElems != 4)
3694    return false;
3695
3696  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3697  bool symetricMaskRequired =
3698    (VT.getSizeInBits() >= 256) && (EltSize == 32);
3699
3700  // VSHUFPSY divides the resulting vector into 4 chunks.
3701  // The sources are also splitted into 4 chunks, and each destination
3702  // chunk must come from a different source chunk.
3703  //
3704  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3705  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3706  //
3707  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3708  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3709  //
3710  // VSHUFPDY divides the resulting vector into 4 chunks.
3711  // The sources are also splitted into 4 chunks, and each destination
3712  // chunk must come from a different source chunk.
3713  //
3714  //  SRC1 =>      X3       X2       X1       X0
3715  //  SRC2 =>      Y3       Y2       Y1       Y0
3716  //
3717  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3718  //
3719  SmallVector<int, 4> MaskVal(NumLaneElems, -1);
3720  unsigned HalfLaneElems = NumLaneElems/2;
3721  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3722    for (unsigned i = 0; i != NumLaneElems; ++i) {
3723      int Idx = Mask[i+l];
3724      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3725      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3726        return false;
3727      // For VSHUFPSY, the mask of the second half must be the same as the
3728      // first but with the appropriate offsets. This works in the same way as
3729      // VPERMILPS works with masks.
3730      if (!symetricMaskRequired || Idx < 0)
3731        continue;
3732      if (MaskVal[i] < 0) {
3733        MaskVal[i] = Idx - l;
3734        continue;
3735      }
3736      if ((signed)(Idx - l) != MaskVal[i])
3737        return false;
3738    }
3739  }
3740
3741  return true;
3742}
3743
3744/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3745/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3746static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) {
3747  if (!VT.is128BitVector())
3748    return false;
3749
3750  unsigned NumElems = VT.getVectorNumElements();
3751
3752  if (NumElems != 4)
3753    return false;
3754
3755  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3756  return isUndefOrEqual(Mask[0], 6) &&
3757         isUndefOrEqual(Mask[1], 7) &&
3758         isUndefOrEqual(Mask[2], 2) &&
3759         isUndefOrEqual(Mask[3], 3);
3760}
3761
3762/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3763/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3764/// <2, 3, 2, 3>
3765static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) {
3766  if (!VT.is128BitVector())
3767    return false;
3768
3769  unsigned NumElems = VT.getVectorNumElements();
3770
3771  if (NumElems != 4)
3772    return false;
3773
3774  return isUndefOrEqual(Mask[0], 2) &&
3775         isUndefOrEqual(Mask[1], 3) &&
3776         isUndefOrEqual(Mask[2], 2) &&
3777         isUndefOrEqual(Mask[3], 3);
3778}
3779
3780/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3781/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3782static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) {
3783  if (!VT.is128BitVector())
3784    return false;
3785
3786  unsigned NumElems = VT.getVectorNumElements();
3787
3788  if (NumElems != 2 && NumElems != 4)
3789    return false;
3790
3791  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3792    if (!isUndefOrEqual(Mask[i], i + NumElems))
3793      return false;
3794
3795  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3796    if (!isUndefOrEqual(Mask[i], i))
3797      return false;
3798
3799  return true;
3800}
3801
3802/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3803/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3804static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) {
3805  if (!VT.is128BitVector())
3806    return false;
3807
3808  unsigned NumElems = VT.getVectorNumElements();
3809
3810  if (NumElems != 2 && NumElems != 4)
3811    return false;
3812
3813  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3814    if (!isUndefOrEqual(Mask[i], i))
3815      return false;
3816
3817  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3818    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3819      return false;
3820
3821  return true;
3822}
3823
3824//
3825// Some special combinations that can be optimized.
3826//
3827static
3828SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3829                               SelectionDAG &DAG) {
3830  MVT VT = SVOp->getSimpleValueType(0);
3831  SDLoc dl(SVOp);
3832
3833  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3834    return SDValue();
3835
3836  ArrayRef<int> Mask = SVOp->getMask();
3837
3838  // These are the special masks that may be optimized.
3839  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3840  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3841  bool MatchEvenMask = true;
3842  bool MatchOddMask  = true;
3843  for (int i=0; i<8; ++i) {
3844    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3845      MatchEvenMask = false;
3846    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3847      MatchOddMask = false;
3848  }
3849
3850  if (!MatchEvenMask && !MatchOddMask)
3851    return SDValue();
3852
3853  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3854
3855  SDValue Op0 = SVOp->getOperand(0);
3856  SDValue Op1 = SVOp->getOperand(1);
3857
3858  if (MatchEvenMask) {
3859    // Shift the second operand right to 32 bits.
3860    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3861    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3862  } else {
3863    // Shift the first operand left to 32 bits.
3864    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3865    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3866  }
3867  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3868  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3869}
3870
3871/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3872/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3873static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
3874                         bool HasInt256, bool V2IsSplat = false) {
3875
3876  assert(VT.getSizeInBits() >= 128 &&
3877         "Unsupported vector type for unpckl");
3878
3879  // AVX defines UNPCK* to operate independently on 128-bit lanes.
3880  unsigned NumLanes;
3881  unsigned NumOf256BitLanes;
3882  unsigned NumElts = VT.getVectorNumElements();
3883  if (VT.is256BitVector()) {
3884    if (NumElts != 4 && NumElts != 8 &&
3885        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3886    return false;
3887    NumLanes = 2;
3888    NumOf256BitLanes = 1;
3889  } else if (VT.is512BitVector()) {
3890    assert(VT.getScalarType().getSizeInBits() >= 32 &&
3891           "Unsupported vector type for unpckh");
3892    NumLanes = 2;
3893    NumOf256BitLanes = 2;
3894  } else {
3895    NumLanes = 1;
3896    NumOf256BitLanes = 1;
3897  }
3898
3899  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
3900  unsigned NumLaneElts = NumEltsInStride/NumLanes;
3901
3902  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
3903    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
3904      for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
3905        int BitI  = Mask[l256*NumEltsInStride+l+i];
3906        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
3907        if (!isUndefOrEqual(BitI, j+l256*NumElts))
3908          return false;
3909        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
3910          return false;
3911        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
3912          return false;
3913      }
3914    }
3915  }
3916  return true;
3917}
3918
3919/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3920/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3921static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
3922                         bool HasInt256, bool V2IsSplat = false) {
3923  assert(VT.getSizeInBits() >= 128 &&
3924         "Unsupported vector type for unpckh");
3925
3926  // AVX defines UNPCK* to operate independently on 128-bit lanes.
3927  unsigned NumLanes;
3928  unsigned NumOf256BitLanes;
3929  unsigned NumElts = VT.getVectorNumElements();
3930  if (VT.is256BitVector()) {
3931    if (NumElts != 4 && NumElts != 8 &&
3932        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3933    return false;
3934    NumLanes = 2;
3935    NumOf256BitLanes = 1;
3936  } else if (VT.is512BitVector()) {
3937    assert(VT.getScalarType().getSizeInBits() >= 32 &&
3938           "Unsupported vector type for unpckh");
3939    NumLanes = 2;
3940    NumOf256BitLanes = 2;
3941  } else {
3942    NumLanes = 1;
3943    NumOf256BitLanes = 1;
3944  }
3945
3946  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
3947  unsigned NumLaneElts = NumEltsInStride/NumLanes;
3948
3949  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
3950    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
3951      for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
3952        int BitI  = Mask[l256*NumEltsInStride+l+i];
3953        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
3954        if (!isUndefOrEqual(BitI, j+l256*NumElts))
3955          return false;
3956        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
3957          return false;
3958        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
3959          return false;
3960      }
3961    }
3962  }
3963  return true;
3964}
3965
3966/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3967/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3968/// <0, 0, 1, 1>
3969static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3970  unsigned NumElts = VT.getVectorNumElements();
3971  bool Is256BitVec = VT.is256BitVector();
3972
3973  if (VT.is512BitVector())
3974    return false;
3975  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3976         "Unsupported vector type for unpckh");
3977
3978  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
3979      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3980    return false;
3981
3982  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3983  // FIXME: Need a better way to get rid of this, there's no latency difference
3984  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3985  // the former later. We should also remove the "_undef" special mask.
3986  if (NumElts == 4 && Is256BitVec)
3987    return false;
3988
3989  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3990  // independently on 128-bit lanes.
3991  unsigned NumLanes = VT.getSizeInBits()/128;
3992  unsigned NumLaneElts = NumElts/NumLanes;
3993
3994  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
3995    for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
3996      int BitI  = Mask[l+i];
3997      int BitI1 = Mask[l+i+1];
3998
3999      if (!isUndefOrEqual(BitI, j))
4000        return false;
4001      if (!isUndefOrEqual(BitI1, j))
4002        return false;
4003    }
4004  }
4005
4006  return true;
4007}
4008
4009/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
4010/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
4011/// <2, 2, 3, 3>
4012static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4013  unsigned NumElts = VT.getVectorNumElements();
4014
4015  if (VT.is512BitVector())
4016    return false;
4017
4018  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4019         "Unsupported vector type for unpckh");
4020
4021  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
4022      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4023    return false;
4024
4025  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4026  // independently on 128-bit lanes.
4027  unsigned NumLanes = VT.getSizeInBits()/128;
4028  unsigned NumLaneElts = NumElts/NumLanes;
4029
4030  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4031    for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
4032      int BitI  = Mask[l+i];
4033      int BitI1 = Mask[l+i+1];
4034      if (!isUndefOrEqual(BitI, j))
4035        return false;
4036      if (!isUndefOrEqual(BitI1, j))
4037        return false;
4038    }
4039  }
4040  return true;
4041}
4042
4043/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
4044/// specifies a shuffle of elements that is suitable for input to MOVSS,
4045/// MOVSD, and MOVD, i.e. setting the lowest element.
4046static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
4047  if (VT.getVectorElementType().getSizeInBits() < 32)
4048    return false;
4049  if (!VT.is128BitVector())
4050    return false;
4051
4052  unsigned NumElts = VT.getVectorNumElements();
4053
4054  if (!isUndefOrEqual(Mask[0], NumElts))
4055    return false;
4056
4057  for (unsigned i = 1; i != NumElts; ++i)
4058    if (!isUndefOrEqual(Mask[i], i))
4059      return false;
4060
4061  return true;
4062}
4063
4064/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
4065/// as permutations between 128-bit chunks or halves. As an example: this
4066/// shuffle bellow:
4067///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
4068/// The first half comes from the second half of V1 and the second half from the
4069/// the second half of V2.
4070static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4071  if (!HasFp256 || !VT.is256BitVector())
4072    return false;
4073
4074  // The shuffle result is divided into half A and half B. In total the two
4075  // sources have 4 halves, namely: C, D, E, F. The final values of A and
4076  // B must come from C, D, E or F.
4077  unsigned HalfSize = VT.getVectorNumElements()/2;
4078  bool MatchA = false, MatchB = false;
4079
4080  // Check if A comes from one of C, D, E, F.
4081  for (unsigned Half = 0; Half != 4; ++Half) {
4082    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
4083      MatchA = true;
4084      break;
4085    }
4086  }
4087
4088  // Check if B comes from one of C, D, E, F.
4089  for (unsigned Half = 0; Half != 4; ++Half) {
4090    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
4091      MatchB = true;
4092      break;
4093    }
4094  }
4095
4096  return MatchA && MatchB;
4097}
4098
4099/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
4100/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
4101static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
4102  MVT VT = SVOp->getSimpleValueType(0);
4103
4104  unsigned HalfSize = VT.getVectorNumElements()/2;
4105
4106  unsigned FstHalf = 0, SndHalf = 0;
4107  for (unsigned i = 0; i < HalfSize; ++i) {
4108    if (SVOp->getMaskElt(i) > 0) {
4109      FstHalf = SVOp->getMaskElt(i)/HalfSize;
4110      break;
4111    }
4112  }
4113  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
4114    if (SVOp->getMaskElt(i) > 0) {
4115      SndHalf = SVOp->getMaskElt(i)/HalfSize;
4116      break;
4117    }
4118  }
4119
4120  return (FstHalf | (SndHalf << 4));
4121}
4122
4123// Symetric in-lane mask. Each lane has 4 elements (for imm8)
4124static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) {
4125  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4126  if (EltSize < 32)
4127    return false;
4128
4129  unsigned NumElts = VT.getVectorNumElements();
4130  Imm8 = 0;
4131  if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) {
4132    for (unsigned i = 0; i != NumElts; ++i) {
4133      if (Mask[i] < 0)
4134        continue;
4135      Imm8 |= Mask[i] << (i*2);
4136    }
4137    return true;
4138  }
4139
4140  unsigned LaneSize = 4;
4141  SmallVector<int, 4> MaskVal(LaneSize, -1);
4142
4143  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4144    for (unsigned i = 0; i != LaneSize; ++i) {
4145      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4146        return false;
4147      if (Mask[i+l] < 0)
4148        continue;
4149      if (MaskVal[i] < 0) {
4150        MaskVal[i] = Mask[i+l] - l;
4151        Imm8 |= MaskVal[i] << (i*2);
4152        continue;
4153      }
4154      if (Mask[i+l] != (signed)(MaskVal[i]+l))
4155        return false;
4156    }
4157  }
4158  return true;
4159}
4160
4161/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
4162/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
4163/// Note that VPERMIL mask matching is different depending whether theunderlying
4164/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
4165/// to the same elements of the low, but to the higher half of the source.
4166/// In VPERMILPD the two lanes could be shuffled independently of each other
4167/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
4168static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) {
4169  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4170  if (VT.getSizeInBits() < 256 || EltSize < 32)
4171    return false;
4172  bool symetricMaskRequired = (EltSize == 32);
4173  unsigned NumElts = VT.getVectorNumElements();
4174
4175  unsigned NumLanes = VT.getSizeInBits()/128;
4176  unsigned LaneSize = NumElts/NumLanes;
4177  // 2 or 4 elements in one lane
4178
4179  SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1);
4180  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4181    for (unsigned i = 0; i != LaneSize; ++i) {
4182      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4183        return false;
4184      if (symetricMaskRequired) {
4185        if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) {
4186          ExpectedMaskVal[i] = Mask[i+l] - l;
4187          continue;
4188        }
4189        if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l))
4190          return false;
4191      }
4192    }
4193  }
4194  return true;
4195}
4196
4197/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
4198/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
4199/// element of vector 2 and the other elements to come from vector 1 in order.
4200static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT,
4201                               bool V2IsSplat = false, bool V2IsUndef = false) {
4202  if (!VT.is128BitVector())
4203    return false;
4204
4205  unsigned NumOps = VT.getVectorNumElements();
4206  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
4207    return false;
4208
4209  if (!isUndefOrEqual(Mask[0], 0))
4210    return false;
4211
4212  for (unsigned i = 1; i != NumOps; ++i)
4213    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
4214          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
4215          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
4216      return false;
4217
4218  return true;
4219}
4220
4221/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4222/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
4223/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
4224static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT,
4225                           const X86Subtarget *Subtarget) {
4226  if (!Subtarget->hasSSE3())
4227    return false;
4228
4229  unsigned NumElems = VT.getVectorNumElements();
4230
4231  if ((VT.is128BitVector() && NumElems != 4) ||
4232      (VT.is256BitVector() && NumElems != 8) ||
4233      (VT.is512BitVector() && NumElems != 16))
4234    return false;
4235
4236  // "i+1" is the value the indexed mask element must have
4237  for (unsigned i = 0; i != NumElems; i += 2)
4238    if (!isUndefOrEqual(Mask[i], i+1) ||
4239        !isUndefOrEqual(Mask[i+1], i+1))
4240      return false;
4241
4242  return true;
4243}
4244
4245/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4246/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
4247/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
4248static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT,
4249                           const X86Subtarget *Subtarget) {
4250  if (!Subtarget->hasSSE3())
4251    return false;
4252
4253  unsigned NumElems = VT.getVectorNumElements();
4254
4255  if ((VT.is128BitVector() && NumElems != 4) ||
4256      (VT.is256BitVector() && NumElems != 8) ||
4257      (VT.is512BitVector() && NumElems != 16))
4258    return false;
4259
4260  // "i" is the value the indexed mask element must have
4261  for (unsigned i = 0; i != NumElems; i += 2)
4262    if (!isUndefOrEqual(Mask[i], i) ||
4263        !isUndefOrEqual(Mask[i+1], i))
4264      return false;
4265
4266  return true;
4267}
4268
4269/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4270/// specifies a shuffle of elements that is suitable for input to 256-bit
4271/// version of MOVDDUP.
4272static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4273  if (!HasFp256 || !VT.is256BitVector())
4274    return false;
4275
4276  unsigned NumElts = VT.getVectorNumElements();
4277  if (NumElts != 4)
4278    return false;
4279
4280  for (unsigned i = 0; i != NumElts/2; ++i)
4281    if (!isUndefOrEqual(Mask[i], 0))
4282      return false;
4283  for (unsigned i = NumElts/2; i != NumElts; ++i)
4284    if (!isUndefOrEqual(Mask[i], NumElts/2))
4285      return false;
4286  return true;
4287}
4288
4289/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4290/// specifies a shuffle of elements that is suitable for input to 128-bit
4291/// version of MOVDDUP.
4292static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) {
4293  if (!VT.is128BitVector())
4294    return false;
4295
4296  unsigned e = VT.getVectorNumElements() / 2;
4297  for (unsigned i = 0; i != e; ++i)
4298    if (!isUndefOrEqual(Mask[i], i))
4299      return false;
4300  for (unsigned i = 0; i != e; ++i)
4301    if (!isUndefOrEqual(Mask[e+i], i))
4302      return false;
4303  return true;
4304}
4305
4306/// isVEXTRACTIndex - Return true if the specified
4307/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4308/// suitable for instruction that extract 128 or 256 bit vectors
4309static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
4310  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4311  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4312    return false;
4313
4314  // The index should be aligned on a vecWidth-bit boundary.
4315  uint64_t Index =
4316    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4317
4318  MVT VT = N->getSimpleValueType(0);
4319  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4320  bool Result = (Index * ElSize) % vecWidth == 0;
4321
4322  return Result;
4323}
4324
4325/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
4326/// operand specifies a subvector insert that is suitable for input to
4327/// insertion of 128 or 256-bit subvectors
4328static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
4329  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4330  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4331    return false;
4332  // The index should be aligned on a vecWidth-bit boundary.
4333  uint64_t Index =
4334    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4335
4336  MVT VT = N->getSimpleValueType(0);
4337  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4338  bool Result = (Index * ElSize) % vecWidth == 0;
4339
4340  return Result;
4341}
4342
4343bool X86::isVINSERT128Index(SDNode *N) {
4344  return isVINSERTIndex(N, 128);
4345}
4346
4347bool X86::isVINSERT256Index(SDNode *N) {
4348  return isVINSERTIndex(N, 256);
4349}
4350
4351bool X86::isVEXTRACT128Index(SDNode *N) {
4352  return isVEXTRACTIndex(N, 128);
4353}
4354
4355bool X86::isVEXTRACT256Index(SDNode *N) {
4356  return isVEXTRACTIndex(N, 256);
4357}
4358
4359/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4360/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4361/// Handles 128-bit and 256-bit.
4362static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4363  MVT VT = N->getSimpleValueType(0);
4364
4365  assert((VT.getSizeInBits() >= 128) &&
4366         "Unsupported vector type for PSHUF/SHUFP");
4367
4368  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4369  // independently on 128-bit lanes.
4370  unsigned NumElts = VT.getVectorNumElements();
4371  unsigned NumLanes = VT.getSizeInBits()/128;
4372  unsigned NumLaneElts = NumElts/NumLanes;
4373
4374  assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) &&
4375         "Only supports 2, 4 or 8 elements per lane");
4376
4377  unsigned Shift = (NumLaneElts >= 4) ? 1 : 0;
4378  unsigned Mask = 0;
4379  for (unsigned i = 0; i != NumElts; ++i) {
4380    int Elt = N->getMaskElt(i);
4381    if (Elt < 0) continue;
4382    Elt &= NumLaneElts - 1;
4383    unsigned ShAmt = (i << Shift) % 8;
4384    Mask |= Elt << ShAmt;
4385  }
4386
4387  return Mask;
4388}
4389
4390/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4391/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4392static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4393  MVT VT = N->getSimpleValueType(0);
4394
4395  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4396         "Unsupported vector type for PSHUFHW");
4397
4398  unsigned NumElts = VT.getVectorNumElements();
4399
4400  unsigned Mask = 0;
4401  for (unsigned l = 0; l != NumElts; l += 8) {
4402    // 8 nodes per lane, but we only care about the last 4.
4403    for (unsigned i = 0; i < 4; ++i) {
4404      int Elt = N->getMaskElt(l+i+4);
4405      if (Elt < 0) continue;
4406      Elt &= 0x3; // only 2-bits.
4407      Mask |= Elt << (i * 2);
4408    }
4409  }
4410
4411  return Mask;
4412}
4413
4414/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4415/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4416static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4417  MVT VT = N->getSimpleValueType(0);
4418
4419  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4420         "Unsupported vector type for PSHUFHW");
4421
4422  unsigned NumElts = VT.getVectorNumElements();
4423
4424  unsigned Mask = 0;
4425  for (unsigned l = 0; l != NumElts; l += 8) {
4426    // 8 nodes per lane, but we only care about the first 4.
4427    for (unsigned i = 0; i < 4; ++i) {
4428      int Elt = N->getMaskElt(l+i);
4429      if (Elt < 0) continue;
4430      Elt &= 0x3; // only 2-bits
4431      Mask |= Elt << (i * 2);
4432    }
4433  }
4434
4435  return Mask;
4436}
4437
4438/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4439/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4440static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4441  MVT VT = SVOp->getSimpleValueType(0);
4442  unsigned EltSize = VT.is512BitVector() ? 1 :
4443    VT.getVectorElementType().getSizeInBits() >> 3;
4444
4445  unsigned NumElts = VT.getVectorNumElements();
4446  unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128;
4447  unsigned NumLaneElts = NumElts/NumLanes;
4448
4449  int Val = 0;
4450  unsigned i;
4451  for (i = 0; i != NumElts; ++i) {
4452    Val = SVOp->getMaskElt(i);
4453    if (Val >= 0)
4454      break;
4455  }
4456  if (Val >= (int)NumElts)
4457    Val -= NumElts - NumLaneElts;
4458
4459  assert(Val - i > 0 && "PALIGNR imm should be positive");
4460  return (Val - i) * EltSize;
4461}
4462
4463static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
4464  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4465  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4466    llvm_unreachable("Illegal extract subvector for VEXTRACT");
4467
4468  uint64_t Index =
4469    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4470
4471  MVT VecVT = N->getOperand(0).getSimpleValueType();
4472  MVT ElVT = VecVT.getVectorElementType();
4473
4474  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4475  return Index / NumElemsPerChunk;
4476}
4477
4478static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
4479  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4480  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4481    llvm_unreachable("Illegal insert subvector for VINSERT");
4482
4483  uint64_t Index =
4484    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4485
4486  MVT VecVT = N->getSimpleValueType(0);
4487  MVT ElVT = VecVT.getVectorElementType();
4488
4489  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4490  return Index / NumElemsPerChunk;
4491}
4492
4493/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
4494/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4495/// and VINSERTI128 instructions.
4496unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
4497  return getExtractVEXTRACTImmediate(N, 128);
4498}
4499
4500/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
4501/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
4502/// and VINSERTI64x4 instructions.
4503unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
4504  return getExtractVEXTRACTImmediate(N, 256);
4505}
4506
4507/// getInsertVINSERT128Immediate - Return the appropriate immediate
4508/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4509/// and VINSERTI128 instructions.
4510unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
4511  return getInsertVINSERTImmediate(N, 128);
4512}
4513
4514/// getInsertVINSERT256Immediate - Return the appropriate immediate
4515/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
4516/// and VINSERTI64x4 instructions.
4517unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
4518  return getInsertVINSERTImmediate(N, 256);
4519}
4520
4521/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4522/// constant +0.0.
4523bool X86::isZeroNode(SDValue Elt) {
4524  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
4525    return CN->isNullValue();
4526  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4527    return CFP->getValueAPF().isPosZero();
4528  return false;
4529}
4530
4531/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4532/// their permute mask.
4533static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4534                                    SelectionDAG &DAG) {
4535  MVT VT = SVOp->getSimpleValueType(0);
4536  unsigned NumElems = VT.getVectorNumElements();
4537  SmallVector<int, 8> MaskVec;
4538
4539  for (unsigned i = 0; i != NumElems; ++i) {
4540    int Idx = SVOp->getMaskElt(i);
4541    if (Idx >= 0) {
4542      if (Idx < (int)NumElems)
4543        Idx += NumElems;
4544      else
4545        Idx -= NumElems;
4546    }
4547    MaskVec.push_back(Idx);
4548  }
4549  return DAG.getVectorShuffle(VT, SDLoc(SVOp), SVOp->getOperand(1),
4550                              SVOp->getOperand(0), &MaskVec[0]);
4551}
4552
4553/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4554/// match movhlps. The lower half elements should come from upper half of
4555/// V1 (and in order), and the upper half elements should come from the upper
4556/// half of V2 (and in order).
4557static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) {
4558  if (!VT.is128BitVector())
4559    return false;
4560  if (VT.getVectorNumElements() != 4)
4561    return false;
4562  for (unsigned i = 0, e = 2; i != e; ++i)
4563    if (!isUndefOrEqual(Mask[i], i+2))
4564      return false;
4565  for (unsigned i = 2; i != 4; ++i)
4566    if (!isUndefOrEqual(Mask[i], i+4))
4567      return false;
4568  return true;
4569}
4570
4571/// isScalarLoadToVector - Returns true if the node is a scalar load that
4572/// is promoted to a vector. It also returns the LoadSDNode by reference if
4573/// required.
4574static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4575  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4576    return false;
4577  N = N->getOperand(0).getNode();
4578  if (!ISD::isNON_EXTLoad(N))
4579    return false;
4580  if (LD)
4581    *LD = cast<LoadSDNode>(N);
4582  return true;
4583}
4584
4585// Test whether the given value is a vector value which will be legalized
4586// into a load.
4587static bool WillBeConstantPoolLoad(SDNode *N) {
4588  if (N->getOpcode() != ISD::BUILD_VECTOR)
4589    return false;
4590
4591  // Check for any non-constant elements.
4592  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4593    switch (N->getOperand(i).getNode()->getOpcode()) {
4594    case ISD::UNDEF:
4595    case ISD::ConstantFP:
4596    case ISD::Constant:
4597      break;
4598    default:
4599      return false;
4600    }
4601
4602  // Vectors of all-zeros and all-ones are materialized with special
4603  // instructions rather than being loaded.
4604  return !ISD::isBuildVectorAllZeros(N) &&
4605         !ISD::isBuildVectorAllOnes(N);
4606}
4607
4608/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4609/// match movlp{s|d}. The lower half elements should come from lower half of
4610/// V1 (and in order), and the upper half elements should come from the upper
4611/// half of V2 (and in order). And since V1 will become the source of the
4612/// MOVLP, it must be either a vector load or a scalar load to vector.
4613static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4614                               ArrayRef<int> Mask, MVT VT) {
4615  if (!VT.is128BitVector())
4616    return false;
4617
4618  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4619    return false;
4620  // Is V2 is a vector load, don't do this transformation. We will try to use
4621  // load folding shufps op.
4622  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4623    return false;
4624
4625  unsigned NumElems = VT.getVectorNumElements();
4626
4627  if (NumElems != 2 && NumElems != 4)
4628    return false;
4629  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4630    if (!isUndefOrEqual(Mask[i], i))
4631      return false;
4632  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4633    if (!isUndefOrEqual(Mask[i], i+NumElems))
4634      return false;
4635  return true;
4636}
4637
4638/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4639/// all the same.
4640static bool isSplatVector(SDNode *N) {
4641  if (N->getOpcode() != ISD::BUILD_VECTOR)
4642    return false;
4643
4644  SDValue SplatValue = N->getOperand(0);
4645  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4646    if (N->getOperand(i) != SplatValue)
4647      return false;
4648  return true;
4649}
4650
4651/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4652/// to an zero vector.
4653/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4654static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4655  SDValue V1 = N->getOperand(0);
4656  SDValue V2 = N->getOperand(1);
4657  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4658  for (unsigned i = 0; i != NumElems; ++i) {
4659    int Idx = N->getMaskElt(i);
4660    if (Idx >= (int)NumElems) {
4661      unsigned Opc = V2.getOpcode();
4662      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4663        continue;
4664      if (Opc != ISD::BUILD_VECTOR ||
4665          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4666        return false;
4667    } else if (Idx >= 0) {
4668      unsigned Opc = V1.getOpcode();
4669      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4670        continue;
4671      if (Opc != ISD::BUILD_VECTOR ||
4672          !X86::isZeroNode(V1.getOperand(Idx)))
4673        return false;
4674    }
4675  }
4676  return true;
4677}
4678
4679/// getZeroVector - Returns a vector of specified type with all zero elements.
4680///
4681static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4682                             SelectionDAG &DAG, SDLoc dl) {
4683  assert(VT.isVector() && "Expected a vector type");
4684
4685  // Always build SSE zero vectors as <4 x i32> bitcasted
4686  // to their dest type. This ensures they get CSE'd.
4687  SDValue Vec;
4688  if (VT.is128BitVector()) {  // SSE
4689    if (Subtarget->hasSSE2()) {  // SSE2
4690      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4691      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4692    } else { // SSE1
4693      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4694      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4695    }
4696  } else if (VT.is256BitVector()) { // AVX
4697    if (Subtarget->hasInt256()) { // AVX2
4698      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4699      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4700      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4701                        array_lengthof(Ops));
4702    } else {
4703      // 256-bit logic and arithmetic instructions in AVX are all
4704      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4705      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4706      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4707      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops,
4708                        array_lengthof(Ops));
4709    }
4710  } else if (VT.is512BitVector()) { // AVX-512
4711      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4712      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
4713                        Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4714      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops, 16);
4715  } else
4716    llvm_unreachable("Unexpected vector type");
4717
4718  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4719}
4720
4721/// getOnesVector - Returns a vector of specified type with all bits set.
4722/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4723/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4724/// Then bitcast to their original type, ensuring they get CSE'd.
4725static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4726                             SDLoc dl) {
4727  assert(VT.isVector() && "Expected a vector type");
4728
4729  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4730  SDValue Vec;
4731  if (VT.is256BitVector()) {
4732    if (HasInt256) { // AVX2
4733      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4734      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4735                        array_lengthof(Ops));
4736    } else { // AVX
4737      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4738      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4739    }
4740  } else if (VT.is128BitVector()) {
4741    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4742  } else
4743    llvm_unreachable("Unexpected vector type");
4744
4745  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4746}
4747
4748/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4749/// that point to V2 points to its first element.
4750static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4751  for (unsigned i = 0; i != NumElems; ++i) {
4752    if (Mask[i] > (int)NumElems) {
4753      Mask[i] = NumElems;
4754    }
4755  }
4756}
4757
4758/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4759/// operation of specified width.
4760static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4761                       SDValue V2) {
4762  unsigned NumElems = VT.getVectorNumElements();
4763  SmallVector<int, 8> Mask;
4764  Mask.push_back(NumElems);
4765  for (unsigned i = 1; i != NumElems; ++i)
4766    Mask.push_back(i);
4767  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4768}
4769
4770/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4771static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4772                          SDValue V2) {
4773  unsigned NumElems = VT.getVectorNumElements();
4774  SmallVector<int, 8> Mask;
4775  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4776    Mask.push_back(i);
4777    Mask.push_back(i + NumElems);
4778  }
4779  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4780}
4781
4782/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4783static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4784                          SDValue V2) {
4785  unsigned NumElems = VT.getVectorNumElements();
4786  SmallVector<int, 8> Mask;
4787  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4788    Mask.push_back(i + Half);
4789    Mask.push_back(i + NumElems + Half);
4790  }
4791  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4792}
4793
4794// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4795// a generic shuffle instruction because the target has no such instructions.
4796// Generate shuffles which repeat i16 and i8 several times until they can be
4797// represented by v4f32 and then be manipulated by target suported shuffles.
4798static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4799  MVT VT = V.getSimpleValueType();
4800  int NumElems = VT.getVectorNumElements();
4801  SDLoc dl(V);
4802
4803  while (NumElems > 4) {
4804    if (EltNo < NumElems/2) {
4805      V = getUnpackl(DAG, dl, VT, V, V);
4806    } else {
4807      V = getUnpackh(DAG, dl, VT, V, V);
4808      EltNo -= NumElems/2;
4809    }
4810    NumElems >>= 1;
4811  }
4812  return V;
4813}
4814
4815/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4816static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4817  MVT VT = V.getSimpleValueType();
4818  SDLoc dl(V);
4819
4820  if (VT.is128BitVector()) {
4821    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4822    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4823    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4824                             &SplatMask[0]);
4825  } else if (VT.is256BitVector()) {
4826    // To use VPERMILPS to splat scalars, the second half of indicies must
4827    // refer to the higher part, which is a duplication of the lower one,
4828    // because VPERMILPS can only handle in-lane permutations.
4829    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4830                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4831
4832    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4833    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4834                             &SplatMask[0]);
4835  } else
4836    llvm_unreachable("Vector size not supported");
4837
4838  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4839}
4840
4841/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4842static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4843  MVT SrcVT = SV->getSimpleValueType(0);
4844  SDValue V1 = SV->getOperand(0);
4845  SDLoc dl(SV);
4846
4847  int EltNo = SV->getSplatIndex();
4848  int NumElems = SrcVT.getVectorNumElements();
4849  bool Is256BitVec = SrcVT.is256BitVector();
4850
4851  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4852         "Unknown how to promote splat for type");
4853
4854  // Extract the 128-bit part containing the splat element and update
4855  // the splat element index when it refers to the higher register.
4856  if (Is256BitVec) {
4857    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4858    if (EltNo >= NumElems/2)
4859      EltNo -= NumElems/2;
4860  }
4861
4862  // All i16 and i8 vector types can't be used directly by a generic shuffle
4863  // instruction because the target has no such instruction. Generate shuffles
4864  // which repeat i16 and i8 several times until they fit in i32, and then can
4865  // be manipulated by target suported shuffles.
4866  MVT EltVT = SrcVT.getVectorElementType();
4867  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4868    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4869
4870  // Recreate the 256-bit vector and place the same 128-bit vector
4871  // into the low and high part. This is necessary because we want
4872  // to use VPERM* to shuffle the vectors
4873  if (Is256BitVec) {
4874    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4875  }
4876
4877  return getLegalSplat(DAG, V1, EltNo);
4878}
4879
4880/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4881/// vector of zero or undef vector.  This produces a shuffle where the low
4882/// element of V2 is swizzled into the zero/undef vector, landing at element
4883/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4884static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4885                                           bool IsZero,
4886                                           const X86Subtarget *Subtarget,
4887                                           SelectionDAG &DAG) {
4888  MVT VT = V2.getSimpleValueType();
4889  SDValue V1 = IsZero
4890    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
4891  unsigned NumElems = VT.getVectorNumElements();
4892  SmallVector<int, 16> MaskVec;
4893  for (unsigned i = 0; i != NumElems; ++i)
4894    // If this is the insertion idx, put the low elt of V2 here.
4895    MaskVec.push_back(i == Idx ? NumElems : i);
4896  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
4897}
4898
4899/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4900/// target specific opcode. Returns true if the Mask could be calculated.
4901/// Sets IsUnary to true if only uses one source.
4902static bool getTargetShuffleMask(SDNode *N, MVT VT,
4903                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4904  unsigned NumElems = VT.getVectorNumElements();
4905  SDValue ImmN;
4906
4907  IsUnary = false;
4908  switch(N->getOpcode()) {
4909  case X86ISD::SHUFP:
4910    ImmN = N->getOperand(N->getNumOperands()-1);
4911    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4912    break;
4913  case X86ISD::UNPCKH:
4914    DecodeUNPCKHMask(VT, Mask);
4915    break;
4916  case X86ISD::UNPCKL:
4917    DecodeUNPCKLMask(VT, Mask);
4918    break;
4919  case X86ISD::MOVHLPS:
4920    DecodeMOVHLPSMask(NumElems, Mask);
4921    break;
4922  case X86ISD::MOVLHPS:
4923    DecodeMOVLHPSMask(NumElems, Mask);
4924    break;
4925  case X86ISD::PALIGNR:
4926    ImmN = N->getOperand(N->getNumOperands()-1);
4927    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4928    break;
4929  case X86ISD::PSHUFD:
4930  case X86ISD::VPERMILP:
4931    ImmN = N->getOperand(N->getNumOperands()-1);
4932    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4933    IsUnary = true;
4934    break;
4935  case X86ISD::PSHUFHW:
4936    ImmN = N->getOperand(N->getNumOperands()-1);
4937    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4938    IsUnary = true;
4939    break;
4940  case X86ISD::PSHUFLW:
4941    ImmN = N->getOperand(N->getNumOperands()-1);
4942    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4943    IsUnary = true;
4944    break;
4945  case X86ISD::VPERMI:
4946    ImmN = N->getOperand(N->getNumOperands()-1);
4947    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4948    IsUnary = true;
4949    break;
4950  case X86ISD::MOVSS:
4951  case X86ISD::MOVSD: {
4952    // The index 0 always comes from the first element of the second source,
4953    // this is why MOVSS and MOVSD are used in the first place. The other
4954    // elements come from the other positions of the first source vector
4955    Mask.push_back(NumElems);
4956    for (unsigned i = 1; i != NumElems; ++i) {
4957      Mask.push_back(i);
4958    }
4959    break;
4960  }
4961  case X86ISD::VPERM2X128:
4962    ImmN = N->getOperand(N->getNumOperands()-1);
4963    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4964    if (Mask.empty()) return false;
4965    break;
4966  case X86ISD::MOVDDUP:
4967  case X86ISD::MOVLHPD:
4968  case X86ISD::MOVLPD:
4969  case X86ISD::MOVLPS:
4970  case X86ISD::MOVSHDUP:
4971  case X86ISD::MOVSLDUP:
4972    // Not yet implemented
4973    return false;
4974  default: llvm_unreachable("unknown target shuffle node");
4975  }
4976
4977  return true;
4978}
4979
4980/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4981/// element of the result of the vector shuffle.
4982static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4983                                   unsigned Depth) {
4984  if (Depth == 6)
4985    return SDValue();  // Limit search depth.
4986
4987  SDValue V = SDValue(N, 0);
4988  EVT VT = V.getValueType();
4989  unsigned Opcode = V.getOpcode();
4990
4991  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4992  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4993    int Elt = SV->getMaskElt(Index);
4994
4995    if (Elt < 0)
4996      return DAG.getUNDEF(VT.getVectorElementType());
4997
4998    unsigned NumElems = VT.getVectorNumElements();
4999    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
5000                                         : SV->getOperand(1);
5001    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
5002  }
5003
5004  // Recurse into target specific vector shuffles to find scalars.
5005  if (isTargetShuffle(Opcode)) {
5006    MVT ShufVT = V.getSimpleValueType();
5007    unsigned NumElems = ShufVT.getVectorNumElements();
5008    SmallVector<int, 16> ShuffleMask;
5009    bool IsUnary;
5010
5011    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
5012      return SDValue();
5013
5014    int Elt = ShuffleMask[Index];
5015    if (Elt < 0)
5016      return DAG.getUNDEF(ShufVT.getVectorElementType());
5017
5018    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
5019                                         : N->getOperand(1);
5020    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
5021                               Depth+1);
5022  }
5023
5024  // Actual nodes that may contain scalar elements
5025  if (Opcode == ISD::BITCAST) {
5026    V = V.getOperand(0);
5027    EVT SrcVT = V.getValueType();
5028    unsigned NumElems = VT.getVectorNumElements();
5029
5030    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
5031      return SDValue();
5032  }
5033
5034  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5035    return (Index == 0) ? V.getOperand(0)
5036                        : DAG.getUNDEF(VT.getVectorElementType());
5037
5038  if (V.getOpcode() == ISD::BUILD_VECTOR)
5039    return V.getOperand(Index);
5040
5041  return SDValue();
5042}
5043
5044/// getNumOfConsecutiveZeros - Return the number of elements of a vector
5045/// shuffle operation which come from a consecutively from a zero. The
5046/// search can start in two different directions, from left or right.
5047/// We count undefs as zeros until PreferredNum is reached.
5048static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
5049                                         unsigned NumElems, bool ZerosFromLeft,
5050                                         SelectionDAG &DAG,
5051                                         unsigned PreferredNum = -1U) {
5052  unsigned NumZeros = 0;
5053  for (unsigned i = 0; i != NumElems; ++i) {
5054    unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
5055    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
5056    if (!Elt.getNode())
5057      break;
5058
5059    if (X86::isZeroNode(Elt))
5060      ++NumZeros;
5061    else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
5062      NumZeros = std::min(NumZeros + 1, PreferredNum);
5063    else
5064      break;
5065  }
5066
5067  return NumZeros;
5068}
5069
5070/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
5071/// correspond consecutively to elements from one of the vector operands,
5072/// starting from its index OpIdx. Also tell OpNum which source vector operand.
5073static
5074bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
5075                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
5076                              unsigned NumElems, unsigned &OpNum) {
5077  bool SeenV1 = false;
5078  bool SeenV2 = false;
5079
5080  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
5081    int Idx = SVOp->getMaskElt(i);
5082    // Ignore undef indicies
5083    if (Idx < 0)
5084      continue;
5085
5086    if (Idx < (int)NumElems)
5087      SeenV1 = true;
5088    else
5089      SeenV2 = true;
5090
5091    // Only accept consecutive elements from the same vector
5092    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
5093      return false;
5094  }
5095
5096  OpNum = SeenV1 ? 0 : 1;
5097  return true;
5098}
5099
5100/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
5101/// logical left shift of a vector.
5102static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5103                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5104  unsigned NumElems =
5105    SVOp->getSimpleValueType(0).getVectorNumElements();
5106  unsigned NumZeros = getNumOfConsecutiveZeros(
5107      SVOp, NumElems, false /* check zeros from right */, DAG,
5108      SVOp->getMaskElt(0));
5109  unsigned OpSrc;
5110
5111  if (!NumZeros)
5112    return false;
5113
5114  // Considering the elements in the mask that are not consecutive zeros,
5115  // check if they consecutively come from only one of the source vectors.
5116  //
5117  //               V1 = {X, A, B, C}     0
5118  //                         \  \  \    /
5119  //   vector_shuffle V1, V2 <1, 2, 3, X>
5120  //
5121  if (!isShuffleMaskConsecutive(SVOp,
5122            0,                   // Mask Start Index
5123            NumElems-NumZeros,   // Mask End Index(exclusive)
5124            NumZeros,            // Where to start looking in the src vector
5125            NumElems,            // Number of elements in vector
5126            OpSrc))              // Which source operand ?
5127    return false;
5128
5129  isLeft = false;
5130  ShAmt = NumZeros;
5131  ShVal = SVOp->getOperand(OpSrc);
5132  return true;
5133}
5134
5135/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
5136/// logical left shift of a vector.
5137static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5138                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5139  unsigned NumElems =
5140    SVOp->getSimpleValueType(0).getVectorNumElements();
5141  unsigned NumZeros = getNumOfConsecutiveZeros(
5142      SVOp, NumElems, true /* check zeros from left */, DAG,
5143      NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
5144  unsigned OpSrc;
5145
5146  if (!NumZeros)
5147    return false;
5148
5149  // Considering the elements in the mask that are not consecutive zeros,
5150  // check if they consecutively come from only one of the source vectors.
5151  //
5152  //                           0    { A, B, X, X } = V2
5153  //                          / \    /  /
5154  //   vector_shuffle V1, V2 <X, X, 4, 5>
5155  //
5156  if (!isShuffleMaskConsecutive(SVOp,
5157            NumZeros,     // Mask Start Index
5158            NumElems,     // Mask End Index(exclusive)
5159            0,            // Where to start looking in the src vector
5160            NumElems,     // Number of elements in vector
5161            OpSrc))       // Which source operand ?
5162    return false;
5163
5164  isLeft = true;
5165  ShAmt = NumZeros;
5166  ShVal = SVOp->getOperand(OpSrc);
5167  return true;
5168}
5169
5170/// isVectorShift - Returns true if the shuffle can be implemented as a
5171/// logical left or right shift of a vector.
5172static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5173                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5174  // Although the logic below support any bitwidth size, there are no
5175  // shift instructions which handle more than 128-bit vectors.
5176  if (!SVOp->getSimpleValueType(0).is128BitVector())
5177    return false;
5178
5179  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
5180      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
5181    return true;
5182
5183  return false;
5184}
5185
5186/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
5187///
5188static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
5189                                       unsigned NumNonZero, unsigned NumZero,
5190                                       SelectionDAG &DAG,
5191                                       const X86Subtarget* Subtarget,
5192                                       const TargetLowering &TLI) {
5193  if (NumNonZero > 8)
5194    return SDValue();
5195
5196  SDLoc dl(Op);
5197  SDValue V(0, 0);
5198  bool First = true;
5199  for (unsigned i = 0; i < 16; ++i) {
5200    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
5201    if (ThisIsNonZero && First) {
5202      if (NumZero)
5203        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5204      else
5205        V = DAG.getUNDEF(MVT::v8i16);
5206      First = false;
5207    }
5208
5209    if ((i & 1) != 0) {
5210      SDValue ThisElt(0, 0), LastElt(0, 0);
5211      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
5212      if (LastIsNonZero) {
5213        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
5214                              MVT::i16, Op.getOperand(i-1));
5215      }
5216      if (ThisIsNonZero) {
5217        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
5218        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
5219                              ThisElt, DAG.getConstant(8, MVT::i8));
5220        if (LastIsNonZero)
5221          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
5222      } else
5223        ThisElt = LastElt;
5224
5225      if (ThisElt.getNode())
5226        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
5227                        DAG.getIntPtrConstant(i/2));
5228    }
5229  }
5230
5231  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
5232}
5233
5234/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
5235///
5236static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
5237                                     unsigned NumNonZero, unsigned NumZero,
5238                                     SelectionDAG &DAG,
5239                                     const X86Subtarget* Subtarget,
5240                                     const TargetLowering &TLI) {
5241  if (NumNonZero > 4)
5242    return SDValue();
5243
5244  SDLoc dl(Op);
5245  SDValue V(0, 0);
5246  bool First = true;
5247  for (unsigned i = 0; i < 8; ++i) {
5248    bool isNonZero = (NonZeros & (1 << i)) != 0;
5249    if (isNonZero) {
5250      if (First) {
5251        if (NumZero)
5252          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5253        else
5254          V = DAG.getUNDEF(MVT::v8i16);
5255        First = false;
5256      }
5257      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
5258                      MVT::v8i16, V, Op.getOperand(i),
5259                      DAG.getIntPtrConstant(i));
5260    }
5261  }
5262
5263  return V;
5264}
5265
5266/// getVShift - Return a vector logical shift node.
5267///
5268static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
5269                         unsigned NumBits, SelectionDAG &DAG,
5270                         const TargetLowering &TLI, SDLoc dl) {
5271  assert(VT.is128BitVector() && "Unknown type for VShift");
5272  EVT ShVT = MVT::v2i64;
5273  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
5274  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
5275  return DAG.getNode(ISD::BITCAST, dl, VT,
5276                     DAG.getNode(Opc, dl, ShVT, SrcOp,
5277                             DAG.getConstant(NumBits,
5278                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
5279}
5280
5281static SDValue
5282LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
5283
5284  // Check if the scalar load can be widened into a vector load. And if
5285  // the address is "base + cst" see if the cst can be "absorbed" into
5286  // the shuffle mask.
5287  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
5288    SDValue Ptr = LD->getBasePtr();
5289    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5290      return SDValue();
5291    EVT PVT = LD->getValueType(0);
5292    if (PVT != MVT::i32 && PVT != MVT::f32)
5293      return SDValue();
5294
5295    int FI = -1;
5296    int64_t Offset = 0;
5297    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5298      FI = FINode->getIndex();
5299      Offset = 0;
5300    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5301               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5302      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5303      Offset = Ptr.getConstantOperandVal(1);
5304      Ptr = Ptr.getOperand(0);
5305    } else {
5306      return SDValue();
5307    }
5308
5309    // FIXME: 256-bit vector instructions don't require a strict alignment,
5310    // improve this code to support it better.
5311    unsigned RequiredAlign = VT.getSizeInBits()/8;
5312    SDValue Chain = LD->getChain();
5313    // Make sure the stack object alignment is at least 16 or 32.
5314    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5315    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5316      if (MFI->isFixedObjectIndex(FI)) {
5317        // Can't change the alignment. FIXME: It's possible to compute
5318        // the exact stack offset and reference FI + adjust offset instead.
5319        // If someone *really* cares about this. That's the way to implement it.
5320        return SDValue();
5321      } else {
5322        MFI->setObjectAlignment(FI, RequiredAlign);
5323      }
5324    }
5325
5326    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5327    // Ptr + (Offset & ~15).
5328    if (Offset < 0)
5329      return SDValue();
5330    if ((Offset % RequiredAlign) & 3)
5331      return SDValue();
5332    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5333    if (StartOffset)
5334      Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
5335                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5336
5337    int EltNo = (Offset - StartOffset) >> 2;
5338    unsigned NumElems = VT.getVectorNumElements();
5339
5340    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5341    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5342                             LD->getPointerInfo().getWithOffset(StartOffset),
5343                             false, false, false, 0);
5344
5345    SmallVector<int, 8> Mask;
5346    for (unsigned i = 0; i != NumElems; ++i)
5347      Mask.push_back(EltNo);
5348
5349    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5350  }
5351
5352  return SDValue();
5353}
5354
5355/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5356/// vector of type 'VT', see if the elements can be replaced by a single large
5357/// load which has the same value as a build_vector whose operands are 'elts'.
5358///
5359/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5360///
5361/// FIXME: we'd also like to handle the case where the last elements are zero
5362/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5363/// There's even a handy isZeroNode for that purpose.
5364static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5365                                        SDLoc &DL, SelectionDAG &DAG) {
5366  EVT EltVT = VT.getVectorElementType();
5367  unsigned NumElems = Elts.size();
5368
5369  LoadSDNode *LDBase = NULL;
5370  unsigned LastLoadedElt = -1U;
5371
5372  // For each element in the initializer, see if we've found a load or an undef.
5373  // If we don't find an initial load element, or later load elements are
5374  // non-consecutive, bail out.
5375  for (unsigned i = 0; i < NumElems; ++i) {
5376    SDValue Elt = Elts[i];
5377
5378    if (!Elt.getNode() ||
5379        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5380      return SDValue();
5381    if (!LDBase) {
5382      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5383        return SDValue();
5384      LDBase = cast<LoadSDNode>(Elt.getNode());
5385      LastLoadedElt = i;
5386      continue;
5387    }
5388    if (Elt.getOpcode() == ISD::UNDEF)
5389      continue;
5390
5391    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5392    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5393      return SDValue();
5394    LastLoadedElt = i;
5395  }
5396
5397  // If we have found an entire vector of loads and undefs, then return a large
5398  // load of the entire vector width starting at the base pointer.  If we found
5399  // consecutive loads for the low half, generate a vzext_load node.
5400  if (LastLoadedElt == NumElems - 1) {
5401    SDValue NewLd = SDValue();
5402    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5403      NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5404                          LDBase->getPointerInfo(),
5405                          LDBase->isVolatile(), LDBase->isNonTemporal(),
5406                          LDBase->isInvariant(), 0);
5407    NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5408                        LDBase->getPointerInfo(),
5409                        LDBase->isVolatile(), LDBase->isNonTemporal(),
5410                        LDBase->isInvariant(), LDBase->getAlignment());
5411
5412    if (LDBase->hasAnyUseOfValue(1)) {
5413      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5414                                     SDValue(LDBase, 1),
5415                                     SDValue(NewLd.getNode(), 1));
5416      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5417      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5418                             SDValue(NewLd.getNode(), 1));
5419    }
5420
5421    return NewLd;
5422  }
5423  if (NumElems == 4 && LastLoadedElt == 1 &&
5424      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5425    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5426    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5427    SDValue ResNode =
5428        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops,
5429                                array_lengthof(Ops), MVT::i64,
5430                                LDBase->getPointerInfo(),
5431                                LDBase->getAlignment(),
5432                                false/*isVolatile*/, true/*ReadMem*/,
5433                                false/*WriteMem*/);
5434
5435    // Make sure the newly-created LOAD is in the same position as LDBase in
5436    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5437    // update uses of LDBase's output chain to use the TokenFactor.
5438    if (LDBase->hasAnyUseOfValue(1)) {
5439      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5440                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5441      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5442      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5443                             SDValue(ResNode.getNode(), 1));
5444    }
5445
5446    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5447  }
5448  return SDValue();
5449}
5450
5451/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5452/// to generate a splat value for the following cases:
5453/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5454/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5455/// a scalar load, or a constant.
5456/// The VBROADCAST node is returned when a pattern is found,
5457/// or SDValue() otherwise.
5458static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
5459                                    SelectionDAG &DAG) {
5460  if (!Subtarget->hasFp256())
5461    return SDValue();
5462
5463  MVT VT = Op.getSimpleValueType();
5464  SDLoc dl(Op);
5465
5466  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
5467         "Unsupported vector type for broadcast.");
5468
5469  SDValue Ld;
5470  bool ConstSplatVal;
5471
5472  switch (Op.getOpcode()) {
5473    default:
5474      // Unknown pattern found.
5475      return SDValue();
5476
5477    case ISD::BUILD_VECTOR: {
5478      // The BUILD_VECTOR node must be a splat.
5479      if (!isSplatVector(Op.getNode()))
5480        return SDValue();
5481
5482      Ld = Op.getOperand(0);
5483      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5484                     Ld.getOpcode() == ISD::ConstantFP);
5485
5486      // The suspected load node has several users. Make sure that all
5487      // of its users are from the BUILD_VECTOR node.
5488      // Constants may have multiple users.
5489      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5490        return SDValue();
5491      break;
5492    }
5493
5494    case ISD::VECTOR_SHUFFLE: {
5495      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5496
5497      // Shuffles must have a splat mask where the first element is
5498      // broadcasted.
5499      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5500        return SDValue();
5501
5502      SDValue Sc = Op.getOperand(0);
5503      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5504          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5505
5506        if (!Subtarget->hasInt256())
5507          return SDValue();
5508
5509        // Use the register form of the broadcast instruction available on AVX2.
5510        if (VT.getSizeInBits() >= 256)
5511          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5512        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5513      }
5514
5515      Ld = Sc.getOperand(0);
5516      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5517                       Ld.getOpcode() == ISD::ConstantFP);
5518
5519      // The scalar_to_vector node and the suspected
5520      // load node must have exactly one user.
5521      // Constants may have multiple users.
5522
5523      // AVX-512 has register version of the broadcast
5524      bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
5525        Ld.getValueType().getSizeInBits() >= 32;
5526      if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
5527          !hasRegVer))
5528        return SDValue();
5529      break;
5530    }
5531  }
5532
5533  bool IsGE256 = (VT.getSizeInBits() >= 256);
5534
5535  // Handle the broadcasting a single constant scalar from the constant pool
5536  // into a vector. On Sandybridge it is still better to load a constant vector
5537  // from the constant pool and not to broadcast it from a scalar.
5538  if (ConstSplatVal && Subtarget->hasInt256()) {
5539    EVT CVT = Ld.getValueType();
5540    assert(!CVT.isVector() && "Must not broadcast a vector type");
5541    unsigned ScalarSize = CVT.getSizeInBits();
5542
5543    if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) {
5544      const Constant *C = 0;
5545      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5546        C = CI->getConstantIntValue();
5547      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5548        C = CF->getConstantFPValue();
5549
5550      assert(C && "Invalid constant type");
5551
5552      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5553      SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
5554      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5555      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5556                       MachinePointerInfo::getConstantPool(),
5557                       false, false, false, Alignment);
5558
5559      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5560    }
5561  }
5562
5563  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5564  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5565
5566  // Handle AVX2 in-register broadcasts.
5567  if (!IsLoad && Subtarget->hasInt256() &&
5568      (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
5569    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5570
5571  // The scalar source must be a normal load.
5572  if (!IsLoad)
5573    return SDValue();
5574
5575  if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
5576    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5577
5578  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5579  // double since there is no vbroadcastsd xmm
5580  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5581    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5582      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5583  }
5584
5585  // Unsupported broadcast.
5586  return SDValue();
5587}
5588
5589static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
5590  MVT VT = Op.getSimpleValueType();
5591
5592  // Skip if insert_vec_elt is not supported.
5593  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5594  if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5595    return SDValue();
5596
5597  SDLoc DL(Op);
5598  unsigned NumElems = Op.getNumOperands();
5599
5600  SDValue VecIn1;
5601  SDValue VecIn2;
5602  SmallVector<unsigned, 4> InsertIndices;
5603  SmallVector<int, 8> Mask(NumElems, -1);
5604
5605  for (unsigned i = 0; i != NumElems; ++i) {
5606    unsigned Opc = Op.getOperand(i).getOpcode();
5607
5608    if (Opc == ISD::UNDEF)
5609      continue;
5610
5611    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5612      // Quit if more than 1 elements need inserting.
5613      if (InsertIndices.size() > 1)
5614        return SDValue();
5615
5616      InsertIndices.push_back(i);
5617      continue;
5618    }
5619
5620    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5621    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5622
5623    // Quit if extracted from vector of different type.
5624    if (ExtractedFromVec.getValueType() != VT)
5625      return SDValue();
5626
5627    // Quit if non-constant index.
5628    if (!isa<ConstantSDNode>(ExtIdx))
5629      return SDValue();
5630
5631    if (VecIn1.getNode() == 0)
5632      VecIn1 = ExtractedFromVec;
5633    else if (VecIn1 != ExtractedFromVec) {
5634      if (VecIn2.getNode() == 0)
5635        VecIn2 = ExtractedFromVec;
5636      else if (VecIn2 != ExtractedFromVec)
5637        // Quit if more than 2 vectors to shuffle
5638        return SDValue();
5639    }
5640
5641    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5642
5643    if (ExtractedFromVec == VecIn1)
5644      Mask[i] = Idx;
5645    else if (ExtractedFromVec == VecIn2)
5646      Mask[i] = Idx + NumElems;
5647  }
5648
5649  if (VecIn1.getNode() == 0)
5650    return SDValue();
5651
5652  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5653  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5654  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5655    unsigned Idx = InsertIndices[i];
5656    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5657                     DAG.getIntPtrConstant(Idx));
5658  }
5659
5660  return NV;
5661}
5662
5663// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
5664SDValue
5665X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
5666
5667  MVT VT = Op.getSimpleValueType();
5668  assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
5669         "Unexpected type in LowerBUILD_VECTORvXi1!");
5670
5671  SDLoc dl(Op);
5672  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5673    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
5674    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
5675                      Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5676    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
5677                       Ops, VT.getVectorNumElements());
5678  }
5679
5680  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5681    SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
5682    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
5683                      Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5684    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
5685                       Ops, VT.getVectorNumElements());
5686  }
5687
5688  bool AllContants = true;
5689  uint64_t Immediate = 0;
5690  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
5691    SDValue In = Op.getOperand(idx);
5692    if (In.getOpcode() == ISD::UNDEF)
5693      continue;
5694    if (!isa<ConstantSDNode>(In)) {
5695      AllContants = false;
5696      break;
5697    }
5698    if (cast<ConstantSDNode>(In)->getZExtValue())
5699      Immediate |= (1ULL << idx);
5700  }
5701
5702  if (AllContants) {
5703    SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
5704      DAG.getConstant(Immediate, MVT::i16));
5705    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
5706                       DAG.getIntPtrConstant(0));
5707  }
5708
5709  // Splat vector (with undefs)
5710  SDValue In = Op.getOperand(0);
5711  for (unsigned i = 1, e = Op.getNumOperands(); i != e; ++i) {
5712    if (Op.getOperand(i) != In && Op.getOperand(i).getOpcode() != ISD::UNDEF)
5713      llvm_unreachable("Unsupported predicate operation");
5714  }
5715
5716  SDValue EFLAGS, X86CC;
5717  if (In.getOpcode() == ISD::SETCC) {
5718    SDValue Op0 = In.getOperand(0);
5719    SDValue Op1 = In.getOperand(1);
5720    ISD::CondCode CC = cast<CondCodeSDNode>(In.getOperand(2))->get();
5721    bool isFP = Op1.getValueType().isFloatingPoint();
5722    unsigned X86CCVal = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5723
5724    assert(X86CCVal != X86::COND_INVALID && "Unsupported predicate operation");
5725
5726    X86CC = DAG.getConstant(X86CCVal, MVT::i8);
5727    EFLAGS = EmitCmp(Op0, Op1, X86CCVal, DAG);
5728    EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
5729  } else if (In.getOpcode() == X86ISD::SETCC) {
5730    X86CC = In.getOperand(0);
5731    EFLAGS = In.getOperand(1);
5732  } else {
5733    // The algorithm:
5734    //   Bit1 = In & 0x1
5735    //   if (Bit1 != 0)
5736    //     ZF = 0
5737    //   else
5738    //     ZF = 1
5739    //   if (ZF == 0)
5740    //     res = allOnes ### CMOVNE -1, %res
5741    //   else
5742    //     res = allZero
5743    MVT InVT = In.getSimpleValueType();
5744    SDValue Bit1 = DAG.getNode(ISD::AND, dl, InVT, In, DAG.getConstant(1, InVT));
5745    EFLAGS = EmitTest(Bit1, X86::COND_NE, DAG);
5746    X86CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5747  }
5748
5749  if (VT == MVT::v16i1) {
5750    SDValue Cst1 = DAG.getConstant(-1, MVT::i16);
5751    SDValue Cst0 = DAG.getConstant(0, MVT::i16);
5752    SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i16,
5753          Cst0, Cst1, X86CC, EFLAGS);
5754    return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
5755  }
5756
5757  if (VT == MVT::v8i1) {
5758    SDValue Cst1 = DAG.getConstant(-1, MVT::i32);
5759    SDValue Cst0 = DAG.getConstant(0, MVT::i32);
5760    SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i32,
5761          Cst0, Cst1, X86CC, EFLAGS);
5762    CmovOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CmovOp);
5763    return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
5764  }
5765  llvm_unreachable("Unsupported predicate operation");
5766}
5767
5768SDValue
5769X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5770  SDLoc dl(Op);
5771
5772  MVT VT = Op.getSimpleValueType();
5773  MVT ExtVT = VT.getVectorElementType();
5774  unsigned NumElems = Op.getNumOperands();
5775
5776  // Generate vectors for predicate vectors.
5777  if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
5778    return LowerBUILD_VECTORvXi1(Op, DAG);
5779
5780  // Vectors containing all zeros can be matched by pxor and xorps later
5781  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5782    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5783    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5784    if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
5785      return Op;
5786
5787    return getZeroVector(VT, Subtarget, DAG, dl);
5788  }
5789
5790  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5791  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5792  // vpcmpeqd on 256-bit vectors.
5793  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5794    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5795      return Op;
5796
5797    if (!VT.is512BitVector())
5798      return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5799  }
5800
5801  SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
5802  if (Broadcast.getNode())
5803    return Broadcast;
5804
5805  unsigned EVTBits = ExtVT.getSizeInBits();
5806
5807  unsigned NumZero  = 0;
5808  unsigned NumNonZero = 0;
5809  unsigned NonZeros = 0;
5810  bool IsAllConstants = true;
5811  SmallSet<SDValue, 8> Values;
5812  for (unsigned i = 0; i < NumElems; ++i) {
5813    SDValue Elt = Op.getOperand(i);
5814    if (Elt.getOpcode() == ISD::UNDEF)
5815      continue;
5816    Values.insert(Elt);
5817    if (Elt.getOpcode() != ISD::Constant &&
5818        Elt.getOpcode() != ISD::ConstantFP)
5819      IsAllConstants = false;
5820    if (X86::isZeroNode(Elt))
5821      NumZero++;
5822    else {
5823      NonZeros |= (1 << i);
5824      NumNonZero++;
5825    }
5826  }
5827
5828  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5829  if (NumNonZero == 0)
5830    return DAG.getUNDEF(VT);
5831
5832  // Special case for single non-zero, non-undef, element.
5833  if (NumNonZero == 1) {
5834    unsigned Idx = countTrailingZeros(NonZeros);
5835    SDValue Item = Op.getOperand(Idx);
5836
5837    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5838    // the value are obviously zero, truncate the value to i32 and do the
5839    // insertion that way.  Only do this if the value is non-constant or if the
5840    // value is a constant being inserted into element 0.  It is cheaper to do
5841    // a constant pool load than it is to do a movd + shuffle.
5842    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5843        (!IsAllConstants || Idx == 0)) {
5844      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5845        // Handle SSE only.
5846        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5847        EVT VecVT = MVT::v4i32;
5848        unsigned VecElts = 4;
5849
5850        // Truncate the value (which may itself be a constant) to i32, and
5851        // convert it to a vector with movd (S2V+shuffle to zero extend).
5852        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5853        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5854        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5855
5856        // Now we have our 32-bit value zero extended in the low element of
5857        // a vector.  If Idx != 0, swizzle it into place.
5858        if (Idx != 0) {
5859          SmallVector<int, 4> Mask;
5860          Mask.push_back(Idx);
5861          for (unsigned i = 1; i != VecElts; ++i)
5862            Mask.push_back(i);
5863          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5864                                      &Mask[0]);
5865        }
5866        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5867      }
5868    }
5869
5870    // If we have a constant or non-constant insertion into the low element of
5871    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5872    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5873    // depending on what the source datatype is.
5874    if (Idx == 0) {
5875      if (NumZero == 0)
5876        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5877
5878      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5879          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5880        if (VT.is256BitVector() || VT.is512BitVector()) {
5881          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5882          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5883                             Item, DAG.getIntPtrConstant(0));
5884        }
5885        assert(VT.is128BitVector() && "Expected an SSE value type!");
5886        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5887        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5888        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5889      }
5890
5891      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5892        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5893        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5894        if (VT.is256BitVector()) {
5895          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5896          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5897        } else {
5898          assert(VT.is128BitVector() && "Expected an SSE value type!");
5899          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5900        }
5901        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5902      }
5903    }
5904
5905    // Is it a vector logical left shift?
5906    if (NumElems == 2 && Idx == 1 &&
5907        X86::isZeroNode(Op.getOperand(0)) &&
5908        !X86::isZeroNode(Op.getOperand(1))) {
5909      unsigned NumBits = VT.getSizeInBits();
5910      return getVShift(true, VT,
5911                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5912                                   VT, Op.getOperand(1)),
5913                       NumBits/2, DAG, *this, dl);
5914    }
5915
5916    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5917      return SDValue();
5918
5919    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5920    // is a non-constant being inserted into an element other than the low one,
5921    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5922    // movd/movss) to move this into the low element, then shuffle it into
5923    // place.
5924    if (EVTBits == 32) {
5925      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5926
5927      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5928      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5929      SmallVector<int, 8> MaskVec;
5930      for (unsigned i = 0; i != NumElems; ++i)
5931        MaskVec.push_back(i == Idx ? 0 : 1);
5932      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5933    }
5934  }
5935
5936  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5937  if (Values.size() == 1) {
5938    if (EVTBits == 32) {
5939      // Instead of a shuffle like this:
5940      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5941      // Check if it's possible to issue this instead.
5942      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5943      unsigned Idx = countTrailingZeros(NonZeros);
5944      SDValue Item = Op.getOperand(Idx);
5945      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5946        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5947    }
5948    return SDValue();
5949  }
5950
5951  // A vector full of immediates; various special cases are already
5952  // handled, so this is best done with a single constant-pool load.
5953  if (IsAllConstants)
5954    return SDValue();
5955
5956  // For AVX-length vectors, build the individual 128-bit pieces and use
5957  // shuffles to put them in place.
5958  if (VT.is256BitVector()) {
5959    SmallVector<SDValue, 32> V;
5960    for (unsigned i = 0; i != NumElems; ++i)
5961      V.push_back(Op.getOperand(i));
5962
5963    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5964
5965    // Build both the lower and upper subvector.
5966    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5967    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5968                                NumElems/2);
5969
5970    // Recreate the wider vector with the lower and upper part.
5971    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5972  }
5973
5974  // Let legalizer expand 2-wide build_vectors.
5975  if (EVTBits == 64) {
5976    if (NumNonZero == 1) {
5977      // One half is zero or undef.
5978      unsigned Idx = countTrailingZeros(NonZeros);
5979      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5980                                 Op.getOperand(Idx));
5981      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5982    }
5983    return SDValue();
5984  }
5985
5986  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5987  if (EVTBits == 8 && NumElems == 16) {
5988    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5989                                        Subtarget, *this);
5990    if (V.getNode()) return V;
5991  }
5992
5993  if (EVTBits == 16 && NumElems == 8) {
5994    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5995                                      Subtarget, *this);
5996    if (V.getNode()) return V;
5997  }
5998
5999  // If element VT is == 32 bits, turn it into a number of shuffles.
6000  SmallVector<SDValue, 8> V(NumElems);
6001  if (NumElems == 4 && NumZero > 0) {
6002    for (unsigned i = 0; i < 4; ++i) {
6003      bool isZero = !(NonZeros & (1 << i));
6004      if (isZero)
6005        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
6006      else
6007        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6008    }
6009
6010    for (unsigned i = 0; i < 2; ++i) {
6011      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
6012        default: break;
6013        case 0:
6014          V[i] = V[i*2];  // Must be a zero vector.
6015          break;
6016        case 1:
6017          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
6018          break;
6019        case 2:
6020          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
6021          break;
6022        case 3:
6023          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
6024          break;
6025      }
6026    }
6027
6028    bool Reverse1 = (NonZeros & 0x3) == 2;
6029    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
6030    int MaskVec[] = {
6031      Reverse1 ? 1 : 0,
6032      Reverse1 ? 0 : 1,
6033      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
6034      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
6035    };
6036    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
6037  }
6038
6039  if (Values.size() > 1 && VT.is128BitVector()) {
6040    // Check for a build vector of consecutive loads.
6041    for (unsigned i = 0; i < NumElems; ++i)
6042      V[i] = Op.getOperand(i);
6043
6044    // Check for elements which are consecutive loads.
6045    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
6046    if (LD.getNode())
6047      return LD;
6048
6049    // Check for a build vector from mostly shuffle plus few inserting.
6050    SDValue Sh = buildFromShuffleMostly(Op, DAG);
6051    if (Sh.getNode())
6052      return Sh;
6053
6054    // For SSE 4.1, use insertps to put the high elements into the low element.
6055    if (getSubtarget()->hasSSE41()) {
6056      SDValue Result;
6057      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
6058        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
6059      else
6060        Result = DAG.getUNDEF(VT);
6061
6062      for (unsigned i = 1; i < NumElems; ++i) {
6063        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
6064        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
6065                             Op.getOperand(i), DAG.getIntPtrConstant(i));
6066      }
6067      return Result;
6068    }
6069
6070    // Otherwise, expand into a number of unpckl*, start by extending each of
6071    // our (non-undef) elements to the full vector width with the element in the
6072    // bottom slot of the vector (which generates no code for SSE).
6073    for (unsigned i = 0; i < NumElems; ++i) {
6074      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
6075        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6076      else
6077        V[i] = DAG.getUNDEF(VT);
6078    }
6079
6080    // Next, we iteratively mix elements, e.g. for v4f32:
6081    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
6082    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
6083    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
6084    unsigned EltStride = NumElems >> 1;
6085    while (EltStride != 0) {
6086      for (unsigned i = 0; i < EltStride; ++i) {
6087        // If V[i+EltStride] is undef and this is the first round of mixing,
6088        // then it is safe to just drop this shuffle: V[i] is already in the
6089        // right place, the one element (since it's the first round) being
6090        // inserted as undef can be dropped.  This isn't safe for successive
6091        // rounds because they will permute elements within both vectors.
6092        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
6093            EltStride == NumElems/2)
6094          continue;
6095
6096        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
6097      }
6098      EltStride >>= 1;
6099    }
6100    return V[0];
6101  }
6102  return SDValue();
6103}
6104
6105// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
6106// to create 256-bit vectors from two other 128-bit ones.
6107static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6108  SDLoc dl(Op);
6109  MVT ResVT = Op.getSimpleValueType();
6110
6111  assert((ResVT.is256BitVector() ||
6112          ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
6113
6114  SDValue V1 = Op.getOperand(0);
6115  SDValue V2 = Op.getOperand(1);
6116  unsigned NumElems = ResVT.getVectorNumElements();
6117  if(ResVT.is256BitVector())
6118    return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6119
6120  return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6121}
6122
6123static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6124  assert(Op.getNumOperands() == 2);
6125
6126  // AVX/AVX-512 can use the vinsertf128 instruction to create 256-bit vectors
6127  // from two other 128-bit ones.
6128  return LowerAVXCONCAT_VECTORS(Op, DAG);
6129}
6130
6131// Try to lower a shuffle node into a simple blend instruction.
6132static SDValue
6133LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
6134                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6135  SDValue V1 = SVOp->getOperand(0);
6136  SDValue V2 = SVOp->getOperand(1);
6137  SDLoc dl(SVOp);
6138  MVT VT = SVOp->getSimpleValueType(0);
6139  MVT EltVT = VT.getVectorElementType();
6140  unsigned NumElems = VT.getVectorNumElements();
6141
6142  // There is no blend with immediate in AVX-512.
6143  if (VT.is512BitVector())
6144    return SDValue();
6145
6146  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
6147    return SDValue();
6148  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
6149    return SDValue();
6150
6151  // Check the mask for BLEND and build the value.
6152  unsigned MaskValue = 0;
6153  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
6154  unsigned NumLanes = (NumElems-1)/8 + 1;
6155  unsigned NumElemsInLane = NumElems / NumLanes;
6156
6157  // Blend for v16i16 should be symetric for the both lanes.
6158  for (unsigned i = 0; i < NumElemsInLane; ++i) {
6159
6160    int SndLaneEltIdx = (NumLanes == 2) ?
6161      SVOp->getMaskElt(i + NumElemsInLane) : -1;
6162    int EltIdx = SVOp->getMaskElt(i);
6163
6164    if ((EltIdx < 0 || EltIdx == (int)i) &&
6165        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
6166      continue;
6167
6168    if (((unsigned)EltIdx == (i + NumElems)) &&
6169        (SndLaneEltIdx < 0 ||
6170         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
6171      MaskValue |= (1<<i);
6172    else
6173      return SDValue();
6174  }
6175
6176  // Convert i32 vectors to floating point if it is not AVX2.
6177  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
6178  MVT BlendVT = VT;
6179  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
6180    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
6181                               NumElems);
6182    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
6183    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
6184  }
6185
6186  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
6187                            DAG.getConstant(MaskValue, MVT::i32));
6188  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
6189}
6190
6191// v8i16 shuffles - Prefer shuffles in the following order:
6192// 1. [all]   pshuflw, pshufhw, optional move
6193// 2. [ssse3] 1 x pshufb
6194// 3. [ssse3] 2 x pshufb + 1 x por
6195// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
6196static SDValue
6197LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
6198                         SelectionDAG &DAG) {
6199  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6200  SDValue V1 = SVOp->getOperand(0);
6201  SDValue V2 = SVOp->getOperand(1);
6202  SDLoc dl(SVOp);
6203  SmallVector<int, 8> MaskVals;
6204
6205  // Determine if more than 1 of the words in each of the low and high quadwords
6206  // of the result come from the same quadword of one of the two inputs.  Undef
6207  // mask values count as coming from any quadword, for better codegen.
6208  unsigned LoQuad[] = { 0, 0, 0, 0 };
6209  unsigned HiQuad[] = { 0, 0, 0, 0 };
6210  std::bitset<4> InputQuads;
6211  for (unsigned i = 0; i < 8; ++i) {
6212    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
6213    int EltIdx = SVOp->getMaskElt(i);
6214    MaskVals.push_back(EltIdx);
6215    if (EltIdx < 0) {
6216      ++Quad[0];
6217      ++Quad[1];
6218      ++Quad[2];
6219      ++Quad[3];
6220      continue;
6221    }
6222    ++Quad[EltIdx / 4];
6223    InputQuads.set(EltIdx / 4);
6224  }
6225
6226  int BestLoQuad = -1;
6227  unsigned MaxQuad = 1;
6228  for (unsigned i = 0; i < 4; ++i) {
6229    if (LoQuad[i] > MaxQuad) {
6230      BestLoQuad = i;
6231      MaxQuad = LoQuad[i];
6232    }
6233  }
6234
6235  int BestHiQuad = -1;
6236  MaxQuad = 1;
6237  for (unsigned i = 0; i < 4; ++i) {
6238    if (HiQuad[i] > MaxQuad) {
6239      BestHiQuad = i;
6240      MaxQuad = HiQuad[i];
6241    }
6242  }
6243
6244  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
6245  // of the two input vectors, shuffle them into one input vector so only a
6246  // single pshufb instruction is necessary. If There are more than 2 input
6247  // quads, disable the next transformation since it does not help SSSE3.
6248  bool V1Used = InputQuads[0] || InputQuads[1];
6249  bool V2Used = InputQuads[2] || InputQuads[3];
6250  if (Subtarget->hasSSSE3()) {
6251    if (InputQuads.count() == 2 && V1Used && V2Used) {
6252      BestLoQuad = InputQuads[0] ? 0 : 1;
6253      BestHiQuad = InputQuads[2] ? 2 : 3;
6254    }
6255    if (InputQuads.count() > 2) {
6256      BestLoQuad = -1;
6257      BestHiQuad = -1;
6258    }
6259  }
6260
6261  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
6262  // the shuffle mask.  If a quad is scored as -1, that means that it contains
6263  // words from all 4 input quadwords.
6264  SDValue NewV;
6265  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
6266    int MaskV[] = {
6267      BestLoQuad < 0 ? 0 : BestLoQuad,
6268      BestHiQuad < 0 ? 1 : BestHiQuad
6269    };
6270    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
6271                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
6272                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
6273    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
6274
6275    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
6276    // source words for the shuffle, to aid later transformations.
6277    bool AllWordsInNewV = true;
6278    bool InOrder[2] = { true, true };
6279    for (unsigned i = 0; i != 8; ++i) {
6280      int idx = MaskVals[i];
6281      if (idx != (int)i)
6282        InOrder[i/4] = false;
6283      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
6284        continue;
6285      AllWordsInNewV = false;
6286      break;
6287    }
6288
6289    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
6290    if (AllWordsInNewV) {
6291      for (int i = 0; i != 8; ++i) {
6292        int idx = MaskVals[i];
6293        if (idx < 0)
6294          continue;
6295        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
6296        if ((idx != i) && idx < 4)
6297          pshufhw = false;
6298        if ((idx != i) && idx > 3)
6299          pshuflw = false;
6300      }
6301      V1 = NewV;
6302      V2Used = false;
6303      BestLoQuad = 0;
6304      BestHiQuad = 1;
6305    }
6306
6307    // If we've eliminated the use of V2, and the new mask is a pshuflw or
6308    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
6309    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
6310      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
6311      unsigned TargetMask = 0;
6312      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
6313                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
6314      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6315      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
6316                             getShufflePSHUFLWImmediate(SVOp);
6317      V1 = NewV.getOperand(0);
6318      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
6319    }
6320  }
6321
6322  // Promote splats to a larger type which usually leads to more efficient code.
6323  // FIXME: Is this true if pshufb is available?
6324  if (SVOp->isSplat())
6325    return PromoteSplat(SVOp, DAG);
6326
6327  // If we have SSSE3, and all words of the result are from 1 input vector,
6328  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
6329  // is present, fall back to case 4.
6330  if (Subtarget->hasSSSE3()) {
6331    SmallVector<SDValue,16> pshufbMask;
6332
6333    // If we have elements from both input vectors, set the high bit of the
6334    // shuffle mask element to zero out elements that come from V2 in the V1
6335    // mask, and elements that come from V1 in the V2 mask, so that the two
6336    // results can be OR'd together.
6337    bool TwoInputs = V1Used && V2Used;
6338    for (unsigned i = 0; i != 8; ++i) {
6339      int EltIdx = MaskVals[i] * 2;
6340      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
6341      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
6342      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
6343      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
6344    }
6345    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
6346    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6347                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6348                                 MVT::v16i8, &pshufbMask[0], 16));
6349    if (!TwoInputs)
6350      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6351
6352    // Calculate the shuffle mask for the second input, shuffle it, and
6353    // OR it with the first shuffled input.
6354    pshufbMask.clear();
6355    for (unsigned i = 0; i != 8; ++i) {
6356      int EltIdx = MaskVals[i] * 2;
6357      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6358      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
6359      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
6360      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
6361    }
6362    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
6363    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6364                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6365                                 MVT::v16i8, &pshufbMask[0], 16));
6366    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6367    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6368  }
6369
6370  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
6371  // and update MaskVals with new element order.
6372  std::bitset<8> InOrder;
6373  if (BestLoQuad >= 0) {
6374    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
6375    for (int i = 0; i != 4; ++i) {
6376      int idx = MaskVals[i];
6377      if (idx < 0) {
6378        InOrder.set(i);
6379      } else if ((idx / 4) == BestLoQuad) {
6380        MaskV[i] = idx & 3;
6381        InOrder.set(i);
6382      }
6383    }
6384    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6385                                &MaskV[0]);
6386
6387    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
6388      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6389      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
6390                                  NewV.getOperand(0),
6391                                  getShufflePSHUFLWImmediate(SVOp), DAG);
6392    }
6393  }
6394
6395  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
6396  // and update MaskVals with the new element order.
6397  if (BestHiQuad >= 0) {
6398    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
6399    for (unsigned i = 4; i != 8; ++i) {
6400      int idx = MaskVals[i];
6401      if (idx < 0) {
6402        InOrder.set(i);
6403      } else if ((idx / 4) == BestHiQuad) {
6404        MaskV[i] = (idx & 3) + 4;
6405        InOrder.set(i);
6406      }
6407    }
6408    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6409                                &MaskV[0]);
6410
6411    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
6412      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6413      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
6414                                  NewV.getOperand(0),
6415                                  getShufflePSHUFHWImmediate(SVOp), DAG);
6416    }
6417  }
6418
6419  // In case BestHi & BestLo were both -1, which means each quadword has a word
6420  // from each of the four input quadwords, calculate the InOrder bitvector now
6421  // before falling through to the insert/extract cleanup.
6422  if (BestLoQuad == -1 && BestHiQuad == -1) {
6423    NewV = V1;
6424    for (int i = 0; i != 8; ++i)
6425      if (MaskVals[i] < 0 || MaskVals[i] == i)
6426        InOrder.set(i);
6427  }
6428
6429  // The other elements are put in the right place using pextrw and pinsrw.
6430  for (unsigned i = 0; i != 8; ++i) {
6431    if (InOrder[i])
6432      continue;
6433    int EltIdx = MaskVals[i];
6434    if (EltIdx < 0)
6435      continue;
6436    SDValue ExtOp = (EltIdx < 8) ?
6437      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
6438                  DAG.getIntPtrConstant(EltIdx)) :
6439      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
6440                  DAG.getIntPtrConstant(EltIdx - 8));
6441    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
6442                       DAG.getIntPtrConstant(i));
6443  }
6444  return NewV;
6445}
6446
6447// v16i8 shuffles - Prefer shuffles in the following order:
6448// 1. [ssse3] 1 x pshufb
6449// 2. [ssse3] 2 x pshufb + 1 x por
6450// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
6451static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6452                                        const X86Subtarget* Subtarget,
6453                                        SelectionDAG &DAG) {
6454  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6455  SDValue V1 = SVOp->getOperand(0);
6456  SDValue V2 = SVOp->getOperand(1);
6457  SDLoc dl(SVOp);
6458  ArrayRef<int> MaskVals = SVOp->getMask();
6459
6460  // Promote splats to a larger type which usually leads to more efficient code.
6461  // FIXME: Is this true if pshufb is available?
6462  if (SVOp->isSplat())
6463    return PromoteSplat(SVOp, DAG);
6464
6465  // If we have SSSE3, case 1 is generated when all result bytes come from
6466  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6467  // present, fall back to case 3.
6468
6469  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6470  if (Subtarget->hasSSSE3()) {
6471    SmallVector<SDValue,16> pshufbMask;
6472
6473    // If all result elements are from one input vector, then only translate
6474    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6475    //
6476    // Otherwise, we have elements from both input vectors, and must zero out
6477    // elements that come from V2 in the first mask, and V1 in the second mask
6478    // so that we can OR them together.
6479    for (unsigned i = 0; i != 16; ++i) {
6480      int EltIdx = MaskVals[i];
6481      if (EltIdx < 0 || EltIdx >= 16)
6482        EltIdx = 0x80;
6483      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6484    }
6485    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6486                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6487                                 MVT::v16i8, &pshufbMask[0], 16));
6488
6489    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6490    // the 2nd operand if it's undefined or zero.
6491    if (V2.getOpcode() == ISD::UNDEF ||
6492        ISD::isBuildVectorAllZeros(V2.getNode()))
6493      return V1;
6494
6495    // Calculate the shuffle mask for the second input, shuffle it, and
6496    // OR it with the first shuffled input.
6497    pshufbMask.clear();
6498    for (unsigned i = 0; i != 16; ++i) {
6499      int EltIdx = MaskVals[i];
6500      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6501      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6502    }
6503    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6504                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6505                                 MVT::v16i8, &pshufbMask[0], 16));
6506    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6507  }
6508
6509  // No SSSE3 - Calculate in place words and then fix all out of place words
6510  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6511  // the 16 different words that comprise the two doublequadword input vectors.
6512  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6513  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6514  SDValue NewV = V1;
6515  for (int i = 0; i != 8; ++i) {
6516    int Elt0 = MaskVals[i*2];
6517    int Elt1 = MaskVals[i*2+1];
6518
6519    // This word of the result is all undef, skip it.
6520    if (Elt0 < 0 && Elt1 < 0)
6521      continue;
6522
6523    // This word of the result is already in the correct place, skip it.
6524    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6525      continue;
6526
6527    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6528    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6529    SDValue InsElt;
6530
6531    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6532    // using a single extract together, load it and store it.
6533    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6534      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6535                           DAG.getIntPtrConstant(Elt1 / 2));
6536      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6537                        DAG.getIntPtrConstant(i));
6538      continue;
6539    }
6540
6541    // If Elt1 is defined, extract it from the appropriate source.  If the
6542    // source byte is not also odd, shift the extracted word left 8 bits
6543    // otherwise clear the bottom 8 bits if we need to do an or.
6544    if (Elt1 >= 0) {
6545      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6546                           DAG.getIntPtrConstant(Elt1 / 2));
6547      if ((Elt1 & 1) == 0)
6548        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6549                             DAG.getConstant(8,
6550                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6551      else if (Elt0 >= 0)
6552        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6553                             DAG.getConstant(0xFF00, MVT::i16));
6554    }
6555    // If Elt0 is defined, extract it from the appropriate source.  If the
6556    // source byte is not also even, shift the extracted word right 8 bits. If
6557    // Elt1 was also defined, OR the extracted values together before
6558    // inserting them in the result.
6559    if (Elt0 >= 0) {
6560      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6561                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6562      if ((Elt0 & 1) != 0)
6563        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6564                              DAG.getConstant(8,
6565                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6566      else if (Elt1 >= 0)
6567        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6568                             DAG.getConstant(0x00FF, MVT::i16));
6569      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6570                         : InsElt0;
6571    }
6572    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6573                       DAG.getIntPtrConstant(i));
6574  }
6575  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6576}
6577
6578// v32i8 shuffles - Translate to VPSHUFB if possible.
6579static
6580SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6581                                 const X86Subtarget *Subtarget,
6582                                 SelectionDAG &DAG) {
6583  MVT VT = SVOp->getSimpleValueType(0);
6584  SDValue V1 = SVOp->getOperand(0);
6585  SDValue V2 = SVOp->getOperand(1);
6586  SDLoc dl(SVOp);
6587  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6588
6589  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6590  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6591  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6592
6593  // VPSHUFB may be generated if
6594  // (1) one of input vector is undefined or zeroinitializer.
6595  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6596  // And (2) the mask indexes don't cross the 128-bit lane.
6597  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6598      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6599    return SDValue();
6600
6601  if (V1IsAllZero && !V2IsAllZero) {
6602    CommuteVectorShuffleMask(MaskVals, 32);
6603    V1 = V2;
6604  }
6605  SmallVector<SDValue, 32> pshufbMask;
6606  for (unsigned i = 0; i != 32; i++) {
6607    int EltIdx = MaskVals[i];
6608    if (EltIdx < 0 || EltIdx >= 32)
6609      EltIdx = 0x80;
6610    else {
6611      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6612        // Cross lane is not allowed.
6613        return SDValue();
6614      EltIdx &= 0xf;
6615    }
6616    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6617  }
6618  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6619                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6620                                  MVT::v32i8, &pshufbMask[0], 32));
6621}
6622
6623/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6624/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6625/// done when every pair / quad of shuffle mask elements point to elements in
6626/// the right sequence. e.g.
6627/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6628static
6629SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6630                                 SelectionDAG &DAG) {
6631  MVT VT = SVOp->getSimpleValueType(0);
6632  SDLoc dl(SVOp);
6633  unsigned NumElems = VT.getVectorNumElements();
6634  MVT NewVT;
6635  unsigned Scale;
6636  switch (VT.SimpleTy) {
6637  default: llvm_unreachable("Unexpected!");
6638  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6639  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6640  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6641  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6642  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6643  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6644  }
6645
6646  SmallVector<int, 8> MaskVec;
6647  for (unsigned i = 0; i != NumElems; i += Scale) {
6648    int StartIdx = -1;
6649    for (unsigned j = 0; j != Scale; ++j) {
6650      int EltIdx = SVOp->getMaskElt(i+j);
6651      if (EltIdx < 0)
6652        continue;
6653      if (StartIdx < 0)
6654        StartIdx = (EltIdx / Scale);
6655      if (EltIdx != (int)(StartIdx*Scale + j))
6656        return SDValue();
6657    }
6658    MaskVec.push_back(StartIdx);
6659  }
6660
6661  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6662  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6663  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6664}
6665
6666/// getVZextMovL - Return a zero-extending vector move low node.
6667///
6668static SDValue getVZextMovL(MVT VT, MVT OpVT,
6669                            SDValue SrcOp, SelectionDAG &DAG,
6670                            const X86Subtarget *Subtarget, SDLoc dl) {
6671  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6672    LoadSDNode *LD = NULL;
6673    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6674      LD = dyn_cast<LoadSDNode>(SrcOp);
6675    if (!LD) {
6676      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6677      // instead.
6678      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6679      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6680          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6681          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6682          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6683        // PR2108
6684        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6685        return DAG.getNode(ISD::BITCAST, dl, VT,
6686                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6687                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6688                                                   OpVT,
6689                                                   SrcOp.getOperand(0)
6690                                                          .getOperand(0))));
6691      }
6692    }
6693  }
6694
6695  return DAG.getNode(ISD::BITCAST, dl, VT,
6696                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6697                                 DAG.getNode(ISD::BITCAST, dl,
6698                                             OpVT, SrcOp)));
6699}
6700
6701/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6702/// which could not be matched by any known target speficic shuffle
6703static SDValue
6704LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6705
6706  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6707  if (NewOp.getNode())
6708    return NewOp;
6709
6710  MVT VT = SVOp->getSimpleValueType(0);
6711
6712  unsigned NumElems = VT.getVectorNumElements();
6713  unsigned NumLaneElems = NumElems / 2;
6714
6715  SDLoc dl(SVOp);
6716  MVT EltVT = VT.getVectorElementType();
6717  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6718  SDValue Output[2];
6719
6720  SmallVector<int, 16> Mask;
6721  for (unsigned l = 0; l < 2; ++l) {
6722    // Build a shuffle mask for the output, discovering on the fly which
6723    // input vectors to use as shuffle operands (recorded in InputUsed).
6724    // If building a suitable shuffle vector proves too hard, then bail
6725    // out with UseBuildVector set.
6726    bool UseBuildVector = false;
6727    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6728    unsigned LaneStart = l * NumLaneElems;
6729    for (unsigned i = 0; i != NumLaneElems; ++i) {
6730      // The mask element.  This indexes into the input.
6731      int Idx = SVOp->getMaskElt(i+LaneStart);
6732      if (Idx < 0) {
6733        // the mask element does not index into any input vector.
6734        Mask.push_back(-1);
6735        continue;
6736      }
6737
6738      // The input vector this mask element indexes into.
6739      int Input = Idx / NumLaneElems;
6740
6741      // Turn the index into an offset from the start of the input vector.
6742      Idx -= Input * NumLaneElems;
6743
6744      // Find or create a shuffle vector operand to hold this input.
6745      unsigned OpNo;
6746      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6747        if (InputUsed[OpNo] == Input)
6748          // This input vector is already an operand.
6749          break;
6750        if (InputUsed[OpNo] < 0) {
6751          // Create a new operand for this input vector.
6752          InputUsed[OpNo] = Input;
6753          break;
6754        }
6755      }
6756
6757      if (OpNo >= array_lengthof(InputUsed)) {
6758        // More than two input vectors used!  Give up on trying to create a
6759        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6760        UseBuildVector = true;
6761        break;
6762      }
6763
6764      // Add the mask index for the new shuffle vector.
6765      Mask.push_back(Idx + OpNo * NumLaneElems);
6766    }
6767
6768    if (UseBuildVector) {
6769      SmallVector<SDValue, 16> SVOps;
6770      for (unsigned i = 0; i != NumLaneElems; ++i) {
6771        // The mask element.  This indexes into the input.
6772        int Idx = SVOp->getMaskElt(i+LaneStart);
6773        if (Idx < 0) {
6774          SVOps.push_back(DAG.getUNDEF(EltVT));
6775          continue;
6776        }
6777
6778        // The input vector this mask element indexes into.
6779        int Input = Idx / NumElems;
6780
6781        // Turn the index into an offset from the start of the input vector.
6782        Idx -= Input * NumElems;
6783
6784        // Extract the vector element by hand.
6785        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6786                                    SVOp->getOperand(Input),
6787                                    DAG.getIntPtrConstant(Idx)));
6788      }
6789
6790      // Construct the output using a BUILD_VECTOR.
6791      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6792                              SVOps.size());
6793    } else if (InputUsed[0] < 0) {
6794      // No input vectors were used! The result is undefined.
6795      Output[l] = DAG.getUNDEF(NVT);
6796    } else {
6797      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6798                                        (InputUsed[0] % 2) * NumLaneElems,
6799                                        DAG, dl);
6800      // If only one input was used, use an undefined vector for the other.
6801      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6802        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6803                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6804      // At least one input vector was used. Create a new shuffle vector.
6805      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6806    }
6807
6808    Mask.clear();
6809  }
6810
6811  // Concatenate the result back
6812  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6813}
6814
6815/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6816/// 4 elements, and match them with several different shuffle types.
6817static SDValue
6818LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6819  SDValue V1 = SVOp->getOperand(0);
6820  SDValue V2 = SVOp->getOperand(1);
6821  SDLoc dl(SVOp);
6822  MVT VT = SVOp->getSimpleValueType(0);
6823
6824  assert(VT.is128BitVector() && "Unsupported vector size");
6825
6826  std::pair<int, int> Locs[4];
6827  int Mask1[] = { -1, -1, -1, -1 };
6828  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6829
6830  unsigned NumHi = 0;
6831  unsigned NumLo = 0;
6832  for (unsigned i = 0; i != 4; ++i) {
6833    int Idx = PermMask[i];
6834    if (Idx < 0) {
6835      Locs[i] = std::make_pair(-1, -1);
6836    } else {
6837      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6838      if (Idx < 4) {
6839        Locs[i] = std::make_pair(0, NumLo);
6840        Mask1[NumLo] = Idx;
6841        NumLo++;
6842      } else {
6843        Locs[i] = std::make_pair(1, NumHi);
6844        if (2+NumHi < 4)
6845          Mask1[2+NumHi] = Idx;
6846        NumHi++;
6847      }
6848    }
6849  }
6850
6851  if (NumLo <= 2 && NumHi <= 2) {
6852    // If no more than two elements come from either vector. This can be
6853    // implemented with two shuffles. First shuffle gather the elements.
6854    // The second shuffle, which takes the first shuffle as both of its
6855    // vector operands, put the elements into the right order.
6856    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6857
6858    int Mask2[] = { -1, -1, -1, -1 };
6859
6860    for (unsigned i = 0; i != 4; ++i)
6861      if (Locs[i].first != -1) {
6862        unsigned Idx = (i < 2) ? 0 : 4;
6863        Idx += Locs[i].first * 2 + Locs[i].second;
6864        Mask2[i] = Idx;
6865      }
6866
6867    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6868  }
6869
6870  if (NumLo == 3 || NumHi == 3) {
6871    // Otherwise, we must have three elements from one vector, call it X, and
6872    // one element from the other, call it Y.  First, use a shufps to build an
6873    // intermediate vector with the one element from Y and the element from X
6874    // that will be in the same half in the final destination (the indexes don't
6875    // matter). Then, use a shufps to build the final vector, taking the half
6876    // containing the element from Y from the intermediate, and the other half
6877    // from X.
6878    if (NumHi == 3) {
6879      // Normalize it so the 3 elements come from V1.
6880      CommuteVectorShuffleMask(PermMask, 4);
6881      std::swap(V1, V2);
6882    }
6883
6884    // Find the element from V2.
6885    unsigned HiIndex;
6886    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6887      int Val = PermMask[HiIndex];
6888      if (Val < 0)
6889        continue;
6890      if (Val >= 4)
6891        break;
6892    }
6893
6894    Mask1[0] = PermMask[HiIndex];
6895    Mask1[1] = -1;
6896    Mask1[2] = PermMask[HiIndex^1];
6897    Mask1[3] = -1;
6898    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6899
6900    if (HiIndex >= 2) {
6901      Mask1[0] = PermMask[0];
6902      Mask1[1] = PermMask[1];
6903      Mask1[2] = HiIndex & 1 ? 6 : 4;
6904      Mask1[3] = HiIndex & 1 ? 4 : 6;
6905      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6906    }
6907
6908    Mask1[0] = HiIndex & 1 ? 2 : 0;
6909    Mask1[1] = HiIndex & 1 ? 0 : 2;
6910    Mask1[2] = PermMask[2];
6911    Mask1[3] = PermMask[3];
6912    if (Mask1[2] >= 0)
6913      Mask1[2] += 4;
6914    if (Mask1[3] >= 0)
6915      Mask1[3] += 4;
6916    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6917  }
6918
6919  // Break it into (shuffle shuffle_hi, shuffle_lo).
6920  int LoMask[] = { -1, -1, -1, -1 };
6921  int HiMask[] = { -1, -1, -1, -1 };
6922
6923  int *MaskPtr = LoMask;
6924  unsigned MaskIdx = 0;
6925  unsigned LoIdx = 0;
6926  unsigned HiIdx = 2;
6927  for (unsigned i = 0; i != 4; ++i) {
6928    if (i == 2) {
6929      MaskPtr = HiMask;
6930      MaskIdx = 1;
6931      LoIdx = 0;
6932      HiIdx = 2;
6933    }
6934    int Idx = PermMask[i];
6935    if (Idx < 0) {
6936      Locs[i] = std::make_pair(-1, -1);
6937    } else if (Idx < 4) {
6938      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6939      MaskPtr[LoIdx] = Idx;
6940      LoIdx++;
6941    } else {
6942      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6943      MaskPtr[HiIdx] = Idx;
6944      HiIdx++;
6945    }
6946  }
6947
6948  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6949  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6950  int MaskOps[] = { -1, -1, -1, -1 };
6951  for (unsigned i = 0; i != 4; ++i)
6952    if (Locs[i].first != -1)
6953      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6954  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6955}
6956
6957static bool MayFoldVectorLoad(SDValue V) {
6958  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6959    V = V.getOperand(0);
6960
6961  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6962    V = V.getOperand(0);
6963  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6964      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6965    // BUILD_VECTOR (load), undef
6966    V = V.getOperand(0);
6967
6968  return MayFoldLoad(V);
6969}
6970
6971static
6972SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
6973  MVT VT = Op.getSimpleValueType();
6974
6975  // Canonizalize to v2f64.
6976  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6977  return DAG.getNode(ISD::BITCAST, dl, VT,
6978                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6979                                          V1, DAG));
6980}
6981
6982static
6983SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
6984                        bool HasSSE2) {
6985  SDValue V1 = Op.getOperand(0);
6986  SDValue V2 = Op.getOperand(1);
6987  MVT VT = Op.getSimpleValueType();
6988
6989  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6990
6991  if (HasSSE2 && VT == MVT::v2f64)
6992    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6993
6994  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6995  return DAG.getNode(ISD::BITCAST, dl, VT,
6996                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6997                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6998                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6999}
7000
7001static
7002SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
7003  SDValue V1 = Op.getOperand(0);
7004  SDValue V2 = Op.getOperand(1);
7005  MVT VT = Op.getSimpleValueType();
7006
7007  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
7008         "unsupported shuffle type");
7009
7010  if (V2.getOpcode() == ISD::UNDEF)
7011    V2 = V1;
7012
7013  // v4i32 or v4f32
7014  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
7015}
7016
7017static
7018SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
7019  SDValue V1 = Op.getOperand(0);
7020  SDValue V2 = Op.getOperand(1);
7021  MVT VT = Op.getSimpleValueType();
7022  unsigned NumElems = VT.getVectorNumElements();
7023
7024  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
7025  // operand of these instructions is only memory, so check if there's a
7026  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
7027  // same masks.
7028  bool CanFoldLoad = false;
7029
7030  // Trivial case, when V2 comes from a load.
7031  if (MayFoldVectorLoad(V2))
7032    CanFoldLoad = true;
7033
7034  // When V1 is a load, it can be folded later into a store in isel, example:
7035  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
7036  //    turns into:
7037  //  (MOVLPSmr addr:$src1, VR128:$src2)
7038  // So, recognize this potential and also use MOVLPS or MOVLPD
7039  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
7040    CanFoldLoad = true;
7041
7042  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7043  if (CanFoldLoad) {
7044    if (HasSSE2 && NumElems == 2)
7045      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
7046
7047    if (NumElems == 4)
7048      // If we don't care about the second element, proceed to use movss.
7049      if (SVOp->getMaskElt(1) != -1)
7050        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
7051  }
7052
7053  // movl and movlp will both match v2i64, but v2i64 is never matched by
7054  // movl earlier because we make it strict to avoid messing with the movlp load
7055  // folding logic (see the code above getMOVLP call). Match it here then,
7056  // this is horrible, but will stay like this until we move all shuffle
7057  // matching to x86 specific nodes. Note that for the 1st condition all
7058  // types are matched with movsd.
7059  if (HasSSE2) {
7060    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
7061    // as to remove this logic from here, as much as possible
7062    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
7063      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7064    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7065  }
7066
7067  assert(VT != MVT::v4i32 && "unsupported shuffle type");
7068
7069  // Invert the operand order and use SHUFPS to match it.
7070  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
7071                              getShuffleSHUFImmediate(SVOp), DAG);
7072}
7073
7074// Reduce a vector shuffle to zext.
7075static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
7076                                    SelectionDAG &DAG) {
7077  // PMOVZX is only available from SSE41.
7078  if (!Subtarget->hasSSE41())
7079    return SDValue();
7080
7081  MVT VT = Op.getSimpleValueType();
7082
7083  // Only AVX2 support 256-bit vector integer extending.
7084  if (!Subtarget->hasInt256() && VT.is256BitVector())
7085    return SDValue();
7086
7087  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7088  SDLoc DL(Op);
7089  SDValue V1 = Op.getOperand(0);
7090  SDValue V2 = Op.getOperand(1);
7091  unsigned NumElems = VT.getVectorNumElements();
7092
7093  // Extending is an unary operation and the element type of the source vector
7094  // won't be equal to or larger than i64.
7095  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
7096      VT.getVectorElementType() == MVT::i64)
7097    return SDValue();
7098
7099  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
7100  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
7101  while ((1U << Shift) < NumElems) {
7102    if (SVOp->getMaskElt(1U << Shift) == 1)
7103      break;
7104    Shift += 1;
7105    // The maximal ratio is 8, i.e. from i8 to i64.
7106    if (Shift > 3)
7107      return SDValue();
7108  }
7109
7110  // Check the shuffle mask.
7111  unsigned Mask = (1U << Shift) - 1;
7112  for (unsigned i = 0; i != NumElems; ++i) {
7113    int EltIdx = SVOp->getMaskElt(i);
7114    if ((i & Mask) != 0 && EltIdx != -1)
7115      return SDValue();
7116    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
7117      return SDValue();
7118  }
7119
7120  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
7121  MVT NeVT = MVT::getIntegerVT(NBits);
7122  MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift);
7123
7124  if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
7125    return SDValue();
7126
7127  // Simplify the operand as it's prepared to be fed into shuffle.
7128  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
7129  if (V1.getOpcode() == ISD::BITCAST &&
7130      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
7131      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7132      V1.getOperand(0).getOperand(0)
7133        .getSimpleValueType().getSizeInBits() == SignificantBits) {
7134    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
7135    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
7136    ConstantSDNode *CIdx =
7137      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
7138    // If it's foldable, i.e. normal load with single use, we will let code
7139    // selection to fold it. Otherwise, we will short the conversion sequence.
7140    if (CIdx && CIdx->getZExtValue() == 0 &&
7141        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
7142      MVT FullVT = V.getSimpleValueType();
7143      MVT V1VT = V1.getSimpleValueType();
7144      if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) {
7145        // The "ext_vec_elt" node is wider than the result node.
7146        // In this case we should extract subvector from V.
7147        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
7148        unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits();
7149        MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(),
7150                                        FullVT.getVectorNumElements()/Ratio);
7151        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
7152                        DAG.getIntPtrConstant(0));
7153      }
7154      V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V);
7155    }
7156  }
7157
7158  return DAG.getNode(ISD::BITCAST, DL, VT,
7159                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
7160}
7161
7162static SDValue
7163NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
7164                       SelectionDAG &DAG) {
7165  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7166  MVT VT = Op.getSimpleValueType();
7167  SDLoc dl(Op);
7168  SDValue V1 = Op.getOperand(0);
7169  SDValue V2 = Op.getOperand(1);
7170
7171  if (isZeroShuffle(SVOp))
7172    return getZeroVector(VT, Subtarget, DAG, dl);
7173
7174  // Handle splat operations
7175  if (SVOp->isSplat()) {
7176    // Use vbroadcast whenever the splat comes from a foldable load
7177    SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
7178    if (Broadcast.getNode())
7179      return Broadcast;
7180  }
7181
7182  // Check integer expanding shuffles.
7183  SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG);
7184  if (NewOp.getNode())
7185    return NewOp;
7186
7187  // If the shuffle can be profitably rewritten as a narrower shuffle, then
7188  // do it!
7189  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
7190      VT == MVT::v16i16 || VT == MVT::v32i8) {
7191    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7192    if (NewOp.getNode())
7193      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
7194  } else if ((VT == MVT::v4i32 ||
7195             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
7196    // FIXME: Figure out a cleaner way to do this.
7197    // Try to make use of movq to zero out the top part.
7198    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
7199      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7200      if (NewOp.getNode()) {
7201        MVT NewVT = NewOp.getSimpleValueType();
7202        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
7203                               NewVT, true, false))
7204          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
7205                              DAG, Subtarget, dl);
7206      }
7207    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
7208      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7209      if (NewOp.getNode()) {
7210        MVT NewVT = NewOp.getSimpleValueType();
7211        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
7212          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
7213                              DAG, Subtarget, dl);
7214      }
7215    }
7216  }
7217  return SDValue();
7218}
7219
7220SDValue
7221X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
7222  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7223  SDValue V1 = Op.getOperand(0);
7224  SDValue V2 = Op.getOperand(1);
7225  MVT VT = Op.getSimpleValueType();
7226  SDLoc dl(Op);
7227  unsigned NumElems = VT.getVectorNumElements();
7228  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
7229  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
7230  bool V1IsSplat = false;
7231  bool V2IsSplat = false;
7232  bool HasSSE2 = Subtarget->hasSSE2();
7233  bool HasFp256    = Subtarget->hasFp256();
7234  bool HasInt256   = Subtarget->hasInt256();
7235  MachineFunction &MF = DAG.getMachineFunction();
7236  bool OptForSize = MF.getFunction()->getAttributes().
7237    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
7238
7239  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
7240
7241  if (V1IsUndef && V2IsUndef)
7242    return DAG.getUNDEF(VT);
7243
7244  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
7245
7246  // Vector shuffle lowering takes 3 steps:
7247  //
7248  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
7249  //    narrowing and commutation of operands should be handled.
7250  // 2) Matching of shuffles with known shuffle masks to x86 target specific
7251  //    shuffle nodes.
7252  // 3) Rewriting of unmatched masks into new generic shuffle operations,
7253  //    so the shuffle can be broken into other shuffles and the legalizer can
7254  //    try the lowering again.
7255  //
7256  // The general idea is that no vector_shuffle operation should be left to
7257  // be matched during isel, all of them must be converted to a target specific
7258  // node here.
7259
7260  // Normalize the input vectors. Here splats, zeroed vectors, profitable
7261  // narrowing and commutation of operands should be handled. The actual code
7262  // doesn't include all of those, work in progress...
7263  SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG);
7264  if (NewOp.getNode())
7265    return NewOp;
7266
7267  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
7268
7269  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
7270  // unpckh_undef). Only use pshufd if speed is more important than size.
7271  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7272    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7273  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7274    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7275
7276  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
7277      V2IsUndef && MayFoldVectorLoad(V1))
7278    return getMOVDDup(Op, dl, V1, DAG);
7279
7280  if (isMOVHLPS_v_undef_Mask(M, VT))
7281    return getMOVHighToLow(Op, dl, DAG);
7282
7283  // Use to match splats
7284  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
7285      (VT == MVT::v2f64 || VT == MVT::v2i64))
7286    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7287
7288  if (isPSHUFDMask(M, VT)) {
7289    // The actual implementation will match the mask in the if above and then
7290    // during isel it can match several different instructions, not only pshufd
7291    // as its name says, sad but true, emulate the behavior for now...
7292    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
7293      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
7294
7295    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
7296
7297    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
7298      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
7299
7300    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
7301      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
7302                                  DAG);
7303
7304    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
7305                                TargetMask, DAG);
7306  }
7307
7308  if (isPALIGNRMask(M, VT, Subtarget))
7309    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
7310                                getShufflePALIGNRImmediate(SVOp),
7311                                DAG);
7312
7313  // Check if this can be converted into a logical shift.
7314  bool isLeft = false;
7315  unsigned ShAmt = 0;
7316  SDValue ShVal;
7317  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
7318  if (isShift && ShVal.hasOneUse()) {
7319    // If the shifted value has multiple uses, it may be cheaper to use
7320    // v_set0 + movlhps or movhlps, etc.
7321    MVT EltVT = VT.getVectorElementType();
7322    ShAmt *= EltVT.getSizeInBits();
7323    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7324  }
7325
7326  if (isMOVLMask(M, VT)) {
7327    if (ISD::isBuildVectorAllZeros(V1.getNode()))
7328      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
7329    if (!isMOVLPMask(M, VT)) {
7330      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
7331        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7332
7333      if (VT == MVT::v4i32 || VT == MVT::v4f32)
7334        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7335    }
7336  }
7337
7338  // FIXME: fold these into legal mask.
7339  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
7340    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
7341
7342  if (isMOVHLPSMask(M, VT))
7343    return getMOVHighToLow(Op, dl, DAG);
7344
7345  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
7346    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
7347
7348  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
7349    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
7350
7351  if (isMOVLPMask(M, VT))
7352    return getMOVLP(Op, dl, DAG, HasSSE2);
7353
7354  if (ShouldXformToMOVHLPS(M, VT) ||
7355      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
7356    return CommuteVectorShuffle(SVOp, DAG);
7357
7358  if (isShift) {
7359    // No better options. Use a vshldq / vsrldq.
7360    MVT EltVT = VT.getVectorElementType();
7361    ShAmt *= EltVT.getSizeInBits();
7362    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7363  }
7364
7365  bool Commuted = false;
7366  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
7367  // 1,1,1,1 -> v8i16 though.
7368  V1IsSplat = isSplatVector(V1.getNode());
7369  V2IsSplat = isSplatVector(V2.getNode());
7370
7371  // Canonicalize the splat or undef, if present, to be on the RHS.
7372  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
7373    CommuteVectorShuffleMask(M, NumElems);
7374    std::swap(V1, V2);
7375    std::swap(V1IsSplat, V2IsSplat);
7376    Commuted = true;
7377  }
7378
7379  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
7380    // Shuffling low element of v1 into undef, just return v1.
7381    if (V2IsUndef)
7382      return V1;
7383    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
7384    // the instruction selector will not match, so get a canonical MOVL with
7385    // swapped operands to undo the commute.
7386    return getMOVL(DAG, dl, VT, V2, V1);
7387  }
7388
7389  if (isUNPCKLMask(M, VT, HasInt256))
7390    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7391
7392  if (isUNPCKHMask(M, VT, HasInt256))
7393    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7394
7395  if (V2IsSplat) {
7396    // Normalize mask so all entries that point to V2 points to its first
7397    // element then try to match unpck{h|l} again. If match, return a
7398    // new vector_shuffle with the corrected mask.p
7399    SmallVector<int, 8> NewMask(M.begin(), M.end());
7400    NormalizeMask(NewMask, NumElems);
7401    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
7402      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7403    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
7404      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7405  }
7406
7407  if (Commuted) {
7408    // Commute is back and try unpck* again.
7409    // FIXME: this seems wrong.
7410    CommuteVectorShuffleMask(M, NumElems);
7411    std::swap(V1, V2);
7412    std::swap(V1IsSplat, V2IsSplat);
7413    Commuted = false;
7414
7415    if (isUNPCKLMask(M, VT, HasInt256))
7416      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7417
7418    if (isUNPCKHMask(M, VT, HasInt256))
7419      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7420  }
7421
7422  // Normalize the node to match x86 shuffle ops if needed
7423  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true)))
7424    return CommuteVectorShuffle(SVOp, DAG);
7425
7426  // The checks below are all present in isShuffleMaskLegal, but they are
7427  // inlined here right now to enable us to directly emit target specific
7428  // nodes, and remove one by one until they don't return Op anymore.
7429
7430  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
7431      SVOp->getSplatIndex() == 0 && V2IsUndef) {
7432    if (VT == MVT::v2f64 || VT == MVT::v2i64)
7433      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7434  }
7435
7436  if (isPSHUFHWMask(M, VT, HasInt256))
7437    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
7438                                getShufflePSHUFHWImmediate(SVOp),
7439                                DAG);
7440
7441  if (isPSHUFLWMask(M, VT, HasInt256))
7442    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
7443                                getShufflePSHUFLWImmediate(SVOp),
7444                                DAG);
7445
7446  if (isSHUFPMask(M, VT))
7447    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
7448                                getShuffleSHUFImmediate(SVOp), DAG);
7449
7450  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7451    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7452  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7453    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7454
7455  //===--------------------------------------------------------------------===//
7456  // Generate target specific nodes for 128 or 256-bit shuffles only
7457  // supported in the AVX instruction set.
7458  //
7459
7460  // Handle VMOVDDUPY permutations
7461  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7462    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7463
7464  // Handle VPERMILPS/D* permutations
7465  if (isVPERMILPMask(M, VT)) {
7466    if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
7467      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7468                                  getShuffleSHUFImmediate(SVOp), DAG);
7469    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7470                                getShuffleSHUFImmediate(SVOp), DAG);
7471  }
7472
7473  // Handle VPERM2F128/VPERM2I128 permutations
7474  if (isVPERM2X128Mask(M, VT, HasFp256))
7475    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7476                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7477
7478  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7479  if (BlendOp.getNode())
7480    return BlendOp;
7481
7482  unsigned Imm8;
7483  if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8))
7484    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG);
7485
7486  if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) ||
7487      VT.is512BitVector()) {
7488    MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
7489    MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems);
7490    SmallVector<SDValue, 16> permclMask;
7491    for (unsigned i = 0; i != NumElems; ++i) {
7492      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT));
7493    }
7494
7495    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT,
7496                                &permclMask[0], NumElems);
7497    if (V2IsUndef)
7498      // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7499      return DAG.getNode(X86ISD::VPERMV, dl, VT,
7500                          DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7501    return DAG.getNode(X86ISD::VPERMV3, dl, VT,
7502                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1, V2);
7503  }
7504
7505  //===--------------------------------------------------------------------===//
7506  // Since no target specific shuffle was selected for this generic one,
7507  // lower it into other known shuffles. FIXME: this isn't true yet, but
7508  // this is the plan.
7509  //
7510
7511  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7512  if (VT == MVT::v8i16) {
7513    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7514    if (NewOp.getNode())
7515      return NewOp;
7516  }
7517
7518  if (VT == MVT::v16i8) {
7519    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG);
7520    if (NewOp.getNode())
7521      return NewOp;
7522  }
7523
7524  if (VT == MVT::v32i8) {
7525    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7526    if (NewOp.getNode())
7527      return NewOp;
7528  }
7529
7530  // Handle all 128-bit wide vectors with 4 elements, and match them with
7531  // several different shuffle types.
7532  if (NumElems == 4 && VT.is128BitVector())
7533    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7534
7535  // Handle general 256-bit shuffles
7536  if (VT.is256BitVector())
7537    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7538
7539  return SDValue();
7540}
7541
7542static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7543  MVT VT = Op.getSimpleValueType();
7544  SDLoc dl(Op);
7545
7546  if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
7547    return SDValue();
7548
7549  if (VT.getSizeInBits() == 8) {
7550    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7551                                  Op.getOperand(0), Op.getOperand(1));
7552    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7553                                  DAG.getValueType(VT));
7554    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7555  }
7556
7557  if (VT.getSizeInBits() == 16) {
7558    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7559    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7560    if (Idx == 0)
7561      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7562                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7563                                     DAG.getNode(ISD::BITCAST, dl,
7564                                                 MVT::v4i32,
7565                                                 Op.getOperand(0)),
7566                                     Op.getOperand(1)));
7567    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7568                                  Op.getOperand(0), Op.getOperand(1));
7569    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7570                                  DAG.getValueType(VT));
7571    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7572  }
7573
7574  if (VT == MVT::f32) {
7575    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7576    // the result back to FR32 register. It's only worth matching if the
7577    // result has a single use which is a store or a bitcast to i32.  And in
7578    // the case of a store, it's not worth it if the index is a constant 0,
7579    // because a MOVSSmr can be used instead, which is smaller and faster.
7580    if (!Op.hasOneUse())
7581      return SDValue();
7582    SDNode *User = *Op.getNode()->use_begin();
7583    if ((User->getOpcode() != ISD::STORE ||
7584         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7585          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7586        (User->getOpcode() != ISD::BITCAST ||
7587         User->getValueType(0) != MVT::i32))
7588      return SDValue();
7589    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7590                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7591                                              Op.getOperand(0)),
7592                                              Op.getOperand(1));
7593    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7594  }
7595
7596  if (VT == MVT::i32 || VT == MVT::i64) {
7597    // ExtractPS/pextrq works with constant index.
7598    if (isa<ConstantSDNode>(Op.getOperand(1)))
7599      return Op;
7600  }
7601  return SDValue();
7602}
7603
7604SDValue
7605X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7606                                           SelectionDAG &DAG) const {
7607  SDLoc dl(Op);
7608  SDValue Vec = Op.getOperand(0);
7609  MVT VecVT = Vec.getSimpleValueType();
7610  SDValue Idx = Op.getOperand(1);
7611  if (!isa<ConstantSDNode>(Idx)) {
7612    if (VecVT.is512BitVector() ||
7613        (VecVT.is256BitVector() && Subtarget->hasInt256() &&
7614         VecVT.getVectorElementType().getSizeInBits() == 32)) {
7615
7616      MVT MaskEltVT =
7617        MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
7618      MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
7619                                    MaskEltVT.getSizeInBits());
7620
7621      if (Idx.getSimpleValueType() != MaskEltVT)
7622        if (Idx.getOpcode() == ISD::ZERO_EXTEND ||
7623            Idx.getOpcode() == ISD::SIGN_EXTEND)
7624          Idx = Idx.getOperand(0);
7625      assert(Idx.getSimpleValueType() == MaskEltVT &&
7626             "Unexpected index in insertelement");
7627      SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
7628                                getZeroVector(MaskVT, Subtarget, DAG, dl),
7629                                Idx, DAG.getConstant(0, getPointerTy()));
7630      SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
7631      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(),
7632                        Perm, DAG.getConstant(0, getPointerTy()));
7633    }
7634    return SDValue();
7635  }
7636
7637  // If this is a 256-bit vector result, first extract the 128-bit vector and
7638  // then extract the element from the 128-bit vector.
7639  if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
7640
7641    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7642    // Get the 128-bit vector.
7643    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7644    MVT EltVT = VecVT.getVectorElementType();
7645
7646    unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
7647
7648    //if (IdxVal >= NumElems/2)
7649    //  IdxVal -= NumElems/2;
7650    IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
7651    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7652                       DAG.getConstant(IdxVal, MVT::i32));
7653  }
7654
7655  assert(VecVT.is128BitVector() && "Unexpected vector length");
7656
7657  if (Subtarget->hasSSE41()) {
7658    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7659    if (Res.getNode())
7660      return Res;
7661  }
7662
7663  MVT VT = Op.getSimpleValueType();
7664  // TODO: handle v16i8.
7665  if (VT.getSizeInBits() == 16) {
7666    SDValue Vec = Op.getOperand(0);
7667    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7668    if (Idx == 0)
7669      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7670                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7671                                     DAG.getNode(ISD::BITCAST, dl,
7672                                                 MVT::v4i32, Vec),
7673                                     Op.getOperand(1)));
7674    // Transform it so it match pextrw which produces a 32-bit result.
7675    MVT EltVT = MVT::i32;
7676    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7677                                  Op.getOperand(0), Op.getOperand(1));
7678    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7679                                  DAG.getValueType(VT));
7680    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7681  }
7682
7683  if (VT.getSizeInBits() == 32) {
7684    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7685    if (Idx == 0)
7686      return Op;
7687
7688    // SHUFPS the element to the lowest double word, then movss.
7689    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7690    MVT VVT = Op.getOperand(0).getSimpleValueType();
7691    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7692                                       DAG.getUNDEF(VVT), Mask);
7693    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7694                       DAG.getIntPtrConstant(0));
7695  }
7696
7697  if (VT.getSizeInBits() == 64) {
7698    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7699    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7700    //        to match extract_elt for f64.
7701    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7702    if (Idx == 0)
7703      return Op;
7704
7705    // UNPCKHPD the element to the lowest double word, then movsd.
7706    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7707    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7708    int Mask[2] = { 1, -1 };
7709    MVT VVT = Op.getOperand(0).getSimpleValueType();
7710    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7711                                       DAG.getUNDEF(VVT), Mask);
7712    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7713                       DAG.getIntPtrConstant(0));
7714  }
7715
7716  return SDValue();
7717}
7718
7719static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7720  MVT VT = Op.getSimpleValueType();
7721  MVT EltVT = VT.getVectorElementType();
7722  SDLoc dl(Op);
7723
7724  SDValue N0 = Op.getOperand(0);
7725  SDValue N1 = Op.getOperand(1);
7726  SDValue N2 = Op.getOperand(2);
7727
7728  if (!VT.is128BitVector())
7729    return SDValue();
7730
7731  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7732      isa<ConstantSDNode>(N2)) {
7733    unsigned Opc;
7734    if (VT == MVT::v8i16)
7735      Opc = X86ISD::PINSRW;
7736    else if (VT == MVT::v16i8)
7737      Opc = X86ISD::PINSRB;
7738    else
7739      Opc = X86ISD::PINSRB;
7740
7741    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7742    // argument.
7743    if (N1.getValueType() != MVT::i32)
7744      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7745    if (N2.getValueType() != MVT::i32)
7746      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7747    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7748  }
7749
7750  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7751    // Bits [7:6] of the constant are the source select.  This will always be
7752    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7753    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7754    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7755    // Bits [5:4] of the constant are the destination select.  This is the
7756    //  value of the incoming immediate.
7757    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7758    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7759    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7760    // Create this as a scalar to vector..
7761    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7762    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7763  }
7764
7765  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7766    // PINSR* works with constant index.
7767    return Op;
7768  }
7769  return SDValue();
7770}
7771
7772SDValue
7773X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7774  MVT VT = Op.getSimpleValueType();
7775  MVT EltVT = VT.getVectorElementType();
7776
7777  SDLoc dl(Op);
7778  SDValue N0 = Op.getOperand(0);
7779  SDValue N1 = Op.getOperand(1);
7780  SDValue N2 = Op.getOperand(2);
7781
7782  // If this is a 256-bit vector result, first extract the 128-bit vector,
7783  // insert the element into the extracted half and then place it back.
7784  if (VT.is256BitVector() || VT.is512BitVector()) {
7785    if (!isa<ConstantSDNode>(N2))
7786      return SDValue();
7787
7788    // Get the desired 128-bit vector half.
7789    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7790    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7791
7792    // Insert the element into the desired half.
7793    unsigned NumEltsIn128 = 128/EltVT.getSizeInBits();
7794    unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128;
7795
7796    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7797                    DAG.getConstant(IdxIn128, MVT::i32));
7798
7799    // Insert the changed part back to the 256-bit vector
7800    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7801  }
7802
7803  if (Subtarget->hasSSE41())
7804    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7805
7806  if (EltVT == MVT::i8)
7807    return SDValue();
7808
7809  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7810    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7811    // as its second argument.
7812    if (N1.getValueType() != MVT::i32)
7813      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7814    if (N2.getValueType() != MVT::i32)
7815      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7816    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7817  }
7818  return SDValue();
7819}
7820
7821static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7822  SDLoc dl(Op);
7823  MVT OpVT = Op.getSimpleValueType();
7824
7825  // If this is a 256-bit vector result, first insert into a 128-bit
7826  // vector and then insert into the 256-bit vector.
7827  if (!OpVT.is128BitVector()) {
7828    // Insert into a 128-bit vector.
7829    unsigned SizeFactor = OpVT.getSizeInBits()/128;
7830    MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
7831                                 OpVT.getVectorNumElements() / SizeFactor);
7832
7833    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7834
7835    // Insert the 128-bit vector.
7836    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7837  }
7838
7839  if (OpVT == MVT::v1i64 &&
7840      Op.getOperand(0).getValueType() == MVT::i64)
7841    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7842
7843  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7844  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7845  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7846                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7847}
7848
7849// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7850// a simple subregister reference or explicit instructions to grab
7851// upper bits of a vector.
7852static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7853                                      SelectionDAG &DAG) {
7854  SDLoc dl(Op);
7855  SDValue In =  Op.getOperand(0);
7856  SDValue Idx = Op.getOperand(1);
7857  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7858  MVT ResVT   = Op.getSimpleValueType();
7859  MVT InVT    = In.getSimpleValueType();
7860
7861  if (Subtarget->hasFp256()) {
7862    if (ResVT.is128BitVector() &&
7863        (InVT.is256BitVector() || InVT.is512BitVector()) &&
7864        isa<ConstantSDNode>(Idx)) {
7865      return Extract128BitVector(In, IdxVal, DAG, dl);
7866    }
7867    if (ResVT.is256BitVector() && InVT.is512BitVector() &&
7868        isa<ConstantSDNode>(Idx)) {
7869      return Extract256BitVector(In, IdxVal, DAG, dl);
7870    }
7871  }
7872  return SDValue();
7873}
7874
7875// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7876// simple superregister reference or explicit instructions to insert
7877// the upper bits of a vector.
7878static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7879                                     SelectionDAG &DAG) {
7880  if (Subtarget->hasFp256()) {
7881    SDLoc dl(Op.getNode());
7882    SDValue Vec = Op.getNode()->getOperand(0);
7883    SDValue SubVec = Op.getNode()->getOperand(1);
7884    SDValue Idx = Op.getNode()->getOperand(2);
7885
7886    if ((Op.getNode()->getSimpleValueType(0).is256BitVector() ||
7887         Op.getNode()->getSimpleValueType(0).is512BitVector()) &&
7888        SubVec.getNode()->getSimpleValueType(0).is128BitVector() &&
7889        isa<ConstantSDNode>(Idx)) {
7890      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7891      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7892    }
7893
7894    if (Op.getNode()->getSimpleValueType(0).is512BitVector() &&
7895        SubVec.getNode()->getSimpleValueType(0).is256BitVector() &&
7896        isa<ConstantSDNode>(Idx)) {
7897      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7898      return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
7899    }
7900  }
7901  return SDValue();
7902}
7903
7904// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7905// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7906// one of the above mentioned nodes. It has to be wrapped because otherwise
7907// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7908// be used to form addressing mode. These wrapped nodes will be selected
7909// into MOV32ri.
7910SDValue
7911X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7912  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7913
7914  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7915  // global base reg.
7916  unsigned char OpFlag = 0;
7917  unsigned WrapperKind = X86ISD::Wrapper;
7918  CodeModel::Model M = getTargetMachine().getCodeModel();
7919
7920  if (Subtarget->isPICStyleRIPRel() &&
7921      (M == CodeModel::Small || M == CodeModel::Kernel))
7922    WrapperKind = X86ISD::WrapperRIP;
7923  else if (Subtarget->isPICStyleGOT())
7924    OpFlag = X86II::MO_GOTOFF;
7925  else if (Subtarget->isPICStyleStubPIC())
7926    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7927
7928  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7929                                             CP->getAlignment(),
7930                                             CP->getOffset(), OpFlag);
7931  SDLoc DL(CP);
7932  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7933  // With PIC, the address is actually $g + Offset.
7934  if (OpFlag) {
7935    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7936                         DAG.getNode(X86ISD::GlobalBaseReg,
7937                                     SDLoc(), getPointerTy()),
7938                         Result);
7939  }
7940
7941  return Result;
7942}
7943
7944SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7945  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7946
7947  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7948  // global base reg.
7949  unsigned char OpFlag = 0;
7950  unsigned WrapperKind = X86ISD::Wrapper;
7951  CodeModel::Model M = getTargetMachine().getCodeModel();
7952
7953  if (Subtarget->isPICStyleRIPRel() &&
7954      (M == CodeModel::Small || M == CodeModel::Kernel))
7955    WrapperKind = X86ISD::WrapperRIP;
7956  else if (Subtarget->isPICStyleGOT())
7957    OpFlag = X86II::MO_GOTOFF;
7958  else if (Subtarget->isPICStyleStubPIC())
7959    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7960
7961  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7962                                          OpFlag);
7963  SDLoc DL(JT);
7964  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7965
7966  // With PIC, the address is actually $g + Offset.
7967  if (OpFlag)
7968    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7969                         DAG.getNode(X86ISD::GlobalBaseReg,
7970                                     SDLoc(), getPointerTy()),
7971                         Result);
7972
7973  return Result;
7974}
7975
7976SDValue
7977X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7978  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7979
7980  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7981  // global base reg.
7982  unsigned char OpFlag = 0;
7983  unsigned WrapperKind = X86ISD::Wrapper;
7984  CodeModel::Model M = getTargetMachine().getCodeModel();
7985
7986  if (Subtarget->isPICStyleRIPRel() &&
7987      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7988    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7989      OpFlag = X86II::MO_GOTPCREL;
7990    WrapperKind = X86ISD::WrapperRIP;
7991  } else if (Subtarget->isPICStyleGOT()) {
7992    OpFlag = X86II::MO_GOT;
7993  } else if (Subtarget->isPICStyleStubPIC()) {
7994    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7995  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7996    OpFlag = X86II::MO_DARWIN_NONLAZY;
7997  }
7998
7999  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
8000
8001  SDLoc DL(Op);
8002  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8003
8004  // With PIC, the address is actually $g + Offset.
8005  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
8006      !Subtarget->is64Bit()) {
8007    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8008                         DAG.getNode(X86ISD::GlobalBaseReg,
8009                                     SDLoc(), getPointerTy()),
8010                         Result);
8011  }
8012
8013  // For symbols that require a load from a stub to get the address, emit the
8014  // load.
8015  if (isGlobalStubReference(OpFlag))
8016    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
8017                         MachinePointerInfo::getGOT(), false, false, false, 0);
8018
8019  return Result;
8020}
8021
8022SDValue
8023X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
8024  // Create the TargetBlockAddressAddress node.
8025  unsigned char OpFlags =
8026    Subtarget->ClassifyBlockAddressReference();
8027  CodeModel::Model M = getTargetMachine().getCodeModel();
8028  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
8029  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
8030  SDLoc dl(Op);
8031  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
8032                                             OpFlags);
8033
8034  if (Subtarget->isPICStyleRIPRel() &&
8035      (M == CodeModel::Small || M == CodeModel::Kernel))
8036    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8037  else
8038    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8039
8040  // With PIC, the address is actually $g + Offset.
8041  if (isGlobalRelativeToPICBase(OpFlags)) {
8042    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8043                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8044                         Result);
8045  }
8046
8047  return Result;
8048}
8049
8050SDValue
8051X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
8052                                      int64_t Offset, SelectionDAG &DAG) const {
8053  // Create the TargetGlobalAddress node, folding in the constant
8054  // offset if it is legal.
8055  unsigned char OpFlags =
8056    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
8057  CodeModel::Model M = getTargetMachine().getCodeModel();
8058  SDValue Result;
8059  if (OpFlags == X86II::MO_NO_FLAG &&
8060      X86::isOffsetSuitableForCodeModel(Offset, M)) {
8061    // A direct static reference to a global.
8062    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
8063    Offset = 0;
8064  } else {
8065    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
8066  }
8067
8068  if (Subtarget->isPICStyleRIPRel() &&
8069      (M == CodeModel::Small || M == CodeModel::Kernel))
8070    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8071  else
8072    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8073
8074  // With PIC, the address is actually $g + Offset.
8075  if (isGlobalRelativeToPICBase(OpFlags)) {
8076    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8077                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8078                         Result);
8079  }
8080
8081  // For globals that require a load from a stub to get the address, emit the
8082  // load.
8083  if (isGlobalStubReference(OpFlags))
8084    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
8085                         MachinePointerInfo::getGOT(), false, false, false, 0);
8086
8087  // If there was a non-zero offset that we didn't fold, create an explicit
8088  // addition for it.
8089  if (Offset != 0)
8090    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
8091                         DAG.getConstant(Offset, getPointerTy()));
8092
8093  return Result;
8094}
8095
8096SDValue
8097X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
8098  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
8099  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
8100  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
8101}
8102
8103static SDValue
8104GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
8105           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
8106           unsigned char OperandFlags, bool LocalDynamic = false) {
8107  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8108  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8109  SDLoc dl(GA);
8110  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8111                                           GA->getValueType(0),
8112                                           GA->getOffset(),
8113                                           OperandFlags);
8114
8115  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
8116                                           : X86ISD::TLSADDR;
8117
8118  if (InFlag) {
8119    SDValue Ops[] = { Chain,  TGA, *InFlag };
8120    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
8121  } else {
8122    SDValue Ops[]  = { Chain, TGA };
8123    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
8124  }
8125
8126  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8127  MFI->setAdjustsStack(true);
8128
8129  SDValue Flag = Chain.getValue(1);
8130  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
8131}
8132
8133// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
8134static SDValue
8135LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8136                                const EVT PtrVT) {
8137  SDValue InFlag;
8138  SDLoc dl(GA);  // ? function entry point might be better
8139  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8140                                   DAG.getNode(X86ISD::GlobalBaseReg,
8141                                               SDLoc(), PtrVT), InFlag);
8142  InFlag = Chain.getValue(1);
8143
8144  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
8145}
8146
8147// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
8148static SDValue
8149LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8150                                const EVT PtrVT) {
8151  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
8152                    X86::RAX, X86II::MO_TLSGD);
8153}
8154
8155static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
8156                                           SelectionDAG &DAG,
8157                                           const EVT PtrVT,
8158                                           bool is64Bit) {
8159  SDLoc dl(GA);
8160
8161  // Get the start address of the TLS block for this module.
8162  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
8163      .getInfo<X86MachineFunctionInfo>();
8164  MFI->incNumLocalDynamicTLSAccesses();
8165
8166  SDValue Base;
8167  if (is64Bit) {
8168    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
8169                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
8170  } else {
8171    SDValue InFlag;
8172    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8173        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
8174    InFlag = Chain.getValue(1);
8175    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
8176                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
8177  }
8178
8179  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
8180  // of Base.
8181
8182  // Build x@dtpoff.
8183  unsigned char OperandFlags = X86II::MO_DTPOFF;
8184  unsigned WrapperKind = X86ISD::Wrapper;
8185  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8186                                           GA->getValueType(0),
8187                                           GA->getOffset(), OperandFlags);
8188  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8189
8190  // Add x@dtpoff with the base.
8191  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
8192}
8193
8194// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
8195static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8196                                   const EVT PtrVT, TLSModel::Model model,
8197                                   bool is64Bit, bool isPIC) {
8198  SDLoc dl(GA);
8199
8200  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
8201  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
8202                                                         is64Bit ? 257 : 256));
8203
8204  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
8205                                      DAG.getIntPtrConstant(0),
8206                                      MachinePointerInfo(Ptr),
8207                                      false, false, false, 0);
8208
8209  unsigned char OperandFlags = 0;
8210  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
8211  // initialexec.
8212  unsigned WrapperKind = X86ISD::Wrapper;
8213  if (model == TLSModel::LocalExec) {
8214    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
8215  } else if (model == TLSModel::InitialExec) {
8216    if (is64Bit) {
8217      OperandFlags = X86II::MO_GOTTPOFF;
8218      WrapperKind = X86ISD::WrapperRIP;
8219    } else {
8220      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
8221    }
8222  } else {
8223    llvm_unreachable("Unexpected model");
8224  }
8225
8226  // emit "addl x@ntpoff,%eax" (local exec)
8227  // or "addl x@indntpoff,%eax" (initial exec)
8228  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
8229  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8230                                           GA->getValueType(0),
8231                                           GA->getOffset(), OperandFlags);
8232  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8233
8234  if (model == TLSModel::InitialExec) {
8235    if (isPIC && !is64Bit) {
8236      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
8237                          DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
8238                           Offset);
8239    }
8240
8241    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
8242                         MachinePointerInfo::getGOT(), false, false, false,
8243                         0);
8244  }
8245
8246  // The address of the thread local variable is the add of the thread
8247  // pointer with the offset of the variable.
8248  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
8249}
8250
8251SDValue
8252X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
8253
8254  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
8255  const GlobalValue *GV = GA->getGlobal();
8256
8257  if (Subtarget->isTargetELF()) {
8258    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
8259
8260    switch (model) {
8261      case TLSModel::GeneralDynamic:
8262        if (Subtarget->is64Bit())
8263          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
8264        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
8265      case TLSModel::LocalDynamic:
8266        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
8267                                           Subtarget->is64Bit());
8268      case TLSModel::InitialExec:
8269      case TLSModel::LocalExec:
8270        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
8271                                   Subtarget->is64Bit(),
8272                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
8273    }
8274    llvm_unreachable("Unknown TLS model.");
8275  }
8276
8277  if (Subtarget->isTargetDarwin()) {
8278    // Darwin only has one model of TLS.  Lower to that.
8279    unsigned char OpFlag = 0;
8280    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
8281                           X86ISD::WrapperRIP : X86ISD::Wrapper;
8282
8283    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8284    // global base reg.
8285    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
8286                  !Subtarget->is64Bit();
8287    if (PIC32)
8288      OpFlag = X86II::MO_TLVP_PIC_BASE;
8289    else
8290      OpFlag = X86II::MO_TLVP;
8291    SDLoc DL(Op);
8292    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
8293                                                GA->getValueType(0),
8294                                                GA->getOffset(), OpFlag);
8295    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8296
8297    // With PIC32, the address is actually $g + Offset.
8298    if (PIC32)
8299      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8300                           DAG.getNode(X86ISD::GlobalBaseReg,
8301                                       SDLoc(), getPointerTy()),
8302                           Offset);
8303
8304    // Lowering the machine isd will make sure everything is in the right
8305    // location.
8306    SDValue Chain = DAG.getEntryNode();
8307    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8308    SDValue Args[] = { Chain, Offset };
8309    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
8310
8311    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
8312    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8313    MFI->setAdjustsStack(true);
8314
8315    // And our return value (tls address) is in the standard call return value
8316    // location.
8317    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
8318    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
8319                              Chain.getValue(1));
8320  }
8321
8322  if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) {
8323    // Just use the implicit TLS architecture
8324    // Need to generate someting similar to:
8325    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
8326    //                                  ; from TEB
8327    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
8328    //   mov     rcx, qword [rdx+rcx*8]
8329    //   mov     eax, .tls$:tlsvar
8330    //   [rax+rcx] contains the address
8331    // Windows 64bit: gs:0x58
8332    // Windows 32bit: fs:__tls_array
8333
8334    // If GV is an alias then use the aliasee for determining
8335    // thread-localness.
8336    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
8337      GV = GA->resolveAliasedGlobal(false);
8338    SDLoc dl(GA);
8339    SDValue Chain = DAG.getEntryNode();
8340
8341    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
8342    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
8343    // use its literal value of 0x2C.
8344    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
8345                                        ? Type::getInt8PtrTy(*DAG.getContext(),
8346                                                             256)
8347                                        : Type::getInt32PtrTy(*DAG.getContext(),
8348                                                              257));
8349
8350    SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) :
8351      (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) :
8352        DAG.getExternalSymbol("_tls_array", getPointerTy()));
8353
8354    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
8355                                        MachinePointerInfo(Ptr),
8356                                        false, false, false, 0);
8357
8358    // Load the _tls_index variable
8359    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
8360    if (Subtarget->is64Bit())
8361      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
8362                           IDX, MachinePointerInfo(), MVT::i32,
8363                           false, false, 0);
8364    else
8365      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
8366                        false, false, false, 0);
8367
8368    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
8369                                    getPointerTy());
8370    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
8371
8372    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
8373    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
8374                      false, false, false, 0);
8375
8376    // Get the offset of start of .tls section
8377    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8378                                             GA->getValueType(0),
8379                                             GA->getOffset(), X86II::MO_SECREL);
8380    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
8381
8382    // The address of the thread local variable is the add of the thread
8383    // pointer with the offset of the variable.
8384    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
8385  }
8386
8387  llvm_unreachable("TLS not implemented for this target.");
8388}
8389
8390/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
8391/// and take a 2 x i32 value to shift plus a shift amount.
8392SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
8393  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
8394  EVT VT = Op.getValueType();
8395  unsigned VTBits = VT.getSizeInBits();
8396  SDLoc dl(Op);
8397  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
8398  SDValue ShOpLo = Op.getOperand(0);
8399  SDValue ShOpHi = Op.getOperand(1);
8400  SDValue ShAmt  = Op.getOperand(2);
8401  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8402                                     DAG.getConstant(VTBits - 1, MVT::i8))
8403                       : DAG.getConstant(0, VT);
8404
8405  SDValue Tmp2, Tmp3;
8406  if (Op.getOpcode() == ISD::SHL_PARTS) {
8407    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
8408    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
8409  } else {
8410    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
8411    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
8412  }
8413
8414  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
8415                                DAG.getConstant(VTBits, MVT::i8));
8416  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8417                             AndNode, DAG.getConstant(0, MVT::i8));
8418
8419  SDValue Hi, Lo;
8420  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8421  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
8422  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
8423
8424  if (Op.getOpcode() == ISD::SHL_PARTS) {
8425    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
8426    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
8427  } else {
8428    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
8429    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
8430  }
8431
8432  SDValue Ops[2] = { Lo, Hi };
8433  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
8434}
8435
8436SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
8437                                           SelectionDAG &DAG) const {
8438  EVT SrcVT = Op.getOperand(0).getValueType();
8439
8440  if (SrcVT.isVector())
8441    return SDValue();
8442
8443  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
8444         "Unknown SINT_TO_FP to lower!");
8445
8446  // These are really Legal; return the operand so the caller accepts it as
8447  // Legal.
8448  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
8449    return Op;
8450  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
8451      Subtarget->is64Bit()) {
8452    return Op;
8453  }
8454
8455  SDLoc dl(Op);
8456  unsigned Size = SrcVT.getSizeInBits()/8;
8457  MachineFunction &MF = DAG.getMachineFunction();
8458  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
8459  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8460  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8461                               StackSlot,
8462                               MachinePointerInfo::getFixedStack(SSFI),
8463                               false, false, 0);
8464  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
8465}
8466
8467SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
8468                                     SDValue StackSlot,
8469                                     SelectionDAG &DAG) const {
8470  // Build the FILD
8471  SDLoc DL(Op);
8472  SDVTList Tys;
8473  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
8474  if (useSSE)
8475    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
8476  else
8477    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
8478
8479  unsigned ByteSize = SrcVT.getSizeInBits()/8;
8480
8481  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
8482  MachineMemOperand *MMO;
8483  if (FI) {
8484    int SSFI = FI->getIndex();
8485    MMO =
8486      DAG.getMachineFunction()
8487      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8488                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
8489  } else {
8490    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
8491    StackSlot = StackSlot.getOperand(1);
8492  }
8493  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
8494  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
8495                                           X86ISD::FILD, DL,
8496                                           Tys, Ops, array_lengthof(Ops),
8497                                           SrcVT, MMO);
8498
8499  if (useSSE) {
8500    Chain = Result.getValue(1);
8501    SDValue InFlag = Result.getValue(2);
8502
8503    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
8504    // shouldn't be necessary except that RFP cannot be live across
8505    // multiple blocks. When stackifier is fixed, they can be uncoupled.
8506    MachineFunction &MF = DAG.getMachineFunction();
8507    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
8508    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
8509    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8510    Tys = DAG.getVTList(MVT::Other);
8511    SDValue Ops[] = {
8512      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
8513    };
8514    MachineMemOperand *MMO =
8515      DAG.getMachineFunction()
8516      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8517                            MachineMemOperand::MOStore, SSFISize, SSFISize);
8518
8519    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
8520                                    Ops, array_lengthof(Ops),
8521                                    Op.getValueType(), MMO);
8522    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
8523                         MachinePointerInfo::getFixedStack(SSFI),
8524                         false, false, false, 0);
8525  }
8526
8527  return Result;
8528}
8529
8530// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
8531SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
8532                                               SelectionDAG &DAG) const {
8533  // This algorithm is not obvious. Here it is what we're trying to output:
8534  /*
8535     movq       %rax,  %xmm0
8536     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8537     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8538     #ifdef __SSE3__
8539       haddpd   %xmm0, %xmm0
8540     #else
8541       pshufd   $0x4e, %xmm0, %xmm1
8542       addpd    %xmm1, %xmm0
8543     #endif
8544  */
8545
8546  SDLoc dl(Op);
8547  LLVMContext *Context = DAG.getContext();
8548
8549  // Build some magic constants.
8550  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8551  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8552  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8553
8554  SmallVector<Constant*,2> CV1;
8555  CV1.push_back(
8556    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8557                                      APInt(64, 0x4330000000000000ULL))));
8558  CV1.push_back(
8559    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8560                                      APInt(64, 0x4530000000000000ULL))));
8561  Constant *C1 = ConstantVector::get(CV1);
8562  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8563
8564  // Load the 64-bit value into an XMM register.
8565  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8566                            Op.getOperand(0));
8567  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8568                              MachinePointerInfo::getConstantPool(),
8569                              false, false, false, 16);
8570  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8571                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8572                              CLod0);
8573
8574  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8575                              MachinePointerInfo::getConstantPool(),
8576                              false, false, false, 16);
8577  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8578  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8579  SDValue Result;
8580
8581  if (Subtarget->hasSSE3()) {
8582    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8583    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8584  } else {
8585    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8586    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8587                                           S2F, 0x4E, DAG);
8588    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8589                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8590                         Sub);
8591  }
8592
8593  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8594                     DAG.getIntPtrConstant(0));
8595}
8596
8597// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8598SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8599                                               SelectionDAG &DAG) const {
8600  SDLoc dl(Op);
8601  // FP constant to bias correct the final result.
8602  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8603                                   MVT::f64);
8604
8605  // Load the 32-bit value into an XMM register.
8606  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8607                             Op.getOperand(0));
8608
8609  // Zero out the upper parts of the register.
8610  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8611
8612  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8613                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8614                     DAG.getIntPtrConstant(0));
8615
8616  // Or the load with the bias.
8617  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8618                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8619                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8620                                                   MVT::v2f64, Load)),
8621                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8622                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8623                                                   MVT::v2f64, Bias)));
8624  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8625                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8626                   DAG.getIntPtrConstant(0));
8627
8628  // Subtract the bias.
8629  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8630
8631  // Handle final rounding.
8632  EVT DestVT = Op.getValueType();
8633
8634  if (DestVT.bitsLT(MVT::f64))
8635    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8636                       DAG.getIntPtrConstant(0));
8637  if (DestVT.bitsGT(MVT::f64))
8638    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8639
8640  // Handle final rounding.
8641  return Sub;
8642}
8643
8644SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8645                                               SelectionDAG &DAG) const {
8646  SDValue N0 = Op.getOperand(0);
8647  EVT SVT = N0.getValueType();
8648  SDLoc dl(Op);
8649
8650  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8651          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8652         "Custom UINT_TO_FP is not supported!");
8653
8654  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
8655                             SVT.getVectorNumElements());
8656  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8657                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8658}
8659
8660SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8661                                           SelectionDAG &DAG) const {
8662  SDValue N0 = Op.getOperand(0);
8663  SDLoc dl(Op);
8664
8665  if (Op.getValueType().isVector())
8666    return lowerUINT_TO_FP_vec(Op, DAG);
8667
8668  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8669  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8670  // the optimization here.
8671  if (DAG.SignBitIsZero(N0))
8672    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8673
8674  EVT SrcVT = N0.getValueType();
8675  EVT DstVT = Op.getValueType();
8676  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8677    return LowerUINT_TO_FP_i64(Op, DAG);
8678  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8679    return LowerUINT_TO_FP_i32(Op, DAG);
8680  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8681    return SDValue();
8682
8683  // Make a 64-bit buffer, and use it to build an FILD.
8684  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8685  if (SrcVT == MVT::i32) {
8686    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8687    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8688                                     getPointerTy(), StackSlot, WordOff);
8689    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8690                                  StackSlot, MachinePointerInfo(),
8691                                  false, false, 0);
8692    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8693                                  OffsetSlot, MachinePointerInfo(),
8694                                  false, false, 0);
8695    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8696    return Fild;
8697  }
8698
8699  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8700  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8701                               StackSlot, MachinePointerInfo(),
8702                               false, false, 0);
8703  // For i64 source, we need to add the appropriate power of 2 if the input
8704  // was negative.  This is the same as the optimization in
8705  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8706  // we must be careful to do the computation in x87 extended precision, not
8707  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8708  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8709  MachineMemOperand *MMO =
8710    DAG.getMachineFunction()
8711    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8712                          MachineMemOperand::MOLoad, 8, 8);
8713
8714  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8715  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8716  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
8717                                         array_lengthof(Ops), MVT::i64, MMO);
8718
8719  APInt FF(32, 0x5F800000ULL);
8720
8721  // Check whether the sign bit is set.
8722  SDValue SignSet = DAG.getSetCC(dl,
8723                                 getSetCCResultType(*DAG.getContext(), MVT::i64),
8724                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8725                                 ISD::SETLT);
8726
8727  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8728  SDValue FudgePtr = DAG.getConstantPool(
8729                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8730                                         getPointerTy());
8731
8732  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8733  SDValue Zero = DAG.getIntPtrConstant(0);
8734  SDValue Four = DAG.getIntPtrConstant(4);
8735  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8736                               Zero, Four);
8737  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8738
8739  // Load the value out, extending it from f32 to f80.
8740  // FIXME: Avoid the extend by constructing the right constant pool?
8741  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8742                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8743                                 MVT::f32, false, false, 4);
8744  // Extend everything to 80 bits to force it to be done on x87.
8745  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8746  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8747}
8748
8749std::pair<SDValue,SDValue>
8750X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
8751                                    bool IsSigned, bool IsReplace) const {
8752  SDLoc DL(Op);
8753
8754  EVT DstTy = Op.getValueType();
8755
8756  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8757    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8758    DstTy = MVT::i64;
8759  }
8760
8761  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8762         DstTy.getSimpleVT() >= MVT::i16 &&
8763         "Unknown FP_TO_INT to lower!");
8764
8765  // These are really Legal.
8766  if (DstTy == MVT::i32 &&
8767      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8768    return std::make_pair(SDValue(), SDValue());
8769  if (Subtarget->is64Bit() &&
8770      DstTy == MVT::i64 &&
8771      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8772    return std::make_pair(SDValue(), SDValue());
8773
8774  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8775  // stack slot, or into the FTOL runtime function.
8776  MachineFunction &MF = DAG.getMachineFunction();
8777  unsigned MemSize = DstTy.getSizeInBits()/8;
8778  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8779  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8780
8781  unsigned Opc;
8782  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8783    Opc = X86ISD::WIN_FTOL;
8784  else
8785    switch (DstTy.getSimpleVT().SimpleTy) {
8786    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8787    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8788    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8789    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8790    }
8791
8792  SDValue Chain = DAG.getEntryNode();
8793  SDValue Value = Op.getOperand(0);
8794  EVT TheVT = Op.getOperand(0).getValueType();
8795  // FIXME This causes a redundant load/store if the SSE-class value is already
8796  // in memory, such as if it is on the callstack.
8797  if (isScalarFPTypeInSSEReg(TheVT)) {
8798    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8799    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8800                         MachinePointerInfo::getFixedStack(SSFI),
8801                         false, false, 0);
8802    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8803    SDValue Ops[] = {
8804      Chain, StackSlot, DAG.getValueType(TheVT)
8805    };
8806
8807    MachineMemOperand *MMO =
8808      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8809                              MachineMemOperand::MOLoad, MemSize, MemSize);
8810    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops,
8811                                    array_lengthof(Ops), DstTy, MMO);
8812    Chain = Value.getValue(1);
8813    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8814    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8815  }
8816
8817  MachineMemOperand *MMO =
8818    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8819                            MachineMemOperand::MOStore, MemSize, MemSize);
8820
8821  if (Opc != X86ISD::WIN_FTOL) {
8822    // Build the FP_TO_INT*_IN_MEM
8823    SDValue Ops[] = { Chain, Value, StackSlot };
8824    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8825                                           Ops, array_lengthof(Ops), DstTy,
8826                                           MMO);
8827    return std::make_pair(FIST, StackSlot);
8828  } else {
8829    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8830      DAG.getVTList(MVT::Other, MVT::Glue),
8831      Chain, Value);
8832    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8833      MVT::i32, ftol.getValue(1));
8834    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8835      MVT::i32, eax.getValue(2));
8836    SDValue Ops[] = { eax, edx };
8837    SDValue pair = IsReplace
8838      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, array_lengthof(Ops))
8839      : DAG.getMergeValues(Ops, array_lengthof(Ops), DL);
8840    return std::make_pair(pair, SDValue());
8841  }
8842}
8843
8844static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8845                              const X86Subtarget *Subtarget) {
8846  MVT VT = Op->getSimpleValueType(0);
8847  SDValue In = Op->getOperand(0);
8848  MVT InVT = In.getSimpleValueType();
8849  SDLoc dl(Op);
8850
8851  // Optimize vectors in AVX mode:
8852  //
8853  //   v8i16 -> v8i32
8854  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8855  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8856  //   Concat upper and lower parts.
8857  //
8858  //   v4i32 -> v4i64
8859  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8860  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8861  //   Concat upper and lower parts.
8862  //
8863
8864  if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8865      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8866    return SDValue();
8867
8868  if (Subtarget->hasInt256())
8869    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8870
8871  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8872  SDValue Undef = DAG.getUNDEF(InVT);
8873  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8874  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8875  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8876
8877  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
8878                             VT.getVectorNumElements()/2);
8879
8880  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8881  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8882
8883  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8884}
8885
8886static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
8887                                        SelectionDAG &DAG) {
8888  MVT VT = Op->getValueType(0).getSimpleVT();
8889  SDValue In = Op->getOperand(0);
8890  MVT InVT = In.getValueType().getSimpleVT();
8891  SDLoc DL(Op);
8892  unsigned int NumElts = VT.getVectorNumElements();
8893  if (NumElts != 8 && NumElts != 16)
8894    return SDValue();
8895
8896  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
8897    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8898
8899  EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
8900  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8901  // Now we have only mask extension
8902  assert(InVT.getVectorElementType() == MVT::i1);
8903  SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
8904  const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
8905  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
8906  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
8907  SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
8908                           MachinePointerInfo::getConstantPool(),
8909                           false, false, false, Alignment);
8910
8911  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
8912  if (VT.is512BitVector())
8913    return Brcst;
8914  return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
8915}
8916
8917static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
8918                               SelectionDAG &DAG) {
8919  if (Subtarget->hasFp256()) {
8920    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8921    if (Res.getNode())
8922      return Res;
8923  }
8924
8925  return SDValue();
8926}
8927
8928static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
8929                                SelectionDAG &DAG) {
8930  SDLoc DL(Op);
8931  MVT VT = Op.getSimpleValueType();
8932  SDValue In = Op.getOperand(0);
8933  MVT SVT = In.getSimpleValueType();
8934
8935  if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
8936    return LowerZERO_EXTEND_AVX512(Op, DAG);
8937
8938  if (Subtarget->hasFp256()) {
8939    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8940    if (Res.getNode())
8941      return Res;
8942  }
8943
8944  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8945      VT.getVectorNumElements() != SVT.getVectorNumElements())
8946    return SDValue();
8947
8948  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8949
8950  // AVX2 has better support of integer extending.
8951  if (Subtarget->hasInt256())
8952    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8953
8954  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8955  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8956  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8957                           DAG.getVectorShuffle(MVT::v8i16, DL, In,
8958                                                DAG.getUNDEF(MVT::v8i16),
8959                                                &Mask[0]));
8960
8961  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8962}
8963
8964SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8965  SDLoc DL(Op);
8966  MVT VT = Op.getSimpleValueType();
8967  SDValue In = Op.getOperand(0);
8968  MVT InVT = In.getSimpleValueType();
8969  assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
8970         "Invalid TRUNCATE operation");
8971
8972  if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
8973    if (VT.getVectorElementType().getSizeInBits() >=8)
8974      return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
8975
8976    assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
8977    unsigned NumElts = InVT.getVectorNumElements();
8978    assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
8979    if (InVT.getSizeInBits() < 512) {
8980      MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
8981      In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
8982      InVT = ExtVT;
8983    }
8984    SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
8985    const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
8986    SDValue CP = DAG.getConstantPool(C, getPointerTy());
8987    unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
8988    SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
8989                           MachinePointerInfo::getConstantPool(),
8990                           false, false, false, Alignment);
8991    SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
8992    SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
8993    return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
8994  }
8995
8996  if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
8997    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
8998    if (Subtarget->hasInt256()) {
8999      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
9000      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
9001      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
9002                                ShufMask);
9003      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
9004                         DAG.getIntPtrConstant(0));
9005    }
9006
9007    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
9008    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9009                               DAG.getIntPtrConstant(0));
9010    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9011                               DAG.getIntPtrConstant(2));
9012
9013    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
9014    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
9015
9016    // The PSHUFD mask:
9017    static const int ShufMask1[] = {0, 2, 0, 0};
9018    SDValue Undef = DAG.getUNDEF(VT);
9019    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
9020    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
9021
9022    // The MOVLHPS mask:
9023    static const int ShufMask2[] = {0, 1, 4, 5};
9024    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
9025  }
9026
9027  if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
9028    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
9029    if (Subtarget->hasInt256()) {
9030      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
9031
9032      SmallVector<SDValue,32> pshufbMask;
9033      for (unsigned i = 0; i < 2; ++i) {
9034        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
9035        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
9036        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
9037        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
9038        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
9039        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
9040        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
9041        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
9042        for (unsigned j = 0; j < 8; ++j)
9043          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
9044      }
9045      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
9046                               &pshufbMask[0], 32);
9047      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
9048      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
9049
9050      static const int ShufMask[] = {0,  2,  -1,  -1};
9051      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
9052                                &ShufMask[0]);
9053      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9054                       DAG.getIntPtrConstant(0));
9055      return DAG.getNode(ISD::BITCAST, DL, VT, In);
9056    }
9057
9058    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9059                               DAG.getIntPtrConstant(0));
9060
9061    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9062                               DAG.getIntPtrConstant(4));
9063
9064    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
9065    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
9066
9067    // The PSHUFB mask:
9068    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
9069                                   -1, -1, -1, -1, -1, -1, -1, -1};
9070
9071    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
9072    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
9073    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
9074
9075    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
9076    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
9077
9078    // The MOVLHPS Mask:
9079    static const int ShufMask2[] = {0, 1, 4, 5};
9080    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
9081    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
9082  }
9083
9084  // Handle truncation of V256 to V128 using shuffles.
9085  if (!VT.is128BitVector() || !InVT.is256BitVector())
9086    return SDValue();
9087
9088  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
9089
9090  unsigned NumElems = VT.getVectorNumElements();
9091  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9092                             NumElems * 2);
9093
9094  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
9095  // Prepare truncation shuffle mask
9096  for (unsigned i = 0; i != NumElems; ++i)
9097    MaskVec[i] = i * 2;
9098  SDValue V = DAG.getVectorShuffle(NVT, DL,
9099                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
9100                                   DAG.getUNDEF(NVT), &MaskVec[0]);
9101  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
9102                     DAG.getIntPtrConstant(0));
9103}
9104
9105SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
9106                                           SelectionDAG &DAG) const {
9107  MVT VT = Op.getSimpleValueType();
9108  if (VT.isVector()) {
9109    if (VT == MVT::v8i16)
9110      return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT,
9111                         DAG.getNode(ISD::FP_TO_SINT, SDLoc(Op),
9112                                     MVT::v8i32, Op.getOperand(0)));
9113    return SDValue();
9114  }
9115
9116  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9117    /*IsSigned=*/ true, /*IsReplace=*/ false);
9118  SDValue FIST = Vals.first, StackSlot = Vals.second;
9119  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
9120  if (FIST.getNode() == 0) return Op;
9121
9122  if (StackSlot.getNode())
9123    // Load the result.
9124    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9125                       FIST, StackSlot, MachinePointerInfo(),
9126                       false, false, false, 0);
9127
9128  // The node is the result.
9129  return FIST;
9130}
9131
9132SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
9133                                           SelectionDAG &DAG) const {
9134  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9135    /*IsSigned=*/ false, /*IsReplace=*/ false);
9136  SDValue FIST = Vals.first, StackSlot = Vals.second;
9137  assert(FIST.getNode() && "Unexpected failure");
9138
9139  if (StackSlot.getNode())
9140    // Load the result.
9141    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9142                       FIST, StackSlot, MachinePointerInfo(),
9143                       false, false, false, 0);
9144
9145  // The node is the result.
9146  return FIST;
9147}
9148
9149static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
9150  SDLoc DL(Op);
9151  MVT VT = Op.getSimpleValueType();
9152  SDValue In = Op.getOperand(0);
9153  MVT SVT = In.getSimpleValueType();
9154
9155  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
9156
9157  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
9158                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
9159                                 In, DAG.getUNDEF(SVT)));
9160}
9161
9162SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
9163  LLVMContext *Context = DAG.getContext();
9164  SDLoc dl(Op);
9165  MVT VT = Op.getSimpleValueType();
9166  MVT EltVT = VT;
9167  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9168  if (VT.isVector()) {
9169    EltVT = VT.getVectorElementType();
9170    NumElts = VT.getVectorNumElements();
9171  }
9172  Constant *C;
9173  if (EltVT == MVT::f64)
9174    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9175                                          APInt(64, ~(1ULL << 63))));
9176  else
9177    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9178                                          APInt(32, ~(1U << 31))));
9179  C = ConstantVector::getSplat(NumElts, C);
9180  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
9181  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9182  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9183                             MachinePointerInfo::getConstantPool(),
9184                             false, false, false, Alignment);
9185  if (VT.isVector()) {
9186    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9187    return DAG.getNode(ISD::BITCAST, dl, VT,
9188                       DAG.getNode(ISD::AND, dl, ANDVT,
9189                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
9190                                               Op.getOperand(0)),
9191                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
9192  }
9193  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
9194}
9195
9196SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
9197  LLVMContext *Context = DAG.getContext();
9198  SDLoc dl(Op);
9199  MVT VT = Op.getSimpleValueType();
9200  MVT EltVT = VT;
9201  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9202  if (VT.isVector()) {
9203    EltVT = VT.getVectorElementType();
9204    NumElts = VT.getVectorNumElements();
9205  }
9206  Constant *C;
9207  if (EltVT == MVT::f64)
9208    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9209                                          APInt(64, 1ULL << 63)));
9210  else
9211    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9212                                          APInt(32, 1U << 31)));
9213  C = ConstantVector::getSplat(NumElts, C);
9214  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
9215  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9216  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9217                             MachinePointerInfo::getConstantPool(),
9218                             false, false, false, Alignment);
9219  if (VT.isVector()) {
9220    MVT XORVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits()/64);
9221    return DAG.getNode(ISD::BITCAST, dl, VT,
9222                       DAG.getNode(ISD::XOR, dl, XORVT,
9223                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
9224                                               Op.getOperand(0)),
9225                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
9226  }
9227
9228  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
9229}
9230
9231SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
9232  LLVMContext *Context = DAG.getContext();
9233  SDValue Op0 = Op.getOperand(0);
9234  SDValue Op1 = Op.getOperand(1);
9235  SDLoc dl(Op);
9236  MVT VT = Op.getSimpleValueType();
9237  MVT SrcVT = Op1.getSimpleValueType();
9238
9239  // If second operand is smaller, extend it first.
9240  if (SrcVT.bitsLT(VT)) {
9241    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
9242    SrcVT = VT;
9243  }
9244  // And if it is bigger, shrink it first.
9245  if (SrcVT.bitsGT(VT)) {
9246    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
9247    SrcVT = VT;
9248  }
9249
9250  // At this point the operands and the result should have the same
9251  // type, and that won't be f80 since that is not custom lowered.
9252
9253  // First get the sign bit of second operand.
9254  SmallVector<Constant*,4> CV;
9255  if (SrcVT == MVT::f64) {
9256    const fltSemantics &Sem = APFloat::IEEEdouble;
9257    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
9258    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9259  } else {
9260    const fltSemantics &Sem = APFloat::IEEEsingle;
9261    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
9262    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9263    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9264    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9265  }
9266  Constant *C = ConstantVector::get(CV);
9267  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9268  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
9269                              MachinePointerInfo::getConstantPool(),
9270                              false, false, false, 16);
9271  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
9272
9273  // Shift sign bit right or left if the two operands have different types.
9274  if (SrcVT.bitsGT(VT)) {
9275    // Op0 is MVT::f32, Op1 is MVT::f64.
9276    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
9277    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
9278                          DAG.getConstant(32, MVT::i32));
9279    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
9280    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
9281                          DAG.getIntPtrConstant(0));
9282  }
9283
9284  // Clear first operand sign bit.
9285  CV.clear();
9286  if (VT == MVT::f64) {
9287    const fltSemantics &Sem = APFloat::IEEEdouble;
9288    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9289                                                   APInt(64, ~(1ULL << 63)))));
9290    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9291  } else {
9292    const fltSemantics &Sem = APFloat::IEEEsingle;
9293    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9294                                                   APInt(32, ~(1U << 31)))));
9295    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9296    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9297    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9298  }
9299  C = ConstantVector::get(CV);
9300  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9301  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9302                              MachinePointerInfo::getConstantPool(),
9303                              false, false, false, 16);
9304  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
9305
9306  // Or the value with the sign bit.
9307  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
9308}
9309
9310static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
9311  SDValue N0 = Op.getOperand(0);
9312  SDLoc dl(Op);
9313  MVT VT = Op.getSimpleValueType();
9314
9315  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
9316  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
9317                                  DAG.getConstant(1, VT));
9318  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
9319}
9320
9321// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
9322//
9323static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
9324                                      SelectionDAG &DAG) {
9325  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
9326
9327  if (!Subtarget->hasSSE41())
9328    return SDValue();
9329
9330  if (!Op->hasOneUse())
9331    return SDValue();
9332
9333  SDNode *N = Op.getNode();
9334  SDLoc DL(N);
9335
9336  SmallVector<SDValue, 8> Opnds;
9337  DenseMap<SDValue, unsigned> VecInMap;
9338  EVT VT = MVT::Other;
9339
9340  // Recognize a special case where a vector is casted into wide integer to
9341  // test all 0s.
9342  Opnds.push_back(N->getOperand(0));
9343  Opnds.push_back(N->getOperand(1));
9344
9345  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
9346    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
9347    // BFS traverse all OR'd operands.
9348    if (I->getOpcode() == ISD::OR) {
9349      Opnds.push_back(I->getOperand(0));
9350      Opnds.push_back(I->getOperand(1));
9351      // Re-evaluate the number of nodes to be traversed.
9352      e += 2; // 2 more nodes (LHS and RHS) are pushed.
9353      continue;
9354    }
9355
9356    // Quit if a non-EXTRACT_VECTOR_ELT
9357    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9358      return SDValue();
9359
9360    // Quit if without a constant index.
9361    SDValue Idx = I->getOperand(1);
9362    if (!isa<ConstantSDNode>(Idx))
9363      return SDValue();
9364
9365    SDValue ExtractedFromVec = I->getOperand(0);
9366    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
9367    if (M == VecInMap.end()) {
9368      VT = ExtractedFromVec.getValueType();
9369      // Quit if not 128/256-bit vector.
9370      if (!VT.is128BitVector() && !VT.is256BitVector())
9371        return SDValue();
9372      // Quit if not the same type.
9373      if (VecInMap.begin() != VecInMap.end() &&
9374          VT != VecInMap.begin()->first.getValueType())
9375        return SDValue();
9376      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
9377    }
9378    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
9379  }
9380
9381  assert((VT.is128BitVector() || VT.is256BitVector()) &&
9382         "Not extracted from 128-/256-bit vector.");
9383
9384  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
9385  SmallVector<SDValue, 8> VecIns;
9386
9387  for (DenseMap<SDValue, unsigned>::const_iterator
9388        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
9389    // Quit if not all elements are used.
9390    if (I->second != FullMask)
9391      return SDValue();
9392    VecIns.push_back(I->first);
9393  }
9394
9395  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9396
9397  // Cast all vectors into TestVT for PTEST.
9398  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
9399    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
9400
9401  // If more than one full vectors are evaluated, OR them first before PTEST.
9402  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
9403    // Each iteration will OR 2 nodes and append the result until there is only
9404    // 1 node left, i.e. the final OR'd value of all vectors.
9405    SDValue LHS = VecIns[Slot];
9406    SDValue RHS = VecIns[Slot + 1];
9407    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
9408  }
9409
9410  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
9411                     VecIns.back(), VecIns.back());
9412}
9413
9414/// Emit nodes that will be selected as "test Op0,Op0", or something
9415/// equivalent.
9416SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
9417                                    SelectionDAG &DAG) const {
9418  SDLoc dl(Op);
9419
9420  // CF and OF aren't always set the way we want. Determine which
9421  // of these we need.
9422  bool NeedCF = false;
9423  bool NeedOF = false;
9424  switch (X86CC) {
9425  default: break;
9426  case X86::COND_A: case X86::COND_AE:
9427  case X86::COND_B: case X86::COND_BE:
9428    NeedCF = true;
9429    break;
9430  case X86::COND_G: case X86::COND_GE:
9431  case X86::COND_L: case X86::COND_LE:
9432  case X86::COND_O: case X86::COND_NO:
9433    NeedOF = true;
9434    break;
9435  }
9436
9437  // See if we can use the EFLAGS value from the operand instead of
9438  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
9439  // we prove that the arithmetic won't overflow, we can't use OF or CF.
9440  if (Op.getResNo() != 0 || NeedOF || NeedCF)
9441    // Emit a CMP with 0, which is the TEST pattern.
9442    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9443                       DAG.getConstant(0, Op.getValueType()));
9444
9445  unsigned Opcode = 0;
9446  unsigned NumOperands = 0;
9447
9448  // Truncate operations may prevent the merge of the SETCC instruction
9449  // and the arithmetic instruction before it. Attempt to truncate the operands
9450  // of the arithmetic instruction and use a reduced bit-width instruction.
9451  bool NeedTruncation = false;
9452  SDValue ArithOp = Op;
9453  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
9454    SDValue Arith = Op->getOperand(0);
9455    // Both the trunc and the arithmetic op need to have one user each.
9456    if (Arith->hasOneUse())
9457      switch (Arith.getOpcode()) {
9458        default: break;
9459        case ISD::ADD:
9460        case ISD::SUB:
9461        case ISD::AND:
9462        case ISD::OR:
9463        case ISD::XOR: {
9464          NeedTruncation = true;
9465          ArithOp = Arith;
9466        }
9467      }
9468  }
9469
9470  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
9471  // which may be the result of a CAST.  We use the variable 'Op', which is the
9472  // non-casted variable when we check for possible users.
9473  switch (ArithOp.getOpcode()) {
9474  case ISD::ADD:
9475    // Due to an isel shortcoming, be conservative if this add is likely to be
9476    // selected as part of a load-modify-store instruction. When the root node
9477    // in a match is a store, isel doesn't know how to remap non-chain non-flag
9478    // uses of other nodes in the match, such as the ADD in this case. This
9479    // leads to the ADD being left around and reselected, with the result being
9480    // two adds in the output.  Alas, even if none our users are stores, that
9481    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
9482    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
9483    // climbing the DAG back to the root, and it doesn't seem to be worth the
9484    // effort.
9485    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9486         UE = Op.getNode()->use_end(); UI != UE; ++UI)
9487      if (UI->getOpcode() != ISD::CopyToReg &&
9488          UI->getOpcode() != ISD::SETCC &&
9489          UI->getOpcode() != ISD::STORE)
9490        goto default_case;
9491
9492    if (ConstantSDNode *C =
9493        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
9494      // An add of one will be selected as an INC.
9495      if (C->getAPIntValue() == 1) {
9496        Opcode = X86ISD::INC;
9497        NumOperands = 1;
9498        break;
9499      }
9500
9501      // An add of negative one (subtract of one) will be selected as a DEC.
9502      if (C->getAPIntValue().isAllOnesValue()) {
9503        Opcode = X86ISD::DEC;
9504        NumOperands = 1;
9505        break;
9506      }
9507    }
9508
9509    // Otherwise use a regular EFLAGS-setting add.
9510    Opcode = X86ISD::ADD;
9511    NumOperands = 2;
9512    break;
9513  case ISD::AND: {
9514    // If the primary and result isn't used, don't bother using X86ISD::AND,
9515    // because a TEST instruction will be better.
9516    bool NonFlagUse = false;
9517    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9518           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
9519      SDNode *User = *UI;
9520      unsigned UOpNo = UI.getOperandNo();
9521      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
9522        // Look pass truncate.
9523        UOpNo = User->use_begin().getOperandNo();
9524        User = *User->use_begin();
9525      }
9526
9527      if (User->getOpcode() != ISD::BRCOND &&
9528          User->getOpcode() != ISD::SETCC &&
9529          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
9530        NonFlagUse = true;
9531        break;
9532      }
9533    }
9534
9535    if (!NonFlagUse)
9536      break;
9537  }
9538    // FALL THROUGH
9539  case ISD::SUB:
9540  case ISD::OR:
9541  case ISD::XOR:
9542    // Due to the ISEL shortcoming noted above, be conservative if this op is
9543    // likely to be selected as part of a load-modify-store instruction.
9544    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9545           UE = Op.getNode()->use_end(); UI != UE; ++UI)
9546      if (UI->getOpcode() == ISD::STORE)
9547        goto default_case;
9548
9549    // Otherwise use a regular EFLAGS-setting instruction.
9550    switch (ArithOp.getOpcode()) {
9551    default: llvm_unreachable("unexpected operator!");
9552    case ISD::SUB: Opcode = X86ISD::SUB; break;
9553    case ISD::XOR: Opcode = X86ISD::XOR; break;
9554    case ISD::AND: Opcode = X86ISD::AND; break;
9555    case ISD::OR: {
9556      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
9557        SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
9558        if (EFLAGS.getNode())
9559          return EFLAGS;
9560      }
9561      Opcode = X86ISD::OR;
9562      break;
9563    }
9564    }
9565
9566    NumOperands = 2;
9567    break;
9568  case X86ISD::ADD:
9569  case X86ISD::SUB:
9570  case X86ISD::INC:
9571  case X86ISD::DEC:
9572  case X86ISD::OR:
9573  case X86ISD::XOR:
9574  case X86ISD::AND:
9575    return SDValue(Op.getNode(), 1);
9576  default:
9577  default_case:
9578    break;
9579  }
9580
9581  // If we found that truncation is beneficial, perform the truncation and
9582  // update 'Op'.
9583  if (NeedTruncation) {
9584    EVT VT = Op.getValueType();
9585    SDValue WideVal = Op->getOperand(0);
9586    EVT WideVT = WideVal.getValueType();
9587    unsigned ConvertedOp = 0;
9588    // Use a target machine opcode to prevent further DAGCombine
9589    // optimizations that may separate the arithmetic operations
9590    // from the setcc node.
9591    switch (WideVal.getOpcode()) {
9592      default: break;
9593      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
9594      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
9595      case ISD::AND: ConvertedOp = X86ISD::AND; break;
9596      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
9597      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
9598    }
9599
9600    if (ConvertedOp) {
9601      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9602      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
9603        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
9604        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
9605        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
9606      }
9607    }
9608  }
9609
9610  if (Opcode == 0)
9611    // Emit a CMP with 0, which is the TEST pattern.
9612    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9613                       DAG.getConstant(0, Op.getValueType()));
9614
9615  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9616  SmallVector<SDValue, 4> Ops;
9617  for (unsigned i = 0; i != NumOperands; ++i)
9618    Ops.push_back(Op.getOperand(i));
9619
9620  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9621  DAG.ReplaceAllUsesWith(Op, New);
9622  return SDValue(New.getNode(), 1);
9623}
9624
9625/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9626/// equivalent.
9627SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9628                                   SelectionDAG &DAG) const {
9629  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9630    if (C->getAPIntValue() == 0)
9631      return EmitTest(Op0, X86CC, DAG);
9632
9633  SDLoc dl(Op0);
9634  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9635       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9636    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9637    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9638    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9639                              Op0, Op1);
9640    return SDValue(Sub.getNode(), 1);
9641  }
9642  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9643}
9644
9645/// Convert a comparison if required by the subtarget.
9646SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9647                                                 SelectionDAG &DAG) const {
9648  // If the subtarget does not support the FUCOMI instruction, floating-point
9649  // comparisons have to be converted.
9650  if (Subtarget->hasCMov() ||
9651      Cmp.getOpcode() != X86ISD::CMP ||
9652      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9653      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9654    return Cmp;
9655
9656  // The instruction selector will select an FUCOM instruction instead of
9657  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9658  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9659  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9660  SDLoc dl(Cmp);
9661  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9662  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9663  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9664                            DAG.getConstant(8, MVT::i8));
9665  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9666  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9667}
9668
9669static bool isAllOnes(SDValue V) {
9670  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9671  return C && C->isAllOnesValue();
9672}
9673
9674/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9675/// if it's possible.
9676SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9677                                     SDLoc dl, SelectionDAG &DAG) const {
9678  SDValue Op0 = And.getOperand(0);
9679  SDValue Op1 = And.getOperand(1);
9680  if (Op0.getOpcode() == ISD::TRUNCATE)
9681    Op0 = Op0.getOperand(0);
9682  if (Op1.getOpcode() == ISD::TRUNCATE)
9683    Op1 = Op1.getOperand(0);
9684
9685  SDValue LHS, RHS;
9686  if (Op1.getOpcode() == ISD::SHL)
9687    std::swap(Op0, Op1);
9688  if (Op0.getOpcode() == ISD::SHL) {
9689    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9690      if (And00C->getZExtValue() == 1) {
9691        // If we looked past a truncate, check that it's only truncating away
9692        // known zeros.
9693        unsigned BitWidth = Op0.getValueSizeInBits();
9694        unsigned AndBitWidth = And.getValueSizeInBits();
9695        if (BitWidth > AndBitWidth) {
9696          APInt Zeros, Ones;
9697          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9698          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9699            return SDValue();
9700        }
9701        LHS = Op1;
9702        RHS = Op0.getOperand(1);
9703      }
9704  } else if (Op1.getOpcode() == ISD::Constant) {
9705    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9706    uint64_t AndRHSVal = AndRHS->getZExtValue();
9707    SDValue AndLHS = Op0;
9708
9709    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9710      LHS = AndLHS.getOperand(0);
9711      RHS = AndLHS.getOperand(1);
9712    }
9713
9714    // Use BT if the immediate can't be encoded in a TEST instruction.
9715    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9716      LHS = AndLHS;
9717      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9718    }
9719  }
9720
9721  if (LHS.getNode()) {
9722    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9723    // instruction.  Since the shift amount is in-range-or-undefined, we know
9724    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9725    // the encoding for the i16 version is larger than the i32 version.
9726    // Also promote i16 to i32 for performance / code size reason.
9727    if (LHS.getValueType() == MVT::i8 ||
9728        LHS.getValueType() == MVT::i16)
9729      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9730
9731    // If the operand types disagree, extend the shift amount to match.  Since
9732    // BT ignores high bits (like shifts) we can use anyextend.
9733    if (LHS.getValueType() != RHS.getValueType())
9734      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9735
9736    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9737    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9738    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9739                       DAG.getConstant(Cond, MVT::i8), BT);
9740  }
9741
9742  return SDValue();
9743}
9744
9745/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
9746/// mask CMPs.
9747static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
9748                              SDValue &Op1) {
9749  unsigned SSECC;
9750  bool Swap = false;
9751
9752  // SSE Condition code mapping:
9753  //  0 - EQ
9754  //  1 - LT
9755  //  2 - LE
9756  //  3 - UNORD
9757  //  4 - NEQ
9758  //  5 - NLT
9759  //  6 - NLE
9760  //  7 - ORD
9761  switch (SetCCOpcode) {
9762  default: llvm_unreachable("Unexpected SETCC condition");
9763  case ISD::SETOEQ:
9764  case ISD::SETEQ:  SSECC = 0; break;
9765  case ISD::SETOGT:
9766  case ISD::SETGT:  Swap = true; // Fallthrough
9767  case ISD::SETLT:
9768  case ISD::SETOLT: SSECC = 1; break;
9769  case ISD::SETOGE:
9770  case ISD::SETGE:  Swap = true; // Fallthrough
9771  case ISD::SETLE:
9772  case ISD::SETOLE: SSECC = 2; break;
9773  case ISD::SETUO:  SSECC = 3; break;
9774  case ISD::SETUNE:
9775  case ISD::SETNE:  SSECC = 4; break;
9776  case ISD::SETULE: Swap = true; // Fallthrough
9777  case ISD::SETUGE: SSECC = 5; break;
9778  case ISD::SETULT: Swap = true; // Fallthrough
9779  case ISD::SETUGT: SSECC = 6; break;
9780  case ISD::SETO:   SSECC = 7; break;
9781  case ISD::SETUEQ:
9782  case ISD::SETONE: SSECC = 8; break;
9783  }
9784  if (Swap)
9785    std::swap(Op0, Op1);
9786
9787  return SSECC;
9788}
9789
9790// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9791// ones, and then concatenate the result back.
9792static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9793  MVT VT = Op.getSimpleValueType();
9794
9795  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9796         "Unsupported value type for operation");
9797
9798  unsigned NumElems = VT.getVectorNumElements();
9799  SDLoc dl(Op);
9800  SDValue CC = Op.getOperand(2);
9801
9802  // Extract the LHS vectors
9803  SDValue LHS = Op.getOperand(0);
9804  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9805  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9806
9807  // Extract the RHS vectors
9808  SDValue RHS = Op.getOperand(1);
9809  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9810  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9811
9812  // Issue the operation on the smaller types and concatenate the result back
9813  MVT EltVT = VT.getVectorElementType();
9814  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9815  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9816                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9817                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9818}
9819
9820static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
9821  SDValue Op0 = Op.getOperand(0);
9822  SDValue Op1 = Op.getOperand(1);
9823  SDValue CC = Op.getOperand(2);
9824  MVT VT = Op.getSimpleValueType();
9825
9826  assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 32 &&
9827         Op.getValueType().getScalarType() == MVT::i1 &&
9828         "Cannot set masked compare for this operation");
9829
9830  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9831  SDLoc dl(Op);
9832
9833  bool Unsigned = false;
9834  unsigned SSECC;
9835  switch (SetCCOpcode) {
9836  default: llvm_unreachable("Unexpected SETCC condition");
9837  case ISD::SETNE:  SSECC = 4; break;
9838  case ISD::SETEQ:  SSECC = 0; break;
9839  case ISD::SETUGT: Unsigned = true;
9840  case ISD::SETGT:  SSECC = 6; break; // NLE
9841  case ISD::SETULT: Unsigned = true;
9842  case ISD::SETLT:  SSECC = 1; break;
9843  case ISD::SETUGE: Unsigned = true;
9844  case ISD::SETGE:  SSECC = 5; break; // NLT
9845  case ISD::SETULE: Unsigned = true;
9846  case ISD::SETLE:  SSECC = 2; break;
9847  }
9848  unsigned  Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
9849  return DAG.getNode(Opc, dl, VT, Op0, Op1,
9850                     DAG.getConstant(SSECC, MVT::i8));
9851
9852}
9853
9854static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
9855                           SelectionDAG &DAG) {
9856  SDValue Op0 = Op.getOperand(0);
9857  SDValue Op1 = Op.getOperand(1);
9858  SDValue CC = Op.getOperand(2);
9859  MVT VT = Op.getSimpleValueType();
9860  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9861  bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
9862  SDLoc dl(Op);
9863
9864  if (isFP) {
9865#ifndef NDEBUG
9866    MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
9867    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9868#endif
9869
9870    unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
9871    unsigned Opc = X86ISD::CMPP;
9872    if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
9873      assert(VT.getVectorNumElements() <= 16);
9874      Opc = X86ISD::CMPM;
9875    }
9876    // In the two special cases we can't handle, emit two comparisons.
9877    if (SSECC == 8) {
9878      unsigned CC0, CC1;
9879      unsigned CombineOpc;
9880      if (SetCCOpcode == ISD::SETUEQ) {
9881        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9882      } else {
9883        assert(SetCCOpcode == ISD::SETONE);
9884        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9885      }
9886
9887      SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
9888                                 DAG.getConstant(CC0, MVT::i8));
9889      SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
9890                                 DAG.getConstant(CC1, MVT::i8));
9891      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9892    }
9893    // Handle all other FP comparisons here.
9894    return DAG.getNode(Opc, dl, VT, Op0, Op1,
9895                       DAG.getConstant(SSECC, MVT::i8));
9896  }
9897
9898  // Break 256-bit integer vector compare into smaller ones.
9899  if (VT.is256BitVector() && !Subtarget->hasInt256())
9900    return Lower256IntVSETCC(Op, DAG);
9901
9902  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
9903  EVT OpVT = Op1.getValueType();
9904  if (Subtarget->hasAVX512()) {
9905    if (Op1.getValueType().is512BitVector() ||
9906        (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
9907      return LowerIntVSETCC_AVX512(Op, DAG);
9908
9909    // In AVX-512 architecture setcc returns mask with i1 elements,
9910    // But there is no compare instruction for i8 and i16 elements.
9911    // We are not talking about 512-bit operands in this case, these
9912    // types are illegal.
9913    if (MaskResult &&
9914        (OpVT.getVectorElementType().getSizeInBits() < 32 &&
9915         OpVT.getVectorElementType().getSizeInBits() >= 8))
9916      return DAG.getNode(ISD::TRUNCATE, dl, VT,
9917                         DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
9918  }
9919
9920  // We are handling one of the integer comparisons here.  Since SSE only has
9921  // GT and EQ comparisons for integer, swapping operands and multiple
9922  // operations may be required for some comparisons.
9923  unsigned Opc;
9924  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
9925
9926  switch (SetCCOpcode) {
9927  default: llvm_unreachable("Unexpected SETCC condition");
9928  case ISD::SETNE:  Invert = true;
9929  case ISD::SETEQ:  Opc = MaskResult? X86ISD::PCMPEQM: X86ISD::PCMPEQ; break;
9930  case ISD::SETLT:  Swap = true;
9931  case ISD::SETGT:  Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT; break;
9932  case ISD::SETGE:  Swap = true;
9933  case ISD::SETLE:  Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9934                    Invert = true; break;
9935  case ISD::SETULT: Swap = true;
9936  case ISD::SETUGT: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9937                    FlipSigns = true; break;
9938  case ISD::SETUGE: Swap = true;
9939  case ISD::SETULE: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9940                    FlipSigns = true; Invert = true; break;
9941  }
9942
9943  // Special case: Use min/max operations for SETULE/SETUGE
9944  MVT VET = VT.getVectorElementType();
9945  bool hasMinMax =
9946       (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
9947    || (Subtarget->hasSSE2()  && (VET == MVT::i8));
9948
9949  if (hasMinMax) {
9950    switch (SetCCOpcode) {
9951    default: break;
9952    case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
9953    case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
9954    }
9955
9956    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
9957  }
9958
9959  if (Swap)
9960    std::swap(Op0, Op1);
9961
9962  // Check that the operation in question is available (most are plain SSE2,
9963  // but PCMPGTQ and PCMPEQQ have different requirements).
9964  if (VT == MVT::v2i64) {
9965    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
9966      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
9967
9968      // First cast everything to the right type.
9969      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9970      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9971
9972      // Since SSE has no unsigned integer comparisons, we need to flip the sign
9973      // bits of the inputs before performing those operations. The lower
9974      // compare is always unsigned.
9975      SDValue SB;
9976      if (FlipSigns) {
9977        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
9978      } else {
9979        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
9980        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
9981        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
9982                         Sign, Zero, Sign, Zero);
9983      }
9984      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
9985      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
9986
9987      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
9988      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
9989      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
9990
9991      // Create masks for only the low parts/high parts of the 64 bit integers.
9992      static const int MaskHi[] = { 1, 1, 3, 3 };
9993      static const int MaskLo[] = { 0, 0, 2, 2 };
9994      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
9995      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
9996      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
9997
9998      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
9999      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
10000
10001      if (Invert)
10002        Result = DAG.getNOT(dl, Result, MVT::v4i32);
10003
10004      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
10005    }
10006
10007    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
10008      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
10009      // pcmpeqd + pshufd + pand.
10010      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
10011
10012      // First cast everything to the right type.
10013      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
10014      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
10015
10016      // Do the compare.
10017      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
10018
10019      // Make sure the lower and upper halves are both all-ones.
10020      static const int Mask[] = { 1, 0, 3, 2 };
10021      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
10022      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
10023
10024      if (Invert)
10025        Result = DAG.getNOT(dl, Result, MVT::v4i32);
10026
10027      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
10028    }
10029  }
10030
10031  // Since SSE has no unsigned integer comparisons, we need to flip the sign
10032  // bits of the inputs before performing those operations.
10033  if (FlipSigns) {
10034    EVT EltVT = VT.getVectorElementType();
10035    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
10036    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
10037    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
10038  }
10039
10040  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
10041
10042  // If the logical-not of the result is required, perform that now.
10043  if (Invert)
10044    Result = DAG.getNOT(dl, Result, VT);
10045
10046  if (MinMax)
10047    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
10048
10049  return Result;
10050}
10051
10052SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
10053
10054  MVT VT = Op.getSimpleValueType();
10055
10056  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
10057
10058  assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
10059  SDValue Op0 = Op.getOperand(0);
10060  SDValue Op1 = Op.getOperand(1);
10061  SDLoc dl(Op);
10062  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10063
10064  // Optimize to BT if possible.
10065  // Lower (X & (1 << N)) == 0 to BT(X, N).
10066  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
10067  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
10068  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
10069      Op1.getOpcode() == ISD::Constant &&
10070      cast<ConstantSDNode>(Op1)->isNullValue() &&
10071      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10072    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
10073    if (NewSetCC.getNode())
10074      return NewSetCC;
10075  }
10076
10077  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
10078  // these.
10079  if (Op1.getOpcode() == ISD::Constant &&
10080      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
10081       cast<ConstantSDNode>(Op1)->isNullValue()) &&
10082      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10083
10084    // If the input is a setcc, then reuse the input setcc or use a new one with
10085    // the inverted condition.
10086    if (Op0.getOpcode() == X86ISD::SETCC) {
10087      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
10088      bool Invert = (CC == ISD::SETNE) ^
10089        cast<ConstantSDNode>(Op1)->isNullValue();
10090      if (!Invert) return Op0;
10091
10092      CCode = X86::GetOppositeBranchCondition(CCode);
10093      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10094                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
10095    }
10096  }
10097
10098  bool isFP = Op1.getSimpleValueType().isFloatingPoint();
10099  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
10100  if (X86CC == X86::COND_INVALID)
10101    return SDValue();
10102
10103  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
10104  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
10105  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10106                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
10107}
10108
10109// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
10110static bool isX86LogicalCmp(SDValue Op) {
10111  unsigned Opc = Op.getNode()->getOpcode();
10112  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
10113      Opc == X86ISD::SAHF)
10114    return true;
10115  if (Op.getResNo() == 1 &&
10116      (Opc == X86ISD::ADD ||
10117       Opc == X86ISD::SUB ||
10118       Opc == X86ISD::ADC ||
10119       Opc == X86ISD::SBB ||
10120       Opc == X86ISD::SMUL ||
10121       Opc == X86ISD::UMUL ||
10122       Opc == X86ISD::INC ||
10123       Opc == X86ISD::DEC ||
10124       Opc == X86ISD::OR ||
10125       Opc == X86ISD::XOR ||
10126       Opc == X86ISD::AND))
10127    return true;
10128
10129  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
10130    return true;
10131
10132  return false;
10133}
10134
10135static bool isZero(SDValue V) {
10136  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
10137  return C && C->isNullValue();
10138}
10139
10140static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
10141  if (V.getOpcode() != ISD::TRUNCATE)
10142    return false;
10143
10144  SDValue VOp0 = V.getOperand(0);
10145  unsigned InBits = VOp0.getValueSizeInBits();
10146  unsigned Bits = V.getValueSizeInBits();
10147  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
10148}
10149
10150SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
10151  bool addTest = true;
10152  SDValue Cond  = Op.getOperand(0);
10153  SDValue Op1 = Op.getOperand(1);
10154  SDValue Op2 = Op.getOperand(2);
10155  SDLoc DL(Op);
10156  EVT VT = Op1.getValueType();
10157  SDValue CC;
10158
10159  // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
10160  // are available. Otherwise fp cmovs get lowered into a less efficient branch
10161  // sequence later on.
10162  if (Cond.getOpcode() == ISD::SETCC &&
10163      ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
10164       (Subtarget->hasSSE1() && VT == MVT::f32)) &&
10165      VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
10166    SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
10167    int SSECC = translateX86FSETCC(
10168        cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
10169
10170    if (SSECC != 8) {
10171      unsigned Opcode = VT == MVT::f32 ? X86ISD::FSETCCss : X86ISD::FSETCCsd;
10172      SDValue Cmp = DAG.getNode(Opcode, DL, VT, CondOp0, CondOp1,
10173                                DAG.getConstant(SSECC, MVT::i8));
10174      SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
10175      SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
10176      return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
10177    }
10178  }
10179
10180  if (Cond.getOpcode() == ISD::SETCC) {
10181    SDValue NewCond = LowerSETCC(Cond, DAG);
10182    if (NewCond.getNode())
10183      Cond = NewCond;
10184  }
10185
10186  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
10187  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
10188  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
10189  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
10190  if (Cond.getOpcode() == X86ISD::SETCC &&
10191      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
10192      isZero(Cond.getOperand(1).getOperand(1))) {
10193    SDValue Cmp = Cond.getOperand(1);
10194
10195    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
10196
10197    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
10198        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
10199      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
10200
10201      SDValue CmpOp0 = Cmp.getOperand(0);
10202      // Apply further optimizations for special cases
10203      // (select (x != 0), -1, 0) -> neg & sbb
10204      // (select (x == 0), 0, -1) -> neg & sbb
10205      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
10206        if (YC->isNullValue() &&
10207            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
10208          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
10209          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
10210                                    DAG.getConstant(0, CmpOp0.getValueType()),
10211                                    CmpOp0);
10212          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10213                                    DAG.getConstant(X86::COND_B, MVT::i8),
10214                                    SDValue(Neg.getNode(), 1));
10215          return Res;
10216        }
10217
10218      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
10219                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
10220      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10221
10222      SDValue Res =   // Res = 0 or -1.
10223        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10224                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
10225
10226      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
10227        Res = DAG.getNOT(DL, Res, Res.getValueType());
10228
10229      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
10230      if (N2C == 0 || !N2C->isNullValue())
10231        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
10232      return Res;
10233    }
10234  }
10235
10236  // Look past (and (setcc_carry (cmp ...)), 1).
10237  if (Cond.getOpcode() == ISD::AND &&
10238      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
10239    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
10240    if (C && C->getAPIntValue() == 1)
10241      Cond = Cond.getOperand(0);
10242  }
10243
10244  // If condition flag is set by a X86ISD::CMP, then use it as the condition
10245  // setting operand in place of the X86ISD::SETCC.
10246  unsigned CondOpcode = Cond.getOpcode();
10247  if (CondOpcode == X86ISD::SETCC ||
10248      CondOpcode == X86ISD::SETCC_CARRY) {
10249    CC = Cond.getOperand(0);
10250
10251    SDValue Cmp = Cond.getOperand(1);
10252    unsigned Opc = Cmp.getOpcode();
10253    MVT VT = Op.getSimpleValueType();
10254
10255    bool IllegalFPCMov = false;
10256    if (VT.isFloatingPoint() && !VT.isVector() &&
10257        !isScalarFPTypeInSSEReg(VT))  // FPStack?
10258      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
10259
10260    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
10261        Opc == X86ISD::BT) { // FIXME
10262      Cond = Cmp;
10263      addTest = false;
10264    }
10265  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
10266             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
10267             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
10268              Cond.getOperand(0).getValueType() != MVT::i8)) {
10269    SDValue LHS = Cond.getOperand(0);
10270    SDValue RHS = Cond.getOperand(1);
10271    unsigned X86Opcode;
10272    unsigned X86Cond;
10273    SDVTList VTs;
10274    switch (CondOpcode) {
10275    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
10276    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
10277    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
10278    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
10279    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
10280    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
10281    default: llvm_unreachable("unexpected overflowing operator");
10282    }
10283    if (CondOpcode == ISD::UMULO)
10284      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
10285                          MVT::i32);
10286    else
10287      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
10288
10289    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
10290
10291    if (CondOpcode == ISD::UMULO)
10292      Cond = X86Op.getValue(2);
10293    else
10294      Cond = X86Op.getValue(1);
10295
10296    CC = DAG.getConstant(X86Cond, MVT::i8);
10297    addTest = false;
10298  }
10299
10300  if (addTest) {
10301    // Look pass the truncate if the high bits are known zero.
10302    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10303        Cond = Cond.getOperand(0);
10304
10305    // We know the result of AND is compared against zero. Try to match
10306    // it to BT.
10307    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10308      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
10309      if (NewSetCC.getNode()) {
10310        CC = NewSetCC.getOperand(0);
10311        Cond = NewSetCC.getOperand(1);
10312        addTest = false;
10313      }
10314    }
10315  }
10316
10317  if (addTest) {
10318    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10319    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10320  }
10321
10322  // a <  b ? -1 :  0 -> RES = ~setcc_carry
10323  // a <  b ?  0 : -1 -> RES = setcc_carry
10324  // a >= b ? -1 :  0 -> RES = setcc_carry
10325  // a >= b ?  0 : -1 -> RES = ~setcc_carry
10326  if (Cond.getOpcode() == X86ISD::SUB) {
10327    Cond = ConvertCmpIfNecessary(Cond, DAG);
10328    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
10329
10330    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
10331        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
10332      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10333                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
10334      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
10335        return DAG.getNOT(DL, Res, Res.getValueType());
10336      return Res;
10337    }
10338  }
10339
10340  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
10341  // widen the cmov and push the truncate through. This avoids introducing a new
10342  // branch during isel and doesn't add any extensions.
10343  if (Op.getValueType() == MVT::i8 &&
10344      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
10345    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
10346    if (T1.getValueType() == T2.getValueType() &&
10347        // Blacklist CopyFromReg to avoid partial register stalls.
10348        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
10349      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
10350      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
10351      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
10352    }
10353  }
10354
10355  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
10356  // condition is true.
10357  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
10358  SDValue Ops[] = { Op2, Op1, CC, Cond };
10359  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
10360}
10361
10362static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) {
10363  MVT VT = Op->getSimpleValueType(0);
10364  SDValue In = Op->getOperand(0);
10365  MVT InVT = In.getSimpleValueType();
10366  SDLoc dl(Op);
10367
10368  unsigned int NumElts = VT.getVectorNumElements();
10369  if (NumElts != 8 && NumElts != 16)
10370    return SDValue();
10371
10372  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
10373    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
10374
10375  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10376  assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
10377
10378  MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
10379  Constant *C = ConstantInt::get(*DAG.getContext(),
10380    APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
10381
10382  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
10383  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
10384  SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
10385                          MachinePointerInfo::getConstantPool(),
10386                          false, false, false, Alignment);
10387  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
10388  if (VT.is512BitVector())
10389    return Brcst;
10390  return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
10391}
10392
10393static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
10394                                SelectionDAG &DAG) {
10395  MVT VT = Op->getSimpleValueType(0);
10396  SDValue In = Op->getOperand(0);
10397  MVT InVT = In.getSimpleValueType();
10398  SDLoc dl(Op);
10399
10400  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
10401    return LowerSIGN_EXTEND_AVX512(Op, DAG);
10402
10403  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
10404      (VT != MVT::v8i32 || InVT != MVT::v8i16))
10405    return SDValue();
10406
10407  if (Subtarget->hasInt256())
10408    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
10409
10410  // Optimize vectors in AVX mode
10411  // Sign extend  v8i16 to v8i32 and
10412  //              v4i32 to v4i64
10413  //
10414  // Divide input vector into two parts
10415  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
10416  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
10417  // concat the vectors to original VT
10418
10419  unsigned NumElems = InVT.getVectorNumElements();
10420  SDValue Undef = DAG.getUNDEF(InVT);
10421
10422  SmallVector<int,8> ShufMask1(NumElems, -1);
10423  for (unsigned i = 0; i != NumElems/2; ++i)
10424    ShufMask1[i] = i;
10425
10426  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
10427
10428  SmallVector<int,8> ShufMask2(NumElems, -1);
10429  for (unsigned i = 0; i != NumElems/2; ++i)
10430    ShufMask2[i] = i + NumElems/2;
10431
10432  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
10433
10434  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
10435                                VT.getVectorNumElements()/2);
10436
10437  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
10438  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
10439
10440  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
10441}
10442
10443// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
10444// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
10445// from the AND / OR.
10446static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
10447  Opc = Op.getOpcode();
10448  if (Opc != ISD::OR && Opc != ISD::AND)
10449    return false;
10450  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
10451          Op.getOperand(0).hasOneUse() &&
10452          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
10453          Op.getOperand(1).hasOneUse());
10454}
10455
10456// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
10457// 1 and that the SETCC node has a single use.
10458static bool isXor1OfSetCC(SDValue Op) {
10459  if (Op.getOpcode() != ISD::XOR)
10460    return false;
10461  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
10462  if (N1C && N1C->getAPIntValue() == 1) {
10463    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
10464      Op.getOperand(0).hasOneUse();
10465  }
10466  return false;
10467}
10468
10469SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
10470  bool addTest = true;
10471  SDValue Chain = Op.getOperand(0);
10472  SDValue Cond  = Op.getOperand(1);
10473  SDValue Dest  = Op.getOperand(2);
10474  SDLoc dl(Op);
10475  SDValue CC;
10476  bool Inverted = false;
10477
10478  if (Cond.getOpcode() == ISD::SETCC) {
10479    // Check for setcc([su]{add,sub,mul}o == 0).
10480    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
10481        isa<ConstantSDNode>(Cond.getOperand(1)) &&
10482        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
10483        Cond.getOperand(0).getResNo() == 1 &&
10484        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
10485         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
10486         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
10487         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
10488         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
10489         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
10490      Inverted = true;
10491      Cond = Cond.getOperand(0);
10492    } else {
10493      SDValue NewCond = LowerSETCC(Cond, DAG);
10494      if (NewCond.getNode())
10495        Cond = NewCond;
10496    }
10497  }
10498#if 0
10499  // FIXME: LowerXALUO doesn't handle these!!
10500  else if (Cond.getOpcode() == X86ISD::ADD  ||
10501           Cond.getOpcode() == X86ISD::SUB  ||
10502           Cond.getOpcode() == X86ISD::SMUL ||
10503           Cond.getOpcode() == X86ISD::UMUL)
10504    Cond = LowerXALUO(Cond, DAG);
10505#endif
10506
10507  // Look pass (and (setcc_carry (cmp ...)), 1).
10508  if (Cond.getOpcode() == ISD::AND &&
10509      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
10510    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
10511    if (C && C->getAPIntValue() == 1)
10512      Cond = Cond.getOperand(0);
10513  }
10514
10515  // If condition flag is set by a X86ISD::CMP, then use it as the condition
10516  // setting operand in place of the X86ISD::SETCC.
10517  unsigned CondOpcode = Cond.getOpcode();
10518  if (CondOpcode == X86ISD::SETCC ||
10519      CondOpcode == X86ISD::SETCC_CARRY) {
10520    CC = Cond.getOperand(0);
10521
10522    SDValue Cmp = Cond.getOperand(1);
10523    unsigned Opc = Cmp.getOpcode();
10524    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
10525    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
10526      Cond = Cmp;
10527      addTest = false;
10528    } else {
10529      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
10530      default: break;
10531      case X86::COND_O:
10532      case X86::COND_B:
10533        // These can only come from an arithmetic instruction with overflow,
10534        // e.g. SADDO, UADDO.
10535        Cond = Cond.getNode()->getOperand(1);
10536        addTest = false;
10537        break;
10538      }
10539    }
10540  }
10541  CondOpcode = Cond.getOpcode();
10542  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
10543      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
10544      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
10545       Cond.getOperand(0).getValueType() != MVT::i8)) {
10546    SDValue LHS = Cond.getOperand(0);
10547    SDValue RHS = Cond.getOperand(1);
10548    unsigned X86Opcode;
10549    unsigned X86Cond;
10550    SDVTList VTs;
10551    switch (CondOpcode) {
10552    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
10553    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
10554    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
10555    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
10556    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
10557    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
10558    default: llvm_unreachable("unexpected overflowing operator");
10559    }
10560    if (Inverted)
10561      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
10562    if (CondOpcode == ISD::UMULO)
10563      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
10564                          MVT::i32);
10565    else
10566      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
10567
10568    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
10569
10570    if (CondOpcode == ISD::UMULO)
10571      Cond = X86Op.getValue(2);
10572    else
10573      Cond = X86Op.getValue(1);
10574
10575    CC = DAG.getConstant(X86Cond, MVT::i8);
10576    addTest = false;
10577  } else {
10578    unsigned CondOpc;
10579    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
10580      SDValue Cmp = Cond.getOperand(0).getOperand(1);
10581      if (CondOpc == ISD::OR) {
10582        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
10583        // two branches instead of an explicit OR instruction with a
10584        // separate test.
10585        if (Cmp == Cond.getOperand(1).getOperand(1) &&
10586            isX86LogicalCmp(Cmp)) {
10587          CC = Cond.getOperand(0).getOperand(0);
10588          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10589                              Chain, Dest, CC, Cmp);
10590          CC = Cond.getOperand(1).getOperand(0);
10591          Cond = Cmp;
10592          addTest = false;
10593        }
10594      } else { // ISD::AND
10595        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
10596        // two branches instead of an explicit AND instruction with a
10597        // separate test. However, we only do this if this block doesn't
10598        // have a fall-through edge, because this requires an explicit
10599        // jmp when the condition is false.
10600        if (Cmp == Cond.getOperand(1).getOperand(1) &&
10601            isX86LogicalCmp(Cmp) &&
10602            Op.getNode()->hasOneUse()) {
10603          X86::CondCode CCode =
10604            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
10605          CCode = X86::GetOppositeBranchCondition(CCode);
10606          CC = DAG.getConstant(CCode, MVT::i8);
10607          SDNode *User = *Op.getNode()->use_begin();
10608          // Look for an unconditional branch following this conditional branch.
10609          // We need this because we need to reverse the successors in order
10610          // to implement FCMP_OEQ.
10611          if (User->getOpcode() == ISD::BR) {
10612            SDValue FalseBB = User->getOperand(1);
10613            SDNode *NewBR =
10614              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10615            assert(NewBR == User);
10616            (void)NewBR;
10617            Dest = FalseBB;
10618
10619            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10620                                Chain, Dest, CC, Cmp);
10621            X86::CondCode CCode =
10622              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
10623            CCode = X86::GetOppositeBranchCondition(CCode);
10624            CC = DAG.getConstant(CCode, MVT::i8);
10625            Cond = Cmp;
10626            addTest = false;
10627          }
10628        }
10629      }
10630    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
10631      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
10632      // It should be transformed during dag combiner except when the condition
10633      // is set by a arithmetics with overflow node.
10634      X86::CondCode CCode =
10635        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
10636      CCode = X86::GetOppositeBranchCondition(CCode);
10637      CC = DAG.getConstant(CCode, MVT::i8);
10638      Cond = Cond.getOperand(0).getOperand(1);
10639      addTest = false;
10640    } else if (Cond.getOpcode() == ISD::SETCC &&
10641               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
10642      // For FCMP_OEQ, we can emit
10643      // two branches instead of an explicit AND instruction with a
10644      // separate test. However, we only do this if this block doesn't
10645      // have a fall-through edge, because this requires an explicit
10646      // jmp when the condition is false.
10647      if (Op.getNode()->hasOneUse()) {
10648        SDNode *User = *Op.getNode()->use_begin();
10649        // Look for an unconditional branch following this conditional branch.
10650        // We need this because we need to reverse the successors in order
10651        // to implement FCMP_OEQ.
10652        if (User->getOpcode() == ISD::BR) {
10653          SDValue FalseBB = User->getOperand(1);
10654          SDNode *NewBR =
10655            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10656          assert(NewBR == User);
10657          (void)NewBR;
10658          Dest = FalseBB;
10659
10660          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10661                                    Cond.getOperand(0), Cond.getOperand(1));
10662          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10663          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10664          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10665                              Chain, Dest, CC, Cmp);
10666          CC = DAG.getConstant(X86::COND_P, MVT::i8);
10667          Cond = Cmp;
10668          addTest = false;
10669        }
10670      }
10671    } else if (Cond.getOpcode() == ISD::SETCC &&
10672               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
10673      // For FCMP_UNE, we can emit
10674      // two branches instead of an explicit AND instruction with a
10675      // separate test. However, we only do this if this block doesn't
10676      // have a fall-through edge, because this requires an explicit
10677      // jmp when the condition is false.
10678      if (Op.getNode()->hasOneUse()) {
10679        SDNode *User = *Op.getNode()->use_begin();
10680        // Look for an unconditional branch following this conditional branch.
10681        // We need this because we need to reverse the successors in order
10682        // to implement FCMP_UNE.
10683        if (User->getOpcode() == ISD::BR) {
10684          SDValue FalseBB = User->getOperand(1);
10685          SDNode *NewBR =
10686            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10687          assert(NewBR == User);
10688          (void)NewBR;
10689
10690          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10691                                    Cond.getOperand(0), Cond.getOperand(1));
10692          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10693          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10694          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10695                              Chain, Dest, CC, Cmp);
10696          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
10697          Cond = Cmp;
10698          addTest = false;
10699          Dest = FalseBB;
10700        }
10701      }
10702    }
10703  }
10704
10705  if (addTest) {
10706    // Look pass the truncate if the high bits are known zero.
10707    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10708        Cond = Cond.getOperand(0);
10709
10710    // We know the result of AND is compared against zero. Try to match
10711    // it to BT.
10712    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10713      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
10714      if (NewSetCC.getNode()) {
10715        CC = NewSetCC.getOperand(0);
10716        Cond = NewSetCC.getOperand(1);
10717        addTest = false;
10718      }
10719    }
10720  }
10721
10722  if (addTest) {
10723    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10724    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10725  }
10726  Cond = ConvertCmpIfNecessary(Cond, DAG);
10727  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10728                     Chain, Dest, CC, Cond);
10729}
10730
10731// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
10732// Calls to _alloca is needed to probe the stack when allocating more than 4k
10733// bytes in one go. Touching the stack at 4K increments is necessary to ensure
10734// that the guard pages used by the OS virtual memory manager are allocated in
10735// correct sequence.
10736SDValue
10737X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10738                                           SelectionDAG &DAG) const {
10739  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
10740          getTargetMachine().Options.EnableSegmentedStacks) &&
10741         "This should be used only on Windows targets or when segmented stacks "
10742         "are being used");
10743  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
10744  SDLoc dl(Op);
10745
10746  // Get the inputs.
10747  SDValue Chain = Op.getOperand(0);
10748  SDValue Size  = Op.getOperand(1);
10749  // FIXME: Ensure alignment here
10750
10751  bool Is64Bit = Subtarget->is64Bit();
10752  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
10753
10754  if (getTargetMachine().Options.EnableSegmentedStacks) {
10755    MachineFunction &MF = DAG.getMachineFunction();
10756    MachineRegisterInfo &MRI = MF.getRegInfo();
10757
10758    if (Is64Bit) {
10759      // The 64 bit implementation of segmented stacks needs to clobber both r10
10760      // r11. This makes it impossible to use it along with nested parameters.
10761      const Function *F = MF.getFunction();
10762
10763      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
10764           I != E; ++I)
10765        if (I->hasNestAttr())
10766          report_fatal_error("Cannot use segmented stacks with functions that "
10767                             "have nested arguments.");
10768    }
10769
10770    const TargetRegisterClass *AddrRegClass =
10771      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
10772    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
10773    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
10774    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
10775                                DAG.getRegister(Vreg, SPTy));
10776    SDValue Ops1[2] = { Value, Chain };
10777    return DAG.getMergeValues(Ops1, 2, dl);
10778  } else {
10779    SDValue Flag;
10780    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
10781
10782    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10783    Flag = Chain.getValue(1);
10784    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10785
10786    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10787    Flag = Chain.getValue(1);
10788
10789    const X86RegisterInfo *RegInfo =
10790      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
10791    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
10792                               SPTy).getValue(1);
10793
10794    SDValue Ops1[2] = { Chain.getValue(0), Chain };
10795    return DAG.getMergeValues(Ops1, 2, dl);
10796  }
10797}
10798
10799SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10800  MachineFunction &MF = DAG.getMachineFunction();
10801  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10802
10803  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10804  SDLoc DL(Op);
10805
10806  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10807    // vastart just stores the address of the VarArgsFrameIndex slot into the
10808    // memory location argument.
10809    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10810                                   getPointerTy());
10811    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10812                        MachinePointerInfo(SV), false, false, 0);
10813  }
10814
10815  // __va_list_tag:
10816  //   gp_offset         (0 - 6 * 8)
10817  //   fp_offset         (48 - 48 + 8 * 16)
10818  //   overflow_arg_area (point to parameters coming in memory).
10819  //   reg_save_area
10820  SmallVector<SDValue, 8> MemOps;
10821  SDValue FIN = Op.getOperand(1);
10822  // Store gp_offset
10823  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10824                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10825                                               MVT::i32),
10826                               FIN, MachinePointerInfo(SV), false, false, 0);
10827  MemOps.push_back(Store);
10828
10829  // Store fp_offset
10830  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10831                    FIN, DAG.getIntPtrConstant(4));
10832  Store = DAG.getStore(Op.getOperand(0), DL,
10833                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10834                                       MVT::i32),
10835                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10836  MemOps.push_back(Store);
10837
10838  // Store ptr to overflow_arg_area
10839  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10840                    FIN, DAG.getIntPtrConstant(4));
10841  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10842                                    getPointerTy());
10843  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10844                       MachinePointerInfo(SV, 8),
10845                       false, false, 0);
10846  MemOps.push_back(Store);
10847
10848  // Store ptr to reg_save_area.
10849  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10850                    FIN, DAG.getIntPtrConstant(8));
10851  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10852                                    getPointerTy());
10853  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10854                       MachinePointerInfo(SV, 16), false, false, 0);
10855  MemOps.push_back(Store);
10856  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10857                     &MemOps[0], MemOps.size());
10858}
10859
10860SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10861  assert(Subtarget->is64Bit() &&
10862         "LowerVAARG only handles 64-bit va_arg!");
10863  assert((Subtarget->isTargetLinux() ||
10864          Subtarget->isTargetDarwin()) &&
10865          "Unhandled target in LowerVAARG");
10866  assert(Op.getNode()->getNumOperands() == 4);
10867  SDValue Chain = Op.getOperand(0);
10868  SDValue SrcPtr = Op.getOperand(1);
10869  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10870  unsigned Align = Op.getConstantOperandVal(3);
10871  SDLoc dl(Op);
10872
10873  EVT ArgVT = Op.getNode()->getValueType(0);
10874  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10875  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10876  uint8_t ArgMode;
10877
10878  // Decide which area this value should be read from.
10879  // TODO: Implement the AMD64 ABI in its entirety. This simple
10880  // selection mechanism works only for the basic types.
10881  if (ArgVT == MVT::f80) {
10882    llvm_unreachable("va_arg for f80 not yet implemented");
10883  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10884    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10885  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10886    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10887  } else {
10888    llvm_unreachable("Unhandled argument type in LowerVAARG");
10889  }
10890
10891  if (ArgMode == 2) {
10892    // Sanity Check: Make sure using fp_offset makes sense.
10893    assert(!getTargetMachine().Options.UseSoftFloat &&
10894           !(DAG.getMachineFunction()
10895                .getFunction()->getAttributes()
10896                .hasAttribute(AttributeSet::FunctionIndex,
10897                              Attribute::NoImplicitFloat)) &&
10898           Subtarget->hasSSE1());
10899  }
10900
10901  // Insert VAARG_64 node into the DAG
10902  // VAARG_64 returns two values: Variable Argument Address, Chain
10903  SmallVector<SDValue, 11> InstOps;
10904  InstOps.push_back(Chain);
10905  InstOps.push_back(SrcPtr);
10906  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10907  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10908  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10909  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10910  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10911                                          VTs, &InstOps[0], InstOps.size(),
10912                                          MVT::i64,
10913                                          MachinePointerInfo(SV),
10914                                          /*Align=*/0,
10915                                          /*Volatile=*/false,
10916                                          /*ReadMem=*/true,
10917                                          /*WriteMem=*/true);
10918  Chain = VAARG.getValue(1);
10919
10920  // Load the next argument and return it
10921  return DAG.getLoad(ArgVT, dl,
10922                     Chain,
10923                     VAARG,
10924                     MachinePointerInfo(),
10925                     false, false, false, 0);
10926}
10927
10928static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10929                           SelectionDAG &DAG) {
10930  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10931  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10932  SDValue Chain = Op.getOperand(0);
10933  SDValue DstPtr = Op.getOperand(1);
10934  SDValue SrcPtr = Op.getOperand(2);
10935  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10936  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10937  SDLoc DL(Op);
10938
10939  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10940                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10941                       false,
10942                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10943}
10944
10945// getTargetVShiftNode - Handle vector element shifts where the shift amount
10946// may or may not be a constant. Takes immediate version of shift as input.
10947static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, EVT VT,
10948                                   SDValue SrcOp, SDValue ShAmt,
10949                                   SelectionDAG &DAG) {
10950  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10951
10952  if (isa<ConstantSDNode>(ShAmt)) {
10953    // Constant may be a TargetConstant. Use a regular constant.
10954    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10955    switch (Opc) {
10956      default: llvm_unreachable("Unknown target vector shift node");
10957      case X86ISD::VSHLI:
10958      case X86ISD::VSRLI:
10959      case X86ISD::VSRAI:
10960        return DAG.getNode(Opc, dl, VT, SrcOp,
10961                           DAG.getConstant(ShiftAmt, MVT::i32));
10962    }
10963  }
10964
10965  // Change opcode to non-immediate version
10966  switch (Opc) {
10967    default: llvm_unreachable("Unknown target vector shift node");
10968    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10969    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10970    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10971  }
10972
10973  // Need to build a vector containing shift amount
10974  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10975  SDValue ShOps[4];
10976  ShOps[0] = ShAmt;
10977  ShOps[1] = DAG.getConstant(0, MVT::i32);
10978  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
10979  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10980
10981  // The return type has to be a 128-bit type with the same element
10982  // type as the input type.
10983  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10984  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
10985
10986  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
10987  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10988}
10989
10990static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
10991  SDLoc dl(Op);
10992  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10993  switch (IntNo) {
10994  default: return SDValue();    // Don't custom lower most intrinsics.
10995  // Comparison intrinsics.
10996  case Intrinsic::x86_sse_comieq_ss:
10997  case Intrinsic::x86_sse_comilt_ss:
10998  case Intrinsic::x86_sse_comile_ss:
10999  case Intrinsic::x86_sse_comigt_ss:
11000  case Intrinsic::x86_sse_comige_ss:
11001  case Intrinsic::x86_sse_comineq_ss:
11002  case Intrinsic::x86_sse_ucomieq_ss:
11003  case Intrinsic::x86_sse_ucomilt_ss:
11004  case Intrinsic::x86_sse_ucomile_ss:
11005  case Intrinsic::x86_sse_ucomigt_ss:
11006  case Intrinsic::x86_sse_ucomige_ss:
11007  case Intrinsic::x86_sse_ucomineq_ss:
11008  case Intrinsic::x86_sse2_comieq_sd:
11009  case Intrinsic::x86_sse2_comilt_sd:
11010  case Intrinsic::x86_sse2_comile_sd:
11011  case Intrinsic::x86_sse2_comigt_sd:
11012  case Intrinsic::x86_sse2_comige_sd:
11013  case Intrinsic::x86_sse2_comineq_sd:
11014  case Intrinsic::x86_sse2_ucomieq_sd:
11015  case Intrinsic::x86_sse2_ucomilt_sd:
11016  case Intrinsic::x86_sse2_ucomile_sd:
11017  case Intrinsic::x86_sse2_ucomigt_sd:
11018  case Intrinsic::x86_sse2_ucomige_sd:
11019  case Intrinsic::x86_sse2_ucomineq_sd: {
11020    unsigned Opc;
11021    ISD::CondCode CC;
11022    switch (IntNo) {
11023    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11024    case Intrinsic::x86_sse_comieq_ss:
11025    case Intrinsic::x86_sse2_comieq_sd:
11026      Opc = X86ISD::COMI;
11027      CC = ISD::SETEQ;
11028      break;
11029    case Intrinsic::x86_sse_comilt_ss:
11030    case Intrinsic::x86_sse2_comilt_sd:
11031      Opc = X86ISD::COMI;
11032      CC = ISD::SETLT;
11033      break;
11034    case Intrinsic::x86_sse_comile_ss:
11035    case Intrinsic::x86_sse2_comile_sd:
11036      Opc = X86ISD::COMI;
11037      CC = ISD::SETLE;
11038      break;
11039    case Intrinsic::x86_sse_comigt_ss:
11040    case Intrinsic::x86_sse2_comigt_sd:
11041      Opc = X86ISD::COMI;
11042      CC = ISD::SETGT;
11043      break;
11044    case Intrinsic::x86_sse_comige_ss:
11045    case Intrinsic::x86_sse2_comige_sd:
11046      Opc = X86ISD::COMI;
11047      CC = ISD::SETGE;
11048      break;
11049    case Intrinsic::x86_sse_comineq_ss:
11050    case Intrinsic::x86_sse2_comineq_sd:
11051      Opc = X86ISD::COMI;
11052      CC = ISD::SETNE;
11053      break;
11054    case Intrinsic::x86_sse_ucomieq_ss:
11055    case Intrinsic::x86_sse2_ucomieq_sd:
11056      Opc = X86ISD::UCOMI;
11057      CC = ISD::SETEQ;
11058      break;
11059    case Intrinsic::x86_sse_ucomilt_ss:
11060    case Intrinsic::x86_sse2_ucomilt_sd:
11061      Opc = X86ISD::UCOMI;
11062      CC = ISD::SETLT;
11063      break;
11064    case Intrinsic::x86_sse_ucomile_ss:
11065    case Intrinsic::x86_sse2_ucomile_sd:
11066      Opc = X86ISD::UCOMI;
11067      CC = ISD::SETLE;
11068      break;
11069    case Intrinsic::x86_sse_ucomigt_ss:
11070    case Intrinsic::x86_sse2_ucomigt_sd:
11071      Opc = X86ISD::UCOMI;
11072      CC = ISD::SETGT;
11073      break;
11074    case Intrinsic::x86_sse_ucomige_ss:
11075    case Intrinsic::x86_sse2_ucomige_sd:
11076      Opc = X86ISD::UCOMI;
11077      CC = ISD::SETGE;
11078      break;
11079    case Intrinsic::x86_sse_ucomineq_ss:
11080    case Intrinsic::x86_sse2_ucomineq_sd:
11081      Opc = X86ISD::UCOMI;
11082      CC = ISD::SETNE;
11083      break;
11084    }
11085
11086    SDValue LHS = Op.getOperand(1);
11087    SDValue RHS = Op.getOperand(2);
11088    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
11089    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
11090    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
11091    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11092                                DAG.getConstant(X86CC, MVT::i8), Cond);
11093    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11094  }
11095
11096  // Arithmetic intrinsics.
11097  case Intrinsic::x86_sse2_pmulu_dq:
11098  case Intrinsic::x86_avx2_pmulu_dq:
11099    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
11100                       Op.getOperand(1), Op.getOperand(2));
11101
11102  // SSE2/AVX2 sub with unsigned saturation intrinsics
11103  case Intrinsic::x86_sse2_psubus_b:
11104  case Intrinsic::x86_sse2_psubus_w:
11105  case Intrinsic::x86_avx2_psubus_b:
11106  case Intrinsic::x86_avx2_psubus_w:
11107    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
11108                       Op.getOperand(1), Op.getOperand(2));
11109
11110  // SSE3/AVX horizontal add/sub intrinsics
11111  case Intrinsic::x86_sse3_hadd_ps:
11112  case Intrinsic::x86_sse3_hadd_pd:
11113  case Intrinsic::x86_avx_hadd_ps_256:
11114  case Intrinsic::x86_avx_hadd_pd_256:
11115  case Intrinsic::x86_sse3_hsub_ps:
11116  case Intrinsic::x86_sse3_hsub_pd:
11117  case Intrinsic::x86_avx_hsub_ps_256:
11118  case Intrinsic::x86_avx_hsub_pd_256:
11119  case Intrinsic::x86_ssse3_phadd_w_128:
11120  case Intrinsic::x86_ssse3_phadd_d_128:
11121  case Intrinsic::x86_avx2_phadd_w:
11122  case Intrinsic::x86_avx2_phadd_d:
11123  case Intrinsic::x86_ssse3_phsub_w_128:
11124  case Intrinsic::x86_ssse3_phsub_d_128:
11125  case Intrinsic::x86_avx2_phsub_w:
11126  case Intrinsic::x86_avx2_phsub_d: {
11127    unsigned Opcode;
11128    switch (IntNo) {
11129    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11130    case Intrinsic::x86_sse3_hadd_ps:
11131    case Intrinsic::x86_sse3_hadd_pd:
11132    case Intrinsic::x86_avx_hadd_ps_256:
11133    case Intrinsic::x86_avx_hadd_pd_256:
11134      Opcode = X86ISD::FHADD;
11135      break;
11136    case Intrinsic::x86_sse3_hsub_ps:
11137    case Intrinsic::x86_sse3_hsub_pd:
11138    case Intrinsic::x86_avx_hsub_ps_256:
11139    case Intrinsic::x86_avx_hsub_pd_256:
11140      Opcode = X86ISD::FHSUB;
11141      break;
11142    case Intrinsic::x86_ssse3_phadd_w_128:
11143    case Intrinsic::x86_ssse3_phadd_d_128:
11144    case Intrinsic::x86_avx2_phadd_w:
11145    case Intrinsic::x86_avx2_phadd_d:
11146      Opcode = X86ISD::HADD;
11147      break;
11148    case Intrinsic::x86_ssse3_phsub_w_128:
11149    case Intrinsic::x86_ssse3_phsub_d_128:
11150    case Intrinsic::x86_avx2_phsub_w:
11151    case Intrinsic::x86_avx2_phsub_d:
11152      Opcode = X86ISD::HSUB;
11153      break;
11154    }
11155    return DAG.getNode(Opcode, dl, Op.getValueType(),
11156                       Op.getOperand(1), Op.getOperand(2));
11157  }
11158
11159  // SSE2/SSE41/AVX2 integer max/min intrinsics.
11160  case Intrinsic::x86_sse2_pmaxu_b:
11161  case Intrinsic::x86_sse41_pmaxuw:
11162  case Intrinsic::x86_sse41_pmaxud:
11163  case Intrinsic::x86_avx2_pmaxu_b:
11164  case Intrinsic::x86_avx2_pmaxu_w:
11165  case Intrinsic::x86_avx2_pmaxu_d:
11166  case Intrinsic::x86_sse2_pminu_b:
11167  case Intrinsic::x86_sse41_pminuw:
11168  case Intrinsic::x86_sse41_pminud:
11169  case Intrinsic::x86_avx2_pminu_b:
11170  case Intrinsic::x86_avx2_pminu_w:
11171  case Intrinsic::x86_avx2_pminu_d:
11172  case Intrinsic::x86_sse41_pmaxsb:
11173  case Intrinsic::x86_sse2_pmaxs_w:
11174  case Intrinsic::x86_sse41_pmaxsd:
11175  case Intrinsic::x86_avx2_pmaxs_b:
11176  case Intrinsic::x86_avx2_pmaxs_w:
11177  case Intrinsic::x86_avx2_pmaxs_d:
11178  case Intrinsic::x86_sse41_pminsb:
11179  case Intrinsic::x86_sse2_pmins_w:
11180  case Intrinsic::x86_sse41_pminsd:
11181  case Intrinsic::x86_avx2_pmins_b:
11182  case Intrinsic::x86_avx2_pmins_w:
11183  case Intrinsic::x86_avx2_pmins_d: {
11184    unsigned Opcode;
11185    switch (IntNo) {
11186    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11187    case Intrinsic::x86_sse2_pmaxu_b:
11188    case Intrinsic::x86_sse41_pmaxuw:
11189    case Intrinsic::x86_sse41_pmaxud:
11190    case Intrinsic::x86_avx2_pmaxu_b:
11191    case Intrinsic::x86_avx2_pmaxu_w:
11192    case Intrinsic::x86_avx2_pmaxu_d:
11193      Opcode = X86ISD::UMAX;
11194      break;
11195    case Intrinsic::x86_sse2_pminu_b:
11196    case Intrinsic::x86_sse41_pminuw:
11197    case Intrinsic::x86_sse41_pminud:
11198    case Intrinsic::x86_avx2_pminu_b:
11199    case Intrinsic::x86_avx2_pminu_w:
11200    case Intrinsic::x86_avx2_pminu_d:
11201      Opcode = X86ISD::UMIN;
11202      break;
11203    case Intrinsic::x86_sse41_pmaxsb:
11204    case Intrinsic::x86_sse2_pmaxs_w:
11205    case Intrinsic::x86_sse41_pmaxsd:
11206    case Intrinsic::x86_avx2_pmaxs_b:
11207    case Intrinsic::x86_avx2_pmaxs_w:
11208    case Intrinsic::x86_avx2_pmaxs_d:
11209      Opcode = X86ISD::SMAX;
11210      break;
11211    case Intrinsic::x86_sse41_pminsb:
11212    case Intrinsic::x86_sse2_pmins_w:
11213    case Intrinsic::x86_sse41_pminsd:
11214    case Intrinsic::x86_avx2_pmins_b:
11215    case Intrinsic::x86_avx2_pmins_w:
11216    case Intrinsic::x86_avx2_pmins_d:
11217      Opcode = X86ISD::SMIN;
11218      break;
11219    }
11220    return DAG.getNode(Opcode, dl, Op.getValueType(),
11221                       Op.getOperand(1), Op.getOperand(2));
11222  }
11223
11224  // SSE/SSE2/AVX floating point max/min intrinsics.
11225  case Intrinsic::x86_sse_max_ps:
11226  case Intrinsic::x86_sse2_max_pd:
11227  case Intrinsic::x86_avx_max_ps_256:
11228  case Intrinsic::x86_avx_max_pd_256:
11229  case Intrinsic::x86_avx512_max_ps_512:
11230  case Intrinsic::x86_avx512_max_pd_512:
11231  case Intrinsic::x86_sse_min_ps:
11232  case Intrinsic::x86_sse2_min_pd:
11233  case Intrinsic::x86_avx_min_ps_256:
11234  case Intrinsic::x86_avx_min_pd_256:
11235  case Intrinsic::x86_avx512_min_ps_512:
11236  case Intrinsic::x86_avx512_min_pd_512:  {
11237    unsigned Opcode;
11238    switch (IntNo) {
11239    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11240    case Intrinsic::x86_sse_max_ps:
11241    case Intrinsic::x86_sse2_max_pd:
11242    case Intrinsic::x86_avx_max_ps_256:
11243    case Intrinsic::x86_avx_max_pd_256:
11244    case Intrinsic::x86_avx512_max_ps_512:
11245    case Intrinsic::x86_avx512_max_pd_512:
11246      Opcode = X86ISD::FMAX;
11247      break;
11248    case Intrinsic::x86_sse_min_ps:
11249    case Intrinsic::x86_sse2_min_pd:
11250    case Intrinsic::x86_avx_min_ps_256:
11251    case Intrinsic::x86_avx_min_pd_256:
11252    case Intrinsic::x86_avx512_min_ps_512:
11253    case Intrinsic::x86_avx512_min_pd_512:
11254      Opcode = X86ISD::FMIN;
11255      break;
11256    }
11257    return DAG.getNode(Opcode, dl, Op.getValueType(),
11258                       Op.getOperand(1), Op.getOperand(2));
11259  }
11260
11261  // AVX2 variable shift intrinsics
11262  case Intrinsic::x86_avx2_psllv_d:
11263  case Intrinsic::x86_avx2_psllv_q:
11264  case Intrinsic::x86_avx2_psllv_d_256:
11265  case Intrinsic::x86_avx2_psllv_q_256:
11266  case Intrinsic::x86_avx2_psrlv_d:
11267  case Intrinsic::x86_avx2_psrlv_q:
11268  case Intrinsic::x86_avx2_psrlv_d_256:
11269  case Intrinsic::x86_avx2_psrlv_q_256:
11270  case Intrinsic::x86_avx2_psrav_d:
11271  case Intrinsic::x86_avx2_psrav_d_256: {
11272    unsigned Opcode;
11273    switch (IntNo) {
11274    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11275    case Intrinsic::x86_avx2_psllv_d:
11276    case Intrinsic::x86_avx2_psllv_q:
11277    case Intrinsic::x86_avx2_psllv_d_256:
11278    case Intrinsic::x86_avx2_psllv_q_256:
11279      Opcode = ISD::SHL;
11280      break;
11281    case Intrinsic::x86_avx2_psrlv_d:
11282    case Intrinsic::x86_avx2_psrlv_q:
11283    case Intrinsic::x86_avx2_psrlv_d_256:
11284    case Intrinsic::x86_avx2_psrlv_q_256:
11285      Opcode = ISD::SRL;
11286      break;
11287    case Intrinsic::x86_avx2_psrav_d:
11288    case Intrinsic::x86_avx2_psrav_d_256:
11289      Opcode = ISD::SRA;
11290      break;
11291    }
11292    return DAG.getNode(Opcode, dl, Op.getValueType(),
11293                       Op.getOperand(1), Op.getOperand(2));
11294  }
11295
11296  case Intrinsic::x86_ssse3_pshuf_b_128:
11297  case Intrinsic::x86_avx2_pshuf_b:
11298    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
11299                       Op.getOperand(1), Op.getOperand(2));
11300
11301  case Intrinsic::x86_ssse3_psign_b_128:
11302  case Intrinsic::x86_ssse3_psign_w_128:
11303  case Intrinsic::x86_ssse3_psign_d_128:
11304  case Intrinsic::x86_avx2_psign_b:
11305  case Intrinsic::x86_avx2_psign_w:
11306  case Intrinsic::x86_avx2_psign_d:
11307    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
11308                       Op.getOperand(1), Op.getOperand(2));
11309
11310  case Intrinsic::x86_sse41_insertps:
11311    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
11312                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
11313
11314  case Intrinsic::x86_avx_vperm2f128_ps_256:
11315  case Intrinsic::x86_avx_vperm2f128_pd_256:
11316  case Intrinsic::x86_avx_vperm2f128_si_256:
11317  case Intrinsic::x86_avx2_vperm2i128:
11318    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
11319                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
11320
11321  case Intrinsic::x86_avx2_permd:
11322  case Intrinsic::x86_avx2_permps:
11323    // Operands intentionally swapped. Mask is last operand to intrinsic,
11324    // but second operand for node/instruction.
11325    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
11326                       Op.getOperand(2), Op.getOperand(1));
11327
11328  case Intrinsic::x86_sse_sqrt_ps:
11329  case Intrinsic::x86_sse2_sqrt_pd:
11330  case Intrinsic::x86_avx_sqrt_ps_256:
11331  case Intrinsic::x86_avx_sqrt_pd_256:
11332    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
11333
11334  // ptest and testp intrinsics. The intrinsic these come from are designed to
11335  // return an integer value, not just an instruction so lower it to the ptest
11336  // or testp pattern and a setcc for the result.
11337  case Intrinsic::x86_sse41_ptestz:
11338  case Intrinsic::x86_sse41_ptestc:
11339  case Intrinsic::x86_sse41_ptestnzc:
11340  case Intrinsic::x86_avx_ptestz_256:
11341  case Intrinsic::x86_avx_ptestc_256:
11342  case Intrinsic::x86_avx_ptestnzc_256:
11343  case Intrinsic::x86_avx_vtestz_ps:
11344  case Intrinsic::x86_avx_vtestc_ps:
11345  case Intrinsic::x86_avx_vtestnzc_ps:
11346  case Intrinsic::x86_avx_vtestz_pd:
11347  case Intrinsic::x86_avx_vtestc_pd:
11348  case Intrinsic::x86_avx_vtestnzc_pd:
11349  case Intrinsic::x86_avx_vtestz_ps_256:
11350  case Intrinsic::x86_avx_vtestc_ps_256:
11351  case Intrinsic::x86_avx_vtestnzc_ps_256:
11352  case Intrinsic::x86_avx_vtestz_pd_256:
11353  case Intrinsic::x86_avx_vtestc_pd_256:
11354  case Intrinsic::x86_avx_vtestnzc_pd_256: {
11355    bool IsTestPacked = false;
11356    unsigned X86CC;
11357    switch (IntNo) {
11358    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
11359    case Intrinsic::x86_avx_vtestz_ps:
11360    case Intrinsic::x86_avx_vtestz_pd:
11361    case Intrinsic::x86_avx_vtestz_ps_256:
11362    case Intrinsic::x86_avx_vtestz_pd_256:
11363      IsTestPacked = true; // Fallthrough
11364    case Intrinsic::x86_sse41_ptestz:
11365    case Intrinsic::x86_avx_ptestz_256:
11366      // ZF = 1
11367      X86CC = X86::COND_E;
11368      break;
11369    case Intrinsic::x86_avx_vtestc_ps:
11370    case Intrinsic::x86_avx_vtestc_pd:
11371    case Intrinsic::x86_avx_vtestc_ps_256:
11372    case Intrinsic::x86_avx_vtestc_pd_256:
11373      IsTestPacked = true; // Fallthrough
11374    case Intrinsic::x86_sse41_ptestc:
11375    case Intrinsic::x86_avx_ptestc_256:
11376      // CF = 1
11377      X86CC = X86::COND_B;
11378      break;
11379    case Intrinsic::x86_avx_vtestnzc_ps:
11380    case Intrinsic::x86_avx_vtestnzc_pd:
11381    case Intrinsic::x86_avx_vtestnzc_ps_256:
11382    case Intrinsic::x86_avx_vtestnzc_pd_256:
11383      IsTestPacked = true; // Fallthrough
11384    case Intrinsic::x86_sse41_ptestnzc:
11385    case Intrinsic::x86_avx_ptestnzc_256:
11386      // ZF and CF = 0
11387      X86CC = X86::COND_A;
11388      break;
11389    }
11390
11391    SDValue LHS = Op.getOperand(1);
11392    SDValue RHS = Op.getOperand(2);
11393    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
11394    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
11395    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
11396    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
11397    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11398  }
11399  case Intrinsic::x86_avx512_kortestz:
11400  case Intrinsic::x86_avx512_kortestc: {
11401    unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz)? X86::COND_E: X86::COND_B;
11402    SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
11403    SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
11404    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
11405    SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
11406    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
11407    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11408  }
11409
11410  // SSE/AVX shift intrinsics
11411  case Intrinsic::x86_sse2_psll_w:
11412  case Intrinsic::x86_sse2_psll_d:
11413  case Intrinsic::x86_sse2_psll_q:
11414  case Intrinsic::x86_avx2_psll_w:
11415  case Intrinsic::x86_avx2_psll_d:
11416  case Intrinsic::x86_avx2_psll_q:
11417  case Intrinsic::x86_sse2_psrl_w:
11418  case Intrinsic::x86_sse2_psrl_d:
11419  case Intrinsic::x86_sse2_psrl_q:
11420  case Intrinsic::x86_avx2_psrl_w:
11421  case Intrinsic::x86_avx2_psrl_d:
11422  case Intrinsic::x86_avx2_psrl_q:
11423  case Intrinsic::x86_sse2_psra_w:
11424  case Intrinsic::x86_sse2_psra_d:
11425  case Intrinsic::x86_avx2_psra_w:
11426  case Intrinsic::x86_avx2_psra_d: {
11427    unsigned Opcode;
11428    switch (IntNo) {
11429    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11430    case Intrinsic::x86_sse2_psll_w:
11431    case Intrinsic::x86_sse2_psll_d:
11432    case Intrinsic::x86_sse2_psll_q:
11433    case Intrinsic::x86_avx2_psll_w:
11434    case Intrinsic::x86_avx2_psll_d:
11435    case Intrinsic::x86_avx2_psll_q:
11436      Opcode = X86ISD::VSHL;
11437      break;
11438    case Intrinsic::x86_sse2_psrl_w:
11439    case Intrinsic::x86_sse2_psrl_d:
11440    case Intrinsic::x86_sse2_psrl_q:
11441    case Intrinsic::x86_avx2_psrl_w:
11442    case Intrinsic::x86_avx2_psrl_d:
11443    case Intrinsic::x86_avx2_psrl_q:
11444      Opcode = X86ISD::VSRL;
11445      break;
11446    case Intrinsic::x86_sse2_psra_w:
11447    case Intrinsic::x86_sse2_psra_d:
11448    case Intrinsic::x86_avx2_psra_w:
11449    case Intrinsic::x86_avx2_psra_d:
11450      Opcode = X86ISD::VSRA;
11451      break;
11452    }
11453    return DAG.getNode(Opcode, dl, Op.getValueType(),
11454                       Op.getOperand(1), Op.getOperand(2));
11455  }
11456
11457  // SSE/AVX immediate shift intrinsics
11458  case Intrinsic::x86_sse2_pslli_w:
11459  case Intrinsic::x86_sse2_pslli_d:
11460  case Intrinsic::x86_sse2_pslli_q:
11461  case Intrinsic::x86_avx2_pslli_w:
11462  case Intrinsic::x86_avx2_pslli_d:
11463  case Intrinsic::x86_avx2_pslli_q:
11464  case Intrinsic::x86_sse2_psrli_w:
11465  case Intrinsic::x86_sse2_psrli_d:
11466  case Intrinsic::x86_sse2_psrli_q:
11467  case Intrinsic::x86_avx2_psrli_w:
11468  case Intrinsic::x86_avx2_psrli_d:
11469  case Intrinsic::x86_avx2_psrli_q:
11470  case Intrinsic::x86_sse2_psrai_w:
11471  case Intrinsic::x86_sse2_psrai_d:
11472  case Intrinsic::x86_avx2_psrai_w:
11473  case Intrinsic::x86_avx2_psrai_d: {
11474    unsigned Opcode;
11475    switch (IntNo) {
11476    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11477    case Intrinsic::x86_sse2_pslli_w:
11478    case Intrinsic::x86_sse2_pslli_d:
11479    case Intrinsic::x86_sse2_pslli_q:
11480    case Intrinsic::x86_avx2_pslli_w:
11481    case Intrinsic::x86_avx2_pslli_d:
11482    case Intrinsic::x86_avx2_pslli_q:
11483      Opcode = X86ISD::VSHLI;
11484      break;
11485    case Intrinsic::x86_sse2_psrli_w:
11486    case Intrinsic::x86_sse2_psrli_d:
11487    case Intrinsic::x86_sse2_psrli_q:
11488    case Intrinsic::x86_avx2_psrli_w:
11489    case Intrinsic::x86_avx2_psrli_d:
11490    case Intrinsic::x86_avx2_psrli_q:
11491      Opcode = X86ISD::VSRLI;
11492      break;
11493    case Intrinsic::x86_sse2_psrai_w:
11494    case Intrinsic::x86_sse2_psrai_d:
11495    case Intrinsic::x86_avx2_psrai_w:
11496    case Intrinsic::x86_avx2_psrai_d:
11497      Opcode = X86ISD::VSRAI;
11498      break;
11499    }
11500    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
11501                               Op.getOperand(1), Op.getOperand(2), DAG);
11502  }
11503
11504  case Intrinsic::x86_sse42_pcmpistria128:
11505  case Intrinsic::x86_sse42_pcmpestria128:
11506  case Intrinsic::x86_sse42_pcmpistric128:
11507  case Intrinsic::x86_sse42_pcmpestric128:
11508  case Intrinsic::x86_sse42_pcmpistrio128:
11509  case Intrinsic::x86_sse42_pcmpestrio128:
11510  case Intrinsic::x86_sse42_pcmpistris128:
11511  case Intrinsic::x86_sse42_pcmpestris128:
11512  case Intrinsic::x86_sse42_pcmpistriz128:
11513  case Intrinsic::x86_sse42_pcmpestriz128: {
11514    unsigned Opcode;
11515    unsigned X86CC;
11516    switch (IntNo) {
11517    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11518    case Intrinsic::x86_sse42_pcmpistria128:
11519      Opcode = X86ISD::PCMPISTRI;
11520      X86CC = X86::COND_A;
11521      break;
11522    case Intrinsic::x86_sse42_pcmpestria128:
11523      Opcode = X86ISD::PCMPESTRI;
11524      X86CC = X86::COND_A;
11525      break;
11526    case Intrinsic::x86_sse42_pcmpistric128:
11527      Opcode = X86ISD::PCMPISTRI;
11528      X86CC = X86::COND_B;
11529      break;
11530    case Intrinsic::x86_sse42_pcmpestric128:
11531      Opcode = X86ISD::PCMPESTRI;
11532      X86CC = X86::COND_B;
11533      break;
11534    case Intrinsic::x86_sse42_pcmpistrio128:
11535      Opcode = X86ISD::PCMPISTRI;
11536      X86CC = X86::COND_O;
11537      break;
11538    case Intrinsic::x86_sse42_pcmpestrio128:
11539      Opcode = X86ISD::PCMPESTRI;
11540      X86CC = X86::COND_O;
11541      break;
11542    case Intrinsic::x86_sse42_pcmpistris128:
11543      Opcode = X86ISD::PCMPISTRI;
11544      X86CC = X86::COND_S;
11545      break;
11546    case Intrinsic::x86_sse42_pcmpestris128:
11547      Opcode = X86ISD::PCMPESTRI;
11548      X86CC = X86::COND_S;
11549      break;
11550    case Intrinsic::x86_sse42_pcmpistriz128:
11551      Opcode = X86ISD::PCMPISTRI;
11552      X86CC = X86::COND_E;
11553      break;
11554    case Intrinsic::x86_sse42_pcmpestriz128:
11555      Opcode = X86ISD::PCMPESTRI;
11556      X86CC = X86::COND_E;
11557      break;
11558    }
11559    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
11560    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
11561    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
11562    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11563                                DAG.getConstant(X86CC, MVT::i8),
11564                                SDValue(PCMP.getNode(), 1));
11565    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11566  }
11567
11568  case Intrinsic::x86_sse42_pcmpistri128:
11569  case Intrinsic::x86_sse42_pcmpestri128: {
11570    unsigned Opcode;
11571    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
11572      Opcode = X86ISD::PCMPISTRI;
11573    else
11574      Opcode = X86ISD::PCMPESTRI;
11575
11576    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
11577    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
11578    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
11579  }
11580  case Intrinsic::x86_fma_vfmadd_ps:
11581  case Intrinsic::x86_fma_vfmadd_pd:
11582  case Intrinsic::x86_fma_vfmsub_ps:
11583  case Intrinsic::x86_fma_vfmsub_pd:
11584  case Intrinsic::x86_fma_vfnmadd_ps:
11585  case Intrinsic::x86_fma_vfnmadd_pd:
11586  case Intrinsic::x86_fma_vfnmsub_ps:
11587  case Intrinsic::x86_fma_vfnmsub_pd:
11588  case Intrinsic::x86_fma_vfmaddsub_ps:
11589  case Intrinsic::x86_fma_vfmaddsub_pd:
11590  case Intrinsic::x86_fma_vfmsubadd_ps:
11591  case Intrinsic::x86_fma_vfmsubadd_pd:
11592  case Intrinsic::x86_fma_vfmadd_ps_256:
11593  case Intrinsic::x86_fma_vfmadd_pd_256:
11594  case Intrinsic::x86_fma_vfmsub_ps_256:
11595  case Intrinsic::x86_fma_vfmsub_pd_256:
11596  case Intrinsic::x86_fma_vfnmadd_ps_256:
11597  case Intrinsic::x86_fma_vfnmadd_pd_256:
11598  case Intrinsic::x86_fma_vfnmsub_ps_256:
11599  case Intrinsic::x86_fma_vfnmsub_pd_256:
11600  case Intrinsic::x86_fma_vfmaddsub_ps_256:
11601  case Intrinsic::x86_fma_vfmaddsub_pd_256:
11602  case Intrinsic::x86_fma_vfmsubadd_ps_256:
11603  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
11604    unsigned Opc;
11605    switch (IntNo) {
11606    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11607    case Intrinsic::x86_fma_vfmadd_ps:
11608    case Intrinsic::x86_fma_vfmadd_pd:
11609    case Intrinsic::x86_fma_vfmadd_ps_256:
11610    case Intrinsic::x86_fma_vfmadd_pd_256:
11611      Opc = X86ISD::FMADD;
11612      break;
11613    case Intrinsic::x86_fma_vfmsub_ps:
11614    case Intrinsic::x86_fma_vfmsub_pd:
11615    case Intrinsic::x86_fma_vfmsub_ps_256:
11616    case Intrinsic::x86_fma_vfmsub_pd_256:
11617      Opc = X86ISD::FMSUB;
11618      break;
11619    case Intrinsic::x86_fma_vfnmadd_ps:
11620    case Intrinsic::x86_fma_vfnmadd_pd:
11621    case Intrinsic::x86_fma_vfnmadd_ps_256:
11622    case Intrinsic::x86_fma_vfnmadd_pd_256:
11623      Opc = X86ISD::FNMADD;
11624      break;
11625    case Intrinsic::x86_fma_vfnmsub_ps:
11626    case Intrinsic::x86_fma_vfnmsub_pd:
11627    case Intrinsic::x86_fma_vfnmsub_ps_256:
11628    case Intrinsic::x86_fma_vfnmsub_pd_256:
11629      Opc = X86ISD::FNMSUB;
11630      break;
11631    case Intrinsic::x86_fma_vfmaddsub_ps:
11632    case Intrinsic::x86_fma_vfmaddsub_pd:
11633    case Intrinsic::x86_fma_vfmaddsub_ps_256:
11634    case Intrinsic::x86_fma_vfmaddsub_pd_256:
11635      Opc = X86ISD::FMADDSUB;
11636      break;
11637    case Intrinsic::x86_fma_vfmsubadd_ps:
11638    case Intrinsic::x86_fma_vfmsubadd_pd:
11639    case Intrinsic::x86_fma_vfmsubadd_ps_256:
11640    case Intrinsic::x86_fma_vfmsubadd_pd_256:
11641      Opc = X86ISD::FMSUBADD;
11642      break;
11643    }
11644
11645    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
11646                       Op.getOperand(2), Op.getOperand(3));
11647  }
11648  }
11649}
11650
11651static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11652                             SDValue Base, SDValue Index,
11653                             SDValue ScaleOp, SDValue Chain,
11654                             const X86Subtarget * Subtarget) {
11655  SDLoc dl(Op);
11656  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11657  assert(C && "Invalid scale type");
11658  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11659  SDValue Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
11660  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11661                                Index.getValueType().getVectorNumElements());
11662  SDValue MaskInReg = DAG.getConstant(~0, MaskVT);
11663  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
11664  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11665  SDValue Segment = DAG.getRegister(0, MVT::i32);
11666  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
11667  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11668  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
11669  return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl);
11670}
11671
11672static SDValue getMGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11673                              SDValue Src, SDValue Mask, SDValue Base,
11674                              SDValue Index, SDValue ScaleOp, SDValue Chain,
11675                              const X86Subtarget * Subtarget) {
11676  SDLoc dl(Op);
11677  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11678  assert(C && "Invalid scale type");
11679  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11680  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11681                                Index.getValueType().getVectorNumElements());
11682  SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
11683  SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
11684  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11685  SDValue Segment = DAG.getRegister(0, MVT::i32);
11686  if (Src.getOpcode() == ISD::UNDEF)
11687    Src = getZeroVector(Op.getValueType(), Subtarget, DAG, dl);
11688  SDValue Ops[] = {Src, MaskInReg, Base, Scale, Index, Disp, Segment, Chain};
11689  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11690  SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
11691  return DAG.getMergeValues(RetOps, array_lengthof(RetOps), dl);
11692}
11693
11694static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11695                              SDValue Src, SDValue Base, SDValue Index,
11696                              SDValue ScaleOp, SDValue Chain) {
11697  SDLoc dl(Op);
11698  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11699  assert(C && "Invalid scale type");
11700  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11701  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11702  SDValue Segment = DAG.getRegister(0, MVT::i32);
11703  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11704                                Index.getValueType().getVectorNumElements());
11705  SDValue MaskInReg = DAG.getConstant(~0, MaskVT);
11706  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
11707  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
11708  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11709  return SDValue(Res, 1);
11710}
11711
11712static SDValue getMScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
11713                               SDValue Src, SDValue Mask, SDValue Base,
11714                               SDValue Index, SDValue ScaleOp, SDValue Chain) {
11715  SDLoc dl(Op);
11716  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ScaleOp);
11717  assert(C && "Invalid scale type");
11718  SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), MVT::i8);
11719  SDValue Disp = DAG.getTargetConstant(0, MVT::i32);
11720  SDValue Segment = DAG.getRegister(0, MVT::i32);
11721  EVT MaskVT = MVT::getVectorVT(MVT::i1,
11722                                Index.getValueType().getVectorNumElements());
11723  SDValue MaskInReg = DAG.getNode(ISD::BITCAST, dl, MaskVT, Mask);
11724  SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
11725  SDValue Ops[] = {Base, Scale, Index, Disp, Segment, MaskInReg, Src, Chain};
11726  SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
11727  return SDValue(Res, 1);
11728}
11729
11730static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget *Subtarget,
11731                                      SelectionDAG &DAG) {
11732  SDLoc dl(Op);
11733  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11734  switch (IntNo) {
11735  default: return SDValue();    // Don't custom lower most intrinsics.
11736
11737  // RDRAND/RDSEED intrinsics.
11738  case Intrinsic::x86_rdrand_16:
11739  case Intrinsic::x86_rdrand_32:
11740  case Intrinsic::x86_rdrand_64:
11741  case Intrinsic::x86_rdseed_16:
11742  case Intrinsic::x86_rdseed_32:
11743  case Intrinsic::x86_rdseed_64: {
11744    unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 ||
11745                       IntNo == Intrinsic::x86_rdseed_32 ||
11746                       IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED :
11747                                                            X86ISD::RDRAND;
11748    // Emit the node with the right value type.
11749    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
11750    SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0));
11751
11752    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
11753    // Otherwise return the value from Rand, which is always 0, casted to i32.
11754    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
11755                      DAG.getConstant(1, Op->getValueType(1)),
11756                      DAG.getConstant(X86::COND_B, MVT::i32),
11757                      SDValue(Result.getNode(), 1) };
11758    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
11759                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
11760                                  Ops, array_lengthof(Ops));
11761
11762    // Return { result, isValid, chain }.
11763    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
11764                       SDValue(Result.getNode(), 2));
11765  }
11766  //int_gather(index, base, scale);
11767  case Intrinsic::x86_avx512_gather_qpd_512:
11768  case Intrinsic::x86_avx512_gather_qps_512:
11769  case Intrinsic::x86_avx512_gather_dpd_512:
11770  case Intrinsic::x86_avx512_gather_qpi_512:
11771  case Intrinsic::x86_avx512_gather_qpq_512:
11772  case Intrinsic::x86_avx512_gather_dpq_512:
11773  case Intrinsic::x86_avx512_gather_dps_512:
11774  case Intrinsic::x86_avx512_gather_dpi_512: {
11775    unsigned Opc;
11776    switch (IntNo) {
11777      default: llvm_unreachable("Unexpected intrinsic!");
11778      case Intrinsic::x86_avx512_gather_qps_512: Opc = X86::VGATHERQPSZrm; break;
11779      case Intrinsic::x86_avx512_gather_qpd_512: Opc = X86::VGATHERQPDZrm; break;
11780      case Intrinsic::x86_avx512_gather_dpd_512: Opc = X86::VGATHERDPDZrm; break;
11781      case Intrinsic::x86_avx512_gather_dps_512: Opc = X86::VGATHERDPSZrm; break;
11782      case Intrinsic::x86_avx512_gather_qpi_512: Opc = X86::VPGATHERQDZrm; break;
11783      case Intrinsic::x86_avx512_gather_qpq_512: Opc = X86::VPGATHERQQZrm; break;
11784      case Intrinsic::x86_avx512_gather_dpi_512: Opc = X86::VPGATHERDDZrm; break;
11785      case Intrinsic::x86_avx512_gather_dpq_512: Opc = X86::VPGATHERDQZrm; break;
11786    }
11787    SDValue Chain = Op.getOperand(0);
11788    SDValue Index = Op.getOperand(2);
11789    SDValue Base  = Op.getOperand(3);
11790    SDValue Scale = Op.getOperand(4);
11791    return getGatherNode(Opc, Op, DAG, Base, Index, Scale, Chain, Subtarget);
11792  }
11793  //int_gather_mask(v1, mask, index, base, scale);
11794  case Intrinsic::x86_avx512_gather_qps_mask_512:
11795  case Intrinsic::x86_avx512_gather_qpd_mask_512:
11796  case Intrinsic::x86_avx512_gather_dpd_mask_512:
11797  case Intrinsic::x86_avx512_gather_dps_mask_512:
11798  case Intrinsic::x86_avx512_gather_qpi_mask_512:
11799  case Intrinsic::x86_avx512_gather_qpq_mask_512:
11800  case Intrinsic::x86_avx512_gather_dpi_mask_512:
11801  case Intrinsic::x86_avx512_gather_dpq_mask_512: {
11802    unsigned Opc;
11803    switch (IntNo) {
11804      default: llvm_unreachable("Unexpected intrinsic!");
11805      case Intrinsic::x86_avx512_gather_qps_mask_512:
11806        Opc = X86::VGATHERQPSZrm; break;
11807      case Intrinsic::x86_avx512_gather_qpd_mask_512:
11808        Opc = X86::VGATHERQPDZrm; break;
11809      case Intrinsic::x86_avx512_gather_dpd_mask_512:
11810        Opc = X86::VGATHERDPDZrm; break;
11811      case Intrinsic::x86_avx512_gather_dps_mask_512:
11812        Opc = X86::VGATHERDPSZrm; break;
11813      case Intrinsic::x86_avx512_gather_qpi_mask_512:
11814        Opc = X86::VPGATHERQDZrm; break;
11815      case Intrinsic::x86_avx512_gather_qpq_mask_512:
11816        Opc = X86::VPGATHERQQZrm; break;
11817      case Intrinsic::x86_avx512_gather_dpi_mask_512:
11818        Opc = X86::VPGATHERDDZrm; break;
11819      case Intrinsic::x86_avx512_gather_dpq_mask_512:
11820        Opc = X86::VPGATHERDQZrm; break;
11821    }
11822    SDValue Chain = Op.getOperand(0);
11823    SDValue Src   = Op.getOperand(2);
11824    SDValue Mask  = Op.getOperand(3);
11825    SDValue Index = Op.getOperand(4);
11826    SDValue Base  = Op.getOperand(5);
11827    SDValue Scale = Op.getOperand(6);
11828    return getMGatherNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain,
11829                          Subtarget);
11830  }
11831  //int_scatter(base, index, v1, scale);
11832  case Intrinsic::x86_avx512_scatter_qpd_512:
11833  case Intrinsic::x86_avx512_scatter_qps_512:
11834  case Intrinsic::x86_avx512_scatter_dpd_512:
11835  case Intrinsic::x86_avx512_scatter_qpi_512:
11836  case Intrinsic::x86_avx512_scatter_qpq_512:
11837  case Intrinsic::x86_avx512_scatter_dpq_512:
11838  case Intrinsic::x86_avx512_scatter_dps_512:
11839  case Intrinsic::x86_avx512_scatter_dpi_512: {
11840    unsigned Opc;
11841    switch (IntNo) {
11842      default: llvm_unreachable("Unexpected intrinsic!");
11843      case Intrinsic::x86_avx512_scatter_qpd_512:
11844        Opc = X86::VSCATTERQPDZmr; break;
11845      case Intrinsic::x86_avx512_scatter_qps_512:
11846        Opc = X86::VSCATTERQPSZmr; break;
11847      case Intrinsic::x86_avx512_scatter_dpd_512:
11848        Opc = X86::VSCATTERDPDZmr; break;
11849      case Intrinsic::x86_avx512_scatter_dps_512:
11850        Opc = X86::VSCATTERDPSZmr; break;
11851      case Intrinsic::x86_avx512_scatter_qpi_512:
11852        Opc = X86::VPSCATTERQDZmr; break;
11853      case Intrinsic::x86_avx512_scatter_qpq_512:
11854        Opc = X86::VPSCATTERQQZmr; break;
11855      case Intrinsic::x86_avx512_scatter_dpq_512:
11856        Opc = X86::VPSCATTERDQZmr; break;
11857      case Intrinsic::x86_avx512_scatter_dpi_512:
11858        Opc = X86::VPSCATTERDDZmr; break;
11859    }
11860    SDValue Chain = Op.getOperand(0);
11861    SDValue Base  = Op.getOperand(2);
11862    SDValue Index = Op.getOperand(3);
11863    SDValue Src   = Op.getOperand(4);
11864    SDValue Scale = Op.getOperand(5);
11865    return getScatterNode(Opc, Op, DAG, Src, Base, Index, Scale, Chain);
11866  }
11867  //int_scatter_mask(base, mask, index, v1, scale);
11868  case Intrinsic::x86_avx512_scatter_qps_mask_512:
11869  case Intrinsic::x86_avx512_scatter_qpd_mask_512:
11870  case Intrinsic::x86_avx512_scatter_dpd_mask_512:
11871  case Intrinsic::x86_avx512_scatter_dps_mask_512:
11872  case Intrinsic::x86_avx512_scatter_qpi_mask_512:
11873  case Intrinsic::x86_avx512_scatter_qpq_mask_512:
11874  case Intrinsic::x86_avx512_scatter_dpi_mask_512:
11875  case Intrinsic::x86_avx512_scatter_dpq_mask_512: {
11876    unsigned Opc;
11877    switch (IntNo) {
11878      default: llvm_unreachable("Unexpected intrinsic!");
11879      case Intrinsic::x86_avx512_scatter_qpd_mask_512:
11880        Opc = X86::VSCATTERQPDZmr; break;
11881      case Intrinsic::x86_avx512_scatter_qps_mask_512:
11882        Opc = X86::VSCATTERQPSZmr; break;
11883      case Intrinsic::x86_avx512_scatter_dpd_mask_512:
11884        Opc = X86::VSCATTERDPDZmr; break;
11885      case Intrinsic::x86_avx512_scatter_dps_mask_512:
11886        Opc = X86::VSCATTERDPSZmr; break;
11887      case Intrinsic::x86_avx512_scatter_qpi_mask_512:
11888        Opc = X86::VPSCATTERQDZmr; break;
11889      case Intrinsic::x86_avx512_scatter_qpq_mask_512:
11890        Opc = X86::VPSCATTERQQZmr; break;
11891      case Intrinsic::x86_avx512_scatter_dpq_mask_512:
11892        Opc = X86::VPSCATTERDQZmr; break;
11893      case Intrinsic::x86_avx512_scatter_dpi_mask_512:
11894        Opc = X86::VPSCATTERDDZmr; break;
11895    }
11896    SDValue Chain = Op.getOperand(0);
11897    SDValue Base  = Op.getOperand(2);
11898    SDValue Mask  = Op.getOperand(3);
11899    SDValue Index = Op.getOperand(4);
11900    SDValue Src   = Op.getOperand(5);
11901    SDValue Scale = Op.getOperand(6);
11902    return getMScatterNode(Opc, Op, DAG, Src, Mask, Base, Index, Scale, Chain);
11903  }
11904  // XTEST intrinsics.
11905  case Intrinsic::x86_xtest: {
11906    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
11907    SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
11908    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11909                                DAG.getConstant(X86::COND_NE, MVT::i8),
11910                                InTrans);
11911    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
11912    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
11913                       Ret, SDValue(InTrans.getNode(), 1));
11914  }
11915  }
11916}
11917
11918SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
11919                                           SelectionDAG &DAG) const {
11920  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11921  MFI->setReturnAddressIsTaken(true);
11922
11923  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11924  SDLoc dl(Op);
11925  EVT PtrVT = getPointerTy();
11926
11927  if (Depth > 0) {
11928    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11929    const X86RegisterInfo *RegInfo =
11930      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11931    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
11932    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11933                       DAG.getNode(ISD::ADD, dl, PtrVT,
11934                                   FrameAddr, Offset),
11935                       MachinePointerInfo(), false, false, false, 0);
11936  }
11937
11938  // Just load the return address.
11939  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
11940  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11941                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
11942}
11943
11944SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
11945  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11946  MFI->setFrameAddressIsTaken(true);
11947
11948  EVT VT = Op.getValueType();
11949  SDLoc dl(Op);  // FIXME probably not meaningful
11950  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11951  const X86RegisterInfo *RegInfo =
11952    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11953  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
11954  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
11955          (FrameReg == X86::EBP && VT == MVT::i32)) &&
11956         "Invalid Frame Register!");
11957  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
11958  while (Depth--)
11959    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
11960                            MachinePointerInfo(),
11961                            false, false, false, 0);
11962  return FrameAddr;
11963}
11964
11965SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
11966                                                     SelectionDAG &DAG) const {
11967  const X86RegisterInfo *RegInfo =
11968    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11969  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
11970}
11971
11972SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
11973  SDValue Chain     = Op.getOperand(0);
11974  SDValue Offset    = Op.getOperand(1);
11975  SDValue Handler   = Op.getOperand(2);
11976  SDLoc dl      (Op);
11977
11978  EVT PtrVT = getPointerTy();
11979  const X86RegisterInfo *RegInfo =
11980    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11981  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
11982  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
11983          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
11984         "Invalid Frame Register!");
11985  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
11986  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
11987
11988  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
11989                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
11990  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
11991  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
11992                       false, false, 0);
11993  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
11994
11995  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
11996                     DAG.getRegister(StoreAddrReg, PtrVT));
11997}
11998
11999SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
12000                                               SelectionDAG &DAG) const {
12001  SDLoc DL(Op);
12002  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
12003                     DAG.getVTList(MVT::i32, MVT::Other),
12004                     Op.getOperand(0), Op.getOperand(1));
12005}
12006
12007SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
12008                                                SelectionDAG &DAG) const {
12009  SDLoc DL(Op);
12010  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
12011                     Op.getOperand(0), Op.getOperand(1));
12012}
12013
12014static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
12015  return Op.getOperand(0);
12016}
12017
12018SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
12019                                                SelectionDAG &DAG) const {
12020  SDValue Root = Op.getOperand(0);
12021  SDValue Trmp = Op.getOperand(1); // trampoline
12022  SDValue FPtr = Op.getOperand(2); // nested function
12023  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
12024  SDLoc dl (Op);
12025
12026  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
12027  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12028
12029  if (Subtarget->is64Bit()) {
12030    SDValue OutChains[6];
12031
12032    // Large code-model.
12033    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
12034    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
12035
12036    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
12037    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
12038
12039    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
12040
12041    // Load the pointer to the nested function into R11.
12042    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
12043    SDValue Addr = Trmp;
12044    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12045                                Addr, MachinePointerInfo(TrmpAddr),
12046                                false, false, 0);
12047
12048    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12049                       DAG.getConstant(2, MVT::i64));
12050    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
12051                                MachinePointerInfo(TrmpAddr, 2),
12052                                false, false, 2);
12053
12054    // Load the 'nest' parameter value into R10.
12055    // R10 is specified in X86CallingConv.td
12056    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
12057    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12058                       DAG.getConstant(10, MVT::i64));
12059    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12060                                Addr, MachinePointerInfo(TrmpAddr, 10),
12061                                false, false, 0);
12062
12063    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12064                       DAG.getConstant(12, MVT::i64));
12065    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
12066                                MachinePointerInfo(TrmpAddr, 12),
12067                                false, false, 2);
12068
12069    // Jump to the nested function.
12070    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
12071    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12072                       DAG.getConstant(20, MVT::i64));
12073    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
12074                                Addr, MachinePointerInfo(TrmpAddr, 20),
12075                                false, false, 0);
12076
12077    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
12078    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
12079                       DAG.getConstant(22, MVT::i64));
12080    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
12081                                MachinePointerInfo(TrmpAddr, 22),
12082                                false, false, 0);
12083
12084    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
12085  } else {
12086    const Function *Func =
12087      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
12088    CallingConv::ID CC = Func->getCallingConv();
12089    unsigned NestReg;
12090
12091    switch (CC) {
12092    default:
12093      llvm_unreachable("Unsupported calling convention");
12094    case CallingConv::C:
12095    case CallingConv::X86_StdCall: {
12096      // Pass 'nest' parameter in ECX.
12097      // Must be kept in sync with X86CallingConv.td
12098      NestReg = X86::ECX;
12099
12100      // Check that ECX wasn't needed by an 'inreg' parameter.
12101      FunctionType *FTy = Func->getFunctionType();
12102      const AttributeSet &Attrs = Func->getAttributes();
12103
12104      if (!Attrs.isEmpty() && !Func->isVarArg()) {
12105        unsigned InRegCount = 0;
12106        unsigned Idx = 1;
12107
12108        for (FunctionType::param_iterator I = FTy->param_begin(),
12109             E = FTy->param_end(); I != E; ++I, ++Idx)
12110          if (Attrs.hasAttribute(Idx, Attribute::InReg))
12111            // FIXME: should only count parameters that are lowered to integers.
12112            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
12113
12114        if (InRegCount > 2) {
12115          report_fatal_error("Nest register in use - reduce number of inreg"
12116                             " parameters!");
12117        }
12118      }
12119      break;
12120    }
12121    case CallingConv::X86_FastCall:
12122    case CallingConv::X86_ThisCall:
12123    case CallingConv::Fast:
12124      // Pass 'nest' parameter in EAX.
12125      // Must be kept in sync with X86CallingConv.td
12126      NestReg = X86::EAX;
12127      break;
12128    }
12129
12130    SDValue OutChains[4];
12131    SDValue Addr, Disp;
12132
12133    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12134                       DAG.getConstant(10, MVT::i32));
12135    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
12136
12137    // This is storing the opcode for MOV32ri.
12138    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
12139    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
12140    OutChains[0] = DAG.getStore(Root, dl,
12141                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
12142                                Trmp, MachinePointerInfo(TrmpAddr),
12143                                false, false, 0);
12144
12145    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12146                       DAG.getConstant(1, MVT::i32));
12147    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
12148                                MachinePointerInfo(TrmpAddr, 1),
12149                                false, false, 1);
12150
12151    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
12152    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12153                       DAG.getConstant(5, MVT::i32));
12154    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
12155                                MachinePointerInfo(TrmpAddr, 5),
12156                                false, false, 1);
12157
12158    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
12159                       DAG.getConstant(6, MVT::i32));
12160    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
12161                                MachinePointerInfo(TrmpAddr, 6),
12162                                false, false, 1);
12163
12164    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
12165  }
12166}
12167
12168SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
12169                                            SelectionDAG &DAG) const {
12170  /*
12171   The rounding mode is in bits 11:10 of FPSR, and has the following
12172   settings:
12173     00 Round to nearest
12174     01 Round to -inf
12175     10 Round to +inf
12176     11 Round to 0
12177
12178  FLT_ROUNDS, on the other hand, expects the following:
12179    -1 Undefined
12180     0 Round to 0
12181     1 Round to nearest
12182     2 Round to +inf
12183     3 Round to -inf
12184
12185  To perform the conversion, we do:
12186    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
12187  */
12188
12189  MachineFunction &MF = DAG.getMachineFunction();
12190  const TargetMachine &TM = MF.getTarget();
12191  const TargetFrameLowering &TFI = *TM.getFrameLowering();
12192  unsigned StackAlignment = TFI.getStackAlignment();
12193  EVT VT = Op.getValueType();
12194  SDLoc DL(Op);
12195
12196  // Save FP Control Word to stack slot
12197  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
12198  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
12199
12200  MachineMemOperand *MMO =
12201   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
12202                           MachineMemOperand::MOStore, 2, 2);
12203
12204  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
12205  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
12206                                          DAG.getVTList(MVT::Other),
12207                                          Ops, array_lengthof(Ops), MVT::i16,
12208                                          MMO);
12209
12210  // Load FP Control Word from stack slot
12211  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
12212                            MachinePointerInfo(), false, false, false, 0);
12213
12214  // Transform as necessary
12215  SDValue CWD1 =
12216    DAG.getNode(ISD::SRL, DL, MVT::i16,
12217                DAG.getNode(ISD::AND, DL, MVT::i16,
12218                            CWD, DAG.getConstant(0x800, MVT::i16)),
12219                DAG.getConstant(11, MVT::i8));
12220  SDValue CWD2 =
12221    DAG.getNode(ISD::SRL, DL, MVT::i16,
12222                DAG.getNode(ISD::AND, DL, MVT::i16,
12223                            CWD, DAG.getConstant(0x400, MVT::i16)),
12224                DAG.getConstant(9, MVT::i8));
12225
12226  SDValue RetVal =
12227    DAG.getNode(ISD::AND, DL, MVT::i16,
12228                DAG.getNode(ISD::ADD, DL, MVT::i16,
12229                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
12230                            DAG.getConstant(1, MVT::i16)),
12231                DAG.getConstant(3, MVT::i16));
12232
12233  return DAG.getNode((VT.getSizeInBits() < 16 ?
12234                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
12235}
12236
12237static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
12238  EVT VT = Op.getValueType();
12239  EVT OpVT = VT;
12240  unsigned NumBits = VT.getSizeInBits();
12241  SDLoc dl(Op);
12242
12243  Op = Op.getOperand(0);
12244  if (VT == MVT::i8) {
12245    // Zero extend to i32 since there is not an i8 bsr.
12246    OpVT = MVT::i32;
12247    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
12248  }
12249
12250  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
12251  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
12252  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
12253
12254  // If src is zero (i.e. bsr sets ZF), returns NumBits.
12255  SDValue Ops[] = {
12256    Op,
12257    DAG.getConstant(NumBits+NumBits-1, OpVT),
12258    DAG.getConstant(X86::COND_E, MVT::i8),
12259    Op.getValue(1)
12260  };
12261  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
12262
12263  // Finally xor with NumBits-1.
12264  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
12265
12266  if (VT == MVT::i8)
12267    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
12268  return Op;
12269}
12270
12271static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
12272  EVT VT = Op.getValueType();
12273  EVT OpVT = VT;
12274  unsigned NumBits = VT.getSizeInBits();
12275  SDLoc dl(Op);
12276
12277  Op = Op.getOperand(0);
12278  if (VT == MVT::i8) {
12279    // Zero extend to i32 since there is not an i8 bsr.
12280    OpVT = MVT::i32;
12281    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
12282  }
12283
12284  // Issue a bsr (scan bits in reverse).
12285  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
12286  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
12287
12288  // And xor with NumBits-1.
12289  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
12290
12291  if (VT == MVT::i8)
12292    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
12293  return Op;
12294}
12295
12296static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
12297  EVT VT = Op.getValueType();
12298  unsigned NumBits = VT.getSizeInBits();
12299  SDLoc dl(Op);
12300  Op = Op.getOperand(0);
12301
12302  // Issue a bsf (scan bits forward) which also sets EFLAGS.
12303  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12304  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
12305
12306  // If src is zero (i.e. bsf sets ZF), returns NumBits.
12307  SDValue Ops[] = {
12308    Op,
12309    DAG.getConstant(NumBits, VT),
12310    DAG.getConstant(X86::COND_E, MVT::i8),
12311    Op.getValue(1)
12312  };
12313  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
12314}
12315
12316// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
12317// ones, and then concatenate the result back.
12318static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
12319  EVT VT = Op.getValueType();
12320
12321  assert(VT.is256BitVector() && VT.isInteger() &&
12322         "Unsupported value type for operation");
12323
12324  unsigned NumElems = VT.getVectorNumElements();
12325  SDLoc dl(Op);
12326
12327  // Extract the LHS vectors
12328  SDValue LHS = Op.getOperand(0);
12329  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12330  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12331
12332  // Extract the RHS vectors
12333  SDValue RHS = Op.getOperand(1);
12334  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
12335  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
12336
12337  MVT EltVT = VT.getVectorElementType().getSimpleVT();
12338  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12339
12340  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
12341                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
12342                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
12343}
12344
12345static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
12346  assert(Op.getValueType().is256BitVector() &&
12347         Op.getValueType().isInteger() &&
12348         "Only handle AVX 256-bit vector integer operation");
12349  return Lower256IntArith(Op, DAG);
12350}
12351
12352static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
12353  assert(Op.getValueType().is256BitVector() &&
12354         Op.getValueType().isInteger() &&
12355         "Only handle AVX 256-bit vector integer operation");
12356  return Lower256IntArith(Op, DAG);
12357}
12358
12359static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
12360                        SelectionDAG &DAG) {
12361  SDLoc dl(Op);
12362  EVT VT = Op.getValueType();
12363
12364  // Decompose 256-bit ops into smaller 128-bit ops.
12365  if (VT.is256BitVector() && !Subtarget->hasInt256())
12366    return Lower256IntArith(Op, DAG);
12367
12368  SDValue A = Op.getOperand(0);
12369  SDValue B = Op.getOperand(1);
12370
12371  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
12372  if (VT == MVT::v4i32) {
12373    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
12374           "Should not custom lower when pmuldq is available!");
12375
12376    // Extract the odd parts.
12377    static const int UnpackMask[] = { 1, -1, 3, -1 };
12378    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
12379    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
12380
12381    // Multiply the even parts.
12382    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
12383    // Now multiply odd parts.
12384    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
12385
12386    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
12387    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
12388
12389    // Merge the two vectors back together with a shuffle. This expands into 2
12390    // shuffles.
12391    static const int ShufMask[] = { 0, 4, 2, 6 };
12392    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
12393  }
12394
12395  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
12396         "Only know how to lower V2I64/V4I64 multiply");
12397
12398  //  Ahi = psrlqi(a, 32);
12399  //  Bhi = psrlqi(b, 32);
12400  //
12401  //  AloBlo = pmuludq(a, b);
12402  //  AloBhi = pmuludq(a, Bhi);
12403  //  AhiBlo = pmuludq(Ahi, b);
12404
12405  //  AloBhi = psllqi(AloBhi, 32);
12406  //  AhiBlo = psllqi(AhiBlo, 32);
12407  //  return AloBlo + AloBhi + AhiBlo;
12408
12409  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
12410
12411  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
12412  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
12413
12414  // Bit cast to 32-bit vectors for MULUDQ
12415  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
12416  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
12417  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
12418  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
12419  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
12420
12421  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
12422  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
12423  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
12424
12425  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
12426  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
12427
12428  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
12429  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
12430}
12431
12432static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
12433  EVT VT = Op.getValueType();
12434  EVT EltTy = VT.getVectorElementType();
12435  unsigned NumElts = VT.getVectorNumElements();
12436  SDValue N0 = Op.getOperand(0);
12437  SDLoc dl(Op);
12438
12439  // Lower sdiv X, pow2-const.
12440  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
12441  if (!C)
12442    return SDValue();
12443
12444  APInt SplatValue, SplatUndef;
12445  unsigned SplatBitSize;
12446  bool HasAnyUndefs;
12447  if (!C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
12448                          HasAnyUndefs) ||
12449      EltTy.getSizeInBits() < SplatBitSize)
12450    return SDValue();
12451
12452  if ((SplatValue != 0) &&
12453      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
12454    unsigned lg2 = SplatValue.countTrailingZeros();
12455    // Splat the sign bit.
12456    SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
12457    SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
12458    // Add (N0 < 0) ? abs2 - 1 : 0;
12459    SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
12460    SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
12461    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
12462    SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
12463    SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
12464
12465    // If we're dividing by a positive value, we're done.  Otherwise, we must
12466    // negate the result.
12467    if (SplatValue.isNonNegative())
12468      return SRA;
12469
12470    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
12471    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
12472    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
12473  }
12474  return SDValue();
12475}
12476
12477static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
12478                                         const X86Subtarget *Subtarget) {
12479  EVT VT = Op.getValueType();
12480  SDLoc dl(Op);
12481  SDValue R = Op.getOperand(0);
12482  SDValue Amt = Op.getOperand(1);
12483
12484  // Optimize shl/srl/sra with constant shift amount.
12485  if (isSplatVector(Amt.getNode())) {
12486    SDValue SclrAmt = Amt->getOperand(0);
12487    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
12488      uint64_t ShiftAmt = C->getZExtValue();
12489
12490      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
12491          (Subtarget->hasInt256() &&
12492           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
12493          (Subtarget->hasAVX512() &&
12494           (VT == MVT::v8i64 || VT == MVT::v16i32))) {
12495        if (Op.getOpcode() == ISD::SHL)
12496          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
12497                             DAG.getConstant(ShiftAmt, MVT::i32));
12498        if (Op.getOpcode() == ISD::SRL)
12499          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
12500                             DAG.getConstant(ShiftAmt, MVT::i32));
12501        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
12502          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
12503                             DAG.getConstant(ShiftAmt, MVT::i32));
12504      }
12505
12506      if (VT == MVT::v16i8) {
12507        if (Op.getOpcode() == ISD::SHL) {
12508          // Make a large shift.
12509          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
12510                                    DAG.getConstant(ShiftAmt, MVT::i32));
12511          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
12512          // Zero out the rightmost bits.
12513          SmallVector<SDValue, 16> V(16,
12514                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
12515                                                     MVT::i8));
12516          return DAG.getNode(ISD::AND, dl, VT, SHL,
12517                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
12518        }
12519        if (Op.getOpcode() == ISD::SRL) {
12520          // Make a large shift.
12521          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
12522                                    DAG.getConstant(ShiftAmt, MVT::i32));
12523          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
12524          // Zero out the leftmost bits.
12525          SmallVector<SDValue, 16> V(16,
12526                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
12527                                                     MVT::i8));
12528          return DAG.getNode(ISD::AND, dl, VT, SRL,
12529                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
12530        }
12531        if (Op.getOpcode() == ISD::SRA) {
12532          if (ShiftAmt == 7) {
12533            // R s>> 7  ===  R s< 0
12534            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12535            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
12536          }
12537
12538          // R s>> a === ((R u>> a) ^ m) - m
12539          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
12540          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
12541                                                         MVT::i8));
12542          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
12543          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
12544          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
12545          return Res;
12546        }
12547        llvm_unreachable("Unknown shift opcode.");
12548      }
12549
12550      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
12551        if (Op.getOpcode() == ISD::SHL) {
12552          // Make a large shift.
12553          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
12554                                    DAG.getConstant(ShiftAmt, MVT::i32));
12555          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
12556          // Zero out the rightmost bits.
12557          SmallVector<SDValue, 32> V(32,
12558                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
12559                                                     MVT::i8));
12560          return DAG.getNode(ISD::AND, dl, VT, SHL,
12561                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
12562        }
12563        if (Op.getOpcode() == ISD::SRL) {
12564          // Make a large shift.
12565          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
12566                                    DAG.getConstant(ShiftAmt, MVT::i32));
12567          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
12568          // Zero out the leftmost bits.
12569          SmallVector<SDValue, 32> V(32,
12570                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
12571                                                     MVT::i8));
12572          return DAG.getNode(ISD::AND, dl, VT, SRL,
12573                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
12574        }
12575        if (Op.getOpcode() == ISD::SRA) {
12576          if (ShiftAmt == 7) {
12577            // R s>> 7  ===  R s< 0
12578            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12579            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
12580          }
12581
12582          // R s>> a === ((R u>> a) ^ m) - m
12583          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
12584          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
12585                                                         MVT::i8));
12586          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
12587          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
12588          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
12589          return Res;
12590        }
12591        llvm_unreachable("Unknown shift opcode.");
12592      }
12593    }
12594  }
12595
12596  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
12597  if (!Subtarget->is64Bit() &&
12598      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
12599      Amt.getOpcode() == ISD::BITCAST &&
12600      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
12601    Amt = Amt.getOperand(0);
12602    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
12603                     VT.getVectorNumElements();
12604    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
12605    uint64_t ShiftAmt = 0;
12606    for (unsigned i = 0; i != Ratio; ++i) {
12607      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
12608      if (C == 0)
12609        return SDValue();
12610      // 6 == Log2(64)
12611      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
12612    }
12613    // Check remaining shift amounts.
12614    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
12615      uint64_t ShAmt = 0;
12616      for (unsigned j = 0; j != Ratio; ++j) {
12617        ConstantSDNode *C =
12618          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
12619        if (C == 0)
12620          return SDValue();
12621        // 6 == Log2(64)
12622        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
12623      }
12624      if (ShAmt != ShiftAmt)
12625        return SDValue();
12626    }
12627    switch (Op.getOpcode()) {
12628    default:
12629      llvm_unreachable("Unknown shift opcode!");
12630    case ISD::SHL:
12631      return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
12632                         DAG.getConstant(ShiftAmt, MVT::i32));
12633    case ISD::SRL:
12634      return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
12635                         DAG.getConstant(ShiftAmt, MVT::i32));
12636    case ISD::SRA:
12637      return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
12638                         DAG.getConstant(ShiftAmt, MVT::i32));
12639    }
12640  }
12641
12642  return SDValue();
12643}
12644
12645static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
12646                                        const X86Subtarget* Subtarget) {
12647  EVT VT = Op.getValueType();
12648  SDLoc dl(Op);
12649  SDValue R = Op.getOperand(0);
12650  SDValue Amt = Op.getOperand(1);
12651
12652  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
12653      VT == MVT::v4i32 || VT == MVT::v8i16 ||
12654      (Subtarget->hasInt256() &&
12655       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
12656        VT == MVT::v8i32 || VT == MVT::v16i16)) ||
12657       (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
12658    SDValue BaseShAmt;
12659    EVT EltVT = VT.getVectorElementType();
12660
12661    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
12662      unsigned NumElts = VT.getVectorNumElements();
12663      unsigned i, j;
12664      for (i = 0; i != NumElts; ++i) {
12665        if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
12666          continue;
12667        break;
12668      }
12669      for (j = i; j != NumElts; ++j) {
12670        SDValue Arg = Amt.getOperand(j);
12671        if (Arg.getOpcode() == ISD::UNDEF) continue;
12672        if (Arg != Amt.getOperand(i))
12673          break;
12674      }
12675      if (i != NumElts && j == NumElts)
12676        BaseShAmt = Amt.getOperand(i);
12677    } else {
12678      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12679        Amt = Amt.getOperand(0);
12680      if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
12681               cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
12682        SDValue InVec = Amt.getOperand(0);
12683        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12684          unsigned NumElts = InVec.getValueType().getVectorNumElements();
12685          unsigned i = 0;
12686          for (; i != NumElts; ++i) {
12687            SDValue Arg = InVec.getOperand(i);
12688            if (Arg.getOpcode() == ISD::UNDEF) continue;
12689            BaseShAmt = Arg;
12690            break;
12691          }
12692        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12693           if (ConstantSDNode *C =
12694               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12695             unsigned SplatIdx =
12696               cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
12697             if (C->getZExtValue() == SplatIdx)
12698               BaseShAmt = InVec.getOperand(1);
12699           }
12700        }
12701        if (BaseShAmt.getNode() == 0)
12702          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
12703                                  DAG.getIntPtrConstant(0));
12704      }
12705    }
12706
12707    if (BaseShAmt.getNode()) {
12708      if (EltVT.bitsGT(MVT::i32))
12709        BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
12710      else if (EltVT.bitsLT(MVT::i32))
12711        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
12712
12713      switch (Op.getOpcode()) {
12714      default:
12715        llvm_unreachable("Unknown shift opcode!");
12716      case ISD::SHL:
12717        switch (VT.getSimpleVT().SimpleTy) {
12718        default: return SDValue();
12719        case MVT::v2i64:
12720        case MVT::v4i32:
12721        case MVT::v8i16:
12722        case MVT::v4i64:
12723        case MVT::v8i32:
12724        case MVT::v16i16:
12725        case MVT::v16i32:
12726        case MVT::v8i64:
12727          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
12728        }
12729      case ISD::SRA:
12730        switch (VT.getSimpleVT().SimpleTy) {
12731        default: return SDValue();
12732        case MVT::v4i32:
12733        case MVT::v8i16:
12734        case MVT::v8i32:
12735        case MVT::v16i16:
12736        case MVT::v16i32:
12737        case MVT::v8i64:
12738          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
12739        }
12740      case ISD::SRL:
12741        switch (VT.getSimpleVT().SimpleTy) {
12742        default: return SDValue();
12743        case MVT::v2i64:
12744        case MVT::v4i32:
12745        case MVT::v8i16:
12746        case MVT::v4i64:
12747        case MVT::v8i32:
12748        case MVT::v16i16:
12749        case MVT::v16i32:
12750        case MVT::v8i64:
12751          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
12752        }
12753      }
12754    }
12755  }
12756
12757  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
12758  if (!Subtarget->is64Bit() &&
12759      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
12760      (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
12761      Amt.getOpcode() == ISD::BITCAST &&
12762      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
12763    Amt = Amt.getOperand(0);
12764    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
12765                     VT.getVectorNumElements();
12766    std::vector<SDValue> Vals(Ratio);
12767    for (unsigned i = 0; i != Ratio; ++i)
12768      Vals[i] = Amt.getOperand(i);
12769    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
12770      for (unsigned j = 0; j != Ratio; ++j)
12771        if (Vals[j] != Amt.getOperand(i + j))
12772          return SDValue();
12773    }
12774    switch (Op.getOpcode()) {
12775    default:
12776      llvm_unreachable("Unknown shift opcode!");
12777    case ISD::SHL:
12778      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
12779    case ISD::SRL:
12780      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
12781    case ISD::SRA:
12782      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
12783    }
12784  }
12785
12786  return SDValue();
12787}
12788
12789static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
12790                          SelectionDAG &DAG) {
12791
12792  EVT VT = Op.getValueType();
12793  SDLoc dl(Op);
12794  SDValue R = Op.getOperand(0);
12795  SDValue Amt = Op.getOperand(1);
12796  SDValue V;
12797
12798  if (!Subtarget->hasSSE2())
12799    return SDValue();
12800
12801  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
12802  if (V.getNode())
12803    return V;
12804
12805  V = LowerScalarVariableShift(Op, DAG, Subtarget);
12806  if (V.getNode())
12807      return V;
12808
12809  if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
12810    return Op;
12811  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
12812  if (Subtarget->hasInt256()) {
12813    if (Op.getOpcode() == ISD::SRL &&
12814        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
12815         VT == MVT::v4i64 || VT == MVT::v8i32))
12816      return Op;
12817    if (Op.getOpcode() == ISD::SHL &&
12818        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
12819         VT == MVT::v4i64 || VT == MVT::v8i32))
12820      return Op;
12821    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
12822      return Op;
12823  }
12824
12825  // Lower SHL with variable shift amount.
12826  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
12827    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
12828
12829    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
12830    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
12831    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
12832    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
12833  }
12834  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
12835    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
12836
12837    // a = a << 5;
12838    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
12839    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
12840
12841    // Turn 'a' into a mask suitable for VSELECT
12842    SDValue VSelM = DAG.getConstant(0x80, VT);
12843    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12844    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12845
12846    SDValue CM1 = DAG.getConstant(0x0f, VT);
12847    SDValue CM2 = DAG.getConstant(0x3f, VT);
12848
12849    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
12850    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
12851    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
12852                            DAG.getConstant(4, MVT::i32), DAG);
12853    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
12854    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
12855
12856    // a += a
12857    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
12858    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12859    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12860
12861    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
12862    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
12863    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
12864                            DAG.getConstant(2, MVT::i32), DAG);
12865    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
12866    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
12867
12868    // a += a
12869    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
12870    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12871    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12872
12873    // return VSELECT(r, r+r, a);
12874    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
12875                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
12876    return R;
12877  }
12878
12879  // Decompose 256-bit shifts into smaller 128-bit shifts.
12880  if (VT.is256BitVector()) {
12881    unsigned NumElems = VT.getVectorNumElements();
12882    MVT EltVT = VT.getVectorElementType().getSimpleVT();
12883    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12884
12885    // Extract the two vectors
12886    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
12887    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
12888
12889    // Recreate the shift amount vectors
12890    SDValue Amt1, Amt2;
12891    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
12892      // Constant shift amount
12893      SmallVector<SDValue, 4> Amt1Csts;
12894      SmallVector<SDValue, 4> Amt2Csts;
12895      for (unsigned i = 0; i != NumElems/2; ++i)
12896        Amt1Csts.push_back(Amt->getOperand(i));
12897      for (unsigned i = NumElems/2; i != NumElems; ++i)
12898        Amt2Csts.push_back(Amt->getOperand(i));
12899
12900      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
12901                                 &Amt1Csts[0], NumElems/2);
12902      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
12903                                 &Amt2Csts[0], NumElems/2);
12904    } else {
12905      // Variable shift amount
12906      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
12907      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
12908    }
12909
12910    // Issue new vector shifts for the smaller types
12911    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
12912    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
12913
12914    // Concatenate the result back
12915    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
12916  }
12917
12918  return SDValue();
12919}
12920
12921static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
12922  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
12923  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
12924  // looks for this combo and may remove the "setcc" instruction if the "setcc"
12925  // has only one use.
12926  SDNode *N = Op.getNode();
12927  SDValue LHS = N->getOperand(0);
12928  SDValue RHS = N->getOperand(1);
12929  unsigned BaseOp = 0;
12930  unsigned Cond = 0;
12931  SDLoc DL(Op);
12932  switch (Op.getOpcode()) {
12933  default: llvm_unreachable("Unknown ovf instruction!");
12934  case ISD::SADDO:
12935    // A subtract of one will be selected as a INC. Note that INC doesn't
12936    // set CF, so we can't do this for UADDO.
12937    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12938      if (C->isOne()) {
12939        BaseOp = X86ISD::INC;
12940        Cond = X86::COND_O;
12941        break;
12942      }
12943    BaseOp = X86ISD::ADD;
12944    Cond = X86::COND_O;
12945    break;
12946  case ISD::UADDO:
12947    BaseOp = X86ISD::ADD;
12948    Cond = X86::COND_B;
12949    break;
12950  case ISD::SSUBO:
12951    // A subtract of one will be selected as a DEC. Note that DEC doesn't
12952    // set CF, so we can't do this for USUBO.
12953    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12954      if (C->isOne()) {
12955        BaseOp = X86ISD::DEC;
12956        Cond = X86::COND_O;
12957        break;
12958      }
12959    BaseOp = X86ISD::SUB;
12960    Cond = X86::COND_O;
12961    break;
12962  case ISD::USUBO:
12963    BaseOp = X86ISD::SUB;
12964    Cond = X86::COND_B;
12965    break;
12966  case ISD::SMULO:
12967    BaseOp = X86ISD::SMUL;
12968    Cond = X86::COND_O;
12969    break;
12970  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
12971    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
12972                                 MVT::i32);
12973    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
12974
12975    SDValue SetCC =
12976      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12977                  DAG.getConstant(X86::COND_O, MVT::i32),
12978                  SDValue(Sum.getNode(), 2));
12979
12980    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
12981  }
12982  }
12983
12984  // Also sets EFLAGS.
12985  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
12986  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
12987
12988  SDValue SetCC =
12989    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
12990                DAG.getConstant(Cond, MVT::i32),
12991                SDValue(Sum.getNode(), 1));
12992
12993  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
12994}
12995
12996SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
12997                                                  SelectionDAG &DAG) const {
12998  SDLoc dl(Op);
12999  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
13000  EVT VT = Op.getValueType();
13001
13002  if (!Subtarget->hasSSE2() || !VT.isVector())
13003    return SDValue();
13004
13005  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
13006                      ExtraVT.getScalarType().getSizeInBits();
13007  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
13008
13009  switch (VT.getSimpleVT().SimpleTy) {
13010    default: return SDValue();
13011    case MVT::v8i32:
13012    case MVT::v16i16:
13013      if (!Subtarget->hasFp256())
13014        return SDValue();
13015      if (!Subtarget->hasInt256()) {
13016        // needs to be split
13017        unsigned NumElems = VT.getVectorNumElements();
13018
13019        // Extract the LHS vectors
13020        SDValue LHS = Op.getOperand(0);
13021        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
13022        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
13023
13024        MVT EltVT = VT.getVectorElementType().getSimpleVT();
13025        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
13026
13027        EVT ExtraEltVT = ExtraVT.getVectorElementType();
13028        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
13029        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
13030                                   ExtraNumElems/2);
13031        SDValue Extra = DAG.getValueType(ExtraVT);
13032
13033        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
13034        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
13035
13036        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
13037      }
13038      // fall through
13039    case MVT::v4i32:
13040    case MVT::v8i16: {
13041      // (sext (vzext x)) -> (vsext x)
13042      SDValue Op0 = Op.getOperand(0);
13043      SDValue Op00 = Op0.getOperand(0);
13044      SDValue Tmp1;
13045      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
13046      if (Op0.getOpcode() == ISD::BITCAST &&
13047          Op00.getOpcode() == ISD::VECTOR_SHUFFLE)
13048        Tmp1 = LowerVectorIntExtend(Op00, Subtarget, DAG);
13049      if (Tmp1.getNode()) {
13050        SDValue Tmp1Op0 = Tmp1.getOperand(0);
13051        assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
13052               "This optimization is invalid without a VZEXT.");
13053        return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
13054      }
13055
13056      // If the above didn't work, then just use Shift-Left + Shift-Right.
13057      Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, Op0, ShAmt, DAG);
13058      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
13059    }
13060  }
13061}
13062
13063static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
13064                                 SelectionDAG &DAG) {
13065  SDLoc dl(Op);
13066  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
13067    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
13068  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
13069    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
13070
13071  // The only fence that needs an instruction is a sequentially-consistent
13072  // cross-thread fence.
13073  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
13074    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
13075    // no-sse2). There isn't any reason to disable it if the target processor
13076    // supports it.
13077    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
13078      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
13079
13080    SDValue Chain = Op.getOperand(0);
13081    SDValue Zero = DAG.getConstant(0, MVT::i32);
13082    SDValue Ops[] = {
13083      DAG.getRegister(X86::ESP, MVT::i32), // Base
13084      DAG.getTargetConstant(1, MVT::i8),   // Scale
13085      DAG.getRegister(0, MVT::i32),        // Index
13086      DAG.getTargetConstant(0, MVT::i32),  // Disp
13087      DAG.getRegister(0, MVT::i32),        // Segment.
13088      Zero,
13089      Chain
13090    };
13091    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
13092    return SDValue(Res, 0);
13093  }
13094
13095  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
13096  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
13097}
13098
13099static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
13100                             SelectionDAG &DAG) {
13101  EVT T = Op.getValueType();
13102  SDLoc DL(Op);
13103  unsigned Reg = 0;
13104  unsigned size = 0;
13105  switch(T.getSimpleVT().SimpleTy) {
13106  default: llvm_unreachable("Invalid value type!");
13107  case MVT::i8:  Reg = X86::AL;  size = 1; break;
13108  case MVT::i16: Reg = X86::AX;  size = 2; break;
13109  case MVT::i32: Reg = X86::EAX; size = 4; break;
13110  case MVT::i64:
13111    assert(Subtarget->is64Bit() && "Node not type legal!");
13112    Reg = X86::RAX; size = 8;
13113    break;
13114  }
13115  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
13116                                    Op.getOperand(2), SDValue());
13117  SDValue Ops[] = { cpIn.getValue(0),
13118                    Op.getOperand(1),
13119                    Op.getOperand(3),
13120                    DAG.getTargetConstant(size, MVT::i8),
13121                    cpIn.getValue(1) };
13122  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13123  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
13124  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
13125                                           Ops, array_lengthof(Ops), T, MMO);
13126  SDValue cpOut =
13127    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
13128  return cpOut;
13129}
13130
13131static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
13132                                     SelectionDAG &DAG) {
13133  assert(Subtarget->is64Bit() && "Result not type legalized?");
13134  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13135  SDValue TheChain = Op.getOperand(0);
13136  SDLoc dl(Op);
13137  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
13138  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
13139  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
13140                                   rax.getValue(2));
13141  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
13142                            DAG.getConstant(32, MVT::i8));
13143  SDValue Ops[] = {
13144    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
13145    rdx.getValue(1)
13146  };
13147  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
13148}
13149
13150static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
13151                            SelectionDAG &DAG) {
13152  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
13153  MVT DstVT = Op.getSimpleValueType();
13154  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
13155         Subtarget->hasMMX() && "Unexpected custom BITCAST");
13156  assert((DstVT == MVT::i64 ||
13157          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
13158         "Unexpected custom BITCAST");
13159  // i64 <=> MMX conversions are Legal.
13160  if (SrcVT==MVT::i64 && DstVT.isVector())
13161    return Op;
13162  if (DstVT==MVT::i64 && SrcVT.isVector())
13163    return Op;
13164  // MMX <=> MMX conversions are Legal.
13165  if (SrcVT.isVector() && DstVT.isVector())
13166    return Op;
13167  // All other conversions need to be expanded.
13168  return SDValue();
13169}
13170
13171static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
13172  SDNode *Node = Op.getNode();
13173  SDLoc dl(Node);
13174  EVT T = Node->getValueType(0);
13175  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
13176                              DAG.getConstant(0, T), Node->getOperand(2));
13177  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
13178                       cast<AtomicSDNode>(Node)->getMemoryVT(),
13179                       Node->getOperand(0),
13180                       Node->getOperand(1), negOp,
13181                       cast<AtomicSDNode>(Node)->getSrcValue(),
13182                       cast<AtomicSDNode>(Node)->getAlignment(),
13183                       cast<AtomicSDNode>(Node)->getOrdering(),
13184                       cast<AtomicSDNode>(Node)->getSynchScope());
13185}
13186
13187static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
13188  SDNode *Node = Op.getNode();
13189  SDLoc dl(Node);
13190  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
13191
13192  // Convert seq_cst store -> xchg
13193  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
13194  // FIXME: On 32-bit, store -> fist or movq would be more efficient
13195  //        (The only way to get a 16-byte store is cmpxchg16b)
13196  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
13197  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
13198      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
13199    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
13200                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
13201                                 Node->getOperand(0),
13202                                 Node->getOperand(1), Node->getOperand(2),
13203                                 cast<AtomicSDNode>(Node)->getMemOperand(),
13204                                 cast<AtomicSDNode>(Node)->getOrdering(),
13205                                 cast<AtomicSDNode>(Node)->getSynchScope());
13206    return Swap.getValue(1);
13207  }
13208  // Other atomic stores have a simple pattern.
13209  return Op;
13210}
13211
13212static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
13213  EVT VT = Op.getNode()->getValueType(0);
13214
13215  // Let legalize expand this if it isn't a legal type yet.
13216  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
13217    return SDValue();
13218
13219  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
13220
13221  unsigned Opc;
13222  bool ExtraOp = false;
13223  switch (Op.getOpcode()) {
13224  default: llvm_unreachable("Invalid code");
13225  case ISD::ADDC: Opc = X86ISD::ADD; break;
13226  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
13227  case ISD::SUBC: Opc = X86ISD::SUB; break;
13228  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
13229  }
13230
13231  if (!ExtraOp)
13232    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
13233                       Op.getOperand(1));
13234  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
13235                     Op.getOperand(1), Op.getOperand(2));
13236}
13237
13238static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
13239                            SelectionDAG &DAG) {
13240  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
13241
13242  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
13243  // which returns the values as { float, float } (in XMM0) or
13244  // { double, double } (which is returned in XMM0, XMM1).
13245  SDLoc dl(Op);
13246  SDValue Arg = Op.getOperand(0);
13247  EVT ArgVT = Arg.getValueType();
13248  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
13249
13250  TargetLowering::ArgListTy Args;
13251  TargetLowering::ArgListEntry Entry;
13252
13253  Entry.Node = Arg;
13254  Entry.Ty = ArgTy;
13255  Entry.isSExt = false;
13256  Entry.isZExt = false;
13257  Args.push_back(Entry);
13258
13259  bool isF64 = ArgVT == MVT::f64;
13260  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
13261  // the small struct {f32, f32} is returned in (eax, edx). For f64,
13262  // the results are returned via SRet in memory.
13263  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
13264  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13265  SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
13266
13267  Type *RetTy = isF64
13268    ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
13269    : (Type*)VectorType::get(ArgTy, 4);
13270  TargetLowering::
13271    CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
13272                         false, false, false, false, 0,
13273                         CallingConv::C, /*isTaillCall=*/false,
13274                         /*doesNotRet=*/false, /*isReturnValueUsed*/true,
13275                         Callee, Args, DAG, dl);
13276  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
13277
13278  if (isF64)
13279    // Returned in xmm0 and xmm1.
13280    return CallResult.first;
13281
13282  // Returned in bits 0:31 and 32:64 xmm0.
13283  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
13284                               CallResult.first, DAG.getIntPtrConstant(0));
13285  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
13286                               CallResult.first, DAG.getIntPtrConstant(1));
13287  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
13288  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
13289}
13290
13291/// LowerOperation - Provide custom lowering hooks for some operations.
13292///
13293SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
13294  switch (Op.getOpcode()) {
13295  default: llvm_unreachable("Should not custom lower this!");
13296  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
13297  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
13298  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
13299  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
13300  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
13301  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
13302  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
13303  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
13304  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
13305  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
13306  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
13307  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
13308  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
13309  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
13310  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
13311  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
13312  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
13313  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
13314  case ISD::SHL_PARTS:
13315  case ISD::SRA_PARTS:
13316  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
13317  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
13318  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
13319  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
13320  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
13321  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
13322  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
13323  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
13324  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
13325  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
13326  case ISD::FABS:               return LowerFABS(Op, DAG);
13327  case ISD::FNEG:               return LowerFNEG(Op, DAG);
13328  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
13329  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
13330  case ISD::SETCC:              return LowerSETCC(Op, DAG);
13331  case ISD::SELECT:             return LowerSELECT(Op, DAG);
13332  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
13333  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
13334  case ISD::VASTART:            return LowerVASTART(Op, DAG);
13335  case ISD::VAARG:              return LowerVAARG(Op, DAG);
13336  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
13337  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
13338  case ISD::INTRINSIC_VOID:
13339  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
13340  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
13341  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
13342  case ISD::FRAME_TO_ARGS_OFFSET:
13343                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
13344  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
13345  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
13346  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
13347  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
13348  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
13349  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
13350  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
13351  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
13352  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
13353  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
13354  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
13355  case ISD::SRA:
13356  case ISD::SRL:
13357  case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
13358  case ISD::SADDO:
13359  case ISD::UADDO:
13360  case ISD::SSUBO:
13361  case ISD::USUBO:
13362  case ISD::SMULO:
13363  case ISD::UMULO:              return LowerXALUO(Op, DAG);
13364  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
13365  case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
13366  case ISD::ADDC:
13367  case ISD::ADDE:
13368  case ISD::SUBC:
13369  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
13370  case ISD::ADD:                return LowerADD(Op, DAG);
13371  case ISD::SUB:                return LowerSUB(Op, DAG);
13372  case ISD::SDIV:               return LowerSDIV(Op, DAG);
13373  case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
13374  }
13375}
13376
13377static void ReplaceATOMIC_LOAD(SDNode *Node,
13378                                  SmallVectorImpl<SDValue> &Results,
13379                                  SelectionDAG &DAG) {
13380  SDLoc dl(Node);
13381  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
13382
13383  // Convert wide load -> cmpxchg8b/cmpxchg16b
13384  // FIXME: On 32-bit, load -> fild or movq would be more efficient
13385  //        (The only way to get a 16-byte load is cmpxchg16b)
13386  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
13387  SDValue Zero = DAG.getConstant(0, VT);
13388  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
13389                               Node->getOperand(0),
13390                               Node->getOperand(1), Zero, Zero,
13391                               cast<AtomicSDNode>(Node)->getMemOperand(),
13392                               cast<AtomicSDNode>(Node)->getOrdering(),
13393                               cast<AtomicSDNode>(Node)->getSynchScope());
13394  Results.push_back(Swap.getValue(0));
13395  Results.push_back(Swap.getValue(1));
13396}
13397
13398static void
13399ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
13400                        SelectionDAG &DAG, unsigned NewOp) {
13401  SDLoc dl(Node);
13402  assert (Node->getValueType(0) == MVT::i64 &&
13403          "Only know how to expand i64 atomics");
13404
13405  SDValue Chain = Node->getOperand(0);
13406  SDValue In1 = Node->getOperand(1);
13407  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
13408                             Node->getOperand(2), DAG.getIntPtrConstant(0));
13409  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
13410                             Node->getOperand(2), DAG.getIntPtrConstant(1));
13411  SDValue Ops[] = { Chain, In1, In2L, In2H };
13412  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
13413  SDValue Result =
13414    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, array_lengthof(Ops), MVT::i64,
13415                            cast<MemSDNode>(Node)->getMemOperand());
13416  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
13417  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
13418  Results.push_back(Result.getValue(2));
13419}
13420
13421/// ReplaceNodeResults - Replace a node with an illegal result type
13422/// with a new node built out of custom code.
13423void X86TargetLowering::ReplaceNodeResults(SDNode *N,
13424                                           SmallVectorImpl<SDValue>&Results,
13425                                           SelectionDAG &DAG) const {
13426  SDLoc dl(N);
13427  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13428  switch (N->getOpcode()) {
13429  default:
13430    llvm_unreachable("Do not know how to custom type legalize this operation!");
13431  case ISD::SIGN_EXTEND_INREG:
13432  case ISD::ADDC:
13433  case ISD::ADDE:
13434  case ISD::SUBC:
13435  case ISD::SUBE:
13436    // We don't want to expand or promote these.
13437    return;
13438  case ISD::FP_TO_SINT:
13439  case ISD::FP_TO_UINT: {
13440    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
13441
13442    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
13443      return;
13444
13445    std::pair<SDValue,SDValue> Vals =
13446        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
13447    SDValue FIST = Vals.first, StackSlot = Vals.second;
13448    if (FIST.getNode() != 0) {
13449      EVT VT = N->getValueType(0);
13450      // Return a load from the stack slot.
13451      if (StackSlot.getNode() != 0)
13452        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
13453                                      MachinePointerInfo(),
13454                                      false, false, false, 0));
13455      else
13456        Results.push_back(FIST);
13457    }
13458    return;
13459  }
13460  case ISD::UINT_TO_FP: {
13461    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
13462    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
13463        N->getValueType(0) != MVT::v2f32)
13464      return;
13465    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
13466                                 N->getOperand(0));
13467    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
13468                                     MVT::f64);
13469    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
13470    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
13471                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
13472    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
13473    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
13474    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
13475    return;
13476  }
13477  case ISD::FP_ROUND: {
13478    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
13479        return;
13480    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
13481    Results.push_back(V);
13482    return;
13483  }
13484  case ISD::READCYCLECOUNTER: {
13485    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13486    SDValue TheChain = N->getOperand(0);
13487    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
13488    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
13489                                     rd.getValue(1));
13490    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
13491                                     eax.getValue(2));
13492    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
13493    SDValue Ops[] = { eax, edx };
13494    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops,
13495                                  array_lengthof(Ops)));
13496    Results.push_back(edx.getValue(1));
13497    return;
13498  }
13499  case ISD::ATOMIC_CMP_SWAP: {
13500    EVT T = N->getValueType(0);
13501    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
13502    bool Regs64bit = T == MVT::i128;
13503    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
13504    SDValue cpInL, cpInH;
13505    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
13506                        DAG.getConstant(0, HalfT));
13507    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
13508                        DAG.getConstant(1, HalfT));
13509    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
13510                             Regs64bit ? X86::RAX : X86::EAX,
13511                             cpInL, SDValue());
13512    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
13513                             Regs64bit ? X86::RDX : X86::EDX,
13514                             cpInH, cpInL.getValue(1));
13515    SDValue swapInL, swapInH;
13516    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
13517                          DAG.getConstant(0, HalfT));
13518    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
13519                          DAG.getConstant(1, HalfT));
13520    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
13521                               Regs64bit ? X86::RBX : X86::EBX,
13522                               swapInL, cpInH.getValue(1));
13523    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
13524                               Regs64bit ? X86::RCX : X86::ECX,
13525                               swapInH, swapInL.getValue(1));
13526    SDValue Ops[] = { swapInH.getValue(0),
13527                      N->getOperand(1),
13528                      swapInH.getValue(1) };
13529    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13530    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
13531    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
13532                                  X86ISD::LCMPXCHG8_DAG;
13533    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
13534                                             Ops, array_lengthof(Ops), T, MMO);
13535    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
13536                                        Regs64bit ? X86::RAX : X86::EAX,
13537                                        HalfT, Result.getValue(1));
13538    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
13539                                        Regs64bit ? X86::RDX : X86::EDX,
13540                                        HalfT, cpOutL.getValue(2));
13541    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
13542    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
13543    Results.push_back(cpOutH.getValue(1));
13544    return;
13545  }
13546  case ISD::ATOMIC_LOAD_ADD:
13547  case ISD::ATOMIC_LOAD_AND:
13548  case ISD::ATOMIC_LOAD_NAND:
13549  case ISD::ATOMIC_LOAD_OR:
13550  case ISD::ATOMIC_LOAD_SUB:
13551  case ISD::ATOMIC_LOAD_XOR:
13552  case ISD::ATOMIC_LOAD_MAX:
13553  case ISD::ATOMIC_LOAD_MIN:
13554  case ISD::ATOMIC_LOAD_UMAX:
13555  case ISD::ATOMIC_LOAD_UMIN:
13556  case ISD::ATOMIC_SWAP: {
13557    unsigned Opc;
13558    switch (N->getOpcode()) {
13559    default: llvm_unreachable("Unexpected opcode");
13560    case ISD::ATOMIC_LOAD_ADD:
13561      Opc = X86ISD::ATOMADD64_DAG;
13562      break;
13563    case ISD::ATOMIC_LOAD_AND:
13564      Opc = X86ISD::ATOMAND64_DAG;
13565      break;
13566    case ISD::ATOMIC_LOAD_NAND:
13567      Opc = X86ISD::ATOMNAND64_DAG;
13568      break;
13569    case ISD::ATOMIC_LOAD_OR:
13570      Opc = X86ISD::ATOMOR64_DAG;
13571      break;
13572    case ISD::ATOMIC_LOAD_SUB:
13573      Opc = X86ISD::ATOMSUB64_DAG;
13574      break;
13575    case ISD::ATOMIC_LOAD_XOR:
13576      Opc = X86ISD::ATOMXOR64_DAG;
13577      break;
13578    case ISD::ATOMIC_LOAD_MAX:
13579      Opc = X86ISD::ATOMMAX64_DAG;
13580      break;
13581    case ISD::ATOMIC_LOAD_MIN:
13582      Opc = X86ISD::ATOMMIN64_DAG;
13583      break;
13584    case ISD::ATOMIC_LOAD_UMAX:
13585      Opc = X86ISD::ATOMUMAX64_DAG;
13586      break;
13587    case ISD::ATOMIC_LOAD_UMIN:
13588      Opc = X86ISD::ATOMUMIN64_DAG;
13589      break;
13590    case ISD::ATOMIC_SWAP:
13591      Opc = X86ISD::ATOMSWAP64_DAG;
13592      break;
13593    }
13594    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
13595    return;
13596  }
13597  case ISD::ATOMIC_LOAD:
13598    ReplaceATOMIC_LOAD(N, Results, DAG);
13599  }
13600}
13601
13602const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
13603  switch (Opcode) {
13604  default: return NULL;
13605  case X86ISD::BSF:                return "X86ISD::BSF";
13606  case X86ISD::BSR:                return "X86ISD::BSR";
13607  case X86ISD::SHLD:               return "X86ISD::SHLD";
13608  case X86ISD::SHRD:               return "X86ISD::SHRD";
13609  case X86ISD::FAND:               return "X86ISD::FAND";
13610  case X86ISD::FANDN:              return "X86ISD::FANDN";
13611  case X86ISD::FOR:                return "X86ISD::FOR";
13612  case X86ISD::FXOR:               return "X86ISD::FXOR";
13613  case X86ISD::FSRL:               return "X86ISD::FSRL";
13614  case X86ISD::FILD:               return "X86ISD::FILD";
13615  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
13616  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
13617  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
13618  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
13619  case X86ISD::FLD:                return "X86ISD::FLD";
13620  case X86ISD::FST:                return "X86ISD::FST";
13621  case X86ISD::CALL:               return "X86ISD::CALL";
13622  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
13623  case X86ISD::BT:                 return "X86ISD::BT";
13624  case X86ISD::CMP:                return "X86ISD::CMP";
13625  case X86ISD::COMI:               return "X86ISD::COMI";
13626  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
13627  case X86ISD::CMPM:               return "X86ISD::CMPM";
13628  case X86ISD::CMPMU:              return "X86ISD::CMPMU";
13629  case X86ISD::SETCC:              return "X86ISD::SETCC";
13630  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
13631  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
13632  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
13633  case X86ISD::CMOV:               return "X86ISD::CMOV";
13634  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
13635  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
13636  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
13637  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
13638  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
13639  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
13640  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
13641  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
13642  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
13643  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
13644  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
13645  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
13646  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
13647  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
13648  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
13649  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
13650  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
13651  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
13652  case X86ISD::HADD:               return "X86ISD::HADD";
13653  case X86ISD::HSUB:               return "X86ISD::HSUB";
13654  case X86ISD::FHADD:              return "X86ISD::FHADD";
13655  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
13656  case X86ISD::UMAX:               return "X86ISD::UMAX";
13657  case X86ISD::UMIN:               return "X86ISD::UMIN";
13658  case X86ISD::SMAX:               return "X86ISD::SMAX";
13659  case X86ISD::SMIN:               return "X86ISD::SMIN";
13660  case X86ISD::FMAX:               return "X86ISD::FMAX";
13661  case X86ISD::FMIN:               return "X86ISD::FMIN";
13662  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
13663  case X86ISD::FMINC:              return "X86ISD::FMINC";
13664  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
13665  case X86ISD::FRCP:               return "X86ISD::FRCP";
13666  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
13667  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
13668  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
13669  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
13670  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
13671  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
13672  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
13673  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
13674  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
13675  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
13676  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
13677  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
13678  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
13679  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
13680  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
13681  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
13682  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
13683  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
13684  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
13685  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
13686  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
13687  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
13688  case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
13689  case X86ISD::VTRUNCM:            return "X86ISD::VTRUNCM";
13690  case X86ISD::VINSERT:            return "X86ISD::VINSERT";
13691  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
13692  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
13693  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
13694  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
13695  case X86ISD::VSHL:               return "X86ISD::VSHL";
13696  case X86ISD::VSRL:               return "X86ISD::VSRL";
13697  case X86ISD::VSRA:               return "X86ISD::VSRA";
13698  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
13699  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
13700  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
13701  case X86ISD::CMPP:               return "X86ISD::CMPP";
13702  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
13703  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
13704  case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM";
13705  case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM";
13706  case X86ISD::ADD:                return "X86ISD::ADD";
13707  case X86ISD::SUB:                return "X86ISD::SUB";
13708  case X86ISD::ADC:                return "X86ISD::ADC";
13709  case X86ISD::SBB:                return "X86ISD::SBB";
13710  case X86ISD::SMUL:               return "X86ISD::SMUL";
13711  case X86ISD::UMUL:               return "X86ISD::UMUL";
13712  case X86ISD::INC:                return "X86ISD::INC";
13713  case X86ISD::DEC:                return "X86ISD::DEC";
13714  case X86ISD::OR:                 return "X86ISD::OR";
13715  case X86ISD::XOR:                return "X86ISD::XOR";
13716  case X86ISD::AND:                return "X86ISD::AND";
13717  case X86ISD::BLSI:               return "X86ISD::BLSI";
13718  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
13719  case X86ISD::BLSR:               return "X86ISD::BLSR";
13720  case X86ISD::BZHI:               return "X86ISD::BZHI";
13721  case X86ISD::BEXTR:              return "X86ISD::BEXTR";
13722  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
13723  case X86ISD::PTEST:              return "X86ISD::PTEST";
13724  case X86ISD::TESTP:              return "X86ISD::TESTP";
13725  case X86ISD::TESTM:              return "X86ISD::TESTM";
13726  case X86ISD::KORTEST:            return "X86ISD::KORTEST";
13727  case X86ISD::KTEST:              return "X86ISD::KTEST";
13728  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
13729  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
13730  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
13731  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
13732  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
13733  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
13734  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
13735  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
13736  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
13737  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
13738  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
13739  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
13740  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
13741  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
13742  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
13743  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
13744  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
13745  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
13746  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
13747  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
13748  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
13749  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
13750  case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
13751  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
13752  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
13753  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
13754  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
13755  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
13756  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
13757  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
13758  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
13759  case X86ISD::SAHF:               return "X86ISD::SAHF";
13760  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
13761  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
13762  case X86ISD::FMADD:              return "X86ISD::FMADD";
13763  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
13764  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
13765  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
13766  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
13767  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
13768  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
13769  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
13770  case X86ISD::XTEST:              return "X86ISD::XTEST";
13771  }
13772}
13773
13774// isLegalAddressingMode - Return true if the addressing mode represented
13775// by AM is legal for this target, for a load/store of the specified type.
13776bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
13777                                              Type *Ty) const {
13778  // X86 supports extremely general addressing modes.
13779  CodeModel::Model M = getTargetMachine().getCodeModel();
13780  Reloc::Model R = getTargetMachine().getRelocationModel();
13781
13782  // X86 allows a sign-extended 32-bit immediate field as a displacement.
13783  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
13784    return false;
13785
13786  if (AM.BaseGV) {
13787    unsigned GVFlags =
13788      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
13789
13790    // If a reference to this global requires an extra load, we can't fold it.
13791    if (isGlobalStubReference(GVFlags))
13792      return false;
13793
13794    // If BaseGV requires a register for the PIC base, we cannot also have a
13795    // BaseReg specified.
13796    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
13797      return false;
13798
13799    // If lower 4G is not available, then we must use rip-relative addressing.
13800    if ((M != CodeModel::Small || R != Reloc::Static) &&
13801        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
13802      return false;
13803  }
13804
13805  switch (AM.Scale) {
13806  case 0:
13807  case 1:
13808  case 2:
13809  case 4:
13810  case 8:
13811    // These scales always work.
13812    break;
13813  case 3:
13814  case 5:
13815  case 9:
13816    // These scales are formed with basereg+scalereg.  Only accept if there is
13817    // no basereg yet.
13818    if (AM.HasBaseReg)
13819      return false;
13820    break;
13821  default:  // Other stuff never works.
13822    return false;
13823  }
13824
13825  return true;
13826}
13827
13828bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13829  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13830    return false;
13831  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13832  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13833  return NumBits1 > NumBits2;
13834}
13835
13836bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
13837  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13838    return false;
13839
13840  if (!isTypeLegal(EVT::getEVT(Ty1)))
13841    return false;
13842
13843  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
13844
13845  // Assuming the caller doesn't have a zeroext or signext return parameter,
13846  // truncation all the way down to i1 is valid.
13847  return true;
13848}
13849
13850bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13851  return isInt<32>(Imm);
13852}
13853
13854bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
13855  // Can also use sub to handle negated immediates.
13856  return isInt<32>(Imm);
13857}
13858
13859bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13860  if (!VT1.isInteger() || !VT2.isInteger())
13861    return false;
13862  unsigned NumBits1 = VT1.getSizeInBits();
13863  unsigned NumBits2 = VT2.getSizeInBits();
13864  return NumBits1 > NumBits2;
13865}
13866
13867bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
13868  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
13869  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
13870}
13871
13872bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
13873  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
13874  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
13875}
13876
13877bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13878  EVT VT1 = Val.getValueType();
13879  if (isZExtFree(VT1, VT2))
13880    return true;
13881
13882  if (Val.getOpcode() != ISD::LOAD)
13883    return false;
13884
13885  if (!VT1.isSimple() || !VT1.isInteger() ||
13886      !VT2.isSimple() || !VT2.isInteger())
13887    return false;
13888
13889  switch (VT1.getSimpleVT().SimpleTy) {
13890  default: break;
13891  case MVT::i8:
13892  case MVT::i16:
13893  case MVT::i32:
13894    // X86 has 8, 16, and 32-bit zero-extending loads.
13895    return true;
13896  }
13897
13898  return false;
13899}
13900
13901bool
13902X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
13903  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
13904    return false;
13905
13906  VT = VT.getScalarType();
13907
13908  if (!VT.isSimple())
13909    return false;
13910
13911  switch (VT.getSimpleVT().SimpleTy) {
13912  case MVT::f32:
13913  case MVT::f64:
13914    return true;
13915  default:
13916    break;
13917  }
13918
13919  return false;
13920}
13921
13922bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
13923  // i16 instructions are longer (0x66 prefix) and potentially slower.
13924  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
13925}
13926
13927/// isShuffleMaskLegal - Targets can use this to indicate that they only
13928/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
13929/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
13930/// are assumed to be legal.
13931bool
13932X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
13933                                      EVT VT) const {
13934  if (!VT.isSimple())
13935    return false;
13936
13937  MVT SVT = VT.getSimpleVT();
13938
13939  // Very little shuffling can be done for 64-bit vectors right now.
13940  if (VT.getSizeInBits() == 64)
13941    return false;
13942
13943  // FIXME: pshufb, blends, shifts.
13944  return (SVT.getVectorNumElements() == 2 ||
13945          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
13946          isMOVLMask(M, SVT) ||
13947          isSHUFPMask(M, SVT) ||
13948          isPSHUFDMask(M, SVT) ||
13949          isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
13950          isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
13951          isPALIGNRMask(M, SVT, Subtarget) ||
13952          isUNPCKLMask(M, SVT, Subtarget->hasInt256()) ||
13953          isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
13954          isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
13955          isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()));
13956}
13957
13958bool
13959X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
13960                                          EVT VT) const {
13961  if (!VT.isSimple())
13962    return false;
13963
13964  MVT SVT = VT.getSimpleVT();
13965  unsigned NumElts = SVT.getVectorNumElements();
13966  // FIXME: This collection of masks seems suspect.
13967  if (NumElts == 2)
13968    return true;
13969  if (NumElts == 4 && SVT.is128BitVector()) {
13970    return (isMOVLMask(Mask, SVT)  ||
13971            isCommutedMOVLMask(Mask, SVT, true) ||
13972            isSHUFPMask(Mask, SVT) ||
13973            isSHUFPMask(Mask, SVT, /* Commuted */ true));
13974  }
13975  return false;
13976}
13977
13978//===----------------------------------------------------------------------===//
13979//                           X86 Scheduler Hooks
13980//===----------------------------------------------------------------------===//
13981
13982/// Utility function to emit xbegin specifying the start of an RTM region.
13983static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
13984                                     const TargetInstrInfo *TII) {
13985  DebugLoc DL = MI->getDebugLoc();
13986
13987  const BasicBlock *BB = MBB->getBasicBlock();
13988  MachineFunction::iterator I = MBB;
13989  ++I;
13990
13991  // For the v = xbegin(), we generate
13992  //
13993  // thisMBB:
13994  //  xbegin sinkMBB
13995  //
13996  // mainMBB:
13997  //  eax = -1
13998  //
13999  // sinkMBB:
14000  //  v = eax
14001
14002  MachineBasicBlock *thisMBB = MBB;
14003  MachineFunction *MF = MBB->getParent();
14004  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14005  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14006  MF->insert(I, mainMBB);
14007  MF->insert(I, sinkMBB);
14008
14009  // Transfer the remainder of BB and its successor edges to sinkMBB.
14010  sinkMBB->splice(sinkMBB->begin(), MBB,
14011                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14012  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14013
14014  // thisMBB:
14015  //  xbegin sinkMBB
14016  //  # fallthrough to mainMBB
14017  //  # abortion to sinkMBB
14018  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
14019  thisMBB->addSuccessor(mainMBB);
14020  thisMBB->addSuccessor(sinkMBB);
14021
14022  // mainMBB:
14023  //  EAX = -1
14024  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
14025  mainMBB->addSuccessor(sinkMBB);
14026
14027  // sinkMBB:
14028  // EAX is live into the sinkMBB
14029  sinkMBB->addLiveIn(X86::EAX);
14030  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14031          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14032    .addReg(X86::EAX);
14033
14034  MI->eraseFromParent();
14035  return sinkMBB;
14036}
14037
14038// Get CMPXCHG opcode for the specified data type.
14039static unsigned getCmpXChgOpcode(EVT VT) {
14040  switch (VT.getSimpleVT().SimpleTy) {
14041  case MVT::i8:  return X86::LCMPXCHG8;
14042  case MVT::i16: return X86::LCMPXCHG16;
14043  case MVT::i32: return X86::LCMPXCHG32;
14044  case MVT::i64: return X86::LCMPXCHG64;
14045  default:
14046    break;
14047  }
14048  llvm_unreachable("Invalid operand size!");
14049}
14050
14051// Get LOAD opcode for the specified data type.
14052static unsigned getLoadOpcode(EVT VT) {
14053  switch (VT.getSimpleVT().SimpleTy) {
14054  case MVT::i8:  return X86::MOV8rm;
14055  case MVT::i16: return X86::MOV16rm;
14056  case MVT::i32: return X86::MOV32rm;
14057  case MVT::i64: return X86::MOV64rm;
14058  default:
14059    break;
14060  }
14061  llvm_unreachable("Invalid operand size!");
14062}
14063
14064// Get opcode of the non-atomic one from the specified atomic instruction.
14065static unsigned getNonAtomicOpcode(unsigned Opc) {
14066  switch (Opc) {
14067  case X86::ATOMAND8:  return X86::AND8rr;
14068  case X86::ATOMAND16: return X86::AND16rr;
14069  case X86::ATOMAND32: return X86::AND32rr;
14070  case X86::ATOMAND64: return X86::AND64rr;
14071  case X86::ATOMOR8:   return X86::OR8rr;
14072  case X86::ATOMOR16:  return X86::OR16rr;
14073  case X86::ATOMOR32:  return X86::OR32rr;
14074  case X86::ATOMOR64:  return X86::OR64rr;
14075  case X86::ATOMXOR8:  return X86::XOR8rr;
14076  case X86::ATOMXOR16: return X86::XOR16rr;
14077  case X86::ATOMXOR32: return X86::XOR32rr;
14078  case X86::ATOMXOR64: return X86::XOR64rr;
14079  }
14080  llvm_unreachable("Unhandled atomic-load-op opcode!");
14081}
14082
14083// Get opcode of the non-atomic one from the specified atomic instruction with
14084// extra opcode.
14085static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
14086                                               unsigned &ExtraOpc) {
14087  switch (Opc) {
14088  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
14089  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
14090  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
14091  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
14092  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
14093  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
14094  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
14095  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
14096  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
14097  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
14098  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
14099  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
14100  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
14101  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
14102  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
14103  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
14104  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
14105  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
14106  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
14107  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
14108  }
14109  llvm_unreachable("Unhandled atomic-load-op opcode!");
14110}
14111
14112// Get opcode of the non-atomic one from the specified atomic instruction for
14113// 64-bit data type on 32-bit target.
14114static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
14115  switch (Opc) {
14116  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
14117  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
14118  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
14119  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
14120  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
14121  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
14122  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
14123  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
14124  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
14125  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
14126  }
14127  llvm_unreachable("Unhandled atomic-load-op opcode!");
14128}
14129
14130// Get opcode of the non-atomic one from the specified atomic instruction for
14131// 64-bit data type on 32-bit target with extra opcode.
14132static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
14133                                                   unsigned &HiOpc,
14134                                                   unsigned &ExtraOpc) {
14135  switch (Opc) {
14136  case X86::ATOMNAND6432:
14137    ExtraOpc = X86::NOT32r;
14138    HiOpc = X86::AND32rr;
14139    return X86::AND32rr;
14140  }
14141  llvm_unreachable("Unhandled atomic-load-op opcode!");
14142}
14143
14144// Get pseudo CMOV opcode from the specified data type.
14145static unsigned getPseudoCMOVOpc(EVT VT) {
14146  switch (VT.getSimpleVT().SimpleTy) {
14147  case MVT::i8:  return X86::CMOV_GR8;
14148  case MVT::i16: return X86::CMOV_GR16;
14149  case MVT::i32: return X86::CMOV_GR32;
14150  default:
14151    break;
14152  }
14153  llvm_unreachable("Unknown CMOV opcode!");
14154}
14155
14156// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
14157// They will be translated into a spin-loop or compare-exchange loop from
14158//
14159//    ...
14160//    dst = atomic-fetch-op MI.addr, MI.val
14161//    ...
14162//
14163// to
14164//
14165//    ...
14166//    t1 = LOAD MI.addr
14167// loop:
14168//    t4 = phi(t1, t3 / loop)
14169//    t2 = OP MI.val, t4
14170//    EAX = t4
14171//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
14172//    t3 = EAX
14173//    JNE loop
14174// sink:
14175//    dst = t3
14176//    ...
14177MachineBasicBlock *
14178X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
14179                                       MachineBasicBlock *MBB) const {
14180  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14181  DebugLoc DL = MI->getDebugLoc();
14182
14183  MachineFunction *MF = MBB->getParent();
14184  MachineRegisterInfo &MRI = MF->getRegInfo();
14185
14186  const BasicBlock *BB = MBB->getBasicBlock();
14187  MachineFunction::iterator I = MBB;
14188  ++I;
14189
14190  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
14191         "Unexpected number of operands");
14192
14193  assert(MI->hasOneMemOperand() &&
14194         "Expected atomic-load-op to have one memoperand");
14195
14196  // Memory Reference
14197  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14198  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14199
14200  unsigned DstReg, SrcReg;
14201  unsigned MemOpndSlot;
14202
14203  unsigned CurOp = 0;
14204
14205  DstReg = MI->getOperand(CurOp++).getReg();
14206  MemOpndSlot = CurOp;
14207  CurOp += X86::AddrNumOperands;
14208  SrcReg = MI->getOperand(CurOp++).getReg();
14209
14210  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
14211  MVT::SimpleValueType VT = *RC->vt_begin();
14212  unsigned t1 = MRI.createVirtualRegister(RC);
14213  unsigned t2 = MRI.createVirtualRegister(RC);
14214  unsigned t3 = MRI.createVirtualRegister(RC);
14215  unsigned t4 = MRI.createVirtualRegister(RC);
14216  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
14217
14218  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
14219  unsigned LOADOpc = getLoadOpcode(VT);
14220
14221  // For the atomic load-arith operator, we generate
14222  //
14223  //  thisMBB:
14224  //    t1 = LOAD [MI.addr]
14225  //  mainMBB:
14226  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
14227  //    t1 = OP MI.val, EAX
14228  //    EAX = t4
14229  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
14230  //    t3 = EAX
14231  //    JNE mainMBB
14232  //  sinkMBB:
14233  //    dst = t3
14234
14235  MachineBasicBlock *thisMBB = MBB;
14236  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14237  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14238  MF->insert(I, mainMBB);
14239  MF->insert(I, sinkMBB);
14240
14241  MachineInstrBuilder MIB;
14242
14243  // Transfer the remainder of BB and its successor edges to sinkMBB.
14244  sinkMBB->splice(sinkMBB->begin(), MBB,
14245                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14246  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14247
14248  // thisMBB:
14249  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
14250  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14251    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14252    if (NewMO.isReg())
14253      NewMO.setIsKill(false);
14254    MIB.addOperand(NewMO);
14255  }
14256  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
14257    unsigned flags = (*MMOI)->getFlags();
14258    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
14259    MachineMemOperand *MMO =
14260      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
14261                               (*MMOI)->getSize(),
14262                               (*MMOI)->getBaseAlignment(),
14263                               (*MMOI)->getTBAAInfo(),
14264                               (*MMOI)->getRanges());
14265    MIB.addMemOperand(MMO);
14266  }
14267
14268  thisMBB->addSuccessor(mainMBB);
14269
14270  // mainMBB:
14271  MachineBasicBlock *origMainMBB = mainMBB;
14272
14273  // Add a PHI.
14274  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
14275                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
14276
14277  unsigned Opc = MI->getOpcode();
14278  switch (Opc) {
14279  default:
14280    llvm_unreachable("Unhandled atomic-load-op opcode!");
14281  case X86::ATOMAND8:
14282  case X86::ATOMAND16:
14283  case X86::ATOMAND32:
14284  case X86::ATOMAND64:
14285  case X86::ATOMOR8:
14286  case X86::ATOMOR16:
14287  case X86::ATOMOR32:
14288  case X86::ATOMOR64:
14289  case X86::ATOMXOR8:
14290  case X86::ATOMXOR16:
14291  case X86::ATOMXOR32:
14292  case X86::ATOMXOR64: {
14293    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
14294    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
14295      .addReg(t4);
14296    break;
14297  }
14298  case X86::ATOMNAND8:
14299  case X86::ATOMNAND16:
14300  case X86::ATOMNAND32:
14301  case X86::ATOMNAND64: {
14302    unsigned Tmp = MRI.createVirtualRegister(RC);
14303    unsigned NOTOpc;
14304    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
14305    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
14306      .addReg(t4);
14307    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
14308    break;
14309  }
14310  case X86::ATOMMAX8:
14311  case X86::ATOMMAX16:
14312  case X86::ATOMMAX32:
14313  case X86::ATOMMAX64:
14314  case X86::ATOMMIN8:
14315  case X86::ATOMMIN16:
14316  case X86::ATOMMIN32:
14317  case X86::ATOMMIN64:
14318  case X86::ATOMUMAX8:
14319  case X86::ATOMUMAX16:
14320  case X86::ATOMUMAX32:
14321  case X86::ATOMUMAX64:
14322  case X86::ATOMUMIN8:
14323  case X86::ATOMUMIN16:
14324  case X86::ATOMUMIN32:
14325  case X86::ATOMUMIN64: {
14326    unsigned CMPOpc;
14327    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
14328
14329    BuildMI(mainMBB, DL, TII->get(CMPOpc))
14330      .addReg(SrcReg)
14331      .addReg(t4);
14332
14333    if (Subtarget->hasCMov()) {
14334      if (VT != MVT::i8) {
14335        // Native support
14336        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
14337          .addReg(SrcReg)
14338          .addReg(t4);
14339      } else {
14340        // Promote i8 to i32 to use CMOV32
14341        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
14342        const TargetRegisterClass *RC32 =
14343          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
14344        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
14345        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
14346        unsigned Tmp = MRI.createVirtualRegister(RC32);
14347
14348        unsigned Undef = MRI.createVirtualRegister(RC32);
14349        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
14350
14351        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
14352          .addReg(Undef)
14353          .addReg(SrcReg)
14354          .addImm(X86::sub_8bit);
14355        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
14356          .addReg(Undef)
14357          .addReg(t4)
14358          .addImm(X86::sub_8bit);
14359
14360        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
14361          .addReg(SrcReg32)
14362          .addReg(AccReg32);
14363
14364        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
14365          .addReg(Tmp, 0, X86::sub_8bit);
14366      }
14367    } else {
14368      // Use pseudo select and lower them.
14369      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
14370             "Invalid atomic-load-op transformation!");
14371      unsigned SelOpc = getPseudoCMOVOpc(VT);
14372      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
14373      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
14374      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
14375              .addReg(SrcReg).addReg(t4)
14376              .addImm(CC);
14377      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14378      // Replace the original PHI node as mainMBB is changed after CMOV
14379      // lowering.
14380      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
14381        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
14382      Phi->eraseFromParent();
14383    }
14384    break;
14385  }
14386  }
14387
14388  // Copy PhyReg back from virtual register.
14389  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
14390    .addReg(t4);
14391
14392  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
14393  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14394    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14395    if (NewMO.isReg())
14396      NewMO.setIsKill(false);
14397    MIB.addOperand(NewMO);
14398  }
14399  MIB.addReg(t2);
14400  MIB.setMemRefs(MMOBegin, MMOEnd);
14401
14402  // Copy PhyReg back to virtual register.
14403  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
14404    .addReg(PhyReg);
14405
14406  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
14407
14408  mainMBB->addSuccessor(origMainMBB);
14409  mainMBB->addSuccessor(sinkMBB);
14410
14411  // sinkMBB:
14412  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14413          TII->get(TargetOpcode::COPY), DstReg)
14414    .addReg(t3);
14415
14416  MI->eraseFromParent();
14417  return sinkMBB;
14418}
14419
14420// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
14421// instructions. They will be translated into a spin-loop or compare-exchange
14422// loop from
14423//
14424//    ...
14425//    dst = atomic-fetch-op MI.addr, MI.val
14426//    ...
14427//
14428// to
14429//
14430//    ...
14431//    t1L = LOAD [MI.addr + 0]
14432//    t1H = LOAD [MI.addr + 4]
14433// loop:
14434//    t4L = phi(t1L, t3L / loop)
14435//    t4H = phi(t1H, t3H / loop)
14436//    t2L = OP MI.val.lo, t4L
14437//    t2H = OP MI.val.hi, t4H
14438//    EAX = t4L
14439//    EDX = t4H
14440//    EBX = t2L
14441//    ECX = t2H
14442//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
14443//    t3L = EAX
14444//    t3H = EDX
14445//    JNE loop
14446// sink:
14447//    dstL = t3L
14448//    dstH = t3H
14449//    ...
14450MachineBasicBlock *
14451X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
14452                                           MachineBasicBlock *MBB) const {
14453  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14454  DebugLoc DL = MI->getDebugLoc();
14455
14456  MachineFunction *MF = MBB->getParent();
14457  MachineRegisterInfo &MRI = MF->getRegInfo();
14458
14459  const BasicBlock *BB = MBB->getBasicBlock();
14460  MachineFunction::iterator I = MBB;
14461  ++I;
14462
14463  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
14464         "Unexpected number of operands");
14465
14466  assert(MI->hasOneMemOperand() &&
14467         "Expected atomic-load-op32 to have one memoperand");
14468
14469  // Memory Reference
14470  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14471  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14472
14473  unsigned DstLoReg, DstHiReg;
14474  unsigned SrcLoReg, SrcHiReg;
14475  unsigned MemOpndSlot;
14476
14477  unsigned CurOp = 0;
14478
14479  DstLoReg = MI->getOperand(CurOp++).getReg();
14480  DstHiReg = MI->getOperand(CurOp++).getReg();
14481  MemOpndSlot = CurOp;
14482  CurOp += X86::AddrNumOperands;
14483  SrcLoReg = MI->getOperand(CurOp++).getReg();
14484  SrcHiReg = MI->getOperand(CurOp++).getReg();
14485
14486  const TargetRegisterClass *RC = &X86::GR32RegClass;
14487  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
14488
14489  unsigned t1L = MRI.createVirtualRegister(RC);
14490  unsigned t1H = MRI.createVirtualRegister(RC);
14491  unsigned t2L = MRI.createVirtualRegister(RC);
14492  unsigned t2H = MRI.createVirtualRegister(RC);
14493  unsigned t3L = MRI.createVirtualRegister(RC);
14494  unsigned t3H = MRI.createVirtualRegister(RC);
14495  unsigned t4L = MRI.createVirtualRegister(RC);
14496  unsigned t4H = MRI.createVirtualRegister(RC);
14497
14498  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
14499  unsigned LOADOpc = X86::MOV32rm;
14500
14501  // For the atomic load-arith operator, we generate
14502  //
14503  //  thisMBB:
14504  //    t1L = LOAD [MI.addr + 0]
14505  //    t1H = LOAD [MI.addr + 4]
14506  //  mainMBB:
14507  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
14508  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
14509  //    t2L = OP MI.val.lo, t4L
14510  //    t2H = OP MI.val.hi, t4H
14511  //    EBX = t2L
14512  //    ECX = t2H
14513  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
14514  //    t3L = EAX
14515  //    t3H = EDX
14516  //    JNE loop
14517  //  sinkMBB:
14518  //    dstL = t3L
14519  //    dstH = t3H
14520
14521  MachineBasicBlock *thisMBB = MBB;
14522  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14523  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14524  MF->insert(I, mainMBB);
14525  MF->insert(I, sinkMBB);
14526
14527  MachineInstrBuilder MIB;
14528
14529  // Transfer the remainder of BB and its successor edges to sinkMBB.
14530  sinkMBB->splice(sinkMBB->begin(), MBB,
14531                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14532  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14533
14534  // thisMBB:
14535  // Lo
14536  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
14537  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14538    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14539    if (NewMO.isReg())
14540      NewMO.setIsKill(false);
14541    MIB.addOperand(NewMO);
14542  }
14543  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
14544    unsigned flags = (*MMOI)->getFlags();
14545    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
14546    MachineMemOperand *MMO =
14547      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
14548                               (*MMOI)->getSize(),
14549                               (*MMOI)->getBaseAlignment(),
14550                               (*MMOI)->getTBAAInfo(),
14551                               (*MMOI)->getRanges());
14552    MIB.addMemOperand(MMO);
14553  };
14554  MachineInstr *LowMI = MIB;
14555
14556  // Hi
14557  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
14558  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14559    if (i == X86::AddrDisp) {
14560      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
14561    } else {
14562      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14563      if (NewMO.isReg())
14564        NewMO.setIsKill(false);
14565      MIB.addOperand(NewMO);
14566    }
14567  }
14568  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
14569
14570  thisMBB->addSuccessor(mainMBB);
14571
14572  // mainMBB:
14573  MachineBasicBlock *origMainMBB = mainMBB;
14574
14575  // Add PHIs.
14576  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
14577                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
14578  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
14579                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
14580
14581  unsigned Opc = MI->getOpcode();
14582  switch (Opc) {
14583  default:
14584    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
14585  case X86::ATOMAND6432:
14586  case X86::ATOMOR6432:
14587  case X86::ATOMXOR6432:
14588  case X86::ATOMADD6432:
14589  case X86::ATOMSUB6432: {
14590    unsigned HiOpc;
14591    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14592    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
14593      .addReg(SrcLoReg);
14594    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
14595      .addReg(SrcHiReg);
14596    break;
14597  }
14598  case X86::ATOMNAND6432: {
14599    unsigned HiOpc, NOTOpc;
14600    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
14601    unsigned TmpL = MRI.createVirtualRegister(RC);
14602    unsigned TmpH = MRI.createVirtualRegister(RC);
14603    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
14604      .addReg(t4L);
14605    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
14606      .addReg(t4H);
14607    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
14608    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
14609    break;
14610  }
14611  case X86::ATOMMAX6432:
14612  case X86::ATOMMIN6432:
14613  case X86::ATOMUMAX6432:
14614  case X86::ATOMUMIN6432: {
14615    unsigned HiOpc;
14616    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14617    unsigned cL = MRI.createVirtualRegister(RC8);
14618    unsigned cH = MRI.createVirtualRegister(RC8);
14619    unsigned cL32 = MRI.createVirtualRegister(RC);
14620    unsigned cH32 = MRI.createVirtualRegister(RC);
14621    unsigned cc = MRI.createVirtualRegister(RC);
14622    // cl := cmp src_lo, lo
14623    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
14624      .addReg(SrcLoReg).addReg(t4L);
14625    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
14626    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
14627    // ch := cmp src_hi, hi
14628    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
14629      .addReg(SrcHiReg).addReg(t4H);
14630    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
14631    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
14632    // cc := if (src_hi == hi) ? cl : ch;
14633    if (Subtarget->hasCMov()) {
14634      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
14635        .addReg(cH32).addReg(cL32);
14636    } else {
14637      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
14638              .addReg(cH32).addReg(cL32)
14639              .addImm(X86::COND_E);
14640      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14641    }
14642    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
14643    if (Subtarget->hasCMov()) {
14644      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
14645        .addReg(SrcLoReg).addReg(t4L);
14646      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
14647        .addReg(SrcHiReg).addReg(t4H);
14648    } else {
14649      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
14650              .addReg(SrcLoReg).addReg(t4L)
14651              .addImm(X86::COND_NE);
14652      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14653      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
14654      // 2nd CMOV lowering.
14655      mainMBB->addLiveIn(X86::EFLAGS);
14656      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
14657              .addReg(SrcHiReg).addReg(t4H)
14658              .addImm(X86::COND_NE);
14659      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14660      // Replace the original PHI node as mainMBB is changed after CMOV
14661      // lowering.
14662      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
14663        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
14664      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
14665        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
14666      PhiL->eraseFromParent();
14667      PhiH->eraseFromParent();
14668    }
14669    break;
14670  }
14671  case X86::ATOMSWAP6432: {
14672    unsigned HiOpc;
14673    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14674    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
14675    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
14676    break;
14677  }
14678  }
14679
14680  // Copy EDX:EAX back from HiReg:LoReg
14681  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
14682  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
14683  // Copy ECX:EBX from t1H:t1L
14684  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
14685  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
14686
14687  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
14688  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14689    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14690    if (NewMO.isReg())
14691      NewMO.setIsKill(false);
14692    MIB.addOperand(NewMO);
14693  }
14694  MIB.setMemRefs(MMOBegin, MMOEnd);
14695
14696  // Copy EDX:EAX back to t3H:t3L
14697  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
14698  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
14699
14700  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
14701
14702  mainMBB->addSuccessor(origMainMBB);
14703  mainMBB->addSuccessor(sinkMBB);
14704
14705  // sinkMBB:
14706  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14707          TII->get(TargetOpcode::COPY), DstLoReg)
14708    .addReg(t3L);
14709  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14710          TII->get(TargetOpcode::COPY), DstHiReg)
14711    .addReg(t3H);
14712
14713  MI->eraseFromParent();
14714  return sinkMBB;
14715}
14716
14717// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
14718// or XMM0_V32I8 in AVX all of this code can be replaced with that
14719// in the .td file.
14720static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
14721                                       const TargetInstrInfo *TII) {
14722  unsigned Opc;
14723  switch (MI->getOpcode()) {
14724  default: llvm_unreachable("illegal opcode!");
14725  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
14726  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
14727  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
14728  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
14729  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
14730  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
14731  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
14732  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
14733  }
14734
14735  DebugLoc dl = MI->getDebugLoc();
14736  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
14737
14738  unsigned NumArgs = MI->getNumOperands();
14739  for (unsigned i = 1; i < NumArgs; ++i) {
14740    MachineOperand &Op = MI->getOperand(i);
14741    if (!(Op.isReg() && Op.isImplicit()))
14742      MIB.addOperand(Op);
14743  }
14744  if (MI->hasOneMemOperand())
14745    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
14746
14747  BuildMI(*BB, MI, dl,
14748    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14749    .addReg(X86::XMM0);
14750
14751  MI->eraseFromParent();
14752  return BB;
14753}
14754
14755// FIXME: Custom handling because TableGen doesn't support multiple implicit
14756// defs in an instruction pattern
14757static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
14758                                       const TargetInstrInfo *TII) {
14759  unsigned Opc;
14760  switch (MI->getOpcode()) {
14761  default: llvm_unreachable("illegal opcode!");
14762  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
14763  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
14764  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
14765  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
14766  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
14767  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
14768  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
14769  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
14770  }
14771
14772  DebugLoc dl = MI->getDebugLoc();
14773  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
14774
14775  unsigned NumArgs = MI->getNumOperands(); // remove the results
14776  for (unsigned i = 1; i < NumArgs; ++i) {
14777    MachineOperand &Op = MI->getOperand(i);
14778    if (!(Op.isReg() && Op.isImplicit()))
14779      MIB.addOperand(Op);
14780  }
14781  if (MI->hasOneMemOperand())
14782    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
14783
14784  BuildMI(*BB, MI, dl,
14785    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14786    .addReg(X86::ECX);
14787
14788  MI->eraseFromParent();
14789  return BB;
14790}
14791
14792static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
14793                                       const TargetInstrInfo *TII,
14794                                       const X86Subtarget* Subtarget) {
14795  DebugLoc dl = MI->getDebugLoc();
14796
14797  // Address into RAX/EAX, other two args into ECX, EDX.
14798  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
14799  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
14800  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
14801  for (int i = 0; i < X86::AddrNumOperands; ++i)
14802    MIB.addOperand(MI->getOperand(i));
14803
14804  unsigned ValOps = X86::AddrNumOperands;
14805  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
14806    .addReg(MI->getOperand(ValOps).getReg());
14807  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
14808    .addReg(MI->getOperand(ValOps+1).getReg());
14809
14810  // The instruction doesn't actually take any operands though.
14811  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
14812
14813  MI->eraseFromParent(); // The pseudo is gone now.
14814  return BB;
14815}
14816
14817MachineBasicBlock *
14818X86TargetLowering::EmitVAARG64WithCustomInserter(
14819                   MachineInstr *MI,
14820                   MachineBasicBlock *MBB) const {
14821  // Emit va_arg instruction on X86-64.
14822
14823  // Operands to this pseudo-instruction:
14824  // 0  ) Output        : destination address (reg)
14825  // 1-5) Input         : va_list address (addr, i64mem)
14826  // 6  ) ArgSize       : Size (in bytes) of vararg type
14827  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
14828  // 8  ) Align         : Alignment of type
14829  // 9  ) EFLAGS (implicit-def)
14830
14831  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
14832  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
14833
14834  unsigned DestReg = MI->getOperand(0).getReg();
14835  MachineOperand &Base = MI->getOperand(1);
14836  MachineOperand &Scale = MI->getOperand(2);
14837  MachineOperand &Index = MI->getOperand(3);
14838  MachineOperand &Disp = MI->getOperand(4);
14839  MachineOperand &Segment = MI->getOperand(5);
14840  unsigned ArgSize = MI->getOperand(6).getImm();
14841  unsigned ArgMode = MI->getOperand(7).getImm();
14842  unsigned Align = MI->getOperand(8).getImm();
14843
14844  // Memory Reference
14845  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
14846  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14847  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14848
14849  // Machine Information
14850  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14851  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
14852  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
14853  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
14854  DebugLoc DL = MI->getDebugLoc();
14855
14856  // struct va_list {
14857  //   i32   gp_offset
14858  //   i32   fp_offset
14859  //   i64   overflow_area (address)
14860  //   i64   reg_save_area (address)
14861  // }
14862  // sizeof(va_list) = 24
14863  // alignment(va_list) = 8
14864
14865  unsigned TotalNumIntRegs = 6;
14866  unsigned TotalNumXMMRegs = 8;
14867  bool UseGPOffset = (ArgMode == 1);
14868  bool UseFPOffset = (ArgMode == 2);
14869  unsigned MaxOffset = TotalNumIntRegs * 8 +
14870                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
14871
14872  /* Align ArgSize to a multiple of 8 */
14873  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
14874  bool NeedsAlign = (Align > 8);
14875
14876  MachineBasicBlock *thisMBB = MBB;
14877  MachineBasicBlock *overflowMBB;
14878  MachineBasicBlock *offsetMBB;
14879  MachineBasicBlock *endMBB;
14880
14881  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
14882  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
14883  unsigned OffsetReg = 0;
14884
14885  if (!UseGPOffset && !UseFPOffset) {
14886    // If we only pull from the overflow region, we don't create a branch.
14887    // We don't need to alter control flow.
14888    OffsetDestReg = 0; // unused
14889    OverflowDestReg = DestReg;
14890
14891    offsetMBB = NULL;
14892    overflowMBB = thisMBB;
14893    endMBB = thisMBB;
14894  } else {
14895    // First emit code to check if gp_offset (or fp_offset) is below the bound.
14896    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
14897    // If not, pull from overflow_area. (branch to overflowMBB)
14898    //
14899    //       thisMBB
14900    //         |     .
14901    //         |        .
14902    //     offsetMBB   overflowMBB
14903    //         |        .
14904    //         |     .
14905    //        endMBB
14906
14907    // Registers for the PHI in endMBB
14908    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
14909    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
14910
14911    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
14912    MachineFunction *MF = MBB->getParent();
14913    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14914    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14915    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14916
14917    MachineFunction::iterator MBBIter = MBB;
14918    ++MBBIter;
14919
14920    // Insert the new basic blocks
14921    MF->insert(MBBIter, offsetMBB);
14922    MF->insert(MBBIter, overflowMBB);
14923    MF->insert(MBBIter, endMBB);
14924
14925    // Transfer the remainder of MBB and its successor edges to endMBB.
14926    endMBB->splice(endMBB->begin(), thisMBB,
14927                    llvm::next(MachineBasicBlock::iterator(MI)),
14928                    thisMBB->end());
14929    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
14930
14931    // Make offsetMBB and overflowMBB successors of thisMBB
14932    thisMBB->addSuccessor(offsetMBB);
14933    thisMBB->addSuccessor(overflowMBB);
14934
14935    // endMBB is a successor of both offsetMBB and overflowMBB
14936    offsetMBB->addSuccessor(endMBB);
14937    overflowMBB->addSuccessor(endMBB);
14938
14939    // Load the offset value into a register
14940    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
14941    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
14942      .addOperand(Base)
14943      .addOperand(Scale)
14944      .addOperand(Index)
14945      .addDisp(Disp, UseFPOffset ? 4 : 0)
14946      .addOperand(Segment)
14947      .setMemRefs(MMOBegin, MMOEnd);
14948
14949    // Check if there is enough room left to pull this argument.
14950    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
14951      .addReg(OffsetReg)
14952      .addImm(MaxOffset + 8 - ArgSizeA8);
14953
14954    // Branch to "overflowMBB" if offset >= max
14955    // Fall through to "offsetMBB" otherwise
14956    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
14957      .addMBB(overflowMBB);
14958  }
14959
14960  // In offsetMBB, emit code to use the reg_save_area.
14961  if (offsetMBB) {
14962    assert(OffsetReg != 0);
14963
14964    // Read the reg_save_area address.
14965    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
14966    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
14967      .addOperand(Base)
14968      .addOperand(Scale)
14969      .addOperand(Index)
14970      .addDisp(Disp, 16)
14971      .addOperand(Segment)
14972      .setMemRefs(MMOBegin, MMOEnd);
14973
14974    // Zero-extend the offset
14975    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
14976      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
14977        .addImm(0)
14978        .addReg(OffsetReg)
14979        .addImm(X86::sub_32bit);
14980
14981    // Add the offset to the reg_save_area to get the final address.
14982    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
14983      .addReg(OffsetReg64)
14984      .addReg(RegSaveReg);
14985
14986    // Compute the offset for the next argument
14987    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
14988    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
14989      .addReg(OffsetReg)
14990      .addImm(UseFPOffset ? 16 : 8);
14991
14992    // Store it back into the va_list.
14993    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
14994      .addOperand(Base)
14995      .addOperand(Scale)
14996      .addOperand(Index)
14997      .addDisp(Disp, UseFPOffset ? 4 : 0)
14998      .addOperand(Segment)
14999      .addReg(NextOffsetReg)
15000      .setMemRefs(MMOBegin, MMOEnd);
15001
15002    // Jump to endMBB
15003    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
15004      .addMBB(endMBB);
15005  }
15006
15007  //
15008  // Emit code to use overflow area
15009  //
15010
15011  // Load the overflow_area address into a register.
15012  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
15013  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
15014    .addOperand(Base)
15015    .addOperand(Scale)
15016    .addOperand(Index)
15017    .addDisp(Disp, 8)
15018    .addOperand(Segment)
15019    .setMemRefs(MMOBegin, MMOEnd);
15020
15021  // If we need to align it, do so. Otherwise, just copy the address
15022  // to OverflowDestReg.
15023  if (NeedsAlign) {
15024    // Align the overflow address
15025    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
15026    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
15027
15028    // aligned_addr = (addr + (align-1)) & ~(align-1)
15029    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
15030      .addReg(OverflowAddrReg)
15031      .addImm(Align-1);
15032
15033    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
15034      .addReg(TmpReg)
15035      .addImm(~(uint64_t)(Align-1));
15036  } else {
15037    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
15038      .addReg(OverflowAddrReg);
15039  }
15040
15041  // Compute the next overflow address after this argument.
15042  // (the overflow address should be kept 8-byte aligned)
15043  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
15044  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
15045    .addReg(OverflowDestReg)
15046    .addImm(ArgSizeA8);
15047
15048  // Store the new overflow address.
15049  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
15050    .addOperand(Base)
15051    .addOperand(Scale)
15052    .addOperand(Index)
15053    .addDisp(Disp, 8)
15054    .addOperand(Segment)
15055    .addReg(NextAddrReg)
15056    .setMemRefs(MMOBegin, MMOEnd);
15057
15058  // If we branched, emit the PHI to the front of endMBB.
15059  if (offsetMBB) {
15060    BuildMI(*endMBB, endMBB->begin(), DL,
15061            TII->get(X86::PHI), DestReg)
15062      .addReg(OffsetDestReg).addMBB(offsetMBB)
15063      .addReg(OverflowDestReg).addMBB(overflowMBB);
15064  }
15065
15066  // Erase the pseudo instruction
15067  MI->eraseFromParent();
15068
15069  return endMBB;
15070}
15071
15072MachineBasicBlock *
15073X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
15074                                                 MachineInstr *MI,
15075                                                 MachineBasicBlock *MBB) const {
15076  // Emit code to save XMM registers to the stack. The ABI says that the
15077  // number of registers to save is given in %al, so it's theoretically
15078  // possible to do an indirect jump trick to avoid saving all of them,
15079  // however this code takes a simpler approach and just executes all
15080  // of the stores if %al is non-zero. It's less code, and it's probably
15081  // easier on the hardware branch predictor, and stores aren't all that
15082  // expensive anyway.
15083
15084  // Create the new basic blocks. One block contains all the XMM stores,
15085  // and one block is the final destination regardless of whether any
15086  // stores were performed.
15087  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
15088  MachineFunction *F = MBB->getParent();
15089  MachineFunction::iterator MBBIter = MBB;
15090  ++MBBIter;
15091  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
15092  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
15093  F->insert(MBBIter, XMMSaveMBB);
15094  F->insert(MBBIter, EndMBB);
15095
15096  // Transfer the remainder of MBB and its successor edges to EndMBB.
15097  EndMBB->splice(EndMBB->begin(), MBB,
15098                 llvm::next(MachineBasicBlock::iterator(MI)),
15099                 MBB->end());
15100  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
15101
15102  // The original block will now fall through to the XMM save block.
15103  MBB->addSuccessor(XMMSaveMBB);
15104  // The XMMSaveMBB will fall through to the end block.
15105  XMMSaveMBB->addSuccessor(EndMBB);
15106
15107  // Now add the instructions.
15108  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15109  DebugLoc DL = MI->getDebugLoc();
15110
15111  unsigned CountReg = MI->getOperand(0).getReg();
15112  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
15113  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
15114
15115  if (!Subtarget->isTargetWin64()) {
15116    // If %al is 0, branch around the XMM save block.
15117    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
15118    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
15119    MBB->addSuccessor(EndMBB);
15120  }
15121
15122  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
15123  // In the XMM save block, save all the XMM argument registers.
15124  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
15125    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
15126    MachineMemOperand *MMO =
15127      F->getMachineMemOperand(
15128          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
15129        MachineMemOperand::MOStore,
15130        /*Size=*/16, /*Align=*/16);
15131    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
15132      .addFrameIndex(RegSaveFrameIndex)
15133      .addImm(/*Scale=*/1)
15134      .addReg(/*IndexReg=*/0)
15135      .addImm(/*Disp=*/Offset)
15136      .addReg(/*Segment=*/0)
15137      .addReg(MI->getOperand(i).getReg())
15138      .addMemOperand(MMO);
15139  }
15140
15141  MI->eraseFromParent();   // The pseudo instruction is gone now.
15142
15143  return EndMBB;
15144}
15145
15146// The EFLAGS operand of SelectItr might be missing a kill marker
15147// because there were multiple uses of EFLAGS, and ISel didn't know
15148// which to mark. Figure out whether SelectItr should have had a
15149// kill marker, and set it if it should. Returns the correct kill
15150// marker value.
15151static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
15152                                     MachineBasicBlock* BB,
15153                                     const TargetRegisterInfo* TRI) {
15154  // Scan forward through BB for a use/def of EFLAGS.
15155  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
15156  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
15157    const MachineInstr& mi = *miI;
15158    if (mi.readsRegister(X86::EFLAGS))
15159      return false;
15160    if (mi.definesRegister(X86::EFLAGS))
15161      break; // Should have kill-flag - update below.
15162  }
15163
15164  // If we hit the end of the block, check whether EFLAGS is live into a
15165  // successor.
15166  if (miI == BB->end()) {
15167    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
15168                                          sEnd = BB->succ_end();
15169         sItr != sEnd; ++sItr) {
15170      MachineBasicBlock* succ = *sItr;
15171      if (succ->isLiveIn(X86::EFLAGS))
15172        return false;
15173    }
15174  }
15175
15176  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
15177  // out. SelectMI should have a kill flag on EFLAGS.
15178  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
15179  return true;
15180}
15181
15182MachineBasicBlock *
15183X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
15184                                     MachineBasicBlock *BB) const {
15185  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15186  DebugLoc DL = MI->getDebugLoc();
15187
15188  // To "insert" a SELECT_CC instruction, we actually have to insert the
15189  // diamond control-flow pattern.  The incoming instruction knows the
15190  // destination vreg to set, the condition code register to branch on, the
15191  // true/false values to select between, and a branch opcode to use.
15192  const BasicBlock *LLVM_BB = BB->getBasicBlock();
15193  MachineFunction::iterator It = BB;
15194  ++It;
15195
15196  //  thisMBB:
15197  //  ...
15198  //   TrueVal = ...
15199  //   cmpTY ccX, r1, r2
15200  //   bCC copy1MBB
15201  //   fallthrough --> copy0MBB
15202  MachineBasicBlock *thisMBB = BB;
15203  MachineFunction *F = BB->getParent();
15204  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
15205  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
15206  F->insert(It, copy0MBB);
15207  F->insert(It, sinkMBB);
15208
15209  // If the EFLAGS register isn't dead in the terminator, then claim that it's
15210  // live into the sink and copy blocks.
15211  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
15212  if (!MI->killsRegister(X86::EFLAGS) &&
15213      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
15214    copy0MBB->addLiveIn(X86::EFLAGS);
15215    sinkMBB->addLiveIn(X86::EFLAGS);
15216  }
15217
15218  // Transfer the remainder of BB and its successor edges to sinkMBB.
15219  sinkMBB->splice(sinkMBB->begin(), BB,
15220                  llvm::next(MachineBasicBlock::iterator(MI)),
15221                  BB->end());
15222  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
15223
15224  // Add the true and fallthrough blocks as its successors.
15225  BB->addSuccessor(copy0MBB);
15226  BB->addSuccessor(sinkMBB);
15227
15228  // Create the conditional branch instruction.
15229  unsigned Opc =
15230    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
15231  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
15232
15233  //  copy0MBB:
15234  //   %FalseValue = ...
15235  //   # fallthrough to sinkMBB
15236  copy0MBB->addSuccessor(sinkMBB);
15237
15238  //  sinkMBB:
15239  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
15240  //  ...
15241  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15242          TII->get(X86::PHI), MI->getOperand(0).getReg())
15243    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
15244    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
15245
15246  MI->eraseFromParent();   // The pseudo instruction is gone now.
15247  return sinkMBB;
15248}
15249
15250MachineBasicBlock *
15251X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
15252                                        bool Is64Bit) const {
15253  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15254  DebugLoc DL = MI->getDebugLoc();
15255  MachineFunction *MF = BB->getParent();
15256  const BasicBlock *LLVM_BB = BB->getBasicBlock();
15257
15258  assert(getTargetMachine().Options.EnableSegmentedStacks);
15259
15260  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
15261  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
15262
15263  // BB:
15264  //  ... [Till the alloca]
15265  // If stacklet is not large enough, jump to mallocMBB
15266  //
15267  // bumpMBB:
15268  //  Allocate by subtracting from RSP
15269  //  Jump to continueMBB
15270  //
15271  // mallocMBB:
15272  //  Allocate by call to runtime
15273  //
15274  // continueMBB:
15275  //  ...
15276  //  [rest of original BB]
15277  //
15278
15279  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15280  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15281  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15282
15283  MachineRegisterInfo &MRI = MF->getRegInfo();
15284  const TargetRegisterClass *AddrRegClass =
15285    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
15286
15287  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
15288    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
15289    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
15290    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
15291    sizeVReg = MI->getOperand(1).getReg(),
15292    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
15293
15294  MachineFunction::iterator MBBIter = BB;
15295  ++MBBIter;
15296
15297  MF->insert(MBBIter, bumpMBB);
15298  MF->insert(MBBIter, mallocMBB);
15299  MF->insert(MBBIter, continueMBB);
15300
15301  continueMBB->splice(continueMBB->begin(), BB, llvm::next
15302                      (MachineBasicBlock::iterator(MI)), BB->end());
15303  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
15304
15305  // Add code to the main basic block to check if the stack limit has been hit,
15306  // and if so, jump to mallocMBB otherwise to bumpMBB.
15307  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
15308  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
15309    .addReg(tmpSPVReg).addReg(sizeVReg);
15310  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
15311    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
15312    .addReg(SPLimitVReg);
15313  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
15314
15315  // bumpMBB simply decreases the stack pointer, since we know the current
15316  // stacklet has enough space.
15317  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
15318    .addReg(SPLimitVReg);
15319  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
15320    .addReg(SPLimitVReg);
15321  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
15322
15323  // Calls into a routine in libgcc to allocate more space from the heap.
15324  const uint32_t *RegMask =
15325    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
15326  if (Is64Bit) {
15327    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
15328      .addReg(sizeVReg);
15329    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
15330      .addExternalSymbol("__morestack_allocate_stack_space")
15331      .addRegMask(RegMask)
15332      .addReg(X86::RDI, RegState::Implicit)
15333      .addReg(X86::RAX, RegState::ImplicitDefine);
15334  } else {
15335    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
15336      .addImm(12);
15337    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
15338    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
15339      .addExternalSymbol("__morestack_allocate_stack_space")
15340      .addRegMask(RegMask)
15341      .addReg(X86::EAX, RegState::ImplicitDefine);
15342  }
15343
15344  if (!Is64Bit)
15345    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
15346      .addImm(16);
15347
15348  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
15349    .addReg(Is64Bit ? X86::RAX : X86::EAX);
15350  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
15351
15352  // Set up the CFG correctly.
15353  BB->addSuccessor(bumpMBB);
15354  BB->addSuccessor(mallocMBB);
15355  mallocMBB->addSuccessor(continueMBB);
15356  bumpMBB->addSuccessor(continueMBB);
15357
15358  // Take care of the PHI nodes.
15359  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
15360          MI->getOperand(0).getReg())
15361    .addReg(mallocPtrVReg).addMBB(mallocMBB)
15362    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
15363
15364  // Delete the original pseudo instruction.
15365  MI->eraseFromParent();
15366
15367  // And we're done.
15368  return continueMBB;
15369}
15370
15371MachineBasicBlock *
15372X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
15373                                          MachineBasicBlock *BB) const {
15374  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15375  DebugLoc DL = MI->getDebugLoc();
15376
15377  assert(!Subtarget->isTargetEnvMacho());
15378
15379  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
15380  // non-trivial part is impdef of ESP.
15381
15382  if (Subtarget->isTargetWin64()) {
15383    if (Subtarget->isTargetCygMing()) {
15384      // ___chkstk(Mingw64):
15385      // Clobbers R10, R11, RAX and EFLAGS.
15386      // Updates RSP.
15387      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
15388        .addExternalSymbol("___chkstk")
15389        .addReg(X86::RAX, RegState::Implicit)
15390        .addReg(X86::RSP, RegState::Implicit)
15391        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
15392        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
15393        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15394    } else {
15395      // __chkstk(MSVCRT): does not update stack pointer.
15396      // Clobbers R10, R11 and EFLAGS.
15397      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
15398        .addExternalSymbol("__chkstk")
15399        .addReg(X86::RAX, RegState::Implicit)
15400        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15401      // RAX has the offset to be subtracted from RSP.
15402      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
15403        .addReg(X86::RSP)
15404        .addReg(X86::RAX);
15405    }
15406  } else {
15407    const char *StackProbeSymbol =
15408      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
15409
15410    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
15411      .addExternalSymbol(StackProbeSymbol)
15412      .addReg(X86::EAX, RegState::Implicit)
15413      .addReg(X86::ESP, RegState::Implicit)
15414      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
15415      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
15416      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15417  }
15418
15419  MI->eraseFromParent();   // The pseudo instruction is gone now.
15420  return BB;
15421}
15422
15423MachineBasicBlock *
15424X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
15425                                      MachineBasicBlock *BB) const {
15426  // This is pretty easy.  We're taking the value that we received from
15427  // our load from the relocation, sticking it in either RDI (x86-64)
15428  // or EAX and doing an indirect call.  The return value will then
15429  // be in the normal return register.
15430  const X86InstrInfo *TII
15431    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
15432  DebugLoc DL = MI->getDebugLoc();
15433  MachineFunction *F = BB->getParent();
15434
15435  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
15436  assert(MI->getOperand(3).isGlobal() && "This should be a global");
15437
15438  // Get a register mask for the lowered call.
15439  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
15440  // proper register mask.
15441  const uint32_t *RegMask =
15442    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
15443  if (Subtarget->is64Bit()) {
15444    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15445                                      TII->get(X86::MOV64rm), X86::RDI)
15446    .addReg(X86::RIP)
15447    .addImm(0).addReg(0)
15448    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15449                      MI->getOperand(3).getTargetFlags())
15450    .addReg(0);
15451    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
15452    addDirectMem(MIB, X86::RDI);
15453    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
15454  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
15455    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15456                                      TII->get(X86::MOV32rm), X86::EAX)
15457    .addReg(0)
15458    .addImm(0).addReg(0)
15459    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15460                      MI->getOperand(3).getTargetFlags())
15461    .addReg(0);
15462    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
15463    addDirectMem(MIB, X86::EAX);
15464    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
15465  } else {
15466    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15467                                      TII->get(X86::MOV32rm), X86::EAX)
15468    .addReg(TII->getGlobalBaseReg(F))
15469    .addImm(0).addReg(0)
15470    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15471                      MI->getOperand(3).getTargetFlags())
15472    .addReg(0);
15473    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
15474    addDirectMem(MIB, X86::EAX);
15475    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
15476  }
15477
15478  MI->eraseFromParent(); // The pseudo instruction is gone now.
15479  return BB;
15480}
15481
15482MachineBasicBlock *
15483X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
15484                                    MachineBasicBlock *MBB) const {
15485  DebugLoc DL = MI->getDebugLoc();
15486  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15487
15488  MachineFunction *MF = MBB->getParent();
15489  MachineRegisterInfo &MRI = MF->getRegInfo();
15490
15491  const BasicBlock *BB = MBB->getBasicBlock();
15492  MachineFunction::iterator I = MBB;
15493  ++I;
15494
15495  // Memory Reference
15496  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15497  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15498
15499  unsigned DstReg;
15500  unsigned MemOpndSlot = 0;
15501
15502  unsigned CurOp = 0;
15503
15504  DstReg = MI->getOperand(CurOp++).getReg();
15505  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
15506  assert(RC->hasType(MVT::i32) && "Invalid destination!");
15507  unsigned mainDstReg = MRI.createVirtualRegister(RC);
15508  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
15509
15510  MemOpndSlot = CurOp;
15511
15512  MVT PVT = getPointerTy();
15513  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
15514         "Invalid Pointer Size!");
15515
15516  // For v = setjmp(buf), we generate
15517  //
15518  // thisMBB:
15519  //  buf[LabelOffset] = restoreMBB
15520  //  SjLjSetup restoreMBB
15521  //
15522  // mainMBB:
15523  //  v_main = 0
15524  //
15525  // sinkMBB:
15526  //  v = phi(main, restore)
15527  //
15528  // restoreMBB:
15529  //  v_restore = 1
15530
15531  MachineBasicBlock *thisMBB = MBB;
15532  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
15533  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
15534  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
15535  MF->insert(I, mainMBB);
15536  MF->insert(I, sinkMBB);
15537  MF->push_back(restoreMBB);
15538
15539  MachineInstrBuilder MIB;
15540
15541  // Transfer the remainder of BB and its successor edges to sinkMBB.
15542  sinkMBB->splice(sinkMBB->begin(), MBB,
15543                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
15544  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
15545
15546  // thisMBB:
15547  unsigned PtrStoreOpc = 0;
15548  unsigned LabelReg = 0;
15549  const int64_t LabelOffset = 1 * PVT.getStoreSize();
15550  Reloc::Model RM = getTargetMachine().getRelocationModel();
15551  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
15552                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
15553
15554  // Prepare IP either in reg or imm.
15555  if (!UseImmLabel) {
15556    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
15557    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
15558    LabelReg = MRI.createVirtualRegister(PtrRC);
15559    if (Subtarget->is64Bit()) {
15560      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
15561              .addReg(X86::RIP)
15562              .addImm(0)
15563              .addReg(0)
15564              .addMBB(restoreMBB)
15565              .addReg(0);
15566    } else {
15567      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
15568      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
15569              .addReg(XII->getGlobalBaseReg(MF))
15570              .addImm(0)
15571              .addReg(0)
15572              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
15573              .addReg(0);
15574    }
15575  } else
15576    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
15577  // Store IP
15578  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
15579  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15580    if (i == X86::AddrDisp)
15581      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
15582    else
15583      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
15584  }
15585  if (!UseImmLabel)
15586    MIB.addReg(LabelReg);
15587  else
15588    MIB.addMBB(restoreMBB);
15589  MIB.setMemRefs(MMOBegin, MMOEnd);
15590  // Setup
15591  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
15592          .addMBB(restoreMBB);
15593
15594  const X86RegisterInfo *RegInfo =
15595    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
15596  MIB.addRegMask(RegInfo->getNoPreservedMask());
15597  thisMBB->addSuccessor(mainMBB);
15598  thisMBB->addSuccessor(restoreMBB);
15599
15600  // mainMBB:
15601  //  EAX = 0
15602  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
15603  mainMBB->addSuccessor(sinkMBB);
15604
15605  // sinkMBB:
15606  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15607          TII->get(X86::PHI), DstReg)
15608    .addReg(mainDstReg).addMBB(mainMBB)
15609    .addReg(restoreDstReg).addMBB(restoreMBB);
15610
15611  // restoreMBB:
15612  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
15613  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
15614  restoreMBB->addSuccessor(sinkMBB);
15615
15616  MI->eraseFromParent();
15617  return sinkMBB;
15618}
15619
15620MachineBasicBlock *
15621X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
15622                                     MachineBasicBlock *MBB) const {
15623  DebugLoc DL = MI->getDebugLoc();
15624  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15625
15626  MachineFunction *MF = MBB->getParent();
15627  MachineRegisterInfo &MRI = MF->getRegInfo();
15628
15629  // Memory Reference
15630  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15631  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15632
15633  MVT PVT = getPointerTy();
15634  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
15635         "Invalid Pointer Size!");
15636
15637  const TargetRegisterClass *RC =
15638    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
15639  unsigned Tmp = MRI.createVirtualRegister(RC);
15640  // Since FP is only updated here but NOT referenced, it's treated as GPR.
15641  const X86RegisterInfo *RegInfo =
15642    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
15643  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
15644  unsigned SP = RegInfo->getStackRegister();
15645
15646  MachineInstrBuilder MIB;
15647
15648  const int64_t LabelOffset = 1 * PVT.getStoreSize();
15649  const int64_t SPOffset = 2 * PVT.getStoreSize();
15650
15651  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
15652  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
15653
15654  // Reload FP
15655  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
15656  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
15657    MIB.addOperand(MI->getOperand(i));
15658  MIB.setMemRefs(MMOBegin, MMOEnd);
15659  // Reload IP
15660  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
15661  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15662    if (i == X86::AddrDisp)
15663      MIB.addDisp(MI->getOperand(i), LabelOffset);
15664    else
15665      MIB.addOperand(MI->getOperand(i));
15666  }
15667  MIB.setMemRefs(MMOBegin, MMOEnd);
15668  // Reload SP
15669  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
15670  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15671    if (i == X86::AddrDisp)
15672      MIB.addDisp(MI->getOperand(i), SPOffset);
15673    else
15674      MIB.addOperand(MI->getOperand(i));
15675  }
15676  MIB.setMemRefs(MMOBegin, MMOEnd);
15677  // Jump
15678  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
15679
15680  MI->eraseFromParent();
15681  return MBB;
15682}
15683
15684MachineBasicBlock *
15685X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
15686                                               MachineBasicBlock *BB) const {
15687  switch (MI->getOpcode()) {
15688  default: llvm_unreachable("Unexpected instr type to insert");
15689  case X86::TAILJMPd64:
15690  case X86::TAILJMPr64:
15691  case X86::TAILJMPm64:
15692    llvm_unreachable("TAILJMP64 would not be touched here.");
15693  case X86::TCRETURNdi64:
15694  case X86::TCRETURNri64:
15695  case X86::TCRETURNmi64:
15696    return BB;
15697  case X86::WIN_ALLOCA:
15698    return EmitLoweredWinAlloca(MI, BB);
15699  case X86::SEG_ALLOCA_32:
15700    return EmitLoweredSegAlloca(MI, BB, false);
15701  case X86::SEG_ALLOCA_64:
15702    return EmitLoweredSegAlloca(MI, BB, true);
15703  case X86::TLSCall_32:
15704  case X86::TLSCall_64:
15705    return EmitLoweredTLSCall(MI, BB);
15706  case X86::CMOV_GR8:
15707  case X86::CMOV_FR32:
15708  case X86::CMOV_FR64:
15709  case X86::CMOV_V4F32:
15710  case X86::CMOV_V2F64:
15711  case X86::CMOV_V2I64:
15712  case X86::CMOV_V8F32:
15713  case X86::CMOV_V4F64:
15714  case X86::CMOV_V4I64:
15715  case X86::CMOV_GR16:
15716  case X86::CMOV_GR32:
15717  case X86::CMOV_RFP32:
15718  case X86::CMOV_RFP64:
15719  case X86::CMOV_RFP80:
15720    return EmitLoweredSelect(MI, BB);
15721
15722  case X86::FP32_TO_INT16_IN_MEM:
15723  case X86::FP32_TO_INT32_IN_MEM:
15724  case X86::FP32_TO_INT64_IN_MEM:
15725  case X86::FP64_TO_INT16_IN_MEM:
15726  case X86::FP64_TO_INT32_IN_MEM:
15727  case X86::FP64_TO_INT64_IN_MEM:
15728  case X86::FP80_TO_INT16_IN_MEM:
15729  case X86::FP80_TO_INT32_IN_MEM:
15730  case X86::FP80_TO_INT64_IN_MEM: {
15731    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15732    DebugLoc DL = MI->getDebugLoc();
15733
15734    // Change the floating point control register to use "round towards zero"
15735    // mode when truncating to an integer value.
15736    MachineFunction *F = BB->getParent();
15737    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
15738    addFrameReference(BuildMI(*BB, MI, DL,
15739                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
15740
15741    // Load the old value of the high byte of the control word...
15742    unsigned OldCW =
15743      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
15744    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
15745                      CWFrameIdx);
15746
15747    // Set the high part to be round to zero...
15748    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
15749      .addImm(0xC7F);
15750
15751    // Reload the modified control word now...
15752    addFrameReference(BuildMI(*BB, MI, DL,
15753                              TII->get(X86::FLDCW16m)), CWFrameIdx);
15754
15755    // Restore the memory image of control word to original value
15756    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
15757      .addReg(OldCW);
15758
15759    // Get the X86 opcode to use.
15760    unsigned Opc;
15761    switch (MI->getOpcode()) {
15762    default: llvm_unreachable("illegal opcode!");
15763    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
15764    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
15765    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
15766    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
15767    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
15768    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
15769    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
15770    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
15771    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
15772    }
15773
15774    X86AddressMode AM;
15775    MachineOperand &Op = MI->getOperand(0);
15776    if (Op.isReg()) {
15777      AM.BaseType = X86AddressMode::RegBase;
15778      AM.Base.Reg = Op.getReg();
15779    } else {
15780      AM.BaseType = X86AddressMode::FrameIndexBase;
15781      AM.Base.FrameIndex = Op.getIndex();
15782    }
15783    Op = MI->getOperand(1);
15784    if (Op.isImm())
15785      AM.Scale = Op.getImm();
15786    Op = MI->getOperand(2);
15787    if (Op.isImm())
15788      AM.IndexReg = Op.getImm();
15789    Op = MI->getOperand(3);
15790    if (Op.isGlobal()) {
15791      AM.GV = Op.getGlobal();
15792    } else {
15793      AM.Disp = Op.getImm();
15794    }
15795    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
15796                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
15797
15798    // Reload the original control word now.
15799    addFrameReference(BuildMI(*BB, MI, DL,
15800                              TII->get(X86::FLDCW16m)), CWFrameIdx);
15801
15802    MI->eraseFromParent();   // The pseudo instruction is gone now.
15803    return BB;
15804  }
15805    // String/text processing lowering.
15806  case X86::PCMPISTRM128REG:
15807  case X86::VPCMPISTRM128REG:
15808  case X86::PCMPISTRM128MEM:
15809  case X86::VPCMPISTRM128MEM:
15810  case X86::PCMPESTRM128REG:
15811  case X86::VPCMPESTRM128REG:
15812  case X86::PCMPESTRM128MEM:
15813  case X86::VPCMPESTRM128MEM:
15814    assert(Subtarget->hasSSE42() &&
15815           "Target must have SSE4.2 or AVX features enabled");
15816    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
15817
15818  // String/text processing lowering.
15819  case X86::PCMPISTRIREG:
15820  case X86::VPCMPISTRIREG:
15821  case X86::PCMPISTRIMEM:
15822  case X86::VPCMPISTRIMEM:
15823  case X86::PCMPESTRIREG:
15824  case X86::VPCMPESTRIREG:
15825  case X86::PCMPESTRIMEM:
15826  case X86::VPCMPESTRIMEM:
15827    assert(Subtarget->hasSSE42() &&
15828           "Target must have SSE4.2 or AVX features enabled");
15829    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
15830
15831  // Thread synchronization.
15832  case X86::MONITOR:
15833    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
15834
15835  // xbegin
15836  case X86::XBEGIN:
15837    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
15838
15839  // Atomic Lowering.
15840  case X86::ATOMAND8:
15841  case X86::ATOMAND16:
15842  case X86::ATOMAND32:
15843  case X86::ATOMAND64:
15844    // Fall through
15845  case X86::ATOMOR8:
15846  case X86::ATOMOR16:
15847  case X86::ATOMOR32:
15848  case X86::ATOMOR64:
15849    // Fall through
15850  case X86::ATOMXOR16:
15851  case X86::ATOMXOR8:
15852  case X86::ATOMXOR32:
15853  case X86::ATOMXOR64:
15854    // Fall through
15855  case X86::ATOMNAND8:
15856  case X86::ATOMNAND16:
15857  case X86::ATOMNAND32:
15858  case X86::ATOMNAND64:
15859    // Fall through
15860  case X86::ATOMMAX8:
15861  case X86::ATOMMAX16:
15862  case X86::ATOMMAX32:
15863  case X86::ATOMMAX64:
15864    // Fall through
15865  case X86::ATOMMIN8:
15866  case X86::ATOMMIN16:
15867  case X86::ATOMMIN32:
15868  case X86::ATOMMIN64:
15869    // Fall through
15870  case X86::ATOMUMAX8:
15871  case X86::ATOMUMAX16:
15872  case X86::ATOMUMAX32:
15873  case X86::ATOMUMAX64:
15874    // Fall through
15875  case X86::ATOMUMIN8:
15876  case X86::ATOMUMIN16:
15877  case X86::ATOMUMIN32:
15878  case X86::ATOMUMIN64:
15879    return EmitAtomicLoadArith(MI, BB);
15880
15881  // This group does 64-bit operations on a 32-bit host.
15882  case X86::ATOMAND6432:
15883  case X86::ATOMOR6432:
15884  case X86::ATOMXOR6432:
15885  case X86::ATOMNAND6432:
15886  case X86::ATOMADD6432:
15887  case X86::ATOMSUB6432:
15888  case X86::ATOMMAX6432:
15889  case X86::ATOMMIN6432:
15890  case X86::ATOMUMAX6432:
15891  case X86::ATOMUMIN6432:
15892  case X86::ATOMSWAP6432:
15893    return EmitAtomicLoadArith6432(MI, BB);
15894
15895  case X86::VASTART_SAVE_XMM_REGS:
15896    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
15897
15898  case X86::VAARG_64:
15899    return EmitVAARG64WithCustomInserter(MI, BB);
15900
15901  case X86::EH_SjLj_SetJmp32:
15902  case X86::EH_SjLj_SetJmp64:
15903    return emitEHSjLjSetJmp(MI, BB);
15904
15905  case X86::EH_SjLj_LongJmp32:
15906  case X86::EH_SjLj_LongJmp64:
15907    return emitEHSjLjLongJmp(MI, BB);
15908  }
15909}
15910
15911//===----------------------------------------------------------------------===//
15912//                           X86 Optimization Hooks
15913//===----------------------------------------------------------------------===//
15914
15915void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
15916                                                       APInt &KnownZero,
15917                                                       APInt &KnownOne,
15918                                                       const SelectionDAG &DAG,
15919                                                       unsigned Depth) const {
15920  unsigned BitWidth = KnownZero.getBitWidth();
15921  unsigned Opc = Op.getOpcode();
15922  assert((Opc >= ISD::BUILTIN_OP_END ||
15923          Opc == ISD::INTRINSIC_WO_CHAIN ||
15924          Opc == ISD::INTRINSIC_W_CHAIN ||
15925          Opc == ISD::INTRINSIC_VOID) &&
15926         "Should use MaskedValueIsZero if you don't know whether Op"
15927         " is a target node!");
15928
15929  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
15930  switch (Opc) {
15931  default: break;
15932  case X86ISD::ADD:
15933  case X86ISD::SUB:
15934  case X86ISD::ADC:
15935  case X86ISD::SBB:
15936  case X86ISD::SMUL:
15937  case X86ISD::UMUL:
15938  case X86ISD::INC:
15939  case X86ISD::DEC:
15940  case X86ISD::OR:
15941  case X86ISD::XOR:
15942  case X86ISD::AND:
15943    // These nodes' second result is a boolean.
15944    if (Op.getResNo() == 0)
15945      break;
15946    // Fallthrough
15947  case X86ISD::SETCC:
15948    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
15949    break;
15950  case ISD::INTRINSIC_WO_CHAIN: {
15951    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15952    unsigned NumLoBits = 0;
15953    switch (IntId) {
15954    default: break;
15955    case Intrinsic::x86_sse_movmsk_ps:
15956    case Intrinsic::x86_avx_movmsk_ps_256:
15957    case Intrinsic::x86_sse2_movmsk_pd:
15958    case Intrinsic::x86_avx_movmsk_pd_256:
15959    case Intrinsic::x86_mmx_pmovmskb:
15960    case Intrinsic::x86_sse2_pmovmskb_128:
15961    case Intrinsic::x86_avx2_pmovmskb: {
15962      // High bits of movmskp{s|d}, pmovmskb are known zero.
15963      switch (IntId) {
15964        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
15965        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
15966        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
15967        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
15968        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
15969        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
15970        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
15971        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
15972      }
15973      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
15974      break;
15975    }
15976    }
15977    break;
15978  }
15979  }
15980}
15981
15982unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
15983                                                         unsigned Depth) const {
15984  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
15985  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
15986    return Op.getValueType().getScalarType().getSizeInBits();
15987
15988  // Fallback case.
15989  return 1;
15990}
15991
15992/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
15993/// node is a GlobalAddress + offset.
15994bool X86TargetLowering::isGAPlusOffset(SDNode *N,
15995                                       const GlobalValue* &GA,
15996                                       int64_t &Offset) const {
15997  if (N->getOpcode() == X86ISD::Wrapper) {
15998    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
15999      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
16000      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
16001      return true;
16002    }
16003  }
16004  return TargetLowering::isGAPlusOffset(N, GA, Offset);
16005}
16006
16007/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
16008/// same as extracting the high 128-bit part of 256-bit vector and then
16009/// inserting the result into the low part of a new 256-bit vector
16010static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
16011  EVT VT = SVOp->getValueType(0);
16012  unsigned NumElems = VT.getVectorNumElements();
16013
16014  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
16015  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
16016    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
16017        SVOp->getMaskElt(j) >= 0)
16018      return false;
16019
16020  return true;
16021}
16022
16023/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
16024/// same as extracting the low 128-bit part of 256-bit vector and then
16025/// inserting the result into the high part of a new 256-bit vector
16026static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
16027  EVT VT = SVOp->getValueType(0);
16028  unsigned NumElems = VT.getVectorNumElements();
16029
16030  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
16031  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
16032    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
16033        SVOp->getMaskElt(j) >= 0)
16034      return false;
16035
16036  return true;
16037}
16038
16039/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
16040static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
16041                                        TargetLowering::DAGCombinerInfo &DCI,
16042                                        const X86Subtarget* Subtarget) {
16043  SDLoc dl(N);
16044  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
16045  SDValue V1 = SVOp->getOperand(0);
16046  SDValue V2 = SVOp->getOperand(1);
16047  EVT VT = SVOp->getValueType(0);
16048  unsigned NumElems = VT.getVectorNumElements();
16049
16050  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
16051      V2.getOpcode() == ISD::CONCAT_VECTORS) {
16052    //
16053    //                   0,0,0,...
16054    //                      |
16055    //    V      UNDEF    BUILD_VECTOR    UNDEF
16056    //     \      /           \           /
16057    //  CONCAT_VECTOR         CONCAT_VECTOR
16058    //         \                  /
16059    //          \                /
16060    //          RESULT: V + zero extended
16061    //
16062    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
16063        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
16064        V1.getOperand(1).getOpcode() != ISD::UNDEF)
16065      return SDValue();
16066
16067    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
16068      return SDValue();
16069
16070    // To match the shuffle mask, the first half of the mask should
16071    // be exactly the first vector, and all the rest a splat with the
16072    // first element of the second one.
16073    for (unsigned i = 0; i != NumElems/2; ++i)
16074      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
16075          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
16076        return SDValue();
16077
16078    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
16079    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
16080      if (Ld->hasNUsesOfValue(1, 0)) {
16081        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
16082        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
16083        SDValue ResNode =
16084          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
16085                                  array_lengthof(Ops),
16086                                  Ld->getMemoryVT(),
16087                                  Ld->getPointerInfo(),
16088                                  Ld->getAlignment(),
16089                                  false/*isVolatile*/, true/*ReadMem*/,
16090                                  false/*WriteMem*/);
16091
16092        // Make sure the newly-created LOAD is in the same position as Ld in
16093        // terms of dependency. We create a TokenFactor for Ld and ResNode,
16094        // and update uses of Ld's output chain to use the TokenFactor.
16095        if (Ld->hasAnyUseOfValue(1)) {
16096          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16097                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
16098          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
16099          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
16100                                 SDValue(ResNode.getNode(), 1));
16101        }
16102
16103        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
16104      }
16105    }
16106
16107    // Emit a zeroed vector and insert the desired subvector on its
16108    // first half.
16109    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
16110    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
16111    return DCI.CombineTo(N, InsV);
16112  }
16113
16114  //===--------------------------------------------------------------------===//
16115  // Combine some shuffles into subvector extracts and inserts:
16116  //
16117
16118  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
16119  if (isShuffleHigh128VectorInsertLow(SVOp)) {
16120    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
16121    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
16122    return DCI.CombineTo(N, InsV);
16123  }
16124
16125  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
16126  if (isShuffleLow128VectorInsertHigh(SVOp)) {
16127    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
16128    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
16129    return DCI.CombineTo(N, InsV);
16130  }
16131
16132  return SDValue();
16133}
16134
16135/// PerformShuffleCombine - Performs several different shuffle combines.
16136static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
16137                                     TargetLowering::DAGCombinerInfo &DCI,
16138                                     const X86Subtarget *Subtarget) {
16139  SDLoc dl(N);
16140  EVT VT = N->getValueType(0);
16141
16142  // Don't create instructions with illegal types after legalize types has run.
16143  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16144  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
16145    return SDValue();
16146
16147  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
16148  if (Subtarget->hasFp256() && VT.is256BitVector() &&
16149      N->getOpcode() == ISD::VECTOR_SHUFFLE)
16150    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
16151
16152  // Only handle 128 wide vector from here on.
16153  if (!VT.is128BitVector())
16154    return SDValue();
16155
16156  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
16157  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
16158  // consecutive, non-overlapping, and in the right order.
16159  SmallVector<SDValue, 16> Elts;
16160  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
16161    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
16162
16163  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
16164}
16165
16166/// PerformTruncateCombine - Converts truncate operation to
16167/// a sequence of vector shuffle operations.
16168/// It is possible when we truncate 256-bit vector to 128-bit vector
16169static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
16170                                      TargetLowering::DAGCombinerInfo &DCI,
16171                                      const X86Subtarget *Subtarget)  {
16172  return SDValue();
16173}
16174
16175/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
16176/// specific shuffle of a load can be folded into a single element load.
16177/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
16178/// shuffles have been customed lowered so we need to handle those here.
16179static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
16180                                         TargetLowering::DAGCombinerInfo &DCI) {
16181  if (DCI.isBeforeLegalizeOps())
16182    return SDValue();
16183
16184  SDValue InVec = N->getOperand(0);
16185  SDValue EltNo = N->getOperand(1);
16186
16187  if (!isa<ConstantSDNode>(EltNo))
16188    return SDValue();
16189
16190  EVT VT = InVec.getValueType();
16191
16192  bool HasShuffleIntoBitcast = false;
16193  if (InVec.getOpcode() == ISD::BITCAST) {
16194    // Don't duplicate a load with other uses.
16195    if (!InVec.hasOneUse())
16196      return SDValue();
16197    EVT BCVT = InVec.getOperand(0).getValueType();
16198    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
16199      return SDValue();
16200    InVec = InVec.getOperand(0);
16201    HasShuffleIntoBitcast = true;
16202  }
16203
16204  if (!isTargetShuffle(InVec.getOpcode()))
16205    return SDValue();
16206
16207  // Don't duplicate a load with other uses.
16208  if (!InVec.hasOneUse())
16209    return SDValue();
16210
16211  SmallVector<int, 16> ShuffleMask;
16212  bool UnaryShuffle;
16213  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
16214                            UnaryShuffle))
16215    return SDValue();
16216
16217  // Select the input vector, guarding against out of range extract vector.
16218  unsigned NumElems = VT.getVectorNumElements();
16219  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
16220  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
16221  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
16222                                         : InVec.getOperand(1);
16223
16224  // If inputs to shuffle are the same for both ops, then allow 2 uses
16225  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
16226
16227  if (LdNode.getOpcode() == ISD::BITCAST) {
16228    // Don't duplicate a load with other uses.
16229    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
16230      return SDValue();
16231
16232    AllowedUses = 1; // only allow 1 load use if we have a bitcast
16233    LdNode = LdNode.getOperand(0);
16234  }
16235
16236  if (!ISD::isNormalLoad(LdNode.getNode()))
16237    return SDValue();
16238
16239  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
16240
16241  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
16242    return SDValue();
16243
16244  if (HasShuffleIntoBitcast) {
16245    // If there's a bitcast before the shuffle, check if the load type and
16246    // alignment is valid.
16247    unsigned Align = LN0->getAlignment();
16248    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16249    unsigned NewAlign = TLI.getDataLayout()->
16250      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
16251
16252    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
16253      return SDValue();
16254  }
16255
16256  // All checks match so transform back to vector_shuffle so that DAG combiner
16257  // can finish the job
16258  SDLoc dl(N);
16259
16260  // Create shuffle node taking into account the case that its a unary shuffle
16261  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
16262  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
16263                                 InVec.getOperand(0), Shuffle,
16264                                 &ShuffleMask[0]);
16265  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
16266  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
16267                     EltNo);
16268}
16269
16270/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
16271/// generation and convert it from being a bunch of shuffles and extracts
16272/// to a simple store and scalar loads to extract the elements.
16273static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
16274                                         TargetLowering::DAGCombinerInfo &DCI) {
16275  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
16276  if (NewOp.getNode())
16277    return NewOp;
16278
16279  SDValue InputVector = N->getOperand(0);
16280  // Detect whether we are trying to convert from mmx to i32 and the bitcast
16281  // from mmx to v2i32 has a single usage.
16282  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
16283      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
16284      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
16285    return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
16286                       N->getValueType(0),
16287                       InputVector.getNode()->getOperand(0));
16288
16289  // Only operate on vectors of 4 elements, where the alternative shuffling
16290  // gets to be more expensive.
16291  if (InputVector.getValueType() != MVT::v4i32)
16292    return SDValue();
16293
16294  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
16295  // single use which is a sign-extend or zero-extend, and all elements are
16296  // used.
16297  SmallVector<SDNode *, 4> Uses;
16298  unsigned ExtractedElements = 0;
16299  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
16300       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
16301    if (UI.getUse().getResNo() != InputVector.getResNo())
16302      return SDValue();
16303
16304    SDNode *Extract = *UI;
16305    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
16306      return SDValue();
16307
16308    if (Extract->getValueType(0) != MVT::i32)
16309      return SDValue();
16310    if (!Extract->hasOneUse())
16311      return SDValue();
16312    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
16313        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
16314      return SDValue();
16315    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
16316      return SDValue();
16317
16318    // Record which element was extracted.
16319    ExtractedElements |=
16320      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
16321
16322    Uses.push_back(Extract);
16323  }
16324
16325  // If not all the elements were used, this may not be worthwhile.
16326  if (ExtractedElements != 15)
16327    return SDValue();
16328
16329  // Ok, we've now decided to do the transformation.
16330  SDLoc dl(InputVector);
16331
16332  // Store the value to a temporary stack slot.
16333  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
16334  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
16335                            MachinePointerInfo(), false, false, 0);
16336
16337  // Replace each use (extract) with a load of the appropriate element.
16338  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
16339       UE = Uses.end(); UI != UE; ++UI) {
16340    SDNode *Extract = *UI;
16341
16342    // cOMpute the element's address.
16343    SDValue Idx = Extract->getOperand(1);
16344    unsigned EltSize =
16345        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
16346    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
16347    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16348    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
16349
16350    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
16351                                     StackPtr, OffsetVal);
16352
16353    // Load the scalar.
16354    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
16355                                     ScalarAddr, MachinePointerInfo(),
16356                                     false, false, false, 0);
16357
16358    // Replace the exact with the load.
16359    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
16360  }
16361
16362  // The replacement was made in place; don't return anything.
16363  return SDValue();
16364}
16365
16366/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
16367static std::pair<unsigned, bool>
16368matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS, SDValue RHS,
16369                   SelectionDAG &DAG, const X86Subtarget *Subtarget) {
16370  if (!VT.isVector())
16371    return std::make_pair(0, false);
16372
16373  bool NeedSplit = false;
16374  switch (VT.getSimpleVT().SimpleTy) {
16375  default: return std::make_pair(0, false);
16376  case MVT::v32i8:
16377  case MVT::v16i16:
16378  case MVT::v8i32:
16379    if (!Subtarget->hasAVX2())
16380      NeedSplit = true;
16381    if (!Subtarget->hasAVX())
16382      return std::make_pair(0, false);
16383    break;
16384  case MVT::v16i8:
16385  case MVT::v8i16:
16386  case MVT::v4i32:
16387    if (!Subtarget->hasSSE2())
16388      return std::make_pair(0, false);
16389  }
16390
16391  // SSE2 has only a small subset of the operations.
16392  bool hasUnsigned = Subtarget->hasSSE41() ||
16393                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
16394  bool hasSigned = Subtarget->hasSSE41() ||
16395                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
16396
16397  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16398
16399  unsigned Opc = 0;
16400  // Check for x CC y ? x : y.
16401  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16402      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16403    switch (CC) {
16404    default: break;
16405    case ISD::SETULT:
16406    case ISD::SETULE:
16407      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
16408    case ISD::SETUGT:
16409    case ISD::SETUGE:
16410      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
16411    case ISD::SETLT:
16412    case ISD::SETLE:
16413      Opc = hasSigned ? X86ISD::SMIN : 0; break;
16414    case ISD::SETGT:
16415    case ISD::SETGE:
16416      Opc = hasSigned ? X86ISD::SMAX : 0; break;
16417    }
16418  // Check for x CC y ? y : x -- a min/max with reversed arms.
16419  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
16420             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
16421    switch (CC) {
16422    default: break;
16423    case ISD::SETULT:
16424    case ISD::SETULE:
16425      Opc = hasUnsigned ? X86ISD::UMAX : 0; break;
16426    case ISD::SETUGT:
16427    case ISD::SETUGE:
16428      Opc = hasUnsigned ? X86ISD::UMIN : 0; break;
16429    case ISD::SETLT:
16430    case ISD::SETLE:
16431      Opc = hasSigned ? X86ISD::SMAX : 0; break;
16432    case ISD::SETGT:
16433    case ISD::SETGE:
16434      Opc = hasSigned ? X86ISD::SMIN : 0; break;
16435    }
16436  }
16437
16438  return std::make_pair(Opc, NeedSplit);
16439}
16440
16441/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
16442/// nodes.
16443static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
16444                                    TargetLowering::DAGCombinerInfo &DCI,
16445                                    const X86Subtarget *Subtarget) {
16446  SDLoc DL(N);
16447  SDValue Cond = N->getOperand(0);
16448  // Get the LHS/RHS of the select.
16449  SDValue LHS = N->getOperand(1);
16450  SDValue RHS = N->getOperand(2);
16451  EVT VT = LHS.getValueType();
16452  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16453
16454  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
16455  // instructions match the semantics of the common C idiom x<y?x:y but not
16456  // x<=y?x:y, because of how they handle negative zero (which can be
16457  // ignored in unsafe-math mode).
16458  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
16459      VT != MVT::f80 && TLI.isTypeLegal(VT) &&
16460      (Subtarget->hasSSE2() ||
16461       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
16462    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16463
16464    unsigned Opcode = 0;
16465    // Check for x CC y ? x : y.
16466    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16467        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16468      switch (CC) {
16469      default: break;
16470      case ISD::SETULT:
16471        // Converting this to a min would handle NaNs incorrectly, and swapping
16472        // the operands would cause it to handle comparisons between positive
16473        // and negative zero incorrectly.
16474        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
16475          if (!DAG.getTarget().Options.UnsafeFPMath &&
16476              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
16477            break;
16478          std::swap(LHS, RHS);
16479        }
16480        Opcode = X86ISD::FMIN;
16481        break;
16482      case ISD::SETOLE:
16483        // Converting this to a min would handle comparisons between positive
16484        // and negative zero incorrectly.
16485        if (!DAG.getTarget().Options.UnsafeFPMath &&
16486            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
16487          break;
16488        Opcode = X86ISD::FMIN;
16489        break;
16490      case ISD::SETULE:
16491        // Converting this to a min would handle both negative zeros and NaNs
16492        // incorrectly, but we can swap the operands to fix both.
16493        std::swap(LHS, RHS);
16494      case ISD::SETOLT:
16495      case ISD::SETLT:
16496      case ISD::SETLE:
16497        Opcode = X86ISD::FMIN;
16498        break;
16499
16500      case ISD::SETOGE:
16501        // Converting this to a max would handle comparisons between positive
16502        // and negative zero incorrectly.
16503        if (!DAG.getTarget().Options.UnsafeFPMath &&
16504            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
16505          break;
16506        Opcode = X86ISD::FMAX;
16507        break;
16508      case ISD::SETUGT:
16509        // Converting this to a max would handle NaNs incorrectly, and swapping
16510        // the operands would cause it to handle comparisons between positive
16511        // and negative zero incorrectly.
16512        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
16513          if (!DAG.getTarget().Options.UnsafeFPMath &&
16514              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
16515            break;
16516          std::swap(LHS, RHS);
16517        }
16518        Opcode = X86ISD::FMAX;
16519        break;
16520      case ISD::SETUGE:
16521        // Converting this to a max would handle both negative zeros and NaNs
16522        // incorrectly, but we can swap the operands to fix both.
16523        std::swap(LHS, RHS);
16524      case ISD::SETOGT:
16525      case ISD::SETGT:
16526      case ISD::SETGE:
16527        Opcode = X86ISD::FMAX;
16528        break;
16529      }
16530    // Check for x CC y ? y : x -- a min/max with reversed arms.
16531    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
16532               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
16533      switch (CC) {
16534      default: break;
16535      case ISD::SETOGE:
16536        // Converting this to a min would handle comparisons between positive
16537        // and negative zero incorrectly, and swapping the operands would
16538        // cause it to handle NaNs incorrectly.
16539        if (!DAG.getTarget().Options.UnsafeFPMath &&
16540            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
16541          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16542            break;
16543          std::swap(LHS, RHS);
16544        }
16545        Opcode = X86ISD::FMIN;
16546        break;
16547      case ISD::SETUGT:
16548        // Converting this to a min would handle NaNs incorrectly.
16549        if (!DAG.getTarget().Options.UnsafeFPMath &&
16550            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
16551          break;
16552        Opcode = X86ISD::FMIN;
16553        break;
16554      case ISD::SETUGE:
16555        // Converting this to a min would handle both negative zeros and NaNs
16556        // incorrectly, but we can swap the operands to fix both.
16557        std::swap(LHS, RHS);
16558      case ISD::SETOGT:
16559      case ISD::SETGT:
16560      case ISD::SETGE:
16561        Opcode = X86ISD::FMIN;
16562        break;
16563
16564      case ISD::SETULT:
16565        // Converting this to a max would handle NaNs incorrectly.
16566        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16567          break;
16568        Opcode = X86ISD::FMAX;
16569        break;
16570      case ISD::SETOLE:
16571        // Converting this to a max would handle comparisons between positive
16572        // and negative zero incorrectly, and swapping the operands would
16573        // cause it to handle NaNs incorrectly.
16574        if (!DAG.getTarget().Options.UnsafeFPMath &&
16575            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
16576          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16577            break;
16578          std::swap(LHS, RHS);
16579        }
16580        Opcode = X86ISD::FMAX;
16581        break;
16582      case ISD::SETULE:
16583        // Converting this to a max would handle both negative zeros and NaNs
16584        // incorrectly, but we can swap the operands to fix both.
16585        std::swap(LHS, RHS);
16586      case ISD::SETOLT:
16587      case ISD::SETLT:
16588      case ISD::SETLE:
16589        Opcode = X86ISD::FMAX;
16590        break;
16591      }
16592    }
16593
16594    if (Opcode)
16595      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
16596  }
16597
16598  if (Subtarget->hasAVX512() && VT.isVector() &&
16599      Cond.getValueType().getVectorElementType() == MVT::i1) {
16600    // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
16601    // lowering on AVX-512. In this case we convert it to
16602    // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
16603    // The same situation for all 128 and 256-bit vectors of i8 and i16
16604    EVT OpVT = LHS.getValueType();
16605    if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
16606        (OpVT.getVectorElementType() == MVT::i8 ||
16607         OpVT.getVectorElementType() == MVT::i16)) {
16608      Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
16609      DCI.AddToWorklist(Cond.getNode());
16610      return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
16611    }
16612  }
16613  // If this is a select between two integer constants, try to do some
16614  // optimizations.
16615  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
16616    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
16617      // Don't do this for crazy integer types.
16618      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
16619        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
16620        // so that TrueC (the true value) is larger than FalseC.
16621        bool NeedsCondInvert = false;
16622
16623        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
16624            // Efficiently invertible.
16625            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
16626             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
16627              isa<ConstantSDNode>(Cond.getOperand(1))))) {
16628          NeedsCondInvert = true;
16629          std::swap(TrueC, FalseC);
16630        }
16631
16632        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
16633        if (FalseC->getAPIntValue() == 0 &&
16634            TrueC->getAPIntValue().isPowerOf2()) {
16635          if (NeedsCondInvert) // Invert the condition if needed.
16636            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16637                               DAG.getConstant(1, Cond.getValueType()));
16638
16639          // Zero extend the condition if needed.
16640          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
16641
16642          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
16643          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
16644                             DAG.getConstant(ShAmt, MVT::i8));
16645        }
16646
16647        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
16648        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
16649          if (NeedsCondInvert) // Invert the condition if needed.
16650            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16651                               DAG.getConstant(1, Cond.getValueType()));
16652
16653          // Zero extend the condition if needed.
16654          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
16655                             FalseC->getValueType(0), Cond);
16656          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16657                             SDValue(FalseC, 0));
16658        }
16659
16660        // Optimize cases that will turn into an LEA instruction.  This requires
16661        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
16662        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
16663          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
16664          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
16665
16666          bool isFastMultiplier = false;
16667          if (Diff < 10) {
16668            switch ((unsigned char)Diff) {
16669              default: break;
16670              case 1:  // result = add base, cond
16671              case 2:  // result = lea base(    , cond*2)
16672              case 3:  // result = lea base(cond, cond*2)
16673              case 4:  // result = lea base(    , cond*4)
16674              case 5:  // result = lea base(cond, cond*4)
16675              case 8:  // result = lea base(    , cond*8)
16676              case 9:  // result = lea base(cond, cond*8)
16677                isFastMultiplier = true;
16678                break;
16679            }
16680          }
16681
16682          if (isFastMultiplier) {
16683            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
16684            if (NeedsCondInvert) // Invert the condition if needed.
16685              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16686                                 DAG.getConstant(1, Cond.getValueType()));
16687
16688            // Zero extend the condition if needed.
16689            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
16690                               Cond);
16691            // Scale the condition by the difference.
16692            if (Diff != 1)
16693              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
16694                                 DAG.getConstant(Diff, Cond.getValueType()));
16695
16696            // Add the base if non-zero.
16697            if (FalseC->getAPIntValue() != 0)
16698              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16699                                 SDValue(FalseC, 0));
16700            return Cond;
16701          }
16702        }
16703      }
16704  }
16705
16706  // Canonicalize max and min:
16707  // (x > y) ? x : y -> (x >= y) ? x : y
16708  // (x < y) ? x : y -> (x <= y) ? x : y
16709  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
16710  // the need for an extra compare
16711  // against zero. e.g.
16712  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
16713  // subl   %esi, %edi
16714  // testl  %edi, %edi
16715  // movl   $0, %eax
16716  // cmovgl %edi, %eax
16717  // =>
16718  // xorl   %eax, %eax
16719  // subl   %esi, $edi
16720  // cmovsl %eax, %edi
16721  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
16722      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16723      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16724    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16725    switch (CC) {
16726    default: break;
16727    case ISD::SETLT:
16728    case ISD::SETGT: {
16729      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
16730      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
16731                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
16732      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
16733    }
16734    }
16735  }
16736
16737  // Early exit check
16738  if (!TLI.isTypeLegal(VT))
16739    return SDValue();
16740
16741  // Match VSELECTs into subs with unsigned saturation.
16742  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
16743      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
16744      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
16745       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
16746    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16747
16748    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
16749    // left side invert the predicate to simplify logic below.
16750    SDValue Other;
16751    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
16752      Other = RHS;
16753      CC = ISD::getSetCCInverse(CC, true);
16754    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
16755      Other = LHS;
16756    }
16757
16758    if (Other.getNode() && Other->getNumOperands() == 2 &&
16759        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
16760      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
16761      SDValue CondRHS = Cond->getOperand(1);
16762
16763      // Look for a general sub with unsigned saturation first.
16764      // x >= y ? x-y : 0 --> subus x, y
16765      // x >  y ? x-y : 0 --> subus x, y
16766      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
16767          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
16768        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
16769
16770      // If the RHS is a constant we have to reverse the const canonicalization.
16771      // x > C-1 ? x+-C : 0 --> subus x, C
16772      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
16773          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
16774        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
16775        if (CondRHS.getConstantOperandVal(0) == -A-1)
16776          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
16777                             DAG.getConstant(-A, VT));
16778      }
16779
16780      // Another special case: If C was a sign bit, the sub has been
16781      // canonicalized into a xor.
16782      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
16783      //        it's safe to decanonicalize the xor?
16784      // x s< 0 ? x^C : 0 --> subus x, C
16785      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
16786          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
16787          isSplatVector(OpRHS.getNode())) {
16788        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
16789        if (A.isSignBit())
16790          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
16791      }
16792    }
16793  }
16794
16795  // Try to match a min/max vector operation.
16796  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC) {
16797    std::pair<unsigned, bool> ret = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget);
16798    unsigned Opc = ret.first;
16799    bool NeedSplit = ret.second;
16800
16801    if (Opc && NeedSplit) {
16802      unsigned NumElems = VT.getVectorNumElements();
16803      // Extract the LHS vectors
16804      SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, DL);
16805      SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, DL);
16806
16807      // Extract the RHS vectors
16808      SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, DL);
16809      SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, DL);
16810
16811      // Create min/max for each subvector
16812      LHS = DAG.getNode(Opc, DL, LHS1.getValueType(), LHS1, RHS1);
16813      RHS = DAG.getNode(Opc, DL, LHS2.getValueType(), LHS2, RHS2);
16814
16815      // Merge the result
16816      return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LHS, RHS);
16817    } else if (Opc)
16818      return DAG.getNode(Opc, DL, VT, LHS, RHS);
16819  }
16820
16821  // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
16822  if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
16823      // Check if SETCC has already been promoted
16824      TLI.getSetCCResultType(*DAG.getContext(), VT) == Cond.getValueType()) {
16825
16826    assert(Cond.getValueType().isVector() &&
16827           "vector select expects a vector selector!");
16828
16829    EVT IntVT = Cond.getValueType();
16830    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
16831    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
16832
16833    if (!TValIsAllOnes && !FValIsAllZeros) {
16834      // Try invert the condition if true value is not all 1s and false value
16835      // is not all 0s.
16836      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
16837      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
16838
16839      if (TValIsAllZeros || FValIsAllOnes) {
16840        SDValue CC = Cond.getOperand(2);
16841        ISD::CondCode NewCC =
16842          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
16843                               Cond.getOperand(0).getValueType().isInteger());
16844        Cond = DAG.getSetCC(DL, IntVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
16845        std::swap(LHS, RHS);
16846        TValIsAllOnes = FValIsAllOnes;
16847        FValIsAllZeros = TValIsAllZeros;
16848      }
16849    }
16850
16851    if (TValIsAllOnes || FValIsAllZeros) {
16852      SDValue Ret;
16853
16854      if (TValIsAllOnes && FValIsAllZeros)
16855        Ret = Cond;
16856      else if (TValIsAllOnes)
16857        Ret = DAG.getNode(ISD::OR, DL, IntVT, Cond,
16858                          DAG.getNode(ISD::BITCAST, DL, IntVT, RHS));
16859      else if (FValIsAllZeros)
16860        Ret = DAG.getNode(ISD::AND, DL, IntVT, Cond,
16861                          DAG.getNode(ISD::BITCAST, DL, IntVT, LHS));
16862
16863      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
16864    }
16865  }
16866
16867  // If we know that this node is legal then we know that it is going to be
16868  // matched by one of the SSE/AVX BLEND instructions. These instructions only
16869  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
16870  // to simplify previous instructions.
16871  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
16872      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
16873    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
16874
16875    // Don't optimize vector selects that map to mask-registers.
16876    if (BitWidth == 1)
16877      return SDValue();
16878
16879    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
16880    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
16881
16882    APInt KnownZero, KnownOne;
16883    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
16884                                          DCI.isBeforeLegalizeOps());
16885    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
16886        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
16887      DCI.CommitTargetLoweringOpt(TLO);
16888  }
16889
16890  return SDValue();
16891}
16892
16893// Check whether a boolean test is testing a boolean value generated by
16894// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
16895// code.
16896//
16897// Simplify the following patterns:
16898// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
16899// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
16900// to (Op EFLAGS Cond)
16901//
16902// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
16903// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
16904// to (Op EFLAGS !Cond)
16905//
16906// where Op could be BRCOND or CMOV.
16907//
16908static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
16909  // Quit if not CMP and SUB with its value result used.
16910  if (Cmp.getOpcode() != X86ISD::CMP &&
16911      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
16912      return SDValue();
16913
16914  // Quit if not used as a boolean value.
16915  if (CC != X86::COND_E && CC != X86::COND_NE)
16916    return SDValue();
16917
16918  // Check CMP operands. One of them should be 0 or 1 and the other should be
16919  // an SetCC or extended from it.
16920  SDValue Op1 = Cmp.getOperand(0);
16921  SDValue Op2 = Cmp.getOperand(1);
16922
16923  SDValue SetCC;
16924  const ConstantSDNode* C = 0;
16925  bool needOppositeCond = (CC == X86::COND_E);
16926  bool checkAgainstTrue = false; // Is it a comparison against 1?
16927
16928  if ((C = dyn_cast<ConstantSDNode>(Op1)))
16929    SetCC = Op2;
16930  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
16931    SetCC = Op1;
16932  else // Quit if all operands are not constants.
16933    return SDValue();
16934
16935  if (C->getZExtValue() == 1) {
16936    needOppositeCond = !needOppositeCond;
16937    checkAgainstTrue = true;
16938  } else if (C->getZExtValue() != 0)
16939    // Quit if the constant is neither 0 or 1.
16940    return SDValue();
16941
16942  bool truncatedToBoolWithAnd = false;
16943  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
16944  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
16945         SetCC.getOpcode() == ISD::TRUNCATE ||
16946         SetCC.getOpcode() == ISD::AND) {
16947    if (SetCC.getOpcode() == ISD::AND) {
16948      int OpIdx = -1;
16949      ConstantSDNode *CS;
16950      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
16951          CS->getZExtValue() == 1)
16952        OpIdx = 1;
16953      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
16954          CS->getZExtValue() == 1)
16955        OpIdx = 0;
16956      if (OpIdx == -1)
16957        break;
16958      SetCC = SetCC.getOperand(OpIdx);
16959      truncatedToBoolWithAnd = true;
16960    } else
16961      SetCC = SetCC.getOperand(0);
16962  }
16963
16964  switch (SetCC.getOpcode()) {
16965  case X86ISD::SETCC_CARRY:
16966    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
16967    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
16968    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
16969    // truncated to i1 using 'and'.
16970    if (checkAgainstTrue && !truncatedToBoolWithAnd)
16971      break;
16972    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
16973           "Invalid use of SETCC_CARRY!");
16974    // FALL THROUGH
16975  case X86ISD::SETCC:
16976    // Set the condition code or opposite one if necessary.
16977    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
16978    if (needOppositeCond)
16979      CC = X86::GetOppositeBranchCondition(CC);
16980    return SetCC.getOperand(1);
16981  case X86ISD::CMOV: {
16982    // Check whether false/true value has canonical one, i.e. 0 or 1.
16983    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
16984    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
16985    // Quit if true value is not a constant.
16986    if (!TVal)
16987      return SDValue();
16988    // Quit if false value is not a constant.
16989    if (!FVal) {
16990      SDValue Op = SetCC.getOperand(0);
16991      // Skip 'zext' or 'trunc' node.
16992      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
16993          Op.getOpcode() == ISD::TRUNCATE)
16994        Op = Op.getOperand(0);
16995      // A special case for rdrand/rdseed, where 0 is set if false cond is
16996      // found.
16997      if ((Op.getOpcode() != X86ISD::RDRAND &&
16998           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
16999        return SDValue();
17000    }
17001    // Quit if false value is not the constant 0 or 1.
17002    bool FValIsFalse = true;
17003    if (FVal && FVal->getZExtValue() != 0) {
17004      if (FVal->getZExtValue() != 1)
17005        return SDValue();
17006      // If FVal is 1, opposite cond is needed.
17007      needOppositeCond = !needOppositeCond;
17008      FValIsFalse = false;
17009    }
17010    // Quit if TVal is not the constant opposite of FVal.
17011    if (FValIsFalse && TVal->getZExtValue() != 1)
17012      return SDValue();
17013    if (!FValIsFalse && TVal->getZExtValue() != 0)
17014      return SDValue();
17015    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
17016    if (needOppositeCond)
17017      CC = X86::GetOppositeBranchCondition(CC);
17018    return SetCC.getOperand(3);
17019  }
17020  }
17021
17022  return SDValue();
17023}
17024
17025/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
17026static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
17027                                  TargetLowering::DAGCombinerInfo &DCI,
17028                                  const X86Subtarget *Subtarget) {
17029  SDLoc DL(N);
17030
17031  // If the flag operand isn't dead, don't touch this CMOV.
17032  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
17033    return SDValue();
17034
17035  SDValue FalseOp = N->getOperand(0);
17036  SDValue TrueOp = N->getOperand(1);
17037  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
17038  SDValue Cond = N->getOperand(3);
17039
17040  if (CC == X86::COND_E || CC == X86::COND_NE) {
17041    switch (Cond.getOpcode()) {
17042    default: break;
17043    case X86ISD::BSR:
17044    case X86ISD::BSF:
17045      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
17046      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
17047        return (CC == X86::COND_E) ? FalseOp : TrueOp;
17048    }
17049  }
17050
17051  SDValue Flags;
17052
17053  Flags = checkBoolTestSetCCCombine(Cond, CC);
17054  if (Flags.getNode() &&
17055      // Extra check as FCMOV only supports a subset of X86 cond.
17056      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
17057    SDValue Ops[] = { FalseOp, TrueOp,
17058                      DAG.getConstant(CC, MVT::i8), Flags };
17059    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
17060                       Ops, array_lengthof(Ops));
17061  }
17062
17063  // If this is a select between two integer constants, try to do some
17064  // optimizations.  Note that the operands are ordered the opposite of SELECT
17065  // operands.
17066  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
17067    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
17068      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
17069      // larger than FalseC (the false value).
17070      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
17071        CC = X86::GetOppositeBranchCondition(CC);
17072        std::swap(TrueC, FalseC);
17073        std::swap(TrueOp, FalseOp);
17074      }
17075
17076      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
17077      // This is efficient for any integer data type (including i8/i16) and
17078      // shift amount.
17079      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
17080        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17081                           DAG.getConstant(CC, MVT::i8), Cond);
17082
17083        // Zero extend the condition if needed.
17084        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
17085
17086        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
17087        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
17088                           DAG.getConstant(ShAmt, MVT::i8));
17089        if (N->getNumValues() == 2)  // Dead flag value?
17090          return DCI.CombineTo(N, Cond, SDValue());
17091        return Cond;
17092      }
17093
17094      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
17095      // for any integer data type, including i8/i16.
17096      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
17097        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17098                           DAG.getConstant(CC, MVT::i8), Cond);
17099
17100        // Zero extend the condition if needed.
17101        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
17102                           FalseC->getValueType(0), Cond);
17103        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
17104                           SDValue(FalseC, 0));
17105
17106        if (N->getNumValues() == 2)  // Dead flag value?
17107          return DCI.CombineTo(N, Cond, SDValue());
17108        return Cond;
17109      }
17110
17111      // Optimize cases that will turn into an LEA instruction.  This requires
17112      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
17113      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
17114        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
17115        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
17116
17117        bool isFastMultiplier = false;
17118        if (Diff < 10) {
17119          switch ((unsigned char)Diff) {
17120          default: break;
17121          case 1:  // result = add base, cond
17122          case 2:  // result = lea base(    , cond*2)
17123          case 3:  // result = lea base(cond, cond*2)
17124          case 4:  // result = lea base(    , cond*4)
17125          case 5:  // result = lea base(cond, cond*4)
17126          case 8:  // result = lea base(    , cond*8)
17127          case 9:  // result = lea base(cond, cond*8)
17128            isFastMultiplier = true;
17129            break;
17130          }
17131        }
17132
17133        if (isFastMultiplier) {
17134          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
17135          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
17136                             DAG.getConstant(CC, MVT::i8), Cond);
17137          // Zero extend the condition if needed.
17138          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
17139                             Cond);
17140          // Scale the condition by the difference.
17141          if (Diff != 1)
17142            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
17143                               DAG.getConstant(Diff, Cond.getValueType()));
17144
17145          // Add the base if non-zero.
17146          if (FalseC->getAPIntValue() != 0)
17147            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
17148                               SDValue(FalseC, 0));
17149          if (N->getNumValues() == 2)  // Dead flag value?
17150            return DCI.CombineTo(N, Cond, SDValue());
17151          return Cond;
17152        }
17153      }
17154    }
17155  }
17156
17157  // Handle these cases:
17158  //   (select (x != c), e, c) -> select (x != c), e, x),
17159  //   (select (x == c), c, e) -> select (x == c), x, e)
17160  // where the c is an integer constant, and the "select" is the combination
17161  // of CMOV and CMP.
17162  //
17163  // The rationale for this change is that the conditional-move from a constant
17164  // needs two instructions, however, conditional-move from a register needs
17165  // only one instruction.
17166  //
17167  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
17168  //  some instruction-combining opportunities. This opt needs to be
17169  //  postponed as late as possible.
17170  //
17171  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
17172    // the DCI.xxxx conditions are provided to postpone the optimization as
17173    // late as possible.
17174
17175    ConstantSDNode *CmpAgainst = 0;
17176    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
17177        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
17178        !isa<ConstantSDNode>(Cond.getOperand(0))) {
17179
17180      if (CC == X86::COND_NE &&
17181          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
17182        CC = X86::GetOppositeBranchCondition(CC);
17183        std::swap(TrueOp, FalseOp);
17184      }
17185
17186      if (CC == X86::COND_E &&
17187          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
17188        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
17189                          DAG.getConstant(CC, MVT::i8), Cond };
17190        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
17191                           array_lengthof(Ops));
17192      }
17193    }
17194  }
17195
17196  return SDValue();
17197}
17198
17199/// PerformMulCombine - Optimize a single multiply with constant into two
17200/// in order to implement it with two cheaper instructions, e.g.
17201/// LEA + SHL, LEA + LEA.
17202static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
17203                                 TargetLowering::DAGCombinerInfo &DCI) {
17204  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
17205    return SDValue();
17206
17207  EVT VT = N->getValueType(0);
17208  if (VT != MVT::i64)
17209    return SDValue();
17210
17211  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
17212  if (!C)
17213    return SDValue();
17214  uint64_t MulAmt = C->getZExtValue();
17215  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
17216    return SDValue();
17217
17218  uint64_t MulAmt1 = 0;
17219  uint64_t MulAmt2 = 0;
17220  if ((MulAmt % 9) == 0) {
17221    MulAmt1 = 9;
17222    MulAmt2 = MulAmt / 9;
17223  } else if ((MulAmt % 5) == 0) {
17224    MulAmt1 = 5;
17225    MulAmt2 = MulAmt / 5;
17226  } else if ((MulAmt % 3) == 0) {
17227    MulAmt1 = 3;
17228    MulAmt2 = MulAmt / 3;
17229  }
17230  if (MulAmt2 &&
17231      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
17232    SDLoc DL(N);
17233
17234    if (isPowerOf2_64(MulAmt2) &&
17235        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
17236      // If second multiplifer is pow2, issue it first. We want the multiply by
17237      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
17238      // is an add.
17239      std::swap(MulAmt1, MulAmt2);
17240
17241    SDValue NewMul;
17242    if (isPowerOf2_64(MulAmt1))
17243      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17244                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
17245    else
17246      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
17247                           DAG.getConstant(MulAmt1, VT));
17248
17249    if (isPowerOf2_64(MulAmt2))
17250      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
17251                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
17252    else
17253      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
17254                           DAG.getConstant(MulAmt2, VT));
17255
17256    // Do not add new nodes to DAG combiner worklist.
17257    DCI.CombineTo(N, NewMul, false);
17258  }
17259  return SDValue();
17260}
17261
17262static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
17263  SDValue N0 = N->getOperand(0);
17264  SDValue N1 = N->getOperand(1);
17265  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
17266  EVT VT = N0.getValueType();
17267
17268  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
17269  // since the result of setcc_c is all zero's or all ones.
17270  if (VT.isInteger() && !VT.isVector() &&
17271      N1C && N0.getOpcode() == ISD::AND &&
17272      N0.getOperand(1).getOpcode() == ISD::Constant) {
17273    SDValue N00 = N0.getOperand(0);
17274    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
17275        ((N00.getOpcode() == ISD::ANY_EXTEND ||
17276          N00.getOpcode() == ISD::ZERO_EXTEND) &&
17277         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
17278      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
17279      APInt ShAmt = N1C->getAPIntValue();
17280      Mask = Mask.shl(ShAmt);
17281      if (Mask != 0)
17282        return DAG.getNode(ISD::AND, SDLoc(N), VT,
17283                           N00, DAG.getConstant(Mask, VT));
17284    }
17285  }
17286
17287  // Hardware support for vector shifts is sparse which makes us scalarize the
17288  // vector operations in many cases. Also, on sandybridge ADD is faster than
17289  // shl.
17290  // (shl V, 1) -> add V,V
17291  if (isSplatVector(N1.getNode())) {
17292    assert(N0.getValueType().isVector() && "Invalid vector shift type");
17293    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
17294    // We shift all of the values by one. In many cases we do not have
17295    // hardware support for this operation. This is better expressed as an ADD
17296    // of two values.
17297    if (N1C && (1 == N1C->getZExtValue())) {
17298      return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
17299    }
17300  }
17301
17302  return SDValue();
17303}
17304
17305/// \brief Returns a vector of 0s if the node in input is a vector logical
17306/// shift by a constant amount which is known to be bigger than or equal
17307/// to the vector element size in bits.
17308static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
17309                                      const X86Subtarget *Subtarget) {
17310  EVT VT = N->getValueType(0);
17311
17312  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
17313      (!Subtarget->hasInt256() ||
17314       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
17315    return SDValue();
17316
17317  SDValue Amt = N->getOperand(1);
17318  SDLoc DL(N);
17319  if (isSplatVector(Amt.getNode())) {
17320    SDValue SclrAmt = Amt->getOperand(0);
17321    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
17322      APInt ShiftAmt = C->getAPIntValue();
17323      unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
17324
17325      // SSE2/AVX2 logical shifts always return a vector of 0s
17326      // if the shift amount is bigger than or equal to
17327      // the element size. The constant shift amount will be
17328      // encoded as a 8-bit immediate.
17329      if (ShiftAmt.trunc(8).uge(MaxAmount))
17330        return getZeroVector(VT, Subtarget, DAG, DL);
17331    }
17332  }
17333
17334  return SDValue();
17335}
17336
17337/// PerformShiftCombine - Combine shifts.
17338static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
17339                                   TargetLowering::DAGCombinerInfo &DCI,
17340                                   const X86Subtarget *Subtarget) {
17341  if (N->getOpcode() == ISD::SHL) {
17342    SDValue V = PerformSHLCombine(N, DAG);
17343    if (V.getNode()) return V;
17344  }
17345
17346  if (N->getOpcode() != ISD::SRA) {
17347    // Try to fold this logical shift into a zero vector.
17348    SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
17349    if (V.getNode()) return V;
17350  }
17351
17352  return SDValue();
17353}
17354
17355// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
17356// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
17357// and friends.  Likewise for OR -> CMPNEQSS.
17358static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
17359                            TargetLowering::DAGCombinerInfo &DCI,
17360                            const X86Subtarget *Subtarget) {
17361  unsigned opcode;
17362
17363  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
17364  // we're requiring SSE2 for both.
17365  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
17366    SDValue N0 = N->getOperand(0);
17367    SDValue N1 = N->getOperand(1);
17368    SDValue CMP0 = N0->getOperand(1);
17369    SDValue CMP1 = N1->getOperand(1);
17370    SDLoc DL(N);
17371
17372    // The SETCCs should both refer to the same CMP.
17373    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
17374      return SDValue();
17375
17376    SDValue CMP00 = CMP0->getOperand(0);
17377    SDValue CMP01 = CMP0->getOperand(1);
17378    EVT     VT    = CMP00.getValueType();
17379
17380    if (VT == MVT::f32 || VT == MVT::f64) {
17381      bool ExpectingFlags = false;
17382      // Check for any users that want flags:
17383      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
17384           !ExpectingFlags && UI != UE; ++UI)
17385        switch (UI->getOpcode()) {
17386        default:
17387        case ISD::BR_CC:
17388        case ISD::BRCOND:
17389        case ISD::SELECT:
17390          ExpectingFlags = true;
17391          break;
17392        case ISD::CopyToReg:
17393        case ISD::SIGN_EXTEND:
17394        case ISD::ZERO_EXTEND:
17395        case ISD::ANY_EXTEND:
17396          break;
17397        }
17398
17399      if (!ExpectingFlags) {
17400        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
17401        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
17402
17403        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
17404          X86::CondCode tmp = cc0;
17405          cc0 = cc1;
17406          cc1 = tmp;
17407        }
17408
17409        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
17410            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
17411          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
17412          X86ISD::NodeType NTOperator = is64BitFP ?
17413            X86ISD::FSETCCsd : X86ISD::FSETCCss;
17414          // FIXME: need symbolic constants for these magic numbers.
17415          // See X86ATTInstPrinter.cpp:printSSECC().
17416          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
17417          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
17418                                              DAG.getConstant(x86cc, MVT::i8));
17419          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
17420                                              OnesOrZeroesF);
17421          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
17422                                      DAG.getConstant(1, MVT::i32));
17423          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
17424          return OneBitOfTruth;
17425        }
17426      }
17427    }
17428  }
17429  return SDValue();
17430}
17431
17432/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
17433/// so it can be folded inside ANDNP.
17434static bool CanFoldXORWithAllOnes(const SDNode *N) {
17435  EVT VT = N->getValueType(0);
17436
17437  // Match direct AllOnes for 128 and 256-bit vectors
17438  if (ISD::isBuildVectorAllOnes(N))
17439    return true;
17440
17441  // Look through a bit convert.
17442  if (N->getOpcode() == ISD::BITCAST)
17443    N = N->getOperand(0).getNode();
17444
17445  // Sometimes the operand may come from a insert_subvector building a 256-bit
17446  // allones vector
17447  if (VT.is256BitVector() &&
17448      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
17449    SDValue V1 = N->getOperand(0);
17450    SDValue V2 = N->getOperand(1);
17451
17452    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
17453        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
17454        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
17455        ISD::isBuildVectorAllOnes(V2.getNode()))
17456      return true;
17457  }
17458
17459  return false;
17460}
17461
17462// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
17463// register. In most cases we actually compare or select YMM-sized registers
17464// and mixing the two types creates horrible code. This method optimizes
17465// some of the transition sequences.
17466static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
17467                                 TargetLowering::DAGCombinerInfo &DCI,
17468                                 const X86Subtarget *Subtarget) {
17469  EVT VT = N->getValueType(0);
17470  if (!VT.is256BitVector())
17471    return SDValue();
17472
17473  assert((N->getOpcode() == ISD::ANY_EXTEND ||
17474          N->getOpcode() == ISD::ZERO_EXTEND ||
17475          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
17476
17477  SDValue Narrow = N->getOperand(0);
17478  EVT NarrowVT = Narrow->getValueType(0);
17479  if (!NarrowVT.is128BitVector())
17480    return SDValue();
17481
17482  if (Narrow->getOpcode() != ISD::XOR &&
17483      Narrow->getOpcode() != ISD::AND &&
17484      Narrow->getOpcode() != ISD::OR)
17485    return SDValue();
17486
17487  SDValue N0  = Narrow->getOperand(0);
17488  SDValue N1  = Narrow->getOperand(1);
17489  SDLoc DL(Narrow);
17490
17491  // The Left side has to be a trunc.
17492  if (N0.getOpcode() != ISD::TRUNCATE)
17493    return SDValue();
17494
17495  // The type of the truncated inputs.
17496  EVT WideVT = N0->getOperand(0)->getValueType(0);
17497  if (WideVT != VT)
17498    return SDValue();
17499
17500  // The right side has to be a 'trunc' or a constant vector.
17501  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
17502  bool RHSConst = (isSplatVector(N1.getNode()) &&
17503                   isa<ConstantSDNode>(N1->getOperand(0)));
17504  if (!RHSTrunc && !RHSConst)
17505    return SDValue();
17506
17507  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17508
17509  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
17510    return SDValue();
17511
17512  // Set N0 and N1 to hold the inputs to the new wide operation.
17513  N0 = N0->getOperand(0);
17514  if (RHSConst) {
17515    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
17516                     N1->getOperand(0));
17517    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
17518    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
17519  } else if (RHSTrunc) {
17520    N1 = N1->getOperand(0);
17521  }
17522
17523  // Generate the wide operation.
17524  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
17525  unsigned Opcode = N->getOpcode();
17526  switch (Opcode) {
17527  case ISD::ANY_EXTEND:
17528    return Op;
17529  case ISD::ZERO_EXTEND: {
17530    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
17531    APInt Mask = APInt::getAllOnesValue(InBits);
17532    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
17533    return DAG.getNode(ISD::AND, DL, VT,
17534                       Op, DAG.getConstant(Mask, VT));
17535  }
17536  case ISD::SIGN_EXTEND:
17537    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
17538                       Op, DAG.getValueType(NarrowVT));
17539  default:
17540    llvm_unreachable("Unexpected opcode");
17541  }
17542}
17543
17544static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
17545                                 TargetLowering::DAGCombinerInfo &DCI,
17546                                 const X86Subtarget *Subtarget) {
17547  EVT VT = N->getValueType(0);
17548  if (DCI.isBeforeLegalizeOps())
17549    return SDValue();
17550
17551  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
17552  if (R.getNode())
17553    return R;
17554
17555  // Create BLSI, BLSR, and BZHI instructions
17556  // BLSI is X & (-X)
17557  // BLSR is X & (X-1)
17558  // BZHI is X & ((1 << Y) - 1)
17559  // BEXTR is ((X >> imm) & (2**size-1))
17560  if (VT == MVT::i32 || VT == MVT::i64) {
17561    SDValue N0 = N->getOperand(0);
17562    SDValue N1 = N->getOperand(1);
17563    SDLoc DL(N);
17564
17565    if (Subtarget->hasBMI()) {
17566      // Check LHS for neg
17567      if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
17568          isZero(N0.getOperand(0)))
17569        return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
17570
17571      // Check RHS for neg
17572      if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
17573          isZero(N1.getOperand(0)))
17574        return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
17575
17576      // Check LHS for X-1
17577      if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
17578          isAllOnes(N0.getOperand(1)))
17579        return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
17580
17581      // Check RHS for X-1
17582      if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
17583          isAllOnes(N1.getOperand(1)))
17584        return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
17585    }
17586
17587    if (Subtarget->hasBMI2()) {
17588      // Check for (and (add (shl 1, Y), -1), X)
17589      if (N0.getOpcode() == ISD::ADD && isAllOnes(N0.getOperand(1))) {
17590        SDValue N00 = N0.getOperand(0);
17591        if (N00.getOpcode() == ISD::SHL) {
17592          SDValue N001 = N00.getOperand(1);
17593          assert(N001.getValueType() == MVT::i8 && "unexpected type");
17594          ConstantSDNode *C = dyn_cast<ConstantSDNode>(N00.getOperand(0));
17595          if (C && C->getZExtValue() == 1)
17596            return DAG.getNode(X86ISD::BZHI, DL, VT, N1, N001);
17597        }
17598      }
17599
17600      // Check for (and X, (add (shl 1, Y), -1))
17601      if (N1.getOpcode() == ISD::ADD && isAllOnes(N1.getOperand(1))) {
17602        SDValue N10 = N1.getOperand(0);
17603        if (N10.getOpcode() == ISD::SHL) {
17604          SDValue N101 = N10.getOperand(1);
17605          assert(N101.getValueType() == MVT::i8 && "unexpected type");
17606          ConstantSDNode *C = dyn_cast<ConstantSDNode>(N10.getOperand(0));
17607          if (C && C->getZExtValue() == 1)
17608            return DAG.getNode(X86ISD::BZHI, DL, VT, N0, N101);
17609        }
17610      }
17611    }
17612
17613    // Check for BEXTR.
17614    if ((Subtarget->hasBMI() || Subtarget->hasTBM()) &&
17615        (N0.getOpcode() == ISD::SRA || N0.getOpcode() == ISD::SRL)) {
17616      ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
17617      ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
17618      if (MaskNode && ShiftNode) {
17619        uint64_t Mask = MaskNode->getZExtValue();
17620        uint64_t Shift = ShiftNode->getZExtValue();
17621        if (isMask_64(Mask)) {
17622          uint64_t MaskSize = CountPopulation_64(Mask);
17623          if (Shift + MaskSize <= VT.getSizeInBits())
17624            return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
17625                               DAG.getConstant(Shift | (MaskSize << 8), VT));
17626        }
17627      }
17628    } // BEXTR
17629
17630    return SDValue();
17631  }
17632
17633  // Want to form ANDNP nodes:
17634  // 1) In the hopes of then easily combining them with OR and AND nodes
17635  //    to form PBLEND/PSIGN.
17636  // 2) To match ANDN packed intrinsics
17637  if (VT != MVT::v2i64 && VT != MVT::v4i64)
17638    return SDValue();
17639
17640  SDValue N0 = N->getOperand(0);
17641  SDValue N1 = N->getOperand(1);
17642  SDLoc DL(N);
17643
17644  // Check LHS for vnot
17645  if (N0.getOpcode() == ISD::XOR &&
17646      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
17647      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
17648    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
17649
17650  // Check RHS for vnot
17651  if (N1.getOpcode() == ISD::XOR &&
17652      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
17653      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
17654    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
17655
17656  return SDValue();
17657}
17658
17659static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
17660                                TargetLowering::DAGCombinerInfo &DCI,
17661                                const X86Subtarget *Subtarget) {
17662  EVT VT = N->getValueType(0);
17663  if (DCI.isBeforeLegalizeOps())
17664    return SDValue();
17665
17666  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
17667  if (R.getNode())
17668    return R;
17669
17670  SDValue N0 = N->getOperand(0);
17671  SDValue N1 = N->getOperand(1);
17672
17673  // look for psign/blend
17674  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
17675    if (!Subtarget->hasSSSE3() ||
17676        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
17677      return SDValue();
17678
17679    // Canonicalize pandn to RHS
17680    if (N0.getOpcode() == X86ISD::ANDNP)
17681      std::swap(N0, N1);
17682    // or (and (m, y), (pandn m, x))
17683    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
17684      SDValue Mask = N1.getOperand(0);
17685      SDValue X    = N1.getOperand(1);
17686      SDValue Y;
17687      if (N0.getOperand(0) == Mask)
17688        Y = N0.getOperand(1);
17689      if (N0.getOperand(1) == Mask)
17690        Y = N0.getOperand(0);
17691
17692      // Check to see if the mask appeared in both the AND and ANDNP and
17693      if (!Y.getNode())
17694        return SDValue();
17695
17696      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
17697      // Look through mask bitcast.
17698      if (Mask.getOpcode() == ISD::BITCAST)
17699        Mask = Mask.getOperand(0);
17700      if (X.getOpcode() == ISD::BITCAST)
17701        X = X.getOperand(0);
17702      if (Y.getOpcode() == ISD::BITCAST)
17703        Y = Y.getOperand(0);
17704
17705      EVT MaskVT = Mask.getValueType();
17706
17707      // Validate that the Mask operand is a vector sra node.
17708      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
17709      // there is no psrai.b
17710      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
17711      unsigned SraAmt = ~0;
17712      if (Mask.getOpcode() == ISD::SRA) {
17713        SDValue Amt = Mask.getOperand(1);
17714        if (isSplatVector(Amt.getNode())) {
17715          SDValue SclrAmt = Amt->getOperand(0);
17716          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt))
17717            SraAmt = C->getZExtValue();
17718        }
17719      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
17720        SDValue SraC = Mask.getOperand(1);
17721        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
17722      }
17723      if ((SraAmt + 1) != EltBits)
17724        return SDValue();
17725
17726      SDLoc DL(N);
17727
17728      // Now we know we at least have a plendvb with the mask val.  See if
17729      // we can form a psignb/w/d.
17730      // psign = x.type == y.type == mask.type && y = sub(0, x);
17731      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
17732          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
17733          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
17734        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
17735               "Unsupported VT for PSIGN");
17736        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
17737        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
17738      }
17739      // PBLENDVB only available on SSE 4.1
17740      if (!Subtarget->hasSSE41())
17741        return SDValue();
17742
17743      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
17744
17745      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
17746      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
17747      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
17748      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
17749      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
17750    }
17751  }
17752
17753  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
17754    return SDValue();
17755
17756  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
17757  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
17758    std::swap(N0, N1);
17759  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
17760    return SDValue();
17761  if (!N0.hasOneUse() || !N1.hasOneUse())
17762    return SDValue();
17763
17764  SDValue ShAmt0 = N0.getOperand(1);
17765  if (ShAmt0.getValueType() != MVT::i8)
17766    return SDValue();
17767  SDValue ShAmt1 = N1.getOperand(1);
17768  if (ShAmt1.getValueType() != MVT::i8)
17769    return SDValue();
17770  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
17771    ShAmt0 = ShAmt0.getOperand(0);
17772  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
17773    ShAmt1 = ShAmt1.getOperand(0);
17774
17775  SDLoc DL(N);
17776  unsigned Opc = X86ISD::SHLD;
17777  SDValue Op0 = N0.getOperand(0);
17778  SDValue Op1 = N1.getOperand(0);
17779  if (ShAmt0.getOpcode() == ISD::SUB) {
17780    Opc = X86ISD::SHRD;
17781    std::swap(Op0, Op1);
17782    std::swap(ShAmt0, ShAmt1);
17783  }
17784
17785  unsigned Bits = VT.getSizeInBits();
17786  if (ShAmt1.getOpcode() == ISD::SUB) {
17787    SDValue Sum = ShAmt1.getOperand(0);
17788    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
17789      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
17790      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
17791        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
17792      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
17793        return DAG.getNode(Opc, DL, VT,
17794                           Op0, Op1,
17795                           DAG.getNode(ISD::TRUNCATE, DL,
17796                                       MVT::i8, ShAmt0));
17797    }
17798  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
17799    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
17800    if (ShAmt0C &&
17801        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
17802      return DAG.getNode(Opc, DL, VT,
17803                         N0.getOperand(0), N1.getOperand(0),
17804                         DAG.getNode(ISD::TRUNCATE, DL,
17805                                       MVT::i8, ShAmt0));
17806  }
17807
17808  return SDValue();
17809}
17810
17811// Generate NEG and CMOV for integer abs.
17812static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
17813  EVT VT = N->getValueType(0);
17814
17815  // Since X86 does not have CMOV for 8-bit integer, we don't convert
17816  // 8-bit integer abs to NEG and CMOV.
17817  if (VT.isInteger() && VT.getSizeInBits() == 8)
17818    return SDValue();
17819
17820  SDValue N0 = N->getOperand(0);
17821  SDValue N1 = N->getOperand(1);
17822  SDLoc DL(N);
17823
17824  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
17825  // and change it to SUB and CMOV.
17826  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
17827      N0.getOpcode() == ISD::ADD &&
17828      N0.getOperand(1) == N1 &&
17829      N1.getOpcode() == ISD::SRA &&
17830      N1.getOperand(0) == N0.getOperand(0))
17831    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
17832      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
17833        // Generate SUB & CMOV.
17834        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
17835                                  DAG.getConstant(0, VT), N0.getOperand(0));
17836
17837        SDValue Ops[] = { N0.getOperand(0), Neg,
17838                          DAG.getConstant(X86::COND_GE, MVT::i8),
17839                          SDValue(Neg.getNode(), 1) };
17840        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
17841                           Ops, array_lengthof(Ops));
17842      }
17843  return SDValue();
17844}
17845
17846// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
17847static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
17848                                 TargetLowering::DAGCombinerInfo &DCI,
17849                                 const X86Subtarget *Subtarget) {
17850  EVT VT = N->getValueType(0);
17851  if (DCI.isBeforeLegalizeOps())
17852    return SDValue();
17853
17854  if (Subtarget->hasCMov()) {
17855    SDValue RV = performIntegerAbsCombine(N, DAG);
17856    if (RV.getNode())
17857      return RV;
17858  }
17859
17860  // Try forming BMI if it is available.
17861  if (!Subtarget->hasBMI())
17862    return SDValue();
17863
17864  if (VT != MVT::i32 && VT != MVT::i64)
17865    return SDValue();
17866
17867  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
17868
17869  // Create BLSMSK instructions by finding X ^ (X-1)
17870  SDValue N0 = N->getOperand(0);
17871  SDValue N1 = N->getOperand(1);
17872  SDLoc DL(N);
17873
17874  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
17875      isAllOnes(N0.getOperand(1)))
17876    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
17877
17878  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
17879      isAllOnes(N1.getOperand(1)))
17880    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
17881
17882  return SDValue();
17883}
17884
17885/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
17886static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
17887                                  TargetLowering::DAGCombinerInfo &DCI,
17888                                  const X86Subtarget *Subtarget) {
17889  LoadSDNode *Ld = cast<LoadSDNode>(N);
17890  EVT RegVT = Ld->getValueType(0);
17891  EVT MemVT = Ld->getMemoryVT();
17892  SDLoc dl(Ld);
17893  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17894  unsigned RegSz = RegVT.getSizeInBits();
17895
17896  // On Sandybridge unaligned 256bit loads are inefficient.
17897  ISD::LoadExtType Ext = Ld->getExtensionType();
17898  unsigned Alignment = Ld->getAlignment();
17899  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
17900  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
17901      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
17902    unsigned NumElems = RegVT.getVectorNumElements();
17903    if (NumElems < 2)
17904      return SDValue();
17905
17906    SDValue Ptr = Ld->getBasePtr();
17907    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
17908
17909    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
17910                                  NumElems/2);
17911    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
17912                                Ld->getPointerInfo(), Ld->isVolatile(),
17913                                Ld->isNonTemporal(), Ld->isInvariant(),
17914                                Alignment);
17915    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
17916    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
17917                                Ld->getPointerInfo(), Ld->isVolatile(),
17918                                Ld->isNonTemporal(), Ld->isInvariant(),
17919                                std::min(16U, Alignment));
17920    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
17921                             Load1.getValue(1),
17922                             Load2.getValue(1));
17923
17924    SDValue NewVec = DAG.getUNDEF(RegVT);
17925    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
17926    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
17927    return DCI.CombineTo(N, NewVec, TF, true);
17928  }
17929
17930  // If this is a vector EXT Load then attempt to optimize it using a
17931  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
17932  // expansion is still better than scalar code.
17933  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
17934  // emit a shuffle and a arithmetic shift.
17935  // TODO: It is possible to support ZExt by zeroing the undef values
17936  // during the shuffle phase or after the shuffle.
17937  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
17938      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
17939    assert(MemVT != RegVT && "Cannot extend to the same type");
17940    assert(MemVT.isVector() && "Must load a vector from memory");
17941
17942    unsigned NumElems = RegVT.getVectorNumElements();
17943    unsigned MemSz = MemVT.getSizeInBits();
17944    assert(RegSz > MemSz && "Register size must be greater than the mem size");
17945
17946    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
17947      return SDValue();
17948
17949    // All sizes must be a power of two.
17950    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
17951      return SDValue();
17952
17953    // Attempt to load the original value using scalar loads.
17954    // Find the largest scalar type that divides the total loaded size.
17955    MVT SclrLoadTy = MVT::i8;
17956    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
17957         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
17958      MVT Tp = (MVT::SimpleValueType)tp;
17959      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
17960        SclrLoadTy = Tp;
17961      }
17962    }
17963
17964    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
17965    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
17966        (64 <= MemSz))
17967      SclrLoadTy = MVT::f64;
17968
17969    // Calculate the number of scalar loads that we need to perform
17970    // in order to load our vector from memory.
17971    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
17972    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
17973      return SDValue();
17974
17975    unsigned loadRegZize = RegSz;
17976    if (Ext == ISD::SEXTLOAD && RegSz == 256)
17977      loadRegZize /= 2;
17978
17979    // Represent our vector as a sequence of elements which are the
17980    // largest scalar that we can load.
17981    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
17982      loadRegZize/SclrLoadTy.getSizeInBits());
17983
17984    // Represent the data using the same element type that is stored in
17985    // memory. In practice, we ''widen'' MemVT.
17986    EVT WideVecVT =
17987          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
17988                       loadRegZize/MemVT.getScalarType().getSizeInBits());
17989
17990    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
17991      "Invalid vector type");
17992
17993    // We can't shuffle using an illegal type.
17994    if (!TLI.isTypeLegal(WideVecVT))
17995      return SDValue();
17996
17997    SmallVector<SDValue, 8> Chains;
17998    SDValue Ptr = Ld->getBasePtr();
17999    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
18000                                        TLI.getPointerTy());
18001    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
18002
18003    for (unsigned i = 0; i < NumLoads; ++i) {
18004      // Perform a single load.
18005      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
18006                                       Ptr, Ld->getPointerInfo(),
18007                                       Ld->isVolatile(), Ld->isNonTemporal(),
18008                                       Ld->isInvariant(), Ld->getAlignment());
18009      Chains.push_back(ScalarLoad.getValue(1));
18010      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
18011      // another round of DAGCombining.
18012      if (i == 0)
18013        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
18014      else
18015        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
18016                          ScalarLoad, DAG.getIntPtrConstant(i));
18017
18018      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
18019    }
18020
18021    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
18022                               Chains.size());
18023
18024    // Bitcast the loaded value to a vector of the original element type, in
18025    // the size of the target vector type.
18026    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
18027    unsigned SizeRatio = RegSz/MemSz;
18028
18029    if (Ext == ISD::SEXTLOAD) {
18030      // If we have SSE4.1 we can directly emit a VSEXT node.
18031      if (Subtarget->hasSSE41()) {
18032        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
18033        return DCI.CombineTo(N, Sext, TF, true);
18034      }
18035
18036      // Otherwise we'll shuffle the small elements in the high bits of the
18037      // larger type and perform an arithmetic shift. If the shift is not legal
18038      // it's better to scalarize.
18039      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
18040        return SDValue();
18041
18042      // Redistribute the loaded elements into the different locations.
18043      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18044      for (unsigned i = 0; i != NumElems; ++i)
18045        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
18046
18047      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
18048                                           DAG.getUNDEF(WideVecVT),
18049                                           &ShuffleVec[0]);
18050
18051      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
18052
18053      // Build the arithmetic shift.
18054      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
18055                     MemVT.getVectorElementType().getSizeInBits();
18056      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
18057                          DAG.getConstant(Amt, RegVT));
18058
18059      return DCI.CombineTo(N, Shuff, TF, true);
18060    }
18061
18062    // Redistribute the loaded elements into the different locations.
18063    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18064    for (unsigned i = 0; i != NumElems; ++i)
18065      ShuffleVec[i*SizeRatio] = i;
18066
18067    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
18068                                         DAG.getUNDEF(WideVecVT),
18069                                         &ShuffleVec[0]);
18070
18071    // Bitcast to the requested type.
18072    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
18073    // Replace the original load with the new sequence
18074    // and return the new chain.
18075    return DCI.CombineTo(N, Shuff, TF, true);
18076  }
18077
18078  return SDValue();
18079}
18080
18081/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
18082static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
18083                                   const X86Subtarget *Subtarget) {
18084  StoreSDNode *St = cast<StoreSDNode>(N);
18085  EVT VT = St->getValue().getValueType();
18086  EVT StVT = St->getMemoryVT();
18087  SDLoc dl(St);
18088  SDValue StoredVal = St->getOperand(1);
18089  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18090
18091  // If we are saving a concatenation of two XMM registers, perform two stores.
18092  // On Sandy Bridge, 256-bit memory operations are executed by two
18093  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
18094  // memory  operation.
18095  unsigned Alignment = St->getAlignment();
18096  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
18097  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
18098      StVT == VT && !IsAligned) {
18099    unsigned NumElems = VT.getVectorNumElements();
18100    if (NumElems < 2)
18101      return SDValue();
18102
18103    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
18104    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
18105
18106    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
18107    SDValue Ptr0 = St->getBasePtr();
18108    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
18109
18110    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
18111                                St->getPointerInfo(), St->isVolatile(),
18112                                St->isNonTemporal(), Alignment);
18113    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
18114                                St->getPointerInfo(), St->isVolatile(),
18115                                St->isNonTemporal(),
18116                                std::min(16U, Alignment));
18117    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
18118  }
18119
18120  // Optimize trunc store (of multiple scalars) to shuffle and store.
18121  // First, pack all of the elements in one place. Next, store to memory
18122  // in fewer chunks.
18123  if (St->isTruncatingStore() && VT.isVector()) {
18124    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18125    unsigned NumElems = VT.getVectorNumElements();
18126    assert(StVT != VT && "Cannot truncate to the same type");
18127    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
18128    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
18129
18130    // From, To sizes and ElemCount must be pow of two
18131    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
18132    // We are going to use the original vector elt for storing.
18133    // Accumulated smaller vector elements must be a multiple of the store size.
18134    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
18135
18136    unsigned SizeRatio  = FromSz / ToSz;
18137
18138    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
18139
18140    // Create a type on which we perform the shuffle
18141    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
18142            StVT.getScalarType(), NumElems*SizeRatio);
18143
18144    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
18145
18146    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
18147    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
18148    for (unsigned i = 0; i != NumElems; ++i)
18149      ShuffleVec[i] = i * SizeRatio;
18150
18151    // Can't shuffle using an illegal type.
18152    if (!TLI.isTypeLegal(WideVecVT))
18153      return SDValue();
18154
18155    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
18156                                         DAG.getUNDEF(WideVecVT),
18157                                         &ShuffleVec[0]);
18158    // At this point all of the data is stored at the bottom of the
18159    // register. We now need to save it to mem.
18160
18161    // Find the largest store unit
18162    MVT StoreType = MVT::i8;
18163    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
18164         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
18165      MVT Tp = (MVT::SimpleValueType)tp;
18166      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
18167        StoreType = Tp;
18168    }
18169
18170    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
18171    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
18172        (64 <= NumElems * ToSz))
18173      StoreType = MVT::f64;
18174
18175    // Bitcast the original vector into a vector of store-size units
18176    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
18177            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
18178    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
18179    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
18180    SmallVector<SDValue, 8> Chains;
18181    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
18182                                        TLI.getPointerTy());
18183    SDValue Ptr = St->getBasePtr();
18184
18185    // Perform one or more big stores into memory.
18186    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
18187      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
18188                                   StoreType, ShuffWide,
18189                                   DAG.getIntPtrConstant(i));
18190      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
18191                                St->getPointerInfo(), St->isVolatile(),
18192                                St->isNonTemporal(), St->getAlignment());
18193      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
18194      Chains.push_back(Ch);
18195    }
18196
18197    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
18198                               Chains.size());
18199  }
18200
18201  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
18202  // the FP state in cases where an emms may be missing.
18203  // A preferable solution to the general problem is to figure out the right
18204  // places to insert EMMS.  This qualifies as a quick hack.
18205
18206  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
18207  if (VT.getSizeInBits() != 64)
18208    return SDValue();
18209
18210  const Function *F = DAG.getMachineFunction().getFunction();
18211  bool NoImplicitFloatOps = F->getAttributes().
18212    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
18213  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
18214                     && Subtarget->hasSSE2();
18215  if ((VT.isVector() ||
18216       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
18217      isa<LoadSDNode>(St->getValue()) &&
18218      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
18219      St->getChain().hasOneUse() && !St->isVolatile()) {
18220    SDNode* LdVal = St->getValue().getNode();
18221    LoadSDNode *Ld = 0;
18222    int TokenFactorIndex = -1;
18223    SmallVector<SDValue, 8> Ops;
18224    SDNode* ChainVal = St->getChain().getNode();
18225    // Must be a store of a load.  We currently handle two cases:  the load
18226    // is a direct child, and it's under an intervening TokenFactor.  It is
18227    // possible to dig deeper under nested TokenFactors.
18228    if (ChainVal == LdVal)
18229      Ld = cast<LoadSDNode>(St->getChain());
18230    else if (St->getValue().hasOneUse() &&
18231             ChainVal->getOpcode() == ISD::TokenFactor) {
18232      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
18233        if (ChainVal->getOperand(i).getNode() == LdVal) {
18234          TokenFactorIndex = i;
18235          Ld = cast<LoadSDNode>(St->getValue());
18236        } else
18237          Ops.push_back(ChainVal->getOperand(i));
18238      }
18239    }
18240
18241    if (!Ld || !ISD::isNormalLoad(Ld))
18242      return SDValue();
18243
18244    // If this is not the MMX case, i.e. we are just turning i64 load/store
18245    // into f64 load/store, avoid the transformation if there are multiple
18246    // uses of the loaded value.
18247    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
18248      return SDValue();
18249
18250    SDLoc LdDL(Ld);
18251    SDLoc StDL(N);
18252    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
18253    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
18254    // pair instead.
18255    if (Subtarget->is64Bit() || F64IsLegal) {
18256      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
18257      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
18258                                  Ld->getPointerInfo(), Ld->isVolatile(),
18259                                  Ld->isNonTemporal(), Ld->isInvariant(),
18260                                  Ld->getAlignment());
18261      SDValue NewChain = NewLd.getValue(1);
18262      if (TokenFactorIndex != -1) {
18263        Ops.push_back(NewChain);
18264        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
18265                               Ops.size());
18266      }
18267      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
18268                          St->getPointerInfo(),
18269                          St->isVolatile(), St->isNonTemporal(),
18270                          St->getAlignment());
18271    }
18272
18273    // Otherwise, lower to two pairs of 32-bit loads / stores.
18274    SDValue LoAddr = Ld->getBasePtr();
18275    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
18276                                 DAG.getConstant(4, MVT::i32));
18277
18278    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
18279                               Ld->getPointerInfo(),
18280                               Ld->isVolatile(), Ld->isNonTemporal(),
18281                               Ld->isInvariant(), Ld->getAlignment());
18282    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
18283                               Ld->getPointerInfo().getWithOffset(4),
18284                               Ld->isVolatile(), Ld->isNonTemporal(),
18285                               Ld->isInvariant(),
18286                               MinAlign(Ld->getAlignment(), 4));
18287
18288    SDValue NewChain = LoLd.getValue(1);
18289    if (TokenFactorIndex != -1) {
18290      Ops.push_back(LoLd);
18291      Ops.push_back(HiLd);
18292      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
18293                             Ops.size());
18294    }
18295
18296    LoAddr = St->getBasePtr();
18297    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
18298                         DAG.getConstant(4, MVT::i32));
18299
18300    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
18301                                St->getPointerInfo(),
18302                                St->isVolatile(), St->isNonTemporal(),
18303                                St->getAlignment());
18304    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
18305                                St->getPointerInfo().getWithOffset(4),
18306                                St->isVolatile(),
18307                                St->isNonTemporal(),
18308                                MinAlign(St->getAlignment(), 4));
18309    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
18310  }
18311  return SDValue();
18312}
18313
18314/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
18315/// and return the operands for the horizontal operation in LHS and RHS.  A
18316/// horizontal operation performs the binary operation on successive elements
18317/// of its first operand, then on successive elements of its second operand,
18318/// returning the resulting values in a vector.  For example, if
18319///   A = < float a0, float a1, float a2, float a3 >
18320/// and
18321///   B = < float b0, float b1, float b2, float b3 >
18322/// then the result of doing a horizontal operation on A and B is
18323///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
18324/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
18325/// A horizontal-op B, for some already available A and B, and if so then LHS is
18326/// set to A, RHS to B, and the routine returns 'true'.
18327/// Note that the binary operation should have the property that if one of the
18328/// operands is UNDEF then the result is UNDEF.
18329static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
18330  // Look for the following pattern: if
18331  //   A = < float a0, float a1, float a2, float a3 >
18332  //   B = < float b0, float b1, float b2, float b3 >
18333  // and
18334  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
18335  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
18336  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
18337  // which is A horizontal-op B.
18338
18339  // At least one of the operands should be a vector shuffle.
18340  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
18341      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
18342    return false;
18343
18344  MVT VT = LHS.getSimpleValueType();
18345
18346  assert((VT.is128BitVector() || VT.is256BitVector()) &&
18347         "Unsupported vector type for horizontal add/sub");
18348
18349  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
18350  // operate independently on 128-bit lanes.
18351  unsigned NumElts = VT.getVectorNumElements();
18352  unsigned NumLanes = VT.getSizeInBits()/128;
18353  unsigned NumLaneElts = NumElts / NumLanes;
18354  assert((NumLaneElts % 2 == 0) &&
18355         "Vector type should have an even number of elements in each lane");
18356  unsigned HalfLaneElts = NumLaneElts/2;
18357
18358  // View LHS in the form
18359  //   LHS = VECTOR_SHUFFLE A, B, LMask
18360  // If LHS is not a shuffle then pretend it is the shuffle
18361  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
18362  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
18363  // type VT.
18364  SDValue A, B;
18365  SmallVector<int, 16> LMask(NumElts);
18366  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
18367    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
18368      A = LHS.getOperand(0);
18369    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
18370      B = LHS.getOperand(1);
18371    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
18372    std::copy(Mask.begin(), Mask.end(), LMask.begin());
18373  } else {
18374    if (LHS.getOpcode() != ISD::UNDEF)
18375      A = LHS;
18376    for (unsigned i = 0; i != NumElts; ++i)
18377      LMask[i] = i;
18378  }
18379
18380  // Likewise, view RHS in the form
18381  //   RHS = VECTOR_SHUFFLE C, D, RMask
18382  SDValue C, D;
18383  SmallVector<int, 16> RMask(NumElts);
18384  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
18385    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
18386      C = RHS.getOperand(0);
18387    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
18388      D = RHS.getOperand(1);
18389    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
18390    std::copy(Mask.begin(), Mask.end(), RMask.begin());
18391  } else {
18392    if (RHS.getOpcode() != ISD::UNDEF)
18393      C = RHS;
18394    for (unsigned i = 0; i != NumElts; ++i)
18395      RMask[i] = i;
18396  }
18397
18398  // Check that the shuffles are both shuffling the same vectors.
18399  if (!(A == C && B == D) && !(A == D && B == C))
18400    return false;
18401
18402  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
18403  if (!A.getNode() && !B.getNode())
18404    return false;
18405
18406  // If A and B occur in reverse order in RHS, then "swap" them (which means
18407  // rewriting the mask).
18408  if (A != C)
18409    CommuteVectorShuffleMask(RMask, NumElts);
18410
18411  // At this point LHS and RHS are equivalent to
18412  //   LHS = VECTOR_SHUFFLE A, B, LMask
18413  //   RHS = VECTOR_SHUFFLE A, B, RMask
18414  // Check that the masks correspond to performing a horizontal operation.
18415  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
18416    for (unsigned i = 0; i != NumLaneElts; ++i) {
18417      int LIdx = LMask[i+l], RIdx = RMask[i+l];
18418
18419      // Ignore any UNDEF components.
18420      if (LIdx < 0 || RIdx < 0 ||
18421          (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
18422          (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
18423        continue;
18424
18425      // Check that successive elements are being operated on.  If not, this is
18426      // not a horizontal operation.
18427      unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
18428      int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
18429      if (!(LIdx == Index && RIdx == Index + 1) &&
18430          !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
18431        return false;
18432    }
18433  }
18434
18435  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
18436  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
18437  return true;
18438}
18439
18440/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
18441static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
18442                                  const X86Subtarget *Subtarget) {
18443  EVT VT = N->getValueType(0);
18444  SDValue LHS = N->getOperand(0);
18445  SDValue RHS = N->getOperand(1);
18446
18447  // Try to synthesize horizontal adds from adds of shuffles.
18448  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
18449       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
18450      isHorizontalBinOp(LHS, RHS, true))
18451    return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
18452  return SDValue();
18453}
18454
18455/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
18456static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
18457                                  const X86Subtarget *Subtarget) {
18458  EVT VT = N->getValueType(0);
18459  SDValue LHS = N->getOperand(0);
18460  SDValue RHS = N->getOperand(1);
18461
18462  // Try to synthesize horizontal subs from subs of shuffles.
18463  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
18464       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
18465      isHorizontalBinOp(LHS, RHS, false))
18466    return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
18467  return SDValue();
18468}
18469
18470/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
18471/// X86ISD::FXOR nodes.
18472static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
18473  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
18474  // F[X]OR(0.0, x) -> x
18475  // F[X]OR(x, 0.0) -> x
18476  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18477    if (C->getValueAPF().isPosZero())
18478      return N->getOperand(1);
18479  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18480    if (C->getValueAPF().isPosZero())
18481      return N->getOperand(0);
18482  return SDValue();
18483}
18484
18485/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
18486/// X86ISD::FMAX nodes.
18487static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
18488  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
18489
18490  // Only perform optimizations if UnsafeMath is used.
18491  if (!DAG.getTarget().Options.UnsafeFPMath)
18492    return SDValue();
18493
18494  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
18495  // into FMINC and FMAXC, which are Commutative operations.
18496  unsigned NewOp = 0;
18497  switch (N->getOpcode()) {
18498    default: llvm_unreachable("unknown opcode");
18499    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
18500    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
18501  }
18502
18503  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
18504                     N->getOperand(0), N->getOperand(1));
18505}
18506
18507/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
18508static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
18509  // FAND(0.0, x) -> 0.0
18510  // FAND(x, 0.0) -> 0.0
18511  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18512    if (C->getValueAPF().isPosZero())
18513      return N->getOperand(0);
18514  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18515    if (C->getValueAPF().isPosZero())
18516      return N->getOperand(1);
18517  return SDValue();
18518}
18519
18520/// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
18521static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
18522  // FANDN(x, 0.0) -> 0.0
18523  // FANDN(0.0, x) -> x
18524  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18525    if (C->getValueAPF().isPosZero())
18526      return N->getOperand(1);
18527  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18528    if (C->getValueAPF().isPosZero())
18529      return N->getOperand(1);
18530  return SDValue();
18531}
18532
18533static SDValue PerformBTCombine(SDNode *N,
18534                                SelectionDAG &DAG,
18535                                TargetLowering::DAGCombinerInfo &DCI) {
18536  // BT ignores high bits in the bit index operand.
18537  SDValue Op1 = N->getOperand(1);
18538  if (Op1.hasOneUse()) {
18539    unsigned BitWidth = Op1.getValueSizeInBits();
18540    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
18541    APInt KnownZero, KnownOne;
18542    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
18543                                          !DCI.isBeforeLegalizeOps());
18544    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18545    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
18546        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
18547      DCI.CommitTargetLoweringOpt(TLO);
18548  }
18549  return SDValue();
18550}
18551
18552static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
18553  SDValue Op = N->getOperand(0);
18554  if (Op.getOpcode() == ISD::BITCAST)
18555    Op = Op.getOperand(0);
18556  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
18557  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
18558      VT.getVectorElementType().getSizeInBits() ==
18559      OpVT.getVectorElementType().getSizeInBits()) {
18560    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
18561  }
18562  return SDValue();
18563}
18564
18565static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
18566                                               const X86Subtarget *Subtarget) {
18567  EVT VT = N->getValueType(0);
18568  if (!VT.isVector())
18569    return SDValue();
18570
18571  SDValue N0 = N->getOperand(0);
18572  SDValue N1 = N->getOperand(1);
18573  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
18574  SDLoc dl(N);
18575
18576  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
18577  // both SSE and AVX2 since there is no sign-extended shift right
18578  // operation on a vector with 64-bit elements.
18579  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
18580  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
18581  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
18582      N0.getOpcode() == ISD::SIGN_EXTEND)) {
18583    SDValue N00 = N0.getOperand(0);
18584
18585    // EXTLOAD has a better solution on AVX2,
18586    // it may be replaced with X86ISD::VSEXT node.
18587    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
18588      if (!ISD::isNormalLoad(N00.getNode()))
18589        return SDValue();
18590
18591    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
18592        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
18593                                  N00, N1);
18594      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
18595    }
18596  }
18597  return SDValue();
18598}
18599
18600static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
18601                                  TargetLowering::DAGCombinerInfo &DCI,
18602                                  const X86Subtarget *Subtarget) {
18603  if (!DCI.isBeforeLegalizeOps())
18604    return SDValue();
18605
18606  if (!Subtarget->hasFp256())
18607    return SDValue();
18608
18609  EVT VT = N->getValueType(0);
18610  if (VT.isVector() && VT.getSizeInBits() == 256) {
18611    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
18612    if (R.getNode())
18613      return R;
18614  }
18615
18616  return SDValue();
18617}
18618
18619static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
18620                                 const X86Subtarget* Subtarget) {
18621  SDLoc dl(N);
18622  EVT VT = N->getValueType(0);
18623
18624  // Let legalize expand this if it isn't a legal type yet.
18625  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
18626    return SDValue();
18627
18628  EVT ScalarVT = VT.getScalarType();
18629  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
18630      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
18631    return SDValue();
18632
18633  SDValue A = N->getOperand(0);
18634  SDValue B = N->getOperand(1);
18635  SDValue C = N->getOperand(2);
18636
18637  bool NegA = (A.getOpcode() == ISD::FNEG);
18638  bool NegB = (B.getOpcode() == ISD::FNEG);
18639  bool NegC = (C.getOpcode() == ISD::FNEG);
18640
18641  // Negative multiplication when NegA xor NegB
18642  bool NegMul = (NegA != NegB);
18643  if (NegA)
18644    A = A.getOperand(0);
18645  if (NegB)
18646    B = B.getOperand(0);
18647  if (NegC)
18648    C = C.getOperand(0);
18649
18650  unsigned Opcode;
18651  if (!NegMul)
18652    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
18653  else
18654    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
18655
18656  return DAG.getNode(Opcode, dl, VT, A, B, C);
18657}
18658
18659static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
18660                                  TargetLowering::DAGCombinerInfo &DCI,
18661                                  const X86Subtarget *Subtarget) {
18662  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
18663  //           (and (i32 x86isd::setcc_carry), 1)
18664  // This eliminates the zext. This transformation is necessary because
18665  // ISD::SETCC is always legalized to i8.
18666  SDLoc dl(N);
18667  SDValue N0 = N->getOperand(0);
18668  EVT VT = N->getValueType(0);
18669
18670  if (N0.getOpcode() == ISD::AND &&
18671      N0.hasOneUse() &&
18672      N0.getOperand(0).hasOneUse()) {
18673    SDValue N00 = N0.getOperand(0);
18674    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
18675      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
18676      if (!C || C->getZExtValue() != 1)
18677        return SDValue();
18678      return DAG.getNode(ISD::AND, dl, VT,
18679                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
18680                                     N00.getOperand(0), N00.getOperand(1)),
18681                         DAG.getConstant(1, VT));
18682    }
18683  }
18684
18685  if (VT.is256BitVector()) {
18686    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
18687    if (R.getNode())
18688      return R;
18689  }
18690
18691  return SDValue();
18692}
18693
18694// Optimize x == -y --> x+y == 0
18695//          x != -y --> x+y != 0
18696static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
18697  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
18698  SDValue LHS = N->getOperand(0);
18699  SDValue RHS = N->getOperand(1);
18700
18701  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
18702    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
18703      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
18704        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
18705                                   LHS.getValueType(), RHS, LHS.getOperand(1));
18706        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
18707                            addV, DAG.getConstant(0, addV.getValueType()), CC);
18708      }
18709  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
18710    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
18711      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
18712        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
18713                                   RHS.getValueType(), LHS, RHS.getOperand(1));
18714        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
18715                            addV, DAG.getConstant(0, addV.getValueType()), CC);
18716      }
18717  return SDValue();
18718}
18719
18720// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
18721// as "sbb reg,reg", since it can be extended without zext and produces
18722// an all-ones bit which is more useful than 0/1 in some cases.
18723static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
18724  return DAG.getNode(ISD::AND, DL, MVT::i8,
18725                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
18726                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
18727                     DAG.getConstant(1, MVT::i8));
18728}
18729
18730// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
18731static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
18732                                   TargetLowering::DAGCombinerInfo &DCI,
18733                                   const X86Subtarget *Subtarget) {
18734  SDLoc DL(N);
18735  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
18736  SDValue EFLAGS = N->getOperand(1);
18737
18738  if (CC == X86::COND_A) {
18739    // Try to convert COND_A into COND_B in an attempt to facilitate
18740    // materializing "setb reg".
18741    //
18742    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
18743    // cannot take an immediate as its first operand.
18744    //
18745    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
18746        EFLAGS.getValueType().isInteger() &&
18747        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
18748      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
18749                                   EFLAGS.getNode()->getVTList(),
18750                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
18751      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
18752      return MaterializeSETB(DL, NewEFLAGS, DAG);
18753    }
18754  }
18755
18756  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
18757  // a zext and produces an all-ones bit which is more useful than 0/1 in some
18758  // cases.
18759  if (CC == X86::COND_B)
18760    return MaterializeSETB(DL, EFLAGS, DAG);
18761
18762  SDValue Flags;
18763
18764  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
18765  if (Flags.getNode()) {
18766    SDValue Cond = DAG.getConstant(CC, MVT::i8);
18767    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
18768  }
18769
18770  return SDValue();
18771}
18772
18773// Optimize branch condition evaluation.
18774//
18775static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
18776                                    TargetLowering::DAGCombinerInfo &DCI,
18777                                    const X86Subtarget *Subtarget) {
18778  SDLoc DL(N);
18779  SDValue Chain = N->getOperand(0);
18780  SDValue Dest = N->getOperand(1);
18781  SDValue EFLAGS = N->getOperand(3);
18782  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
18783
18784  SDValue Flags;
18785
18786  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
18787  if (Flags.getNode()) {
18788    SDValue Cond = DAG.getConstant(CC, MVT::i8);
18789    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
18790                       Flags);
18791  }
18792
18793  return SDValue();
18794}
18795
18796static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
18797                                        const X86TargetLowering *XTLI) {
18798  SDValue Op0 = N->getOperand(0);
18799  EVT InVT = Op0->getValueType(0);
18800
18801  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
18802  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
18803    SDLoc dl(N);
18804    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
18805    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
18806    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
18807  }
18808
18809  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
18810  // a 32-bit target where SSE doesn't support i64->FP operations.
18811  if (Op0.getOpcode() == ISD::LOAD) {
18812    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
18813    EVT VT = Ld->getValueType(0);
18814    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
18815        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
18816        !XTLI->getSubtarget()->is64Bit() &&
18817        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
18818      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
18819                                          Ld->getChain(), Op0, DAG);
18820      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
18821      return FILDChain;
18822    }
18823  }
18824  return SDValue();
18825}
18826
18827// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
18828static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
18829                                 X86TargetLowering::DAGCombinerInfo &DCI) {
18830  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
18831  // the result is either zero or one (depending on the input carry bit).
18832  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
18833  if (X86::isZeroNode(N->getOperand(0)) &&
18834      X86::isZeroNode(N->getOperand(1)) &&
18835      // We don't have a good way to replace an EFLAGS use, so only do this when
18836      // dead right now.
18837      SDValue(N, 1).use_empty()) {
18838    SDLoc DL(N);
18839    EVT VT = N->getValueType(0);
18840    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
18841    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
18842                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
18843                                           DAG.getConstant(X86::COND_B,MVT::i8),
18844                                           N->getOperand(2)),
18845                               DAG.getConstant(1, VT));
18846    return DCI.CombineTo(N, Res1, CarryOut);
18847  }
18848
18849  return SDValue();
18850}
18851
18852// fold (add Y, (sete  X, 0)) -> adc  0, Y
18853//      (add Y, (setne X, 0)) -> sbb -1, Y
18854//      (sub (sete  X, 0), Y) -> sbb  0, Y
18855//      (sub (setne X, 0), Y) -> adc -1, Y
18856static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
18857  SDLoc DL(N);
18858
18859  // Look through ZExts.
18860  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
18861  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
18862    return SDValue();
18863
18864  SDValue SetCC = Ext.getOperand(0);
18865  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
18866    return SDValue();
18867
18868  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
18869  if (CC != X86::COND_E && CC != X86::COND_NE)
18870    return SDValue();
18871
18872  SDValue Cmp = SetCC.getOperand(1);
18873  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
18874      !X86::isZeroNode(Cmp.getOperand(1)) ||
18875      !Cmp.getOperand(0).getValueType().isInteger())
18876    return SDValue();
18877
18878  SDValue CmpOp0 = Cmp.getOperand(0);
18879  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
18880                               DAG.getConstant(1, CmpOp0.getValueType()));
18881
18882  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
18883  if (CC == X86::COND_NE)
18884    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
18885                       DL, OtherVal.getValueType(), OtherVal,
18886                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
18887  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
18888                     DL, OtherVal.getValueType(), OtherVal,
18889                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
18890}
18891
18892/// PerformADDCombine - Do target-specific dag combines on integer adds.
18893static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
18894                                 const X86Subtarget *Subtarget) {
18895  EVT VT = N->getValueType(0);
18896  SDValue Op0 = N->getOperand(0);
18897  SDValue Op1 = N->getOperand(1);
18898
18899  // Try to synthesize horizontal adds from adds of shuffles.
18900  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
18901       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
18902      isHorizontalBinOp(Op0, Op1, true))
18903    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
18904
18905  return OptimizeConditionalInDecrement(N, DAG);
18906}
18907
18908static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
18909                                 const X86Subtarget *Subtarget) {
18910  SDValue Op0 = N->getOperand(0);
18911  SDValue Op1 = N->getOperand(1);
18912
18913  // X86 can't encode an immediate LHS of a sub. See if we can push the
18914  // negation into a preceding instruction.
18915  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
18916    // If the RHS of the sub is a XOR with one use and a constant, invert the
18917    // immediate. Then add one to the LHS of the sub so we can turn
18918    // X-Y -> X+~Y+1, saving one register.
18919    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
18920        isa<ConstantSDNode>(Op1.getOperand(1))) {
18921      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
18922      EVT VT = Op0.getValueType();
18923      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
18924                                   Op1.getOperand(0),
18925                                   DAG.getConstant(~XorC, VT));
18926      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
18927                         DAG.getConstant(C->getAPIntValue()+1, VT));
18928    }
18929  }
18930
18931  // Try to synthesize horizontal adds from adds of shuffles.
18932  EVT VT = N->getValueType(0);
18933  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
18934       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
18935      isHorizontalBinOp(Op0, Op1, true))
18936    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
18937
18938  return OptimizeConditionalInDecrement(N, DAG);
18939}
18940
18941/// performVZEXTCombine - Performs build vector combines
18942static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
18943                                        TargetLowering::DAGCombinerInfo &DCI,
18944                                        const X86Subtarget *Subtarget) {
18945  // (vzext (bitcast (vzext (x)) -> (vzext x)
18946  SDValue In = N->getOperand(0);
18947  while (In.getOpcode() == ISD::BITCAST)
18948    In = In.getOperand(0);
18949
18950  if (In.getOpcode() != X86ISD::VZEXT)
18951    return SDValue();
18952
18953  return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
18954                     In.getOperand(0));
18955}
18956
18957SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
18958                                             DAGCombinerInfo &DCI) const {
18959  SelectionDAG &DAG = DCI.DAG;
18960  switch (N->getOpcode()) {
18961  default: break;
18962  case ISD::EXTRACT_VECTOR_ELT:
18963    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
18964  case ISD::VSELECT:
18965  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
18966  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
18967  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
18968  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
18969  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
18970  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
18971  case ISD::SHL:
18972  case ISD::SRA:
18973  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
18974  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
18975  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
18976  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
18977  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
18978  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
18979  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
18980  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
18981  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
18982  case X86ISD::FXOR:
18983  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
18984  case X86ISD::FMIN:
18985  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
18986  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
18987  case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG);
18988  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
18989  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
18990  case ISD::ANY_EXTEND:
18991  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
18992  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
18993  case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
18994  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
18995  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
18996  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
18997  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
18998  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
18999  case X86ISD::SHUFP:       // Handle all target specific shuffles
19000  case X86ISD::PALIGNR:
19001  case X86ISD::UNPCKH:
19002  case X86ISD::UNPCKL:
19003  case X86ISD::MOVHLPS:
19004  case X86ISD::MOVLHPS:
19005  case X86ISD::PSHUFD:
19006  case X86ISD::PSHUFHW:
19007  case X86ISD::PSHUFLW:
19008  case X86ISD::MOVSS:
19009  case X86ISD::MOVSD:
19010  case X86ISD::VPERMILP:
19011  case X86ISD::VPERM2X128:
19012  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
19013  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
19014  }
19015
19016  return SDValue();
19017}
19018
19019/// isTypeDesirableForOp - Return true if the target has native support for
19020/// the specified value type and it is 'desirable' to use the type for the
19021/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
19022/// instruction encodings are longer and some i16 instructions are slow.
19023bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
19024  if (!isTypeLegal(VT))
19025    return false;
19026  if (VT != MVT::i16)
19027    return true;
19028
19029  switch (Opc) {
19030  default:
19031    return true;
19032  case ISD::LOAD:
19033  case ISD::SIGN_EXTEND:
19034  case ISD::ZERO_EXTEND:
19035  case ISD::ANY_EXTEND:
19036  case ISD::SHL:
19037  case ISD::SRL:
19038  case ISD::SUB:
19039  case ISD::ADD:
19040  case ISD::MUL:
19041  case ISD::AND:
19042  case ISD::OR:
19043  case ISD::XOR:
19044    return false;
19045  }
19046}
19047
19048/// IsDesirableToPromoteOp - This method query the target whether it is
19049/// beneficial for dag combiner to promote the specified node. If true, it
19050/// should return the desired promotion type by reference.
19051bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
19052  EVT VT = Op.getValueType();
19053  if (VT != MVT::i16)
19054    return false;
19055
19056  bool Promote = false;
19057  bool Commute = false;
19058  switch (Op.getOpcode()) {
19059  default: break;
19060  case ISD::LOAD: {
19061    LoadSDNode *LD = cast<LoadSDNode>(Op);
19062    // If the non-extending load has a single use and it's not live out, then it
19063    // might be folded.
19064    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
19065                                                     Op.hasOneUse()*/) {
19066      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
19067             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
19068        // The only case where we'd want to promote LOAD (rather then it being
19069        // promoted as an operand is when it's only use is liveout.
19070        if (UI->getOpcode() != ISD::CopyToReg)
19071          return false;
19072      }
19073    }
19074    Promote = true;
19075    break;
19076  }
19077  case ISD::SIGN_EXTEND:
19078  case ISD::ZERO_EXTEND:
19079  case ISD::ANY_EXTEND:
19080    Promote = true;
19081    break;
19082  case ISD::SHL:
19083  case ISD::SRL: {
19084    SDValue N0 = Op.getOperand(0);
19085    // Look out for (store (shl (load), x)).
19086    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
19087      return false;
19088    Promote = true;
19089    break;
19090  }
19091  case ISD::ADD:
19092  case ISD::MUL:
19093  case ISD::AND:
19094  case ISD::OR:
19095  case ISD::XOR:
19096    Commute = true;
19097    // fallthrough
19098  case ISD::SUB: {
19099    SDValue N0 = Op.getOperand(0);
19100    SDValue N1 = Op.getOperand(1);
19101    if (!Commute && MayFoldLoad(N1))
19102      return false;
19103    // Avoid disabling potential load folding opportunities.
19104    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
19105      return false;
19106    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
19107      return false;
19108    Promote = true;
19109  }
19110  }
19111
19112  PVT = MVT::i32;
19113  return Promote;
19114}
19115
19116//===----------------------------------------------------------------------===//
19117//                           X86 Inline Assembly Support
19118//===----------------------------------------------------------------------===//
19119
19120namespace {
19121  // Helper to match a string separated by whitespace.
19122  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
19123    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
19124
19125    for (unsigned i = 0, e = args.size(); i != e; ++i) {
19126      StringRef piece(*args[i]);
19127      if (!s.startswith(piece)) // Check if the piece matches.
19128        return false;
19129
19130      s = s.substr(piece.size());
19131      StringRef::size_type pos = s.find_first_not_of(" \t");
19132      if (pos == 0) // We matched a prefix.
19133        return false;
19134
19135      s = s.substr(pos);
19136    }
19137
19138    return s.empty();
19139  }
19140  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
19141}
19142
19143bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
19144  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
19145
19146  std::string AsmStr = IA->getAsmString();
19147
19148  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
19149  if (!Ty || Ty->getBitWidth() % 16 != 0)
19150    return false;
19151
19152  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
19153  SmallVector<StringRef, 4> AsmPieces;
19154  SplitString(AsmStr, AsmPieces, ";\n");
19155
19156  switch (AsmPieces.size()) {
19157  default: return false;
19158  case 1:
19159    // FIXME: this should verify that we are targeting a 486 or better.  If not,
19160    // we will turn this bswap into something that will be lowered to logical
19161    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
19162    // lower so don't worry about this.
19163    // bswap $0
19164    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
19165        matchAsm(AsmPieces[0], "bswapl", "$0") ||
19166        matchAsm(AsmPieces[0], "bswapq", "$0") ||
19167        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
19168        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
19169        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
19170      // No need to check constraints, nothing other than the equivalent of
19171      // "=r,0" would be valid here.
19172      return IntrinsicLowering::LowerToByteSwap(CI);
19173    }
19174
19175    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
19176    if (CI->getType()->isIntegerTy(16) &&
19177        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
19178        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
19179         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
19180      AsmPieces.clear();
19181      const std::string &ConstraintsStr = IA->getConstraintString();
19182      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
19183      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
19184      if (AsmPieces.size() == 4 &&
19185          AsmPieces[0] == "~{cc}" &&
19186          AsmPieces[1] == "~{dirflag}" &&
19187          AsmPieces[2] == "~{flags}" &&
19188          AsmPieces[3] == "~{fpsr}")
19189      return IntrinsicLowering::LowerToByteSwap(CI);
19190    }
19191    break;
19192  case 3:
19193    if (CI->getType()->isIntegerTy(32) &&
19194        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
19195        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
19196        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
19197        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
19198      AsmPieces.clear();
19199      const std::string &ConstraintsStr = IA->getConstraintString();
19200      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
19201      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
19202      if (AsmPieces.size() == 4 &&
19203          AsmPieces[0] == "~{cc}" &&
19204          AsmPieces[1] == "~{dirflag}" &&
19205          AsmPieces[2] == "~{flags}" &&
19206          AsmPieces[3] == "~{fpsr}")
19207        return IntrinsicLowering::LowerToByteSwap(CI);
19208    }
19209
19210    if (CI->getType()->isIntegerTy(64)) {
19211      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
19212      if (Constraints.size() >= 2 &&
19213          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
19214          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
19215        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
19216        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
19217            matchAsm(AsmPieces[1], "bswap", "%edx") &&
19218            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
19219          return IntrinsicLowering::LowerToByteSwap(CI);
19220      }
19221    }
19222    break;
19223  }
19224  return false;
19225}
19226
19227/// getConstraintType - Given a constraint letter, return the type of
19228/// constraint it is for this target.
19229X86TargetLowering::ConstraintType
19230X86TargetLowering::getConstraintType(const std::string &Constraint) const {
19231  if (Constraint.size() == 1) {
19232    switch (Constraint[0]) {
19233    case 'R':
19234    case 'q':
19235    case 'Q':
19236    case 'f':
19237    case 't':
19238    case 'u':
19239    case 'y':
19240    case 'x':
19241    case 'Y':
19242    case 'l':
19243      return C_RegisterClass;
19244    case 'a':
19245    case 'b':
19246    case 'c':
19247    case 'd':
19248    case 'S':
19249    case 'D':
19250    case 'A':
19251      return C_Register;
19252    case 'I':
19253    case 'J':
19254    case 'K':
19255    case 'L':
19256    case 'M':
19257    case 'N':
19258    case 'G':
19259    case 'C':
19260    case 'e':
19261    case 'Z':
19262      return C_Other;
19263    default:
19264      break;
19265    }
19266  }
19267  return TargetLowering::getConstraintType(Constraint);
19268}
19269
19270/// Examine constraint type and operand type and determine a weight value.
19271/// This object must already have been set up with the operand type
19272/// and the current alternative constraint selected.
19273TargetLowering::ConstraintWeight
19274  X86TargetLowering::getSingleConstraintMatchWeight(
19275    AsmOperandInfo &info, const char *constraint) const {
19276  ConstraintWeight weight = CW_Invalid;
19277  Value *CallOperandVal = info.CallOperandVal;
19278    // If we don't have a value, we can't do a match,
19279    // but allow it at the lowest weight.
19280  if (CallOperandVal == NULL)
19281    return CW_Default;
19282  Type *type = CallOperandVal->getType();
19283  // Look at the constraint type.
19284  switch (*constraint) {
19285  default:
19286    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
19287  case 'R':
19288  case 'q':
19289  case 'Q':
19290  case 'a':
19291  case 'b':
19292  case 'c':
19293  case 'd':
19294  case 'S':
19295  case 'D':
19296  case 'A':
19297    if (CallOperandVal->getType()->isIntegerTy())
19298      weight = CW_SpecificReg;
19299    break;
19300  case 'f':
19301  case 't':
19302  case 'u':
19303    if (type->isFloatingPointTy())
19304      weight = CW_SpecificReg;
19305    break;
19306  case 'y':
19307    if (type->isX86_MMXTy() && Subtarget->hasMMX())
19308      weight = CW_SpecificReg;
19309    break;
19310  case 'x':
19311  case 'Y':
19312    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
19313        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
19314      weight = CW_Register;
19315    break;
19316  case 'I':
19317    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
19318      if (C->getZExtValue() <= 31)
19319        weight = CW_Constant;
19320    }
19321    break;
19322  case 'J':
19323    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19324      if (C->getZExtValue() <= 63)
19325        weight = CW_Constant;
19326    }
19327    break;
19328  case 'K':
19329    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19330      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
19331        weight = CW_Constant;
19332    }
19333    break;
19334  case 'L':
19335    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19336      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
19337        weight = CW_Constant;
19338    }
19339    break;
19340  case 'M':
19341    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19342      if (C->getZExtValue() <= 3)
19343        weight = CW_Constant;
19344    }
19345    break;
19346  case 'N':
19347    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19348      if (C->getZExtValue() <= 0xff)
19349        weight = CW_Constant;
19350    }
19351    break;
19352  case 'G':
19353  case 'C':
19354    if (dyn_cast<ConstantFP>(CallOperandVal)) {
19355      weight = CW_Constant;
19356    }
19357    break;
19358  case 'e':
19359    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19360      if ((C->getSExtValue() >= -0x80000000LL) &&
19361          (C->getSExtValue() <= 0x7fffffffLL))
19362        weight = CW_Constant;
19363    }
19364    break;
19365  case 'Z':
19366    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19367      if (C->getZExtValue() <= 0xffffffff)
19368        weight = CW_Constant;
19369    }
19370    break;
19371  }
19372  return weight;
19373}
19374
19375/// LowerXConstraint - try to replace an X constraint, which matches anything,
19376/// with another that has more specific requirements based on the type of the
19377/// corresponding operand.
19378const char *X86TargetLowering::
19379LowerXConstraint(EVT ConstraintVT) const {
19380  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
19381  // 'f' like normal targets.
19382  if (ConstraintVT.isFloatingPoint()) {
19383    if (Subtarget->hasSSE2())
19384      return "Y";
19385    if (Subtarget->hasSSE1())
19386      return "x";
19387  }
19388
19389  return TargetLowering::LowerXConstraint(ConstraintVT);
19390}
19391
19392/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
19393/// vector.  If it is invalid, don't add anything to Ops.
19394void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
19395                                                     std::string &Constraint,
19396                                                     std::vector<SDValue>&Ops,
19397                                                     SelectionDAG &DAG) const {
19398  SDValue Result(0, 0);
19399
19400  // Only support length 1 constraints for now.
19401  if (Constraint.length() > 1) return;
19402
19403  char ConstraintLetter = Constraint[0];
19404  switch (ConstraintLetter) {
19405  default: break;
19406  case 'I':
19407    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19408      if (C->getZExtValue() <= 31) {
19409        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19410        break;
19411      }
19412    }
19413    return;
19414  case 'J':
19415    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19416      if (C->getZExtValue() <= 63) {
19417        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19418        break;
19419      }
19420    }
19421    return;
19422  case 'K':
19423    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19424      if (isInt<8>(C->getSExtValue())) {
19425        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19426        break;
19427      }
19428    }
19429    return;
19430  case 'N':
19431    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19432      if (C->getZExtValue() <= 255) {
19433        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19434        break;
19435      }
19436    }
19437    return;
19438  case 'e': {
19439    // 32-bit signed value
19440    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19441      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
19442                                           C->getSExtValue())) {
19443        // Widen to 64 bits here to get it sign extended.
19444        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
19445        break;
19446      }
19447    // FIXME gcc accepts some relocatable values here too, but only in certain
19448    // memory models; it's complicated.
19449    }
19450    return;
19451  }
19452  case 'Z': {
19453    // 32-bit unsigned value
19454    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19455      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
19456                                           C->getZExtValue())) {
19457        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19458        break;
19459      }
19460    }
19461    // FIXME gcc accepts some relocatable values here too, but only in certain
19462    // memory models; it's complicated.
19463    return;
19464  }
19465  case 'i': {
19466    // Literal immediates are always ok.
19467    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
19468      // Widen to 64 bits here to get it sign extended.
19469      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
19470      break;
19471    }
19472
19473    // In any sort of PIC mode addresses need to be computed at runtime by
19474    // adding in a register or some sort of table lookup.  These can't
19475    // be used as immediates.
19476    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
19477      return;
19478
19479    // If we are in non-pic codegen mode, we allow the address of a global (with
19480    // an optional displacement) to be used with 'i'.
19481    GlobalAddressSDNode *GA = 0;
19482    int64_t Offset = 0;
19483
19484    // Match either (GA), (GA+C), (GA+C1+C2), etc.
19485    while (1) {
19486      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
19487        Offset += GA->getOffset();
19488        break;
19489      } else if (Op.getOpcode() == ISD::ADD) {
19490        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
19491          Offset += C->getZExtValue();
19492          Op = Op.getOperand(0);
19493          continue;
19494        }
19495      } else if (Op.getOpcode() == ISD::SUB) {
19496        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
19497          Offset += -C->getZExtValue();
19498          Op = Op.getOperand(0);
19499          continue;
19500        }
19501      }
19502
19503      // Otherwise, this isn't something we can handle, reject it.
19504      return;
19505    }
19506
19507    const GlobalValue *GV = GA->getGlobal();
19508    // If we require an extra load to get this address, as in PIC mode, we
19509    // can't accept it.
19510    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
19511                                                        getTargetMachine())))
19512      return;
19513
19514    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
19515                                        GA->getValueType(0), Offset);
19516    break;
19517  }
19518  }
19519
19520  if (Result.getNode()) {
19521    Ops.push_back(Result);
19522    return;
19523  }
19524  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
19525}
19526
19527std::pair<unsigned, const TargetRegisterClass*>
19528X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
19529                                                MVT VT) const {
19530  // First, see if this is a constraint that directly corresponds to an LLVM
19531  // register class.
19532  if (Constraint.size() == 1) {
19533    // GCC Constraint Letters
19534    switch (Constraint[0]) {
19535    default: break;
19536      // TODO: Slight differences here in allocation order and leaving
19537      // RIP in the class. Do they matter any more here than they do
19538      // in the normal allocation?
19539    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
19540      if (Subtarget->is64Bit()) {
19541        if (VT == MVT::i32 || VT == MVT::f32)
19542          return std::make_pair(0U, &X86::GR32RegClass);
19543        if (VT == MVT::i16)
19544          return std::make_pair(0U, &X86::GR16RegClass);
19545        if (VT == MVT::i8 || VT == MVT::i1)
19546          return std::make_pair(0U, &X86::GR8RegClass);
19547        if (VT == MVT::i64 || VT == MVT::f64)
19548          return std::make_pair(0U, &X86::GR64RegClass);
19549        break;
19550      }
19551      // 32-bit fallthrough
19552    case 'Q':   // Q_REGS
19553      if (VT == MVT::i32 || VT == MVT::f32)
19554        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
19555      if (VT == MVT::i16)
19556        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
19557      if (VT == MVT::i8 || VT == MVT::i1)
19558        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
19559      if (VT == MVT::i64)
19560        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
19561      break;
19562    case 'r':   // GENERAL_REGS
19563    case 'l':   // INDEX_REGS
19564      if (VT == MVT::i8 || VT == MVT::i1)
19565        return std::make_pair(0U, &X86::GR8RegClass);
19566      if (VT == MVT::i16)
19567        return std::make_pair(0U, &X86::GR16RegClass);
19568      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
19569        return std::make_pair(0U, &X86::GR32RegClass);
19570      return std::make_pair(0U, &X86::GR64RegClass);
19571    case 'R':   // LEGACY_REGS
19572      if (VT == MVT::i8 || VT == MVT::i1)
19573        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
19574      if (VT == MVT::i16)
19575        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
19576      if (VT == MVT::i32 || !Subtarget->is64Bit())
19577        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
19578      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
19579    case 'f':  // FP Stack registers.
19580      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
19581      // value to the correct fpstack register class.
19582      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
19583        return std::make_pair(0U, &X86::RFP32RegClass);
19584      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
19585        return std::make_pair(0U, &X86::RFP64RegClass);
19586      return std::make_pair(0U, &X86::RFP80RegClass);
19587    case 'y':   // MMX_REGS if MMX allowed.
19588      if (!Subtarget->hasMMX()) break;
19589      return std::make_pair(0U, &X86::VR64RegClass);
19590    case 'Y':   // SSE_REGS if SSE2 allowed
19591      if (!Subtarget->hasSSE2()) break;
19592      // FALL THROUGH.
19593    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
19594      if (!Subtarget->hasSSE1()) break;
19595
19596      switch (VT.SimpleTy) {
19597      default: break;
19598      // Scalar SSE types.
19599      case MVT::f32:
19600      case MVT::i32:
19601        return std::make_pair(0U, &X86::FR32RegClass);
19602      case MVT::f64:
19603      case MVT::i64:
19604        return std::make_pair(0U, &X86::FR64RegClass);
19605      // Vector types.
19606      case MVT::v16i8:
19607      case MVT::v8i16:
19608      case MVT::v4i32:
19609      case MVT::v2i64:
19610      case MVT::v4f32:
19611      case MVT::v2f64:
19612        return std::make_pair(0U, &X86::VR128RegClass);
19613      // AVX types.
19614      case MVT::v32i8:
19615      case MVT::v16i16:
19616      case MVT::v8i32:
19617      case MVT::v4i64:
19618      case MVT::v8f32:
19619      case MVT::v4f64:
19620        return std::make_pair(0U, &X86::VR256RegClass);
19621      case MVT::v8f64:
19622      case MVT::v16f32:
19623      case MVT::v16i32:
19624      case MVT::v8i64:
19625        return std::make_pair(0U, &X86::VR512RegClass);
19626      }
19627      break;
19628    }
19629  }
19630
19631  // Use the default implementation in TargetLowering to convert the register
19632  // constraint into a member of a register class.
19633  std::pair<unsigned, const TargetRegisterClass*> Res;
19634  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
19635
19636  // Not found as a standard register?
19637  if (Res.second == 0) {
19638    // Map st(0) -> st(7) -> ST0
19639    if (Constraint.size() == 7 && Constraint[0] == '{' &&
19640        tolower(Constraint[1]) == 's' &&
19641        tolower(Constraint[2]) == 't' &&
19642        Constraint[3] == '(' &&
19643        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
19644        Constraint[5] == ')' &&
19645        Constraint[6] == '}') {
19646
19647      Res.first = X86::ST0+Constraint[4]-'0';
19648      Res.second = &X86::RFP80RegClass;
19649      return Res;
19650    }
19651
19652    // GCC allows "st(0)" to be called just plain "st".
19653    if (StringRef("{st}").equals_lower(Constraint)) {
19654      Res.first = X86::ST0;
19655      Res.second = &X86::RFP80RegClass;
19656      return Res;
19657    }
19658
19659    // flags -> EFLAGS
19660    if (StringRef("{flags}").equals_lower(Constraint)) {
19661      Res.first = X86::EFLAGS;
19662      Res.second = &X86::CCRRegClass;
19663      return Res;
19664    }
19665
19666    // 'A' means EAX + EDX.
19667    if (Constraint == "A") {
19668      Res.first = X86::EAX;
19669      Res.second = &X86::GR32_ADRegClass;
19670      return Res;
19671    }
19672    return Res;
19673  }
19674
19675  // Otherwise, check to see if this is a register class of the wrong value
19676  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
19677  // turn into {ax},{dx}.
19678  if (Res.second->hasType(VT))
19679    return Res;   // Correct type already, nothing to do.
19680
19681  // All of the single-register GCC register classes map their values onto
19682  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
19683  // really want an 8-bit or 32-bit register, map to the appropriate register
19684  // class and return the appropriate register.
19685  if (Res.second == &X86::GR16RegClass) {
19686    if (VT == MVT::i8 || VT == MVT::i1) {
19687      unsigned DestReg = 0;
19688      switch (Res.first) {
19689      default: break;
19690      case X86::AX: DestReg = X86::AL; break;
19691      case X86::DX: DestReg = X86::DL; break;
19692      case X86::CX: DestReg = X86::CL; break;
19693      case X86::BX: DestReg = X86::BL; break;
19694      }
19695      if (DestReg) {
19696        Res.first = DestReg;
19697        Res.second = &X86::GR8RegClass;
19698      }
19699    } else if (VT == MVT::i32 || VT == MVT::f32) {
19700      unsigned DestReg = 0;
19701      switch (Res.first) {
19702      default: break;
19703      case X86::AX: DestReg = X86::EAX; break;
19704      case X86::DX: DestReg = X86::EDX; break;
19705      case X86::CX: DestReg = X86::ECX; break;
19706      case X86::BX: DestReg = X86::EBX; break;
19707      case X86::SI: DestReg = X86::ESI; break;
19708      case X86::DI: DestReg = X86::EDI; break;
19709      case X86::BP: DestReg = X86::EBP; break;
19710      case X86::SP: DestReg = X86::ESP; break;
19711      }
19712      if (DestReg) {
19713        Res.first = DestReg;
19714        Res.second = &X86::GR32RegClass;
19715      }
19716    } else if (VT == MVT::i64 || VT == MVT::f64) {
19717      unsigned DestReg = 0;
19718      switch (Res.first) {
19719      default: break;
19720      case X86::AX: DestReg = X86::RAX; break;
19721      case X86::DX: DestReg = X86::RDX; break;
19722      case X86::CX: DestReg = X86::RCX; break;
19723      case X86::BX: DestReg = X86::RBX; break;
19724      case X86::SI: DestReg = X86::RSI; break;
19725      case X86::DI: DestReg = X86::RDI; break;
19726      case X86::BP: DestReg = X86::RBP; break;
19727      case X86::SP: DestReg = X86::RSP; break;
19728      }
19729      if (DestReg) {
19730        Res.first = DestReg;
19731        Res.second = &X86::GR64RegClass;
19732      }
19733    }
19734  } else if (Res.second == &X86::FR32RegClass ||
19735             Res.second == &X86::FR64RegClass ||
19736             Res.second == &X86::VR128RegClass ||
19737             Res.second == &X86::VR256RegClass ||
19738             Res.second == &X86::FR32XRegClass ||
19739             Res.second == &X86::FR64XRegClass ||
19740             Res.second == &X86::VR128XRegClass ||
19741             Res.second == &X86::VR256XRegClass ||
19742             Res.second == &X86::VR512RegClass) {
19743    // Handle references to XMM physical registers that got mapped into the
19744    // wrong class.  This can happen with constraints like {xmm0} where the
19745    // target independent register mapper will just pick the first match it can
19746    // find, ignoring the required type.
19747
19748    if (VT == MVT::f32 || VT == MVT::i32)
19749      Res.second = &X86::FR32RegClass;
19750    else if (VT == MVT::f64 || VT == MVT::i64)
19751      Res.second = &X86::FR64RegClass;
19752    else if (X86::VR128RegClass.hasType(VT))
19753      Res.second = &X86::VR128RegClass;
19754    else if (X86::VR256RegClass.hasType(VT))
19755      Res.second = &X86::VR256RegClass;
19756    else if (X86::VR512RegClass.hasType(VT))
19757      Res.second = &X86::VR512RegClass;
19758  }
19759
19760  return Res;
19761}
19762