X86ISelLowering.cpp revision a844bdeab31ef04221e7ef59a8467893584cc14d
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/ParameterAttributes.h"
42using namespace llvm;
43
44X86TargetLowering::X86TargetLowering(TargetMachine &TM)
45  : TargetLowering(TM) {
46  Subtarget = &TM.getSubtarget<X86Subtarget>();
47  X86ScalarSSEf64 = Subtarget->hasSSE2();
48  X86ScalarSSEf32 = Subtarget->hasSSE1();
49  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
50
51  bool Fast = false;
52
53  RegInfo = TM.getRegisterInfo();
54
55  // Set up the TargetLowering object.
56
57  // X86 is weird, it always uses i8 for shift amounts and setcc results.
58  setShiftAmountType(MVT::i8);
59  setSetCCResultType(MVT::i8);
60  setSetCCResultContents(ZeroOrOneSetCCResult);
61  setSchedulingPreference(SchedulingForRegPressure);
62  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
63  setStackPointerRegisterToSaveRestore(X86StackPtr);
64
65  if (Subtarget->isTargetDarwin()) {
66    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
67    setUseUnderscoreSetJmp(false);
68    setUseUnderscoreLongJmp(false);
69  } else if (Subtarget->isTargetMingw()) {
70    // MS runtime is weird: it exports _setjmp, but longjmp!
71    setUseUnderscoreSetJmp(true);
72    setUseUnderscoreLongJmp(false);
73  } else {
74    setUseUnderscoreSetJmp(true);
75    setUseUnderscoreLongJmp(true);
76  }
77
78  // Set up the register classes.
79  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
80  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
81  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
82  if (Subtarget->is64Bit())
83    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
84
85  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
86
87  // We don't accept any truncstore of integer registers.
88  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
89  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
90  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
91  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
92  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
93  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
94
95  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
96  // operation.
97  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
98  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
99  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
100
101  if (Subtarget->is64Bit()) {
102    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
103    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
104  } else {
105    if (X86ScalarSSEf64)
106      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
107      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
108    else
109      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
110  }
111
112  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
113  // this operation.
114  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
115  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
116  // SSE has no i16 to fp conversion, only i32
117  if (X86ScalarSSEf32) {
118    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
119    // f32 and f64 cases are Legal, f80 case is not
120    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
121  } else {
122    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
123    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
124  }
125
126  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
127  // are Legal, f80 is custom lowered.
128  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
129  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
130
131  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
132  // this operation.
133  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
134  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
135
136  if (X86ScalarSSEf32) {
137    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
138    // f32 and f64 cases are Legal, f80 case is not
139    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
140  } else {
141    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
142    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
143  }
144
145  // Handle FP_TO_UINT by promoting the destination to a larger signed
146  // conversion.
147  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
148  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
149  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
150
151  if (Subtarget->is64Bit()) {
152    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
153    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
154  } else {
155    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
156      // Expand FP_TO_UINT into a select.
157      // FIXME: We would like to use a Custom expander here eventually to do
158      // the optimal thing for SSE vs. the default expansion in the legalizer.
159      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
160    else
161      // With SSE3 we can use fisttpll to convert to a signed i64.
162      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
163  }
164
165  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
166  if (!X86ScalarSSEf64) {
167    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
168    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
169  }
170
171  // Scalar integer multiply, multiply-high, divide, and remainder are
172  // lowered to use operations that produce two results, to match the
173  // available instructions. This exposes the two-result form to trivial
174  // CSE, which is able to combine x/y and x%y into a single instruction,
175  // for example. The single-result multiply instructions are introduced
176  // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
177  // is not needed.
178  setOperationAction(ISD::MUL             , MVT::i8    , Expand);
179  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
180  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
181  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
182  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
183  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
184  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
185  setOperationAction(ISD::MUL             , MVT::i16   , Expand);
186  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
187  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
188  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
189  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
190  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
191  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
192  setOperationAction(ISD::MUL             , MVT::i32   , Expand);
193  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
194  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
195  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
196  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
197  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
198  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
199  setOperationAction(ISD::MUL             , MVT::i64   , Expand);
200  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
201  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
202  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
203  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
204  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
205  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
206
207  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
208  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
209  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
210  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
211  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
212  if (Subtarget->is64Bit())
213    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
214  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
215  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
216  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
217  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
218  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
219  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
220
221  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
222  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
223  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
224  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
225  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
226  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
227  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
228  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
229  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
230  if (Subtarget->is64Bit()) {
231    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
232    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
233    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
234  }
235
236  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
237  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
238
239  // These should be promoted to a larger select which is supported.
240  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
241  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
242  // X86 wants to expand cmov itself.
243  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
244  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
245  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
248  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
249  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
251  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
256    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
257  }
258  // X86 ret instruction may pop stack.
259  setOperationAction(ISD::RET             , MVT::Other, Custom);
260  if (!Subtarget->is64Bit())
261    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
262
263  // Darwin ABI issue.
264  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
265  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
266  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
267  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
268  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
269  if (Subtarget->is64Bit()) {
270    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
271    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
272    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
273    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
274  }
275  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
276  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
277  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
278  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
279  // X86 wants to expand memset / memcpy itself.
280  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
281  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
282
283  // Use the default ISD::LOCATION, ISD::DECLARE expansion.
284  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
285  // FIXME - use subtarget debug flags
286  if (!Subtarget->isTargetDarwin() &&
287      !Subtarget->isTargetELF() &&
288      !Subtarget->isTargetCygMing())
289    setOperationAction(ISD::LABEL, MVT::Other, Expand);
290
291  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
292  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
293  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
294  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
295  if (Subtarget->is64Bit()) {
296    // FIXME: Verify
297    setExceptionPointerRegister(X86::RAX);
298    setExceptionSelectorRegister(X86::RDX);
299  } else {
300    setExceptionPointerRegister(X86::EAX);
301    setExceptionSelectorRegister(X86::EDX);
302  }
303  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
304
305  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
306
307  setOperationAction(ISD::TRAP, MVT::Other, Legal);
308
309  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
310  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
311  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
312  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
313  if (Subtarget->is64Bit())
314    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
315  else
316    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
317
318  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
319  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
320  if (Subtarget->is64Bit())
321    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
322  if (Subtarget->isTargetCygMing())
323    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
324  else
325    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
326
327  if (X86ScalarSSEf64) {
328    // f32 and f64 use SSE.
329    // Set up the FP register classes.
330    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
331    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
332
333    // Use ANDPD to simulate FABS.
334    setOperationAction(ISD::FABS , MVT::f64, Custom);
335    setOperationAction(ISD::FABS , MVT::f32, Custom);
336
337    // Use XORP to simulate FNEG.
338    setOperationAction(ISD::FNEG , MVT::f64, Custom);
339    setOperationAction(ISD::FNEG , MVT::f32, Custom);
340
341    // Use ANDPD and ORPD to simulate FCOPYSIGN.
342    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
343    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
344
345    // We don't support sin/cos/fmod
346    setOperationAction(ISD::FSIN , MVT::f64, Expand);
347    setOperationAction(ISD::FCOS , MVT::f64, Expand);
348    setOperationAction(ISD::FREM , MVT::f64, Expand);
349    setOperationAction(ISD::FSIN , MVT::f32, Expand);
350    setOperationAction(ISD::FCOS , MVT::f32, Expand);
351    setOperationAction(ISD::FREM , MVT::f32, Expand);
352
353    // Expand FP immediates into loads from the stack, except for the special
354    // cases we handle.
355    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
356    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
357    addLegalFPImmediate(APFloat(+0.0)); // xorpd
358    addLegalFPImmediate(APFloat(+0.0f)); // xorps
359
360    // Floating truncations from f80 and extensions to f80 go through memory.
361    // If optimizing, we lie about this though and handle it in
362    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
363    if (Fast) {
364      setConvertAction(MVT::f32, MVT::f80, Expand);
365      setConvertAction(MVT::f64, MVT::f80, Expand);
366      setConvertAction(MVT::f80, MVT::f32, Expand);
367      setConvertAction(MVT::f80, MVT::f64, Expand);
368    }
369  } else if (X86ScalarSSEf32) {
370    // Use SSE for f32, x87 for f64.
371    // Set up the FP register classes.
372    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
373    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
374
375    // Use ANDPS to simulate FABS.
376    setOperationAction(ISD::FABS , MVT::f32, Custom);
377
378    // Use XORP to simulate FNEG.
379    setOperationAction(ISD::FNEG , MVT::f32, Custom);
380
381    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
382
383    // Use ANDPS and ORPS to simulate FCOPYSIGN.
384    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
385    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
386
387    // We don't support sin/cos/fmod
388    setOperationAction(ISD::FSIN , MVT::f32, Expand);
389    setOperationAction(ISD::FCOS , MVT::f32, Expand);
390    setOperationAction(ISD::FREM , MVT::f32, Expand);
391
392    // Expand FP immediates into loads from the stack, except for the special
393    // cases we handle.
394    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
395    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
396    addLegalFPImmediate(APFloat(+0.0f)); // xorps
397    addLegalFPImmediate(APFloat(+0.0)); // FLD0
398    addLegalFPImmediate(APFloat(+1.0)); // FLD1
399    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
400    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
401
402    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
403    // this though and handle it in InstructionSelectPreprocess so that
404    // dagcombine2 can hack on these.
405    if (Fast) {
406      setConvertAction(MVT::f32, MVT::f64, Expand);
407      setConvertAction(MVT::f32, MVT::f80, Expand);
408      setConvertAction(MVT::f80, MVT::f32, Expand);
409      setConvertAction(MVT::f64, MVT::f32, Expand);
410      // And x87->x87 truncations also.
411      setConvertAction(MVT::f80, MVT::f64, Expand);
412    }
413
414    if (!UnsafeFPMath) {
415      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
416      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
417    }
418  } else {
419    // f32 and f64 in x87.
420    // Set up the FP register classes.
421    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
422    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
423
424    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
425    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
426    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
427    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
428
429    // Floating truncations go through memory.  If optimizing, we lie about
430    // this though and handle it in InstructionSelectPreprocess so that
431    // dagcombine2 can hack on these.
432    if (Fast) {
433      setConvertAction(MVT::f80, MVT::f32, Expand);
434      setConvertAction(MVT::f64, MVT::f32, Expand);
435      setConvertAction(MVT::f80, MVT::f64, Expand);
436    }
437
438    if (!UnsafeFPMath) {
439      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
440      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
441    }
442
443    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
444    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
445    addLegalFPImmediate(APFloat(+0.0)); // FLD0
446    addLegalFPImmediate(APFloat(+1.0)); // FLD1
447    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
448    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
449    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
450    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
451    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
452    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
453  }
454
455  // Long double always uses X87.
456  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
457  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
458  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
459  {
460    setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
461    APFloat TmpFlt(+0.0);
462    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
463    addLegalFPImmediate(TmpFlt);  // FLD0
464    TmpFlt.changeSign();
465    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
466    APFloat TmpFlt2(+1.0);
467    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
468    addLegalFPImmediate(TmpFlt2);  // FLD1
469    TmpFlt2.changeSign();
470    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
471  }
472
473  if (!UnsafeFPMath) {
474    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
475    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
476  }
477
478  // Always use a library call for pow.
479  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
480  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
481  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
482
483  // First set operation action for all vector types to expand. Then we
484  // will selectively turn on ones that can be effectively codegen'd.
485  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
486       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
487    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
488    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
489    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
490    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
491    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
492    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
493    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
494    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
495    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
496    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
497    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
498    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
499    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
500    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
501    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
502    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
503    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
504    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
505    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
506    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
507    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
508    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
509    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
510    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
511    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
512    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
513    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
514    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
515    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
516    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
517    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
518    setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand);
519    setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand);
520    setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand);
521    setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand);
522    setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand);
523    setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand);
524  }
525
526  if (Subtarget->hasMMX()) {
527    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
528    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
529    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
530    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
531
532    // FIXME: add MMX packed arithmetics
533
534    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
535    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
536    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
537    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
538
539    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
540    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
541    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
542    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
543
544    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
545    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
546
547    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
548    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
549    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
550    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
551    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
552    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
553    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
554
555    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
556    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
557    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
558    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
559    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
560    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
561    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
562
563    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
564    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
565    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
566    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
567    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
568    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
569    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
570
571    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
572    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
573    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
574    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
575    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
576    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
577    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
578
579    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
580    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
581    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
582    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
583
584    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
585    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
586    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
587    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
588
589    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
590    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
591    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
592    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
593  }
594
595  if (Subtarget->hasSSE1()) {
596    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
597
598    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
599    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
600    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
601    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
602    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
603    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
604    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
605    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
606    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
607    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
608    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
609  }
610
611  if (Subtarget->hasSSE2()) {
612    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
613    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
614    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
615    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
616    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
617
618    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
619    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
620    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
621    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
622    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
623    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
624    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
625    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
626    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
627    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
628    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
629    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
630    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
631    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
632    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
633
634    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
635    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
636    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
637    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
638    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
639    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
640
641    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
642    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
643      // Do not attempt to custom lower non-power-of-2 vectors
644      if (!isPowerOf2_32(MVT::getVectorNumElements(VT)))
645        continue;
646      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
647      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
648      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
649    }
650    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
651    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
652    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
653    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
654    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
655    if (Subtarget->is64Bit())
656      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
657
658    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
659    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
660      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
661      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
662      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
663      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
664      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
665      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
666      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
667      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
668      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
669      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
670    }
671
672    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
673
674    // Custom lower v2i64 and v2f64 selects.
675    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
676    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
677    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
678    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
679  }
680
681  // We want to custom lower some of our intrinsics.
682  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
683
684  // We have target-specific dag combine patterns for the following nodes:
685  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
686  setTargetDAGCombine(ISD::SELECT);
687
688  computeRegisterProperties();
689
690  // FIXME: These should be based on subtarget info. Plus, the values should
691  // be smaller when we are in optimizing for size mode.
692  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
693  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
694  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
695  allowUnalignedMemoryAccesses = true; // x86 supports it!
696}
697
698/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
699/// the desired ByVal argument alignment.
700static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
701  if (MaxAlign == 16)
702    return;
703  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
704    if (VTy->getBitWidth() == 128)
705      MaxAlign = 16;
706    else if (VTy->getBitWidth() == 64)
707      if (MaxAlign < 8)
708        MaxAlign = 8;
709  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
710    unsigned EltAlign = 0;
711    getMaxByValAlign(ATy->getElementType(), EltAlign);
712    if (EltAlign > MaxAlign)
713      MaxAlign = EltAlign;
714  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
715    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
716      unsigned EltAlign = 0;
717      getMaxByValAlign(STy->getElementType(i), EltAlign);
718      if (EltAlign > MaxAlign)
719        MaxAlign = EltAlign;
720      if (MaxAlign == 16)
721        break;
722    }
723  }
724  return;
725}
726
727/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
728/// function arguments in the caller parameter area. For X86, aggregates
729/// that contains are placed at 16-byte boundaries while the rest are at
730/// 4-byte boundaries.
731unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
732  if (Subtarget->is64Bit())
733    return getTargetData()->getABITypeAlignment(Ty);
734  unsigned Align = 4;
735  getMaxByValAlign(Ty, Align);
736  return Align;
737}
738
739/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
740/// jumptable.
741SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
742                                                      SelectionDAG &DAG) const {
743  if (usesGlobalOffsetTable())
744    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
745  if (!Subtarget->isPICStyleRIPRel())
746    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
747  return Table;
748}
749
750//===----------------------------------------------------------------------===//
751//               Return Value Calling Convention Implementation
752//===----------------------------------------------------------------------===//
753
754#include "X86GenCallingConv.inc"
755
756/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
757/// exists skip possible ISD:TokenFactor.
758static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
759  if (Chain.getOpcode() == X86ISD::TAILCALL) {
760    return Chain;
761  } else if (Chain.getOpcode() == ISD::TokenFactor) {
762    if (Chain.getNumOperands() &&
763        Chain.getOperand(0).getOpcode() == X86ISD::TAILCALL)
764      return Chain.getOperand(0);
765  }
766  return Chain;
767}
768
769/// LowerRET - Lower an ISD::RET node.
770SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
771  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
772
773  SmallVector<CCValAssign, 16> RVLocs;
774  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
775  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
776  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
777  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
778
779  // If this is the first return lowered for this function, add the regs to the
780  // liveout set for the function.
781  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
782    for (unsigned i = 0; i != RVLocs.size(); ++i)
783      if (RVLocs[i].isRegLoc())
784        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
785  }
786  SDOperand Chain = Op.getOperand(0);
787
788  // Handle tail call return.
789  Chain = GetPossiblePreceedingTailCall(Chain);
790  if (Chain.getOpcode() == X86ISD::TAILCALL) {
791    SDOperand TailCall = Chain;
792    SDOperand TargetAddress = TailCall.getOperand(1);
793    SDOperand StackAdjustment = TailCall.getOperand(2);
794    assert(((TargetAddress.getOpcode() == ISD::Register &&
795               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
796                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
797              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
798              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
799             "Expecting an global address, external symbol, or register");
800    assert(StackAdjustment.getOpcode() == ISD::Constant &&
801           "Expecting a const value");
802
803    SmallVector<SDOperand,8> Operands;
804    Operands.push_back(Chain.getOperand(0));
805    Operands.push_back(TargetAddress);
806    Operands.push_back(StackAdjustment);
807    // Copy registers used by the call. Last operand is a flag so it is not
808    // copied.
809    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
810      Operands.push_back(Chain.getOperand(i));
811    }
812    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
813                       Operands.size());
814  }
815
816  // Regular return.
817  SDOperand Flag;
818
819  // Copy the result values into the output registers.
820  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
821      RVLocs[0].getLocReg() != X86::ST0) {
822    for (unsigned i = 0; i != RVLocs.size(); ++i) {
823      CCValAssign &VA = RVLocs[i];
824      assert(VA.isRegLoc() && "Can only return in registers!");
825      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
826                               Flag);
827      Flag = Chain.getValue(1);
828    }
829  } else {
830    // We need to handle a destination of ST0 specially, because it isn't really
831    // a register.
832    SDOperand Value = Op.getOperand(1);
833
834    // an XMM register onto the fp-stack.  Do this with an FP_EXTEND to f80.
835    // This will get legalized into a load/store if it can't get optimized away.
836    if (isScalarFPTypeInSSEReg(RVLocs[0].getValVT()))
837      Value = DAG.getNode(ISD::FP_EXTEND, MVT::f80, Value);
838
839    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
840    SDOperand Ops[] = { Chain, Value };
841    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
842    Flag = Chain.getValue(1);
843  }
844
845  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
846  if (Flag.Val)
847    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
848  else
849    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
850}
851
852
853/// LowerCallResult - Lower the result values of an ISD::CALL into the
854/// appropriate copies out of appropriate physical registers.  This assumes that
855/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
856/// being lowered.  The returns a SDNode with the same number of values as the
857/// ISD::CALL.
858SDNode *X86TargetLowering::
859LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
860                unsigned CallingConv, SelectionDAG &DAG) {
861
862  // Assign locations to each value returned by this call.
863  SmallVector<CCValAssign, 16> RVLocs;
864  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
865  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
866  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
867
868  SmallVector<SDOperand, 8> ResultVals;
869
870  // Copy all of the result registers out of their specified physreg.
871  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
872    for (unsigned i = 0; i != RVLocs.size(); ++i) {
873      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
874                                 RVLocs[i].getValVT(), InFlag).getValue(1);
875      InFlag = Chain.getValue(2);
876      ResultVals.push_back(Chain.getValue(0));
877    }
878  } else {
879    // Copies from the FP stack are special, as ST0 isn't a valid register
880    // before the fp stackifier runs.
881
882    // Copy ST0 into an RFP register with FP_GET_RESULT.  If this will end up
883    // in an SSE register, copy it out as F80 and do a truncate, otherwise use
884    // the specified value type.
885    MVT::ValueType GetResultTy = RVLocs[0].getValVT();
886    if (isScalarFPTypeInSSEReg(GetResultTy))
887      GetResultTy = MVT::f80;
888    SDVTList Tys = DAG.getVTList(GetResultTy, MVT::Other, MVT::Flag);
889
890    SDOperand GROps[] = { Chain, InFlag };
891    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
892    Chain  = RetVal.getValue(1);
893    InFlag = RetVal.getValue(2);
894
895    // If we want the result in an SSE register, use an FP_TRUNCATE to get it
896    // there.
897    if (GetResultTy != RVLocs[0].getValVT())
898      RetVal = DAG.getNode(ISD::FP_ROUND, RVLocs[0].getValVT(), RetVal,
899                           // This truncation won't change the value.
900                           DAG.getIntPtrConstant(1));
901
902    ResultVals.push_back(RetVal);
903  }
904
905  // Merge everything together with a MERGE_VALUES node.
906  ResultVals.push_back(Chain);
907  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
908                     &ResultVals[0], ResultVals.size()).Val;
909}
910
911/// LowerCallResultToTwo64BitRegs - Lower the result values of an x86-64
912/// ISD::CALL where the results are known to be in two 64-bit registers,
913/// e.g. XMM0 and XMM1. This simplify store the two values back to the
914/// fixed stack slot allocated for StructRet.
915SDNode *X86TargetLowering::
916LowerCallResultToTwo64BitRegs(SDOperand Chain, SDOperand InFlag,
917                              SDNode *TheCall, unsigned Reg1, unsigned Reg2,
918                              MVT::ValueType VT, SelectionDAG &DAG) {
919  SDOperand RetVal1 = DAG.getCopyFromReg(Chain, Reg1, VT, InFlag);
920  Chain = RetVal1.getValue(1);
921  InFlag = RetVal1.getValue(2);
922  SDOperand RetVal2 = DAG.getCopyFromReg(Chain, Reg2, VT, InFlag);
923  Chain = RetVal2.getValue(1);
924  InFlag = RetVal2.getValue(2);
925  SDOperand FIN = TheCall->getOperand(5);
926  Chain = DAG.getStore(Chain, RetVal1, FIN, NULL, 0);
927  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
928  Chain = DAG.getStore(Chain, RetVal2, FIN, NULL, 0);
929  return Chain.Val;
930}
931
932/// LowerCallResultToTwoX87Regs - Lower the result values of an x86-64 ISD::CALL
933/// where the results are known to be in ST0 and ST1.
934SDNode *X86TargetLowering::
935LowerCallResultToTwoX87Regs(SDOperand Chain, SDOperand InFlag,
936                            SDNode *TheCall, SelectionDAG &DAG) {
937  SmallVector<SDOperand, 8> ResultVals;
938  const MVT::ValueType VTs[] = { MVT::f80, MVT::f80, MVT::Other, MVT::Flag };
939  SDVTList Tys = DAG.getVTList(VTs, 4);
940  SDOperand Ops[] = { Chain, InFlag };
941  SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT2, Tys, Ops, 2);
942  Chain = RetVal.getValue(2);
943  SDOperand FIN = TheCall->getOperand(5);
944  Chain = DAG.getStore(Chain, RetVal.getValue(1), FIN, NULL, 0);
945  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(16));
946  Chain = DAG.getStore(Chain, RetVal, FIN, NULL, 0);
947  return Chain.Val;
948}
949
950//===----------------------------------------------------------------------===//
951//                C & StdCall & Fast Calling Convention implementation
952//===----------------------------------------------------------------------===//
953//  StdCall calling convention seems to be standard for many Windows' API
954//  routines and around. It differs from C calling convention just a little:
955//  callee should clean up the stack, not caller. Symbols should be also
956//  decorated in some fancy way :) It doesn't support any vector arguments.
957//  For info on fast calling convention see Fast Calling Convention (tail call)
958//  implementation LowerX86_32FastCCCallTo.
959
960/// AddLiveIn - This helper function adds the specified physical register to the
961/// MachineFunction as a live in value.  It also creates a corresponding virtual
962/// register for it.
963static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
964                          const TargetRegisterClass *RC) {
965  assert(RC->contains(PReg) && "Not the correct regclass!");
966  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
967  MF.getRegInfo().addLiveIn(PReg, VReg);
968  return VReg;
969}
970
971// Determines whether a CALL node uses struct return semantics.
972static bool CallIsStructReturn(SDOperand Op) {
973  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
974  if (!NumOps)
975    return false;
976
977  ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(6));
978  return Flags->getValue() & ISD::ParamFlags::StructReturn;
979}
980
981// Determines whether a FORMAL_ARGUMENTS node uses struct return semantics.
982static bool ArgsAreStructReturn(SDOperand Op) {
983  unsigned NumArgs = Op.Val->getNumValues() - 1;
984  if (!NumArgs)
985    return false;
986
987  ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(3));
988  return Flags->getValue() & ISD::ParamFlags::StructReturn;
989}
990
991// Determines whether a CALL or FORMAL_ARGUMENTS node requires the callee to pop
992// its own arguments. Callee pop is necessary to support tail calls.
993bool X86TargetLowering::IsCalleePop(SDOperand Op) {
994  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
995  if (IsVarArg)
996    return false;
997
998  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
999  default:
1000    return false;
1001  case CallingConv::X86_StdCall:
1002    return !Subtarget->is64Bit();
1003  case CallingConv::X86_FastCall:
1004    return !Subtarget->is64Bit();
1005  case CallingConv::Fast:
1006    return PerformTailCallOpt;
1007  }
1008}
1009
1010// Selects the correct CCAssignFn for a CALL or FORMAL_ARGUMENTS node.
1011CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const {
1012  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1013
1014  if (Subtarget->is64Bit())
1015    if (CC == CallingConv::Fast && PerformTailCallOpt)
1016      return CC_X86_64_TailCall;
1017    else
1018      return CC_X86_64_C;
1019
1020  if (CC == CallingConv::X86_FastCall)
1021    return CC_X86_32_FastCall;
1022  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1023    return CC_X86_32_TailCall;
1024  else
1025    return CC_X86_32_C;
1026}
1027
1028// Selects the appropriate decoration to apply to a MachineFunction containing a
1029// given FORMAL_ARGUMENTS node.
1030NameDecorationStyle
1031X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) {
1032  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1033  if (CC == CallingConv::X86_FastCall)
1034    return FastCall;
1035  else if (CC == CallingConv::X86_StdCall)
1036    return StdCall;
1037  return None;
1038}
1039
1040
1041// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could possibly
1042// be overwritten when lowering the outgoing arguments in a tail call. Currently
1043// the implementation of this call is very conservative and assumes all
1044// arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with virtual
1045// registers would be overwritten by direct lowering.
1046// Possible improvement:
1047// Check FORMAL_ARGUMENTS corresponding MERGE_VALUES for CopyFromReg nodes
1048// indicating inreg passed arguments which also need not be lowered to a safe
1049// stack slot.
1050static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op) {
1051  RegisterSDNode * OpReg = NULL;
1052  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
1053      (Op.getOpcode()== ISD::CopyFromReg &&
1054       (OpReg = cast<RegisterSDNode>(Op.getOperand(1))) &&
1055       OpReg->getReg() >= MRegisterInfo::FirstVirtualRegister))
1056    return true;
1057  return false;
1058}
1059
1060// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1061// by "Src" to address "Dst" with size and alignment information specified by
1062// the specific parameter attribute. The copy will be passed as a byval function
1063// parameter.
1064static SDOperand
1065CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1066                          unsigned Flags, SelectionDAG &DAG) {
1067  unsigned Align = 1 <<
1068    ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs);
1069  unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1070    ISD::ParamFlags::ByValSizeOffs;
1071  SDOperand AlignNode    = DAG.getConstant(Align, MVT::i32);
1072  SDOperand SizeNode     = DAG.getConstant(Size, MVT::i32);
1073  SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32);
1074  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1075}
1076
1077SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
1078                                              const CCValAssign &VA,
1079                                              MachineFrameInfo *MFI,
1080                                              SDOperand Root, unsigned i) {
1081  // Create the nodes corresponding to a load from this parameter slot.
1082  unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
1083  bool isByVal = Flags & ISD::ParamFlags::ByVal;
1084
1085  // FIXME: For now, all byval parameter objects are marked mutable. This
1086  // can be changed with more analysis.
1087  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1088                                  VA.getLocMemOffset(), !isByVal);
1089  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1090  if (isByVal)
1091    return FIN;
1092  return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
1093}
1094
1095SDOperand
1096X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
1097  MachineFunction &MF = DAG.getMachineFunction();
1098  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1099
1100  const Function* Fn = MF.getFunction();
1101  if (Fn->hasExternalLinkage() &&
1102      Subtarget->isTargetCygMing() &&
1103      Fn->getName() == "main")
1104    FuncInfo->setForceFramePointer(true);
1105
1106  // Decorate the function name.
1107  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1108
1109  MachineFrameInfo *MFI = MF.getFrameInfo();
1110  SDOperand Root = Op.getOperand(0);
1111  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1112  unsigned CC = MF.getFunction()->getCallingConv();
1113  bool Is64Bit = Subtarget->is64Bit();
1114
1115  assert(!(isVarArg && CC == CallingConv::Fast) &&
1116         "Var args not supported with calling convention fastcc");
1117
1118  // Assign locations to all of the incoming arguments.
1119  SmallVector<CCValAssign, 16> ArgLocs;
1120  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1121  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
1122
1123  SmallVector<SDOperand, 8> ArgValues;
1124  unsigned LastVal = ~0U;
1125  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1126    CCValAssign &VA = ArgLocs[i];
1127    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1128    // places.
1129    assert(VA.getValNo() != LastVal &&
1130           "Don't support value assigned to multiple locs yet");
1131    LastVal = VA.getValNo();
1132
1133    if (VA.isRegLoc()) {
1134      MVT::ValueType RegVT = VA.getLocVT();
1135      TargetRegisterClass *RC;
1136      if (RegVT == MVT::i32)
1137        RC = X86::GR32RegisterClass;
1138      else if (Is64Bit && RegVT == MVT::i64)
1139        RC = X86::GR64RegisterClass;
1140      else if (Is64Bit && RegVT == MVT::f32)
1141        RC = X86::FR32RegisterClass;
1142      else if (Is64Bit && RegVT == MVT::f64)
1143        RC = X86::FR64RegisterClass;
1144      else {
1145        assert(MVT::isVector(RegVT));
1146        if (Is64Bit && MVT::getSizeInBits(RegVT) == 64) {
1147          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1148          RegVT = MVT::i64;
1149        } else
1150          RC = X86::VR128RegisterClass;
1151      }
1152
1153      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1154      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1155
1156      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1157      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1158      // right size.
1159      if (VA.getLocInfo() == CCValAssign::SExt)
1160        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1161                               DAG.getValueType(VA.getValVT()));
1162      else if (VA.getLocInfo() == CCValAssign::ZExt)
1163        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1164                               DAG.getValueType(VA.getValVT()));
1165
1166      if (VA.getLocInfo() != CCValAssign::Full)
1167        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1168
1169      // Handle MMX values passed in GPRs.
1170      if (Is64Bit && RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1171          MVT::getSizeInBits(RegVT) == 64)
1172        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1173
1174      ArgValues.push_back(ArgValue);
1175    } else {
1176      assert(VA.isMemLoc());
1177      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
1178    }
1179  }
1180
1181  unsigned StackSize = CCInfo.getNextStackOffset();
1182  // align stack specially for tail calls
1183  if (CC == CallingConv::Fast)
1184    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1185
1186  // If the function takes variable number of arguments, make a frame index for
1187  // the start of the first vararg value... for expansion of llvm.va_start.
1188  if (isVarArg) {
1189    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1190      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1191    }
1192    if (Is64Bit) {
1193      static const unsigned GPR64ArgRegs[] = {
1194        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1195      };
1196      static const unsigned XMMArgRegs[] = {
1197        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1198        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1199      };
1200
1201      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1202      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1203
1204      // For X86-64, if there are vararg parameters that are passed via
1205      // registers, then we must store them to their spots on the stack so they
1206      // may be loaded by deferencing the result of va_next.
1207      VarArgsGPOffset = NumIntRegs * 8;
1208      VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1209      RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1210
1211      // Store the integer parameter registers.
1212      SmallVector<SDOperand, 8> MemOps;
1213      SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1214      SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1215                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1216      for (; NumIntRegs != 6; ++NumIntRegs) {
1217        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1218                                  X86::GR64RegisterClass);
1219        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1220        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1221        MemOps.push_back(Store);
1222        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1223                          DAG.getIntPtrConstant(8));
1224      }
1225
1226      // Now store the XMM (fp + vector) parameter registers.
1227      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1228                        DAG.getIntPtrConstant(VarArgsFPOffset));
1229      for (; NumXMMRegs != 8; ++NumXMMRegs) {
1230        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1231                                  X86::VR128RegisterClass);
1232        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1233        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1234        MemOps.push_back(Store);
1235        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1236                          DAG.getIntPtrConstant(16));
1237      }
1238      if (!MemOps.empty())
1239          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1240                             &MemOps[0], MemOps.size());
1241    }
1242  }
1243
1244  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1245  // arguments and the arguments after the retaddr has been pushed are
1246  // aligned.
1247  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1248      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1249      (StackSize & 7) == 0)
1250    StackSize += 4;
1251
1252  ArgValues.push_back(Root);
1253
1254  // Some CCs need callee pop.
1255  if (IsCalleePop(Op)) {
1256    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1257    BytesCallerReserves = 0;
1258  } else {
1259    BytesToPopOnReturn  = 0; // Callee pops nothing.
1260    // If this is an sret function, the return should pop the hidden pointer.
1261    if (!Is64Bit && ArgsAreStructReturn(Op))
1262      BytesToPopOnReturn = 4;
1263    BytesCallerReserves = StackSize;
1264  }
1265
1266  if (!Is64Bit) {
1267    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1268    if (CC == CallingConv::X86_FastCall)
1269      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1270  }
1271
1272  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1273
1274  // Return the new list of results.
1275  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1276                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1277}
1278
1279SDOperand
1280X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1281                                    const SDOperand &StackPtr,
1282                                    const CCValAssign &VA,
1283                                    SDOperand Chain,
1284                                    SDOperand Arg) {
1285  SDOperand PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset());
1286  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1287  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1288  unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1289  if (Flags & ISD::ParamFlags::ByVal) {
1290    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1291  }
1292  return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1293}
1294
1295/// ClassifyX86_64SRetCallReturn - Classify how to implement a x86-64
1296/// struct return call to the specified function. X86-64 ABI specifies
1297/// some SRet calls are actually returned in registers. Since current
1298/// LLVM cannot represent multi-value calls, they are represent as
1299/// calls where the results are passed in a hidden struct provided by
1300/// the caller. This function examines the type of the struct to
1301/// determine the correct way to implement the call.
1302X86::X86_64SRet
1303X86TargetLowering::ClassifyX86_64SRetCallReturn(const Function *Fn) {
1304  // FIXME: Disabled for now.
1305  return X86::InMemory;
1306
1307  const PointerType *PTy = cast<PointerType>(Fn->arg_begin()->getType());
1308  const Type *RTy = PTy->getElementType();
1309  unsigned Size = getTargetData()->getABITypeSize(RTy);
1310  if (Size != 16 && Size != 32)
1311    return X86::InMemory;
1312
1313  if (Size == 32) {
1314    const StructType *STy = dyn_cast<StructType>(RTy);
1315    if (!STy) return X86::InMemory;
1316    if (STy->getNumElements() == 2 &&
1317        STy->getElementType(0) == Type::X86_FP80Ty &&
1318        STy->getElementType(1) == Type::X86_FP80Ty)
1319      return X86::InX87;
1320  }
1321
1322  bool AllFP = true;
1323  for (Type::subtype_iterator I = RTy->subtype_begin(), E = RTy->subtype_end();
1324       I != E; ++I) {
1325    const Type *STy = I->get();
1326    if (!STy->isFPOrFPVector()) {
1327      AllFP = false;
1328      break;
1329    }
1330  }
1331
1332  if (AllFP)
1333    return X86::InSSE;
1334  return X86::InGPR64;
1335}
1336
1337void X86TargetLowering::X86_64AnalyzeSRetCallOperands(SDNode *TheCall,
1338                                                      CCAssignFn *Fn,
1339                                                      CCState &CCInfo) {
1340  unsigned NumOps = (TheCall->getNumOperands() - 5) / 2;
1341  for (unsigned i = 1; i != NumOps; ++i) {
1342    MVT::ValueType ArgVT = TheCall->getOperand(5+2*i).getValueType();
1343    SDOperand FlagOp = TheCall->getOperand(5+2*i+1);
1344    unsigned ArgFlags =cast<ConstantSDNode>(FlagOp)->getValue();
1345    if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo)) {
1346      cerr << "Call operand #" << i << " has unhandled type "
1347           << MVT::getValueTypeString(ArgVT) << "\n";
1348      abort();
1349    }
1350  }
1351}
1352
1353SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1354  MachineFunction &MF = DAG.getMachineFunction();
1355  SDOperand Chain     = Op.getOperand(0);
1356  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1357  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1358  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1359                        && CC == CallingConv::Fast && PerformTailCallOpt;
1360  SDOperand Callee    = Op.getOperand(4);
1361  bool Is64Bit        = Subtarget->is64Bit();
1362  bool IsStructRet    = CallIsStructReturn(Op);
1363
1364  assert(!(isVarArg && CC == CallingConv::Fast) &&
1365         "Var args not supported with calling convention fastcc");
1366
1367  // Analyze operands of the call, assigning locations to each operand.
1368  SmallVector<CCValAssign, 16> ArgLocs;
1369  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1370  CCAssignFn *CCFn = CCAssignFnForNode(Op);
1371
1372  X86::X86_64SRet SRetMethod = X86::InMemory;
1373  if (Is64Bit && IsStructRet)
1374    // FIXME: We can't figure out type of the sret structure for indirect
1375    // calls. We need to copy more information from CallSite to the ISD::CALL
1376    // node.
1377    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1378      SRetMethod =
1379        ClassifyX86_64SRetCallReturn(dyn_cast<Function>(G->getGlobal()));
1380
1381  // UGLY HACK! For x86-64, some 128-bit aggregates are returns in a pair of
1382  // registers. Unfortunately, llvm does not support i128 yet so we pretend it's
1383  // a sret call.
1384  if (SRetMethod != X86::InMemory)
1385    X86_64AnalyzeSRetCallOperands(Op.Val, CCFn, CCInfo);
1386  else
1387    CCInfo.AnalyzeCallOperands(Op.Val, CCFn);
1388
1389  // Get a count of how many bytes are to be pushed on the stack.
1390  unsigned NumBytes = CCInfo.getNextStackOffset();
1391  if (CC == CallingConv::Fast)
1392    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1393
1394  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1395  // arguments and the arguments after the retaddr has been pushed are aligned.
1396  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1397      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1398      (NumBytes & 7) == 0)
1399    NumBytes += 4;
1400
1401  int FPDiff = 0;
1402  if (IsTailCall) {
1403    // Lower arguments at fp - stackoffset + fpdiff.
1404    unsigned NumBytesCallerPushed =
1405      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1406    FPDiff = NumBytesCallerPushed - NumBytes;
1407
1408    // Set the delta of movement of the returnaddr stackslot.
1409    // But only set if delta is greater than previous delta.
1410    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1411      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1412  }
1413
1414  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1415
1416  SDOperand RetAddrFrIdx, NewRetAddrFrIdx;
1417  if (IsTailCall) {
1418    // Adjust the Return address stack slot.
1419    if (FPDiff) {
1420      MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32;
1421      RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1422      // Load the "old" Return address.
1423      RetAddrFrIdx =
1424        DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1425      // Calculate the new stack slot for the return address.
1426      int SlotSize = Is64Bit ? 8 : 4;
1427      int NewReturnAddrFI =
1428        MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1429      NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1430      Chain = SDOperand(RetAddrFrIdx.Val, 1);
1431    }
1432  }
1433
1434  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1435  SmallVector<SDOperand, 8> MemOpChains;
1436
1437  SDOperand StackPtr;
1438
1439  // Walk the register/memloc assignments, inserting copies/loads.  For tail
1440  // calls, lower arguments which could otherwise be possibly overwritten to the
1441  // stack slot where they would go on normal function calls.
1442  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1443    CCValAssign &VA = ArgLocs[i];
1444    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1445
1446    // Promote the value if needed.
1447    switch (VA.getLocInfo()) {
1448    default: assert(0 && "Unknown loc info!");
1449    case CCValAssign::Full: break;
1450    case CCValAssign::SExt:
1451      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1452      break;
1453    case CCValAssign::ZExt:
1454      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1455      break;
1456    case CCValAssign::AExt:
1457      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1458      break;
1459    }
1460
1461    if (VA.isRegLoc()) {
1462      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1463    } else {
1464      if (!IsTailCall || IsPossiblyOverwrittenArgumentOfTailCall(Arg)) {
1465        assert(VA.isMemLoc());
1466        if (StackPtr.Val == 0)
1467          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1468
1469        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1470                                               Arg));
1471      }
1472    }
1473  }
1474
1475  if (!MemOpChains.empty())
1476    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1477                        &MemOpChains[0], MemOpChains.size());
1478
1479  // Build a sequence of copy-to-reg nodes chained together with token chain
1480  // and flag operands which copy the outgoing args into registers.
1481  SDOperand InFlag;
1482  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1483    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1484                             InFlag);
1485    InFlag = Chain.getValue(1);
1486  }
1487
1488  if (IsTailCall)
1489    InFlag = SDOperand(); // ??? Isn't this nuking the preceding loop's output?
1490
1491  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1492  // GOT pointer.
1493  // Does not work with tail call since ebx is not restored correctly by
1494  // tailcaller. TODO: at least for x86 - verify for x86-64
1495  if (!IsTailCall && !Is64Bit &&
1496      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1497      Subtarget->isPICStyleGOT()) {
1498    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1499                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1500                             InFlag);
1501    InFlag = Chain.getValue(1);
1502  }
1503
1504  if (Is64Bit && isVarArg) {
1505    // From AMD64 ABI document:
1506    // For calls that may call functions that use varargs or stdargs
1507    // (prototype-less calls or calls to functions containing ellipsis (...) in
1508    // the declaration) %al is used as hidden argument to specify the number
1509    // of SSE registers used. The contents of %al do not need to match exactly
1510    // the number of registers, but must be an ubound on the number of SSE
1511    // registers used and is in the range 0 - 8 inclusive.
1512
1513    // Count the number of XMM registers allocated.
1514    static const unsigned XMMArgRegs[] = {
1515      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1516      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1517    };
1518    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1519
1520    Chain = DAG.getCopyToReg(Chain, X86::AL,
1521                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1522    InFlag = Chain.getValue(1);
1523  }
1524
1525  // For tail calls lower the arguments to the 'real' stack slot.
1526  if (IsTailCall) {
1527    SmallVector<SDOperand, 8> MemOpChains2;
1528    SDOperand FIN;
1529    int FI = 0;
1530    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1531      CCValAssign &VA = ArgLocs[i];
1532      if (!VA.isRegLoc()) {
1533        assert(VA.isMemLoc());
1534        SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1535        SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1536        unsigned Flags    = cast<ConstantSDNode>(FlagsOp)->getValue();
1537        // Create frame index.
1538        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1539        uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1540        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1541        FIN = DAG.getFrameIndex(FI, MVT::i32);
1542        SDOperand Source = Arg;
1543        if (IsPossiblyOverwrittenArgumentOfTailCall(Arg)) {
1544          // Copy from stack slots to stack slot of a tail called function. This
1545          // needs to be done because if we would lower the arguments directly
1546          // to their real stack slot we might end up overwriting each other.
1547          // Get source stack slot.
1548          Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1549          if (StackPtr.Val == 0)
1550            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1551          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1552          if ((Flags & ISD::ParamFlags::ByVal)==0)
1553            Source = DAG.getLoad(VA.getValVT(), Chain, Source, NULL, 0);
1554        }
1555
1556        if (Flags & ISD::ParamFlags::ByVal) {
1557          // Copy relative to framepointer.
1558          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1559                                                           Flags, DAG));
1560        } else {
1561          // Store relative to framepointer.
1562          MemOpChains2.push_back(DAG.getStore(Chain, Source, FIN, NULL, 0));
1563        }
1564      }
1565    }
1566
1567    if (!MemOpChains2.empty())
1568      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1569                          &MemOpChains2[0], MemOpChains2.size());
1570
1571    // Store the return address to the appropriate stack slot.
1572    if (FPDiff)
1573      Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1574  }
1575
1576  // If the callee is a GlobalAddress node (quite common, every direct call is)
1577  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1578  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1579    // We should use extra load for direct calls to dllimported functions in
1580    // non-JIT mode.
1581    if ((IsTailCall || !Is64Bit ||
1582         getTargetMachine().getCodeModel() != CodeModel::Large)
1583        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1584                                           getTargetMachine(), true))
1585      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1586  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1587    if (IsTailCall || !Is64Bit ||
1588        getTargetMachine().getCodeModel() != CodeModel::Large)
1589      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1590  } else if (IsTailCall) {
1591    assert(Callee.getOpcode() == ISD::LOAD &&
1592           "Function destination must be loaded into virtual register");
1593    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1594
1595    Chain = DAG.getCopyToReg(Chain,
1596                             DAG.getRegister(Opc, getPointerTy()) ,
1597                             Callee,InFlag);
1598    Callee = DAG.getRegister(Opc, getPointerTy());
1599    // Add register as live out.
1600    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1601  }
1602
1603  // Returns a chain & a flag for retval copy to use.
1604  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1605  SmallVector<SDOperand, 8> Ops;
1606
1607  if (IsTailCall) {
1608    Ops.push_back(Chain);
1609    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1610    Ops.push_back(DAG.getIntPtrConstant(0));
1611    if (InFlag.Val)
1612      Ops.push_back(InFlag);
1613    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1614    InFlag = Chain.getValue(1);
1615
1616    // Returns a chain & a flag for retval copy to use.
1617    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1618    Ops.clear();
1619  }
1620
1621  Ops.push_back(Chain);
1622  Ops.push_back(Callee);
1623
1624  if (IsTailCall)
1625    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1626
1627  // Add an implicit use GOT pointer in EBX.
1628  if (!IsTailCall && !Is64Bit &&
1629      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1630      Subtarget->isPICStyleGOT())
1631    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1632
1633  // Add argument registers to the end of the list so that they are known live
1634  // into the call.
1635  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1636    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1637                                  RegsToPass[i].second.getValueType()));
1638
1639  if (InFlag.Val)
1640    Ops.push_back(InFlag);
1641
1642  if (IsTailCall) {
1643    assert(InFlag.Val &&
1644           "Flag must be set. Depend on flag being set in LowerRET");
1645    Chain = DAG.getNode(X86ISD::TAILCALL,
1646                        Op.Val->getVTList(), &Ops[0], Ops.size());
1647
1648    return SDOperand(Chain.Val, Op.ResNo);
1649  }
1650
1651  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1652  InFlag = Chain.getValue(1);
1653
1654  // Create the CALLSEQ_END node.
1655  unsigned NumBytesForCalleeToPush;
1656  if (IsCalleePop(Op))
1657    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1658  else if (!Is64Bit && IsStructRet)
1659    // If this is is a call to a struct-return function, the callee
1660    // pops the hidden struct pointer, so we have to push it back.
1661    // This is common for Darwin/X86, Linux & Mingw32 targets.
1662    NumBytesForCalleeToPush = 4;
1663  else
1664    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1665
1666  // Returns a flag for retval copy to use.
1667  Chain = DAG.getCALLSEQ_END(Chain,
1668                             DAG.getIntPtrConstant(NumBytes),
1669                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1670                             InFlag);
1671  InFlag = Chain.getValue(1);
1672
1673  // Handle result values, copying them out of physregs into vregs that we
1674  // return.
1675  switch (SRetMethod) {
1676  default:
1677    return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1678  case X86::InGPR64:
1679    return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val,
1680                                                   X86::RAX, X86::RDX,
1681                                                   MVT::i64, DAG), Op.ResNo);
1682  case X86::InSSE:
1683    return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val,
1684                                                   X86::XMM0, X86::XMM1,
1685                                                   MVT::f64, DAG), Op.ResNo);
1686  case X86::InX87:
1687    return SDOperand(LowerCallResultToTwoX87Regs(Chain, InFlag, Op.Val, DAG),
1688                     Op.ResNo);
1689  }
1690}
1691
1692
1693//===----------------------------------------------------------------------===//
1694//                Fast Calling Convention (tail call) implementation
1695//===----------------------------------------------------------------------===//
1696
1697//  Like std call, callee cleans arguments, convention except that ECX is
1698//  reserved for storing the tail called function address. Only 2 registers are
1699//  free for argument passing (inreg). Tail call optimization is performed
1700//  provided:
1701//                * tailcallopt is enabled
1702//                * caller/callee are fastcc
1703//                * elf/pic is disabled OR
1704//                * elf/pic enabled + callee is in module + callee has
1705//                  visibility protected or hidden
1706//  To keep the stack aligned according to platform abi the function
1707//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1708//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1709//  If a tail called function callee has more arguments than the caller the
1710//  caller needs to make sure that there is room to move the RETADDR to. This is
1711//  achieved by reserving an area the size of the argument delta right after the
1712//  original REtADDR, but before the saved framepointer or the spilled registers
1713//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1714//  stack layout:
1715//    arg1
1716//    arg2
1717//    RETADDR
1718//    [ new RETADDR
1719//      move area ]
1720//    (possible EBP)
1721//    ESI
1722//    EDI
1723//    local1 ..
1724
1725/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1726/// for a 16 byte align requirement.
1727unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1728                                                        SelectionDAG& DAG) {
1729  if (PerformTailCallOpt) {
1730    MachineFunction &MF = DAG.getMachineFunction();
1731    const TargetMachine &TM = MF.getTarget();
1732    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1733    unsigned StackAlignment = TFI.getStackAlignment();
1734    uint64_t AlignMask = StackAlignment - 1;
1735    int64_t Offset = StackSize;
1736    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1737    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1738      // Number smaller than 12 so just add the difference.
1739      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1740    } else {
1741      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1742      Offset = ((~AlignMask) & Offset) + StackAlignment +
1743        (StackAlignment-SlotSize);
1744    }
1745    StackSize = Offset;
1746  }
1747  return StackSize;
1748}
1749
1750/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1751/// following the call is a return. A function is eligible if caller/callee
1752/// calling conventions match, currently only fastcc supports tail calls, and
1753/// the function CALL is immediatly followed by a RET.
1754bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1755                                                      SDOperand Ret,
1756                                                      SelectionDAG& DAG) const {
1757  if (!PerformTailCallOpt)
1758    return false;
1759
1760  // Check whether CALL node immediatly preceeds the RET node and whether the
1761  // return uses the result of the node or is a void return.
1762  unsigned NumOps = Ret.getNumOperands();
1763  if ((NumOps == 1 &&
1764       (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1765        Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
1766      (NumOps > 1 &&
1767       Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1768       Ret.getOperand(1) == SDOperand(Call.Val,0))) {
1769    MachineFunction &MF = DAG.getMachineFunction();
1770    unsigned CallerCC = MF.getFunction()->getCallingConv();
1771    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1772    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1773      SDOperand Callee = Call.getOperand(4);
1774      // On elf/pic %ebx needs to be livein.
1775      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1776          !Subtarget->isPICStyleGOT())
1777        return true;
1778
1779      // Can only do local tail calls with PIC.
1780      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1781        return G->getGlobal()->hasHiddenVisibility()
1782            || G->getGlobal()->hasProtectedVisibility();
1783    }
1784  }
1785
1786  return false;
1787}
1788
1789//===----------------------------------------------------------------------===//
1790//                           Other Lowering Hooks
1791//===----------------------------------------------------------------------===//
1792
1793
1794SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1795  MachineFunction &MF = DAG.getMachineFunction();
1796  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1797  int ReturnAddrIndex = FuncInfo->getRAIndex();
1798
1799  if (ReturnAddrIndex == 0) {
1800    // Set up a frame object for the return address.
1801    if (Subtarget->is64Bit())
1802      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1803    else
1804      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1805
1806    FuncInfo->setRAIndex(ReturnAddrIndex);
1807  }
1808
1809  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1810}
1811
1812
1813
1814/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1815/// specific condition code. It returns a false if it cannot do a direct
1816/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1817/// needed.
1818static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1819                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1820                           SelectionDAG &DAG) {
1821  X86CC = X86::COND_INVALID;
1822  if (!isFP) {
1823    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1824      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1825        // X > -1   -> X == 0, jump !sign.
1826        RHS = DAG.getConstant(0, RHS.getValueType());
1827        X86CC = X86::COND_NS;
1828        return true;
1829      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1830        // X < 0   -> X == 0, jump on sign.
1831        X86CC = X86::COND_S;
1832        return true;
1833      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1834        // X < 1   -> X <= 0
1835        RHS = DAG.getConstant(0, RHS.getValueType());
1836        X86CC = X86::COND_LE;
1837        return true;
1838      }
1839    }
1840
1841    switch (SetCCOpcode) {
1842    default: break;
1843    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1844    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1845    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1846    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1847    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1848    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1849    case ISD::SETULT: X86CC = X86::COND_B;  break;
1850    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1851    case ISD::SETULE: X86CC = X86::COND_BE; break;
1852    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1853    }
1854  } else {
1855    // On a floating point condition, the flags are set as follows:
1856    // ZF  PF  CF   op
1857    //  0 | 0 | 0 | X > Y
1858    //  0 | 0 | 1 | X < Y
1859    //  1 | 0 | 0 | X == Y
1860    //  1 | 1 | 1 | unordered
1861    bool Flip = false;
1862    switch (SetCCOpcode) {
1863    default: break;
1864    case ISD::SETUEQ:
1865    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1866    case ISD::SETOLT: Flip = true; // Fallthrough
1867    case ISD::SETOGT:
1868    case ISD::SETGT: X86CC = X86::COND_A;  break;
1869    case ISD::SETOLE: Flip = true; // Fallthrough
1870    case ISD::SETOGE:
1871    case ISD::SETGE: X86CC = X86::COND_AE; break;
1872    case ISD::SETUGT: Flip = true; // Fallthrough
1873    case ISD::SETULT:
1874    case ISD::SETLT: X86CC = X86::COND_B;  break;
1875    case ISD::SETUGE: Flip = true; // Fallthrough
1876    case ISD::SETULE:
1877    case ISD::SETLE: X86CC = X86::COND_BE; break;
1878    case ISD::SETONE:
1879    case ISD::SETNE: X86CC = X86::COND_NE; break;
1880    case ISD::SETUO: X86CC = X86::COND_P;  break;
1881    case ISD::SETO:  X86CC = X86::COND_NP; break;
1882    }
1883    if (Flip)
1884      std::swap(LHS, RHS);
1885  }
1886
1887  return X86CC != X86::COND_INVALID;
1888}
1889
1890/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1891/// code. Current x86 isa includes the following FP cmov instructions:
1892/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1893static bool hasFPCMov(unsigned X86CC) {
1894  switch (X86CC) {
1895  default:
1896    return false;
1897  case X86::COND_B:
1898  case X86::COND_BE:
1899  case X86::COND_E:
1900  case X86::COND_P:
1901  case X86::COND_A:
1902  case X86::COND_AE:
1903  case X86::COND_NE:
1904  case X86::COND_NP:
1905    return true;
1906  }
1907}
1908
1909/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1910/// true if Op is undef or if its value falls within the specified range (L, H].
1911static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1912  if (Op.getOpcode() == ISD::UNDEF)
1913    return true;
1914
1915  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1916  return (Val >= Low && Val < Hi);
1917}
1918
1919/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1920/// true if Op is undef or if its value equal to the specified value.
1921static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1922  if (Op.getOpcode() == ISD::UNDEF)
1923    return true;
1924  return cast<ConstantSDNode>(Op)->getValue() == Val;
1925}
1926
1927/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1928/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1929bool X86::isPSHUFDMask(SDNode *N) {
1930  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1931
1932  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1933    return false;
1934
1935  // Check if the value doesn't reference the second vector.
1936  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1937    SDOperand Arg = N->getOperand(i);
1938    if (Arg.getOpcode() == ISD::UNDEF) continue;
1939    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1940    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1941      return false;
1942  }
1943
1944  return true;
1945}
1946
1947/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1948/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1949bool X86::isPSHUFHWMask(SDNode *N) {
1950  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1951
1952  if (N->getNumOperands() != 8)
1953    return false;
1954
1955  // Lower quadword copied in order.
1956  for (unsigned i = 0; i != 4; ++i) {
1957    SDOperand Arg = N->getOperand(i);
1958    if (Arg.getOpcode() == ISD::UNDEF) continue;
1959    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1960    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1961      return false;
1962  }
1963
1964  // Upper quadword shuffled.
1965  for (unsigned i = 4; i != 8; ++i) {
1966    SDOperand Arg = N->getOperand(i);
1967    if (Arg.getOpcode() == ISD::UNDEF) continue;
1968    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1969    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1970    if (Val < 4 || Val > 7)
1971      return false;
1972  }
1973
1974  return true;
1975}
1976
1977/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1978/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1979bool X86::isPSHUFLWMask(SDNode *N) {
1980  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1981
1982  if (N->getNumOperands() != 8)
1983    return false;
1984
1985  // Upper quadword copied in order.
1986  for (unsigned i = 4; i != 8; ++i)
1987    if (!isUndefOrEqual(N->getOperand(i), i))
1988      return false;
1989
1990  // Lower quadword shuffled.
1991  for (unsigned i = 0; i != 4; ++i)
1992    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1993      return false;
1994
1995  return true;
1996}
1997
1998/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1999/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2000static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2001  if (NumElems != 2 && NumElems != 4) return false;
2002
2003  unsigned Half = NumElems / 2;
2004  for (unsigned i = 0; i < Half; ++i)
2005    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2006      return false;
2007  for (unsigned i = Half; i < NumElems; ++i)
2008    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2009      return false;
2010
2011  return true;
2012}
2013
2014bool X86::isSHUFPMask(SDNode *N) {
2015  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2016  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2017}
2018
2019/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2020/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2021/// half elements to come from vector 1 (which would equal the dest.) and
2022/// the upper half to come from vector 2.
2023static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2024  if (NumOps != 2 && NumOps != 4) return false;
2025
2026  unsigned Half = NumOps / 2;
2027  for (unsigned i = 0; i < Half; ++i)
2028    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2029      return false;
2030  for (unsigned i = Half; i < NumOps; ++i)
2031    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2032      return false;
2033  return true;
2034}
2035
2036static bool isCommutedSHUFP(SDNode *N) {
2037  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2038  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2039}
2040
2041/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2042/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2043bool X86::isMOVHLPSMask(SDNode *N) {
2044  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2045
2046  if (N->getNumOperands() != 4)
2047    return false;
2048
2049  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2050  return isUndefOrEqual(N->getOperand(0), 6) &&
2051         isUndefOrEqual(N->getOperand(1), 7) &&
2052         isUndefOrEqual(N->getOperand(2), 2) &&
2053         isUndefOrEqual(N->getOperand(3), 3);
2054}
2055
2056/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2057/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2058/// <2, 3, 2, 3>
2059bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2060  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2061
2062  if (N->getNumOperands() != 4)
2063    return false;
2064
2065  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2066  return isUndefOrEqual(N->getOperand(0), 2) &&
2067         isUndefOrEqual(N->getOperand(1), 3) &&
2068         isUndefOrEqual(N->getOperand(2), 2) &&
2069         isUndefOrEqual(N->getOperand(3), 3);
2070}
2071
2072/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2073/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2074bool X86::isMOVLPMask(SDNode *N) {
2075  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2076
2077  unsigned NumElems = N->getNumOperands();
2078  if (NumElems != 2 && NumElems != 4)
2079    return false;
2080
2081  for (unsigned i = 0; i < NumElems/2; ++i)
2082    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2083      return false;
2084
2085  for (unsigned i = NumElems/2; i < NumElems; ++i)
2086    if (!isUndefOrEqual(N->getOperand(i), i))
2087      return false;
2088
2089  return true;
2090}
2091
2092/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2093/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2094/// and MOVLHPS.
2095bool X86::isMOVHPMask(SDNode *N) {
2096  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2097
2098  unsigned NumElems = N->getNumOperands();
2099  if (NumElems != 2 && NumElems != 4)
2100    return false;
2101
2102  for (unsigned i = 0; i < NumElems/2; ++i)
2103    if (!isUndefOrEqual(N->getOperand(i), i))
2104      return false;
2105
2106  for (unsigned i = 0; i < NumElems/2; ++i) {
2107    SDOperand Arg = N->getOperand(i + NumElems/2);
2108    if (!isUndefOrEqual(Arg, i + NumElems))
2109      return false;
2110  }
2111
2112  return true;
2113}
2114
2115/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2116/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2117bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2118                         bool V2IsSplat = false) {
2119  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2120    return false;
2121
2122  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2123    SDOperand BitI  = Elts[i];
2124    SDOperand BitI1 = Elts[i+1];
2125    if (!isUndefOrEqual(BitI, j))
2126      return false;
2127    if (V2IsSplat) {
2128      if (isUndefOrEqual(BitI1, NumElts))
2129        return false;
2130    } else {
2131      if (!isUndefOrEqual(BitI1, j + NumElts))
2132        return false;
2133    }
2134  }
2135
2136  return true;
2137}
2138
2139bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2140  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2141  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2142}
2143
2144/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2145/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2146bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2147                         bool V2IsSplat = false) {
2148  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2149    return false;
2150
2151  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2152    SDOperand BitI  = Elts[i];
2153    SDOperand BitI1 = Elts[i+1];
2154    if (!isUndefOrEqual(BitI, j + NumElts/2))
2155      return false;
2156    if (V2IsSplat) {
2157      if (isUndefOrEqual(BitI1, NumElts))
2158        return false;
2159    } else {
2160      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2161        return false;
2162    }
2163  }
2164
2165  return true;
2166}
2167
2168bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2169  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2170  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2171}
2172
2173/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2174/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2175/// <0, 0, 1, 1>
2176bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2177  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2178
2179  unsigned NumElems = N->getNumOperands();
2180  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2181    return false;
2182
2183  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2184    SDOperand BitI  = N->getOperand(i);
2185    SDOperand BitI1 = N->getOperand(i+1);
2186
2187    if (!isUndefOrEqual(BitI, j))
2188      return false;
2189    if (!isUndefOrEqual(BitI1, j))
2190      return false;
2191  }
2192
2193  return true;
2194}
2195
2196/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2197/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2198/// <2, 2, 3, 3>
2199bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2200  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2201
2202  unsigned NumElems = N->getNumOperands();
2203  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2204    return false;
2205
2206  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2207    SDOperand BitI  = N->getOperand(i);
2208    SDOperand BitI1 = N->getOperand(i + 1);
2209
2210    if (!isUndefOrEqual(BitI, j))
2211      return false;
2212    if (!isUndefOrEqual(BitI1, j))
2213      return false;
2214  }
2215
2216  return true;
2217}
2218
2219/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2220/// specifies a shuffle of elements that is suitable for input to MOVSS,
2221/// MOVSD, and MOVD, i.e. setting the lowest element.
2222static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2223  if (NumElts != 2 && NumElts != 4)
2224    return false;
2225
2226  if (!isUndefOrEqual(Elts[0], NumElts))
2227    return false;
2228
2229  for (unsigned i = 1; i < NumElts; ++i) {
2230    if (!isUndefOrEqual(Elts[i], i))
2231      return false;
2232  }
2233
2234  return true;
2235}
2236
2237bool X86::isMOVLMask(SDNode *N) {
2238  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2239  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2240}
2241
2242/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2243/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2244/// element of vector 2 and the other elements to come from vector 1 in order.
2245static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2246                           bool V2IsSplat = false,
2247                           bool V2IsUndef = false) {
2248  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2249    return false;
2250
2251  if (!isUndefOrEqual(Ops[0], 0))
2252    return false;
2253
2254  for (unsigned i = 1; i < NumOps; ++i) {
2255    SDOperand Arg = Ops[i];
2256    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2257          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2258          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2259      return false;
2260  }
2261
2262  return true;
2263}
2264
2265static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2266                           bool V2IsUndef = false) {
2267  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2268  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2269                        V2IsSplat, V2IsUndef);
2270}
2271
2272/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2273/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2274bool X86::isMOVSHDUPMask(SDNode *N) {
2275  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2276
2277  if (N->getNumOperands() != 4)
2278    return false;
2279
2280  // Expect 1, 1, 3, 3
2281  for (unsigned i = 0; i < 2; ++i) {
2282    SDOperand Arg = N->getOperand(i);
2283    if (Arg.getOpcode() == ISD::UNDEF) continue;
2284    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2285    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2286    if (Val != 1) return false;
2287  }
2288
2289  bool HasHi = false;
2290  for (unsigned i = 2; i < 4; ++i) {
2291    SDOperand Arg = N->getOperand(i);
2292    if (Arg.getOpcode() == ISD::UNDEF) continue;
2293    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2294    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2295    if (Val != 3) return false;
2296    HasHi = true;
2297  }
2298
2299  // Don't use movshdup if it can be done with a shufps.
2300  return HasHi;
2301}
2302
2303/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2304/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2305bool X86::isMOVSLDUPMask(SDNode *N) {
2306  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2307
2308  if (N->getNumOperands() != 4)
2309    return false;
2310
2311  // Expect 0, 0, 2, 2
2312  for (unsigned i = 0; i < 2; ++i) {
2313    SDOperand Arg = N->getOperand(i);
2314    if (Arg.getOpcode() == ISD::UNDEF) continue;
2315    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2316    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2317    if (Val != 0) return false;
2318  }
2319
2320  bool HasHi = false;
2321  for (unsigned i = 2; i < 4; ++i) {
2322    SDOperand Arg = N->getOperand(i);
2323    if (Arg.getOpcode() == ISD::UNDEF) continue;
2324    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2325    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2326    if (Val != 2) return false;
2327    HasHi = true;
2328  }
2329
2330  // Don't use movshdup if it can be done with a shufps.
2331  return HasHi;
2332}
2333
2334/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2335/// specifies a identity operation on the LHS or RHS.
2336static bool isIdentityMask(SDNode *N, bool RHS = false) {
2337  unsigned NumElems = N->getNumOperands();
2338  for (unsigned i = 0; i < NumElems; ++i)
2339    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2340      return false;
2341  return true;
2342}
2343
2344/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2345/// a splat of a single element.
2346static bool isSplatMask(SDNode *N) {
2347  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2348
2349  // This is a splat operation if each element of the permute is the same, and
2350  // if the value doesn't reference the second vector.
2351  unsigned NumElems = N->getNumOperands();
2352  SDOperand ElementBase;
2353  unsigned i = 0;
2354  for (; i != NumElems; ++i) {
2355    SDOperand Elt = N->getOperand(i);
2356    if (isa<ConstantSDNode>(Elt)) {
2357      ElementBase = Elt;
2358      break;
2359    }
2360  }
2361
2362  if (!ElementBase.Val)
2363    return false;
2364
2365  for (; i != NumElems; ++i) {
2366    SDOperand Arg = N->getOperand(i);
2367    if (Arg.getOpcode() == ISD::UNDEF) continue;
2368    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2369    if (Arg != ElementBase) return false;
2370  }
2371
2372  // Make sure it is a splat of the first vector operand.
2373  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2374}
2375
2376/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2377/// a splat of a single element and it's a 2 or 4 element mask.
2378bool X86::isSplatMask(SDNode *N) {
2379  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2380
2381  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2382  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2383    return false;
2384  return ::isSplatMask(N);
2385}
2386
2387/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2388/// specifies a splat of zero element.
2389bool X86::isSplatLoMask(SDNode *N) {
2390  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2391
2392  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2393    if (!isUndefOrEqual(N->getOperand(i), 0))
2394      return false;
2395  return true;
2396}
2397
2398/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2399/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2400/// instructions.
2401unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2402  unsigned NumOperands = N->getNumOperands();
2403  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2404  unsigned Mask = 0;
2405  for (unsigned i = 0; i < NumOperands; ++i) {
2406    unsigned Val = 0;
2407    SDOperand Arg = N->getOperand(NumOperands-i-1);
2408    if (Arg.getOpcode() != ISD::UNDEF)
2409      Val = cast<ConstantSDNode>(Arg)->getValue();
2410    if (Val >= NumOperands) Val -= NumOperands;
2411    Mask |= Val;
2412    if (i != NumOperands - 1)
2413      Mask <<= Shift;
2414  }
2415
2416  return Mask;
2417}
2418
2419/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2420/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2421/// instructions.
2422unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2423  unsigned Mask = 0;
2424  // 8 nodes, but we only care about the last 4.
2425  for (unsigned i = 7; i >= 4; --i) {
2426    unsigned Val = 0;
2427    SDOperand Arg = N->getOperand(i);
2428    if (Arg.getOpcode() != ISD::UNDEF)
2429      Val = cast<ConstantSDNode>(Arg)->getValue();
2430    Mask |= (Val - 4);
2431    if (i != 4)
2432      Mask <<= 2;
2433  }
2434
2435  return Mask;
2436}
2437
2438/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2439/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2440/// instructions.
2441unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2442  unsigned Mask = 0;
2443  // 8 nodes, but we only care about the first 4.
2444  for (int i = 3; i >= 0; --i) {
2445    unsigned Val = 0;
2446    SDOperand Arg = N->getOperand(i);
2447    if (Arg.getOpcode() != ISD::UNDEF)
2448      Val = cast<ConstantSDNode>(Arg)->getValue();
2449    Mask |= Val;
2450    if (i != 0)
2451      Mask <<= 2;
2452  }
2453
2454  return Mask;
2455}
2456
2457/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2458/// specifies a 8 element shuffle that can be broken into a pair of
2459/// PSHUFHW and PSHUFLW.
2460static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2461  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2462
2463  if (N->getNumOperands() != 8)
2464    return false;
2465
2466  // Lower quadword shuffled.
2467  for (unsigned i = 0; i != 4; ++i) {
2468    SDOperand Arg = N->getOperand(i);
2469    if (Arg.getOpcode() == ISD::UNDEF) continue;
2470    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2471    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2472    if (Val >= 4)
2473      return false;
2474  }
2475
2476  // Upper quadword shuffled.
2477  for (unsigned i = 4; i != 8; ++i) {
2478    SDOperand Arg = N->getOperand(i);
2479    if (Arg.getOpcode() == ISD::UNDEF) continue;
2480    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2481    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2482    if (Val < 4 || Val > 7)
2483      return false;
2484  }
2485
2486  return true;
2487}
2488
2489/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2490/// values in ther permute mask.
2491static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2492                                      SDOperand &V2, SDOperand &Mask,
2493                                      SelectionDAG &DAG) {
2494  MVT::ValueType VT = Op.getValueType();
2495  MVT::ValueType MaskVT = Mask.getValueType();
2496  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2497  unsigned NumElems = Mask.getNumOperands();
2498  SmallVector<SDOperand, 8> MaskVec;
2499
2500  for (unsigned i = 0; i != NumElems; ++i) {
2501    SDOperand Arg = Mask.getOperand(i);
2502    if (Arg.getOpcode() == ISD::UNDEF) {
2503      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2504      continue;
2505    }
2506    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2507    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2508    if (Val < NumElems)
2509      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2510    else
2511      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2512  }
2513
2514  std::swap(V1, V2);
2515  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2516  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2517}
2518
2519/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2520/// the two vector operands have swapped position.
2521static
2522SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2523  MVT::ValueType MaskVT = Mask.getValueType();
2524  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2525  unsigned NumElems = Mask.getNumOperands();
2526  SmallVector<SDOperand, 8> MaskVec;
2527  for (unsigned i = 0; i != NumElems; ++i) {
2528    SDOperand Arg = Mask.getOperand(i);
2529    if (Arg.getOpcode() == ISD::UNDEF) {
2530      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2531      continue;
2532    }
2533    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2534    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2535    if (Val < NumElems)
2536      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2537    else
2538      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2539  }
2540  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2541}
2542
2543
2544/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2545/// match movhlps. The lower half elements should come from upper half of
2546/// V1 (and in order), and the upper half elements should come from the upper
2547/// half of V2 (and in order).
2548static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2549  unsigned NumElems = Mask->getNumOperands();
2550  if (NumElems != 4)
2551    return false;
2552  for (unsigned i = 0, e = 2; i != e; ++i)
2553    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2554      return false;
2555  for (unsigned i = 2; i != 4; ++i)
2556    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2557      return false;
2558  return true;
2559}
2560
2561/// isScalarLoadToVector - Returns true if the node is a scalar load that
2562/// is promoted to a vector.
2563static inline bool isScalarLoadToVector(SDNode *N) {
2564  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2565    N = N->getOperand(0).Val;
2566    return ISD::isNON_EXTLoad(N);
2567  }
2568  return false;
2569}
2570
2571/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2572/// match movlp{s|d}. The lower half elements should come from lower half of
2573/// V1 (and in order), and the upper half elements should come from the upper
2574/// half of V2 (and in order). And since V1 will become the source of the
2575/// MOVLP, it must be either a vector load or a scalar load to vector.
2576static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2577  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2578    return false;
2579  // Is V2 is a vector load, don't do this transformation. We will try to use
2580  // load folding shufps op.
2581  if (ISD::isNON_EXTLoad(V2))
2582    return false;
2583
2584  unsigned NumElems = Mask->getNumOperands();
2585  if (NumElems != 2 && NumElems != 4)
2586    return false;
2587  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2588    if (!isUndefOrEqual(Mask->getOperand(i), i))
2589      return false;
2590  for (unsigned i = NumElems/2; i != NumElems; ++i)
2591    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2592      return false;
2593  return true;
2594}
2595
2596/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2597/// all the same.
2598static bool isSplatVector(SDNode *N) {
2599  if (N->getOpcode() != ISD::BUILD_VECTOR)
2600    return false;
2601
2602  SDOperand SplatValue = N->getOperand(0);
2603  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2604    if (N->getOperand(i) != SplatValue)
2605      return false;
2606  return true;
2607}
2608
2609/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2610/// to an undef.
2611static bool isUndefShuffle(SDNode *N) {
2612  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2613    return false;
2614
2615  SDOperand V1 = N->getOperand(0);
2616  SDOperand V2 = N->getOperand(1);
2617  SDOperand Mask = N->getOperand(2);
2618  unsigned NumElems = Mask.getNumOperands();
2619  for (unsigned i = 0; i != NumElems; ++i) {
2620    SDOperand Arg = Mask.getOperand(i);
2621    if (Arg.getOpcode() != ISD::UNDEF) {
2622      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2623      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2624        return false;
2625      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2626        return false;
2627    }
2628  }
2629  return true;
2630}
2631
2632/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2633/// constant +0.0.
2634static inline bool isZeroNode(SDOperand Elt) {
2635  return ((isa<ConstantSDNode>(Elt) &&
2636           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2637          (isa<ConstantFPSDNode>(Elt) &&
2638           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2639}
2640
2641/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2642/// to an zero vector.
2643static bool isZeroShuffle(SDNode *N) {
2644  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2645    return false;
2646
2647  SDOperand V1 = N->getOperand(0);
2648  SDOperand V2 = N->getOperand(1);
2649  SDOperand Mask = N->getOperand(2);
2650  unsigned NumElems = Mask.getNumOperands();
2651  for (unsigned i = 0; i != NumElems; ++i) {
2652    SDOperand Arg = Mask.getOperand(i);
2653    if (Arg.getOpcode() == ISD::UNDEF)
2654      continue;
2655
2656    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2657    if (Idx < NumElems) {
2658      unsigned Opc = V1.Val->getOpcode();
2659      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2660        continue;
2661      if (Opc != ISD::BUILD_VECTOR ||
2662          !isZeroNode(V1.Val->getOperand(Idx)))
2663        return false;
2664    } else if (Idx >= NumElems) {
2665      unsigned Opc = V2.Val->getOpcode();
2666      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2667        continue;
2668      if (Opc != ISD::BUILD_VECTOR ||
2669          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2670        return false;
2671    }
2672  }
2673  return true;
2674}
2675
2676/// getZeroVector - Returns a vector of specified type with all zero elements.
2677///
2678static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2679  assert(MVT::isVector(VT) && "Expected a vector type");
2680
2681  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2682  // type.  This ensures they get CSE'd.
2683  SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2684  SDOperand Vec;
2685  if (MVT::getSizeInBits(VT) == 64)  // MMX
2686    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2687  else                                              // SSE
2688    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2689  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2690}
2691
2692/// getOnesVector - Returns a vector of specified type with all bits set.
2693///
2694static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) {
2695  assert(MVT::isVector(VT) && "Expected a vector type");
2696
2697  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2698  // type.  This ensures they get CSE'd.
2699  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2700  SDOperand Vec;
2701  if (MVT::getSizeInBits(VT) == 64)  // MMX
2702    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2703  else                                              // SSE
2704    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2705  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2706}
2707
2708
2709/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2710/// that point to V2 points to its first element.
2711static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2712  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2713
2714  bool Changed = false;
2715  SmallVector<SDOperand, 8> MaskVec;
2716  unsigned NumElems = Mask.getNumOperands();
2717  for (unsigned i = 0; i != NumElems; ++i) {
2718    SDOperand Arg = Mask.getOperand(i);
2719    if (Arg.getOpcode() != ISD::UNDEF) {
2720      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2721      if (Val > NumElems) {
2722        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2723        Changed = true;
2724      }
2725    }
2726    MaskVec.push_back(Arg);
2727  }
2728
2729  if (Changed)
2730    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2731                       &MaskVec[0], MaskVec.size());
2732  return Mask;
2733}
2734
2735/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2736/// operation of specified width.
2737static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2738  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2739  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2740
2741  SmallVector<SDOperand, 8> MaskVec;
2742  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2743  for (unsigned i = 1; i != NumElems; ++i)
2744    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2745  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2746}
2747
2748/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2749/// of specified width.
2750static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2751  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2752  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2753  SmallVector<SDOperand, 8> MaskVec;
2754  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2755    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2756    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2757  }
2758  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2759}
2760
2761/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2762/// of specified width.
2763static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2764  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2765  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2766  unsigned Half = NumElems/2;
2767  SmallVector<SDOperand, 8> MaskVec;
2768  for (unsigned i = 0; i != Half; ++i) {
2769    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2770    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2771  }
2772  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2773}
2774
2775/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2776///
2777static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2778  SDOperand V1 = Op.getOperand(0);
2779  SDOperand Mask = Op.getOperand(2);
2780  MVT::ValueType VT = Op.getValueType();
2781  unsigned NumElems = Mask.getNumOperands();
2782  Mask = getUnpacklMask(NumElems, DAG);
2783  while (NumElems != 4) {
2784    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2785    NumElems >>= 1;
2786  }
2787  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2788
2789  Mask = getZeroVector(MVT::v4i32, DAG);
2790  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2791                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2792  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2793}
2794
2795/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2796/// vector of zero or undef vector.  This produces a shuffle where the low
2797/// element of V2 is swizzled into the zero/undef vector, landing at element
2798/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2799static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2800                                             unsigned NumElems, unsigned Idx,
2801                                             bool isZero, SelectionDAG &DAG) {
2802  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2803  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2804  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2805  SmallVector<SDOperand, 16> MaskVec;
2806  for (unsigned i = 0; i != NumElems; ++i)
2807    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2808      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2809    else
2810      MaskVec.push_back(DAG.getConstant(i, EVT));
2811  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2812                               &MaskVec[0], MaskVec.size());
2813  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2814}
2815
2816/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2817///
2818static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2819                                       unsigned NumNonZero, unsigned NumZero,
2820                                       SelectionDAG &DAG, TargetLowering &TLI) {
2821  if (NumNonZero > 8)
2822    return SDOperand();
2823
2824  SDOperand V(0, 0);
2825  bool First = true;
2826  for (unsigned i = 0; i < 16; ++i) {
2827    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2828    if (ThisIsNonZero && First) {
2829      if (NumZero)
2830        V = getZeroVector(MVT::v8i16, DAG);
2831      else
2832        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2833      First = false;
2834    }
2835
2836    if ((i & 1) != 0) {
2837      SDOperand ThisElt(0, 0), LastElt(0, 0);
2838      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2839      if (LastIsNonZero) {
2840        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2841      }
2842      if (ThisIsNonZero) {
2843        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2844        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2845                              ThisElt, DAG.getConstant(8, MVT::i8));
2846        if (LastIsNonZero)
2847          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2848      } else
2849        ThisElt = LastElt;
2850
2851      if (ThisElt.Val)
2852        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2853                        DAG.getIntPtrConstant(i/2));
2854    }
2855  }
2856
2857  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2858}
2859
2860/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2861///
2862static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2863                                       unsigned NumNonZero, unsigned NumZero,
2864                                       SelectionDAG &DAG, TargetLowering &TLI) {
2865  if (NumNonZero > 4)
2866    return SDOperand();
2867
2868  SDOperand V(0, 0);
2869  bool First = true;
2870  for (unsigned i = 0; i < 8; ++i) {
2871    bool isNonZero = (NonZeros & (1 << i)) != 0;
2872    if (isNonZero) {
2873      if (First) {
2874        if (NumZero)
2875          V = getZeroVector(MVT::v8i16, DAG);
2876        else
2877          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2878        First = false;
2879      }
2880      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2881                      DAG.getIntPtrConstant(i));
2882    }
2883  }
2884
2885  return V;
2886}
2887
2888SDOperand
2889X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2890  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
2891  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
2892    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
2893    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
2894    // eliminated on x86-32 hosts.
2895    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
2896      return Op;
2897
2898    if (ISD::isBuildVectorAllOnes(Op.Val))
2899      return getOnesVector(Op.getValueType(), DAG);
2900    return getZeroVector(Op.getValueType(), DAG);
2901  }
2902
2903  MVT::ValueType VT = Op.getValueType();
2904  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2905  unsigned EVTBits = MVT::getSizeInBits(EVT);
2906
2907  unsigned NumElems = Op.getNumOperands();
2908  unsigned NumZero  = 0;
2909  unsigned NumNonZero = 0;
2910  unsigned NonZeros = 0;
2911  bool HasNonImms = false;
2912  SmallSet<SDOperand, 8> Values;
2913  for (unsigned i = 0; i < NumElems; ++i) {
2914    SDOperand Elt = Op.getOperand(i);
2915    if (Elt.getOpcode() == ISD::UNDEF)
2916      continue;
2917    Values.insert(Elt);
2918    if (Elt.getOpcode() != ISD::Constant &&
2919        Elt.getOpcode() != ISD::ConstantFP)
2920      HasNonImms = true;
2921    if (isZeroNode(Elt))
2922      NumZero++;
2923    else {
2924      NonZeros |= (1 << i);
2925      NumNonZero++;
2926    }
2927  }
2928
2929  if (NumNonZero == 0) {
2930    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
2931    return DAG.getNode(ISD::UNDEF, VT);
2932  }
2933
2934  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2935  if (Values.size() == 1)
2936    return SDOperand();
2937
2938  // Special case for single non-zero element.
2939  if (NumNonZero == 1 && NumElems <= 4) {
2940    unsigned Idx = CountTrailingZeros_32(NonZeros);
2941    SDOperand Item = Op.getOperand(Idx);
2942    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2943    if (Idx == 0)
2944      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2945      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2946                                         NumZero > 0, DAG);
2947    else if (!HasNonImms) // Otherwise, it's better to do a constpool load.
2948      return SDOperand();
2949
2950    if (EVTBits == 32) {
2951      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2952      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2953                                         DAG);
2954      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2955      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2956      SmallVector<SDOperand, 8> MaskVec;
2957      for (unsigned i = 0; i < NumElems; i++)
2958        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2959      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2960                                   &MaskVec[0], MaskVec.size());
2961      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2962                         DAG.getNode(ISD::UNDEF, VT), Mask);
2963    }
2964  }
2965
2966  // A vector full of immediates; various special cases are already
2967  // handled, so this is best done with a single constant-pool load.
2968  if (!HasNonImms)
2969    return SDOperand();
2970
2971  // Let legalizer expand 2-wide build_vectors.
2972  if (EVTBits == 64)
2973    return SDOperand();
2974
2975  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2976  if (EVTBits == 8 && NumElems == 16) {
2977    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2978                                        *this);
2979    if (V.Val) return V;
2980  }
2981
2982  if (EVTBits == 16 && NumElems == 8) {
2983    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2984                                        *this);
2985    if (V.Val) return V;
2986  }
2987
2988  // If element VT is == 32 bits, turn it into a number of shuffles.
2989  SmallVector<SDOperand, 8> V;
2990  V.resize(NumElems);
2991  if (NumElems == 4 && NumZero > 0) {
2992    for (unsigned i = 0; i < 4; ++i) {
2993      bool isZero = !(NonZeros & (1 << i));
2994      if (isZero)
2995        V[i] = getZeroVector(VT, DAG);
2996      else
2997        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2998    }
2999
3000    for (unsigned i = 0; i < 2; ++i) {
3001      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3002        default: break;
3003        case 0:
3004          V[i] = V[i*2];  // Must be a zero vector.
3005          break;
3006        case 1:
3007          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3008                             getMOVLMask(NumElems, DAG));
3009          break;
3010        case 2:
3011          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3012                             getMOVLMask(NumElems, DAG));
3013          break;
3014        case 3:
3015          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3016                             getUnpacklMask(NumElems, DAG));
3017          break;
3018      }
3019    }
3020
3021    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3022    // clears the upper bits.
3023    // FIXME: we can do the same for v4f32 case when we know both parts of
3024    // the lower half come from scalar_to_vector (loadf32). We should do
3025    // that in post legalizer dag combiner with target specific hooks.
3026    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3027      return V[0];
3028    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3029    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3030    SmallVector<SDOperand, 8> MaskVec;
3031    bool Reverse = (NonZeros & 0x3) == 2;
3032    for (unsigned i = 0; i < 2; ++i)
3033      if (Reverse)
3034        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3035      else
3036        MaskVec.push_back(DAG.getConstant(i, EVT));
3037    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3038    for (unsigned i = 0; i < 2; ++i)
3039      if (Reverse)
3040        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3041      else
3042        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3043    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3044                                     &MaskVec[0], MaskVec.size());
3045    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3046  }
3047
3048  if (Values.size() > 2) {
3049    // Expand into a number of unpckl*.
3050    // e.g. for v4f32
3051    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3052    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3053    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3054    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3055    for (unsigned i = 0; i < NumElems; ++i)
3056      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3057    NumElems >>= 1;
3058    while (NumElems != 0) {
3059      for (unsigned i = 0; i < NumElems; ++i)
3060        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3061                           UnpckMask);
3062      NumElems >>= 1;
3063    }
3064    return V[0];
3065  }
3066
3067  return SDOperand();
3068}
3069
3070static
3071SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3072                                   SDOperand PermMask, SelectionDAG &DAG,
3073                                   TargetLowering &TLI) {
3074  SDOperand NewV;
3075  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8);
3076  MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3077  MVT::ValueType PtrVT = TLI.getPointerTy();
3078  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3079                                     PermMask.Val->op_end());
3080
3081  // First record which half of which vector the low elements come from.
3082  SmallVector<unsigned, 4> LowQuad(4);
3083  for (unsigned i = 0; i < 4; ++i) {
3084    SDOperand Elt = MaskElts[i];
3085    if (Elt.getOpcode() == ISD::UNDEF)
3086      continue;
3087    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3088    int QuadIdx = EltIdx / 4;
3089    ++LowQuad[QuadIdx];
3090  }
3091  int BestLowQuad = -1;
3092  unsigned MaxQuad = 1;
3093  for (unsigned i = 0; i < 4; ++i) {
3094    if (LowQuad[i] > MaxQuad) {
3095      BestLowQuad = i;
3096      MaxQuad = LowQuad[i];
3097    }
3098  }
3099
3100  // Record which half of which vector the high elements come from.
3101  SmallVector<unsigned, 4> HighQuad(4);
3102  for (unsigned i = 4; i < 8; ++i) {
3103    SDOperand Elt = MaskElts[i];
3104    if (Elt.getOpcode() == ISD::UNDEF)
3105      continue;
3106    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3107    int QuadIdx = EltIdx / 4;
3108    ++HighQuad[QuadIdx];
3109  }
3110  int BestHighQuad = -1;
3111  MaxQuad = 1;
3112  for (unsigned i = 0; i < 4; ++i) {
3113    if (HighQuad[i] > MaxQuad) {
3114      BestHighQuad = i;
3115      MaxQuad = HighQuad[i];
3116    }
3117  }
3118
3119  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3120  if (BestLowQuad != -1 || BestHighQuad != -1) {
3121    // First sort the 4 chunks in order using shufpd.
3122    SmallVector<SDOperand, 8> MaskVec;
3123    if (BestLowQuad != -1)
3124      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3125    else
3126      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3127    if (BestHighQuad != -1)
3128      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3129    else
3130      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3131    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3132    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3133                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3134                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3135    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3136
3137    // Now sort high and low parts separately.
3138    BitVector InOrder(8);
3139    if (BestLowQuad != -1) {
3140      // Sort lower half in order using PSHUFLW.
3141      MaskVec.clear();
3142      bool AnyOutOrder = false;
3143      for (unsigned i = 0; i != 4; ++i) {
3144        SDOperand Elt = MaskElts[i];
3145        if (Elt.getOpcode() == ISD::UNDEF) {
3146          MaskVec.push_back(Elt);
3147          InOrder.set(i);
3148        } else {
3149          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3150          if (EltIdx != i)
3151            AnyOutOrder = true;
3152          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3153          // If this element is in the right place after this shuffle, then
3154          // remember it.
3155          if ((int)(EltIdx / 4) == BestLowQuad)
3156            InOrder.set(i);
3157        }
3158      }
3159      if (AnyOutOrder) {
3160        for (unsigned i = 4; i != 8; ++i)
3161          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3162        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3163        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3164      }
3165    }
3166
3167    if (BestHighQuad != -1) {
3168      // Sort high half in order using PSHUFHW if possible.
3169      MaskVec.clear();
3170      for (unsigned i = 0; i != 4; ++i)
3171        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3172      bool AnyOutOrder = false;
3173      for (unsigned i = 4; i != 8; ++i) {
3174        SDOperand Elt = MaskElts[i];
3175        if (Elt.getOpcode() == ISD::UNDEF) {
3176          MaskVec.push_back(Elt);
3177          InOrder.set(i);
3178        } else {
3179          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3180          if (EltIdx != i)
3181            AnyOutOrder = true;
3182          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3183          // If this element is in the right place after this shuffle, then
3184          // remember it.
3185          if ((int)(EltIdx / 4) == BestHighQuad)
3186            InOrder.set(i);
3187        }
3188      }
3189      if (AnyOutOrder) {
3190        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3191        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3192      }
3193    }
3194
3195    // The other elements are put in the right place using pextrw and pinsrw.
3196    for (unsigned i = 0; i != 8; ++i) {
3197      if (InOrder[i])
3198        continue;
3199      SDOperand Elt = MaskElts[i];
3200      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3201      if (EltIdx == i)
3202        continue;
3203      SDOperand ExtOp = (EltIdx < 8)
3204        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3205                      DAG.getConstant(EltIdx, PtrVT))
3206        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3207                      DAG.getConstant(EltIdx - 8, PtrVT));
3208      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3209                         DAG.getConstant(i, PtrVT));
3210    }
3211    return NewV;
3212  }
3213
3214  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3215  ///as few as possible.
3216  // First, let's find out how many elements are already in the right order.
3217  unsigned V1InOrder = 0;
3218  unsigned V1FromV1 = 0;
3219  unsigned V2InOrder = 0;
3220  unsigned V2FromV2 = 0;
3221  SmallVector<SDOperand, 8> V1Elts;
3222  SmallVector<SDOperand, 8> V2Elts;
3223  for (unsigned i = 0; i < 8; ++i) {
3224    SDOperand Elt = MaskElts[i];
3225    if (Elt.getOpcode() == ISD::UNDEF) {
3226      V1Elts.push_back(Elt);
3227      V2Elts.push_back(Elt);
3228      ++V1InOrder;
3229      ++V2InOrder;
3230      continue;
3231    }
3232    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3233    if (EltIdx == i) {
3234      V1Elts.push_back(Elt);
3235      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3236      ++V1InOrder;
3237    } else if (EltIdx == i+8) {
3238      V1Elts.push_back(Elt);
3239      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3240      ++V2InOrder;
3241    } else if (EltIdx < 8) {
3242      V1Elts.push_back(Elt);
3243      ++V1FromV1;
3244    } else {
3245      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3246      ++V2FromV2;
3247    }
3248  }
3249
3250  if (V2InOrder > V1InOrder) {
3251    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3252    std::swap(V1, V2);
3253    std::swap(V1Elts, V2Elts);
3254    std::swap(V1FromV1, V2FromV2);
3255  }
3256
3257  if ((V1FromV1 + V1InOrder) != 8) {
3258    // Some elements are from V2.
3259    if (V1FromV1) {
3260      // If there are elements that are from V1 but out of place,
3261      // then first sort them in place
3262      SmallVector<SDOperand, 8> MaskVec;
3263      for (unsigned i = 0; i < 8; ++i) {
3264        SDOperand Elt = V1Elts[i];
3265        if (Elt.getOpcode() == ISD::UNDEF) {
3266          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3267          continue;
3268        }
3269        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3270        if (EltIdx >= 8)
3271          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3272        else
3273          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3274      }
3275      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3276      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3277    }
3278
3279    NewV = V1;
3280    for (unsigned i = 0; i < 8; ++i) {
3281      SDOperand Elt = V1Elts[i];
3282      if (Elt.getOpcode() == ISD::UNDEF)
3283        continue;
3284      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3285      if (EltIdx < 8)
3286        continue;
3287      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3288                                    DAG.getConstant(EltIdx - 8, PtrVT));
3289      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3290                         DAG.getConstant(i, PtrVT));
3291    }
3292    return NewV;
3293  } else {
3294    // All elements are from V1.
3295    NewV = V1;
3296    for (unsigned i = 0; i < 8; ++i) {
3297      SDOperand Elt = V1Elts[i];
3298      if (Elt.getOpcode() == ISD::UNDEF)
3299        continue;
3300      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3301      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3302                                    DAG.getConstant(EltIdx, PtrVT));
3303      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3304                         DAG.getConstant(i, PtrVT));
3305    }
3306    return NewV;
3307  }
3308}
3309
3310/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3311/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3312/// done when every pair / quad of shuffle mask elements point to elements in
3313/// the right sequence. e.g.
3314/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3315static
3316SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3317                                MVT::ValueType VT,
3318                                SDOperand PermMask, SelectionDAG &DAG,
3319                                TargetLowering &TLI) {
3320  unsigned NumElems = PermMask.getNumOperands();
3321  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3322  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3323  MVT::ValueType NewVT = MaskVT;
3324  switch (VT) {
3325  case MVT::v4f32: NewVT = MVT::v2f64; break;
3326  case MVT::v4i32: NewVT = MVT::v2i64; break;
3327  case MVT::v8i16: NewVT = MVT::v4i32; break;
3328  case MVT::v16i8: NewVT = MVT::v4i32; break;
3329  default: assert(false && "Unexpected!");
3330  }
3331
3332  if (NewWidth == 2)
3333    if (MVT::isInteger(VT))
3334      NewVT = MVT::v2i64;
3335    else
3336      NewVT = MVT::v2f64;
3337  unsigned Scale = NumElems / NewWidth;
3338  SmallVector<SDOperand, 8> MaskVec;
3339  for (unsigned i = 0; i < NumElems; i += Scale) {
3340    unsigned StartIdx = ~0U;
3341    for (unsigned j = 0; j < Scale; ++j) {
3342      SDOperand Elt = PermMask.getOperand(i+j);
3343      if (Elt.getOpcode() == ISD::UNDEF)
3344        continue;
3345      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3346      if (StartIdx == ~0U)
3347        StartIdx = EltIdx - (EltIdx % Scale);
3348      if (EltIdx != StartIdx + j)
3349        return SDOperand();
3350    }
3351    if (StartIdx == ~0U)
3352      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3353    else
3354      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
3355  }
3356
3357  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3358  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3359  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3360                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3361                                 &MaskVec[0], MaskVec.size()));
3362}
3363
3364SDOperand
3365X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3366  SDOperand V1 = Op.getOperand(0);
3367  SDOperand V2 = Op.getOperand(1);
3368  SDOperand PermMask = Op.getOperand(2);
3369  MVT::ValueType VT = Op.getValueType();
3370  unsigned NumElems = PermMask.getNumOperands();
3371  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3372  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3373  bool V1IsSplat = false;
3374  bool V2IsSplat = false;
3375
3376  if (isUndefShuffle(Op.Val))
3377    return DAG.getNode(ISD::UNDEF, VT);
3378
3379  if (isZeroShuffle(Op.Val))
3380    return getZeroVector(VT, DAG);
3381
3382  if (isIdentityMask(PermMask.Val))
3383    return V1;
3384  else if (isIdentityMask(PermMask.Val, true))
3385    return V2;
3386
3387  if (isSplatMask(PermMask.Val)) {
3388    if (NumElems <= 4) return Op;
3389    // Promote it to a v4i32 splat.
3390    return PromoteSplat(Op, DAG);
3391  }
3392
3393  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3394  // do it!
3395  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3396    SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3397    if (NewOp.Val)
3398      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3399  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3400    // FIXME: Figure out a cleaner way to do this.
3401    // Try to make use of movq to zero out the top part.
3402    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3403      SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3404      if (NewOp.Val) {
3405        SDOperand NewV1 = NewOp.getOperand(0);
3406        SDOperand NewV2 = NewOp.getOperand(1);
3407        SDOperand NewMask = NewOp.getOperand(2);
3408        if (isCommutedMOVL(NewMask.Val, true, false)) {
3409          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3410          NewOp = DAG.getNode(ISD::VECTOR_SHUFFLE, NewOp.getValueType(),
3411                              NewV1, NewV2, getMOVLMask(2, DAG));
3412          return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3413        }
3414      }
3415    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3416      SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3417      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3418        return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3419    }
3420  }
3421
3422  if (X86::isMOVLMask(PermMask.Val))
3423    return (V1IsUndef) ? V2 : Op;
3424
3425  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3426      X86::isMOVSLDUPMask(PermMask.Val) ||
3427      X86::isMOVHLPSMask(PermMask.Val) ||
3428      X86::isMOVHPMask(PermMask.Val) ||
3429      X86::isMOVLPMask(PermMask.Val))
3430    return Op;
3431
3432  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3433      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3434    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3435
3436  bool Commuted = false;
3437  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3438  // 1,1,1,1 -> v8i16 though.
3439  V1IsSplat = isSplatVector(V1.Val);
3440  V2IsSplat = isSplatVector(V2.Val);
3441
3442  // Canonicalize the splat or undef, if present, to be on the RHS.
3443  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3444    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3445    std::swap(V1IsSplat, V2IsSplat);
3446    std::swap(V1IsUndef, V2IsUndef);
3447    Commuted = true;
3448  }
3449
3450  // FIXME: Figure out a cleaner way to do this.
3451  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3452    if (V2IsUndef) return V1;
3453    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3454    if (V2IsSplat) {
3455      // V2 is a splat, so the mask may be malformed. That is, it may point
3456      // to any V2 element. The instruction selectior won't like this. Get
3457      // a corrected mask and commute to form a proper MOVS{S|D}.
3458      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3459      if (NewMask.Val != PermMask.Val)
3460        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3461    }
3462    return Op;
3463  }
3464
3465  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3466      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3467      X86::isUNPCKLMask(PermMask.Val) ||
3468      X86::isUNPCKHMask(PermMask.Val))
3469    return Op;
3470
3471  if (V2IsSplat) {
3472    // Normalize mask so all entries that point to V2 points to its first
3473    // element then try to match unpck{h|l} again. If match, return a
3474    // new vector_shuffle with the corrected mask.
3475    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3476    if (NewMask.Val != PermMask.Val) {
3477      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3478        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3479        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3480      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3481        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3482        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3483      }
3484    }
3485  }
3486
3487  // Normalize the node to match x86 shuffle ops if needed
3488  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3489      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3490
3491  if (Commuted) {
3492    // Commute is back and try unpck* again.
3493    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3494    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3495        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3496        X86::isUNPCKLMask(PermMask.Val) ||
3497        X86::isUNPCKHMask(PermMask.Val))
3498      return Op;
3499  }
3500
3501  // If VT is integer, try PSHUF* first, then SHUFP*.
3502  if (MVT::isInteger(VT)) {
3503    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3504    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3505    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3506         X86::isPSHUFDMask(PermMask.Val)) ||
3507        X86::isPSHUFHWMask(PermMask.Val) ||
3508        X86::isPSHUFLWMask(PermMask.Val)) {
3509      if (V2.getOpcode() != ISD::UNDEF)
3510        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3511                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3512      return Op;
3513    }
3514
3515    if (X86::isSHUFPMask(PermMask.Val) &&
3516        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
3517      return Op;
3518  } else {
3519    // Floating point cases in the other order.
3520    if (X86::isSHUFPMask(PermMask.Val))
3521      return Op;
3522    if (X86::isPSHUFDMask(PermMask.Val) ||
3523        X86::isPSHUFHWMask(PermMask.Val) ||
3524        X86::isPSHUFLWMask(PermMask.Val)) {
3525      if (V2.getOpcode() != ISD::UNDEF)
3526        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3527                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3528      return Op;
3529    }
3530  }
3531
3532  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3533  if (VT == MVT::v8i16) {
3534    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3535    if (NewOp.Val)
3536      return NewOp;
3537  }
3538
3539  // Handle all 4 wide cases with a number of shuffles.
3540  if (NumElems == 4 && MVT::getSizeInBits(VT) != 64) {
3541    // Don't do this for MMX.
3542    MVT::ValueType MaskVT = PermMask.getValueType();
3543    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3544    SmallVector<std::pair<int, int>, 8> Locs;
3545    Locs.reserve(NumElems);
3546    SmallVector<SDOperand, 8> Mask1(NumElems,
3547                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3548    SmallVector<SDOperand, 8> Mask2(NumElems,
3549                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3550    unsigned NumHi = 0;
3551    unsigned NumLo = 0;
3552    // If no more than two elements come from either vector. This can be
3553    // implemented with two shuffles. First shuffle gather the elements.
3554    // The second shuffle, which takes the first shuffle as both of its
3555    // vector operands, put the elements into the right order.
3556    for (unsigned i = 0; i != NumElems; ++i) {
3557      SDOperand Elt = PermMask.getOperand(i);
3558      if (Elt.getOpcode() == ISD::UNDEF) {
3559        Locs[i] = std::make_pair(-1, -1);
3560      } else {
3561        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3562        if (Val < NumElems) {
3563          Locs[i] = std::make_pair(0, NumLo);
3564          Mask1[NumLo] = Elt;
3565          NumLo++;
3566        } else {
3567          Locs[i] = std::make_pair(1, NumHi);
3568          if (2+NumHi < NumElems)
3569            Mask1[2+NumHi] = Elt;
3570          NumHi++;
3571        }
3572      }
3573    }
3574    if (NumLo <= 2 && NumHi <= 2) {
3575      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3576                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3577                                   &Mask1[0], Mask1.size()));
3578      for (unsigned i = 0; i != NumElems; ++i) {
3579        if (Locs[i].first == -1)
3580          continue;
3581        else {
3582          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3583          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3584          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3585        }
3586      }
3587
3588      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3589                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3590                                     &Mask2[0], Mask2.size()));
3591    }
3592
3593    // Break it into (shuffle shuffle_hi, shuffle_lo).
3594    Locs.clear();
3595    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3596    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3597    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3598    unsigned MaskIdx = 0;
3599    unsigned LoIdx = 0;
3600    unsigned HiIdx = NumElems/2;
3601    for (unsigned i = 0; i != NumElems; ++i) {
3602      if (i == NumElems/2) {
3603        MaskPtr = &HiMask;
3604        MaskIdx = 1;
3605        LoIdx = 0;
3606        HiIdx = NumElems/2;
3607      }
3608      SDOperand Elt = PermMask.getOperand(i);
3609      if (Elt.getOpcode() == ISD::UNDEF) {
3610        Locs[i] = std::make_pair(-1, -1);
3611      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3612        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3613        (*MaskPtr)[LoIdx] = Elt;
3614        LoIdx++;
3615      } else {
3616        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3617        (*MaskPtr)[HiIdx] = Elt;
3618        HiIdx++;
3619      }
3620    }
3621
3622    SDOperand LoShuffle =
3623      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3624                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3625                              &LoMask[0], LoMask.size()));
3626    SDOperand HiShuffle =
3627      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3628                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3629                              &HiMask[0], HiMask.size()));
3630    SmallVector<SDOperand, 8> MaskOps;
3631    for (unsigned i = 0; i != NumElems; ++i) {
3632      if (Locs[i].first == -1) {
3633        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3634      } else {
3635        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3636        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3637      }
3638    }
3639    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3640                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3641                                   &MaskOps[0], MaskOps.size()));
3642  }
3643
3644  return SDOperand();
3645}
3646
3647SDOperand
3648X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3649  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3650    return SDOperand();
3651
3652  MVT::ValueType VT = Op.getValueType();
3653  // TODO: handle v16i8.
3654  if (MVT::getSizeInBits(VT) == 16) {
3655    SDOperand Vec = Op.getOperand(0);
3656    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3657    if (Idx == 0)
3658      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
3659                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3660                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
3661                                     Op.getOperand(1)));
3662    // Transform it so it match pextrw which produces a 32-bit result.
3663    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3664    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3665                                    Op.getOperand(0), Op.getOperand(1));
3666    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3667                                    DAG.getValueType(VT));
3668    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3669  } else if (MVT::getSizeInBits(VT) == 32) {
3670    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3671    if (Idx == 0)
3672      return Op;
3673    // SHUFPS the element to the lowest double word, then movss.
3674    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3675    SmallVector<SDOperand, 8> IdxVec;
3676    IdxVec.
3677      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3678    IdxVec.
3679      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3680    IdxVec.
3681      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3682    IdxVec.
3683      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3684    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3685                                 &IdxVec[0], IdxVec.size());
3686    SDOperand Vec = Op.getOperand(0);
3687    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3688                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3689    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3690                       DAG.getIntPtrConstant(0));
3691  } else if (MVT::getSizeInBits(VT) == 64) {
3692    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3693    if (Idx == 0)
3694      return Op;
3695
3696    // UNPCKHPD the element to the lowest double word, then movsd.
3697    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3698    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3699    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3700    SmallVector<SDOperand, 8> IdxVec;
3701    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3702    IdxVec.
3703      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3704    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3705                                 &IdxVec[0], IdxVec.size());
3706    SDOperand Vec = Op.getOperand(0);
3707    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3708                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3709    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3710                       DAG.getIntPtrConstant(0));
3711  }
3712
3713  return SDOperand();
3714}
3715
3716SDOperand
3717X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3718  MVT::ValueType VT = Op.getValueType();
3719  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3720  if (EVT == MVT::i8)
3721    return SDOperand();
3722
3723  SDOperand N0 = Op.getOperand(0);
3724  SDOperand N1 = Op.getOperand(1);
3725  SDOperand N2 = Op.getOperand(2);
3726
3727  if (MVT::getSizeInBits(EVT) == 16) {
3728    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3729    // as its second argument.
3730    if (N1.getValueType() != MVT::i32)
3731      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3732    if (N2.getValueType() != MVT::i32)
3733      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3734    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3735  }
3736  return SDOperand();
3737}
3738
3739SDOperand
3740X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3741  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3742  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3743}
3744
3745// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3746// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3747// one of the above mentioned nodes. It has to be wrapped because otherwise
3748// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3749// be used to form addressing mode. These wrapped nodes will be selected
3750// into MOV32ri.
3751SDOperand
3752X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3753  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3754  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3755                                               getPointerTy(),
3756                                               CP->getAlignment());
3757  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3758  // With PIC, the address is actually $g + Offset.
3759  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3760      !Subtarget->isPICStyleRIPRel()) {
3761    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3762                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3763                         Result);
3764  }
3765
3766  return Result;
3767}
3768
3769SDOperand
3770X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3771  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3772  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3773  // If it's a debug information descriptor, don't mess with it.
3774  if (DAG.isVerifiedDebugInfoDesc(Op))
3775    return Result;
3776  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3777  // With PIC, the address is actually $g + Offset.
3778  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3779      !Subtarget->isPICStyleRIPRel()) {
3780    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3781                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3782                         Result);
3783  }
3784
3785  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3786  // load the value at address GV, not the value of GV itself. This means that
3787  // the GlobalAddress must be in the base or index register of the address, not
3788  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3789  // The same applies for external symbols during PIC codegen
3790  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3791    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3792
3793  return Result;
3794}
3795
3796// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3797static SDOperand
3798LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3799                              const MVT::ValueType PtrVT) {
3800  SDOperand InFlag;
3801  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3802                                     DAG.getNode(X86ISD::GlobalBaseReg,
3803                                                 PtrVT), InFlag);
3804  InFlag = Chain.getValue(1);
3805
3806  // emit leal symbol@TLSGD(,%ebx,1), %eax
3807  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3808  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3809                                             GA->getValueType(0),
3810                                             GA->getOffset());
3811  SDOperand Ops[] = { Chain,  TGA, InFlag };
3812  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3813  InFlag = Result.getValue(2);
3814  Chain = Result.getValue(1);
3815
3816  // call ___tls_get_addr. This function receives its argument in
3817  // the register EAX.
3818  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3819  InFlag = Chain.getValue(1);
3820
3821  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3822  SDOperand Ops1[] = { Chain,
3823                      DAG.getTargetExternalSymbol("___tls_get_addr",
3824                                                  PtrVT),
3825                      DAG.getRegister(X86::EAX, PtrVT),
3826                      DAG.getRegister(X86::EBX, PtrVT),
3827                      InFlag };
3828  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3829  InFlag = Chain.getValue(1);
3830
3831  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3832}
3833
3834// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3835// "local exec" model.
3836static SDOperand
3837LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3838                         const MVT::ValueType PtrVT) {
3839  // Get the Thread Pointer
3840  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3841  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3842  // exec)
3843  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3844                                             GA->getValueType(0),
3845                                             GA->getOffset());
3846  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3847
3848  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3849    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3850
3851  // The address of the thread local variable is the add of the thread
3852  // pointer with the offset of the variable.
3853  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3854}
3855
3856SDOperand
3857X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3858  // TODO: implement the "local dynamic" model
3859  // TODO: implement the "initial exec"model for pic executables
3860  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3861         "TLS not implemented for non-ELF and 64-bit targets");
3862  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3863  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3864  // otherwise use the "Local Exec"TLS Model
3865  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3866    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3867  else
3868    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3869}
3870
3871SDOperand
3872X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3873  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3874  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3875  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3876  // With PIC, the address is actually $g + Offset.
3877  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3878      !Subtarget->isPICStyleRIPRel()) {
3879    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3880                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3881                         Result);
3882  }
3883
3884  return Result;
3885}
3886
3887SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3888  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3889  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3890  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3891  // With PIC, the address is actually $g + Offset.
3892  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3893      !Subtarget->isPICStyleRIPRel()) {
3894    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3895                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3896                         Result);
3897  }
3898
3899  return Result;
3900}
3901
3902/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
3903/// take a 2 x i32 value to shift plus a shift amount.
3904SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3905  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3906         "Not an i64 shift!");
3907  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3908  SDOperand ShOpLo = Op.getOperand(0);
3909  SDOperand ShOpHi = Op.getOperand(1);
3910  SDOperand ShAmt  = Op.getOperand(2);
3911  SDOperand Tmp1 = isSRA ?
3912    DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3913    DAG.getConstant(0, MVT::i32);
3914
3915  SDOperand Tmp2, Tmp3;
3916  if (Op.getOpcode() == ISD::SHL_PARTS) {
3917    Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3918    Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3919  } else {
3920    Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3921    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3922  }
3923
3924  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3925  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3926                                  DAG.getConstant(32, MVT::i8));
3927  SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
3928                               AndNode, DAG.getConstant(0, MVT::i8));
3929
3930  SDOperand Hi, Lo;
3931  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3932  VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3933  SmallVector<SDOperand, 4> Ops;
3934  if (Op.getOpcode() == ISD::SHL_PARTS) {
3935    Ops.push_back(Tmp2);
3936    Ops.push_back(Tmp3);
3937    Ops.push_back(CC);
3938    Ops.push_back(Cond);
3939    Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3940
3941    Ops.clear();
3942    Ops.push_back(Tmp3);
3943    Ops.push_back(Tmp1);
3944    Ops.push_back(CC);
3945    Ops.push_back(Cond);
3946    Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3947  } else {
3948    Ops.push_back(Tmp2);
3949    Ops.push_back(Tmp3);
3950    Ops.push_back(CC);
3951    Ops.push_back(Cond);
3952    Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3953
3954    Ops.clear();
3955    Ops.push_back(Tmp3);
3956    Ops.push_back(Tmp1);
3957    Ops.push_back(CC);
3958    Ops.push_back(Cond);
3959    Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3960  }
3961
3962  VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3963  Ops.clear();
3964  Ops.push_back(Lo);
3965  Ops.push_back(Hi);
3966  return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3967}
3968
3969SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3970  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3971         Op.getOperand(0).getValueType() >= MVT::i16 &&
3972         "Unknown SINT_TO_FP to lower!");
3973
3974  SDOperand Result;
3975  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3976  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3977  MachineFunction &MF = DAG.getMachineFunction();
3978  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3979  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3980  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3981                                 StackSlot, NULL, 0);
3982
3983  // These are really Legal; caller falls through into that case.
3984  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
3985    return Result;
3986  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
3987      Subtarget->is64Bit())
3988    return Result;
3989
3990  // Build the FILD
3991  SDVTList Tys;
3992  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
3993  if (useSSE)
3994    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3995  else
3996    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3997  SmallVector<SDOperand, 8> Ops;
3998  Ops.push_back(Chain);
3999  Ops.push_back(StackSlot);
4000  Ops.push_back(DAG.getValueType(SrcVT));
4001  Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
4002                       Tys, &Ops[0], Ops.size());
4003
4004  if (useSSE) {
4005    Chain = Result.getValue(1);
4006    SDOperand InFlag = Result.getValue(2);
4007
4008    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4009    // shouldn't be necessary except that RFP cannot be live across
4010    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4011    MachineFunction &MF = DAG.getMachineFunction();
4012    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4013    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4014    Tys = DAG.getVTList(MVT::Other);
4015    SmallVector<SDOperand, 8> Ops;
4016    Ops.push_back(Chain);
4017    Ops.push_back(Result);
4018    Ops.push_back(StackSlot);
4019    Ops.push_back(DAG.getValueType(Op.getValueType()));
4020    Ops.push_back(InFlag);
4021    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4022    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
4023  }
4024
4025  return Result;
4026}
4027
4028std::pair<SDOperand,SDOperand> X86TargetLowering::
4029FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
4030  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4031         "Unknown FP_TO_SINT to lower!");
4032
4033  // These are really Legal.
4034  if (Op.getValueType() == MVT::i32 &&
4035      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4036    return std::make_pair(SDOperand(), SDOperand());
4037  if (Subtarget->is64Bit() &&
4038      Op.getValueType() == MVT::i64 &&
4039      Op.getOperand(0).getValueType() != MVT::f80)
4040    return std::make_pair(SDOperand(), SDOperand());
4041
4042  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4043  // stack slot.
4044  MachineFunction &MF = DAG.getMachineFunction();
4045  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4046  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4047  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4048  unsigned Opc;
4049  switch (Op.getValueType()) {
4050  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4051  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4052  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4053  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4054  }
4055
4056  SDOperand Chain = DAG.getEntryNode();
4057  SDOperand Value = Op.getOperand(0);
4058  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4059    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4060    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
4061    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4062    SDOperand Ops[] = {
4063      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4064    };
4065    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4066    Chain = Value.getValue(1);
4067    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4068    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4069  }
4070
4071  // Build the FP_TO_INT*_IN_MEM
4072  SDOperand Ops[] = { Chain, Value, StackSlot };
4073  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4074
4075  return std::make_pair(FIST, StackSlot);
4076}
4077
4078SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4079  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4080  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4081  if (FIST.Val == 0) return SDOperand();
4082
4083  // Load the result.
4084  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4085}
4086
4087SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4088  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4089  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4090  if (FIST.Val == 0) return 0;
4091
4092  // Return an i64 load from the stack slot.
4093  SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
4094
4095  // Use a MERGE_VALUES node to drop the chain result value.
4096  return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
4097}
4098
4099SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4100  MVT::ValueType VT = Op.getValueType();
4101  MVT::ValueType EltVT = VT;
4102  if (MVT::isVector(VT))
4103    EltVT = MVT::getVectorElementType(VT);
4104  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4105  std::vector<Constant*> CV;
4106  if (EltVT == MVT::f64) {
4107    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
4108    CV.push_back(C);
4109    CV.push_back(C);
4110  } else {
4111    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
4112    CV.push_back(C);
4113    CV.push_back(C);
4114    CV.push_back(C);
4115    CV.push_back(C);
4116  }
4117  Constant *C = ConstantVector::get(CV);
4118  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4119  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4120                               false, 16);
4121  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4122}
4123
4124SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4125  MVT::ValueType VT = Op.getValueType();
4126  MVT::ValueType EltVT = VT;
4127  unsigned EltNum = 1;
4128  if (MVT::isVector(VT)) {
4129    EltVT = MVT::getVectorElementType(VT);
4130    EltNum = MVT::getVectorNumElements(VT);
4131  }
4132  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4133  std::vector<Constant*> CV;
4134  if (EltVT == MVT::f64) {
4135    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
4136    CV.push_back(C);
4137    CV.push_back(C);
4138  } else {
4139    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
4140    CV.push_back(C);
4141    CV.push_back(C);
4142    CV.push_back(C);
4143    CV.push_back(C);
4144  }
4145  Constant *C = ConstantVector::get(CV);
4146  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4147  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4148                               false, 16);
4149  if (MVT::isVector(VT)) {
4150    return DAG.getNode(ISD::BIT_CONVERT, VT,
4151                       DAG.getNode(ISD::XOR, MVT::v2i64,
4152                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4153                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4154  } else {
4155    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4156  }
4157}
4158
4159SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4160  SDOperand Op0 = Op.getOperand(0);
4161  SDOperand Op1 = Op.getOperand(1);
4162  MVT::ValueType VT = Op.getValueType();
4163  MVT::ValueType SrcVT = Op1.getValueType();
4164  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
4165
4166  // If second operand is smaller, extend it first.
4167  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4168    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4169    SrcVT = VT;
4170    SrcTy = MVT::getTypeForValueType(SrcVT);
4171  }
4172  // And if it is bigger, shrink it first.
4173  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4174    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4175    SrcVT = VT;
4176    SrcTy = MVT::getTypeForValueType(SrcVT);
4177  }
4178
4179  // At this point the operands and the result should have the same
4180  // type, and that won't be f80 since that is not custom lowered.
4181
4182  // First get the sign bit of second operand.
4183  std::vector<Constant*> CV;
4184  if (SrcVT == MVT::f64) {
4185    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4186    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4187  } else {
4188    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4189    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4190    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4191    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4192  }
4193  Constant *C = ConstantVector::get(CV);
4194  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4195  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4196                                false, 16);
4197  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4198
4199  // Shift sign bit right or left if the two operands have different types.
4200  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4201    // Op0 is MVT::f32, Op1 is MVT::f64.
4202    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4203    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4204                          DAG.getConstant(32, MVT::i32));
4205    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4206    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4207                          DAG.getIntPtrConstant(0));
4208  }
4209
4210  // Clear first operand sign bit.
4211  CV.clear();
4212  if (VT == MVT::f64) {
4213    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4214    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4215  } else {
4216    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4217    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4218    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4219    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4220  }
4221  C = ConstantVector::get(CV);
4222  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4223  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4224                                false, 16);
4225  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4226
4227  // Or the value with the sign bit.
4228  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4229}
4230
4231SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4232  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4233  SDOperand Cond;
4234  SDOperand Op0 = Op.getOperand(0);
4235  SDOperand Op1 = Op.getOperand(1);
4236  SDOperand CC = Op.getOperand(2);
4237  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4238  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4239  unsigned X86CC;
4240
4241  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4242                     Op0, Op1, DAG)) {
4243    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4244    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4245                       DAG.getConstant(X86CC, MVT::i8), Cond);
4246  }
4247
4248  assert(isFP && "Illegal integer SetCC!");
4249
4250  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4251  switch (SetCCOpcode) {
4252  default: assert(false && "Illegal floating point SetCC!");
4253  case ISD::SETOEQ: {  // !PF & ZF
4254    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4255                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4256    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4257                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4258    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4259  }
4260  case ISD::SETUNE: {  // PF | !ZF
4261    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4262                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4263    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4264                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4265    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4266  }
4267  }
4268}
4269
4270
4271SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4272  bool addTest = true;
4273  SDOperand Cond  = Op.getOperand(0);
4274  SDOperand CC;
4275
4276  if (Cond.getOpcode() == ISD::SETCC)
4277    Cond = LowerSETCC(Cond, DAG);
4278
4279  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4280  // setting operand in place of the X86ISD::SETCC.
4281  if (Cond.getOpcode() == X86ISD::SETCC) {
4282    CC = Cond.getOperand(0);
4283
4284    SDOperand Cmp = Cond.getOperand(1);
4285    unsigned Opc = Cmp.getOpcode();
4286    MVT::ValueType VT = Op.getValueType();
4287
4288    bool IllegalFPCMov = false;
4289    if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT) &&
4290        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4291      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4292
4293    if ((Opc == X86ISD::CMP ||
4294         Opc == X86ISD::COMI ||
4295         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4296      Cond = Cmp;
4297      addTest = false;
4298    }
4299  }
4300
4301  if (addTest) {
4302    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4303    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4304  }
4305
4306  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4307                                                    MVT::Flag);
4308  SmallVector<SDOperand, 4> Ops;
4309  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4310  // condition is true.
4311  Ops.push_back(Op.getOperand(2));
4312  Ops.push_back(Op.getOperand(1));
4313  Ops.push_back(CC);
4314  Ops.push_back(Cond);
4315  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4316}
4317
4318SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4319  bool addTest = true;
4320  SDOperand Chain = Op.getOperand(0);
4321  SDOperand Cond  = Op.getOperand(1);
4322  SDOperand Dest  = Op.getOperand(2);
4323  SDOperand CC;
4324
4325  if (Cond.getOpcode() == ISD::SETCC)
4326    Cond = LowerSETCC(Cond, DAG);
4327
4328  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4329  // setting operand in place of the X86ISD::SETCC.
4330  if (Cond.getOpcode() == X86ISD::SETCC) {
4331    CC = Cond.getOperand(0);
4332
4333    SDOperand Cmp = Cond.getOperand(1);
4334    unsigned Opc = Cmp.getOpcode();
4335    if (Opc == X86ISD::CMP ||
4336        Opc == X86ISD::COMI ||
4337        Opc == X86ISD::UCOMI) {
4338      Cond = Cmp;
4339      addTest = false;
4340    }
4341  }
4342
4343  if (addTest) {
4344    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4345    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4346  }
4347  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4348                     Chain, Op.getOperand(2), CC, Cond);
4349}
4350
4351
4352// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4353// Calls to _alloca is needed to probe the stack when allocating more than 4k
4354// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4355// that the guard pages used by the OS virtual memory manager are allocated in
4356// correct sequence.
4357SDOperand
4358X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4359                                           SelectionDAG &DAG) {
4360  assert(Subtarget->isTargetCygMing() &&
4361         "This should be used only on Cygwin/Mingw targets");
4362
4363  // Get the inputs.
4364  SDOperand Chain = Op.getOperand(0);
4365  SDOperand Size  = Op.getOperand(1);
4366  // FIXME: Ensure alignment here
4367
4368  SDOperand Flag;
4369
4370  MVT::ValueType IntPtr = getPointerTy();
4371  MVT::ValueType SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
4372
4373  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4374  Flag = Chain.getValue(1);
4375
4376  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4377  SDOperand Ops[] = { Chain,
4378                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4379                      DAG.getRegister(X86::EAX, IntPtr),
4380                      Flag };
4381  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4382  Flag = Chain.getValue(1);
4383
4384  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4385
4386  std::vector<MVT::ValueType> Tys;
4387  Tys.push_back(SPTy);
4388  Tys.push_back(MVT::Other);
4389  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4390  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4391}
4392
4393SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4394  SDOperand InFlag(0, 0);
4395  SDOperand Chain = Op.getOperand(0);
4396  unsigned Align =
4397    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4398  if (Align == 0) Align = 1;
4399
4400  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4401  // If not DWORD aligned or size is more than the threshold, call memset.
4402  // The libc version is likely to be faster for these cases. It can use the
4403  // address value and run time information about the CPU.
4404  if ((Align & 3) != 0 ||
4405      (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
4406    MVT::ValueType IntPtr = getPointerTy();
4407    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4408    TargetLowering::ArgListTy Args;
4409    TargetLowering::ArgListEntry Entry;
4410    Entry.Node = Op.getOperand(1);
4411    Entry.Ty = IntPtrTy;
4412    Args.push_back(Entry);
4413    // Extend the unsigned i8 argument to be an int value for the call.
4414    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4415    Entry.Ty = IntPtrTy;
4416    Args.push_back(Entry);
4417    Entry.Node = Op.getOperand(3);
4418    Args.push_back(Entry);
4419    std::pair<SDOperand,SDOperand> CallResult =
4420      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4421                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4422    return CallResult.second;
4423  }
4424
4425  MVT::ValueType AVT;
4426  SDOperand Count;
4427  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4428  unsigned BytesLeft = 0;
4429  bool TwoRepStos = false;
4430  if (ValC) {
4431    unsigned ValReg;
4432    uint64_t Val = ValC->getValue() & 255;
4433
4434    // If the value is a constant, then we can potentially use larger sets.
4435    switch (Align & 3) {
4436      case 2:   // WORD aligned
4437        AVT = MVT::i16;
4438        ValReg = X86::AX;
4439        Val = (Val << 8) | Val;
4440        break;
4441      case 0:  // DWORD aligned
4442        AVT = MVT::i32;
4443        ValReg = X86::EAX;
4444        Val = (Val << 8)  | Val;
4445        Val = (Val << 16) | Val;
4446        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4447          AVT = MVT::i64;
4448          ValReg = X86::RAX;
4449          Val = (Val << 32) | Val;
4450        }
4451        break;
4452      default:  // Byte aligned
4453        AVT = MVT::i8;
4454        ValReg = X86::AL;
4455        Count = Op.getOperand(3);
4456        break;
4457    }
4458
4459    if (AVT > MVT::i8) {
4460      if (I) {
4461        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4462        Count = DAG.getIntPtrConstant(I->getValue() / UBytes);
4463        BytesLeft = I->getValue() % UBytes;
4464      } else {
4465        assert(AVT >= MVT::i32 &&
4466               "Do not use rep;stos if not at least DWORD aligned");
4467        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4468                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4469        TwoRepStos = true;
4470      }
4471    }
4472
4473    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4474                              InFlag);
4475    InFlag = Chain.getValue(1);
4476  } else {
4477    AVT = MVT::i8;
4478    Count  = Op.getOperand(3);
4479    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4480    InFlag = Chain.getValue(1);
4481  }
4482
4483  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4484                            Count, InFlag);
4485  InFlag = Chain.getValue(1);
4486  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4487                            Op.getOperand(1), InFlag);
4488  InFlag = Chain.getValue(1);
4489
4490  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4491  SmallVector<SDOperand, 8> Ops;
4492  Ops.push_back(Chain);
4493  Ops.push_back(DAG.getValueType(AVT));
4494  Ops.push_back(InFlag);
4495  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4496
4497  if (TwoRepStos) {
4498    InFlag = Chain.getValue(1);
4499    Count = Op.getOperand(3);
4500    MVT::ValueType CVT = Count.getValueType();
4501    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4502                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4503    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4504                              Left, InFlag);
4505    InFlag = Chain.getValue(1);
4506    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4507    Ops.clear();
4508    Ops.push_back(Chain);
4509    Ops.push_back(DAG.getValueType(MVT::i8));
4510    Ops.push_back(InFlag);
4511    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4512  } else if (BytesLeft) {
4513    // Issue stores for the last 1 - 7 bytes.
4514    SDOperand Value;
4515    unsigned Val = ValC->getValue() & 255;
4516    unsigned Offset = I->getValue() - BytesLeft;
4517    SDOperand DstAddr = Op.getOperand(1);
4518    MVT::ValueType AddrVT = DstAddr.getValueType();
4519    if (BytesLeft >= 4) {
4520      Val = (Val << 8)  | Val;
4521      Val = (Val << 16) | Val;
4522      Value = DAG.getConstant(Val, MVT::i32);
4523      Chain = DAG.getStore(Chain, Value,
4524                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4525                                       DAG.getConstant(Offset, AddrVT)),
4526                           NULL, 0);
4527      BytesLeft -= 4;
4528      Offset += 4;
4529    }
4530    if (BytesLeft >= 2) {
4531      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4532      Chain = DAG.getStore(Chain, Value,
4533                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4534                                       DAG.getConstant(Offset, AddrVT)),
4535                           NULL, 0);
4536      BytesLeft -= 2;
4537      Offset += 2;
4538    }
4539    if (BytesLeft == 1) {
4540      Value = DAG.getConstant(Val, MVT::i8);
4541      Chain = DAG.getStore(Chain, Value,
4542                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4543                                       DAG.getConstant(Offset, AddrVT)),
4544                           NULL, 0);
4545    }
4546  }
4547
4548  return Chain;
4549}
4550
4551SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4552                                               SDOperand Dest,
4553                                               SDOperand Source,
4554                                               unsigned Size,
4555                                               unsigned Align,
4556                                               SelectionDAG &DAG) {
4557  MVT::ValueType AVT;
4558  unsigned BytesLeft = 0;
4559  switch (Align & 3) {
4560    case 2:   // WORD aligned
4561      AVT = MVT::i16;
4562      break;
4563    case 0:  // DWORD aligned
4564      AVT = MVT::i32;
4565      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4566        AVT = MVT::i64;
4567      break;
4568    default:  // Byte aligned
4569      AVT = MVT::i8;
4570      break;
4571  }
4572
4573  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4574  SDOperand Count = DAG.getIntPtrConstant(Size / UBytes);
4575  BytesLeft = Size % UBytes;
4576
4577  SDOperand InFlag(0, 0);
4578  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4579                            Count, InFlag);
4580  InFlag = Chain.getValue(1);
4581  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4582                            Dest, InFlag);
4583  InFlag = Chain.getValue(1);
4584  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4585                            Source, InFlag);
4586  InFlag = Chain.getValue(1);
4587
4588  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4589  SmallVector<SDOperand, 8> Ops;
4590  Ops.push_back(Chain);
4591  Ops.push_back(DAG.getValueType(AVT));
4592  Ops.push_back(InFlag);
4593  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4594
4595  if (BytesLeft) {
4596    // Issue loads and stores for the last 1 - 7 bytes.
4597    unsigned Offset = Size - BytesLeft;
4598    SDOperand DstAddr = Dest;
4599    MVT::ValueType DstVT = DstAddr.getValueType();
4600    SDOperand SrcAddr = Source;
4601    MVT::ValueType SrcVT = SrcAddr.getValueType();
4602    SDOperand Value;
4603    if (BytesLeft >= 4) {
4604      Value = DAG.getLoad(MVT::i32, Chain,
4605                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4606                                      DAG.getConstant(Offset, SrcVT)),
4607                          NULL, 0);
4608      Chain = Value.getValue(1);
4609      Chain = DAG.getStore(Chain, Value,
4610                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4611                                       DAG.getConstant(Offset, DstVT)),
4612                           NULL, 0);
4613      BytesLeft -= 4;
4614      Offset += 4;
4615    }
4616    if (BytesLeft >= 2) {
4617      Value = DAG.getLoad(MVT::i16, Chain,
4618                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4619                                      DAG.getConstant(Offset, SrcVT)),
4620                          NULL, 0);
4621      Chain = Value.getValue(1);
4622      Chain = DAG.getStore(Chain, Value,
4623                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4624                                       DAG.getConstant(Offset, DstVT)),
4625                           NULL, 0);
4626      BytesLeft -= 2;
4627      Offset += 2;
4628    }
4629
4630    if (BytesLeft == 1) {
4631      Value = DAG.getLoad(MVT::i8, Chain,
4632                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4633                                      DAG.getConstant(Offset, SrcVT)),
4634                          NULL, 0);
4635      Chain = Value.getValue(1);
4636      Chain = DAG.getStore(Chain, Value,
4637                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4638                                       DAG.getConstant(Offset, DstVT)),
4639                           NULL, 0);
4640    }
4641  }
4642
4643  return Chain;
4644}
4645
4646/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
4647SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
4648  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4649  SDOperand TheChain = N->getOperand(0);
4650  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
4651  if (Subtarget->is64Bit()) {
4652    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4653    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
4654                                       MVT::i64, rax.getValue(2));
4655    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
4656                                DAG.getConstant(32, MVT::i8));
4657    SDOperand Ops[] = {
4658      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
4659    };
4660
4661    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4662    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4663  }
4664
4665  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4666  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
4667                                       MVT::i32, eax.getValue(2));
4668  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
4669  SDOperand Ops[] = { eax, edx };
4670  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
4671
4672  // Use a MERGE_VALUES to return the value and chain.
4673  Ops[1] = edx.getValue(1);
4674  Tys = DAG.getVTList(MVT::i64, MVT::Other);
4675  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4676}
4677
4678SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4679  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4680
4681  if (!Subtarget->is64Bit()) {
4682    // vastart just stores the address of the VarArgsFrameIndex slot into the
4683    // memory location argument.
4684    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4685    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4686                        SV->getOffset());
4687  }
4688
4689  // __va_list_tag:
4690  //   gp_offset         (0 - 6 * 8)
4691  //   fp_offset         (48 - 48 + 8 * 16)
4692  //   overflow_arg_area (point to parameters coming in memory).
4693  //   reg_save_area
4694  SmallVector<SDOperand, 8> MemOps;
4695  SDOperand FIN = Op.getOperand(1);
4696  // Store gp_offset
4697  SDOperand Store = DAG.getStore(Op.getOperand(0),
4698                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4699                                 FIN, SV->getValue(), SV->getOffset());
4700  MemOps.push_back(Store);
4701
4702  // Store fp_offset
4703  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4704  Store = DAG.getStore(Op.getOperand(0),
4705                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4706                       FIN, SV->getValue(), SV->getOffset());
4707  MemOps.push_back(Store);
4708
4709  // Store ptr to overflow_arg_area
4710  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4711  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4712  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4713                       SV->getOffset());
4714  MemOps.push_back(Store);
4715
4716  // Store ptr to reg_save_area.
4717  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
4718  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4719  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4720                       SV->getOffset());
4721  MemOps.push_back(Store);
4722  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4723}
4724
4725SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4726  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4727  SDOperand Chain = Op.getOperand(0);
4728  SDOperand DstPtr = Op.getOperand(1);
4729  SDOperand SrcPtr = Op.getOperand(2);
4730  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4731  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4732
4733  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4734                       SrcSV->getValue(), SrcSV->getOffset());
4735  Chain = SrcPtr.getValue(1);
4736  for (unsigned i = 0; i < 3; ++i) {
4737    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4738                                SrcSV->getValue(), SrcSV->getOffset());
4739    Chain = Val.getValue(1);
4740    Chain = DAG.getStore(Chain, Val, DstPtr,
4741                         DstSV->getValue(), DstSV->getOffset());
4742    if (i == 2)
4743      break;
4744    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4745                         DAG.getIntPtrConstant(8));
4746    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4747                         DAG.getIntPtrConstant(8));
4748  }
4749  return Chain;
4750}
4751
4752SDOperand
4753X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4754  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4755  switch (IntNo) {
4756  default: return SDOperand();    // Don't custom lower most intrinsics.
4757    // Comparison intrinsics.
4758  case Intrinsic::x86_sse_comieq_ss:
4759  case Intrinsic::x86_sse_comilt_ss:
4760  case Intrinsic::x86_sse_comile_ss:
4761  case Intrinsic::x86_sse_comigt_ss:
4762  case Intrinsic::x86_sse_comige_ss:
4763  case Intrinsic::x86_sse_comineq_ss:
4764  case Intrinsic::x86_sse_ucomieq_ss:
4765  case Intrinsic::x86_sse_ucomilt_ss:
4766  case Intrinsic::x86_sse_ucomile_ss:
4767  case Intrinsic::x86_sse_ucomigt_ss:
4768  case Intrinsic::x86_sse_ucomige_ss:
4769  case Intrinsic::x86_sse_ucomineq_ss:
4770  case Intrinsic::x86_sse2_comieq_sd:
4771  case Intrinsic::x86_sse2_comilt_sd:
4772  case Intrinsic::x86_sse2_comile_sd:
4773  case Intrinsic::x86_sse2_comigt_sd:
4774  case Intrinsic::x86_sse2_comige_sd:
4775  case Intrinsic::x86_sse2_comineq_sd:
4776  case Intrinsic::x86_sse2_ucomieq_sd:
4777  case Intrinsic::x86_sse2_ucomilt_sd:
4778  case Intrinsic::x86_sse2_ucomile_sd:
4779  case Intrinsic::x86_sse2_ucomigt_sd:
4780  case Intrinsic::x86_sse2_ucomige_sd:
4781  case Intrinsic::x86_sse2_ucomineq_sd: {
4782    unsigned Opc = 0;
4783    ISD::CondCode CC = ISD::SETCC_INVALID;
4784    switch (IntNo) {
4785    default: break;
4786    case Intrinsic::x86_sse_comieq_ss:
4787    case Intrinsic::x86_sse2_comieq_sd:
4788      Opc = X86ISD::COMI;
4789      CC = ISD::SETEQ;
4790      break;
4791    case Intrinsic::x86_sse_comilt_ss:
4792    case Intrinsic::x86_sse2_comilt_sd:
4793      Opc = X86ISD::COMI;
4794      CC = ISD::SETLT;
4795      break;
4796    case Intrinsic::x86_sse_comile_ss:
4797    case Intrinsic::x86_sse2_comile_sd:
4798      Opc = X86ISD::COMI;
4799      CC = ISD::SETLE;
4800      break;
4801    case Intrinsic::x86_sse_comigt_ss:
4802    case Intrinsic::x86_sse2_comigt_sd:
4803      Opc = X86ISD::COMI;
4804      CC = ISD::SETGT;
4805      break;
4806    case Intrinsic::x86_sse_comige_ss:
4807    case Intrinsic::x86_sse2_comige_sd:
4808      Opc = X86ISD::COMI;
4809      CC = ISD::SETGE;
4810      break;
4811    case Intrinsic::x86_sse_comineq_ss:
4812    case Intrinsic::x86_sse2_comineq_sd:
4813      Opc = X86ISD::COMI;
4814      CC = ISD::SETNE;
4815      break;
4816    case Intrinsic::x86_sse_ucomieq_ss:
4817    case Intrinsic::x86_sse2_ucomieq_sd:
4818      Opc = X86ISD::UCOMI;
4819      CC = ISD::SETEQ;
4820      break;
4821    case Intrinsic::x86_sse_ucomilt_ss:
4822    case Intrinsic::x86_sse2_ucomilt_sd:
4823      Opc = X86ISD::UCOMI;
4824      CC = ISD::SETLT;
4825      break;
4826    case Intrinsic::x86_sse_ucomile_ss:
4827    case Intrinsic::x86_sse2_ucomile_sd:
4828      Opc = X86ISD::UCOMI;
4829      CC = ISD::SETLE;
4830      break;
4831    case Intrinsic::x86_sse_ucomigt_ss:
4832    case Intrinsic::x86_sse2_ucomigt_sd:
4833      Opc = X86ISD::UCOMI;
4834      CC = ISD::SETGT;
4835      break;
4836    case Intrinsic::x86_sse_ucomige_ss:
4837    case Intrinsic::x86_sse2_ucomige_sd:
4838      Opc = X86ISD::UCOMI;
4839      CC = ISD::SETGE;
4840      break;
4841    case Intrinsic::x86_sse_ucomineq_ss:
4842    case Intrinsic::x86_sse2_ucomineq_sd:
4843      Opc = X86ISD::UCOMI;
4844      CC = ISD::SETNE;
4845      break;
4846    }
4847
4848    unsigned X86CC;
4849    SDOperand LHS = Op.getOperand(1);
4850    SDOperand RHS = Op.getOperand(2);
4851    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4852
4853    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4854    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4855                                  DAG.getConstant(X86CC, MVT::i8), Cond);
4856    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4857  }
4858  }
4859}
4860
4861SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4862  // Depths > 0 not supported yet!
4863  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4864    return SDOperand();
4865
4866  // Just load the return address
4867  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4868  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4869}
4870
4871SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4872  // Depths > 0 not supported yet!
4873  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4874    return SDOperand();
4875
4876  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4877  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4878                     DAG.getIntPtrConstant(4));
4879}
4880
4881SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4882                                                       SelectionDAG &DAG) {
4883  // Is not yet supported on x86-64
4884  if (Subtarget->is64Bit())
4885    return SDOperand();
4886
4887  return DAG.getIntPtrConstant(8);
4888}
4889
4890SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4891{
4892  assert(!Subtarget->is64Bit() &&
4893         "Lowering of eh_return builtin is not supported yet on x86-64");
4894
4895  MachineFunction &MF = DAG.getMachineFunction();
4896  SDOperand Chain     = Op.getOperand(0);
4897  SDOperand Offset    = Op.getOperand(1);
4898  SDOperand Handler   = Op.getOperand(2);
4899
4900  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4901                                    getPointerTy());
4902
4903  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4904                                    DAG.getIntPtrConstant(-4UL));
4905  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4906  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4907  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4908  MF.getRegInfo().addLiveOut(X86::ECX);
4909
4910  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4911                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4912}
4913
4914SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4915                                             SelectionDAG &DAG) {
4916  SDOperand Root = Op.getOperand(0);
4917  SDOperand Trmp = Op.getOperand(1); // trampoline
4918  SDOperand FPtr = Op.getOperand(2); // nested function
4919  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4920
4921  SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4922
4923  const X86InstrInfo *TII =
4924    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4925
4926  if (Subtarget->is64Bit()) {
4927    SDOperand OutChains[6];
4928
4929    // Large code-model.
4930
4931    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
4932    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
4933
4934    const unsigned char N86R10 =
4935      ((X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R10);
4936    const unsigned char N86R11 =
4937      ((X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R11);
4938
4939    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
4940
4941    // Load the pointer to the nested function into R11.
4942    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
4943    SDOperand Addr = Trmp;
4944    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
4945                                TrmpSV->getValue(), TrmpSV->getOffset());
4946
4947    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
4948    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpSV->getValue(),
4949                                TrmpSV->getOffset() + 2, false, 2);
4950
4951    // Load the 'nest' parameter value into R10.
4952    // R10 is specified in X86CallingConv.td
4953    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
4954    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
4955    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
4956                                TrmpSV->getValue(), TrmpSV->getOffset() + 10);
4957
4958    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
4959    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4960                                TrmpSV->getOffset() + 12, false, 2);
4961
4962    // Jump to the nested function.
4963    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
4964    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
4965    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
4966                                TrmpSV->getValue(), TrmpSV->getOffset() + 20);
4967
4968    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
4969    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
4970    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
4971                                TrmpSV->getValue(), TrmpSV->getOffset() + 22);
4972
4973    SDOperand Ops[] =
4974      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
4975    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
4976  } else {
4977    const Function *Func =
4978      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4979    unsigned CC = Func->getCallingConv();
4980    unsigned NestReg;
4981
4982    switch (CC) {
4983    default:
4984      assert(0 && "Unsupported calling convention");
4985    case CallingConv::C:
4986    case CallingConv::X86_StdCall: {
4987      // Pass 'nest' parameter in ECX.
4988      // Must be kept in sync with X86CallingConv.td
4989      NestReg = X86::ECX;
4990
4991      // Check that ECX wasn't needed by an 'inreg' parameter.
4992      const FunctionType *FTy = Func->getFunctionType();
4993      const ParamAttrsList *Attrs = Func->getParamAttrs();
4994
4995      if (Attrs && !Func->isVarArg()) {
4996        unsigned InRegCount = 0;
4997        unsigned Idx = 1;
4998
4999        for (FunctionType::param_iterator I = FTy->param_begin(),
5000             E = FTy->param_end(); I != E; ++I, ++Idx)
5001          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
5002            // FIXME: should only count parameters that are lowered to integers.
5003            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5004
5005        if (InRegCount > 2) {
5006          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5007          abort();
5008        }
5009      }
5010      break;
5011    }
5012    case CallingConv::X86_FastCall:
5013      // Pass 'nest' parameter in EAX.
5014      // Must be kept in sync with X86CallingConv.td
5015      NestReg = X86::EAX;
5016      break;
5017    }
5018
5019    SDOperand OutChains[4];
5020    SDOperand Addr, Disp;
5021
5022    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5023    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5024
5025    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5026    const unsigned char N86Reg =
5027      ((X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg);
5028    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5029                                Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
5030
5031    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5032    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
5033                                TrmpSV->getOffset() + 1, false, 1);
5034
5035    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5036    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5037    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5038                                TrmpSV->getValue() + 5, TrmpSV->getOffset());
5039
5040    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5041    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
5042                                TrmpSV->getOffset() + 6, false, 1);
5043
5044    SDOperand Ops[] =
5045      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5046    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5047  }
5048}
5049
5050SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
5051  /*
5052   The rounding mode is in bits 11:10 of FPSR, and has the following
5053   settings:
5054     00 Round to nearest
5055     01 Round to -inf
5056     10 Round to +inf
5057     11 Round to 0
5058
5059  FLT_ROUNDS, on the other hand, expects the following:
5060    -1 Undefined
5061     0 Round to 0
5062     1 Round to nearest
5063     2 Round to +inf
5064     3 Round to -inf
5065
5066  To perform the conversion, we do:
5067    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5068  */
5069
5070  MachineFunction &MF = DAG.getMachineFunction();
5071  const TargetMachine &TM = MF.getTarget();
5072  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5073  unsigned StackAlignment = TFI.getStackAlignment();
5074  MVT::ValueType VT = Op.getValueType();
5075
5076  // Save FP Control Word to stack slot
5077  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5078  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5079
5080  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5081                                DAG.getEntryNode(), StackSlot);
5082
5083  // Load FP Control Word from stack slot
5084  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5085
5086  // Transform as necessary
5087  SDOperand CWD1 =
5088    DAG.getNode(ISD::SRL, MVT::i16,
5089                DAG.getNode(ISD::AND, MVT::i16,
5090                            CWD, DAG.getConstant(0x800, MVT::i16)),
5091                DAG.getConstant(11, MVT::i8));
5092  SDOperand CWD2 =
5093    DAG.getNode(ISD::SRL, MVT::i16,
5094                DAG.getNode(ISD::AND, MVT::i16,
5095                            CWD, DAG.getConstant(0x400, MVT::i16)),
5096                DAG.getConstant(9, MVT::i8));
5097
5098  SDOperand RetVal =
5099    DAG.getNode(ISD::AND, MVT::i16,
5100                DAG.getNode(ISD::ADD, MVT::i16,
5101                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5102                            DAG.getConstant(1, MVT::i16)),
5103                DAG.getConstant(3, MVT::i16));
5104
5105
5106  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
5107                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5108}
5109
5110SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
5111  MVT::ValueType VT = Op.getValueType();
5112  MVT::ValueType OpVT = VT;
5113  unsigned NumBits = MVT::getSizeInBits(VT);
5114
5115  Op = Op.getOperand(0);
5116  if (VT == MVT::i8) {
5117    // Zero extend to i32 since there is not an i8 bsr.
5118    OpVT = MVT::i32;
5119    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5120  }
5121
5122  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5123  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5124  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5125
5126  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5127  SmallVector<SDOperand, 4> Ops;
5128  Ops.push_back(Op);
5129  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5130  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5131  Ops.push_back(Op.getValue(1));
5132  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5133
5134  // Finally xor with NumBits-1.
5135  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5136
5137  if (VT == MVT::i8)
5138    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5139  return Op;
5140}
5141
5142SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
5143  MVT::ValueType VT = Op.getValueType();
5144  MVT::ValueType OpVT = VT;
5145  unsigned NumBits = MVT::getSizeInBits(VT);
5146
5147  Op = Op.getOperand(0);
5148  if (VT == MVT::i8) {
5149    OpVT = MVT::i32;
5150    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5151  }
5152
5153  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5154  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5155  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5156
5157  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5158  SmallVector<SDOperand, 4> Ops;
5159  Ops.push_back(Op);
5160  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5161  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5162  Ops.push_back(Op.getValue(1));
5163  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5164
5165  if (VT == MVT::i8)
5166    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5167  return Op;
5168}
5169
5170/// LowerOperation - Provide custom lowering hooks for some operations.
5171///
5172SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5173  switch (Op.getOpcode()) {
5174  default: assert(0 && "Should not custom lower this!");
5175  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5176  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5177  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5178  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5179  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5180  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5181  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5182  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5183  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5184  case ISD::SHL_PARTS:
5185  case ISD::SRA_PARTS:
5186  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5187  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5188  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5189  case ISD::FABS:               return LowerFABS(Op, DAG);
5190  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5191  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5192  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5193  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5194  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5195  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5196  case ISD::CALL:               return LowerCALL(Op, DAG);
5197  case ISD::RET:                return LowerRET(Op, DAG);
5198  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5199  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
5200  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
5201  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5202  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5203  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5204  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5205  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5206  case ISD::FRAME_TO_ARGS_OFFSET:
5207                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5208  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5209  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5210  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5211  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5212  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5213  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5214
5215  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5216  case ISD::READCYCLECOUNTER:
5217    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5218  }
5219}
5220
5221/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5222SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5223  switch (N->getOpcode()) {
5224  default: assert(0 && "Should not custom lower this!");
5225  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5226  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5227  }
5228}
5229
5230const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5231  switch (Opcode) {
5232  default: return NULL;
5233  case X86ISD::BSF:                return "X86ISD::BSF";
5234  case X86ISD::BSR:                return "X86ISD::BSR";
5235  case X86ISD::SHLD:               return "X86ISD::SHLD";
5236  case X86ISD::SHRD:               return "X86ISD::SHRD";
5237  case X86ISD::FAND:               return "X86ISD::FAND";
5238  case X86ISD::FOR:                return "X86ISD::FOR";
5239  case X86ISD::FXOR:               return "X86ISD::FXOR";
5240  case X86ISD::FSRL:               return "X86ISD::FSRL";
5241  case X86ISD::FILD:               return "X86ISD::FILD";
5242  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5243  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5244  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5245  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5246  case X86ISD::FLD:                return "X86ISD::FLD";
5247  case X86ISD::FST:                return "X86ISD::FST";
5248  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
5249  case X86ISD::FP_GET_RESULT2:     return "X86ISD::FP_GET_RESULT2";
5250  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
5251  case X86ISD::CALL:               return "X86ISD::CALL";
5252  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5253  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5254  case X86ISD::CMP:                return "X86ISD::CMP";
5255  case X86ISD::COMI:               return "X86ISD::COMI";
5256  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5257  case X86ISD::SETCC:              return "X86ISD::SETCC";
5258  case X86ISD::CMOV:               return "X86ISD::CMOV";
5259  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5260  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5261  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5262  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5263  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5264  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5265  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
5266  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5267  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5268  case X86ISD::FMAX:               return "X86ISD::FMAX";
5269  case X86ISD::FMIN:               return "X86ISD::FMIN";
5270  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5271  case X86ISD::FRCP:               return "X86ISD::FRCP";
5272  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5273  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5274  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5275  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5276  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
5277  }
5278}
5279
5280// isLegalAddressingMode - Return true if the addressing mode represented
5281// by AM is legal for this target, for a load/store of the specified type.
5282bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5283                                              const Type *Ty) const {
5284  // X86 supports extremely general addressing modes.
5285
5286  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5287  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5288    return false;
5289
5290  if (AM.BaseGV) {
5291    // We can only fold this if we don't need an extra load.
5292    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5293      return false;
5294
5295    // X86-64 only supports addr of globals in small code model.
5296    if (Subtarget->is64Bit()) {
5297      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5298        return false;
5299      // If lower 4G is not available, then we must use rip-relative addressing.
5300      if (AM.BaseOffs || AM.Scale > 1)
5301        return false;
5302    }
5303  }
5304
5305  switch (AM.Scale) {
5306  case 0:
5307  case 1:
5308  case 2:
5309  case 4:
5310  case 8:
5311    // These scales always work.
5312    break;
5313  case 3:
5314  case 5:
5315  case 9:
5316    // These scales are formed with basereg+scalereg.  Only accept if there is
5317    // no basereg yet.
5318    if (AM.HasBaseReg)
5319      return false;
5320    break;
5321  default:  // Other stuff never works.
5322    return false;
5323  }
5324
5325  return true;
5326}
5327
5328
5329bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5330  if (!Ty1->isInteger() || !Ty2->isInteger())
5331    return false;
5332  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5333  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5334  if (NumBits1 <= NumBits2)
5335    return false;
5336  return Subtarget->is64Bit() || NumBits1 < 64;
5337}
5338
5339bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5340                                       MVT::ValueType VT2) const {
5341  if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5342    return false;
5343  unsigned NumBits1 = MVT::getSizeInBits(VT1);
5344  unsigned NumBits2 = MVT::getSizeInBits(VT2);
5345  if (NumBits1 <= NumBits2)
5346    return false;
5347  return Subtarget->is64Bit() || NumBits1 < 64;
5348}
5349
5350/// isShuffleMaskLegal - Targets can use this to indicate that they only
5351/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5352/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5353/// are assumed to be legal.
5354bool
5355X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5356  // Only do shuffles on 128-bit vector types for now.
5357  if (MVT::getSizeInBits(VT) == 64) return false;
5358  return (Mask.Val->getNumOperands() <= 4 ||
5359          isIdentityMask(Mask.Val) ||
5360          isIdentityMask(Mask.Val, true) ||
5361          isSplatMask(Mask.Val)  ||
5362          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5363          X86::isUNPCKLMask(Mask.Val) ||
5364          X86::isUNPCKHMask(Mask.Val) ||
5365          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5366          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5367}
5368
5369bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5370                                               MVT::ValueType EVT,
5371                                               SelectionDAG &DAG) const {
5372  unsigned NumElts = BVOps.size();
5373  // Only do shuffles on 128-bit vector types for now.
5374  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5375  if (NumElts == 2) return true;
5376  if (NumElts == 4) {
5377    return (isMOVLMask(&BVOps[0], 4)  ||
5378            isCommutedMOVL(&BVOps[0], 4, true) ||
5379            isSHUFPMask(&BVOps[0], 4) ||
5380            isCommutedSHUFP(&BVOps[0], 4));
5381  }
5382  return false;
5383}
5384
5385//===----------------------------------------------------------------------===//
5386//                           X86 Scheduler Hooks
5387//===----------------------------------------------------------------------===//
5388
5389MachineBasicBlock *
5390X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5391                                               MachineBasicBlock *BB) {
5392  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5393  switch (MI->getOpcode()) {
5394  default: assert(false && "Unexpected instr type to insert");
5395  case X86::CMOV_FR32:
5396  case X86::CMOV_FR64:
5397  case X86::CMOV_V4F32:
5398  case X86::CMOV_V2F64:
5399  case X86::CMOV_V2I64: {
5400    // To "insert" a SELECT_CC instruction, we actually have to insert the
5401    // diamond control-flow pattern.  The incoming instruction knows the
5402    // destination vreg to set, the condition code register to branch on, the
5403    // true/false values to select between, and a branch opcode to use.
5404    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5405    ilist<MachineBasicBlock>::iterator It = BB;
5406    ++It;
5407
5408    //  thisMBB:
5409    //  ...
5410    //   TrueVal = ...
5411    //   cmpTY ccX, r1, r2
5412    //   bCC copy1MBB
5413    //   fallthrough --> copy0MBB
5414    MachineBasicBlock *thisMBB = BB;
5415    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5416    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5417    unsigned Opc =
5418      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5419    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5420    MachineFunction *F = BB->getParent();
5421    F->getBasicBlockList().insert(It, copy0MBB);
5422    F->getBasicBlockList().insert(It, sinkMBB);
5423    // Update machine-CFG edges by first adding all successors of the current
5424    // block to the new block which will contain the Phi node for the select.
5425    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5426        e = BB->succ_end(); i != e; ++i)
5427      sinkMBB->addSuccessor(*i);
5428    // Next, remove all successors of the current block, and add the true
5429    // and fallthrough blocks as its successors.
5430    while(!BB->succ_empty())
5431      BB->removeSuccessor(BB->succ_begin());
5432    BB->addSuccessor(copy0MBB);
5433    BB->addSuccessor(sinkMBB);
5434
5435    //  copy0MBB:
5436    //   %FalseValue = ...
5437    //   # fallthrough to sinkMBB
5438    BB = copy0MBB;
5439
5440    // Update machine-CFG edges
5441    BB->addSuccessor(sinkMBB);
5442
5443    //  sinkMBB:
5444    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5445    //  ...
5446    BB = sinkMBB;
5447    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5448      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5449      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5450
5451    delete MI;   // The pseudo instruction is gone now.
5452    return BB;
5453  }
5454
5455  case X86::FP32_TO_INT16_IN_MEM:
5456  case X86::FP32_TO_INT32_IN_MEM:
5457  case X86::FP32_TO_INT64_IN_MEM:
5458  case X86::FP64_TO_INT16_IN_MEM:
5459  case X86::FP64_TO_INT32_IN_MEM:
5460  case X86::FP64_TO_INT64_IN_MEM:
5461  case X86::FP80_TO_INT16_IN_MEM:
5462  case X86::FP80_TO_INT32_IN_MEM:
5463  case X86::FP80_TO_INT64_IN_MEM: {
5464    // Change the floating point control register to use "round towards zero"
5465    // mode when truncating to an integer value.
5466    MachineFunction *F = BB->getParent();
5467    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5468    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5469
5470    // Load the old value of the high byte of the control word...
5471    unsigned OldCW =
5472      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
5473    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5474
5475    // Set the high part to be round to zero...
5476    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5477      .addImm(0xC7F);
5478
5479    // Reload the modified control word now...
5480    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5481
5482    // Restore the memory image of control word to original value
5483    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5484      .addReg(OldCW);
5485
5486    // Get the X86 opcode to use.
5487    unsigned Opc;
5488    switch (MI->getOpcode()) {
5489    default: assert(0 && "illegal opcode!");
5490    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5491    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5492    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5493    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5494    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5495    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5496    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5497    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5498    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5499    }
5500
5501    X86AddressMode AM;
5502    MachineOperand &Op = MI->getOperand(0);
5503    if (Op.isRegister()) {
5504      AM.BaseType = X86AddressMode::RegBase;
5505      AM.Base.Reg = Op.getReg();
5506    } else {
5507      AM.BaseType = X86AddressMode::FrameIndexBase;
5508      AM.Base.FrameIndex = Op.getIndex();
5509    }
5510    Op = MI->getOperand(1);
5511    if (Op.isImmediate())
5512      AM.Scale = Op.getImm();
5513    Op = MI->getOperand(2);
5514    if (Op.isImmediate())
5515      AM.IndexReg = Op.getImm();
5516    Op = MI->getOperand(3);
5517    if (Op.isGlobalAddress()) {
5518      AM.GV = Op.getGlobal();
5519    } else {
5520      AM.Disp = Op.getImm();
5521    }
5522    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5523                      .addReg(MI->getOperand(4).getReg());
5524
5525    // Reload the original control word now.
5526    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5527
5528    delete MI;   // The pseudo instruction is gone now.
5529    return BB;
5530  }
5531  }
5532}
5533
5534//===----------------------------------------------------------------------===//
5535//                           X86 Optimization Hooks
5536//===----------------------------------------------------------------------===//
5537
5538void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5539                                                       uint64_t Mask,
5540                                                       uint64_t &KnownZero,
5541                                                       uint64_t &KnownOne,
5542                                                       const SelectionDAG &DAG,
5543                                                       unsigned Depth) const {
5544  unsigned Opc = Op.getOpcode();
5545  assert((Opc >= ISD::BUILTIN_OP_END ||
5546          Opc == ISD::INTRINSIC_WO_CHAIN ||
5547          Opc == ISD::INTRINSIC_W_CHAIN ||
5548          Opc == ISD::INTRINSIC_VOID) &&
5549         "Should use MaskedValueIsZero if you don't know whether Op"
5550         " is a target node!");
5551
5552  KnownZero = KnownOne = 0;   // Don't know anything.
5553  switch (Opc) {
5554  default: break;
5555  case X86ISD::SETCC:
5556    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5557    break;
5558  }
5559}
5560
5561/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5562/// element of the result of the vector shuffle.
5563static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5564  MVT::ValueType VT = N->getValueType(0);
5565  SDOperand PermMask = N->getOperand(2);
5566  unsigned NumElems = PermMask.getNumOperands();
5567  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5568  i %= NumElems;
5569  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5570    return (i == 0)
5571     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5572  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5573    SDOperand Idx = PermMask.getOperand(i);
5574    if (Idx.getOpcode() == ISD::UNDEF)
5575      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5576    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5577  }
5578  return SDOperand();
5579}
5580
5581/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5582/// node is a GlobalAddress + an offset.
5583static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5584  unsigned Opc = N->getOpcode();
5585  if (Opc == X86ISD::Wrapper) {
5586    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5587      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5588      return true;
5589    }
5590  } else if (Opc == ISD::ADD) {
5591    SDOperand N1 = N->getOperand(0);
5592    SDOperand N2 = N->getOperand(1);
5593    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5594      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5595      if (V) {
5596        Offset += V->getSignExtended();
5597        return true;
5598      }
5599    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5600      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5601      if (V) {
5602        Offset += V->getSignExtended();
5603        return true;
5604      }
5605    }
5606  }
5607  return false;
5608}
5609
5610/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5611/// + Dist * Size.
5612static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5613                              MachineFrameInfo *MFI) {
5614  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5615    return false;
5616
5617  SDOperand Loc = N->getOperand(1);
5618  SDOperand BaseLoc = Base->getOperand(1);
5619  if (Loc.getOpcode() == ISD::FrameIndex) {
5620    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5621      return false;
5622    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5623    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5624    int FS  = MFI->getObjectSize(FI);
5625    int BFS = MFI->getObjectSize(BFI);
5626    if (FS != BFS || FS != Size) return false;
5627    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5628  } else {
5629    GlobalValue *GV1 = NULL;
5630    GlobalValue *GV2 = NULL;
5631    int64_t Offset1 = 0;
5632    int64_t Offset2 = 0;
5633    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5634    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5635    if (isGA1 && isGA2 && GV1 == GV2)
5636      return Offset1 == (Offset2 + Dist*Size);
5637  }
5638
5639  return false;
5640}
5641
5642static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5643                              const X86Subtarget *Subtarget) {
5644  GlobalValue *GV;
5645  int64_t Offset;
5646  if (isGAPlusOffset(Base, GV, Offset))
5647    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5648  // DAG combine handles the stack object case.
5649  return false;
5650}
5651
5652
5653/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5654/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5655/// if the load addresses are consecutive, non-overlapping, and in the right
5656/// order.
5657static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5658                                       const X86Subtarget *Subtarget) {
5659  MachineFunction &MF = DAG.getMachineFunction();
5660  MachineFrameInfo *MFI = MF.getFrameInfo();
5661  MVT::ValueType VT = N->getValueType(0);
5662  MVT::ValueType EVT = MVT::getVectorElementType(VT);
5663  SDOperand PermMask = N->getOperand(2);
5664  int NumElems = (int)PermMask.getNumOperands();
5665  SDNode *Base = NULL;
5666  for (int i = 0; i < NumElems; ++i) {
5667    SDOperand Idx = PermMask.getOperand(i);
5668    if (Idx.getOpcode() == ISD::UNDEF) {
5669      if (!Base) return SDOperand();
5670    } else {
5671      SDOperand Arg =
5672        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5673      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5674        return SDOperand();
5675      if (!Base)
5676        Base = Arg.Val;
5677      else if (!isConsecutiveLoad(Arg.Val, Base,
5678                                  i, MVT::getSizeInBits(EVT)/8,MFI))
5679        return SDOperand();
5680    }
5681  }
5682
5683  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
5684  LoadSDNode *LD = cast<LoadSDNode>(Base);
5685  if (isAlign16) {
5686    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5687                       LD->getSrcValueOffset(), LD->isVolatile());
5688  } else {
5689    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5690                       LD->getSrcValueOffset(), LD->isVolatile(),
5691                       LD->getAlignment());
5692  }
5693}
5694
5695/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5696static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5697                                      const X86Subtarget *Subtarget) {
5698  SDOperand Cond = N->getOperand(0);
5699
5700  // If we have SSE[12] support, try to form min/max nodes.
5701  if (Subtarget->hasSSE2() &&
5702      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5703    if (Cond.getOpcode() == ISD::SETCC) {
5704      // Get the LHS/RHS of the select.
5705      SDOperand LHS = N->getOperand(1);
5706      SDOperand RHS = N->getOperand(2);
5707      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5708
5709      unsigned Opcode = 0;
5710      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5711        switch (CC) {
5712        default: break;
5713        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5714        case ISD::SETULE:
5715        case ISD::SETLE:
5716          if (!UnsafeFPMath) break;
5717          // FALL THROUGH.
5718        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
5719        case ISD::SETLT:
5720          Opcode = X86ISD::FMIN;
5721          break;
5722
5723        case ISD::SETOGT: // (X > Y) ? X : Y -> max
5724        case ISD::SETUGT:
5725        case ISD::SETGT:
5726          if (!UnsafeFPMath) break;
5727          // FALL THROUGH.
5728        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
5729        case ISD::SETGE:
5730          Opcode = X86ISD::FMAX;
5731          break;
5732        }
5733      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5734        switch (CC) {
5735        default: break;
5736        case ISD::SETOGT: // (X > Y) ? Y : X -> min
5737        case ISD::SETUGT:
5738        case ISD::SETGT:
5739          if (!UnsafeFPMath) break;
5740          // FALL THROUGH.
5741        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
5742        case ISD::SETGE:
5743          Opcode = X86ISD::FMIN;
5744          break;
5745
5746        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
5747        case ISD::SETULE:
5748        case ISD::SETLE:
5749          if (!UnsafeFPMath) break;
5750          // FALL THROUGH.
5751        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
5752        case ISD::SETLT:
5753          Opcode = X86ISD::FMAX;
5754          break;
5755        }
5756      }
5757
5758      if (Opcode)
5759        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5760    }
5761
5762  }
5763
5764  return SDOperand();
5765}
5766
5767/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
5768/// X86ISD::FXOR nodes.
5769static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
5770  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
5771  // F[X]OR(0.0, x) -> x
5772  // F[X]OR(x, 0.0) -> x
5773  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
5774    if (C->getValueAPF().isPosZero())
5775      return N->getOperand(1);
5776  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
5777    if (C->getValueAPF().isPosZero())
5778      return N->getOperand(0);
5779  return SDOperand();
5780}
5781
5782/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
5783static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
5784  // FAND(0.0, x) -> 0.0
5785  // FAND(x, 0.0) -> 0.0
5786  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
5787    if (C->getValueAPF().isPosZero())
5788      return N->getOperand(0);
5789  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
5790    if (C->getValueAPF().isPosZero())
5791      return N->getOperand(1);
5792  return SDOperand();
5793}
5794
5795
5796SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5797                                               DAGCombinerInfo &DCI) const {
5798  SelectionDAG &DAG = DCI.DAG;
5799  switch (N->getOpcode()) {
5800  default: break;
5801  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, Subtarget);
5802  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
5803  case X86ISD::FXOR:
5804  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
5805  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
5806  }
5807
5808  return SDOperand();
5809}
5810
5811//===----------------------------------------------------------------------===//
5812//                           X86 Inline Assembly Support
5813//===----------------------------------------------------------------------===//
5814
5815/// getConstraintType - Given a constraint letter, return the type of
5816/// constraint it is for this target.
5817X86TargetLowering::ConstraintType
5818X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5819  if (Constraint.size() == 1) {
5820    switch (Constraint[0]) {
5821    case 'A':
5822    case 'r':
5823    case 'R':
5824    case 'l':
5825    case 'q':
5826    case 'Q':
5827    case 'x':
5828    case 'Y':
5829      return C_RegisterClass;
5830    default:
5831      break;
5832    }
5833  }
5834  return TargetLowering::getConstraintType(Constraint);
5835}
5836
5837/// LowerXConstraint - try to replace an X constraint, which matches anything,
5838/// with another that has more specific requirements based on the type of the
5839/// corresponding operand.
5840void X86TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT,
5841                                         std::string& s) const {
5842  if (MVT::isFloatingPoint(ConstraintVT)) {
5843    if (Subtarget->hasSSE2())
5844      s = "Y";
5845    else if (Subtarget->hasSSE1())
5846      s = "x";
5847    else
5848      s = "f";
5849  } else
5850    return TargetLowering::lowerXConstraint(ConstraintVT, s);
5851}
5852
5853/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5854/// vector.  If it is invalid, don't add anything to Ops.
5855void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5856                                                     char Constraint,
5857                                                     std::vector<SDOperand>&Ops,
5858                                                     SelectionDAG &DAG) {
5859  SDOperand Result(0, 0);
5860
5861  switch (Constraint) {
5862  default: break;
5863  case 'I':
5864    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5865      if (C->getValue() <= 31) {
5866        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5867        break;
5868      }
5869    }
5870    return;
5871  case 'N':
5872    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
5873      if (C->getValue() <= 255) {
5874        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5875        break;
5876      }
5877    }
5878    return;
5879  case 'i': {
5880    // Literal immediates are always ok.
5881    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5882      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5883      break;
5884    }
5885
5886    // If we are in non-pic codegen mode, we allow the address of a global (with
5887    // an optional displacement) to be used with 'i'.
5888    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5889    int64_t Offset = 0;
5890
5891    // Match either (GA) or (GA+C)
5892    if (GA) {
5893      Offset = GA->getOffset();
5894    } else if (Op.getOpcode() == ISD::ADD) {
5895      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5896      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5897      if (C && GA) {
5898        Offset = GA->getOffset()+C->getValue();
5899      } else {
5900        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5901        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5902        if (C && GA)
5903          Offset = GA->getOffset()+C->getValue();
5904        else
5905          C = 0, GA = 0;
5906      }
5907    }
5908
5909    if (GA) {
5910      // If addressing this global requires a load (e.g. in PIC mode), we can't
5911      // match.
5912      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5913                                         false))
5914        return;
5915
5916      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5917                                      Offset);
5918      Result = Op;
5919      break;
5920    }
5921
5922    // Otherwise, not valid for this mode.
5923    return;
5924  }
5925  }
5926
5927  if (Result.Val) {
5928    Ops.push_back(Result);
5929    return;
5930  }
5931  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5932}
5933
5934std::vector<unsigned> X86TargetLowering::
5935getRegClassForInlineAsmConstraint(const std::string &Constraint,
5936                                  MVT::ValueType VT) const {
5937  if (Constraint.size() == 1) {
5938    // FIXME: not handling fp-stack yet!
5939    switch (Constraint[0]) {      // GCC X86 Constraint Letters
5940    default: break;  // Unknown constraint letter
5941    case 'A':   // EAX/EDX
5942      if (VT == MVT::i32 || VT == MVT::i64)
5943        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5944      break;
5945    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
5946    case 'Q':   // Q_REGS
5947      if (VT == MVT::i32)
5948        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5949      else if (VT == MVT::i16)
5950        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5951      else if (VT == MVT::i8)
5952        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
5953      else if (VT == MVT::i64)
5954        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
5955      break;
5956    }
5957  }
5958
5959  return std::vector<unsigned>();
5960}
5961
5962std::pair<unsigned, const TargetRegisterClass*>
5963X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5964                                                MVT::ValueType VT) const {
5965  // First, see if this is a constraint that directly corresponds to an LLVM
5966  // register class.
5967  if (Constraint.size() == 1) {
5968    // GCC Constraint Letters
5969    switch (Constraint[0]) {
5970    default: break;
5971    case 'r':   // GENERAL_REGS
5972    case 'R':   // LEGACY_REGS
5973    case 'l':   // INDEX_REGS
5974      if (VT == MVT::i64 && Subtarget->is64Bit())
5975        return std::make_pair(0U, X86::GR64RegisterClass);
5976      if (VT == MVT::i32)
5977        return std::make_pair(0U, X86::GR32RegisterClass);
5978      else if (VT == MVT::i16)
5979        return std::make_pair(0U, X86::GR16RegisterClass);
5980      else if (VT == MVT::i8)
5981        return std::make_pair(0U, X86::GR8RegisterClass);
5982      break;
5983    case 'y':   // MMX_REGS if MMX allowed.
5984      if (!Subtarget->hasMMX()) break;
5985      return std::make_pair(0U, X86::VR64RegisterClass);
5986      break;
5987    case 'Y':   // SSE_REGS if SSE2 allowed
5988      if (!Subtarget->hasSSE2()) break;
5989      // FALL THROUGH.
5990    case 'x':   // SSE_REGS if SSE1 allowed
5991      if (!Subtarget->hasSSE1()) break;
5992
5993      switch (VT) {
5994      default: break;
5995      // Scalar SSE types.
5996      case MVT::f32:
5997      case MVT::i32:
5998        return std::make_pair(0U, X86::FR32RegisterClass);
5999      case MVT::f64:
6000      case MVT::i64:
6001        return std::make_pair(0U, X86::FR64RegisterClass);
6002      // Vector types.
6003      case MVT::v16i8:
6004      case MVT::v8i16:
6005      case MVT::v4i32:
6006      case MVT::v2i64:
6007      case MVT::v4f32:
6008      case MVT::v2f64:
6009        return std::make_pair(0U, X86::VR128RegisterClass);
6010      }
6011      break;
6012    }
6013  }
6014
6015  // Use the default implementation in TargetLowering to convert the register
6016  // constraint into a member of a register class.
6017  std::pair<unsigned, const TargetRegisterClass*> Res;
6018  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6019
6020  // Not found as a standard register?
6021  if (Res.second == 0) {
6022    // GCC calls "st(0)" just plain "st".
6023    if (StringsEqualNoCase("{st}", Constraint)) {
6024      Res.first = X86::ST0;
6025      Res.second = X86::RFP80RegisterClass;
6026    }
6027
6028    return Res;
6029  }
6030
6031  // Otherwise, check to see if this is a register class of the wrong value
6032  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
6033  // turn into {ax},{dx}.
6034  if (Res.second->hasType(VT))
6035    return Res;   // Correct type already, nothing to do.
6036
6037  // All of the single-register GCC register classes map their values onto
6038  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
6039  // really want an 8-bit or 32-bit register, map to the appropriate register
6040  // class and return the appropriate register.
6041  if (Res.second != X86::GR16RegisterClass)
6042    return Res;
6043
6044  if (VT == MVT::i8) {
6045    unsigned DestReg = 0;
6046    switch (Res.first) {
6047    default: break;
6048    case X86::AX: DestReg = X86::AL; break;
6049    case X86::DX: DestReg = X86::DL; break;
6050    case X86::CX: DestReg = X86::CL; break;
6051    case X86::BX: DestReg = X86::BL; break;
6052    }
6053    if (DestReg) {
6054      Res.first = DestReg;
6055      Res.second = Res.second = X86::GR8RegisterClass;
6056    }
6057  } else if (VT == MVT::i32) {
6058    unsigned DestReg = 0;
6059    switch (Res.first) {
6060    default: break;
6061    case X86::AX: DestReg = X86::EAX; break;
6062    case X86::DX: DestReg = X86::EDX; break;
6063    case X86::CX: DestReg = X86::ECX; break;
6064    case X86::BX: DestReg = X86::EBX; break;
6065    case X86::SI: DestReg = X86::ESI; break;
6066    case X86::DI: DestReg = X86::EDI; break;
6067    case X86::BP: DestReg = X86::EBP; break;
6068    case X86::SP: DestReg = X86::ESP; break;
6069    }
6070    if (DestReg) {
6071      Res.first = DestReg;
6072      Res.second = Res.second = X86::GR32RegisterClass;
6073    }
6074  } else if (VT == MVT::i64) {
6075    unsigned DestReg = 0;
6076    switch (Res.first) {
6077    default: break;
6078    case X86::AX: DestReg = X86::RAX; break;
6079    case X86::DX: DestReg = X86::RDX; break;
6080    case X86::CX: DestReg = X86::RCX; break;
6081    case X86::BX: DestReg = X86::RBX; break;
6082    case X86::SI: DestReg = X86::RSI; break;
6083    case X86::DI: DestReg = X86::RDI; break;
6084    case X86::BP: DestReg = X86::RBP; break;
6085    case X86::SP: DestReg = X86::RSP; break;
6086    }
6087    if (DestReg) {
6088      Res.first = DestReg;
6089      Res.second = Res.second = X86::GR64RegisterClass;
6090    }
6091  }
6092
6093  return Res;
6094}
6095