X86ISelLowering.cpp revision a9a568a79dbaf7315db863b4808d31ad9f5f91dc
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
66                                   SelectionDAG &DAG, DebugLoc dl) {
67  EVT VT = Vec.getValueType();
68  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
69  EVT ElVT = VT.getVectorElementType();
70  unsigned Factor = VT.getSizeInBits()/128;
71  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
72                                  VT.getVectorNumElements()/Factor);
73
74  // Extract from UNDEF is UNDEF.
75  if (Vec.getOpcode() == ISD::UNDEF)
76    return DAG.getUNDEF(ResultVT);
77
78  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
79  // we can match to VEXTRACTF128.
80  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
81
82  // This is the index of the first element of the 128-bit chunk
83  // we want.
84  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
85                               * ElemsPerChunk);
86
87  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
88  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
89                               VecIdx);
90
91  return Result;
92}
93
94/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
95/// sets things up to match to an AVX VINSERTF128 instruction or a
96/// simple superregister reference.  Idx is an index in the 128 bits
97/// we want.  It need not be aligned to a 128-bit bounday.  That makes
98/// lowering INSERT_VECTOR_ELT operations easier.
99static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
100                                  unsigned IdxVal, SelectionDAG &DAG,
101                                  DebugLoc dl) {
102  EVT VT = Vec.getValueType();
103  assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
104
105  EVT ElVT = VT.getVectorElementType();
106  EVT ResultVT = Result.getValueType();
107
108  // Insert the relevant 128 bits.
109  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
110
111  // This is the index of the first element of the 128-bit chunk
112  // we want.
113  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
114                               * ElemsPerChunk);
115
116  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
117  Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
118                       VecIdx);
119  return Result;
120}
121
122/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
123/// instructions. This is used because creating CONCAT_VECTOR nodes of
124/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
125/// large BUILD_VECTORS.
126static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
127                                   unsigned NumElems, SelectionDAG &DAG,
128                                   DebugLoc dl) {
129  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
130  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
131}
132
133static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
134  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
135  bool is64Bit = Subtarget->is64Bit();
136
137  if (Subtarget->isTargetEnvMacho()) {
138    if (is64Bit)
139      return new X8664_MachoTargetObjectFile();
140    return new TargetLoweringObjectFileMachO();
141  }
142
143  if (Subtarget->isTargetELF())
144    return new TargetLoweringObjectFileELF();
145  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
146    return new TargetLoweringObjectFileCOFF();
147  llvm_unreachable("unknown subtarget type");
148}
149
150X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
151  : TargetLowering(TM, createTLOF(TM)) {
152  Subtarget = &TM.getSubtarget<X86Subtarget>();
153  X86ScalarSSEf64 = Subtarget->hasSSE2();
154  X86ScalarSSEf32 = Subtarget->hasSSE1();
155  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
156
157  RegInfo = TM.getRegisterInfo();
158  TD = getTargetData();
159
160  // Set up the TargetLowering object.
161  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
162
163  // X86 is weird, it always uses i8 for shift amounts and setcc results.
164  setBooleanContents(ZeroOrOneBooleanContent);
165  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
166  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
167
168  // For 64-bit since we have so many registers use the ILP scheduler, for
169  // 32-bit code use the register pressure specific scheduling.
170  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
171  if (Subtarget->is64Bit())
172    setSchedulingPreference(Sched::ILP);
173  else if (Subtarget->isAtom())
174    setSchedulingPreference(Sched::Hybrid);
175  else
176    setSchedulingPreference(Sched::RegPressure);
177  setStackPointerRegisterToSaveRestore(X86StackPtr);
178
179  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
180    // Setup Windows compiler runtime calls.
181    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
182    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
183    setLibcallName(RTLIB::SREM_I64, "_allrem");
184    setLibcallName(RTLIB::UREM_I64, "_aullrem");
185    setLibcallName(RTLIB::MUL_I64, "_allmul");
186    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
187    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
188    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
189    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
190    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
191
192    // The _ftol2 runtime function has an unusual calling conv, which
193    // is modeled by a special pseudo-instruction.
194    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
195    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
196    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
197    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
198  }
199
200  if (Subtarget->isTargetDarwin()) {
201    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
202    setUseUnderscoreSetJmp(false);
203    setUseUnderscoreLongJmp(false);
204  } else if (Subtarget->isTargetMingw()) {
205    // MS runtime is weird: it exports _setjmp, but longjmp!
206    setUseUnderscoreSetJmp(true);
207    setUseUnderscoreLongJmp(false);
208  } else {
209    setUseUnderscoreSetJmp(true);
210    setUseUnderscoreLongJmp(true);
211  }
212
213  // Set up the register classes.
214  addRegisterClass(MVT::i8, &X86::GR8RegClass);
215  addRegisterClass(MVT::i16, &X86::GR16RegClass);
216  addRegisterClass(MVT::i32, &X86::GR32RegClass);
217  if (Subtarget->is64Bit())
218    addRegisterClass(MVT::i64, &X86::GR64RegClass);
219
220  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
221
222  // We don't accept any truncstore of integer registers.
223  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
224  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
225  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
226  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
227  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
228  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
229
230  // SETOEQ and SETUNE require checking two conditions.
231  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
232  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
233  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
234  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
235  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
236  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
237
238  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
239  // operation.
240  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
241  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
242  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
243
244  if (Subtarget->is64Bit()) {
245    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
246    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
247  } else if (!TM.Options.UseSoftFloat) {
248    // We have an algorithm for SSE2->double, and we turn this into a
249    // 64-bit FILD followed by conditional FADD for other targets.
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251    // We have an algorithm for SSE2, and we turn this into a 64-bit
252    // FILD for other targets.
253    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
254  }
255
256  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
257  // this operation.
258  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
259  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
260
261  if (!TM.Options.UseSoftFloat) {
262    // SSE has no i16 to fp conversion, only i32
263    if (X86ScalarSSEf32) {
264      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
265      // f32 and f64 cases are Legal, f80 case is not
266      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
267    } else {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
269      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
270    }
271  } else {
272    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
273    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
274  }
275
276  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
277  // are Legal, f80 is custom lowered.
278  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
279  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
280
281  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
282  // this operation.
283  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
284  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
285
286  if (X86ScalarSSEf32) {
287    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
288    // f32 and f64 cases are Legal, f80 case is not
289    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
290  } else {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
292    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
293  }
294
295  // Handle FP_TO_UINT by promoting the destination to a larger signed
296  // conversion.
297  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
298  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
299  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
300
301  if (Subtarget->is64Bit()) {
302    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
303    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
304  } else if (!TM.Options.UseSoftFloat) {
305    // Since AVX is a superset of SSE3, only check for SSE here.
306    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
307      // Expand FP_TO_UINT into a select.
308      // FIXME: We would like to use a Custom expander here eventually to do
309      // the optimal thing for SSE vs. the default expansion in the legalizer.
310      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
311    else
312      // With SSE3 we can use fisttpll to convert to a signed i64; without
313      // SSE, we're stuck with a fistpll.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
315  }
316
317  if (isTargetFTOL()) {
318    // Use the _ftol2 runtime function, which has a pseudo-instruction
319    // to handle its weird calling convention.
320    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
321  }
322
323  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
324  if (!X86ScalarSSEf64) {
325    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
326    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
327    if (Subtarget->is64Bit()) {
328      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
329      // Without SSE, i64->f64 goes through memory.
330      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
331    }
332  }
333
334  // Scalar integer divide and remainder are lowered to use operations that
335  // produce two results, to match the available instructions. This exposes
336  // the two-result form to trivial CSE, which is able to combine x/y and x%y
337  // into a single instruction.
338  //
339  // Scalar integer multiply-high is also lowered to use two-result
340  // operations, to match the available instructions. However, plain multiply
341  // (low) operations are left as Legal, as there are single-result
342  // instructions for this in x86. Using the two-result multiply instructions
343  // when both high and low results are needed must be arranged by dagcombine.
344  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
345    MVT VT = IntVTs[i];
346    setOperationAction(ISD::MULHS, VT, Expand);
347    setOperationAction(ISD::MULHU, VT, Expand);
348    setOperationAction(ISD::SDIV, VT, Expand);
349    setOperationAction(ISD::UDIV, VT, Expand);
350    setOperationAction(ISD::SREM, VT, Expand);
351    setOperationAction(ISD::UREM, VT, Expand);
352
353    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
354    setOperationAction(ISD::ADDC, VT, Custom);
355    setOperationAction(ISD::ADDE, VT, Custom);
356    setOperationAction(ISD::SUBC, VT, Custom);
357    setOperationAction(ISD::SUBE, VT, Custom);
358  }
359
360  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
361  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
362  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
363  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
364  if (Subtarget->is64Bit())
365    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
366  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
367  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
368  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
369  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
370  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
371  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
372  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
373  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
374
375  // Promote the i8 variants and force them on up to i32 which has a shorter
376  // encoding.
377  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
378  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
379  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
380  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
381  if (Subtarget->hasBMI()) {
382    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
383    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
384    if (Subtarget->is64Bit())
385      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
386  } else {
387    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
388    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
389    if (Subtarget->is64Bit())
390      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
391  }
392
393  if (Subtarget->hasLZCNT()) {
394    // When promoting the i8 variants, force them to i32 for a shorter
395    // encoding.
396    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
397    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
398    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
399    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
400    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
401    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
402    if (Subtarget->is64Bit())
403      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
404  } else {
405    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
406    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
407    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
409    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
411    if (Subtarget->is64Bit()) {
412      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
414    }
415  }
416
417  if (Subtarget->hasPOPCNT()) {
418    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
419  } else {
420    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
421    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
422    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
423    if (Subtarget->is64Bit())
424      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
425  }
426
427  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
428  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
429
430  // These should be promoted to a larger select which is supported.
431  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
432  // X86 wants to expand cmov itself.
433  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
434  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
435  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
436  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
437  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
438  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
439  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
440  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
441  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
442  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
445  if (Subtarget->is64Bit()) {
446    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
447    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
448  }
449  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
450
451  // Darwin ABI issue.
452  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
453  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
454  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
455  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
456  if (Subtarget->is64Bit())
457    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
458  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
459  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
460  if (Subtarget->is64Bit()) {
461    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
462    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
463    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
464    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
465    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
466  }
467  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
468  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
469  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
470  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
471  if (Subtarget->is64Bit()) {
472    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
473    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
474    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
475  }
476
477  if (Subtarget->hasSSE1())
478    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
479
480  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
481  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
482
483  // On X86 and X86-64, atomic operations are lowered to locked instructions.
484  // Locked instructions, in turn, have implicit fence semantics (all memory
485  // operations are flushed before issuing the locked instruction, and they
486  // are not buffered), so we can fold away the common pattern of
487  // fence-atomic-fence.
488  setShouldFoldAtomicFences(true);
489
490  // Expand certain atomics
491  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
492    MVT VT = IntVTs[i];
493    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
494    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
495    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
496  }
497
498  if (!Subtarget->is64Bit()) {
499    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
503    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
507  }
508
509  if (Subtarget->hasCmpxchg16b()) {
510    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
511  }
512
513  // FIXME - use subtarget debug flags
514  if (!Subtarget->isTargetDarwin() &&
515      !Subtarget->isTargetELF() &&
516      !Subtarget->isTargetCygMing()) {
517    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
518  }
519
520  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
521  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
522  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
523  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
524  if (Subtarget->is64Bit()) {
525    setExceptionPointerRegister(X86::RAX);
526    setExceptionSelectorRegister(X86::RDX);
527  } else {
528    setExceptionPointerRegister(X86::EAX);
529    setExceptionSelectorRegister(X86::EDX);
530  }
531  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
532  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
533
534  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
535  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
536
537  setOperationAction(ISD::TRAP, MVT::Other, Legal);
538
539  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
540  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
541  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
542  if (Subtarget->is64Bit()) {
543    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
544    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
545  } else {
546    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
547    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
548  }
549
550  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
551  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
552
553  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
554    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
555                       MVT::i64 : MVT::i32, Custom);
556  else if (TM.Options.EnableSegmentedStacks)
557    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
558                       MVT::i64 : MVT::i32, Custom);
559  else
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Expand);
562
563  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
564    // f32 and f64 use SSE.
565    // Set up the FP register classes.
566    addRegisterClass(MVT::f32, &X86::FR32RegClass);
567    addRegisterClass(MVT::f64, &X86::FR64RegClass);
568
569    // Use ANDPD to simulate FABS.
570    setOperationAction(ISD::FABS , MVT::f64, Custom);
571    setOperationAction(ISD::FABS , MVT::f32, Custom);
572
573    // Use XORP to simulate FNEG.
574    setOperationAction(ISD::FNEG , MVT::f64, Custom);
575    setOperationAction(ISD::FNEG , MVT::f32, Custom);
576
577    // Use ANDPD and ORPD to simulate FCOPYSIGN.
578    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
579    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
580
581    // Lower this to FGETSIGNx86 plus an AND.
582    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
583    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
584
585    // We don't support sin/cos/fmod
586    setOperationAction(ISD::FSIN , MVT::f64, Expand);
587    setOperationAction(ISD::FCOS , MVT::f64, Expand);
588    setOperationAction(ISD::FSIN , MVT::f32, Expand);
589    setOperationAction(ISD::FCOS , MVT::f32, Expand);
590
591    // Expand FP immediates into loads from the stack, except for the special
592    // cases we handle.
593    addLegalFPImmediate(APFloat(+0.0)); // xorpd
594    addLegalFPImmediate(APFloat(+0.0f)); // xorps
595  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
596    // Use SSE for f32, x87 for f64.
597    // Set up the FP register classes.
598    addRegisterClass(MVT::f32, &X86::FR32RegClass);
599    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
600
601    // Use ANDPS to simulate FABS.
602    setOperationAction(ISD::FABS , MVT::f32, Custom);
603
604    // Use XORP to simulate FNEG.
605    setOperationAction(ISD::FNEG , MVT::f32, Custom);
606
607    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
608
609    // Use ANDPS and ORPS to simulate FCOPYSIGN.
610    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
611    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
612
613    // We don't support sin/cos/fmod
614    setOperationAction(ISD::FSIN , MVT::f32, Expand);
615    setOperationAction(ISD::FCOS , MVT::f32, Expand);
616
617    // Special cases we handle for FP constants.
618    addLegalFPImmediate(APFloat(+0.0f)); // xorps
619    addLegalFPImmediate(APFloat(+0.0)); // FLD0
620    addLegalFPImmediate(APFloat(+1.0)); // FLD1
621    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
622    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
623
624    if (!TM.Options.UnsafeFPMath) {
625      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
626      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
627    }
628  } else if (!TM.Options.UseSoftFloat) {
629    // f32 and f64 in x87.
630    // Set up the FP register classes.
631    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
632    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
633
634    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
635    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
636    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
637    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
638
639    if (!TM.Options.UnsafeFPMath) {
640      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
641      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
642    }
643    addLegalFPImmediate(APFloat(+0.0)); // FLD0
644    addLegalFPImmediate(APFloat(+1.0)); // FLD1
645    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
646    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
647    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
651  }
652
653  // We don't support FMA.
654  setOperationAction(ISD::FMA, MVT::f64, Expand);
655  setOperationAction(ISD::FMA, MVT::f32, Expand);
656
657  // Long double always uses X87.
658  if (!TM.Options.UseSoftFloat) {
659    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
660    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
661    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
662    {
663      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
664      addLegalFPImmediate(TmpFlt);  // FLD0
665      TmpFlt.changeSign();
666      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
667
668      bool ignored;
669      APFloat TmpFlt2(+1.0);
670      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
671                      &ignored);
672      addLegalFPImmediate(TmpFlt2);  // FLD1
673      TmpFlt2.changeSign();
674      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
675    }
676
677    if (!TM.Options.UnsafeFPMath) {
678      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
679      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
680    }
681
682    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
683    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
684    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
685    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
686    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
687    setOperationAction(ISD::FMA, MVT::f80, Expand);
688  }
689
690  // Always use a library call for pow.
691  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
692  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
693  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
694
695  setOperationAction(ISD::FLOG, MVT::f80, Expand);
696  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
697  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
698  setOperationAction(ISD::FEXP, MVT::f80, Expand);
699  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
700
701  // First set operation action for all vector types to either promote
702  // (for widening) or expand (for scalarization). Then we will selectively
703  // turn on ones that can be effectively codegen'd.
704  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
705           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
706    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
721    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
723    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
724    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
758    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
763    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
764             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
765      setTruncStoreAction((MVT::SimpleValueType)VT,
766                          (MVT::SimpleValueType)InnerVT, Expand);
767    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
768    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
769    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
770  }
771
772  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
773  // with -msoft-float, disable use of MMX as well.
774  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
775    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
776    // No operations on x86mmx supported, everything uses intrinsics.
777  }
778
779  // MMX-sized vectors (other than x86mmx) are expected to be expanded
780  // into smaller operations.
781  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
782  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
783  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
784  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
785  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
786  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
787  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
788  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
789  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
790  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
791  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
792  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
793  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
794  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
795  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
796  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
797  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
798  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
799  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
800  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
801  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
802  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
803  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
804  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
805  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
806  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
807  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
808  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
809  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
810
811  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
812    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
813
814    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
815    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
816    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
817    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
818    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
819    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
820    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
821    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
822    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
823    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
824    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
825    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
826  }
827
828  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
829    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
830
831    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
832    // registers cannot be used even for integer operations.
833    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
834    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
835    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
836    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
837
838    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
839    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
840    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
841    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
842    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
843    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
844    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
845    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
846    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
847    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
848    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
849    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
850    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
851    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
852    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
853    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
854
855    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
856    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
857    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
858    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
859
860    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
861    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
862    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
863    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
864    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
865
866    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
867    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
868    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
869    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
871
872    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
873    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
874      EVT VT = (MVT::SimpleValueType)i;
875      // Do not attempt to custom lower non-power-of-2 vectors
876      if (!isPowerOf2_32(VT.getVectorNumElements()))
877        continue;
878      // Do not attempt to custom lower non-128-bit vectors
879      if (!VT.is128BitVector())
880        continue;
881      setOperationAction(ISD::BUILD_VECTOR,
882                         VT.getSimpleVT().SimpleTy, Custom);
883      setOperationAction(ISD::VECTOR_SHUFFLE,
884                         VT.getSimpleVT().SimpleTy, Custom);
885      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
886                         VT.getSimpleVT().SimpleTy, Custom);
887    }
888
889    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
890    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
891    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
892    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
893    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
894    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
895
896    if (Subtarget->is64Bit()) {
897      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
898      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
899    }
900
901    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
902    for (int i = MVT::v16i8; i != MVT::v2i64; i++) {
903      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
904      EVT VT = SVT;
905
906      // Do not attempt to promote non-128-bit vectors
907      if (!VT.is128BitVector())
908        continue;
909
910      setOperationAction(ISD::AND,    SVT, Promote);
911      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
912      setOperationAction(ISD::OR,     SVT, Promote);
913      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
914      setOperationAction(ISD::XOR,    SVT, Promote);
915      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
916      setOperationAction(ISD::LOAD,   SVT, Promote);
917      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
918      setOperationAction(ISD::SELECT, SVT, Promote);
919      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
920    }
921
922    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
923
924    // Custom lower v2i64 and v2f64 selects.
925    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
926    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
927    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
928    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
929
930    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
931    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
932  }
933
934  if (Subtarget->hasSSE41()) {
935    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
936    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
937    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
938    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
939    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
940    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
941    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
942    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
943    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
944    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
945
946    // FIXME: Do we need to handle scalar-to-vector here?
947    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
948
949    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
950    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
951    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
952    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
953    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
954
955    // i8 and i16 vectors are custom , because the source register and source
956    // source memory operand types are not the same width.  f32 vectors are
957    // custom since the immediate controlling the insert encodes additional
958    // information.
959    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
960    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
961    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
962    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
963
964    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
965    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
966    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
967    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
968
969    // FIXME: these should be Legal but thats only for the case where
970    // the index is constant.  For now custom expand to deal with that.
971    if (Subtarget->is64Bit()) {
972      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
973      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
974    }
975  }
976
977  if (Subtarget->hasSSE2()) {
978    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
979    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
980
981    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
982    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
983
984    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
985    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
986
987    if (Subtarget->hasAVX2()) {
988      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
989      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
990
991      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
992      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
993
994      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
995    } else {
996      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
997      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
998
999      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1000      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1001
1002      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1003    }
1004  }
1005
1006  if (Subtarget->hasSSE42())
1007    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1008
1009  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1010    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1011    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1012    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1013    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1014    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1015    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1016
1017    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1018    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1019    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1020
1021    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1023    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1024    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1025    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1026    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1027
1028    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1029    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1030    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1031    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1032    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1033    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1034
1035    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1036    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1037    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1038
1039    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1040    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1041    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1042    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1045
1046    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1047    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1048
1049    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1050    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1051
1052    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1056    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1057    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1058    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1059
1060    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1061    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1062    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1063
1064    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1065    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1066    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1067    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1068
1069    if (Subtarget->hasAVX2()) {
1070      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1071      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1072      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1073      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1074
1075      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1076      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1077      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1078      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1079
1080      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1081      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1082      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1083      // Don't lower v32i8 because there is no 128-bit byte mul
1084
1085      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1086
1087      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1088      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1089
1090      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1091      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1092
1093      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1094    } else {
1095      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1096      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1097      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1098      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1099
1100      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1101      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1102      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1103      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1104
1105      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1107      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1108      // Don't lower v32i8 because there is no 128-bit byte mul
1109
1110      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1111      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1112
1113      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1114      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1115
1116      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1117    }
1118
1119    // Custom lower several nodes for 256-bit types.
1120    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1121             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1122      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1123      EVT VT = SVT;
1124
1125      // Extract subvector is special because the value type
1126      // (result) is 128-bit but the source is 256-bit wide.
1127      if (VT.is128BitVector())
1128        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1129
1130      // Do not attempt to custom lower other non-256-bit vectors
1131      if (!VT.is256BitVector())
1132        continue;
1133
1134      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1135      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1136      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1137      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1138      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1139      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1140    }
1141
1142    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1143    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1144      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1145      EVT VT = SVT;
1146
1147      // Do not attempt to promote non-256-bit vectors
1148      if (!VT.is256BitVector())
1149        continue;
1150
1151      setOperationAction(ISD::AND,    SVT, Promote);
1152      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1153      setOperationAction(ISD::OR,     SVT, Promote);
1154      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1155      setOperationAction(ISD::XOR,    SVT, Promote);
1156      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::LOAD,   SVT, Promote);
1158      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1159      setOperationAction(ISD::SELECT, SVT, Promote);
1160      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1161    }
1162  }
1163
1164  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1165  // of this type with custom code.
1166  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1167           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1168    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1169                       Custom);
1170  }
1171
1172  // We want to custom lower some of our intrinsics.
1173  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1174
1175
1176  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1177  // handle type legalization for these operations here.
1178  //
1179  // FIXME: We really should do custom legalization for addition and
1180  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1181  // than generic legalization for 64-bit multiplication-with-overflow, though.
1182  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1183    // Add/Sub/Mul with overflow operations are custom lowered.
1184    MVT VT = IntVTs[i];
1185    setOperationAction(ISD::SADDO, VT, Custom);
1186    setOperationAction(ISD::UADDO, VT, Custom);
1187    setOperationAction(ISD::SSUBO, VT, Custom);
1188    setOperationAction(ISD::USUBO, VT, Custom);
1189    setOperationAction(ISD::SMULO, VT, Custom);
1190    setOperationAction(ISD::UMULO, VT, Custom);
1191  }
1192
1193  // There are no 8-bit 3-address imul/mul instructions
1194  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1195  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1196
1197  if (!Subtarget->is64Bit()) {
1198    // These libcalls are not available in 32-bit.
1199    setLibcallName(RTLIB::SHL_I128, 0);
1200    setLibcallName(RTLIB::SRL_I128, 0);
1201    setLibcallName(RTLIB::SRA_I128, 0);
1202  }
1203
1204  // We have target-specific dag combine patterns for the following nodes:
1205  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1206  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1207  setTargetDAGCombine(ISD::VSELECT);
1208  setTargetDAGCombine(ISD::SELECT);
1209  setTargetDAGCombine(ISD::SHL);
1210  setTargetDAGCombine(ISD::SRA);
1211  setTargetDAGCombine(ISD::SRL);
1212  setTargetDAGCombine(ISD::OR);
1213  setTargetDAGCombine(ISD::AND);
1214  setTargetDAGCombine(ISD::ADD);
1215  setTargetDAGCombine(ISD::FADD);
1216  setTargetDAGCombine(ISD::FSUB);
1217  setTargetDAGCombine(ISD::SUB);
1218  setTargetDAGCombine(ISD::LOAD);
1219  setTargetDAGCombine(ISD::STORE);
1220  setTargetDAGCombine(ISD::ZERO_EXTEND);
1221  setTargetDAGCombine(ISD::ANY_EXTEND);
1222  setTargetDAGCombine(ISD::SIGN_EXTEND);
1223  setTargetDAGCombine(ISD::TRUNCATE);
1224  setTargetDAGCombine(ISD::UINT_TO_FP);
1225  setTargetDAGCombine(ISD::SINT_TO_FP);
1226  setTargetDAGCombine(ISD::SETCC);
1227  setTargetDAGCombine(ISD::FP_TO_SINT);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279}
1280
1281/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1282/// function arguments in the caller parameter area. For X86, aggregates
1283/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1284/// are at 4-byte boundaries.
1285unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1286  if (Subtarget->is64Bit()) {
1287    // Max of 8 and alignment of type.
1288    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1289    if (TyAlign > 8)
1290      return TyAlign;
1291    return 8;
1292  }
1293
1294  unsigned Align = 4;
1295  if (Subtarget->hasSSE1())
1296    getMaxByValAlign(Ty, Align);
1297  return Align;
1298}
1299
1300/// getOptimalMemOpType - Returns the target specific optimal type for load
1301/// and store operations as a result of memset, memcpy, and memmove
1302/// lowering. If DstAlign is zero that means it's safe to destination
1303/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1304/// means there isn't a need to check it against alignment requirement,
1305/// probably because the source does not need to be loaded. If
1306/// 'IsZeroVal' is true, that means it's safe to return a
1307/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1308/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1309/// constant so it does not need to be loaded.
1310/// It returns EVT::Other if the type should be determined using generic
1311/// target-independent logic.
1312EVT
1313X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1314                                       unsigned DstAlign, unsigned SrcAlign,
1315                                       bool IsZeroVal,
1316                                       bool MemcpyStrSrc,
1317                                       MachineFunction &MF) const {
1318  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1319  // linux.  This is because the stack realignment code can't handle certain
1320  // cases like PR2962.  This should be removed when PR2962 is fixed.
1321  const Function *F = MF.getFunction();
1322  if (IsZeroVal &&
1323      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1324    if (Size >= 16 &&
1325        (Subtarget->isUnalignedMemAccessFast() ||
1326         ((DstAlign == 0 || DstAlign >= 16) &&
1327          (SrcAlign == 0 || SrcAlign >= 16))) &&
1328        Subtarget->getStackAlignment() >= 16) {
1329      if (Subtarget->getStackAlignment() >= 32) {
1330        if (Subtarget->hasAVX2())
1331          return MVT::v8i32;
1332        if (Subtarget->hasAVX())
1333          return MVT::v8f32;
1334      }
1335      if (Subtarget->hasSSE2())
1336        return MVT::v4i32;
1337      if (Subtarget->hasSSE1())
1338        return MVT::v4f32;
1339    } else if (!MemcpyStrSrc && Size >= 8 &&
1340               !Subtarget->is64Bit() &&
1341               Subtarget->getStackAlignment() >= 8 &&
1342               Subtarget->hasSSE2()) {
1343      // Do not use f64 to lower memcpy if source is string constant. It's
1344      // better to use i32 to avoid the loads.
1345      return MVT::f64;
1346    }
1347  }
1348  if (Subtarget->is64Bit() && Size >= 8)
1349    return MVT::i64;
1350  return MVT::i32;
1351}
1352
1353/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1354/// current function.  The returned value is a member of the
1355/// MachineJumpTableInfo::JTEntryKind enum.
1356unsigned X86TargetLowering::getJumpTableEncoding() const {
1357  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1358  // symbol.
1359  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1360      Subtarget->isPICStyleGOT())
1361    return MachineJumpTableInfo::EK_Custom32;
1362
1363  // Otherwise, use the normal jump table encoding heuristics.
1364  return TargetLowering::getJumpTableEncoding();
1365}
1366
1367const MCExpr *
1368X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1369                                             const MachineBasicBlock *MBB,
1370                                             unsigned uid,MCContext &Ctx) const{
1371  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1372         Subtarget->isPICStyleGOT());
1373  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1374  // entries.
1375  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1376                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1377}
1378
1379/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1380/// jumptable.
1381SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1382                                                    SelectionDAG &DAG) const {
1383  if (!Subtarget->is64Bit())
1384    // This doesn't have DebugLoc associated with it, but is not really the
1385    // same as a Register.
1386    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1387  return Table;
1388}
1389
1390/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1391/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1392/// MCExpr.
1393const MCExpr *X86TargetLowering::
1394getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1395                             MCContext &Ctx) const {
1396  // X86-64 uses RIP relative addressing based on the jump table label.
1397  if (Subtarget->isPICStyleRIPRel())
1398    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1399
1400  // Otherwise, the reference is relative to the PIC base.
1401  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1402}
1403
1404// FIXME: Why this routine is here? Move to RegInfo!
1405std::pair<const TargetRegisterClass*, uint8_t>
1406X86TargetLowering::findRepresentativeClass(EVT VT) const{
1407  const TargetRegisterClass *RRC = 0;
1408  uint8_t Cost = 1;
1409  switch (VT.getSimpleVT().SimpleTy) {
1410  default:
1411    return TargetLowering::findRepresentativeClass(VT);
1412  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1413    RRC = Subtarget->is64Bit() ?
1414      (const TargetRegisterClass*)&X86::GR64RegClass :
1415      (const TargetRegisterClass*)&X86::GR32RegClass;
1416    break;
1417  case MVT::x86mmx:
1418    RRC = &X86::VR64RegClass;
1419    break;
1420  case MVT::f32: case MVT::f64:
1421  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1422  case MVT::v4f32: case MVT::v2f64:
1423  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1424  case MVT::v4f64:
1425    RRC = &X86::VR128RegClass;
1426    break;
1427  }
1428  return std::make_pair(RRC, Cost);
1429}
1430
1431bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1432                                               unsigned &Offset) const {
1433  if (!Subtarget->isTargetLinux())
1434    return false;
1435
1436  if (Subtarget->is64Bit()) {
1437    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1438    Offset = 0x28;
1439    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1440      AddressSpace = 256;
1441    else
1442      AddressSpace = 257;
1443  } else {
1444    // %gs:0x14 on i386
1445    Offset = 0x14;
1446    AddressSpace = 256;
1447  }
1448  return true;
1449}
1450
1451
1452//===----------------------------------------------------------------------===//
1453//               Return Value Calling Convention Implementation
1454//===----------------------------------------------------------------------===//
1455
1456#include "X86GenCallingConv.inc"
1457
1458bool
1459X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1460                                  MachineFunction &MF, bool isVarArg,
1461                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1462                        LLVMContext &Context) const {
1463  SmallVector<CCValAssign, 16> RVLocs;
1464  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1465                 RVLocs, Context);
1466  return CCInfo.CheckReturn(Outs, RetCC_X86);
1467}
1468
1469SDValue
1470X86TargetLowering::LowerReturn(SDValue Chain,
1471                               CallingConv::ID CallConv, bool isVarArg,
1472                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1473                               const SmallVectorImpl<SDValue> &OutVals,
1474                               DebugLoc dl, SelectionDAG &DAG) const {
1475  MachineFunction &MF = DAG.getMachineFunction();
1476  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1477
1478  SmallVector<CCValAssign, 16> RVLocs;
1479  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1482
1483  // Add the regs to the liveout set for the function.
1484  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1485  for (unsigned i = 0; i != RVLocs.size(); ++i)
1486    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1487      MRI.addLiveOut(RVLocs[i].getLocReg());
1488
1489  SDValue Flag;
1490
1491  SmallVector<SDValue, 6> RetOps;
1492  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1493  // Operand #1 = Bytes To Pop
1494  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1495                   MVT::i16));
1496
1497  // Copy the result values into the output registers.
1498  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1499    CCValAssign &VA = RVLocs[i];
1500    assert(VA.isRegLoc() && "Can only return in registers!");
1501    SDValue ValToCopy = OutVals[i];
1502    EVT ValVT = ValToCopy.getValueType();
1503
1504    // If this is x86-64, and we disabled SSE, we can't return FP values,
1505    // or SSE or MMX vectors.
1506    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1507         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1508          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1509      report_fatal_error("SSE register return with SSE disabled");
1510    }
1511    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1512    // llvm-gcc has never done it right and no one has noticed, so this
1513    // should be OK for now.
1514    if (ValVT == MVT::f64 &&
1515        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1516      report_fatal_error("SSE2 register return with SSE2 disabled");
1517
1518    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1519    // the RET instruction and handled by the FP Stackifier.
1520    if (VA.getLocReg() == X86::ST0 ||
1521        VA.getLocReg() == X86::ST1) {
1522      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1523      // change the value to the FP stack register class.
1524      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1525        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1526      RetOps.push_back(ValToCopy);
1527      // Don't emit a copytoreg.
1528      continue;
1529    }
1530
1531    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1532    // which is returned in RAX / RDX.
1533    if (Subtarget->is64Bit()) {
1534      if (ValVT == MVT::x86mmx) {
1535        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1536          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1537          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1538                                  ValToCopy);
1539          // If we don't have SSE2 available, convert to v4f32 so the generated
1540          // register is legal.
1541          if (!Subtarget->hasSSE2())
1542            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1543        }
1544      }
1545    }
1546
1547    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1548    Flag = Chain.getValue(1);
1549  }
1550
1551  // The x86-64 ABI for returning structs by value requires that we copy
1552  // the sret argument into %rax for the return. We saved the argument into
1553  // a virtual register in the entry block, so now we copy the value out
1554  // and into %rax.
1555  if (Subtarget->is64Bit() &&
1556      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1557    MachineFunction &MF = DAG.getMachineFunction();
1558    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1559    unsigned Reg = FuncInfo->getSRetReturnReg();
1560    assert(Reg &&
1561           "SRetReturnReg should have been set in LowerFormalArguments().");
1562    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1563
1564    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1565    Flag = Chain.getValue(1);
1566
1567    // RAX now acts like a return value.
1568    MRI.addLiveOut(X86::RAX);
1569  }
1570
1571  RetOps[0] = Chain;  // Update chain.
1572
1573  // Add the flag if we have it.
1574  if (Flag.getNode())
1575    RetOps.push_back(Flag);
1576
1577  return DAG.getNode(X86ISD::RET_FLAG, dl,
1578                     MVT::Other, &RetOps[0], RetOps.size());
1579}
1580
1581bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1582  if (N->getNumValues() != 1)
1583    return false;
1584  if (!N->hasNUsesOfValue(1, 0))
1585    return false;
1586
1587  SDValue TCChain = Chain;
1588  SDNode *Copy = *N->use_begin();
1589  if (Copy->getOpcode() == ISD::CopyToReg) {
1590    // If the copy has a glue operand, we conservatively assume it isn't safe to
1591    // perform a tail call.
1592    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1593      return false;
1594    TCChain = Copy->getOperand(0);
1595  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1596    return false;
1597
1598  bool HasRet = false;
1599  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1600       UI != UE; ++UI) {
1601    if (UI->getOpcode() != X86ISD::RET_FLAG)
1602      return false;
1603    HasRet = true;
1604  }
1605
1606  if (!HasRet)
1607    return false;
1608
1609  Chain = TCChain;
1610  return true;
1611}
1612
1613EVT
1614X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1615                                            ISD::NodeType ExtendKind) const {
1616  MVT ReturnMVT;
1617  // TODO: Is this also valid on 32-bit?
1618  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1619    ReturnMVT = MVT::i8;
1620  else
1621    ReturnMVT = MVT::i32;
1622
1623  EVT MinVT = getRegisterType(Context, ReturnMVT);
1624  return VT.bitsLT(MinVT) ? MinVT : VT;
1625}
1626
1627/// LowerCallResult - Lower the result values of a call into the
1628/// appropriate copies out of appropriate physical registers.
1629///
1630SDValue
1631X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1632                                   CallingConv::ID CallConv, bool isVarArg,
1633                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1634                                   DebugLoc dl, SelectionDAG &DAG,
1635                                   SmallVectorImpl<SDValue> &InVals) const {
1636
1637  // Assign locations to each value returned by this call.
1638  SmallVector<CCValAssign, 16> RVLocs;
1639  bool Is64Bit = Subtarget->is64Bit();
1640  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1641                 getTargetMachine(), RVLocs, *DAG.getContext());
1642  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1643
1644  // Copy all of the result registers out of their specified physreg.
1645  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1646    CCValAssign &VA = RVLocs[i];
1647    EVT CopyVT = VA.getValVT();
1648
1649    // If this is x86-64, and we disabled SSE, we can't return FP values
1650    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1651        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1652      report_fatal_error("SSE register return with SSE disabled");
1653    }
1654
1655    SDValue Val;
1656
1657    // If this is a call to a function that returns an fp value on the floating
1658    // point stack, we must guarantee the the value is popped from the stack, so
1659    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1660    // if the return value is not used. We use the FpPOP_RETVAL instruction
1661    // instead.
1662    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1663      // If we prefer to use the value in xmm registers, copy it out as f80 and
1664      // use a truncate to move it from fp stack reg to xmm reg.
1665      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1666      SDValue Ops[] = { Chain, InFlag };
1667      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1668                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1669      Val = Chain.getValue(0);
1670
1671      // Round the f80 to the right size, which also moves it to the appropriate
1672      // xmm register.
1673      if (CopyVT != VA.getValVT())
1674        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1675                          // This truncation won't change the value.
1676                          DAG.getIntPtrConstant(1));
1677    } else {
1678      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1679                                 CopyVT, InFlag).getValue(1);
1680      Val = Chain.getValue(0);
1681    }
1682    InFlag = Chain.getValue(2);
1683    InVals.push_back(Val);
1684  }
1685
1686  return Chain;
1687}
1688
1689
1690//===----------------------------------------------------------------------===//
1691//                C & StdCall & Fast Calling Convention implementation
1692//===----------------------------------------------------------------------===//
1693//  StdCall calling convention seems to be standard for many Windows' API
1694//  routines and around. It differs from C calling convention just a little:
1695//  callee should clean up the stack, not caller. Symbols should be also
1696//  decorated in some fancy way :) It doesn't support any vector arguments.
1697//  For info on fast calling convention see Fast Calling Convention (tail call)
1698//  implementation LowerX86_32FastCCCallTo.
1699
1700/// CallIsStructReturn - Determines whether a call uses struct return
1701/// semantics.
1702static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1703  if (Outs.empty())
1704    return false;
1705
1706  return Outs[0].Flags.isSRet();
1707}
1708
1709/// ArgsAreStructReturn - Determines whether a function uses struct
1710/// return semantics.
1711static bool
1712ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1713  if (Ins.empty())
1714    return false;
1715
1716  return Ins[0].Flags.isSRet();
1717}
1718
1719/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1720/// by "Src" to address "Dst" with size and alignment information specified by
1721/// the specific parameter attribute. The copy will be passed as a byval
1722/// function parameter.
1723static SDValue
1724CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1725                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1726                          DebugLoc dl) {
1727  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1728
1729  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1730                       /*isVolatile*/false, /*AlwaysInline=*/true,
1731                       MachinePointerInfo(), MachinePointerInfo());
1732}
1733
1734/// IsTailCallConvention - Return true if the calling convention is one that
1735/// supports tail call optimization.
1736static bool IsTailCallConvention(CallingConv::ID CC) {
1737  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1738}
1739
1740bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1741  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1742    return false;
1743
1744  CallSite CS(CI);
1745  CallingConv::ID CalleeCC = CS.getCallingConv();
1746  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1747    return false;
1748
1749  return true;
1750}
1751
1752/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1753/// a tailcall target by changing its ABI.
1754static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1755                                   bool GuaranteedTailCallOpt) {
1756  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1757}
1758
1759SDValue
1760X86TargetLowering::LowerMemArgument(SDValue Chain,
1761                                    CallingConv::ID CallConv,
1762                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1763                                    DebugLoc dl, SelectionDAG &DAG,
1764                                    const CCValAssign &VA,
1765                                    MachineFrameInfo *MFI,
1766                                    unsigned i) const {
1767  // Create the nodes corresponding to a load from this parameter slot.
1768  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1769  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1770                              getTargetMachine().Options.GuaranteedTailCallOpt);
1771  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1772  EVT ValVT;
1773
1774  // If value is passed by pointer we have address passed instead of the value
1775  // itself.
1776  if (VA.getLocInfo() == CCValAssign::Indirect)
1777    ValVT = VA.getLocVT();
1778  else
1779    ValVT = VA.getValVT();
1780
1781  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1782  // changed with more analysis.
1783  // In case of tail call optimization mark all arguments mutable. Since they
1784  // could be overwritten by lowering of arguments in case of a tail call.
1785  if (Flags.isByVal()) {
1786    unsigned Bytes = Flags.getByValSize();
1787    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1788    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1789    return DAG.getFrameIndex(FI, getPointerTy());
1790  } else {
1791    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1792                                    VA.getLocMemOffset(), isImmutable);
1793    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1794    return DAG.getLoad(ValVT, dl, Chain, FIN,
1795                       MachinePointerInfo::getFixedStack(FI),
1796                       false, false, false, 0);
1797  }
1798}
1799
1800SDValue
1801X86TargetLowering::LowerFormalArguments(SDValue Chain,
1802                                        CallingConv::ID CallConv,
1803                                        bool isVarArg,
1804                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1805                                        DebugLoc dl,
1806                                        SelectionDAG &DAG,
1807                                        SmallVectorImpl<SDValue> &InVals)
1808                                          const {
1809  MachineFunction &MF = DAG.getMachineFunction();
1810  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1811
1812  const Function* Fn = MF.getFunction();
1813  if (Fn->hasExternalLinkage() &&
1814      Subtarget->isTargetCygMing() &&
1815      Fn->getName() == "main")
1816    FuncInfo->setForceFramePointer(true);
1817
1818  MachineFrameInfo *MFI = MF.getFrameInfo();
1819  bool Is64Bit = Subtarget->is64Bit();
1820  bool IsWindows = Subtarget->isTargetWindows();
1821  bool IsWin64 = Subtarget->isTargetWin64();
1822
1823  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1824         "Var args not supported with calling convention fastcc or ghc");
1825
1826  // Assign locations to all of the incoming arguments.
1827  SmallVector<CCValAssign, 16> ArgLocs;
1828  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1829                 ArgLocs, *DAG.getContext());
1830
1831  // Allocate shadow area for Win64
1832  if (IsWin64) {
1833    CCInfo.AllocateStack(32, 8);
1834  }
1835
1836  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1837
1838  unsigned LastVal = ~0U;
1839  SDValue ArgValue;
1840  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1841    CCValAssign &VA = ArgLocs[i];
1842    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1843    // places.
1844    assert(VA.getValNo() != LastVal &&
1845           "Don't support value assigned to multiple locs yet");
1846    (void)LastVal;
1847    LastVal = VA.getValNo();
1848
1849    if (VA.isRegLoc()) {
1850      EVT RegVT = VA.getLocVT();
1851      const TargetRegisterClass *RC;
1852      if (RegVT == MVT::i32)
1853        RC = &X86::GR32RegClass;
1854      else if (Is64Bit && RegVT == MVT::i64)
1855        RC = &X86::GR64RegClass;
1856      else if (RegVT == MVT::f32)
1857        RC = &X86::FR32RegClass;
1858      else if (RegVT == MVT::f64)
1859        RC = &X86::FR64RegClass;
1860      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1861        RC = &X86::VR256RegClass;
1862      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1863        RC = &X86::VR128RegClass;
1864      else if (RegVT == MVT::x86mmx)
1865        RC = &X86::VR64RegClass;
1866      else
1867        llvm_unreachable("Unknown argument type!");
1868
1869      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1870      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1871
1872      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1873      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1874      // right size.
1875      if (VA.getLocInfo() == CCValAssign::SExt)
1876        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1877                               DAG.getValueType(VA.getValVT()));
1878      else if (VA.getLocInfo() == CCValAssign::ZExt)
1879        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1880                               DAG.getValueType(VA.getValVT()));
1881      else if (VA.getLocInfo() == CCValAssign::BCvt)
1882        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1883
1884      if (VA.isExtInLoc()) {
1885        // Handle MMX values passed in XMM regs.
1886        if (RegVT.isVector()) {
1887          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1888                                 ArgValue);
1889        } else
1890          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1891      }
1892    } else {
1893      assert(VA.isMemLoc());
1894      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1895    }
1896
1897    // If value is passed via pointer - do a load.
1898    if (VA.getLocInfo() == CCValAssign::Indirect)
1899      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1900                             MachinePointerInfo(), false, false, false, 0);
1901
1902    InVals.push_back(ArgValue);
1903  }
1904
1905  // The x86-64 ABI for returning structs by value requires that we copy
1906  // the sret argument into %rax for the return. Save the argument into
1907  // a virtual register so that we can access it from the return points.
1908  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1909    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1910    unsigned Reg = FuncInfo->getSRetReturnReg();
1911    if (!Reg) {
1912      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1913      FuncInfo->setSRetReturnReg(Reg);
1914    }
1915    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1916    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1917  }
1918
1919  unsigned StackSize = CCInfo.getNextStackOffset();
1920  // Align stack specially for tail calls.
1921  if (FuncIsMadeTailCallSafe(CallConv,
1922                             MF.getTarget().Options.GuaranteedTailCallOpt))
1923    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1924
1925  // If the function takes variable number of arguments, make a frame index for
1926  // the start of the first vararg value... for expansion of llvm.va_start.
1927  if (isVarArg) {
1928    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1929                    CallConv != CallingConv::X86_ThisCall)) {
1930      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1931    }
1932    if (Is64Bit) {
1933      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1934
1935      // FIXME: We should really autogenerate these arrays
1936      static const uint16_t GPR64ArgRegsWin64[] = {
1937        X86::RCX, X86::RDX, X86::R8,  X86::R9
1938      };
1939      static const uint16_t GPR64ArgRegs64Bit[] = {
1940        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1941      };
1942      static const uint16_t XMMArgRegs64Bit[] = {
1943        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1944        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1945      };
1946      const uint16_t *GPR64ArgRegs;
1947      unsigned NumXMMRegs = 0;
1948
1949      if (IsWin64) {
1950        // The XMM registers which might contain var arg parameters are shadowed
1951        // in their paired GPR.  So we only need to save the GPR to their home
1952        // slots.
1953        TotalNumIntRegs = 4;
1954        GPR64ArgRegs = GPR64ArgRegsWin64;
1955      } else {
1956        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1957        GPR64ArgRegs = GPR64ArgRegs64Bit;
1958
1959        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1960                                                TotalNumXMMRegs);
1961      }
1962      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1963                                                       TotalNumIntRegs);
1964
1965      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1966      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1967             "SSE register cannot be used when SSE is disabled!");
1968      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1969               NoImplicitFloatOps) &&
1970             "SSE register cannot be used when SSE is disabled!");
1971      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1972          !Subtarget->hasSSE1())
1973        // Kernel mode asks for SSE to be disabled, so don't push them
1974        // on the stack.
1975        TotalNumXMMRegs = 0;
1976
1977      if (IsWin64) {
1978        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1979        // Get to the caller-allocated home save location.  Add 8 to account
1980        // for the return address.
1981        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1982        FuncInfo->setRegSaveFrameIndex(
1983          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1984        // Fixup to set vararg frame on shadow area (4 x i64).
1985        if (NumIntRegs < 4)
1986          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1987      } else {
1988        // For X86-64, if there are vararg parameters that are passed via
1989        // registers, then we must store them to their spots on the stack so
1990        // they may be loaded by deferencing the result of va_next.
1991        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1992        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1993        FuncInfo->setRegSaveFrameIndex(
1994          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1995                               false));
1996      }
1997
1998      // Store the integer parameter registers.
1999      SmallVector<SDValue, 8> MemOps;
2000      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2001                                        getPointerTy());
2002      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2003      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2004        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2005                                  DAG.getIntPtrConstant(Offset));
2006        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2007                                     &X86::GR64RegClass);
2008        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2009        SDValue Store =
2010          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2011                       MachinePointerInfo::getFixedStack(
2012                         FuncInfo->getRegSaveFrameIndex(), Offset),
2013                       false, false, 0);
2014        MemOps.push_back(Store);
2015        Offset += 8;
2016      }
2017
2018      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2019        // Now store the XMM (fp + vector) parameter registers.
2020        SmallVector<SDValue, 11> SaveXMMOps;
2021        SaveXMMOps.push_back(Chain);
2022
2023        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2024        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2025        SaveXMMOps.push_back(ALVal);
2026
2027        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2028                               FuncInfo->getRegSaveFrameIndex()));
2029        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2030                               FuncInfo->getVarArgsFPOffset()));
2031
2032        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2033          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2034                                       &X86::VR128RegClass);
2035          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2036          SaveXMMOps.push_back(Val);
2037        }
2038        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2039                                     MVT::Other,
2040                                     &SaveXMMOps[0], SaveXMMOps.size()));
2041      }
2042
2043      if (!MemOps.empty())
2044        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2045                            &MemOps[0], MemOps.size());
2046    }
2047  }
2048
2049  // Some CCs need callee pop.
2050  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2051                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2052    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2053  } else {
2054    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2055    // If this is an sret function, the return should pop the hidden pointer.
2056    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2057        ArgsAreStructReturn(Ins))
2058      FuncInfo->setBytesToPopOnReturn(4);
2059  }
2060
2061  if (!Is64Bit) {
2062    // RegSaveFrameIndex is X86-64 only.
2063    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2064    if (CallConv == CallingConv::X86_FastCall ||
2065        CallConv == CallingConv::X86_ThisCall)
2066      // fastcc functions can't have varargs.
2067      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2068  }
2069
2070  FuncInfo->setArgumentStackSize(StackSize);
2071
2072  return Chain;
2073}
2074
2075SDValue
2076X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2077                                    SDValue StackPtr, SDValue Arg,
2078                                    DebugLoc dl, SelectionDAG &DAG,
2079                                    const CCValAssign &VA,
2080                                    ISD::ArgFlagsTy Flags) const {
2081  unsigned LocMemOffset = VA.getLocMemOffset();
2082  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2083  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2084  if (Flags.isByVal())
2085    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2086
2087  return DAG.getStore(Chain, dl, Arg, PtrOff,
2088                      MachinePointerInfo::getStack(LocMemOffset),
2089                      false, false, 0);
2090}
2091
2092/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2093/// optimization is performed and it is required.
2094SDValue
2095X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2096                                           SDValue &OutRetAddr, SDValue Chain,
2097                                           bool IsTailCall, bool Is64Bit,
2098                                           int FPDiff, DebugLoc dl) const {
2099  // Adjust the Return address stack slot.
2100  EVT VT = getPointerTy();
2101  OutRetAddr = getReturnAddressFrameIndex(DAG);
2102
2103  // Load the "old" Return address.
2104  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2105                           false, false, false, 0);
2106  return SDValue(OutRetAddr.getNode(), 1);
2107}
2108
2109/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2110/// optimization is performed and it is required (FPDiff!=0).
2111static SDValue
2112EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2113                         SDValue Chain, SDValue RetAddrFrIdx,
2114                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2115  // Store the return address to the appropriate stack slot.
2116  if (!FPDiff) return Chain;
2117  // Calculate the new stack slot for the return address.
2118  int SlotSize = Is64Bit ? 8 : 4;
2119  int NewReturnAddrFI =
2120    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2121  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2122  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2123  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2124                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2125                       false, false, 0);
2126  return Chain;
2127}
2128
2129SDValue
2130X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2131                             CallingConv::ID CallConv, bool isVarArg,
2132                             bool doesNotRet, bool &isTailCall,
2133                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2134                             const SmallVectorImpl<SDValue> &OutVals,
2135                             const SmallVectorImpl<ISD::InputArg> &Ins,
2136                             DebugLoc dl, SelectionDAG &DAG,
2137                             SmallVectorImpl<SDValue> &InVals) const {
2138  MachineFunction &MF = DAG.getMachineFunction();
2139  bool Is64Bit        = Subtarget->is64Bit();
2140  bool IsWin64        = Subtarget->isTargetWin64();
2141  bool IsWindows      = Subtarget->isTargetWindows();
2142  bool IsStructRet    = CallIsStructReturn(Outs);
2143  bool IsSibcall      = false;
2144
2145  if (MF.getTarget().Options.DisableTailCalls)
2146    isTailCall = false;
2147
2148  if (isTailCall) {
2149    // Check if it's really possible to do a tail call.
2150    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2151                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2152                                                   Outs, OutVals, Ins, DAG);
2153
2154    // Sibcalls are automatically detected tailcalls which do not require
2155    // ABI changes.
2156    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2157      IsSibcall = true;
2158
2159    if (isTailCall)
2160      ++NumTailCalls;
2161  }
2162
2163  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2164         "Var args not supported with calling convention fastcc or ghc");
2165
2166  // Analyze operands of the call, assigning locations to each operand.
2167  SmallVector<CCValAssign, 16> ArgLocs;
2168  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2169                 ArgLocs, *DAG.getContext());
2170
2171  // Allocate shadow area for Win64
2172  if (IsWin64) {
2173    CCInfo.AllocateStack(32, 8);
2174  }
2175
2176  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2177
2178  // Get a count of how many bytes are to be pushed on the stack.
2179  unsigned NumBytes = CCInfo.getNextStackOffset();
2180  if (IsSibcall)
2181    // This is a sibcall. The memory operands are available in caller's
2182    // own caller's stack.
2183    NumBytes = 0;
2184  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2185           IsTailCallConvention(CallConv))
2186    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2187
2188  int FPDiff = 0;
2189  if (isTailCall && !IsSibcall) {
2190    // Lower arguments at fp - stackoffset + fpdiff.
2191    unsigned NumBytesCallerPushed =
2192      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2193    FPDiff = NumBytesCallerPushed - NumBytes;
2194
2195    // Set the delta of movement of the returnaddr stackslot.
2196    // But only set if delta is greater than previous delta.
2197    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2198      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2199  }
2200
2201  if (!IsSibcall)
2202    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2203
2204  SDValue RetAddrFrIdx;
2205  // Load return address for tail calls.
2206  if (isTailCall && FPDiff)
2207    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2208                                    Is64Bit, FPDiff, dl);
2209
2210  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2211  SmallVector<SDValue, 8> MemOpChains;
2212  SDValue StackPtr;
2213
2214  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2215  // of tail call optimization arguments are handle later.
2216  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2217    CCValAssign &VA = ArgLocs[i];
2218    EVT RegVT = VA.getLocVT();
2219    SDValue Arg = OutVals[i];
2220    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2221    bool isByVal = Flags.isByVal();
2222
2223    // Promote the value if needed.
2224    switch (VA.getLocInfo()) {
2225    default: llvm_unreachable("Unknown loc info!");
2226    case CCValAssign::Full: break;
2227    case CCValAssign::SExt:
2228      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2229      break;
2230    case CCValAssign::ZExt:
2231      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2232      break;
2233    case CCValAssign::AExt:
2234      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2235        // Special case: passing MMX values in XMM registers.
2236        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2237        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2238        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2239      } else
2240        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2241      break;
2242    case CCValAssign::BCvt:
2243      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2244      break;
2245    case CCValAssign::Indirect: {
2246      // Store the argument.
2247      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2248      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2249      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2250                           MachinePointerInfo::getFixedStack(FI),
2251                           false, false, 0);
2252      Arg = SpillSlot;
2253      break;
2254    }
2255    }
2256
2257    if (VA.isRegLoc()) {
2258      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2259      if (isVarArg && IsWin64) {
2260        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2261        // shadow reg if callee is a varargs function.
2262        unsigned ShadowReg = 0;
2263        switch (VA.getLocReg()) {
2264        case X86::XMM0: ShadowReg = X86::RCX; break;
2265        case X86::XMM1: ShadowReg = X86::RDX; break;
2266        case X86::XMM2: ShadowReg = X86::R8; break;
2267        case X86::XMM3: ShadowReg = X86::R9; break;
2268        }
2269        if (ShadowReg)
2270          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2271      }
2272    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2273      assert(VA.isMemLoc());
2274      if (StackPtr.getNode() == 0)
2275        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2276      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2277                                             dl, DAG, VA, Flags));
2278    }
2279  }
2280
2281  if (!MemOpChains.empty())
2282    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2283                        &MemOpChains[0], MemOpChains.size());
2284
2285  // Build a sequence of copy-to-reg nodes chained together with token chain
2286  // and flag operands which copy the outgoing args into registers.
2287  SDValue InFlag;
2288  // Tail call byval lowering might overwrite argument registers so in case of
2289  // tail call optimization the copies to registers are lowered later.
2290  if (!isTailCall)
2291    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2292      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2293                               RegsToPass[i].second, InFlag);
2294      InFlag = Chain.getValue(1);
2295    }
2296
2297  if (Subtarget->isPICStyleGOT()) {
2298    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2299    // GOT pointer.
2300    if (!isTailCall) {
2301      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2302                               DAG.getNode(X86ISD::GlobalBaseReg,
2303                                           DebugLoc(), getPointerTy()),
2304                               InFlag);
2305      InFlag = Chain.getValue(1);
2306    } else {
2307      // If we are tail calling and generating PIC/GOT style code load the
2308      // address of the callee into ECX. The value in ecx is used as target of
2309      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2310      // for tail calls on PIC/GOT architectures. Normally we would just put the
2311      // address of GOT into ebx and then call target@PLT. But for tail calls
2312      // ebx would be restored (since ebx is callee saved) before jumping to the
2313      // target@PLT.
2314
2315      // Note: The actual moving to ECX is done further down.
2316      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2317      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2318          !G->getGlobal()->hasProtectedVisibility())
2319        Callee = LowerGlobalAddress(Callee, DAG);
2320      else if (isa<ExternalSymbolSDNode>(Callee))
2321        Callee = LowerExternalSymbol(Callee, DAG);
2322    }
2323  }
2324
2325  if (Is64Bit && isVarArg && !IsWin64) {
2326    // From AMD64 ABI document:
2327    // For calls that may call functions that use varargs or stdargs
2328    // (prototype-less calls or calls to functions containing ellipsis (...) in
2329    // the declaration) %al is used as hidden argument to specify the number
2330    // of SSE registers used. The contents of %al do not need to match exactly
2331    // the number of registers, but must be an ubound on the number of SSE
2332    // registers used and is in the range 0 - 8 inclusive.
2333
2334    // Count the number of XMM registers allocated.
2335    static const uint16_t XMMArgRegs[] = {
2336      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2337      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2338    };
2339    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2340    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2341           && "SSE registers cannot be used when SSE is disabled");
2342
2343    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2344                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2345    InFlag = Chain.getValue(1);
2346  }
2347
2348
2349  // For tail calls lower the arguments to the 'real' stack slot.
2350  if (isTailCall) {
2351    // Force all the incoming stack arguments to be loaded from the stack
2352    // before any new outgoing arguments are stored to the stack, because the
2353    // outgoing stack slots may alias the incoming argument stack slots, and
2354    // the alias isn't otherwise explicit. This is slightly more conservative
2355    // than necessary, because it means that each store effectively depends
2356    // on every argument instead of just those arguments it would clobber.
2357    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2358
2359    SmallVector<SDValue, 8> MemOpChains2;
2360    SDValue FIN;
2361    int FI = 0;
2362    // Do not flag preceding copytoreg stuff together with the following stuff.
2363    InFlag = SDValue();
2364    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2365      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2366        CCValAssign &VA = ArgLocs[i];
2367        if (VA.isRegLoc())
2368          continue;
2369        assert(VA.isMemLoc());
2370        SDValue Arg = OutVals[i];
2371        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2372        // Create frame index.
2373        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2374        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2375        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2376        FIN = DAG.getFrameIndex(FI, getPointerTy());
2377
2378        if (Flags.isByVal()) {
2379          // Copy relative to framepointer.
2380          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2381          if (StackPtr.getNode() == 0)
2382            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2383                                          getPointerTy());
2384          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2385
2386          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2387                                                           ArgChain,
2388                                                           Flags, DAG, dl));
2389        } else {
2390          // Store relative to framepointer.
2391          MemOpChains2.push_back(
2392            DAG.getStore(ArgChain, dl, Arg, FIN,
2393                         MachinePointerInfo::getFixedStack(FI),
2394                         false, false, 0));
2395        }
2396      }
2397    }
2398
2399    if (!MemOpChains2.empty())
2400      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2401                          &MemOpChains2[0], MemOpChains2.size());
2402
2403    // Copy arguments to their registers.
2404    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2405      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2406                               RegsToPass[i].second, InFlag);
2407      InFlag = Chain.getValue(1);
2408    }
2409    InFlag =SDValue();
2410
2411    // Store the return address to the appropriate stack slot.
2412    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2413                                     FPDiff, dl);
2414  }
2415
2416  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2417    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2418    // In the 64-bit large code model, we have to make all calls
2419    // through a register, since the call instruction's 32-bit
2420    // pc-relative offset may not be large enough to hold the whole
2421    // address.
2422  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2423    // If the callee is a GlobalAddress node (quite common, every direct call
2424    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2425    // it.
2426
2427    // We should use extra load for direct calls to dllimported functions in
2428    // non-JIT mode.
2429    const GlobalValue *GV = G->getGlobal();
2430    if (!GV->hasDLLImportLinkage()) {
2431      unsigned char OpFlags = 0;
2432      bool ExtraLoad = false;
2433      unsigned WrapperKind = ISD::DELETED_NODE;
2434
2435      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2436      // external symbols most go through the PLT in PIC mode.  If the symbol
2437      // has hidden or protected visibility, or if it is static or local, then
2438      // we don't need to use the PLT - we can directly call it.
2439      if (Subtarget->isTargetELF() &&
2440          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2441          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2442        OpFlags = X86II::MO_PLT;
2443      } else if (Subtarget->isPICStyleStubAny() &&
2444                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2445                 (!Subtarget->getTargetTriple().isMacOSX() ||
2446                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2447        // PC-relative references to external symbols should go through $stub,
2448        // unless we're building with the leopard linker or later, which
2449        // automatically synthesizes these stubs.
2450        OpFlags = X86II::MO_DARWIN_STUB;
2451      } else if (Subtarget->isPICStyleRIPRel() &&
2452                 isa<Function>(GV) &&
2453                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2454        // If the function is marked as non-lazy, generate an indirect call
2455        // which loads from the GOT directly. This avoids runtime overhead
2456        // at the cost of eager binding (and one extra byte of encoding).
2457        OpFlags = X86II::MO_GOTPCREL;
2458        WrapperKind = X86ISD::WrapperRIP;
2459        ExtraLoad = true;
2460      }
2461
2462      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2463                                          G->getOffset(), OpFlags);
2464
2465      // Add a wrapper if needed.
2466      if (WrapperKind != ISD::DELETED_NODE)
2467        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2468      // Add extra indirection if needed.
2469      if (ExtraLoad)
2470        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2471                             MachinePointerInfo::getGOT(),
2472                             false, false, false, 0);
2473    }
2474  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2475    unsigned char OpFlags = 0;
2476
2477    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2478    // external symbols should go through the PLT.
2479    if (Subtarget->isTargetELF() &&
2480        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2481      OpFlags = X86II::MO_PLT;
2482    } else if (Subtarget->isPICStyleStubAny() &&
2483               (!Subtarget->getTargetTriple().isMacOSX() ||
2484                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2485      // PC-relative references to external symbols should go through $stub,
2486      // unless we're building with the leopard linker or later, which
2487      // automatically synthesizes these stubs.
2488      OpFlags = X86II::MO_DARWIN_STUB;
2489    }
2490
2491    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2492                                         OpFlags);
2493  }
2494
2495  // Returns a chain & a flag for retval copy to use.
2496  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2497  SmallVector<SDValue, 8> Ops;
2498
2499  if (!IsSibcall && isTailCall) {
2500    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2501                           DAG.getIntPtrConstant(0, true), InFlag);
2502    InFlag = Chain.getValue(1);
2503  }
2504
2505  Ops.push_back(Chain);
2506  Ops.push_back(Callee);
2507
2508  if (isTailCall)
2509    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2510
2511  // Add argument registers to the end of the list so that they are known live
2512  // into the call.
2513  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2514    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2515                                  RegsToPass[i].second.getValueType()));
2516
2517  // Add an implicit use GOT pointer in EBX.
2518  if (!isTailCall && Subtarget->isPICStyleGOT())
2519    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2520
2521  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2522  if (Is64Bit && isVarArg && !IsWin64)
2523    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2524
2525  // Add a register mask operand representing the call-preserved registers.
2526  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2527  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2528  assert(Mask && "Missing call preserved mask for calling convention");
2529  Ops.push_back(DAG.getRegisterMask(Mask));
2530
2531  if (InFlag.getNode())
2532    Ops.push_back(InFlag);
2533
2534  if (isTailCall) {
2535    // We used to do:
2536    //// If this is the first return lowered for this function, add the regs
2537    //// to the liveout set for the function.
2538    // This isn't right, although it's probably harmless on x86; liveouts
2539    // should be computed from returns not tail calls.  Consider a void
2540    // function making a tail call to a function returning int.
2541    return DAG.getNode(X86ISD::TC_RETURN, dl,
2542                       NodeTys, &Ops[0], Ops.size());
2543  }
2544
2545  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2546  InFlag = Chain.getValue(1);
2547
2548  // Create the CALLSEQ_END node.
2549  unsigned NumBytesForCalleeToPush;
2550  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2551                       getTargetMachine().Options.GuaranteedTailCallOpt))
2552    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2553  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2554           IsStructRet)
2555    // If this is a call to a struct-return function, the callee
2556    // pops the hidden struct pointer, so we have to push it back.
2557    // This is common for Darwin/X86, Linux & Mingw32 targets.
2558    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2559    NumBytesForCalleeToPush = 4;
2560  else
2561    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2562
2563  // Returns a flag for retval copy to use.
2564  if (!IsSibcall) {
2565    Chain = DAG.getCALLSEQ_END(Chain,
2566                               DAG.getIntPtrConstant(NumBytes, true),
2567                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2568                                                     true),
2569                               InFlag);
2570    InFlag = Chain.getValue(1);
2571  }
2572
2573  // Handle result values, copying them out of physregs into vregs that we
2574  // return.
2575  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2576                         Ins, dl, DAG, InVals);
2577}
2578
2579
2580//===----------------------------------------------------------------------===//
2581//                Fast Calling Convention (tail call) implementation
2582//===----------------------------------------------------------------------===//
2583
2584//  Like std call, callee cleans arguments, convention except that ECX is
2585//  reserved for storing the tail called function address. Only 2 registers are
2586//  free for argument passing (inreg). Tail call optimization is performed
2587//  provided:
2588//                * tailcallopt is enabled
2589//                * caller/callee are fastcc
2590//  On X86_64 architecture with GOT-style position independent code only local
2591//  (within module) calls are supported at the moment.
2592//  To keep the stack aligned according to platform abi the function
2593//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2594//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2595//  If a tail called function callee has more arguments than the caller the
2596//  caller needs to make sure that there is room to move the RETADDR to. This is
2597//  achieved by reserving an area the size of the argument delta right after the
2598//  original REtADDR, but before the saved framepointer or the spilled registers
2599//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2600//  stack layout:
2601//    arg1
2602//    arg2
2603//    RETADDR
2604//    [ new RETADDR
2605//      move area ]
2606//    (possible EBP)
2607//    ESI
2608//    EDI
2609//    local1 ..
2610
2611/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2612/// for a 16 byte align requirement.
2613unsigned
2614X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2615                                               SelectionDAG& DAG) const {
2616  MachineFunction &MF = DAG.getMachineFunction();
2617  const TargetMachine &TM = MF.getTarget();
2618  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2619  unsigned StackAlignment = TFI.getStackAlignment();
2620  uint64_t AlignMask = StackAlignment - 1;
2621  int64_t Offset = StackSize;
2622  uint64_t SlotSize = TD->getPointerSize();
2623  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2624    // Number smaller than 12 so just add the difference.
2625    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2626  } else {
2627    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2628    Offset = ((~AlignMask) & Offset) + StackAlignment +
2629      (StackAlignment-SlotSize);
2630  }
2631  return Offset;
2632}
2633
2634/// MatchingStackOffset - Return true if the given stack call argument is
2635/// already available in the same position (relatively) of the caller's
2636/// incoming argument stack.
2637static
2638bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2639                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2640                         const X86InstrInfo *TII) {
2641  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2642  int FI = INT_MAX;
2643  if (Arg.getOpcode() == ISD::CopyFromReg) {
2644    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2645    if (!TargetRegisterInfo::isVirtualRegister(VR))
2646      return false;
2647    MachineInstr *Def = MRI->getVRegDef(VR);
2648    if (!Def)
2649      return false;
2650    if (!Flags.isByVal()) {
2651      if (!TII->isLoadFromStackSlot(Def, FI))
2652        return false;
2653    } else {
2654      unsigned Opcode = Def->getOpcode();
2655      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2656          Def->getOperand(1).isFI()) {
2657        FI = Def->getOperand(1).getIndex();
2658        Bytes = Flags.getByValSize();
2659      } else
2660        return false;
2661    }
2662  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2663    if (Flags.isByVal())
2664      // ByVal argument is passed in as a pointer but it's now being
2665      // dereferenced. e.g.
2666      // define @foo(%struct.X* %A) {
2667      //   tail call @bar(%struct.X* byval %A)
2668      // }
2669      return false;
2670    SDValue Ptr = Ld->getBasePtr();
2671    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2672    if (!FINode)
2673      return false;
2674    FI = FINode->getIndex();
2675  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2676    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2677    FI = FINode->getIndex();
2678    Bytes = Flags.getByValSize();
2679  } else
2680    return false;
2681
2682  assert(FI != INT_MAX);
2683  if (!MFI->isFixedObjectIndex(FI))
2684    return false;
2685  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2686}
2687
2688/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2689/// for tail call optimization. Targets which want to do tail call
2690/// optimization should implement this function.
2691bool
2692X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2693                                                     CallingConv::ID CalleeCC,
2694                                                     bool isVarArg,
2695                                                     bool isCalleeStructRet,
2696                                                     bool isCallerStructRet,
2697                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2698                                    const SmallVectorImpl<SDValue> &OutVals,
2699                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2700                                                     SelectionDAG& DAG) const {
2701  if (!IsTailCallConvention(CalleeCC) &&
2702      CalleeCC != CallingConv::C)
2703    return false;
2704
2705  // If -tailcallopt is specified, make fastcc functions tail-callable.
2706  const MachineFunction &MF = DAG.getMachineFunction();
2707  const Function *CallerF = DAG.getMachineFunction().getFunction();
2708  CallingConv::ID CallerCC = CallerF->getCallingConv();
2709  bool CCMatch = CallerCC == CalleeCC;
2710
2711  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2712    if (IsTailCallConvention(CalleeCC) && CCMatch)
2713      return true;
2714    return false;
2715  }
2716
2717  // Look for obvious safe cases to perform tail call optimization that do not
2718  // require ABI changes. This is what gcc calls sibcall.
2719
2720  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2721  // emit a special epilogue.
2722  if (RegInfo->needsStackRealignment(MF))
2723    return false;
2724
2725  // Also avoid sibcall optimization if either caller or callee uses struct
2726  // return semantics.
2727  if (isCalleeStructRet || isCallerStructRet)
2728    return false;
2729
2730  // An stdcall caller is expected to clean up its arguments; the callee
2731  // isn't going to do that.
2732  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2733    return false;
2734
2735  // Do not sibcall optimize vararg calls unless all arguments are passed via
2736  // registers.
2737  if (isVarArg && !Outs.empty()) {
2738
2739    // Optimizing for varargs on Win64 is unlikely to be safe without
2740    // additional testing.
2741    if (Subtarget->isTargetWin64())
2742      return false;
2743
2744    SmallVector<CCValAssign, 16> ArgLocs;
2745    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2746                   getTargetMachine(), ArgLocs, *DAG.getContext());
2747
2748    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2749    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2750      if (!ArgLocs[i].isRegLoc())
2751        return false;
2752  }
2753
2754  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2755  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2756  // this into a sibcall.
2757  bool Unused = false;
2758  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2759    if (!Ins[i].Used) {
2760      Unused = true;
2761      break;
2762    }
2763  }
2764  if (Unused) {
2765    SmallVector<CCValAssign, 16> RVLocs;
2766    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2767                   getTargetMachine(), RVLocs, *DAG.getContext());
2768    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2769    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2770      CCValAssign &VA = RVLocs[i];
2771      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2772        return false;
2773    }
2774  }
2775
2776  // If the calling conventions do not match, then we'd better make sure the
2777  // results are returned in the same way as what the caller expects.
2778  if (!CCMatch) {
2779    SmallVector<CCValAssign, 16> RVLocs1;
2780    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2781                    getTargetMachine(), RVLocs1, *DAG.getContext());
2782    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2783
2784    SmallVector<CCValAssign, 16> RVLocs2;
2785    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2786                    getTargetMachine(), RVLocs2, *DAG.getContext());
2787    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2788
2789    if (RVLocs1.size() != RVLocs2.size())
2790      return false;
2791    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2792      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2793        return false;
2794      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2795        return false;
2796      if (RVLocs1[i].isRegLoc()) {
2797        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2798          return false;
2799      } else {
2800        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2801          return false;
2802      }
2803    }
2804  }
2805
2806  // If the callee takes no arguments then go on to check the results of the
2807  // call.
2808  if (!Outs.empty()) {
2809    // Check if stack adjustment is needed. For now, do not do this if any
2810    // argument is passed on the stack.
2811    SmallVector<CCValAssign, 16> ArgLocs;
2812    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2813                   getTargetMachine(), ArgLocs, *DAG.getContext());
2814
2815    // Allocate shadow area for Win64
2816    if (Subtarget->isTargetWin64()) {
2817      CCInfo.AllocateStack(32, 8);
2818    }
2819
2820    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2821    if (CCInfo.getNextStackOffset()) {
2822      MachineFunction &MF = DAG.getMachineFunction();
2823      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2824        return false;
2825
2826      // Check if the arguments are already laid out in the right way as
2827      // the caller's fixed stack objects.
2828      MachineFrameInfo *MFI = MF.getFrameInfo();
2829      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2830      const X86InstrInfo *TII =
2831        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2832      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2833        CCValAssign &VA = ArgLocs[i];
2834        SDValue Arg = OutVals[i];
2835        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2836        if (VA.getLocInfo() == CCValAssign::Indirect)
2837          return false;
2838        if (!VA.isRegLoc()) {
2839          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2840                                   MFI, MRI, TII))
2841            return false;
2842        }
2843      }
2844    }
2845
2846    // If the tailcall address may be in a register, then make sure it's
2847    // possible to register allocate for it. In 32-bit, the call address can
2848    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2849    // callee-saved registers are restored. These happen to be the same
2850    // registers used to pass 'inreg' arguments so watch out for those.
2851    if (!Subtarget->is64Bit() &&
2852        !isa<GlobalAddressSDNode>(Callee) &&
2853        !isa<ExternalSymbolSDNode>(Callee)) {
2854      unsigned NumInRegs = 0;
2855      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2856        CCValAssign &VA = ArgLocs[i];
2857        if (!VA.isRegLoc())
2858          continue;
2859        unsigned Reg = VA.getLocReg();
2860        switch (Reg) {
2861        default: break;
2862        case X86::EAX: case X86::EDX: case X86::ECX:
2863          if (++NumInRegs == 3)
2864            return false;
2865          break;
2866        }
2867      }
2868    }
2869  }
2870
2871  return true;
2872}
2873
2874FastISel *
2875X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2876  return X86::createFastISel(funcInfo);
2877}
2878
2879
2880//===----------------------------------------------------------------------===//
2881//                           Other Lowering Hooks
2882//===----------------------------------------------------------------------===//
2883
2884static bool MayFoldLoad(SDValue Op) {
2885  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2886}
2887
2888static bool MayFoldIntoStore(SDValue Op) {
2889  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2890}
2891
2892static bool isTargetShuffle(unsigned Opcode) {
2893  switch(Opcode) {
2894  default: return false;
2895  case X86ISD::PSHUFD:
2896  case X86ISD::PSHUFHW:
2897  case X86ISD::PSHUFLW:
2898  case X86ISD::SHUFP:
2899  case X86ISD::PALIGN:
2900  case X86ISD::MOVLHPS:
2901  case X86ISD::MOVLHPD:
2902  case X86ISD::MOVHLPS:
2903  case X86ISD::MOVLPS:
2904  case X86ISD::MOVLPD:
2905  case X86ISD::MOVSHDUP:
2906  case X86ISD::MOVSLDUP:
2907  case X86ISD::MOVDDUP:
2908  case X86ISD::MOVSS:
2909  case X86ISD::MOVSD:
2910  case X86ISD::UNPCKL:
2911  case X86ISD::UNPCKH:
2912  case X86ISD::VPERMILP:
2913  case X86ISD::VPERM2X128:
2914    return true;
2915  }
2916}
2917
2918static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2919                                    SDValue V1, SelectionDAG &DAG) {
2920  switch(Opc) {
2921  default: llvm_unreachable("Unknown x86 shuffle node");
2922  case X86ISD::MOVSHDUP:
2923  case X86ISD::MOVSLDUP:
2924  case X86ISD::MOVDDUP:
2925    return DAG.getNode(Opc, dl, VT, V1);
2926  }
2927}
2928
2929static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2930                                    SDValue V1, unsigned TargetMask,
2931                                    SelectionDAG &DAG) {
2932  switch(Opc) {
2933  default: llvm_unreachable("Unknown x86 shuffle node");
2934  case X86ISD::PSHUFD:
2935  case X86ISD::PSHUFHW:
2936  case X86ISD::PSHUFLW:
2937  case X86ISD::VPERMILP:
2938  case X86ISD::VPERMI:
2939    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2940  }
2941}
2942
2943static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2944                                    SDValue V1, SDValue V2, unsigned TargetMask,
2945                                    SelectionDAG &DAG) {
2946  switch(Opc) {
2947  default: llvm_unreachable("Unknown x86 shuffle node");
2948  case X86ISD::PALIGN:
2949  case X86ISD::SHUFP:
2950  case X86ISD::VPERM2X128:
2951    return DAG.getNode(Opc, dl, VT, V1, V2,
2952                       DAG.getConstant(TargetMask, MVT::i8));
2953  }
2954}
2955
2956static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2957                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2958  switch(Opc) {
2959  default: llvm_unreachable("Unknown x86 shuffle node");
2960  case X86ISD::MOVLHPS:
2961  case X86ISD::MOVLHPD:
2962  case X86ISD::MOVHLPS:
2963  case X86ISD::MOVLPS:
2964  case X86ISD::MOVLPD:
2965  case X86ISD::MOVSS:
2966  case X86ISD::MOVSD:
2967  case X86ISD::UNPCKL:
2968  case X86ISD::UNPCKH:
2969    return DAG.getNode(Opc, dl, VT, V1, V2);
2970  }
2971}
2972
2973SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2974  MachineFunction &MF = DAG.getMachineFunction();
2975  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2976  int ReturnAddrIndex = FuncInfo->getRAIndex();
2977
2978  if (ReturnAddrIndex == 0) {
2979    // Set up a frame object for the return address.
2980    uint64_t SlotSize = TD->getPointerSize();
2981    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2982                                                           false);
2983    FuncInfo->setRAIndex(ReturnAddrIndex);
2984  }
2985
2986  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2987}
2988
2989
2990bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2991                                       bool hasSymbolicDisplacement) {
2992  // Offset should fit into 32 bit immediate field.
2993  if (!isInt<32>(Offset))
2994    return false;
2995
2996  // If we don't have a symbolic displacement - we don't have any extra
2997  // restrictions.
2998  if (!hasSymbolicDisplacement)
2999    return true;
3000
3001  // FIXME: Some tweaks might be needed for medium code model.
3002  if (M != CodeModel::Small && M != CodeModel::Kernel)
3003    return false;
3004
3005  // For small code model we assume that latest object is 16MB before end of 31
3006  // bits boundary. We may also accept pretty large negative constants knowing
3007  // that all objects are in the positive half of address space.
3008  if (M == CodeModel::Small && Offset < 16*1024*1024)
3009    return true;
3010
3011  // For kernel code model we know that all object resist in the negative half
3012  // of 32bits address space. We may not accept negative offsets, since they may
3013  // be just off and we may accept pretty large positive ones.
3014  if (M == CodeModel::Kernel && Offset > 0)
3015    return true;
3016
3017  return false;
3018}
3019
3020/// isCalleePop - Determines whether the callee is required to pop its
3021/// own arguments. Callee pop is necessary to support tail calls.
3022bool X86::isCalleePop(CallingConv::ID CallingConv,
3023                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3024  if (IsVarArg)
3025    return false;
3026
3027  switch (CallingConv) {
3028  default:
3029    return false;
3030  case CallingConv::X86_StdCall:
3031    return !is64Bit;
3032  case CallingConv::X86_FastCall:
3033    return !is64Bit;
3034  case CallingConv::X86_ThisCall:
3035    return !is64Bit;
3036  case CallingConv::Fast:
3037    return TailCallOpt;
3038  case CallingConv::GHC:
3039    return TailCallOpt;
3040  }
3041}
3042
3043/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3044/// specific condition code, returning the condition code and the LHS/RHS of the
3045/// comparison to make.
3046static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3047                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3048  if (!isFP) {
3049    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3050      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3051        // X > -1   -> X == 0, jump !sign.
3052        RHS = DAG.getConstant(0, RHS.getValueType());
3053        return X86::COND_NS;
3054      }
3055      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3056        // X < 0   -> X == 0, jump on sign.
3057        return X86::COND_S;
3058      }
3059      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3060        // X < 1   -> X <= 0
3061        RHS = DAG.getConstant(0, RHS.getValueType());
3062        return X86::COND_LE;
3063      }
3064    }
3065
3066    switch (SetCCOpcode) {
3067    default: llvm_unreachable("Invalid integer condition!");
3068    case ISD::SETEQ:  return X86::COND_E;
3069    case ISD::SETGT:  return X86::COND_G;
3070    case ISD::SETGE:  return X86::COND_GE;
3071    case ISD::SETLT:  return X86::COND_L;
3072    case ISD::SETLE:  return X86::COND_LE;
3073    case ISD::SETNE:  return X86::COND_NE;
3074    case ISD::SETULT: return X86::COND_B;
3075    case ISD::SETUGT: return X86::COND_A;
3076    case ISD::SETULE: return X86::COND_BE;
3077    case ISD::SETUGE: return X86::COND_AE;
3078    }
3079  }
3080
3081  // First determine if it is required or is profitable to flip the operands.
3082
3083  // If LHS is a foldable load, but RHS is not, flip the condition.
3084  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3085      !ISD::isNON_EXTLoad(RHS.getNode())) {
3086    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3087    std::swap(LHS, RHS);
3088  }
3089
3090  switch (SetCCOpcode) {
3091  default: break;
3092  case ISD::SETOLT:
3093  case ISD::SETOLE:
3094  case ISD::SETUGT:
3095  case ISD::SETUGE:
3096    std::swap(LHS, RHS);
3097    break;
3098  }
3099
3100  // On a floating point condition, the flags are set as follows:
3101  // ZF  PF  CF   op
3102  //  0 | 0 | 0 | X > Y
3103  //  0 | 0 | 1 | X < Y
3104  //  1 | 0 | 0 | X == Y
3105  //  1 | 1 | 1 | unordered
3106  switch (SetCCOpcode) {
3107  default: llvm_unreachable("Condcode should be pre-legalized away");
3108  case ISD::SETUEQ:
3109  case ISD::SETEQ:   return X86::COND_E;
3110  case ISD::SETOLT:              // flipped
3111  case ISD::SETOGT:
3112  case ISD::SETGT:   return X86::COND_A;
3113  case ISD::SETOLE:              // flipped
3114  case ISD::SETOGE:
3115  case ISD::SETGE:   return X86::COND_AE;
3116  case ISD::SETUGT:              // flipped
3117  case ISD::SETULT:
3118  case ISD::SETLT:   return X86::COND_B;
3119  case ISD::SETUGE:              // flipped
3120  case ISD::SETULE:
3121  case ISD::SETLE:   return X86::COND_BE;
3122  case ISD::SETONE:
3123  case ISD::SETNE:   return X86::COND_NE;
3124  case ISD::SETUO:   return X86::COND_P;
3125  case ISD::SETO:    return X86::COND_NP;
3126  case ISD::SETOEQ:
3127  case ISD::SETUNE:  return X86::COND_INVALID;
3128  }
3129}
3130
3131/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3132/// code. Current x86 isa includes the following FP cmov instructions:
3133/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3134static bool hasFPCMov(unsigned X86CC) {
3135  switch (X86CC) {
3136  default:
3137    return false;
3138  case X86::COND_B:
3139  case X86::COND_BE:
3140  case X86::COND_E:
3141  case X86::COND_P:
3142  case X86::COND_A:
3143  case X86::COND_AE:
3144  case X86::COND_NE:
3145  case X86::COND_NP:
3146    return true;
3147  }
3148}
3149
3150/// isFPImmLegal - Returns true if the target can instruction select the
3151/// specified FP immediate natively. If false, the legalizer will
3152/// materialize the FP immediate as a load from a constant pool.
3153bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3154  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3155    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3156      return true;
3157  }
3158  return false;
3159}
3160
3161/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3162/// the specified range (L, H].
3163static bool isUndefOrInRange(int Val, int Low, int Hi) {
3164  return (Val < 0) || (Val >= Low && Val < Hi);
3165}
3166
3167/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3168/// specified value.
3169static bool isUndefOrEqual(int Val, int CmpVal) {
3170  if (Val < 0 || Val == CmpVal)
3171    return true;
3172  return false;
3173}
3174
3175/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3176/// from position Pos and ending in Pos+Size, falls within the specified
3177/// sequential range (L, L+Pos]. or is undef.
3178static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3179                                       int Pos, int Size, int Low) {
3180  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3181    if (!isUndefOrEqual(Mask[i], Low))
3182      return false;
3183  return true;
3184}
3185
3186/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3187/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3188/// the second operand.
3189static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3190  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3191    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3192  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3193    return (Mask[0] < 2 && Mask[1] < 2);
3194  return false;
3195}
3196
3197/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3198/// is suitable for input to PSHUFHW.
3199static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3200  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3201    return false;
3202
3203  // Lower quadword copied in order or undef.
3204  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3205    return false;
3206
3207  // Upper quadword shuffled.
3208  for (unsigned i = 4; i != 8; ++i)
3209    if (!isUndefOrInRange(Mask[i], 4, 8))
3210      return false;
3211
3212  if (VT == MVT::v16i16) {
3213    // Lower quadword copied in order or undef.
3214    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3215      return false;
3216
3217    // Upper quadword shuffled.
3218    for (unsigned i = 12; i != 16; ++i)
3219      if (!isUndefOrInRange(Mask[i], 12, 16))
3220        return false;
3221  }
3222
3223  return true;
3224}
3225
3226/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3227/// is suitable for input to PSHUFLW.
3228static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3229  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3230    return false;
3231
3232  // Upper quadword copied in order.
3233  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3234    return false;
3235
3236  // Lower quadword shuffled.
3237  for (unsigned i = 0; i != 4; ++i)
3238    if (!isUndefOrInRange(Mask[i], 0, 4))
3239      return false;
3240
3241  if (VT == MVT::v16i16) {
3242    // Upper quadword copied in order.
3243    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3244      return false;
3245
3246    // Lower quadword shuffled.
3247    for (unsigned i = 8; i != 12; ++i)
3248      if (!isUndefOrInRange(Mask[i], 8, 12))
3249        return false;
3250  }
3251
3252  return true;
3253}
3254
3255/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3256/// is suitable for input to PALIGNR.
3257static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3258                          const X86Subtarget *Subtarget) {
3259  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3260      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3261    return false;
3262
3263  unsigned NumElts = VT.getVectorNumElements();
3264  unsigned NumLanes = VT.getSizeInBits()/128;
3265  unsigned NumLaneElts = NumElts/NumLanes;
3266
3267  // Do not handle 64-bit element shuffles with palignr.
3268  if (NumLaneElts == 2)
3269    return false;
3270
3271  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3272    unsigned i;
3273    for (i = 0; i != NumLaneElts; ++i) {
3274      if (Mask[i+l] >= 0)
3275        break;
3276    }
3277
3278    // Lane is all undef, go to next lane
3279    if (i == NumLaneElts)
3280      continue;
3281
3282    int Start = Mask[i+l];
3283
3284    // Make sure its in this lane in one of the sources
3285    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3286        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3287      return false;
3288
3289    // If not lane 0, then we must match lane 0
3290    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3291      return false;
3292
3293    // Correct second source to be contiguous with first source
3294    if (Start >= (int)NumElts)
3295      Start -= NumElts - NumLaneElts;
3296
3297    // Make sure we're shifting in the right direction.
3298    if (Start <= (int)(i+l))
3299      return false;
3300
3301    Start -= i;
3302
3303    // Check the rest of the elements to see if they are consecutive.
3304    for (++i; i != NumLaneElts; ++i) {
3305      int Idx = Mask[i+l];
3306
3307      // Make sure its in this lane
3308      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3309          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3310        return false;
3311
3312      // If not lane 0, then we must match lane 0
3313      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3314        return false;
3315
3316      if (Idx >= (int)NumElts)
3317        Idx -= NumElts - NumLaneElts;
3318
3319      if (!isUndefOrEqual(Idx, Start+i))
3320        return false;
3321
3322    }
3323  }
3324
3325  return true;
3326}
3327
3328/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3329/// the two vector operands have swapped position.
3330static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3331                                     unsigned NumElems) {
3332  for (unsigned i = 0; i != NumElems; ++i) {
3333    int idx = Mask[i];
3334    if (idx < 0)
3335      continue;
3336    else if (idx < (int)NumElems)
3337      Mask[i] = idx + NumElems;
3338    else
3339      Mask[i] = idx - NumElems;
3340  }
3341}
3342
3343/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3344/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3345/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3346/// reverse of what x86 shuffles want.
3347static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3348                        bool Commuted = false) {
3349  if (!HasAVX && VT.getSizeInBits() == 256)
3350    return false;
3351
3352  unsigned NumElems = VT.getVectorNumElements();
3353  unsigned NumLanes = VT.getSizeInBits()/128;
3354  unsigned NumLaneElems = NumElems/NumLanes;
3355
3356  if (NumLaneElems != 2 && NumLaneElems != 4)
3357    return false;
3358
3359  // VSHUFPSY divides the resulting vector into 4 chunks.
3360  // The sources are also splitted into 4 chunks, and each destination
3361  // chunk must come from a different source chunk.
3362  //
3363  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3364  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3365  //
3366  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3367  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3368  //
3369  // VSHUFPDY divides the resulting vector into 4 chunks.
3370  // The sources are also splitted into 4 chunks, and each destination
3371  // chunk must come from a different source chunk.
3372  //
3373  //  SRC1 =>      X3       X2       X1       X0
3374  //  SRC2 =>      Y3       Y2       Y1       Y0
3375  //
3376  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3377  //
3378  unsigned HalfLaneElems = NumLaneElems/2;
3379  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3380    for (unsigned i = 0; i != NumLaneElems; ++i) {
3381      int Idx = Mask[i+l];
3382      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3383      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3384        return false;
3385      // For VSHUFPSY, the mask of the second half must be the same as the
3386      // first but with the appropriate offsets. This works in the same way as
3387      // VPERMILPS works with masks.
3388      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3389        continue;
3390      if (!isUndefOrEqual(Idx, Mask[i]+l))
3391        return false;
3392    }
3393  }
3394
3395  return true;
3396}
3397
3398/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3399/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3400static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3401  unsigned NumElems = VT.getVectorNumElements();
3402
3403  if (VT.getSizeInBits() != 128)
3404    return false;
3405
3406  if (NumElems != 4)
3407    return false;
3408
3409  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3410  return isUndefOrEqual(Mask[0], 6) &&
3411         isUndefOrEqual(Mask[1], 7) &&
3412         isUndefOrEqual(Mask[2], 2) &&
3413         isUndefOrEqual(Mask[3], 3);
3414}
3415
3416/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3417/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3418/// <2, 3, 2, 3>
3419static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3420  unsigned NumElems = VT.getVectorNumElements();
3421
3422  if (VT.getSizeInBits() != 128)
3423    return false;
3424
3425  if (NumElems != 4)
3426    return false;
3427
3428  return isUndefOrEqual(Mask[0], 2) &&
3429         isUndefOrEqual(Mask[1], 3) &&
3430         isUndefOrEqual(Mask[2], 2) &&
3431         isUndefOrEqual(Mask[3], 3);
3432}
3433
3434/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3435/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3436static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3437  if (VT.getSizeInBits() != 128)
3438    return false;
3439
3440  unsigned NumElems = VT.getVectorNumElements();
3441
3442  if (NumElems != 2 && NumElems != 4)
3443    return false;
3444
3445  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3446    if (!isUndefOrEqual(Mask[i], i + NumElems))
3447      return false;
3448
3449  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3450    if (!isUndefOrEqual(Mask[i], i))
3451      return false;
3452
3453  return true;
3454}
3455
3456/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3457/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3458static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3459  unsigned NumElems = VT.getVectorNumElements();
3460
3461  if ((NumElems != 2 && NumElems != 4)
3462      || VT.getSizeInBits() > 128)
3463    return false;
3464
3465  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3466    if (!isUndefOrEqual(Mask[i], i))
3467      return false;
3468
3469  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3470    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3471      return false;
3472
3473  return true;
3474}
3475
3476/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3477/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3478static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3479                         bool HasAVX2, bool V2IsSplat = false) {
3480  unsigned NumElts = VT.getVectorNumElements();
3481
3482  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3483         "Unsupported vector type for unpckh");
3484
3485  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3486      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3487    return false;
3488
3489  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3490  // independently on 128-bit lanes.
3491  unsigned NumLanes = VT.getSizeInBits()/128;
3492  unsigned NumLaneElts = NumElts/NumLanes;
3493
3494  for (unsigned l = 0; l != NumLanes; ++l) {
3495    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3496         i != (l+1)*NumLaneElts;
3497         i += 2, ++j) {
3498      int BitI  = Mask[i];
3499      int BitI1 = Mask[i+1];
3500      if (!isUndefOrEqual(BitI, j))
3501        return false;
3502      if (V2IsSplat) {
3503        if (!isUndefOrEqual(BitI1, NumElts))
3504          return false;
3505      } else {
3506        if (!isUndefOrEqual(BitI1, j + NumElts))
3507          return false;
3508      }
3509    }
3510  }
3511
3512  return true;
3513}
3514
3515/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3516/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3517static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3518                         bool HasAVX2, bool V2IsSplat = false) {
3519  unsigned NumElts = VT.getVectorNumElements();
3520
3521  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3522         "Unsupported vector type for unpckh");
3523
3524  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3525      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3526    return false;
3527
3528  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3529  // independently on 128-bit lanes.
3530  unsigned NumLanes = VT.getSizeInBits()/128;
3531  unsigned NumLaneElts = NumElts/NumLanes;
3532
3533  for (unsigned l = 0; l != NumLanes; ++l) {
3534    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3535         i != (l+1)*NumLaneElts; i += 2, ++j) {
3536      int BitI  = Mask[i];
3537      int BitI1 = Mask[i+1];
3538      if (!isUndefOrEqual(BitI, j))
3539        return false;
3540      if (V2IsSplat) {
3541        if (isUndefOrEqual(BitI1, NumElts))
3542          return false;
3543      } else {
3544        if (!isUndefOrEqual(BitI1, j+NumElts))
3545          return false;
3546      }
3547    }
3548  }
3549  return true;
3550}
3551
3552/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3553/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3554/// <0, 0, 1, 1>
3555static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3556                                  bool HasAVX2) {
3557  unsigned NumElts = VT.getVectorNumElements();
3558
3559  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3560         "Unsupported vector type for unpckh");
3561
3562  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3563      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3564    return false;
3565
3566  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3567  // FIXME: Need a better way to get rid of this, there's no latency difference
3568  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3569  // the former later. We should also remove the "_undef" special mask.
3570  if (NumElts == 4 && VT.getSizeInBits() == 256)
3571    return false;
3572
3573  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3574  // independently on 128-bit lanes.
3575  unsigned NumLanes = VT.getSizeInBits()/128;
3576  unsigned NumLaneElts = NumElts/NumLanes;
3577
3578  for (unsigned l = 0; l != NumLanes; ++l) {
3579    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3580         i != (l+1)*NumLaneElts;
3581         i += 2, ++j) {
3582      int BitI  = Mask[i];
3583      int BitI1 = Mask[i+1];
3584
3585      if (!isUndefOrEqual(BitI, j))
3586        return false;
3587      if (!isUndefOrEqual(BitI1, j))
3588        return false;
3589    }
3590  }
3591
3592  return true;
3593}
3594
3595/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3596/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3597/// <2, 2, 3, 3>
3598static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3599  unsigned NumElts = VT.getVectorNumElements();
3600
3601  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3602         "Unsupported vector type for unpckh");
3603
3604  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3605      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3606    return false;
3607
3608  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3609  // independently on 128-bit lanes.
3610  unsigned NumLanes = VT.getSizeInBits()/128;
3611  unsigned NumLaneElts = NumElts/NumLanes;
3612
3613  for (unsigned l = 0; l != NumLanes; ++l) {
3614    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3615         i != (l+1)*NumLaneElts; i += 2, ++j) {
3616      int BitI  = Mask[i];
3617      int BitI1 = Mask[i+1];
3618      if (!isUndefOrEqual(BitI, j))
3619        return false;
3620      if (!isUndefOrEqual(BitI1, j))
3621        return false;
3622    }
3623  }
3624  return true;
3625}
3626
3627/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3628/// specifies a shuffle of elements that is suitable for input to MOVSS,
3629/// MOVSD, and MOVD, i.e. setting the lowest element.
3630static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3631  if (VT.getVectorElementType().getSizeInBits() < 32)
3632    return false;
3633  if (VT.getSizeInBits() == 256)
3634    return false;
3635
3636  unsigned NumElts = VT.getVectorNumElements();
3637
3638  if (!isUndefOrEqual(Mask[0], NumElts))
3639    return false;
3640
3641  for (unsigned i = 1; i != NumElts; ++i)
3642    if (!isUndefOrEqual(Mask[i], i))
3643      return false;
3644
3645  return true;
3646}
3647
3648/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3649/// as permutations between 128-bit chunks or halves. As an example: this
3650/// shuffle bellow:
3651///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3652/// The first half comes from the second half of V1 and the second half from the
3653/// the second half of V2.
3654static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3655  if (!HasAVX || VT.getSizeInBits() != 256)
3656    return false;
3657
3658  // The shuffle result is divided into half A and half B. In total the two
3659  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3660  // B must come from C, D, E or F.
3661  unsigned HalfSize = VT.getVectorNumElements()/2;
3662  bool MatchA = false, MatchB = false;
3663
3664  // Check if A comes from one of C, D, E, F.
3665  for (unsigned Half = 0; Half != 4; ++Half) {
3666    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3667      MatchA = true;
3668      break;
3669    }
3670  }
3671
3672  // Check if B comes from one of C, D, E, F.
3673  for (unsigned Half = 0; Half != 4; ++Half) {
3674    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3675      MatchB = true;
3676      break;
3677    }
3678  }
3679
3680  return MatchA && MatchB;
3681}
3682
3683/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3684/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3685static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3686  EVT VT = SVOp->getValueType(0);
3687
3688  unsigned HalfSize = VT.getVectorNumElements()/2;
3689
3690  unsigned FstHalf = 0, SndHalf = 0;
3691  for (unsigned i = 0; i < HalfSize; ++i) {
3692    if (SVOp->getMaskElt(i) > 0) {
3693      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3694      break;
3695    }
3696  }
3697  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3698    if (SVOp->getMaskElt(i) > 0) {
3699      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3700      break;
3701    }
3702  }
3703
3704  return (FstHalf | (SndHalf << 4));
3705}
3706
3707/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3708/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3709/// Note that VPERMIL mask matching is different depending whether theunderlying
3710/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3711/// to the same elements of the low, but to the higher half of the source.
3712/// In VPERMILPD the two lanes could be shuffled independently of each other
3713/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3714static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3715  if (!HasAVX)
3716    return false;
3717
3718  unsigned NumElts = VT.getVectorNumElements();
3719  // Only match 256-bit with 32/64-bit types
3720  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3721    return false;
3722
3723  unsigned NumLanes = VT.getSizeInBits()/128;
3724  unsigned LaneSize = NumElts/NumLanes;
3725  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3726    for (unsigned i = 0; i != LaneSize; ++i) {
3727      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3728        return false;
3729      if (NumElts != 8 || l == 0)
3730        continue;
3731      // VPERMILPS handling
3732      if (Mask[i] < 0)
3733        continue;
3734      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3735        return false;
3736    }
3737  }
3738
3739  return true;
3740}
3741
3742/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3743/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3744/// element of vector 2 and the other elements to come from vector 1 in order.
3745static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3746                               bool V2IsSplat = false, bool V2IsUndef = false) {
3747  unsigned NumOps = VT.getVectorNumElements();
3748  if (VT.getSizeInBits() == 256)
3749    return false;
3750  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3751    return false;
3752
3753  if (!isUndefOrEqual(Mask[0], 0))
3754    return false;
3755
3756  for (unsigned i = 1; i != NumOps; ++i)
3757    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3758          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3759          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3760      return false;
3761
3762  return true;
3763}
3764
3765/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3766/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3767/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3768static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3769                           const X86Subtarget *Subtarget) {
3770  if (!Subtarget->hasSSE3())
3771    return false;
3772
3773  unsigned NumElems = VT.getVectorNumElements();
3774
3775  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3776      (VT.getSizeInBits() == 256 && NumElems != 8))
3777    return false;
3778
3779  // "i+1" is the value the indexed mask element must have
3780  for (unsigned i = 0; i != NumElems; i += 2)
3781    if (!isUndefOrEqual(Mask[i], i+1) ||
3782        !isUndefOrEqual(Mask[i+1], i+1))
3783      return false;
3784
3785  return true;
3786}
3787
3788/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3789/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3790/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3791static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3792                           const X86Subtarget *Subtarget) {
3793  if (!Subtarget->hasSSE3())
3794    return false;
3795
3796  unsigned NumElems = VT.getVectorNumElements();
3797
3798  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3799      (VT.getSizeInBits() == 256 && NumElems != 8))
3800    return false;
3801
3802  // "i" is the value the indexed mask element must have
3803  for (unsigned i = 0; i != NumElems; i += 2)
3804    if (!isUndefOrEqual(Mask[i], i) ||
3805        !isUndefOrEqual(Mask[i+1], i))
3806      return false;
3807
3808  return true;
3809}
3810
3811/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3812/// specifies a shuffle of elements that is suitable for input to 256-bit
3813/// version of MOVDDUP.
3814static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3815  unsigned NumElts = VT.getVectorNumElements();
3816
3817  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3818    return false;
3819
3820  for (unsigned i = 0; i != NumElts/2; ++i)
3821    if (!isUndefOrEqual(Mask[i], 0))
3822      return false;
3823  for (unsigned i = NumElts/2; i != NumElts; ++i)
3824    if (!isUndefOrEqual(Mask[i], NumElts/2))
3825      return false;
3826  return true;
3827}
3828
3829/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3830/// specifies a shuffle of elements that is suitable for input to 128-bit
3831/// version of MOVDDUP.
3832static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3833  if (VT.getSizeInBits() != 128)
3834    return false;
3835
3836  unsigned e = VT.getVectorNumElements() / 2;
3837  for (unsigned i = 0; i != e; ++i)
3838    if (!isUndefOrEqual(Mask[i], i))
3839      return false;
3840  for (unsigned i = 0; i != e; ++i)
3841    if (!isUndefOrEqual(Mask[e+i], i))
3842      return false;
3843  return true;
3844}
3845
3846/// isVEXTRACTF128Index - Return true if the specified
3847/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3848/// suitable for input to VEXTRACTF128.
3849bool X86::isVEXTRACTF128Index(SDNode *N) {
3850  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3851    return false;
3852
3853  // The index should be aligned on a 128-bit boundary.
3854  uint64_t Index =
3855    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3856
3857  unsigned VL = N->getValueType(0).getVectorNumElements();
3858  unsigned VBits = N->getValueType(0).getSizeInBits();
3859  unsigned ElSize = VBits / VL;
3860  bool Result = (Index * ElSize) % 128 == 0;
3861
3862  return Result;
3863}
3864
3865/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3866/// operand specifies a subvector insert that is suitable for input to
3867/// VINSERTF128.
3868bool X86::isVINSERTF128Index(SDNode *N) {
3869  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3870    return false;
3871
3872  // The index should be aligned on a 128-bit boundary.
3873  uint64_t Index =
3874    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3875
3876  unsigned VL = N->getValueType(0).getVectorNumElements();
3877  unsigned VBits = N->getValueType(0).getSizeInBits();
3878  unsigned ElSize = VBits / VL;
3879  bool Result = (Index * ElSize) % 128 == 0;
3880
3881  return Result;
3882}
3883
3884/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3885/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3886/// Handles 128-bit and 256-bit.
3887static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3888  EVT VT = N->getValueType(0);
3889
3890  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3891         "Unsupported vector type for PSHUF/SHUFP");
3892
3893  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3894  // independently on 128-bit lanes.
3895  unsigned NumElts = VT.getVectorNumElements();
3896  unsigned NumLanes = VT.getSizeInBits()/128;
3897  unsigned NumLaneElts = NumElts/NumLanes;
3898
3899  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3900         "Only supports 2 or 4 elements per lane");
3901
3902  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3903  unsigned Mask = 0;
3904  for (unsigned i = 0; i != NumElts; ++i) {
3905    int Elt = N->getMaskElt(i);
3906    if (Elt < 0) continue;
3907    Elt %= NumLaneElts;
3908    unsigned ShAmt = i << Shift;
3909    if (ShAmt >= 8) ShAmt -= 8;
3910    Mask |= Elt << ShAmt;
3911  }
3912
3913  return Mask;
3914}
3915
3916/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3917/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3918static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3919  unsigned Mask = 0;
3920  // 8 nodes, but we only care about the last 4.
3921  for (unsigned i = 7; i >= 4; --i) {
3922    int Val = N->getMaskElt(i);
3923    if (Val >= 0)
3924      Mask |= (Val - 4);
3925    if (i != 4)
3926      Mask <<= 2;
3927  }
3928  return Mask;
3929}
3930
3931/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3932/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3933static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3934  unsigned Mask = 0;
3935  // 8 nodes, but we only care about the first 4.
3936  for (int i = 3; i >= 0; --i) {
3937    int Val = N->getMaskElt(i);
3938    if (Val >= 0)
3939      Mask |= Val;
3940    if (i != 0)
3941      Mask <<= 2;
3942  }
3943  return Mask;
3944}
3945
3946/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3947/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3948static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3949  EVT VT = SVOp->getValueType(0);
3950  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3951
3952  unsigned NumElts = VT.getVectorNumElements();
3953  unsigned NumLanes = VT.getSizeInBits()/128;
3954  unsigned NumLaneElts = NumElts/NumLanes;
3955
3956  int Val = 0;
3957  unsigned i;
3958  for (i = 0; i != NumElts; ++i) {
3959    Val = SVOp->getMaskElt(i);
3960    if (Val >= 0)
3961      break;
3962  }
3963  if (Val >= (int)NumElts)
3964    Val -= NumElts - NumLaneElts;
3965
3966  assert(Val - i > 0 && "PALIGNR imm should be positive");
3967  return (Val - i) * EltSize;
3968}
3969
3970/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3971/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3972/// instructions.
3973unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3974  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3975    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3976
3977  uint64_t Index =
3978    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3979
3980  EVT VecVT = N->getOperand(0).getValueType();
3981  EVT ElVT = VecVT.getVectorElementType();
3982
3983  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3984  return Index / NumElemsPerChunk;
3985}
3986
3987/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3988/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3989/// instructions.
3990unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3991  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3992    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3993
3994  uint64_t Index =
3995    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3996
3997  EVT VecVT = N->getValueType(0);
3998  EVT ElVT = VecVT.getVectorElementType();
3999
4000  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4001  return Index / NumElemsPerChunk;
4002}
4003
4004/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4005/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4006/// Handles 256-bit.
4007static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4008  EVT VT = N->getValueType(0);
4009
4010  unsigned NumElts = VT.getVectorNumElements();
4011
4012  assert((VT.is256BitVector() && NumElts == 4) &&
4013         "Unsupported vector type for VPERMQ/VPERMPD");
4014
4015  unsigned Mask = 0;
4016  for (unsigned i = 0; i != NumElts; ++i) {
4017    int Elt = N->getMaskElt(i);
4018    if (Elt < 0)
4019      continue;
4020    Mask |= Elt << (i*2);
4021  }
4022
4023  return Mask;
4024}
4025/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4026/// constant +0.0.
4027bool X86::isZeroNode(SDValue Elt) {
4028  return ((isa<ConstantSDNode>(Elt) &&
4029           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4030          (isa<ConstantFPSDNode>(Elt) &&
4031           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4032}
4033
4034/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4035/// their permute mask.
4036static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4037                                    SelectionDAG &DAG) {
4038  EVT VT = SVOp->getValueType(0);
4039  unsigned NumElems = VT.getVectorNumElements();
4040  SmallVector<int, 8> MaskVec;
4041
4042  for (unsigned i = 0; i != NumElems; ++i) {
4043    int idx = SVOp->getMaskElt(i);
4044    if (idx < 0)
4045      MaskVec.push_back(idx);
4046    else if (idx < (int)NumElems)
4047      MaskVec.push_back(idx + NumElems);
4048    else
4049      MaskVec.push_back(idx - NumElems);
4050  }
4051  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4052                              SVOp->getOperand(0), &MaskVec[0]);
4053}
4054
4055/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4056/// match movhlps. The lower half elements should come from upper half of
4057/// V1 (and in order), and the upper half elements should come from the upper
4058/// half of V2 (and in order).
4059static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4060  if (VT.getSizeInBits() != 128)
4061    return false;
4062  if (VT.getVectorNumElements() != 4)
4063    return false;
4064  for (unsigned i = 0, e = 2; i != e; ++i)
4065    if (!isUndefOrEqual(Mask[i], i+2))
4066      return false;
4067  for (unsigned i = 2; i != 4; ++i)
4068    if (!isUndefOrEqual(Mask[i], i+4))
4069      return false;
4070  return true;
4071}
4072
4073/// isScalarLoadToVector - Returns true if the node is a scalar load that
4074/// is promoted to a vector. It also returns the LoadSDNode by reference if
4075/// required.
4076static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4077  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4078    return false;
4079  N = N->getOperand(0).getNode();
4080  if (!ISD::isNON_EXTLoad(N))
4081    return false;
4082  if (LD)
4083    *LD = cast<LoadSDNode>(N);
4084  return true;
4085}
4086
4087// Test whether the given value is a vector value which will be legalized
4088// into a load.
4089static bool WillBeConstantPoolLoad(SDNode *N) {
4090  if (N->getOpcode() != ISD::BUILD_VECTOR)
4091    return false;
4092
4093  // Check for any non-constant elements.
4094  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4095    switch (N->getOperand(i).getNode()->getOpcode()) {
4096    case ISD::UNDEF:
4097    case ISD::ConstantFP:
4098    case ISD::Constant:
4099      break;
4100    default:
4101      return false;
4102    }
4103
4104  // Vectors of all-zeros and all-ones are materialized with special
4105  // instructions rather than being loaded.
4106  return !ISD::isBuildVectorAllZeros(N) &&
4107         !ISD::isBuildVectorAllOnes(N);
4108}
4109
4110/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4111/// match movlp{s|d}. The lower half elements should come from lower half of
4112/// V1 (and in order), and the upper half elements should come from the upper
4113/// half of V2 (and in order). And since V1 will become the source of the
4114/// MOVLP, it must be either a vector load or a scalar load to vector.
4115static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4116                               ArrayRef<int> Mask, EVT VT) {
4117  if (VT.getSizeInBits() != 128)
4118    return false;
4119
4120  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4121    return false;
4122  // Is V2 is a vector load, don't do this transformation. We will try to use
4123  // load folding shufps op.
4124  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4125    return false;
4126
4127  unsigned NumElems = VT.getVectorNumElements();
4128
4129  if (NumElems != 2 && NumElems != 4)
4130    return false;
4131  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4132    if (!isUndefOrEqual(Mask[i], i))
4133      return false;
4134  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4135    if (!isUndefOrEqual(Mask[i], i+NumElems))
4136      return false;
4137  return true;
4138}
4139
4140/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4141/// all the same.
4142static bool isSplatVector(SDNode *N) {
4143  if (N->getOpcode() != ISD::BUILD_VECTOR)
4144    return false;
4145
4146  SDValue SplatValue = N->getOperand(0);
4147  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4148    if (N->getOperand(i) != SplatValue)
4149      return false;
4150  return true;
4151}
4152
4153/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4154/// to an zero vector.
4155/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4156static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4157  SDValue V1 = N->getOperand(0);
4158  SDValue V2 = N->getOperand(1);
4159  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4160  for (unsigned i = 0; i != NumElems; ++i) {
4161    int Idx = N->getMaskElt(i);
4162    if (Idx >= (int)NumElems) {
4163      unsigned Opc = V2.getOpcode();
4164      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4165        continue;
4166      if (Opc != ISD::BUILD_VECTOR ||
4167          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4168        return false;
4169    } else if (Idx >= 0) {
4170      unsigned Opc = V1.getOpcode();
4171      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4172        continue;
4173      if (Opc != ISD::BUILD_VECTOR ||
4174          !X86::isZeroNode(V1.getOperand(Idx)))
4175        return false;
4176    }
4177  }
4178  return true;
4179}
4180
4181/// getZeroVector - Returns a vector of specified type with all zero elements.
4182///
4183static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4184                             SelectionDAG &DAG, DebugLoc dl) {
4185  assert(VT.isVector() && "Expected a vector type");
4186  unsigned Size = VT.getSizeInBits();
4187
4188  // Always build SSE zero vectors as <4 x i32> bitcasted
4189  // to their dest type. This ensures they get CSE'd.
4190  SDValue Vec;
4191  if (Size == 128) {  // SSE
4192    if (Subtarget->hasSSE2()) {  // SSE2
4193      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4194      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4195    } else { // SSE1
4196      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4197      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4198    }
4199  } else if (Size == 256) { // AVX
4200    if (Subtarget->hasAVX2()) { // AVX2
4201      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4202      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4203      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4204    } else {
4205      // 256-bit logic and arithmetic instructions in AVX are all
4206      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4207      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4208      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4209      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4210    }
4211  } else
4212    llvm_unreachable("Unexpected vector type");
4213
4214  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4215}
4216
4217/// getOnesVector - Returns a vector of specified type with all bits set.
4218/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4219/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4220/// Then bitcast to their original type, ensuring they get CSE'd.
4221static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4222                             DebugLoc dl) {
4223  assert(VT.isVector() && "Expected a vector type");
4224  unsigned Size = VT.getSizeInBits();
4225
4226  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4227  SDValue Vec;
4228  if (Size == 256) {
4229    if (HasAVX2) { // AVX2
4230      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4231      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4232    } else { // AVX
4233      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4234      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4235    }
4236  } else if (Size == 128) {
4237    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4238  } else
4239    llvm_unreachable("Unexpected vector type");
4240
4241  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4242}
4243
4244/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4245/// that point to V2 points to its first element.
4246static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4247  for (unsigned i = 0; i != NumElems; ++i) {
4248    if (Mask[i] > (int)NumElems) {
4249      Mask[i] = NumElems;
4250    }
4251  }
4252}
4253
4254/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4255/// operation of specified width.
4256static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4257                       SDValue V2) {
4258  unsigned NumElems = VT.getVectorNumElements();
4259  SmallVector<int, 8> Mask;
4260  Mask.push_back(NumElems);
4261  for (unsigned i = 1; i != NumElems; ++i)
4262    Mask.push_back(i);
4263  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4264}
4265
4266/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4267static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4268                          SDValue V2) {
4269  unsigned NumElems = VT.getVectorNumElements();
4270  SmallVector<int, 8> Mask;
4271  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4272    Mask.push_back(i);
4273    Mask.push_back(i + NumElems);
4274  }
4275  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4276}
4277
4278/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4279static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4280                          SDValue V2) {
4281  unsigned NumElems = VT.getVectorNumElements();
4282  SmallVector<int, 8> Mask;
4283  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4284    Mask.push_back(i + Half);
4285    Mask.push_back(i + NumElems + Half);
4286  }
4287  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4288}
4289
4290// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4291// a generic shuffle instruction because the target has no such instructions.
4292// Generate shuffles which repeat i16 and i8 several times until they can be
4293// represented by v4f32 and then be manipulated by target suported shuffles.
4294static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4295  EVT VT = V.getValueType();
4296  int NumElems = VT.getVectorNumElements();
4297  DebugLoc dl = V.getDebugLoc();
4298
4299  while (NumElems > 4) {
4300    if (EltNo < NumElems/2) {
4301      V = getUnpackl(DAG, dl, VT, V, V);
4302    } else {
4303      V = getUnpackh(DAG, dl, VT, V, V);
4304      EltNo -= NumElems/2;
4305    }
4306    NumElems >>= 1;
4307  }
4308  return V;
4309}
4310
4311/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4312static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4313  EVT VT = V.getValueType();
4314  DebugLoc dl = V.getDebugLoc();
4315  unsigned Size = VT.getSizeInBits();
4316
4317  if (Size == 128) {
4318    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4319    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4320    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4321                             &SplatMask[0]);
4322  } else if (Size == 256) {
4323    // To use VPERMILPS to splat scalars, the second half of indicies must
4324    // refer to the higher part, which is a duplication of the lower one,
4325    // because VPERMILPS can only handle in-lane permutations.
4326    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4327                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4328
4329    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4330    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4331                             &SplatMask[0]);
4332  } else
4333    llvm_unreachable("Vector size not supported");
4334
4335  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4336}
4337
4338/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4339static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4340  EVT SrcVT = SV->getValueType(0);
4341  SDValue V1 = SV->getOperand(0);
4342  DebugLoc dl = SV->getDebugLoc();
4343
4344  int EltNo = SV->getSplatIndex();
4345  int NumElems = SrcVT.getVectorNumElements();
4346  unsigned Size = SrcVT.getSizeInBits();
4347
4348  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4349          "Unknown how to promote splat for type");
4350
4351  // Extract the 128-bit part containing the splat element and update
4352  // the splat element index when it refers to the higher register.
4353  if (Size == 256) {
4354    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4355    if (EltNo >= NumElems/2)
4356      EltNo -= NumElems/2;
4357  }
4358
4359  // All i16 and i8 vector types can't be used directly by a generic shuffle
4360  // instruction because the target has no such instruction. Generate shuffles
4361  // which repeat i16 and i8 several times until they fit in i32, and then can
4362  // be manipulated by target suported shuffles.
4363  EVT EltVT = SrcVT.getVectorElementType();
4364  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4365    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4366
4367  // Recreate the 256-bit vector and place the same 128-bit vector
4368  // into the low and high part. This is necessary because we want
4369  // to use VPERM* to shuffle the vectors
4370  if (Size == 256) {
4371    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4372  }
4373
4374  return getLegalSplat(DAG, V1, EltNo);
4375}
4376
4377/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4378/// vector of zero or undef vector.  This produces a shuffle where the low
4379/// element of V2 is swizzled into the zero/undef vector, landing at element
4380/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4381static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4382                                           bool IsZero,
4383                                           const X86Subtarget *Subtarget,
4384                                           SelectionDAG &DAG) {
4385  EVT VT = V2.getValueType();
4386  SDValue V1 = IsZero
4387    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4388  unsigned NumElems = VT.getVectorNumElements();
4389  SmallVector<int, 16> MaskVec;
4390  for (unsigned i = 0; i != NumElems; ++i)
4391    // If this is the insertion idx, put the low elt of V2 here.
4392    MaskVec.push_back(i == Idx ? NumElems : i);
4393  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4394}
4395
4396/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4397/// target specific opcode. Returns true if the Mask could be calculated.
4398/// Sets IsUnary to true if only uses one source.
4399static bool getTargetShuffleMask(SDNode *N, EVT VT,
4400                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4401  unsigned NumElems = VT.getVectorNumElements();
4402  SDValue ImmN;
4403
4404  IsUnary = false;
4405  switch(N->getOpcode()) {
4406  case X86ISD::SHUFP:
4407    ImmN = N->getOperand(N->getNumOperands()-1);
4408    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4409    break;
4410  case X86ISD::UNPCKH:
4411    DecodeUNPCKHMask(VT, Mask);
4412    break;
4413  case X86ISD::UNPCKL:
4414    DecodeUNPCKLMask(VT, Mask);
4415    break;
4416  case X86ISD::MOVHLPS:
4417    DecodeMOVHLPSMask(NumElems, Mask);
4418    break;
4419  case X86ISD::MOVLHPS:
4420    DecodeMOVLHPSMask(NumElems, Mask);
4421    break;
4422  case X86ISD::PSHUFD:
4423  case X86ISD::VPERMILP:
4424    ImmN = N->getOperand(N->getNumOperands()-1);
4425    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4426    IsUnary = true;
4427    break;
4428  case X86ISD::PSHUFHW:
4429    ImmN = N->getOperand(N->getNumOperands()-1);
4430    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4431    IsUnary = true;
4432    break;
4433  case X86ISD::PSHUFLW:
4434    ImmN = N->getOperand(N->getNumOperands()-1);
4435    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4436    IsUnary = true;
4437    break;
4438  case X86ISD::MOVSS:
4439  case X86ISD::MOVSD: {
4440    // The index 0 always comes from the first element of the second source,
4441    // this is why MOVSS and MOVSD are used in the first place. The other
4442    // elements come from the other positions of the first source vector
4443    Mask.push_back(NumElems);
4444    for (unsigned i = 1; i != NumElems; ++i) {
4445      Mask.push_back(i);
4446    }
4447    break;
4448  }
4449  case X86ISD::VPERM2X128:
4450    ImmN = N->getOperand(N->getNumOperands()-1);
4451    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4452    if (Mask.empty()) return false;
4453    break;
4454  case X86ISD::MOVDDUP:
4455  case X86ISD::MOVLHPD:
4456  case X86ISD::MOVLPD:
4457  case X86ISD::MOVLPS:
4458  case X86ISD::MOVSHDUP:
4459  case X86ISD::MOVSLDUP:
4460  case X86ISD::PALIGN:
4461    // Not yet implemented
4462    return false;
4463  default: llvm_unreachable("unknown target shuffle node");
4464  }
4465
4466  return true;
4467}
4468
4469/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4470/// element of the result of the vector shuffle.
4471static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4472                                   unsigned Depth) {
4473  if (Depth == 6)
4474    return SDValue();  // Limit search depth.
4475
4476  SDValue V = SDValue(N, 0);
4477  EVT VT = V.getValueType();
4478  unsigned Opcode = V.getOpcode();
4479
4480  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4481  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4482    int Elt = SV->getMaskElt(Index);
4483
4484    if (Elt < 0)
4485      return DAG.getUNDEF(VT.getVectorElementType());
4486
4487    unsigned NumElems = VT.getVectorNumElements();
4488    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4489                                         : SV->getOperand(1);
4490    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4491  }
4492
4493  // Recurse into target specific vector shuffles to find scalars.
4494  if (isTargetShuffle(Opcode)) {
4495    unsigned NumElems = VT.getVectorNumElements();
4496    SmallVector<int, 16> ShuffleMask;
4497    SDValue ImmN;
4498    bool IsUnary;
4499
4500    if (!getTargetShuffleMask(N, VT, ShuffleMask, IsUnary))
4501      return SDValue();
4502
4503    int Elt = ShuffleMask[Index];
4504    if (Elt < 0)
4505      return DAG.getUNDEF(VT.getVectorElementType());
4506
4507    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4508                                           : N->getOperand(1);
4509    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4510                               Depth+1);
4511  }
4512
4513  // Actual nodes that may contain scalar elements
4514  if (Opcode == ISD::BITCAST) {
4515    V = V.getOperand(0);
4516    EVT SrcVT = V.getValueType();
4517    unsigned NumElems = VT.getVectorNumElements();
4518
4519    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4520      return SDValue();
4521  }
4522
4523  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4524    return (Index == 0) ? V.getOperand(0)
4525                        : DAG.getUNDEF(VT.getVectorElementType());
4526
4527  if (V.getOpcode() == ISD::BUILD_VECTOR)
4528    return V.getOperand(Index);
4529
4530  return SDValue();
4531}
4532
4533/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4534/// shuffle operation which come from a consecutively from a zero. The
4535/// search can start in two different directions, from left or right.
4536static
4537unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4538                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4539  unsigned i;
4540  for (i = 0; i != NumElems; ++i) {
4541    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4542    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4543    if (!(Elt.getNode() &&
4544         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4545      break;
4546  }
4547
4548  return i;
4549}
4550
4551/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4552/// correspond consecutively to elements from one of the vector operands,
4553/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4554static
4555bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4556                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4557                              unsigned NumElems, unsigned &OpNum) {
4558  bool SeenV1 = false;
4559  bool SeenV2 = false;
4560
4561  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4562    int Idx = SVOp->getMaskElt(i);
4563    // Ignore undef indicies
4564    if (Idx < 0)
4565      continue;
4566
4567    if (Idx < (int)NumElems)
4568      SeenV1 = true;
4569    else
4570      SeenV2 = true;
4571
4572    // Only accept consecutive elements from the same vector
4573    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4574      return false;
4575  }
4576
4577  OpNum = SeenV1 ? 0 : 1;
4578  return true;
4579}
4580
4581/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4582/// logical left shift of a vector.
4583static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4584                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4585  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4586  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4587              false /* check zeros from right */, DAG);
4588  unsigned OpSrc;
4589
4590  if (!NumZeros)
4591    return false;
4592
4593  // Considering the elements in the mask that are not consecutive zeros,
4594  // check if they consecutively come from only one of the source vectors.
4595  //
4596  //               V1 = {X, A, B, C}     0
4597  //                         \  \  \    /
4598  //   vector_shuffle V1, V2 <1, 2, 3, X>
4599  //
4600  if (!isShuffleMaskConsecutive(SVOp,
4601            0,                   // Mask Start Index
4602            NumElems-NumZeros,   // Mask End Index(exclusive)
4603            NumZeros,            // Where to start looking in the src vector
4604            NumElems,            // Number of elements in vector
4605            OpSrc))              // Which source operand ?
4606    return false;
4607
4608  isLeft = false;
4609  ShAmt = NumZeros;
4610  ShVal = SVOp->getOperand(OpSrc);
4611  return true;
4612}
4613
4614/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4615/// logical left shift of a vector.
4616static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4617                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4618  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4619  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4620              true /* check zeros from left */, DAG);
4621  unsigned OpSrc;
4622
4623  if (!NumZeros)
4624    return false;
4625
4626  // Considering the elements in the mask that are not consecutive zeros,
4627  // check if they consecutively come from only one of the source vectors.
4628  //
4629  //                           0    { A, B, X, X } = V2
4630  //                          / \    /  /
4631  //   vector_shuffle V1, V2 <X, X, 4, 5>
4632  //
4633  if (!isShuffleMaskConsecutive(SVOp,
4634            NumZeros,     // Mask Start Index
4635            NumElems,     // Mask End Index(exclusive)
4636            0,            // Where to start looking in the src vector
4637            NumElems,     // Number of elements in vector
4638            OpSrc))       // Which source operand ?
4639    return false;
4640
4641  isLeft = true;
4642  ShAmt = NumZeros;
4643  ShVal = SVOp->getOperand(OpSrc);
4644  return true;
4645}
4646
4647/// isVectorShift - Returns true if the shuffle can be implemented as a
4648/// logical left or right shift of a vector.
4649static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4650                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4651  // Although the logic below support any bitwidth size, there are no
4652  // shift instructions which handle more than 128-bit vectors.
4653  if (SVOp->getValueType(0).getSizeInBits() > 128)
4654    return false;
4655
4656  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4657      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4658    return true;
4659
4660  return false;
4661}
4662
4663/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4664///
4665static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4666                                       unsigned NumNonZero, unsigned NumZero,
4667                                       SelectionDAG &DAG,
4668                                       const X86Subtarget* Subtarget,
4669                                       const TargetLowering &TLI) {
4670  if (NumNonZero > 8)
4671    return SDValue();
4672
4673  DebugLoc dl = Op.getDebugLoc();
4674  SDValue V(0, 0);
4675  bool First = true;
4676  for (unsigned i = 0; i < 16; ++i) {
4677    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4678    if (ThisIsNonZero && First) {
4679      if (NumZero)
4680        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4681      else
4682        V = DAG.getUNDEF(MVT::v8i16);
4683      First = false;
4684    }
4685
4686    if ((i & 1) != 0) {
4687      SDValue ThisElt(0, 0), LastElt(0, 0);
4688      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4689      if (LastIsNonZero) {
4690        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4691                              MVT::i16, Op.getOperand(i-1));
4692      }
4693      if (ThisIsNonZero) {
4694        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4695        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4696                              ThisElt, DAG.getConstant(8, MVT::i8));
4697        if (LastIsNonZero)
4698          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4699      } else
4700        ThisElt = LastElt;
4701
4702      if (ThisElt.getNode())
4703        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4704                        DAG.getIntPtrConstant(i/2));
4705    }
4706  }
4707
4708  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4709}
4710
4711/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4712///
4713static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4714                                     unsigned NumNonZero, unsigned NumZero,
4715                                     SelectionDAG &DAG,
4716                                     const X86Subtarget* Subtarget,
4717                                     const TargetLowering &TLI) {
4718  if (NumNonZero > 4)
4719    return SDValue();
4720
4721  DebugLoc dl = Op.getDebugLoc();
4722  SDValue V(0, 0);
4723  bool First = true;
4724  for (unsigned i = 0; i < 8; ++i) {
4725    bool isNonZero = (NonZeros & (1 << i)) != 0;
4726    if (isNonZero) {
4727      if (First) {
4728        if (NumZero)
4729          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4730        else
4731          V = DAG.getUNDEF(MVT::v8i16);
4732        First = false;
4733      }
4734      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4735                      MVT::v8i16, V, Op.getOperand(i),
4736                      DAG.getIntPtrConstant(i));
4737    }
4738  }
4739
4740  return V;
4741}
4742
4743/// getVShift - Return a vector logical shift node.
4744///
4745static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4746                         unsigned NumBits, SelectionDAG &DAG,
4747                         const TargetLowering &TLI, DebugLoc dl) {
4748  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4749  EVT ShVT = MVT::v2i64;
4750  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4751  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4752  return DAG.getNode(ISD::BITCAST, dl, VT,
4753                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4754                             DAG.getConstant(NumBits,
4755                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4756}
4757
4758SDValue
4759X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4760                                          SelectionDAG &DAG) const {
4761
4762  // Check if the scalar load can be widened into a vector load. And if
4763  // the address is "base + cst" see if the cst can be "absorbed" into
4764  // the shuffle mask.
4765  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4766    SDValue Ptr = LD->getBasePtr();
4767    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4768      return SDValue();
4769    EVT PVT = LD->getValueType(0);
4770    if (PVT != MVT::i32 && PVT != MVT::f32)
4771      return SDValue();
4772
4773    int FI = -1;
4774    int64_t Offset = 0;
4775    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4776      FI = FINode->getIndex();
4777      Offset = 0;
4778    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4779               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4780      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4781      Offset = Ptr.getConstantOperandVal(1);
4782      Ptr = Ptr.getOperand(0);
4783    } else {
4784      return SDValue();
4785    }
4786
4787    // FIXME: 256-bit vector instructions don't require a strict alignment,
4788    // improve this code to support it better.
4789    unsigned RequiredAlign = VT.getSizeInBits()/8;
4790    SDValue Chain = LD->getChain();
4791    // Make sure the stack object alignment is at least 16 or 32.
4792    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4793    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4794      if (MFI->isFixedObjectIndex(FI)) {
4795        // Can't change the alignment. FIXME: It's possible to compute
4796        // the exact stack offset and reference FI + adjust offset instead.
4797        // If someone *really* cares about this. That's the way to implement it.
4798        return SDValue();
4799      } else {
4800        MFI->setObjectAlignment(FI, RequiredAlign);
4801      }
4802    }
4803
4804    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4805    // Ptr + (Offset & ~15).
4806    if (Offset < 0)
4807      return SDValue();
4808    if ((Offset % RequiredAlign) & 3)
4809      return SDValue();
4810    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4811    if (StartOffset)
4812      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4813                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4814
4815    int EltNo = (Offset - StartOffset) >> 2;
4816    unsigned NumElems = VT.getVectorNumElements();
4817
4818    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4819    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4820                             LD->getPointerInfo().getWithOffset(StartOffset),
4821                             false, false, false, 0);
4822
4823    SmallVector<int, 8> Mask;
4824    for (unsigned i = 0; i != NumElems; ++i)
4825      Mask.push_back(EltNo);
4826
4827    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4828  }
4829
4830  return SDValue();
4831}
4832
4833/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4834/// vector of type 'VT', see if the elements can be replaced by a single large
4835/// load which has the same value as a build_vector whose operands are 'elts'.
4836///
4837/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4838///
4839/// FIXME: we'd also like to handle the case where the last elements are zero
4840/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4841/// There's even a handy isZeroNode for that purpose.
4842static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4843                                        DebugLoc &DL, SelectionDAG &DAG) {
4844  EVT EltVT = VT.getVectorElementType();
4845  unsigned NumElems = Elts.size();
4846
4847  LoadSDNode *LDBase = NULL;
4848  unsigned LastLoadedElt = -1U;
4849
4850  // For each element in the initializer, see if we've found a load or an undef.
4851  // If we don't find an initial load element, or later load elements are
4852  // non-consecutive, bail out.
4853  for (unsigned i = 0; i < NumElems; ++i) {
4854    SDValue Elt = Elts[i];
4855
4856    if (!Elt.getNode() ||
4857        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4858      return SDValue();
4859    if (!LDBase) {
4860      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4861        return SDValue();
4862      LDBase = cast<LoadSDNode>(Elt.getNode());
4863      LastLoadedElt = i;
4864      continue;
4865    }
4866    if (Elt.getOpcode() == ISD::UNDEF)
4867      continue;
4868
4869    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4870    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4871      return SDValue();
4872    LastLoadedElt = i;
4873  }
4874
4875  // If we have found an entire vector of loads and undefs, then return a large
4876  // load of the entire vector width starting at the base pointer.  If we found
4877  // consecutive loads for the low half, generate a vzext_load node.
4878  if (LastLoadedElt == NumElems - 1) {
4879    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4880      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4881                         LDBase->getPointerInfo(),
4882                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4883                         LDBase->isInvariant(), 0);
4884    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4885                       LDBase->getPointerInfo(),
4886                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4887                       LDBase->isInvariant(), LDBase->getAlignment());
4888  }
4889  if (NumElems == 4 && LastLoadedElt == 1 &&
4890      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4891    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4892    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4893    SDValue ResNode =
4894        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4895                                LDBase->getPointerInfo(),
4896                                LDBase->getAlignment(),
4897                                false/*isVolatile*/, true/*ReadMem*/,
4898                                false/*WriteMem*/);
4899    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4900  }
4901  return SDValue();
4902}
4903
4904/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4905/// to generate a splat value for the following cases:
4906/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4907/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4908/// a scalar load, or a constant.
4909/// The VBROADCAST node is returned when a pattern is found,
4910/// or SDValue() otherwise.
4911SDValue
4912X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
4913  if (!Subtarget->hasAVX())
4914    return SDValue();
4915
4916  EVT VT = Op.getValueType();
4917  DebugLoc dl = Op.getDebugLoc();
4918
4919  SDValue Ld;
4920  bool ConstSplatVal;
4921
4922  switch (Op.getOpcode()) {
4923    default:
4924      // Unknown pattern found.
4925      return SDValue();
4926
4927    case ISD::BUILD_VECTOR: {
4928      // The BUILD_VECTOR node must be a splat.
4929      if (!isSplatVector(Op.getNode()))
4930        return SDValue();
4931
4932      Ld = Op.getOperand(0);
4933      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4934                     Ld.getOpcode() == ISD::ConstantFP);
4935
4936      // The suspected load node has several users. Make sure that all
4937      // of its users are from the BUILD_VECTOR node.
4938      // Constants may have multiple users.
4939      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4940        return SDValue();
4941      break;
4942    }
4943
4944    case ISD::VECTOR_SHUFFLE: {
4945      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4946
4947      // Shuffles must have a splat mask where the first element is
4948      // broadcasted.
4949      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4950        return SDValue();
4951
4952      SDValue Sc = Op.getOperand(0);
4953      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4954        return SDValue();
4955
4956      Ld = Sc.getOperand(0);
4957      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4958                       Ld.getOpcode() == ISD::ConstantFP);
4959
4960      // The scalar_to_vector node and the suspected
4961      // load node must have exactly one user.
4962      // Constants may have multiple users.
4963      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
4964        return SDValue();
4965      break;
4966    }
4967  }
4968
4969  bool Is256 = VT.getSizeInBits() == 256;
4970  bool Is128 = VT.getSizeInBits() == 128;
4971
4972  // Handle the broadcasting a single constant scalar from the constant pool
4973  // into a vector. On Sandybridge it is still better to load a constant vector
4974  // from the constant pool and not to broadcast it from a scalar.
4975  if (ConstSplatVal && Subtarget->hasAVX2()) {
4976    EVT CVT = Ld.getValueType();
4977    assert(!CVT.isVector() && "Must not broadcast a vector type");
4978    unsigned ScalarSize = CVT.getSizeInBits();
4979
4980    if ((Is256 && (ScalarSize == 32 || ScalarSize == 64)) ||
4981        (Is128 && (ScalarSize == 32))) {
4982
4983      const Constant *C = 0;
4984      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
4985        C = CI->getConstantIntValue();
4986      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
4987        C = CF->getConstantFPValue();
4988
4989      assert(C && "Invalid constant type");
4990
4991      SDValue CP = DAG.getConstantPool(C, getPointerTy());
4992      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
4993      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
4994                         MachinePointerInfo::getConstantPool(),
4995                         false, false, false, Alignment);
4996
4997      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4998    }
4999  }
5000
5001  // The scalar source must be a normal load.
5002  if (!ISD::isNormalLoad(Ld.getNode()))
5003    return SDValue();
5004
5005  // Reject loads that have uses of the chain result
5006  if (Ld->hasAnyUseOfValue(1))
5007    return SDValue();
5008
5009  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5010
5011  // VBroadcast to YMM
5012  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5013    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5014
5015  // VBroadcast to XMM
5016  if (Is128 && (ScalarSize == 32))
5017    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5018
5019  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5020  // double since there is vbroadcastsd xmm
5021  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5022    // VBroadcast to YMM
5023    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5024      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5025
5026    // VBroadcast to XMM
5027    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5028      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5029  }
5030
5031  // Unsupported broadcast.
5032  return SDValue();
5033}
5034
5035SDValue
5036X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5037  DebugLoc dl = Op.getDebugLoc();
5038
5039  EVT VT = Op.getValueType();
5040  EVT ExtVT = VT.getVectorElementType();
5041  unsigned NumElems = Op.getNumOperands();
5042
5043  // Vectors containing all zeros can be matched by pxor and xorps later
5044  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5045    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5046    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5047    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5048      return Op;
5049
5050    return getZeroVector(VT, Subtarget, DAG, dl);
5051  }
5052
5053  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5054  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5055  // vpcmpeqd on 256-bit vectors.
5056  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5057    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5058      return Op;
5059
5060    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5061  }
5062
5063  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5064  if (Broadcast.getNode())
5065    return Broadcast;
5066
5067  unsigned EVTBits = ExtVT.getSizeInBits();
5068
5069  unsigned NumZero  = 0;
5070  unsigned NumNonZero = 0;
5071  unsigned NonZeros = 0;
5072  bool IsAllConstants = true;
5073  SmallSet<SDValue, 8> Values;
5074  for (unsigned i = 0; i < NumElems; ++i) {
5075    SDValue Elt = Op.getOperand(i);
5076    if (Elt.getOpcode() == ISD::UNDEF)
5077      continue;
5078    Values.insert(Elt);
5079    if (Elt.getOpcode() != ISD::Constant &&
5080        Elt.getOpcode() != ISD::ConstantFP)
5081      IsAllConstants = false;
5082    if (X86::isZeroNode(Elt))
5083      NumZero++;
5084    else {
5085      NonZeros |= (1 << i);
5086      NumNonZero++;
5087    }
5088  }
5089
5090  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5091  if (NumNonZero == 0)
5092    return DAG.getUNDEF(VT);
5093
5094  // Special case for single non-zero, non-undef, element.
5095  if (NumNonZero == 1) {
5096    unsigned Idx = CountTrailingZeros_32(NonZeros);
5097    SDValue Item = Op.getOperand(Idx);
5098
5099    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5100    // the value are obviously zero, truncate the value to i32 and do the
5101    // insertion that way.  Only do this if the value is non-constant or if the
5102    // value is a constant being inserted into element 0.  It is cheaper to do
5103    // a constant pool load than it is to do a movd + shuffle.
5104    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5105        (!IsAllConstants || Idx == 0)) {
5106      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5107        // Handle SSE only.
5108        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5109        EVT VecVT = MVT::v4i32;
5110        unsigned VecElts = 4;
5111
5112        // Truncate the value (which may itself be a constant) to i32, and
5113        // convert it to a vector with movd (S2V+shuffle to zero extend).
5114        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5115        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5116        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5117
5118        // Now we have our 32-bit value zero extended in the low element of
5119        // a vector.  If Idx != 0, swizzle it into place.
5120        if (Idx != 0) {
5121          SmallVector<int, 4> Mask;
5122          Mask.push_back(Idx);
5123          for (unsigned i = 1; i != VecElts; ++i)
5124            Mask.push_back(i);
5125          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5126                                      &Mask[0]);
5127        }
5128        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5129      }
5130    }
5131
5132    // If we have a constant or non-constant insertion into the low element of
5133    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5134    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5135    // depending on what the source datatype is.
5136    if (Idx == 0) {
5137      if (NumZero == 0)
5138        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5139
5140      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5141          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5142        if (VT.getSizeInBits() == 256) {
5143          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5144          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5145                             Item, DAG.getIntPtrConstant(0));
5146        }
5147        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5148        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5149        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5150        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5151      }
5152
5153      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5154        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5155        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5156        if (VT.getSizeInBits() == 256) {
5157          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5158          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5159        } else {
5160          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5161          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5162        }
5163        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5164      }
5165    }
5166
5167    // Is it a vector logical left shift?
5168    if (NumElems == 2 && Idx == 1 &&
5169        X86::isZeroNode(Op.getOperand(0)) &&
5170        !X86::isZeroNode(Op.getOperand(1))) {
5171      unsigned NumBits = VT.getSizeInBits();
5172      return getVShift(true, VT,
5173                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5174                                   VT, Op.getOperand(1)),
5175                       NumBits/2, DAG, *this, dl);
5176    }
5177
5178    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5179      return SDValue();
5180
5181    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5182    // is a non-constant being inserted into an element other than the low one,
5183    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5184    // movd/movss) to move this into the low element, then shuffle it into
5185    // place.
5186    if (EVTBits == 32) {
5187      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5188
5189      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5190      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5191      SmallVector<int, 8> MaskVec;
5192      for (unsigned i = 0; i < NumElems; i++)
5193        MaskVec.push_back(i == Idx ? 0 : 1);
5194      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5195    }
5196  }
5197
5198  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5199  if (Values.size() == 1) {
5200    if (EVTBits == 32) {
5201      // Instead of a shuffle like this:
5202      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5203      // Check if it's possible to issue this instead.
5204      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5205      unsigned Idx = CountTrailingZeros_32(NonZeros);
5206      SDValue Item = Op.getOperand(Idx);
5207      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5208        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5209    }
5210    return SDValue();
5211  }
5212
5213  // A vector full of immediates; various special cases are already
5214  // handled, so this is best done with a single constant-pool load.
5215  if (IsAllConstants)
5216    return SDValue();
5217
5218  // For AVX-length vectors, build the individual 128-bit pieces and use
5219  // shuffles to put them in place.
5220  if (VT.getSizeInBits() == 256) {
5221    SmallVector<SDValue, 32> V;
5222    for (unsigned i = 0; i != NumElems; ++i)
5223      V.push_back(Op.getOperand(i));
5224
5225    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5226
5227    // Build both the lower and upper subvector.
5228    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5229    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5230                                NumElems/2);
5231
5232    // Recreate the wider vector with the lower and upper part.
5233    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5234  }
5235
5236  // Let legalizer expand 2-wide build_vectors.
5237  if (EVTBits == 64) {
5238    if (NumNonZero == 1) {
5239      // One half is zero or undef.
5240      unsigned Idx = CountTrailingZeros_32(NonZeros);
5241      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5242                                 Op.getOperand(Idx));
5243      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5244    }
5245    return SDValue();
5246  }
5247
5248  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5249  if (EVTBits == 8 && NumElems == 16) {
5250    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5251                                        Subtarget, *this);
5252    if (V.getNode()) return V;
5253  }
5254
5255  if (EVTBits == 16 && NumElems == 8) {
5256    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5257                                      Subtarget, *this);
5258    if (V.getNode()) return V;
5259  }
5260
5261  // If element VT is == 32 bits, turn it into a number of shuffles.
5262  SmallVector<SDValue, 8> V(NumElems);
5263  if (NumElems == 4 && NumZero > 0) {
5264    for (unsigned i = 0; i < 4; ++i) {
5265      bool isZero = !(NonZeros & (1 << i));
5266      if (isZero)
5267        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5268      else
5269        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5270    }
5271
5272    for (unsigned i = 0; i < 2; ++i) {
5273      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5274        default: break;
5275        case 0:
5276          V[i] = V[i*2];  // Must be a zero vector.
5277          break;
5278        case 1:
5279          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5280          break;
5281        case 2:
5282          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5283          break;
5284        case 3:
5285          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5286          break;
5287      }
5288    }
5289
5290    bool Reverse1 = (NonZeros & 0x3) == 2;
5291    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5292    int MaskVec[] = {
5293      Reverse1 ? 1 : 0,
5294      Reverse1 ? 0 : 1,
5295      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5296      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5297    };
5298    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5299  }
5300
5301  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5302    // Check for a build vector of consecutive loads.
5303    for (unsigned i = 0; i < NumElems; ++i)
5304      V[i] = Op.getOperand(i);
5305
5306    // Check for elements which are consecutive loads.
5307    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5308    if (LD.getNode())
5309      return LD;
5310
5311    // For SSE 4.1, use insertps to put the high elements into the low element.
5312    if (getSubtarget()->hasSSE41()) {
5313      SDValue Result;
5314      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5315        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5316      else
5317        Result = DAG.getUNDEF(VT);
5318
5319      for (unsigned i = 1; i < NumElems; ++i) {
5320        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5321        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5322                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5323      }
5324      return Result;
5325    }
5326
5327    // Otherwise, expand into a number of unpckl*, start by extending each of
5328    // our (non-undef) elements to the full vector width with the element in the
5329    // bottom slot of the vector (which generates no code for SSE).
5330    for (unsigned i = 0; i < NumElems; ++i) {
5331      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5332        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5333      else
5334        V[i] = DAG.getUNDEF(VT);
5335    }
5336
5337    // Next, we iteratively mix elements, e.g. for v4f32:
5338    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5339    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5340    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5341    unsigned EltStride = NumElems >> 1;
5342    while (EltStride != 0) {
5343      for (unsigned i = 0; i < EltStride; ++i) {
5344        // If V[i+EltStride] is undef and this is the first round of mixing,
5345        // then it is safe to just drop this shuffle: V[i] is already in the
5346        // right place, the one element (since it's the first round) being
5347        // inserted as undef can be dropped.  This isn't safe for successive
5348        // rounds because they will permute elements within both vectors.
5349        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5350            EltStride == NumElems/2)
5351          continue;
5352
5353        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5354      }
5355      EltStride >>= 1;
5356    }
5357    return V[0];
5358  }
5359  return SDValue();
5360}
5361
5362// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5363// them in a MMX register.  This is better than doing a stack convert.
5364static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5365  DebugLoc dl = Op.getDebugLoc();
5366  EVT ResVT = Op.getValueType();
5367
5368  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5369         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5370  int Mask[2];
5371  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5372  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5373  InVec = Op.getOperand(1);
5374  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5375    unsigned NumElts = ResVT.getVectorNumElements();
5376    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5377    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5378                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5379  } else {
5380    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5381    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5382    Mask[0] = 0; Mask[1] = 2;
5383    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5384  }
5385  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5386}
5387
5388// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5389// to create 256-bit vectors from two other 128-bit ones.
5390static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5391  DebugLoc dl = Op.getDebugLoc();
5392  EVT ResVT = Op.getValueType();
5393
5394  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5395
5396  SDValue V1 = Op.getOperand(0);
5397  SDValue V2 = Op.getOperand(1);
5398  unsigned NumElems = ResVT.getVectorNumElements();
5399
5400  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5401}
5402
5403SDValue
5404X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5405  EVT ResVT = Op.getValueType();
5406
5407  assert(Op.getNumOperands() == 2);
5408  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5409         "Unsupported CONCAT_VECTORS for value type");
5410
5411  // We support concatenate two MMX registers and place them in a MMX register.
5412  // This is better than doing a stack convert.
5413  if (ResVT.is128BitVector())
5414    return LowerMMXCONCAT_VECTORS(Op, DAG);
5415
5416  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5417  // from two other 128-bit ones.
5418  return LowerAVXCONCAT_VECTORS(Op, DAG);
5419}
5420
5421// Try to lower a shuffle node into a simple blend instruction.
5422static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5423                                          const X86Subtarget *Subtarget,
5424                                          SelectionDAG &DAG) {
5425  SDValue V1 = SVOp->getOperand(0);
5426  SDValue V2 = SVOp->getOperand(1);
5427  DebugLoc dl = SVOp->getDebugLoc();
5428  MVT VT = SVOp->getValueType(0).getSimpleVT();
5429  unsigned NumElems = VT.getVectorNumElements();
5430
5431  if (!Subtarget->hasSSE41())
5432    return SDValue();
5433
5434  unsigned ISDNo = 0;
5435  MVT OpTy;
5436
5437  switch (VT.SimpleTy) {
5438  default: return SDValue();
5439  case MVT::v8i16:
5440    ISDNo = X86ISD::BLENDPW;
5441    OpTy = MVT::v8i16;
5442    break;
5443  case MVT::v4i32:
5444  case MVT::v4f32:
5445    ISDNo = X86ISD::BLENDPS;
5446    OpTy = MVT::v4f32;
5447    break;
5448  case MVT::v2i64:
5449  case MVT::v2f64:
5450    ISDNo = X86ISD::BLENDPD;
5451    OpTy = MVT::v2f64;
5452    break;
5453  case MVT::v8i32:
5454  case MVT::v8f32:
5455    if (!Subtarget->hasAVX())
5456      return SDValue();
5457    ISDNo = X86ISD::BLENDPS;
5458    OpTy = MVT::v8f32;
5459    break;
5460  case MVT::v4i64:
5461  case MVT::v4f64:
5462    if (!Subtarget->hasAVX())
5463      return SDValue();
5464    ISDNo = X86ISD::BLENDPD;
5465    OpTy = MVT::v4f64;
5466    break;
5467  }
5468  assert(ISDNo && "Invalid Op Number");
5469
5470  unsigned MaskVals = 0;
5471
5472  for (unsigned i = 0; i != NumElems; ++i) {
5473    int EltIdx = SVOp->getMaskElt(i);
5474    if (EltIdx == (int)i || EltIdx < 0)
5475      MaskVals |= (1<<i);
5476    else if (EltIdx == (int)(i + NumElems))
5477      continue; // Bit is set to zero;
5478    else
5479      return SDValue();
5480  }
5481
5482  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5483  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5484  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5485                             DAG.getConstant(MaskVals, MVT::i32));
5486  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5487}
5488
5489// v8i16 shuffles - Prefer shuffles in the following order:
5490// 1. [all]   pshuflw, pshufhw, optional move
5491// 2. [ssse3] 1 x pshufb
5492// 3. [ssse3] 2 x pshufb + 1 x por
5493// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5494SDValue
5495X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5496                                            SelectionDAG &DAG) const {
5497  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5498  SDValue V1 = SVOp->getOperand(0);
5499  SDValue V2 = SVOp->getOperand(1);
5500  DebugLoc dl = SVOp->getDebugLoc();
5501  SmallVector<int, 8> MaskVals;
5502
5503  // Determine if more than 1 of the words in each of the low and high quadwords
5504  // of the result come from the same quadword of one of the two inputs.  Undef
5505  // mask values count as coming from any quadword, for better codegen.
5506  unsigned LoQuad[] = { 0, 0, 0, 0 };
5507  unsigned HiQuad[] = { 0, 0, 0, 0 };
5508  std::bitset<4> InputQuads;
5509  for (unsigned i = 0; i < 8; ++i) {
5510    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5511    int EltIdx = SVOp->getMaskElt(i);
5512    MaskVals.push_back(EltIdx);
5513    if (EltIdx < 0) {
5514      ++Quad[0];
5515      ++Quad[1];
5516      ++Quad[2];
5517      ++Quad[3];
5518      continue;
5519    }
5520    ++Quad[EltIdx / 4];
5521    InputQuads.set(EltIdx / 4);
5522  }
5523
5524  int BestLoQuad = -1;
5525  unsigned MaxQuad = 1;
5526  for (unsigned i = 0; i < 4; ++i) {
5527    if (LoQuad[i] > MaxQuad) {
5528      BestLoQuad = i;
5529      MaxQuad = LoQuad[i];
5530    }
5531  }
5532
5533  int BestHiQuad = -1;
5534  MaxQuad = 1;
5535  for (unsigned i = 0; i < 4; ++i) {
5536    if (HiQuad[i] > MaxQuad) {
5537      BestHiQuad = i;
5538      MaxQuad = HiQuad[i];
5539    }
5540  }
5541
5542  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5543  // of the two input vectors, shuffle them into one input vector so only a
5544  // single pshufb instruction is necessary. If There are more than 2 input
5545  // quads, disable the next transformation since it does not help SSSE3.
5546  bool V1Used = InputQuads[0] || InputQuads[1];
5547  bool V2Used = InputQuads[2] || InputQuads[3];
5548  if (Subtarget->hasSSSE3()) {
5549    if (InputQuads.count() == 2 && V1Used && V2Used) {
5550      BestLoQuad = InputQuads[0] ? 0 : 1;
5551      BestHiQuad = InputQuads[2] ? 2 : 3;
5552    }
5553    if (InputQuads.count() > 2) {
5554      BestLoQuad = -1;
5555      BestHiQuad = -1;
5556    }
5557  }
5558
5559  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5560  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5561  // words from all 4 input quadwords.
5562  SDValue NewV;
5563  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5564    int MaskV[] = {
5565      BestLoQuad < 0 ? 0 : BestLoQuad,
5566      BestHiQuad < 0 ? 1 : BestHiQuad
5567    };
5568    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5569                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5570                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5571    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5572
5573    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5574    // source words for the shuffle, to aid later transformations.
5575    bool AllWordsInNewV = true;
5576    bool InOrder[2] = { true, true };
5577    for (unsigned i = 0; i != 8; ++i) {
5578      int idx = MaskVals[i];
5579      if (idx != (int)i)
5580        InOrder[i/4] = false;
5581      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5582        continue;
5583      AllWordsInNewV = false;
5584      break;
5585    }
5586
5587    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5588    if (AllWordsInNewV) {
5589      for (int i = 0; i != 8; ++i) {
5590        int idx = MaskVals[i];
5591        if (idx < 0)
5592          continue;
5593        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5594        if ((idx != i) && idx < 4)
5595          pshufhw = false;
5596        if ((idx != i) && idx > 3)
5597          pshuflw = false;
5598      }
5599      V1 = NewV;
5600      V2Used = false;
5601      BestLoQuad = 0;
5602      BestHiQuad = 1;
5603    }
5604
5605    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5606    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5607    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5608      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5609      unsigned TargetMask = 0;
5610      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5611                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5612      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5613      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5614                             getShufflePSHUFLWImmediate(SVOp);
5615      V1 = NewV.getOperand(0);
5616      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5617    }
5618  }
5619
5620  // If we have SSSE3, and all words of the result are from 1 input vector,
5621  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5622  // is present, fall back to case 4.
5623  if (Subtarget->hasSSSE3()) {
5624    SmallVector<SDValue,16> pshufbMask;
5625
5626    // If we have elements from both input vectors, set the high bit of the
5627    // shuffle mask element to zero out elements that come from V2 in the V1
5628    // mask, and elements that come from V1 in the V2 mask, so that the two
5629    // results can be OR'd together.
5630    bool TwoInputs = V1Used && V2Used;
5631    for (unsigned i = 0; i != 8; ++i) {
5632      int EltIdx = MaskVals[i] * 2;
5633      if (TwoInputs && (EltIdx >= 16)) {
5634        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5635        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5636        continue;
5637      }
5638      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5639      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5640    }
5641    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5642    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5643                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5644                                 MVT::v16i8, &pshufbMask[0], 16));
5645    if (!TwoInputs)
5646      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5647
5648    // Calculate the shuffle mask for the second input, shuffle it, and
5649    // OR it with the first shuffled input.
5650    pshufbMask.clear();
5651    for (unsigned i = 0; i != 8; ++i) {
5652      int EltIdx = MaskVals[i] * 2;
5653      if (EltIdx < 16) {
5654        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5655        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5656        continue;
5657      }
5658      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5659      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5660    }
5661    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5662    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5663                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5664                                 MVT::v16i8, &pshufbMask[0], 16));
5665    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5666    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5667  }
5668
5669  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5670  // and update MaskVals with new element order.
5671  std::bitset<8> InOrder;
5672  if (BestLoQuad >= 0) {
5673    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5674    for (int i = 0; i != 4; ++i) {
5675      int idx = MaskVals[i];
5676      if (idx < 0) {
5677        InOrder.set(i);
5678      } else if ((idx / 4) == BestLoQuad) {
5679        MaskV[i] = idx & 3;
5680        InOrder.set(i);
5681      }
5682    }
5683    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5684                                &MaskV[0]);
5685
5686    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5687      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5688      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5689                                  NewV.getOperand(0),
5690                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5691    }
5692  }
5693
5694  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5695  // and update MaskVals with the new element order.
5696  if (BestHiQuad >= 0) {
5697    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5698    for (unsigned i = 4; i != 8; ++i) {
5699      int idx = MaskVals[i];
5700      if (idx < 0) {
5701        InOrder.set(i);
5702      } else if ((idx / 4) == BestHiQuad) {
5703        MaskV[i] = (idx & 3) + 4;
5704        InOrder.set(i);
5705      }
5706    }
5707    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5708                                &MaskV[0]);
5709
5710    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5711      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5712      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5713                                  NewV.getOperand(0),
5714                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5715    }
5716  }
5717
5718  // In case BestHi & BestLo were both -1, which means each quadword has a word
5719  // from each of the four input quadwords, calculate the InOrder bitvector now
5720  // before falling through to the insert/extract cleanup.
5721  if (BestLoQuad == -1 && BestHiQuad == -1) {
5722    NewV = V1;
5723    for (int i = 0; i != 8; ++i)
5724      if (MaskVals[i] < 0 || MaskVals[i] == i)
5725        InOrder.set(i);
5726  }
5727
5728  // The other elements are put in the right place using pextrw and pinsrw.
5729  for (unsigned i = 0; i != 8; ++i) {
5730    if (InOrder[i])
5731      continue;
5732    int EltIdx = MaskVals[i];
5733    if (EltIdx < 0)
5734      continue;
5735    SDValue ExtOp = (EltIdx < 8)
5736    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5737                  DAG.getIntPtrConstant(EltIdx))
5738    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5739                  DAG.getIntPtrConstant(EltIdx - 8));
5740    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5741                       DAG.getIntPtrConstant(i));
5742  }
5743  return NewV;
5744}
5745
5746// v16i8 shuffles - Prefer shuffles in the following order:
5747// 1. [ssse3] 1 x pshufb
5748// 2. [ssse3] 2 x pshufb + 1 x por
5749// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5750static
5751SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5752                                 SelectionDAG &DAG,
5753                                 const X86TargetLowering &TLI) {
5754  SDValue V1 = SVOp->getOperand(0);
5755  SDValue V2 = SVOp->getOperand(1);
5756  DebugLoc dl = SVOp->getDebugLoc();
5757  ArrayRef<int> MaskVals = SVOp->getMask();
5758
5759  // If we have SSSE3, case 1 is generated when all result bytes come from
5760  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5761  // present, fall back to case 3.
5762  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5763  bool V1Only = true;
5764  bool V2Only = true;
5765  for (unsigned i = 0; i < 16; ++i) {
5766    int EltIdx = MaskVals[i];
5767    if (EltIdx < 0)
5768      continue;
5769    if (EltIdx < 16)
5770      V2Only = false;
5771    else
5772      V1Only = false;
5773  }
5774
5775  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5776  if (TLI.getSubtarget()->hasSSSE3()) {
5777    SmallVector<SDValue,16> pshufbMask;
5778
5779    // If all result elements are from one input vector, then only translate
5780    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5781    //
5782    // Otherwise, we have elements from both input vectors, and must zero out
5783    // elements that come from V2 in the first mask, and V1 in the second mask
5784    // so that we can OR them together.
5785    bool TwoInputs = !(V1Only || V2Only);
5786    for (unsigned i = 0; i != 16; ++i) {
5787      int EltIdx = MaskVals[i];
5788      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5789        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5790        continue;
5791      }
5792      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5793    }
5794    // If all the elements are from V2, assign it to V1 and return after
5795    // building the first pshufb.
5796    if (V2Only)
5797      V1 = V2;
5798    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5799                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5800                                 MVT::v16i8, &pshufbMask[0], 16));
5801    if (!TwoInputs)
5802      return V1;
5803
5804    // Calculate the shuffle mask for the second input, shuffle it, and
5805    // OR it with the first shuffled input.
5806    pshufbMask.clear();
5807    for (unsigned i = 0; i != 16; ++i) {
5808      int EltIdx = MaskVals[i];
5809      if (EltIdx < 16) {
5810        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5811        continue;
5812      }
5813      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5814    }
5815    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5816                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5817                                 MVT::v16i8, &pshufbMask[0], 16));
5818    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5819  }
5820
5821  // No SSSE3 - Calculate in place words and then fix all out of place words
5822  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5823  // the 16 different words that comprise the two doublequadword input vectors.
5824  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5825  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5826  SDValue NewV = V2Only ? V2 : V1;
5827  for (int i = 0; i != 8; ++i) {
5828    int Elt0 = MaskVals[i*2];
5829    int Elt1 = MaskVals[i*2+1];
5830
5831    // This word of the result is all undef, skip it.
5832    if (Elt0 < 0 && Elt1 < 0)
5833      continue;
5834
5835    // This word of the result is already in the correct place, skip it.
5836    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5837      continue;
5838    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5839      continue;
5840
5841    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5842    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5843    SDValue InsElt;
5844
5845    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5846    // using a single extract together, load it and store it.
5847    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5848      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5849                           DAG.getIntPtrConstant(Elt1 / 2));
5850      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5851                        DAG.getIntPtrConstant(i));
5852      continue;
5853    }
5854
5855    // If Elt1 is defined, extract it from the appropriate source.  If the
5856    // source byte is not also odd, shift the extracted word left 8 bits
5857    // otherwise clear the bottom 8 bits if we need to do an or.
5858    if (Elt1 >= 0) {
5859      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5860                           DAG.getIntPtrConstant(Elt1 / 2));
5861      if ((Elt1 & 1) == 0)
5862        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5863                             DAG.getConstant(8,
5864                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5865      else if (Elt0 >= 0)
5866        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5867                             DAG.getConstant(0xFF00, MVT::i16));
5868    }
5869    // If Elt0 is defined, extract it from the appropriate source.  If the
5870    // source byte is not also even, shift the extracted word right 8 bits. If
5871    // Elt1 was also defined, OR the extracted values together before
5872    // inserting them in the result.
5873    if (Elt0 >= 0) {
5874      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5875                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5876      if ((Elt0 & 1) != 0)
5877        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5878                              DAG.getConstant(8,
5879                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5880      else if (Elt1 >= 0)
5881        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5882                             DAG.getConstant(0x00FF, MVT::i16));
5883      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5884                         : InsElt0;
5885    }
5886    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5887                       DAG.getIntPtrConstant(i));
5888  }
5889  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5890}
5891
5892/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5893/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5894/// done when every pair / quad of shuffle mask elements point to elements in
5895/// the right sequence. e.g.
5896/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5897static
5898SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5899                                 SelectionDAG &DAG, DebugLoc dl) {
5900  EVT VT = SVOp->getValueType(0);
5901  SDValue V1 = SVOp->getOperand(0);
5902  SDValue V2 = SVOp->getOperand(1);
5903  unsigned NumElems = VT.getVectorNumElements();
5904  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5905  EVT NewVT;
5906  switch (VT.getSimpleVT().SimpleTy) {
5907  default: llvm_unreachable("Unexpected!");
5908  case MVT::v4f32: NewVT = MVT::v2f64; break;
5909  case MVT::v4i32: NewVT = MVT::v2i64; break;
5910  case MVT::v8i16: NewVT = MVT::v4i32; break;
5911  case MVT::v16i8: NewVT = MVT::v4i32; break;
5912  }
5913
5914  int Scale = NumElems / NewWidth;
5915  SmallVector<int, 8> MaskVec;
5916  for (unsigned i = 0; i < NumElems; i += Scale) {
5917    int StartIdx = -1;
5918    for (int j = 0; j < Scale; ++j) {
5919      int EltIdx = SVOp->getMaskElt(i+j);
5920      if (EltIdx < 0)
5921        continue;
5922      if (StartIdx == -1)
5923        StartIdx = EltIdx - (EltIdx % Scale);
5924      if (EltIdx != StartIdx + j)
5925        return SDValue();
5926    }
5927    if (StartIdx == -1)
5928      MaskVec.push_back(-1);
5929    else
5930      MaskVec.push_back(StartIdx / Scale);
5931  }
5932
5933  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5934  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5935  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5936}
5937
5938/// getVZextMovL - Return a zero-extending vector move low node.
5939///
5940static SDValue getVZextMovL(EVT VT, EVT OpVT,
5941                            SDValue SrcOp, SelectionDAG &DAG,
5942                            const X86Subtarget *Subtarget, DebugLoc dl) {
5943  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5944    LoadSDNode *LD = NULL;
5945    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5946      LD = dyn_cast<LoadSDNode>(SrcOp);
5947    if (!LD) {
5948      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5949      // instead.
5950      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5951      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5952          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5953          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5954          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5955        // PR2108
5956        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5957        return DAG.getNode(ISD::BITCAST, dl, VT,
5958                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5959                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5960                                                   OpVT,
5961                                                   SrcOp.getOperand(0)
5962                                                          .getOperand(0))));
5963      }
5964    }
5965  }
5966
5967  return DAG.getNode(ISD::BITCAST, dl, VT,
5968                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5969                                 DAG.getNode(ISD::BITCAST, dl,
5970                                             OpVT, SrcOp)));
5971}
5972
5973/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5974/// which could not be matched by any known target speficic shuffle
5975static SDValue
5976LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5977  EVT VT = SVOp->getValueType(0);
5978
5979  unsigned NumElems = VT.getVectorNumElements();
5980  unsigned NumLaneElems = NumElems / 2;
5981
5982  DebugLoc dl = SVOp->getDebugLoc();
5983  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5984  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
5985  SDValue Shufs[2];
5986
5987  SmallVector<int, 16> Mask;
5988  for (unsigned l = 0; l < 2; ++l) {
5989    // Build a shuffle mask for the output, discovering on the fly which
5990    // input vectors to use as shuffle operands (recorded in InputUsed).
5991    // If building a suitable shuffle vector proves too hard, then bail
5992    // out with useBuildVector set.
5993    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
5994    unsigned LaneStart = l * NumLaneElems;
5995    for (unsigned i = 0; i != NumLaneElems; ++i) {
5996      // The mask element.  This indexes into the input.
5997      int Idx = SVOp->getMaskElt(i+LaneStart);
5998      if (Idx < 0) {
5999        // the mask element does not index into any input vector.
6000        Mask.push_back(-1);
6001        continue;
6002      }
6003
6004      // The input vector this mask element indexes into.
6005      int Input = Idx / NumLaneElems;
6006
6007      // Turn the index into an offset from the start of the input vector.
6008      Idx -= Input * NumLaneElems;
6009
6010      // Find or create a shuffle vector operand to hold this input.
6011      unsigned OpNo;
6012      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6013        if (InputUsed[OpNo] == Input)
6014          // This input vector is already an operand.
6015          break;
6016        if (InputUsed[OpNo] < 0) {
6017          // Create a new operand for this input vector.
6018          InputUsed[OpNo] = Input;
6019          break;
6020        }
6021      }
6022
6023      if (OpNo >= array_lengthof(InputUsed)) {
6024        // More than two input vectors used! Give up.
6025        return SDValue();
6026      }
6027
6028      // Add the mask index for the new shuffle vector.
6029      Mask.push_back(Idx + OpNo * NumLaneElems);
6030    }
6031
6032    if (InputUsed[0] < 0) {
6033      // No input vectors were used! The result is undefined.
6034      Shufs[l] = DAG.getUNDEF(NVT);
6035    } else {
6036      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6037                                        (InputUsed[0] % 2) * NumLaneElems,
6038                                        DAG, dl);
6039      // If only one input was used, use an undefined vector for the other.
6040      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6041        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6042                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6043      // At least one input vector was used. Create a new shuffle vector.
6044      Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6045    }
6046
6047    Mask.clear();
6048  }
6049
6050  // Concatenate the result back
6051  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Shufs[0], Shufs[1]);
6052}
6053
6054/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6055/// 4 elements, and match them with several different shuffle types.
6056static SDValue
6057LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6058  SDValue V1 = SVOp->getOperand(0);
6059  SDValue V2 = SVOp->getOperand(1);
6060  DebugLoc dl = SVOp->getDebugLoc();
6061  EVT VT = SVOp->getValueType(0);
6062
6063  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6064
6065  std::pair<int, int> Locs[4];
6066  int Mask1[] = { -1, -1, -1, -1 };
6067  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6068
6069  unsigned NumHi = 0;
6070  unsigned NumLo = 0;
6071  for (unsigned i = 0; i != 4; ++i) {
6072    int Idx = PermMask[i];
6073    if (Idx < 0) {
6074      Locs[i] = std::make_pair(-1, -1);
6075    } else {
6076      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6077      if (Idx < 4) {
6078        Locs[i] = std::make_pair(0, NumLo);
6079        Mask1[NumLo] = Idx;
6080        NumLo++;
6081      } else {
6082        Locs[i] = std::make_pair(1, NumHi);
6083        if (2+NumHi < 4)
6084          Mask1[2+NumHi] = Idx;
6085        NumHi++;
6086      }
6087    }
6088  }
6089
6090  if (NumLo <= 2 && NumHi <= 2) {
6091    // If no more than two elements come from either vector. This can be
6092    // implemented with two shuffles. First shuffle gather the elements.
6093    // The second shuffle, which takes the first shuffle as both of its
6094    // vector operands, put the elements into the right order.
6095    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6096
6097    int Mask2[] = { -1, -1, -1, -1 };
6098
6099    for (unsigned i = 0; i != 4; ++i)
6100      if (Locs[i].first != -1) {
6101        unsigned Idx = (i < 2) ? 0 : 4;
6102        Idx += Locs[i].first * 2 + Locs[i].second;
6103        Mask2[i] = Idx;
6104      }
6105
6106    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6107  }
6108
6109  if (NumLo == 3 || NumHi == 3) {
6110    // Otherwise, we must have three elements from one vector, call it X, and
6111    // one element from the other, call it Y.  First, use a shufps to build an
6112    // intermediate vector with the one element from Y and the element from X
6113    // that will be in the same half in the final destination (the indexes don't
6114    // matter). Then, use a shufps to build the final vector, taking the half
6115    // containing the element from Y from the intermediate, and the other half
6116    // from X.
6117    if (NumHi == 3) {
6118      // Normalize it so the 3 elements come from V1.
6119      CommuteVectorShuffleMask(PermMask, 4);
6120      std::swap(V1, V2);
6121    }
6122
6123    // Find the element from V2.
6124    unsigned HiIndex;
6125    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6126      int Val = PermMask[HiIndex];
6127      if (Val < 0)
6128        continue;
6129      if (Val >= 4)
6130        break;
6131    }
6132
6133    Mask1[0] = PermMask[HiIndex];
6134    Mask1[1] = -1;
6135    Mask1[2] = PermMask[HiIndex^1];
6136    Mask1[3] = -1;
6137    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6138
6139    if (HiIndex >= 2) {
6140      Mask1[0] = PermMask[0];
6141      Mask1[1] = PermMask[1];
6142      Mask1[2] = HiIndex & 1 ? 6 : 4;
6143      Mask1[3] = HiIndex & 1 ? 4 : 6;
6144      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6145    }
6146
6147    Mask1[0] = HiIndex & 1 ? 2 : 0;
6148    Mask1[1] = HiIndex & 1 ? 0 : 2;
6149    Mask1[2] = PermMask[2];
6150    Mask1[3] = PermMask[3];
6151    if (Mask1[2] >= 0)
6152      Mask1[2] += 4;
6153    if (Mask1[3] >= 0)
6154      Mask1[3] += 4;
6155    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6156  }
6157
6158  // Break it into (shuffle shuffle_hi, shuffle_lo).
6159  int LoMask[] = { -1, -1, -1, -1 };
6160  int HiMask[] = { -1, -1, -1, -1 };
6161
6162  int *MaskPtr = LoMask;
6163  unsigned MaskIdx = 0;
6164  unsigned LoIdx = 0;
6165  unsigned HiIdx = 2;
6166  for (unsigned i = 0; i != 4; ++i) {
6167    if (i == 2) {
6168      MaskPtr = HiMask;
6169      MaskIdx = 1;
6170      LoIdx = 0;
6171      HiIdx = 2;
6172    }
6173    int Idx = PermMask[i];
6174    if (Idx < 0) {
6175      Locs[i] = std::make_pair(-1, -1);
6176    } else if (Idx < 4) {
6177      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6178      MaskPtr[LoIdx] = Idx;
6179      LoIdx++;
6180    } else {
6181      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6182      MaskPtr[HiIdx] = Idx;
6183      HiIdx++;
6184    }
6185  }
6186
6187  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6188  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6189  int MaskOps[] = { -1, -1, -1, -1 };
6190  for (unsigned i = 0; i != 4; ++i)
6191    if (Locs[i].first != -1)
6192      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6193  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6194}
6195
6196static bool MayFoldVectorLoad(SDValue V) {
6197  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6198    V = V.getOperand(0);
6199  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6200    V = V.getOperand(0);
6201  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6202      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6203    // BUILD_VECTOR (load), undef
6204    V = V.getOperand(0);
6205  if (MayFoldLoad(V))
6206    return true;
6207  return false;
6208}
6209
6210// FIXME: the version above should always be used. Since there's
6211// a bug where several vector shuffles can't be folded because the
6212// DAG is not updated during lowering and a node claims to have two
6213// uses while it only has one, use this version, and let isel match
6214// another instruction if the load really happens to have more than
6215// one use. Remove this version after this bug get fixed.
6216// rdar://8434668, PR8156
6217static bool RelaxedMayFoldVectorLoad(SDValue V) {
6218  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6219    V = V.getOperand(0);
6220  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6221    V = V.getOperand(0);
6222  if (ISD::isNormalLoad(V.getNode()))
6223    return true;
6224  return false;
6225}
6226
6227static
6228SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6229  EVT VT = Op.getValueType();
6230
6231  // Canonizalize to v2f64.
6232  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6233  return DAG.getNode(ISD::BITCAST, dl, VT,
6234                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6235                                          V1, DAG));
6236}
6237
6238static
6239SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6240                        bool HasSSE2) {
6241  SDValue V1 = Op.getOperand(0);
6242  SDValue V2 = Op.getOperand(1);
6243  EVT VT = Op.getValueType();
6244
6245  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6246
6247  if (HasSSE2 && VT == MVT::v2f64)
6248    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6249
6250  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6251  return DAG.getNode(ISD::BITCAST, dl, VT,
6252                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6253                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6254                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6255}
6256
6257static
6258SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6259  SDValue V1 = Op.getOperand(0);
6260  SDValue V2 = Op.getOperand(1);
6261  EVT VT = Op.getValueType();
6262
6263  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6264         "unsupported shuffle type");
6265
6266  if (V2.getOpcode() == ISD::UNDEF)
6267    V2 = V1;
6268
6269  // v4i32 or v4f32
6270  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6271}
6272
6273static
6274SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6275  SDValue V1 = Op.getOperand(0);
6276  SDValue V2 = Op.getOperand(1);
6277  EVT VT = Op.getValueType();
6278  unsigned NumElems = VT.getVectorNumElements();
6279
6280  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6281  // operand of these instructions is only memory, so check if there's a
6282  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6283  // same masks.
6284  bool CanFoldLoad = false;
6285
6286  // Trivial case, when V2 comes from a load.
6287  if (MayFoldVectorLoad(V2))
6288    CanFoldLoad = true;
6289
6290  // When V1 is a load, it can be folded later into a store in isel, example:
6291  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6292  //    turns into:
6293  //  (MOVLPSmr addr:$src1, VR128:$src2)
6294  // So, recognize this potential and also use MOVLPS or MOVLPD
6295  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6296    CanFoldLoad = true;
6297
6298  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6299  if (CanFoldLoad) {
6300    if (HasSSE2 && NumElems == 2)
6301      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6302
6303    if (NumElems == 4)
6304      // If we don't care about the second element, procede to use movss.
6305      if (SVOp->getMaskElt(1) != -1)
6306        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6307  }
6308
6309  // movl and movlp will both match v2i64, but v2i64 is never matched by
6310  // movl earlier because we make it strict to avoid messing with the movlp load
6311  // folding logic (see the code above getMOVLP call). Match it here then,
6312  // this is horrible, but will stay like this until we move all shuffle
6313  // matching to x86 specific nodes. Note that for the 1st condition all
6314  // types are matched with movsd.
6315  if (HasSSE2) {
6316    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6317    // as to remove this logic from here, as much as possible
6318    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6319      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6320    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6321  }
6322
6323  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6324
6325  // Invert the operand order and use SHUFPS to match it.
6326  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6327                              getShuffleSHUFImmediate(SVOp), DAG);
6328}
6329
6330SDValue
6331X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6332  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6333  EVT VT = Op.getValueType();
6334  DebugLoc dl = Op.getDebugLoc();
6335  SDValue V1 = Op.getOperand(0);
6336  SDValue V2 = Op.getOperand(1);
6337
6338  if (isZeroShuffle(SVOp))
6339    return getZeroVector(VT, Subtarget, DAG, dl);
6340
6341  // Handle splat operations
6342  if (SVOp->isSplat()) {
6343    unsigned NumElem = VT.getVectorNumElements();
6344    int Size = VT.getSizeInBits();
6345
6346    // Use vbroadcast whenever the splat comes from a foldable load
6347    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6348    if (Broadcast.getNode())
6349      return Broadcast;
6350
6351    // Handle splats by matching through known shuffle masks
6352    if ((Size == 128 && NumElem <= 4) ||
6353        (Size == 256 && NumElem < 8))
6354      return SDValue();
6355
6356    // All remaning splats are promoted to target supported vector shuffles.
6357    return PromoteSplat(SVOp, DAG);
6358  }
6359
6360  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6361  // do it!
6362  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6363    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6364    if (NewOp.getNode())
6365      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6366  } else if ((VT == MVT::v4i32 ||
6367             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6368    // FIXME: Figure out a cleaner way to do this.
6369    // Try to make use of movq to zero out the top part.
6370    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6371      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6372      if (NewOp.getNode()) {
6373        EVT NewVT = NewOp.getValueType();
6374        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6375                               NewVT, true, false))
6376          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6377                              DAG, Subtarget, dl);
6378      }
6379    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6380      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6381      if (NewOp.getNode()) {
6382        EVT NewVT = NewOp.getValueType();
6383        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6384          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6385                              DAG, Subtarget, dl);
6386      }
6387    }
6388  }
6389  return SDValue();
6390}
6391
6392SDValue
6393X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6394  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6395  SDValue V1 = Op.getOperand(0);
6396  SDValue V2 = Op.getOperand(1);
6397  EVT VT = Op.getValueType();
6398  DebugLoc dl = Op.getDebugLoc();
6399  unsigned NumElems = VT.getVectorNumElements();
6400  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6401  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6402  bool V1IsSplat = false;
6403  bool V2IsSplat = false;
6404  bool HasSSE2 = Subtarget->hasSSE2();
6405  bool HasAVX    = Subtarget->hasAVX();
6406  bool HasAVX2   = Subtarget->hasAVX2();
6407  MachineFunction &MF = DAG.getMachineFunction();
6408  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6409
6410  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6411
6412  if (V1IsUndef && V2IsUndef)
6413    return DAG.getUNDEF(VT);
6414
6415  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6416
6417  // Vector shuffle lowering takes 3 steps:
6418  //
6419  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6420  //    narrowing and commutation of operands should be handled.
6421  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6422  //    shuffle nodes.
6423  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6424  //    so the shuffle can be broken into other shuffles and the legalizer can
6425  //    try the lowering again.
6426  //
6427  // The general idea is that no vector_shuffle operation should be left to
6428  // be matched during isel, all of them must be converted to a target specific
6429  // node here.
6430
6431  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6432  // narrowing and commutation of operands should be handled. The actual code
6433  // doesn't include all of those, work in progress...
6434  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6435  if (NewOp.getNode())
6436    return NewOp;
6437
6438  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6439
6440  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6441  // unpckh_undef). Only use pshufd if speed is more important than size.
6442  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6443    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6444  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6445    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6446
6447  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6448      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6449    return getMOVDDup(Op, dl, V1, DAG);
6450
6451  if (isMOVHLPS_v_undef_Mask(M, VT))
6452    return getMOVHighToLow(Op, dl, DAG);
6453
6454  // Use to match splats
6455  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6456      (VT == MVT::v2f64 || VT == MVT::v2i64))
6457    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6458
6459  if (isPSHUFDMask(M, VT)) {
6460    // The actual implementation will match the mask in the if above and then
6461    // during isel it can match several different instructions, not only pshufd
6462    // as its name says, sad but true, emulate the behavior for now...
6463    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6464      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6465
6466    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6467
6468    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6469      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6470
6471    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6472      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6473
6474    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6475                                TargetMask, DAG);
6476  }
6477
6478  // Check if this can be converted into a logical shift.
6479  bool isLeft = false;
6480  unsigned ShAmt = 0;
6481  SDValue ShVal;
6482  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6483  if (isShift && ShVal.hasOneUse()) {
6484    // If the shifted value has multiple uses, it may be cheaper to use
6485    // v_set0 + movlhps or movhlps, etc.
6486    EVT EltVT = VT.getVectorElementType();
6487    ShAmt *= EltVT.getSizeInBits();
6488    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6489  }
6490
6491  if (isMOVLMask(M, VT)) {
6492    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6493      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6494    if (!isMOVLPMask(M, VT)) {
6495      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6496        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6497
6498      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6499        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6500    }
6501  }
6502
6503  // FIXME: fold these into legal mask.
6504  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6505    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6506
6507  if (isMOVHLPSMask(M, VT))
6508    return getMOVHighToLow(Op, dl, DAG);
6509
6510  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6511    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6512
6513  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6514    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6515
6516  if (isMOVLPMask(M, VT))
6517    return getMOVLP(Op, dl, DAG, HasSSE2);
6518
6519  if (ShouldXformToMOVHLPS(M, VT) ||
6520      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6521    return CommuteVectorShuffle(SVOp, DAG);
6522
6523  if (isShift) {
6524    // No better options. Use a vshldq / vsrldq.
6525    EVT EltVT = VT.getVectorElementType();
6526    ShAmt *= EltVT.getSizeInBits();
6527    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6528  }
6529
6530  bool Commuted = false;
6531  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6532  // 1,1,1,1 -> v8i16 though.
6533  V1IsSplat = isSplatVector(V1.getNode());
6534  V2IsSplat = isSplatVector(V2.getNode());
6535
6536  // Canonicalize the splat or undef, if present, to be on the RHS.
6537  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6538    CommuteVectorShuffleMask(M, NumElems);
6539    std::swap(V1, V2);
6540    std::swap(V1IsSplat, V2IsSplat);
6541    Commuted = true;
6542  }
6543
6544  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6545    // Shuffling low element of v1 into undef, just return v1.
6546    if (V2IsUndef)
6547      return V1;
6548    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6549    // the instruction selector will not match, so get a canonical MOVL with
6550    // swapped operands to undo the commute.
6551    return getMOVL(DAG, dl, VT, V2, V1);
6552  }
6553
6554  if (isUNPCKLMask(M, VT, HasAVX2))
6555    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6556
6557  if (isUNPCKHMask(M, VT, HasAVX2))
6558    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6559
6560  if (V2IsSplat) {
6561    // Normalize mask so all entries that point to V2 points to its first
6562    // element then try to match unpck{h|l} again. If match, return a
6563    // new vector_shuffle with the corrected mask.p
6564    SmallVector<int, 8> NewMask(M.begin(), M.end());
6565    NormalizeMask(NewMask, NumElems);
6566    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6567      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6568    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6569      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6570  }
6571
6572  if (Commuted) {
6573    // Commute is back and try unpck* again.
6574    // FIXME: this seems wrong.
6575    CommuteVectorShuffleMask(M, NumElems);
6576    std::swap(V1, V2);
6577    std::swap(V1IsSplat, V2IsSplat);
6578    Commuted = false;
6579
6580    if (isUNPCKLMask(M, VT, HasAVX2))
6581      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6582
6583    if (isUNPCKHMask(M, VT, HasAVX2))
6584      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6585  }
6586
6587  // Normalize the node to match x86 shuffle ops if needed
6588  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6589    return CommuteVectorShuffle(SVOp, DAG);
6590
6591  // The checks below are all present in isShuffleMaskLegal, but they are
6592  // inlined here right now to enable us to directly emit target specific
6593  // nodes, and remove one by one until they don't return Op anymore.
6594
6595  if (isPALIGNRMask(M, VT, Subtarget))
6596    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6597                                getShufflePALIGNRImmediate(SVOp),
6598                                DAG);
6599
6600  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6601      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6602    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6603      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6604  }
6605
6606  if (isPSHUFHWMask(M, VT, HasAVX2))
6607    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6608                                getShufflePSHUFHWImmediate(SVOp),
6609                                DAG);
6610
6611  if (isPSHUFLWMask(M, VT, HasAVX2))
6612    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6613                                getShufflePSHUFLWImmediate(SVOp),
6614                                DAG);
6615
6616  if (isSHUFPMask(M, VT, HasAVX))
6617    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6618                                getShuffleSHUFImmediate(SVOp), DAG);
6619
6620  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6621    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6622  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6623    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6624
6625  //===--------------------------------------------------------------------===//
6626  // Generate target specific nodes for 128 or 256-bit shuffles only
6627  // supported in the AVX instruction set.
6628  //
6629
6630  // Handle VMOVDDUPY permutations
6631  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6632    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6633
6634  // Handle VPERMILPS/D* permutations
6635  if (isVPERMILPMask(M, VT, HasAVX)) {
6636    if (HasAVX2 && VT == MVT::v8i32)
6637      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6638                                  getShuffleSHUFImmediate(SVOp), DAG);
6639    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6640                                getShuffleSHUFImmediate(SVOp), DAG);
6641  }
6642
6643  // Handle VPERM2F128/VPERM2I128 permutations
6644  if (isVPERM2X128Mask(M, VT, HasAVX))
6645    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6646                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6647
6648  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6649  if (BlendOp.getNode())
6650    return BlendOp;
6651
6652  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6653    SmallVector<SDValue, 8> permclMask;
6654    for (unsigned i = 0; i != 8; ++i) {
6655      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6656    }
6657    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6658                               &permclMask[0], 8);
6659    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6660    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6661                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6662  }
6663
6664  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6665    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6666                                getShuffleCLImmediate(SVOp), DAG);
6667
6668
6669  //===--------------------------------------------------------------------===//
6670  // Since no target specific shuffle was selected for this generic one,
6671  // lower it into other known shuffles. FIXME: this isn't true yet, but
6672  // this is the plan.
6673  //
6674
6675  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6676  if (VT == MVT::v8i16) {
6677    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6678    if (NewOp.getNode())
6679      return NewOp;
6680  }
6681
6682  if (VT == MVT::v16i8) {
6683    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6684    if (NewOp.getNode())
6685      return NewOp;
6686  }
6687
6688  // Handle all 128-bit wide vectors with 4 elements, and match them with
6689  // several different shuffle types.
6690  if (NumElems == 4 && VT.getSizeInBits() == 128)
6691    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6692
6693  // Handle general 256-bit shuffles
6694  if (VT.is256BitVector())
6695    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6696
6697  return SDValue();
6698}
6699
6700SDValue
6701X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6702                                                SelectionDAG &DAG) const {
6703  EVT VT = Op.getValueType();
6704  DebugLoc dl = Op.getDebugLoc();
6705
6706  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6707    return SDValue();
6708
6709  if (VT.getSizeInBits() == 8) {
6710    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6711                                    Op.getOperand(0), Op.getOperand(1));
6712    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6713                                    DAG.getValueType(VT));
6714    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6715  }
6716
6717  if (VT.getSizeInBits() == 16) {
6718    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6719    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6720    if (Idx == 0)
6721      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6722                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6723                                     DAG.getNode(ISD::BITCAST, dl,
6724                                                 MVT::v4i32,
6725                                                 Op.getOperand(0)),
6726                                     Op.getOperand(1)));
6727    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6728                                    Op.getOperand(0), Op.getOperand(1));
6729    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6730                                    DAG.getValueType(VT));
6731    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6732  }
6733
6734  if (VT == MVT::f32) {
6735    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6736    // the result back to FR32 register. It's only worth matching if the
6737    // result has a single use which is a store or a bitcast to i32.  And in
6738    // the case of a store, it's not worth it if the index is a constant 0,
6739    // because a MOVSSmr can be used instead, which is smaller and faster.
6740    if (!Op.hasOneUse())
6741      return SDValue();
6742    SDNode *User = *Op.getNode()->use_begin();
6743    if ((User->getOpcode() != ISD::STORE ||
6744         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6745          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6746        (User->getOpcode() != ISD::BITCAST ||
6747         User->getValueType(0) != MVT::i32))
6748      return SDValue();
6749    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6750                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6751                                              Op.getOperand(0)),
6752                                              Op.getOperand(1));
6753    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6754  }
6755
6756  if (VT == MVT::i32 || VT == MVT::i64) {
6757    // ExtractPS/pextrq works with constant index.
6758    if (isa<ConstantSDNode>(Op.getOperand(1)))
6759      return Op;
6760  }
6761  return SDValue();
6762}
6763
6764
6765SDValue
6766X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6767                                           SelectionDAG &DAG) const {
6768  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6769    return SDValue();
6770
6771  SDValue Vec = Op.getOperand(0);
6772  EVT VecVT = Vec.getValueType();
6773
6774  // If this is a 256-bit vector result, first extract the 128-bit vector and
6775  // then extract the element from the 128-bit vector.
6776  if (VecVT.getSizeInBits() == 256) {
6777    DebugLoc dl = Op.getNode()->getDebugLoc();
6778    unsigned NumElems = VecVT.getVectorNumElements();
6779    SDValue Idx = Op.getOperand(1);
6780    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6781
6782    // Get the 128-bit vector.
6783    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
6784
6785    if (IdxVal >= NumElems/2)
6786      IdxVal -= NumElems/2;
6787    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6788                       DAG.getConstant(IdxVal, MVT::i32));
6789  }
6790
6791  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6792
6793  if (Subtarget->hasSSE41()) {
6794    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6795    if (Res.getNode())
6796      return Res;
6797  }
6798
6799  EVT VT = Op.getValueType();
6800  DebugLoc dl = Op.getDebugLoc();
6801  // TODO: handle v16i8.
6802  if (VT.getSizeInBits() == 16) {
6803    SDValue Vec = Op.getOperand(0);
6804    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6805    if (Idx == 0)
6806      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6807                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6808                                     DAG.getNode(ISD::BITCAST, dl,
6809                                                 MVT::v4i32, Vec),
6810                                     Op.getOperand(1)));
6811    // Transform it so it match pextrw which produces a 32-bit result.
6812    EVT EltVT = MVT::i32;
6813    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6814                                    Op.getOperand(0), Op.getOperand(1));
6815    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6816                                    DAG.getValueType(VT));
6817    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6818  }
6819
6820  if (VT.getSizeInBits() == 32) {
6821    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6822    if (Idx == 0)
6823      return Op;
6824
6825    // SHUFPS the element to the lowest double word, then movss.
6826    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6827    EVT VVT = Op.getOperand(0).getValueType();
6828    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6829                                       DAG.getUNDEF(VVT), Mask);
6830    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6831                       DAG.getIntPtrConstant(0));
6832  }
6833
6834  if (VT.getSizeInBits() == 64) {
6835    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6836    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6837    //        to match extract_elt for f64.
6838    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6839    if (Idx == 0)
6840      return Op;
6841
6842    // UNPCKHPD the element to the lowest double word, then movsd.
6843    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6844    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6845    int Mask[2] = { 1, -1 };
6846    EVT VVT = Op.getOperand(0).getValueType();
6847    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6848                                       DAG.getUNDEF(VVT), Mask);
6849    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6850                       DAG.getIntPtrConstant(0));
6851  }
6852
6853  return SDValue();
6854}
6855
6856SDValue
6857X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6858                                               SelectionDAG &DAG) const {
6859  EVT VT = Op.getValueType();
6860  EVT EltVT = VT.getVectorElementType();
6861  DebugLoc dl = Op.getDebugLoc();
6862
6863  SDValue N0 = Op.getOperand(0);
6864  SDValue N1 = Op.getOperand(1);
6865  SDValue N2 = Op.getOperand(2);
6866
6867  if (VT.getSizeInBits() == 256)
6868    return SDValue();
6869
6870  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6871      isa<ConstantSDNode>(N2)) {
6872    unsigned Opc;
6873    if (VT == MVT::v8i16)
6874      Opc = X86ISD::PINSRW;
6875    else if (VT == MVT::v16i8)
6876      Opc = X86ISD::PINSRB;
6877    else
6878      Opc = X86ISD::PINSRB;
6879
6880    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6881    // argument.
6882    if (N1.getValueType() != MVT::i32)
6883      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6884    if (N2.getValueType() != MVT::i32)
6885      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6886    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6887  }
6888
6889  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6890    // Bits [7:6] of the constant are the source select.  This will always be
6891    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6892    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6893    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6894    // Bits [5:4] of the constant are the destination select.  This is the
6895    //  value of the incoming immediate.
6896    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6897    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6898    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6899    // Create this as a scalar to vector..
6900    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6901    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6902  }
6903
6904  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
6905    // PINSR* works with constant index.
6906    return Op;
6907  }
6908  return SDValue();
6909}
6910
6911SDValue
6912X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6913  EVT VT = Op.getValueType();
6914  EVT EltVT = VT.getVectorElementType();
6915
6916  DebugLoc dl = Op.getDebugLoc();
6917  SDValue N0 = Op.getOperand(0);
6918  SDValue N1 = Op.getOperand(1);
6919  SDValue N2 = Op.getOperand(2);
6920
6921  // If this is a 256-bit vector result, first extract the 128-bit vector,
6922  // insert the element into the extracted half and then place it back.
6923  if (VT.getSizeInBits() == 256) {
6924    if (!isa<ConstantSDNode>(N2))
6925      return SDValue();
6926
6927    // Get the desired 128-bit vector half.
6928    unsigned NumElems = VT.getVectorNumElements();
6929    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6930    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
6931
6932    // Insert the element into the desired half.
6933    bool Upper = IdxVal >= NumElems/2;
6934    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
6935                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
6936
6937    // Insert the changed part back to the 256-bit vector
6938    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
6939  }
6940
6941  if (Subtarget->hasSSE41())
6942    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6943
6944  if (EltVT == MVT::i8)
6945    return SDValue();
6946
6947  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6948    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6949    // as its second argument.
6950    if (N1.getValueType() != MVT::i32)
6951      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6952    if (N2.getValueType() != MVT::i32)
6953      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6954    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6955  }
6956  return SDValue();
6957}
6958
6959SDValue
6960X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6961  LLVMContext *Context = DAG.getContext();
6962  DebugLoc dl = Op.getDebugLoc();
6963  EVT OpVT = Op.getValueType();
6964
6965  // If this is a 256-bit vector result, first insert into a 128-bit
6966  // vector and then insert into the 256-bit vector.
6967  if (OpVT.getSizeInBits() > 128) {
6968    // Insert into a 128-bit vector.
6969    EVT VT128 = EVT::getVectorVT(*Context,
6970                                 OpVT.getVectorElementType(),
6971                                 OpVT.getVectorNumElements() / 2);
6972
6973    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6974
6975    // Insert the 128-bit vector.
6976    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
6977  }
6978
6979  if (OpVT == MVT::v1i64 &&
6980      Op.getOperand(0).getValueType() == MVT::i64)
6981    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6982
6983  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6984  assert(OpVT.getSizeInBits() == 128 && "Expected an SSE type!");
6985  return DAG.getNode(ISD::BITCAST, dl, OpVT,
6986                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6987}
6988
6989// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6990// a simple subregister reference or explicit instructions to grab
6991// upper bits of a vector.
6992SDValue
6993X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6994  if (Subtarget->hasAVX()) {
6995    DebugLoc dl = Op.getNode()->getDebugLoc();
6996    SDValue Vec = Op.getNode()->getOperand(0);
6997    SDValue Idx = Op.getNode()->getOperand(1);
6998
6999    if (Op.getNode()->getValueType(0).getSizeInBits() == 128 &&
7000        Vec.getNode()->getValueType(0).getSizeInBits() == 256 &&
7001        isa<ConstantSDNode>(Idx)) {
7002      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7003      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7004    }
7005  }
7006  return SDValue();
7007}
7008
7009// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7010// simple superregister reference or explicit instructions to insert
7011// the upper bits of a vector.
7012SDValue
7013X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7014  if (Subtarget->hasAVX()) {
7015    DebugLoc dl = Op.getNode()->getDebugLoc();
7016    SDValue Vec = Op.getNode()->getOperand(0);
7017    SDValue SubVec = Op.getNode()->getOperand(1);
7018    SDValue Idx = Op.getNode()->getOperand(2);
7019
7020    if (Op.getNode()->getValueType(0).getSizeInBits() == 256 &&
7021        SubVec.getNode()->getValueType(0).getSizeInBits() == 128 &&
7022        isa<ConstantSDNode>(Idx)) {
7023      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7024      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7025    }
7026  }
7027  return SDValue();
7028}
7029
7030// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7031// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7032// one of the above mentioned nodes. It has to be wrapped because otherwise
7033// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7034// be used to form addressing mode. These wrapped nodes will be selected
7035// into MOV32ri.
7036SDValue
7037X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7038  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7039
7040  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7041  // global base reg.
7042  unsigned char OpFlag = 0;
7043  unsigned WrapperKind = X86ISD::Wrapper;
7044  CodeModel::Model M = getTargetMachine().getCodeModel();
7045
7046  if (Subtarget->isPICStyleRIPRel() &&
7047      (M == CodeModel::Small || M == CodeModel::Kernel))
7048    WrapperKind = X86ISD::WrapperRIP;
7049  else if (Subtarget->isPICStyleGOT())
7050    OpFlag = X86II::MO_GOTOFF;
7051  else if (Subtarget->isPICStyleStubPIC())
7052    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7053
7054  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7055                                             CP->getAlignment(),
7056                                             CP->getOffset(), OpFlag);
7057  DebugLoc DL = CP->getDebugLoc();
7058  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7059  // With PIC, the address is actually $g + Offset.
7060  if (OpFlag) {
7061    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7062                         DAG.getNode(X86ISD::GlobalBaseReg,
7063                                     DebugLoc(), getPointerTy()),
7064                         Result);
7065  }
7066
7067  return Result;
7068}
7069
7070SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7071  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7072
7073  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7074  // global base reg.
7075  unsigned char OpFlag = 0;
7076  unsigned WrapperKind = X86ISD::Wrapper;
7077  CodeModel::Model M = getTargetMachine().getCodeModel();
7078
7079  if (Subtarget->isPICStyleRIPRel() &&
7080      (M == CodeModel::Small || M == CodeModel::Kernel))
7081    WrapperKind = X86ISD::WrapperRIP;
7082  else if (Subtarget->isPICStyleGOT())
7083    OpFlag = X86II::MO_GOTOFF;
7084  else if (Subtarget->isPICStyleStubPIC())
7085    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7086
7087  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7088                                          OpFlag);
7089  DebugLoc DL = JT->getDebugLoc();
7090  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7091
7092  // With PIC, the address is actually $g + Offset.
7093  if (OpFlag)
7094    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7095                         DAG.getNode(X86ISD::GlobalBaseReg,
7096                                     DebugLoc(), getPointerTy()),
7097                         Result);
7098
7099  return Result;
7100}
7101
7102SDValue
7103X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7104  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7105
7106  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7107  // global base reg.
7108  unsigned char OpFlag = 0;
7109  unsigned WrapperKind = X86ISD::Wrapper;
7110  CodeModel::Model M = getTargetMachine().getCodeModel();
7111
7112  if (Subtarget->isPICStyleRIPRel() &&
7113      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7114    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7115      OpFlag = X86II::MO_GOTPCREL;
7116    WrapperKind = X86ISD::WrapperRIP;
7117  } else if (Subtarget->isPICStyleGOT()) {
7118    OpFlag = X86II::MO_GOT;
7119  } else if (Subtarget->isPICStyleStubPIC()) {
7120    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7121  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7122    OpFlag = X86II::MO_DARWIN_NONLAZY;
7123  }
7124
7125  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7126
7127  DebugLoc DL = Op.getDebugLoc();
7128  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7129
7130
7131  // With PIC, the address is actually $g + Offset.
7132  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7133      !Subtarget->is64Bit()) {
7134    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7135                         DAG.getNode(X86ISD::GlobalBaseReg,
7136                                     DebugLoc(), getPointerTy()),
7137                         Result);
7138  }
7139
7140  // For symbols that require a load from a stub to get the address, emit the
7141  // load.
7142  if (isGlobalStubReference(OpFlag))
7143    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7144                         MachinePointerInfo::getGOT(), false, false, false, 0);
7145
7146  return Result;
7147}
7148
7149SDValue
7150X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7151  // Create the TargetBlockAddressAddress node.
7152  unsigned char OpFlags =
7153    Subtarget->ClassifyBlockAddressReference();
7154  CodeModel::Model M = getTargetMachine().getCodeModel();
7155  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7156  DebugLoc dl = Op.getDebugLoc();
7157  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7158                                       /*isTarget=*/true, OpFlags);
7159
7160  if (Subtarget->isPICStyleRIPRel() &&
7161      (M == CodeModel::Small || M == CodeModel::Kernel))
7162    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7163  else
7164    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7165
7166  // With PIC, the address is actually $g + Offset.
7167  if (isGlobalRelativeToPICBase(OpFlags)) {
7168    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7169                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7170                         Result);
7171  }
7172
7173  return Result;
7174}
7175
7176SDValue
7177X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7178                                      int64_t Offset,
7179                                      SelectionDAG &DAG) const {
7180  // Create the TargetGlobalAddress node, folding in the constant
7181  // offset if it is legal.
7182  unsigned char OpFlags =
7183    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7184  CodeModel::Model M = getTargetMachine().getCodeModel();
7185  SDValue Result;
7186  if (OpFlags == X86II::MO_NO_FLAG &&
7187      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7188    // A direct static reference to a global.
7189    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7190    Offset = 0;
7191  } else {
7192    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7193  }
7194
7195  if (Subtarget->isPICStyleRIPRel() &&
7196      (M == CodeModel::Small || M == CodeModel::Kernel))
7197    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7198  else
7199    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7200
7201  // With PIC, the address is actually $g + Offset.
7202  if (isGlobalRelativeToPICBase(OpFlags)) {
7203    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7204                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7205                         Result);
7206  }
7207
7208  // For globals that require a load from a stub to get the address, emit the
7209  // load.
7210  if (isGlobalStubReference(OpFlags))
7211    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7212                         MachinePointerInfo::getGOT(), false, false, false, 0);
7213
7214  // If there was a non-zero offset that we didn't fold, create an explicit
7215  // addition for it.
7216  if (Offset != 0)
7217    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7218                         DAG.getConstant(Offset, getPointerTy()));
7219
7220  return Result;
7221}
7222
7223SDValue
7224X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7225  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7226  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7227  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7228}
7229
7230static SDValue
7231GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7232           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7233           unsigned char OperandFlags) {
7234  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7235  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7236  DebugLoc dl = GA->getDebugLoc();
7237  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7238                                           GA->getValueType(0),
7239                                           GA->getOffset(),
7240                                           OperandFlags);
7241  if (InFlag) {
7242    SDValue Ops[] = { Chain,  TGA, *InFlag };
7243    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7244  } else {
7245    SDValue Ops[]  = { Chain, TGA };
7246    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7247  }
7248
7249  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7250  MFI->setAdjustsStack(true);
7251
7252  SDValue Flag = Chain.getValue(1);
7253  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7254}
7255
7256// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7257static SDValue
7258LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7259                                const EVT PtrVT) {
7260  SDValue InFlag;
7261  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7262  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7263                                     DAG.getNode(X86ISD::GlobalBaseReg,
7264                                                 DebugLoc(), PtrVT), InFlag);
7265  InFlag = Chain.getValue(1);
7266
7267  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7268}
7269
7270// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7271static SDValue
7272LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7273                                const EVT PtrVT) {
7274  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7275                    X86::RAX, X86II::MO_TLSGD);
7276}
7277
7278// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7279// "local exec" model.
7280static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7281                                   const EVT PtrVT, TLSModel::Model model,
7282                                   bool is64Bit) {
7283  DebugLoc dl = GA->getDebugLoc();
7284
7285  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7286  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7287                                                         is64Bit ? 257 : 256));
7288
7289  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7290                                      DAG.getIntPtrConstant(0),
7291                                      MachinePointerInfo(Ptr),
7292                                      false, false, false, 0);
7293
7294  unsigned char OperandFlags = 0;
7295  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7296  // initialexec.
7297  unsigned WrapperKind = X86ISD::Wrapper;
7298  if (model == TLSModel::LocalExec) {
7299    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7300  } else if (is64Bit) {
7301    assert(model == TLSModel::InitialExec);
7302    OperandFlags = X86II::MO_GOTTPOFF;
7303    WrapperKind = X86ISD::WrapperRIP;
7304  } else {
7305    assert(model == TLSModel::InitialExec);
7306    OperandFlags = X86II::MO_INDNTPOFF;
7307  }
7308
7309  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7310  // exec)
7311  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7312                                           GA->getValueType(0),
7313                                           GA->getOffset(), OperandFlags);
7314  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7315
7316  if (model == TLSModel::InitialExec)
7317    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7318                         MachinePointerInfo::getGOT(), false, false, false, 0);
7319
7320  // The address of the thread local variable is the add of the thread
7321  // pointer with the offset of the variable.
7322  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7323}
7324
7325SDValue
7326X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7327
7328  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7329  const GlobalValue *GV = GA->getGlobal();
7330
7331  if (Subtarget->isTargetELF()) {
7332    // TODO: implement the "local dynamic" model
7333    // TODO: implement the "initial exec"model for pic executables
7334
7335    // If GV is an alias then use the aliasee for determining
7336    // thread-localness.
7337    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7338      GV = GA->resolveAliasedGlobal(false);
7339
7340    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7341
7342    switch (model) {
7343      case TLSModel::GeneralDynamic:
7344      case TLSModel::LocalDynamic: // not implemented
7345        if (Subtarget->is64Bit())
7346          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7347        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7348
7349      case TLSModel::InitialExec:
7350      case TLSModel::LocalExec:
7351        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7352                                   Subtarget->is64Bit());
7353    }
7354    llvm_unreachable("Unknown TLS model.");
7355  }
7356
7357  if (Subtarget->isTargetDarwin()) {
7358    // Darwin only has one model of TLS.  Lower to that.
7359    unsigned char OpFlag = 0;
7360    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7361                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7362
7363    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7364    // global base reg.
7365    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7366                  !Subtarget->is64Bit();
7367    if (PIC32)
7368      OpFlag = X86II::MO_TLVP_PIC_BASE;
7369    else
7370      OpFlag = X86II::MO_TLVP;
7371    DebugLoc DL = Op.getDebugLoc();
7372    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7373                                                GA->getValueType(0),
7374                                                GA->getOffset(), OpFlag);
7375    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7376
7377    // With PIC32, the address is actually $g + Offset.
7378    if (PIC32)
7379      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7380                           DAG.getNode(X86ISD::GlobalBaseReg,
7381                                       DebugLoc(), getPointerTy()),
7382                           Offset);
7383
7384    // Lowering the machine isd will make sure everything is in the right
7385    // location.
7386    SDValue Chain = DAG.getEntryNode();
7387    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7388    SDValue Args[] = { Chain, Offset };
7389    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7390
7391    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7392    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7393    MFI->setAdjustsStack(true);
7394
7395    // And our return value (tls address) is in the standard call return value
7396    // location.
7397    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7398    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7399                              Chain.getValue(1));
7400  }
7401
7402  if (Subtarget->isTargetWindows()) {
7403    // Just use the implicit TLS architecture
7404    // Need to generate someting similar to:
7405    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7406    //                                  ; from TEB
7407    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7408    //   mov     rcx, qword [rdx+rcx*8]
7409    //   mov     eax, .tls$:tlsvar
7410    //   [rax+rcx] contains the address
7411    // Windows 64bit: gs:0x58
7412    // Windows 32bit: fs:__tls_array
7413
7414    // If GV is an alias then use the aliasee for determining
7415    // thread-localness.
7416    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7417      GV = GA->resolveAliasedGlobal(false);
7418    DebugLoc dl = GA->getDebugLoc();
7419    SDValue Chain = DAG.getEntryNode();
7420
7421    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7422    // %gs:0x58 (64-bit).
7423    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7424                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7425                                                             256)
7426                                        : Type::getInt32PtrTy(*DAG.getContext(),
7427                                                              257));
7428
7429    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7430                                        Subtarget->is64Bit()
7431                                        ? DAG.getIntPtrConstant(0x58)
7432                                        : DAG.getExternalSymbol("_tls_array",
7433                                                                getPointerTy()),
7434                                        MachinePointerInfo(Ptr),
7435                                        false, false, false, 0);
7436
7437    // Load the _tls_index variable
7438    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7439    if (Subtarget->is64Bit())
7440      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7441                           IDX, MachinePointerInfo(), MVT::i32,
7442                           false, false, 0);
7443    else
7444      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7445                        false, false, false, 0);
7446
7447    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7448                                    getPointerTy());
7449    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7450
7451    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7452    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7453                      false, false, false, 0);
7454
7455    // Get the offset of start of .tls section
7456    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7457                                             GA->getValueType(0),
7458                                             GA->getOffset(), X86II::MO_SECREL);
7459    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7460
7461    // The address of the thread local variable is the add of the thread
7462    // pointer with the offset of the variable.
7463    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7464  }
7465
7466  llvm_unreachable("TLS not implemented for this target.");
7467}
7468
7469
7470/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7471/// and take a 2 x i32 value to shift plus a shift amount.
7472SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7473  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7474  EVT VT = Op.getValueType();
7475  unsigned VTBits = VT.getSizeInBits();
7476  DebugLoc dl = Op.getDebugLoc();
7477  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7478  SDValue ShOpLo = Op.getOperand(0);
7479  SDValue ShOpHi = Op.getOperand(1);
7480  SDValue ShAmt  = Op.getOperand(2);
7481  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7482                                     DAG.getConstant(VTBits - 1, MVT::i8))
7483                       : DAG.getConstant(0, VT);
7484
7485  SDValue Tmp2, Tmp3;
7486  if (Op.getOpcode() == ISD::SHL_PARTS) {
7487    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7488    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7489  } else {
7490    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7491    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7492  }
7493
7494  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7495                                DAG.getConstant(VTBits, MVT::i8));
7496  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7497                             AndNode, DAG.getConstant(0, MVT::i8));
7498
7499  SDValue Hi, Lo;
7500  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7501  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7502  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7503
7504  if (Op.getOpcode() == ISD::SHL_PARTS) {
7505    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7506    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7507  } else {
7508    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7509    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7510  }
7511
7512  SDValue Ops[2] = { Lo, Hi };
7513  return DAG.getMergeValues(Ops, 2, dl);
7514}
7515
7516SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7517                                           SelectionDAG &DAG) const {
7518  EVT SrcVT = Op.getOperand(0).getValueType();
7519
7520  if (SrcVT.isVector())
7521    return SDValue();
7522
7523  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7524         "Unknown SINT_TO_FP to lower!");
7525
7526  // These are really Legal; return the operand so the caller accepts it as
7527  // Legal.
7528  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7529    return Op;
7530  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7531      Subtarget->is64Bit()) {
7532    return Op;
7533  }
7534
7535  DebugLoc dl = Op.getDebugLoc();
7536  unsigned Size = SrcVT.getSizeInBits()/8;
7537  MachineFunction &MF = DAG.getMachineFunction();
7538  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7539  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7540  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7541                               StackSlot,
7542                               MachinePointerInfo::getFixedStack(SSFI),
7543                               false, false, 0);
7544  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7545}
7546
7547SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7548                                     SDValue StackSlot,
7549                                     SelectionDAG &DAG) const {
7550  // Build the FILD
7551  DebugLoc DL = Op.getDebugLoc();
7552  SDVTList Tys;
7553  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7554  if (useSSE)
7555    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7556  else
7557    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7558
7559  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7560
7561  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7562  MachineMemOperand *MMO;
7563  if (FI) {
7564    int SSFI = FI->getIndex();
7565    MMO =
7566      DAG.getMachineFunction()
7567      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7568                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7569  } else {
7570    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7571    StackSlot = StackSlot.getOperand(1);
7572  }
7573  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7574  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7575                                           X86ISD::FILD, DL,
7576                                           Tys, Ops, array_lengthof(Ops),
7577                                           SrcVT, MMO);
7578
7579  if (useSSE) {
7580    Chain = Result.getValue(1);
7581    SDValue InFlag = Result.getValue(2);
7582
7583    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7584    // shouldn't be necessary except that RFP cannot be live across
7585    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7586    MachineFunction &MF = DAG.getMachineFunction();
7587    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7588    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7589    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7590    Tys = DAG.getVTList(MVT::Other);
7591    SDValue Ops[] = {
7592      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7593    };
7594    MachineMemOperand *MMO =
7595      DAG.getMachineFunction()
7596      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7597                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7598
7599    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7600                                    Ops, array_lengthof(Ops),
7601                                    Op.getValueType(), MMO);
7602    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7603                         MachinePointerInfo::getFixedStack(SSFI),
7604                         false, false, false, 0);
7605  }
7606
7607  return Result;
7608}
7609
7610// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7611SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7612                                               SelectionDAG &DAG) const {
7613  // This algorithm is not obvious. Here it is what we're trying to output:
7614  /*
7615     movq       %rax,  %xmm0
7616     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7617     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7618     #ifdef __SSE3__
7619       haddpd   %xmm0, %xmm0
7620     #else
7621       pshufd   $0x4e, %xmm0, %xmm1
7622       addpd    %xmm1, %xmm0
7623     #endif
7624  */
7625
7626  DebugLoc dl = Op.getDebugLoc();
7627  LLVMContext *Context = DAG.getContext();
7628
7629  // Build some magic constants.
7630  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7631  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7632  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7633
7634  SmallVector<Constant*,2> CV1;
7635  CV1.push_back(
7636        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7637  CV1.push_back(
7638        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7639  Constant *C1 = ConstantVector::get(CV1);
7640  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7641
7642  // Load the 64-bit value into an XMM register.
7643  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7644                            Op.getOperand(0));
7645  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7646                              MachinePointerInfo::getConstantPool(),
7647                              false, false, false, 16);
7648  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7649                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7650                              CLod0);
7651
7652  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7653                              MachinePointerInfo::getConstantPool(),
7654                              false, false, false, 16);
7655  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7656  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7657  SDValue Result;
7658
7659  if (Subtarget->hasSSE3()) {
7660    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7661    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7662  } else {
7663    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7664    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7665                                           S2F, 0x4E, DAG);
7666    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7667                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7668                         Sub);
7669  }
7670
7671  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7672                     DAG.getIntPtrConstant(0));
7673}
7674
7675// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7676SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7677                                               SelectionDAG &DAG) const {
7678  DebugLoc dl = Op.getDebugLoc();
7679  // FP constant to bias correct the final result.
7680  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7681                                   MVT::f64);
7682
7683  // Load the 32-bit value into an XMM register.
7684  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7685                             Op.getOperand(0));
7686
7687  // Zero out the upper parts of the register.
7688  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7689
7690  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7691                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7692                     DAG.getIntPtrConstant(0));
7693
7694  // Or the load with the bias.
7695  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7696                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7697                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7698                                                   MVT::v2f64, Load)),
7699                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7700                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7701                                                   MVT::v2f64, Bias)));
7702  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7703                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7704                   DAG.getIntPtrConstant(0));
7705
7706  // Subtract the bias.
7707  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7708
7709  // Handle final rounding.
7710  EVT DestVT = Op.getValueType();
7711
7712  if (DestVT.bitsLT(MVT::f64))
7713    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7714                       DAG.getIntPtrConstant(0));
7715  if (DestVT.bitsGT(MVT::f64))
7716    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7717
7718  // Handle final rounding.
7719  return Sub;
7720}
7721
7722SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7723                                           SelectionDAG &DAG) const {
7724  SDValue N0 = Op.getOperand(0);
7725  DebugLoc dl = Op.getDebugLoc();
7726
7727  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7728  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7729  // the optimization here.
7730  if (DAG.SignBitIsZero(N0))
7731    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7732
7733  EVT SrcVT = N0.getValueType();
7734  EVT DstVT = Op.getValueType();
7735  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7736    return LowerUINT_TO_FP_i64(Op, DAG);
7737  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7738    return LowerUINT_TO_FP_i32(Op, DAG);
7739  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
7740    return SDValue();
7741
7742  // Make a 64-bit buffer, and use it to build an FILD.
7743  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7744  if (SrcVT == MVT::i32) {
7745    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7746    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7747                                     getPointerTy(), StackSlot, WordOff);
7748    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7749                                  StackSlot, MachinePointerInfo(),
7750                                  false, false, 0);
7751    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7752                                  OffsetSlot, MachinePointerInfo(),
7753                                  false, false, 0);
7754    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7755    return Fild;
7756  }
7757
7758  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7759  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7760                               StackSlot, MachinePointerInfo(),
7761                               false, false, 0);
7762  // For i64 source, we need to add the appropriate power of 2 if the input
7763  // was negative.  This is the same as the optimization in
7764  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7765  // we must be careful to do the computation in x87 extended precision, not
7766  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7767  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7768  MachineMemOperand *MMO =
7769    DAG.getMachineFunction()
7770    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7771                          MachineMemOperand::MOLoad, 8, 8);
7772
7773  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7774  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7775  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7776                                         MVT::i64, MMO);
7777
7778  APInt FF(32, 0x5F800000ULL);
7779
7780  // Check whether the sign bit is set.
7781  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7782                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7783                                 ISD::SETLT);
7784
7785  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7786  SDValue FudgePtr = DAG.getConstantPool(
7787                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7788                                         getPointerTy());
7789
7790  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7791  SDValue Zero = DAG.getIntPtrConstant(0);
7792  SDValue Four = DAG.getIntPtrConstant(4);
7793  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7794                               Zero, Four);
7795  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7796
7797  // Load the value out, extending it from f32 to f80.
7798  // FIXME: Avoid the extend by constructing the right constant pool?
7799  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7800                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7801                                 MVT::f32, false, false, 4);
7802  // Extend everything to 80 bits to force it to be done on x87.
7803  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7804  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7805}
7806
7807std::pair<SDValue,SDValue> X86TargetLowering::
7808FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7809  DebugLoc DL = Op.getDebugLoc();
7810
7811  EVT DstTy = Op.getValueType();
7812
7813  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7814    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7815    DstTy = MVT::i64;
7816  }
7817
7818  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7819         DstTy.getSimpleVT() >= MVT::i16 &&
7820         "Unknown FP_TO_INT to lower!");
7821
7822  // These are really Legal.
7823  if (DstTy == MVT::i32 &&
7824      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7825    return std::make_pair(SDValue(), SDValue());
7826  if (Subtarget->is64Bit() &&
7827      DstTy == MVT::i64 &&
7828      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7829    return std::make_pair(SDValue(), SDValue());
7830
7831  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7832  // stack slot, or into the FTOL runtime function.
7833  MachineFunction &MF = DAG.getMachineFunction();
7834  unsigned MemSize = DstTy.getSizeInBits()/8;
7835  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7836  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7837
7838  unsigned Opc;
7839  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7840    Opc = X86ISD::WIN_FTOL;
7841  else
7842    switch (DstTy.getSimpleVT().SimpleTy) {
7843    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7844    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7845    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7846    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7847    }
7848
7849  SDValue Chain = DAG.getEntryNode();
7850  SDValue Value = Op.getOperand(0);
7851  EVT TheVT = Op.getOperand(0).getValueType();
7852  // FIXME This causes a redundant load/store if the SSE-class value is already
7853  // in memory, such as if it is on the callstack.
7854  if (isScalarFPTypeInSSEReg(TheVT)) {
7855    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7856    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7857                         MachinePointerInfo::getFixedStack(SSFI),
7858                         false, false, 0);
7859    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7860    SDValue Ops[] = {
7861      Chain, StackSlot, DAG.getValueType(TheVT)
7862    };
7863
7864    MachineMemOperand *MMO =
7865      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7866                              MachineMemOperand::MOLoad, MemSize, MemSize);
7867    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7868                                    DstTy, MMO);
7869    Chain = Value.getValue(1);
7870    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7871    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7872  }
7873
7874  MachineMemOperand *MMO =
7875    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7876                            MachineMemOperand::MOStore, MemSize, MemSize);
7877
7878  if (Opc != X86ISD::WIN_FTOL) {
7879    // Build the FP_TO_INT*_IN_MEM
7880    SDValue Ops[] = { Chain, Value, StackSlot };
7881    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7882                                           Ops, 3, DstTy, MMO);
7883    return std::make_pair(FIST, StackSlot);
7884  } else {
7885    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7886      DAG.getVTList(MVT::Other, MVT::Glue),
7887      Chain, Value);
7888    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7889      MVT::i32, ftol.getValue(1));
7890    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7891      MVT::i32, eax.getValue(2));
7892    SDValue Ops[] = { eax, edx };
7893    SDValue pair = IsReplace
7894      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7895      : DAG.getMergeValues(Ops, 2, DL);
7896    return std::make_pair(pair, SDValue());
7897  }
7898}
7899
7900SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7901                                           SelectionDAG &DAG) const {
7902  if (Op.getValueType().isVector())
7903    return SDValue();
7904
7905  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7906    /*IsSigned=*/ true, /*IsReplace=*/ false);
7907  SDValue FIST = Vals.first, StackSlot = Vals.second;
7908  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7909  if (FIST.getNode() == 0) return Op;
7910
7911  if (StackSlot.getNode())
7912    // Load the result.
7913    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7914                       FIST, StackSlot, MachinePointerInfo(),
7915                       false, false, false, 0);
7916
7917  // The node is the result.
7918  return FIST;
7919}
7920
7921SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7922                                           SelectionDAG &DAG) const {
7923  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7924    /*IsSigned=*/ false, /*IsReplace=*/ false);
7925  SDValue FIST = Vals.first, StackSlot = Vals.second;
7926  assert(FIST.getNode() && "Unexpected failure");
7927
7928  if (StackSlot.getNode())
7929    // Load the result.
7930    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7931                       FIST, StackSlot, MachinePointerInfo(),
7932                       false, false, false, 0);
7933
7934  // The node is the result.
7935  return FIST;
7936}
7937
7938SDValue X86TargetLowering::LowerFABS(SDValue Op,
7939                                     SelectionDAG &DAG) const {
7940  LLVMContext *Context = DAG.getContext();
7941  DebugLoc dl = Op.getDebugLoc();
7942  EVT VT = Op.getValueType();
7943  EVT EltVT = VT;
7944  if (VT.isVector())
7945    EltVT = VT.getVectorElementType();
7946  Constant *C;
7947  if (EltVT == MVT::f64) {
7948    C = ConstantVector::getSplat(2,
7949                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7950  } else {
7951    C = ConstantVector::getSplat(4,
7952               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7953  }
7954  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7955  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7956                             MachinePointerInfo::getConstantPool(),
7957                             false, false, false, 16);
7958  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7959}
7960
7961SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7962  LLVMContext *Context = DAG.getContext();
7963  DebugLoc dl = Op.getDebugLoc();
7964  EVT VT = Op.getValueType();
7965  EVT EltVT = VT;
7966  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7967  if (VT.isVector()) {
7968    EltVT = VT.getVectorElementType();
7969    NumElts = VT.getVectorNumElements();
7970  }
7971  Constant *C;
7972  if (EltVT == MVT::f64)
7973    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7974  else
7975    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7976  C = ConstantVector::getSplat(NumElts, C);
7977  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7978  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7979                             MachinePointerInfo::getConstantPool(),
7980                             false, false, false, 16);
7981  if (VT.isVector()) {
7982    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7983    return DAG.getNode(ISD::BITCAST, dl, VT,
7984                       DAG.getNode(ISD::XOR, dl, XORVT,
7985                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
7986                                               Op.getOperand(0)),
7987                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7988  }
7989
7990  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7991}
7992
7993SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7994  LLVMContext *Context = DAG.getContext();
7995  SDValue Op0 = Op.getOperand(0);
7996  SDValue Op1 = Op.getOperand(1);
7997  DebugLoc dl = Op.getDebugLoc();
7998  EVT VT = Op.getValueType();
7999  EVT SrcVT = Op1.getValueType();
8000
8001  // If second operand is smaller, extend it first.
8002  if (SrcVT.bitsLT(VT)) {
8003    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8004    SrcVT = VT;
8005  }
8006  // And if it is bigger, shrink it first.
8007  if (SrcVT.bitsGT(VT)) {
8008    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8009    SrcVT = VT;
8010  }
8011
8012  // At this point the operands and the result should have the same
8013  // type, and that won't be f80 since that is not custom lowered.
8014
8015  // First get the sign bit of second operand.
8016  SmallVector<Constant*,4> CV;
8017  if (SrcVT == MVT::f64) {
8018    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8019    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8020  } else {
8021    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8022    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8023    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8024    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8025  }
8026  Constant *C = ConstantVector::get(CV);
8027  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8028  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8029                              MachinePointerInfo::getConstantPool(),
8030                              false, false, false, 16);
8031  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8032
8033  // Shift sign bit right or left if the two operands have different types.
8034  if (SrcVT.bitsGT(VT)) {
8035    // Op0 is MVT::f32, Op1 is MVT::f64.
8036    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8037    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8038                          DAG.getConstant(32, MVT::i32));
8039    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8040    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8041                          DAG.getIntPtrConstant(0));
8042  }
8043
8044  // Clear first operand sign bit.
8045  CV.clear();
8046  if (VT == MVT::f64) {
8047    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8048    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8049  } else {
8050    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8051    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8052    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8053    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8054  }
8055  C = ConstantVector::get(CV);
8056  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8057  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8058                              MachinePointerInfo::getConstantPool(),
8059                              false, false, false, 16);
8060  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8061
8062  // Or the value with the sign bit.
8063  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8064}
8065
8066SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8067  SDValue N0 = Op.getOperand(0);
8068  DebugLoc dl = Op.getDebugLoc();
8069  EVT VT = Op.getValueType();
8070
8071  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8072  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8073                                  DAG.getConstant(1, VT));
8074  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8075}
8076
8077/// Emit nodes that will be selected as "test Op0,Op0", or something
8078/// equivalent.
8079SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8080                                    SelectionDAG &DAG) const {
8081  DebugLoc dl = Op.getDebugLoc();
8082
8083  // CF and OF aren't always set the way we want. Determine which
8084  // of these we need.
8085  bool NeedCF = false;
8086  bool NeedOF = false;
8087  switch (X86CC) {
8088  default: break;
8089  case X86::COND_A: case X86::COND_AE:
8090  case X86::COND_B: case X86::COND_BE:
8091    NeedCF = true;
8092    break;
8093  case X86::COND_G: case X86::COND_GE:
8094  case X86::COND_L: case X86::COND_LE:
8095  case X86::COND_O: case X86::COND_NO:
8096    NeedOF = true;
8097    break;
8098  }
8099
8100  // See if we can use the EFLAGS value from the operand instead of
8101  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8102  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8103  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8104    // Emit a CMP with 0, which is the TEST pattern.
8105    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8106                       DAG.getConstant(0, Op.getValueType()));
8107
8108  unsigned Opcode = 0;
8109  unsigned NumOperands = 0;
8110  switch (Op.getNode()->getOpcode()) {
8111  case ISD::ADD:
8112    // Due to an isel shortcoming, be conservative if this add is likely to be
8113    // selected as part of a load-modify-store instruction. When the root node
8114    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8115    // uses of other nodes in the match, such as the ADD in this case. This
8116    // leads to the ADD being left around and reselected, with the result being
8117    // two adds in the output.  Alas, even if none our users are stores, that
8118    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8119    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8120    // climbing the DAG back to the root, and it doesn't seem to be worth the
8121    // effort.
8122    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8123         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8124      if (UI->getOpcode() != ISD::CopyToReg &&
8125          UI->getOpcode() != ISD::SETCC &&
8126          UI->getOpcode() != ISD::STORE)
8127        goto default_case;
8128
8129    if (ConstantSDNode *C =
8130        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8131      // An add of one will be selected as an INC.
8132      if (C->getAPIntValue() == 1) {
8133        Opcode = X86ISD::INC;
8134        NumOperands = 1;
8135        break;
8136      }
8137
8138      // An add of negative one (subtract of one) will be selected as a DEC.
8139      if (C->getAPIntValue().isAllOnesValue()) {
8140        Opcode = X86ISD::DEC;
8141        NumOperands = 1;
8142        break;
8143      }
8144    }
8145
8146    // Otherwise use a regular EFLAGS-setting add.
8147    Opcode = X86ISD::ADD;
8148    NumOperands = 2;
8149    break;
8150  case ISD::AND: {
8151    // If the primary and result isn't used, don't bother using X86ISD::AND,
8152    // because a TEST instruction will be better.
8153    bool NonFlagUse = false;
8154    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8155           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8156      SDNode *User = *UI;
8157      unsigned UOpNo = UI.getOperandNo();
8158      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8159        // Look pass truncate.
8160        UOpNo = User->use_begin().getOperandNo();
8161        User = *User->use_begin();
8162      }
8163
8164      if (User->getOpcode() != ISD::BRCOND &&
8165          User->getOpcode() != ISD::SETCC &&
8166          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8167        NonFlagUse = true;
8168        break;
8169      }
8170    }
8171
8172    if (!NonFlagUse)
8173      break;
8174  }
8175    // FALL THROUGH
8176  case ISD::SUB:
8177  case ISD::OR:
8178  case ISD::XOR:
8179    // Due to the ISEL shortcoming noted above, be conservative if this op is
8180    // likely to be selected as part of a load-modify-store instruction.
8181    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8182           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8183      if (UI->getOpcode() == ISD::STORE)
8184        goto default_case;
8185
8186    // Otherwise use a regular EFLAGS-setting instruction.
8187    switch (Op.getNode()->getOpcode()) {
8188    default: llvm_unreachable("unexpected operator!");
8189    case ISD::SUB: Opcode = X86ISD::SUB; break;
8190    case ISD::OR:  Opcode = X86ISD::OR;  break;
8191    case ISD::XOR: Opcode = X86ISD::XOR; break;
8192    case ISD::AND: Opcode = X86ISD::AND; break;
8193    }
8194
8195    NumOperands = 2;
8196    break;
8197  case X86ISD::ADD:
8198  case X86ISD::SUB:
8199  case X86ISD::INC:
8200  case X86ISD::DEC:
8201  case X86ISD::OR:
8202  case X86ISD::XOR:
8203  case X86ISD::AND:
8204    return SDValue(Op.getNode(), 1);
8205  default:
8206  default_case:
8207    break;
8208  }
8209
8210  if (Opcode == 0)
8211    // Emit a CMP with 0, which is the TEST pattern.
8212    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8213                       DAG.getConstant(0, Op.getValueType()));
8214
8215  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8216  SmallVector<SDValue, 4> Ops;
8217  for (unsigned i = 0; i != NumOperands; ++i)
8218    Ops.push_back(Op.getOperand(i));
8219
8220  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8221  DAG.ReplaceAllUsesWith(Op, New);
8222  return SDValue(New.getNode(), 1);
8223}
8224
8225/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8226/// equivalent.
8227SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8228                                   SelectionDAG &DAG) const {
8229  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8230    if (C->getAPIntValue() == 0)
8231      return EmitTest(Op0, X86CC, DAG);
8232
8233  DebugLoc dl = Op0.getDebugLoc();
8234  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8235}
8236
8237/// Convert a comparison if required by the subtarget.
8238SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8239                                                 SelectionDAG &DAG) const {
8240  // If the subtarget does not support the FUCOMI instruction, floating-point
8241  // comparisons have to be converted.
8242  if (Subtarget->hasCMov() ||
8243      Cmp.getOpcode() != X86ISD::CMP ||
8244      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8245      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8246    return Cmp;
8247
8248  // The instruction selector will select an FUCOM instruction instead of
8249  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8250  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8251  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8252  DebugLoc dl = Cmp.getDebugLoc();
8253  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8254  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8255  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8256                            DAG.getConstant(8, MVT::i8));
8257  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8258  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8259}
8260
8261/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8262/// if it's possible.
8263SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8264                                     DebugLoc dl, SelectionDAG &DAG) const {
8265  SDValue Op0 = And.getOperand(0);
8266  SDValue Op1 = And.getOperand(1);
8267  if (Op0.getOpcode() == ISD::TRUNCATE)
8268    Op0 = Op0.getOperand(0);
8269  if (Op1.getOpcode() == ISD::TRUNCATE)
8270    Op1 = Op1.getOperand(0);
8271
8272  SDValue LHS, RHS;
8273  if (Op1.getOpcode() == ISD::SHL)
8274    std::swap(Op0, Op1);
8275  if (Op0.getOpcode() == ISD::SHL) {
8276    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8277      if (And00C->getZExtValue() == 1) {
8278        // If we looked past a truncate, check that it's only truncating away
8279        // known zeros.
8280        unsigned BitWidth = Op0.getValueSizeInBits();
8281        unsigned AndBitWidth = And.getValueSizeInBits();
8282        if (BitWidth > AndBitWidth) {
8283          APInt Zeros, Ones;
8284          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8285          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8286            return SDValue();
8287        }
8288        LHS = Op1;
8289        RHS = Op0.getOperand(1);
8290      }
8291  } else if (Op1.getOpcode() == ISD::Constant) {
8292    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8293    uint64_t AndRHSVal = AndRHS->getZExtValue();
8294    SDValue AndLHS = Op0;
8295
8296    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8297      LHS = AndLHS.getOperand(0);
8298      RHS = AndLHS.getOperand(1);
8299    }
8300
8301    // Use BT if the immediate can't be encoded in a TEST instruction.
8302    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8303      LHS = AndLHS;
8304      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8305    }
8306  }
8307
8308  if (LHS.getNode()) {
8309    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8310    // instruction.  Since the shift amount is in-range-or-undefined, we know
8311    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8312    // the encoding for the i16 version is larger than the i32 version.
8313    // Also promote i16 to i32 for performance / code size reason.
8314    if (LHS.getValueType() == MVT::i8 ||
8315        LHS.getValueType() == MVT::i16)
8316      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8317
8318    // If the operand types disagree, extend the shift amount to match.  Since
8319    // BT ignores high bits (like shifts) we can use anyextend.
8320    if (LHS.getValueType() != RHS.getValueType())
8321      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8322
8323    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8324    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8325    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8326                       DAG.getConstant(Cond, MVT::i8), BT);
8327  }
8328
8329  return SDValue();
8330}
8331
8332SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8333
8334  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8335
8336  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8337  SDValue Op0 = Op.getOperand(0);
8338  SDValue Op1 = Op.getOperand(1);
8339  DebugLoc dl = Op.getDebugLoc();
8340  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8341
8342  // Optimize to BT if possible.
8343  // Lower (X & (1 << N)) == 0 to BT(X, N).
8344  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8345  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8346  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8347      Op1.getOpcode() == ISD::Constant &&
8348      cast<ConstantSDNode>(Op1)->isNullValue() &&
8349      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8350    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8351    if (NewSetCC.getNode())
8352      return NewSetCC;
8353  }
8354
8355  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8356  // these.
8357  if (Op1.getOpcode() == ISD::Constant &&
8358      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8359       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8360      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8361
8362    // If the input is a setcc, then reuse the input setcc or use a new one with
8363    // the inverted condition.
8364    if (Op0.getOpcode() == X86ISD::SETCC) {
8365      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8366      bool Invert = (CC == ISD::SETNE) ^
8367        cast<ConstantSDNode>(Op1)->isNullValue();
8368      if (!Invert) return Op0;
8369
8370      CCode = X86::GetOppositeBranchCondition(CCode);
8371      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8372                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8373    }
8374  }
8375
8376  bool isFP = Op1.getValueType().isFloatingPoint();
8377  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8378  if (X86CC == X86::COND_INVALID)
8379    return SDValue();
8380
8381  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8382  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8383  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8384                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8385}
8386
8387// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8388// ones, and then concatenate the result back.
8389static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8390  EVT VT = Op.getValueType();
8391
8392  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8393         "Unsupported value type for operation");
8394
8395  unsigned NumElems = VT.getVectorNumElements();
8396  DebugLoc dl = Op.getDebugLoc();
8397  SDValue CC = Op.getOperand(2);
8398
8399  // Extract the LHS vectors
8400  SDValue LHS = Op.getOperand(0);
8401  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8402  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8403
8404  // Extract the RHS vectors
8405  SDValue RHS = Op.getOperand(1);
8406  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8407  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8408
8409  // Issue the operation on the smaller types and concatenate the result back
8410  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8411  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8412  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8413                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8414                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8415}
8416
8417
8418SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8419  SDValue Cond;
8420  SDValue Op0 = Op.getOperand(0);
8421  SDValue Op1 = Op.getOperand(1);
8422  SDValue CC = Op.getOperand(2);
8423  EVT VT = Op.getValueType();
8424  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8425  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8426  DebugLoc dl = Op.getDebugLoc();
8427
8428  if (isFP) {
8429    unsigned SSECC = 8;
8430    EVT EltVT = Op0.getValueType().getVectorElementType();
8431    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8432
8433    bool Swap = false;
8434
8435    // SSE Condition code mapping:
8436    //  0 - EQ
8437    //  1 - LT
8438    //  2 - LE
8439    //  3 - UNORD
8440    //  4 - NEQ
8441    //  5 - NLT
8442    //  6 - NLE
8443    //  7 - ORD
8444    switch (SetCCOpcode) {
8445    default: break;
8446    case ISD::SETOEQ:
8447    case ISD::SETEQ:  SSECC = 0; break;
8448    case ISD::SETOGT:
8449    case ISD::SETGT: Swap = true; // Fallthrough
8450    case ISD::SETLT:
8451    case ISD::SETOLT: SSECC = 1; break;
8452    case ISD::SETOGE:
8453    case ISD::SETGE: Swap = true; // Fallthrough
8454    case ISD::SETLE:
8455    case ISD::SETOLE: SSECC = 2; break;
8456    case ISD::SETUO:  SSECC = 3; break;
8457    case ISD::SETUNE:
8458    case ISD::SETNE:  SSECC = 4; break;
8459    case ISD::SETULE: Swap = true;
8460    case ISD::SETUGE: SSECC = 5; break;
8461    case ISD::SETULT: Swap = true;
8462    case ISD::SETUGT: SSECC = 6; break;
8463    case ISD::SETO:   SSECC = 7; break;
8464    }
8465    if (Swap)
8466      std::swap(Op0, Op1);
8467
8468    // In the two special cases we can't handle, emit two comparisons.
8469    if (SSECC == 8) {
8470      if (SetCCOpcode == ISD::SETUEQ) {
8471        SDValue UNORD, EQ;
8472        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8473                            DAG.getConstant(3, MVT::i8));
8474        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8475                         DAG.getConstant(0, MVT::i8));
8476        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8477      }
8478      if (SetCCOpcode == ISD::SETONE) {
8479        SDValue ORD, NEQ;
8480        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8481                          DAG.getConstant(7, MVT::i8));
8482        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8483                          DAG.getConstant(4, MVT::i8));
8484        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8485      }
8486      llvm_unreachable("Illegal FP comparison");
8487    }
8488    // Handle all other FP comparisons here.
8489    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8490                       DAG.getConstant(SSECC, MVT::i8));
8491  }
8492
8493  // Break 256-bit integer vector compare into smaller ones.
8494  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8495    return Lower256IntVSETCC(Op, DAG);
8496
8497  // We are handling one of the integer comparisons here.  Since SSE only has
8498  // GT and EQ comparisons for integer, swapping operands and multiple
8499  // operations may be required for some comparisons.
8500  unsigned Opc = 0;
8501  bool Swap = false, Invert = false, FlipSigns = false;
8502
8503  switch (SetCCOpcode) {
8504  default: break;
8505  case ISD::SETNE:  Invert = true;
8506  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8507  case ISD::SETLT:  Swap = true;
8508  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8509  case ISD::SETGE:  Swap = true;
8510  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8511  case ISD::SETULT: Swap = true;
8512  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8513  case ISD::SETUGE: Swap = true;
8514  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8515  }
8516  if (Swap)
8517    std::swap(Op0, Op1);
8518
8519  // Check that the operation in question is available (most are plain SSE2,
8520  // but PCMPGTQ and PCMPEQQ have different requirements).
8521  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8522    return SDValue();
8523  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8524    return SDValue();
8525
8526  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8527  // bits of the inputs before performing those operations.
8528  if (FlipSigns) {
8529    EVT EltVT = VT.getVectorElementType();
8530    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8531                                      EltVT);
8532    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8533    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8534                                    SignBits.size());
8535    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8536    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8537  }
8538
8539  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8540
8541  // If the logical-not of the result is required, perform that now.
8542  if (Invert)
8543    Result = DAG.getNOT(dl, Result, VT);
8544
8545  return Result;
8546}
8547
8548// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8549static bool isX86LogicalCmp(SDValue Op) {
8550  unsigned Opc = Op.getNode()->getOpcode();
8551  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8552      Opc == X86ISD::SAHF)
8553    return true;
8554  if (Op.getResNo() == 1 &&
8555      (Opc == X86ISD::ADD ||
8556       Opc == X86ISD::SUB ||
8557       Opc == X86ISD::ADC ||
8558       Opc == X86ISD::SBB ||
8559       Opc == X86ISD::SMUL ||
8560       Opc == X86ISD::UMUL ||
8561       Opc == X86ISD::INC ||
8562       Opc == X86ISD::DEC ||
8563       Opc == X86ISD::OR ||
8564       Opc == X86ISD::XOR ||
8565       Opc == X86ISD::AND))
8566    return true;
8567
8568  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8569    return true;
8570
8571  return false;
8572}
8573
8574static bool isZero(SDValue V) {
8575  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8576  return C && C->isNullValue();
8577}
8578
8579static bool isAllOnes(SDValue V) {
8580  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8581  return C && C->isAllOnesValue();
8582}
8583
8584SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8585  bool addTest = true;
8586  SDValue Cond  = Op.getOperand(0);
8587  SDValue Op1 = Op.getOperand(1);
8588  SDValue Op2 = Op.getOperand(2);
8589  DebugLoc DL = Op.getDebugLoc();
8590  SDValue CC;
8591
8592  if (Cond.getOpcode() == ISD::SETCC) {
8593    SDValue NewCond = LowerSETCC(Cond, DAG);
8594    if (NewCond.getNode())
8595      Cond = NewCond;
8596  }
8597
8598  // Handle the following cases related to max and min:
8599  // (a > b) ? (a-b) : 0
8600  // (a >= b) ? (a-b) : 0
8601  // (b < a) ? (a-b) : 0
8602  // (b <= a) ? (a-b) : 0
8603  // Comparison is removed to use EFLAGS from SUB.
8604  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2))
8605    if (Cond.getOpcode() == X86ISD::SETCC &&
8606        Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8607        (Op1.getOpcode() == ISD::SUB || Op1.getOpcode() == X86ISD::SUB) &&
8608        C->getAPIntValue() == 0) {
8609      SDValue Cmp = Cond.getOperand(1);
8610      unsigned CC = cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8611      if ((DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(0)) &&
8612           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(1)) &&
8613           (CC == X86::COND_G || CC == X86::COND_GE ||
8614            CC == X86::COND_A || CC == X86::COND_AE)) ||
8615          (DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(1)) &&
8616           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(0)) &&
8617           (CC == X86::COND_L || CC == X86::COND_LE ||
8618            CC == X86::COND_B || CC == X86::COND_BE))) {
8619
8620        if (Op1.getOpcode() == ISD::SUB) {
8621          SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i32);
8622          SDValue New = DAG.getNode(X86ISD::SUB, DL, VTs,
8623                                    Op1.getOperand(0), Op1.getOperand(1));
8624          DAG.ReplaceAllUsesWith(Op1, New);
8625          Op1 = New;
8626        }
8627
8628        SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8629        unsigned NewCC = (CC == X86::COND_G || CC == X86::COND_GE ||
8630                          CC == X86::COND_L ||
8631                          CC == X86::COND_LE) ? X86::COND_GE : X86::COND_AE;
8632        SDValue Ops[] = { Op2, Op1, DAG.getConstant(NewCC, MVT::i8),
8633                          SDValue(Op1.getNode(), 1) };
8634        return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8635      }
8636    }
8637
8638  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8639  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8640  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8641  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8642  if (Cond.getOpcode() == X86ISD::SETCC &&
8643      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8644      isZero(Cond.getOperand(1).getOperand(1))) {
8645    SDValue Cmp = Cond.getOperand(1);
8646
8647    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8648
8649    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8650        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8651      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8652
8653      SDValue CmpOp0 = Cmp.getOperand(0);
8654      // further optimization for special cases
8655      // (select (x != 0), -1, 0) -> neg & sbb
8656      // (select (x == 0), 0, -1) -> neg & sbb
8657      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
8658        if (YC->isNullValue() &&
8659            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
8660          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
8661          SDValue Neg = DAG.getNode(ISD::SUB, DL, VTs,
8662                                    DAG.getConstant(0, CmpOp0.getValueType()),
8663                                    CmpOp0);
8664          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8665                                    DAG.getConstant(X86::COND_B, MVT::i8),
8666                                    SDValue(Neg.getNode(), 1));
8667          return Res;
8668        }
8669
8670      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8671                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8672      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
8673
8674      SDValue Res =   // Res = 0 or -1.
8675        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8676                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8677
8678      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8679        Res = DAG.getNOT(DL, Res, Res.getValueType());
8680
8681      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8682      if (N2C == 0 || !N2C->isNullValue())
8683        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8684      return Res;
8685    }
8686  }
8687
8688  // Look past (and (setcc_carry (cmp ...)), 1).
8689  if (Cond.getOpcode() == ISD::AND &&
8690      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8691    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8692    if (C && C->getAPIntValue() == 1)
8693      Cond = Cond.getOperand(0);
8694  }
8695
8696  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8697  // setting operand in place of the X86ISD::SETCC.
8698  unsigned CondOpcode = Cond.getOpcode();
8699  if (CondOpcode == X86ISD::SETCC ||
8700      CondOpcode == X86ISD::SETCC_CARRY) {
8701    CC = Cond.getOperand(0);
8702
8703    SDValue Cmp = Cond.getOperand(1);
8704    unsigned Opc = Cmp.getOpcode();
8705    EVT VT = Op.getValueType();
8706
8707    bool IllegalFPCMov = false;
8708    if (VT.isFloatingPoint() && !VT.isVector() &&
8709        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8710      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8711
8712    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8713        Opc == X86ISD::BT) { // FIXME
8714      Cond = Cmp;
8715      addTest = false;
8716    }
8717  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8718             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8719             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8720              Cond.getOperand(0).getValueType() != MVT::i8)) {
8721    SDValue LHS = Cond.getOperand(0);
8722    SDValue RHS = Cond.getOperand(1);
8723    unsigned X86Opcode;
8724    unsigned X86Cond;
8725    SDVTList VTs;
8726    switch (CondOpcode) {
8727    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8728    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8729    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8730    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8731    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8732    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8733    default: llvm_unreachable("unexpected overflowing operator");
8734    }
8735    if (CondOpcode == ISD::UMULO)
8736      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8737                          MVT::i32);
8738    else
8739      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8740
8741    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8742
8743    if (CondOpcode == ISD::UMULO)
8744      Cond = X86Op.getValue(2);
8745    else
8746      Cond = X86Op.getValue(1);
8747
8748    CC = DAG.getConstant(X86Cond, MVT::i8);
8749    addTest = false;
8750  }
8751
8752  if (addTest) {
8753    // Look pass the truncate.
8754    if (Cond.getOpcode() == ISD::TRUNCATE)
8755      Cond = Cond.getOperand(0);
8756
8757    // We know the result of AND is compared against zero. Try to match
8758    // it to BT.
8759    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8760      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8761      if (NewSetCC.getNode()) {
8762        CC = NewSetCC.getOperand(0);
8763        Cond = NewSetCC.getOperand(1);
8764        addTest = false;
8765      }
8766    }
8767  }
8768
8769  if (addTest) {
8770    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8771    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8772  }
8773
8774  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8775  // a <  b ?  0 : -1 -> RES = setcc_carry
8776  // a >= b ? -1 :  0 -> RES = setcc_carry
8777  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8778  if (Cond.getOpcode() == X86ISD::CMP) {
8779    Cond = ConvertCmpIfNecessary(Cond, DAG);
8780    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8781
8782    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8783        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8784      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8785                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8786      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8787        return DAG.getNOT(DL, Res, Res.getValueType());
8788      return Res;
8789    }
8790  }
8791
8792  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8793  // condition is true.
8794  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8795  SDValue Ops[] = { Op2, Op1, CC, Cond };
8796  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8797}
8798
8799// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8800// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8801// from the AND / OR.
8802static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8803  Opc = Op.getOpcode();
8804  if (Opc != ISD::OR && Opc != ISD::AND)
8805    return false;
8806  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8807          Op.getOperand(0).hasOneUse() &&
8808          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8809          Op.getOperand(1).hasOneUse());
8810}
8811
8812// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8813// 1 and that the SETCC node has a single use.
8814static bool isXor1OfSetCC(SDValue Op) {
8815  if (Op.getOpcode() != ISD::XOR)
8816    return false;
8817  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8818  if (N1C && N1C->getAPIntValue() == 1) {
8819    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8820      Op.getOperand(0).hasOneUse();
8821  }
8822  return false;
8823}
8824
8825SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8826  bool addTest = true;
8827  SDValue Chain = Op.getOperand(0);
8828  SDValue Cond  = Op.getOperand(1);
8829  SDValue Dest  = Op.getOperand(2);
8830  DebugLoc dl = Op.getDebugLoc();
8831  SDValue CC;
8832  bool Inverted = false;
8833
8834  if (Cond.getOpcode() == ISD::SETCC) {
8835    // Check for setcc([su]{add,sub,mul}o == 0).
8836    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8837        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8838        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8839        Cond.getOperand(0).getResNo() == 1 &&
8840        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8841         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8842         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8843         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8844         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8845         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8846      Inverted = true;
8847      Cond = Cond.getOperand(0);
8848    } else {
8849      SDValue NewCond = LowerSETCC(Cond, DAG);
8850      if (NewCond.getNode())
8851        Cond = NewCond;
8852    }
8853  }
8854#if 0
8855  // FIXME: LowerXALUO doesn't handle these!!
8856  else if (Cond.getOpcode() == X86ISD::ADD  ||
8857           Cond.getOpcode() == X86ISD::SUB  ||
8858           Cond.getOpcode() == X86ISD::SMUL ||
8859           Cond.getOpcode() == X86ISD::UMUL)
8860    Cond = LowerXALUO(Cond, DAG);
8861#endif
8862
8863  // Look pass (and (setcc_carry (cmp ...)), 1).
8864  if (Cond.getOpcode() == ISD::AND &&
8865      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8866    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8867    if (C && C->getAPIntValue() == 1)
8868      Cond = Cond.getOperand(0);
8869  }
8870
8871  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8872  // setting operand in place of the X86ISD::SETCC.
8873  unsigned CondOpcode = Cond.getOpcode();
8874  if (CondOpcode == X86ISD::SETCC ||
8875      CondOpcode == X86ISD::SETCC_CARRY) {
8876    CC = Cond.getOperand(0);
8877
8878    SDValue Cmp = Cond.getOperand(1);
8879    unsigned Opc = Cmp.getOpcode();
8880    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8881    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8882      Cond = Cmp;
8883      addTest = false;
8884    } else {
8885      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8886      default: break;
8887      case X86::COND_O:
8888      case X86::COND_B:
8889        // These can only come from an arithmetic instruction with overflow,
8890        // e.g. SADDO, UADDO.
8891        Cond = Cond.getNode()->getOperand(1);
8892        addTest = false;
8893        break;
8894      }
8895    }
8896  }
8897  CondOpcode = Cond.getOpcode();
8898  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8899      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8900      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8901       Cond.getOperand(0).getValueType() != MVT::i8)) {
8902    SDValue LHS = Cond.getOperand(0);
8903    SDValue RHS = Cond.getOperand(1);
8904    unsigned X86Opcode;
8905    unsigned X86Cond;
8906    SDVTList VTs;
8907    switch (CondOpcode) {
8908    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8909    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8910    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8911    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8912    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8913    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8914    default: llvm_unreachable("unexpected overflowing operator");
8915    }
8916    if (Inverted)
8917      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8918    if (CondOpcode == ISD::UMULO)
8919      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8920                          MVT::i32);
8921    else
8922      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8923
8924    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8925
8926    if (CondOpcode == ISD::UMULO)
8927      Cond = X86Op.getValue(2);
8928    else
8929      Cond = X86Op.getValue(1);
8930
8931    CC = DAG.getConstant(X86Cond, MVT::i8);
8932    addTest = false;
8933  } else {
8934    unsigned CondOpc;
8935    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8936      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8937      if (CondOpc == ISD::OR) {
8938        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8939        // two branches instead of an explicit OR instruction with a
8940        // separate test.
8941        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8942            isX86LogicalCmp(Cmp)) {
8943          CC = Cond.getOperand(0).getOperand(0);
8944          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8945                              Chain, Dest, CC, Cmp);
8946          CC = Cond.getOperand(1).getOperand(0);
8947          Cond = Cmp;
8948          addTest = false;
8949        }
8950      } else { // ISD::AND
8951        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8952        // two branches instead of an explicit AND instruction with a
8953        // separate test. However, we only do this if this block doesn't
8954        // have a fall-through edge, because this requires an explicit
8955        // jmp when the condition is false.
8956        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8957            isX86LogicalCmp(Cmp) &&
8958            Op.getNode()->hasOneUse()) {
8959          X86::CondCode CCode =
8960            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8961          CCode = X86::GetOppositeBranchCondition(CCode);
8962          CC = DAG.getConstant(CCode, MVT::i8);
8963          SDNode *User = *Op.getNode()->use_begin();
8964          // Look for an unconditional branch following this conditional branch.
8965          // We need this because we need to reverse the successors in order
8966          // to implement FCMP_OEQ.
8967          if (User->getOpcode() == ISD::BR) {
8968            SDValue FalseBB = User->getOperand(1);
8969            SDNode *NewBR =
8970              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8971            assert(NewBR == User);
8972            (void)NewBR;
8973            Dest = FalseBB;
8974
8975            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8976                                Chain, Dest, CC, Cmp);
8977            X86::CondCode CCode =
8978              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8979            CCode = X86::GetOppositeBranchCondition(CCode);
8980            CC = DAG.getConstant(CCode, MVT::i8);
8981            Cond = Cmp;
8982            addTest = false;
8983          }
8984        }
8985      }
8986    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8987      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8988      // It should be transformed during dag combiner except when the condition
8989      // is set by a arithmetics with overflow node.
8990      X86::CondCode CCode =
8991        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8992      CCode = X86::GetOppositeBranchCondition(CCode);
8993      CC = DAG.getConstant(CCode, MVT::i8);
8994      Cond = Cond.getOperand(0).getOperand(1);
8995      addTest = false;
8996    } else if (Cond.getOpcode() == ISD::SETCC &&
8997               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8998      // For FCMP_OEQ, we can emit
8999      // two branches instead of an explicit AND instruction with a
9000      // separate test. However, we only do this if this block doesn't
9001      // have a fall-through edge, because this requires an explicit
9002      // jmp when the condition is false.
9003      if (Op.getNode()->hasOneUse()) {
9004        SDNode *User = *Op.getNode()->use_begin();
9005        // Look for an unconditional branch following this conditional branch.
9006        // We need this because we need to reverse the successors in order
9007        // to implement FCMP_OEQ.
9008        if (User->getOpcode() == ISD::BR) {
9009          SDValue FalseBB = User->getOperand(1);
9010          SDNode *NewBR =
9011            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9012          assert(NewBR == User);
9013          (void)NewBR;
9014          Dest = FalseBB;
9015
9016          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9017                                    Cond.getOperand(0), Cond.getOperand(1));
9018          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9019          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9020          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9021                              Chain, Dest, CC, Cmp);
9022          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9023          Cond = Cmp;
9024          addTest = false;
9025        }
9026      }
9027    } else if (Cond.getOpcode() == ISD::SETCC &&
9028               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9029      // For FCMP_UNE, we can emit
9030      // two branches instead of an explicit AND instruction with a
9031      // separate test. However, we only do this if this block doesn't
9032      // have a fall-through edge, because this requires an explicit
9033      // jmp when the condition is false.
9034      if (Op.getNode()->hasOneUse()) {
9035        SDNode *User = *Op.getNode()->use_begin();
9036        // Look for an unconditional branch following this conditional branch.
9037        // We need this because we need to reverse the successors in order
9038        // to implement FCMP_UNE.
9039        if (User->getOpcode() == ISD::BR) {
9040          SDValue FalseBB = User->getOperand(1);
9041          SDNode *NewBR =
9042            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9043          assert(NewBR == User);
9044          (void)NewBR;
9045
9046          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9047                                    Cond.getOperand(0), Cond.getOperand(1));
9048          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9049          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9050          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9051                              Chain, Dest, CC, Cmp);
9052          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9053          Cond = Cmp;
9054          addTest = false;
9055          Dest = FalseBB;
9056        }
9057      }
9058    }
9059  }
9060
9061  if (addTest) {
9062    // Look pass the truncate.
9063    if (Cond.getOpcode() == ISD::TRUNCATE)
9064      Cond = Cond.getOperand(0);
9065
9066    // We know the result of AND is compared against zero. Try to match
9067    // it to BT.
9068    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9069      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9070      if (NewSetCC.getNode()) {
9071        CC = NewSetCC.getOperand(0);
9072        Cond = NewSetCC.getOperand(1);
9073        addTest = false;
9074      }
9075    }
9076  }
9077
9078  if (addTest) {
9079    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9080    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9081  }
9082  Cond = ConvertCmpIfNecessary(Cond, DAG);
9083  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9084                     Chain, Dest, CC, Cond);
9085}
9086
9087
9088// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9089// Calls to _alloca is needed to probe the stack when allocating more than 4k
9090// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9091// that the guard pages used by the OS virtual memory manager are allocated in
9092// correct sequence.
9093SDValue
9094X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9095                                           SelectionDAG &DAG) const {
9096  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9097          getTargetMachine().Options.EnableSegmentedStacks) &&
9098         "This should be used only on Windows targets or when segmented stacks "
9099         "are being used");
9100  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9101  DebugLoc dl = Op.getDebugLoc();
9102
9103  // Get the inputs.
9104  SDValue Chain = Op.getOperand(0);
9105  SDValue Size  = Op.getOperand(1);
9106  // FIXME: Ensure alignment here
9107
9108  bool Is64Bit = Subtarget->is64Bit();
9109  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9110
9111  if (getTargetMachine().Options.EnableSegmentedStacks) {
9112    MachineFunction &MF = DAG.getMachineFunction();
9113    MachineRegisterInfo &MRI = MF.getRegInfo();
9114
9115    if (Is64Bit) {
9116      // The 64 bit implementation of segmented stacks needs to clobber both r10
9117      // r11. This makes it impossible to use it along with nested parameters.
9118      const Function *F = MF.getFunction();
9119
9120      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9121           I != E; I++)
9122        if (I->hasNestAttr())
9123          report_fatal_error("Cannot use segmented stacks with functions that "
9124                             "have nested arguments.");
9125    }
9126
9127    const TargetRegisterClass *AddrRegClass =
9128      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9129    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9130    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9131    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9132                                DAG.getRegister(Vreg, SPTy));
9133    SDValue Ops1[2] = { Value, Chain };
9134    return DAG.getMergeValues(Ops1, 2, dl);
9135  } else {
9136    SDValue Flag;
9137    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9138
9139    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9140    Flag = Chain.getValue(1);
9141    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9142
9143    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9144    Flag = Chain.getValue(1);
9145
9146    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9147
9148    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9149    return DAG.getMergeValues(Ops1, 2, dl);
9150  }
9151}
9152
9153SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9154  MachineFunction &MF = DAG.getMachineFunction();
9155  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9156
9157  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9158  DebugLoc DL = Op.getDebugLoc();
9159
9160  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9161    // vastart just stores the address of the VarArgsFrameIndex slot into the
9162    // memory location argument.
9163    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9164                                   getPointerTy());
9165    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9166                        MachinePointerInfo(SV), false, false, 0);
9167  }
9168
9169  // __va_list_tag:
9170  //   gp_offset         (0 - 6 * 8)
9171  //   fp_offset         (48 - 48 + 8 * 16)
9172  //   overflow_arg_area (point to parameters coming in memory).
9173  //   reg_save_area
9174  SmallVector<SDValue, 8> MemOps;
9175  SDValue FIN = Op.getOperand(1);
9176  // Store gp_offset
9177  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9178                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9179                                               MVT::i32),
9180                               FIN, MachinePointerInfo(SV), false, false, 0);
9181  MemOps.push_back(Store);
9182
9183  // Store fp_offset
9184  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9185                    FIN, DAG.getIntPtrConstant(4));
9186  Store = DAG.getStore(Op.getOperand(0), DL,
9187                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9188                                       MVT::i32),
9189                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9190  MemOps.push_back(Store);
9191
9192  // Store ptr to overflow_arg_area
9193  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9194                    FIN, DAG.getIntPtrConstant(4));
9195  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9196                                    getPointerTy());
9197  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9198                       MachinePointerInfo(SV, 8),
9199                       false, false, 0);
9200  MemOps.push_back(Store);
9201
9202  // Store ptr to reg_save_area.
9203  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9204                    FIN, DAG.getIntPtrConstant(8));
9205  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9206                                    getPointerTy());
9207  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9208                       MachinePointerInfo(SV, 16), false, false, 0);
9209  MemOps.push_back(Store);
9210  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9211                     &MemOps[0], MemOps.size());
9212}
9213
9214SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9215  assert(Subtarget->is64Bit() &&
9216         "LowerVAARG only handles 64-bit va_arg!");
9217  assert((Subtarget->isTargetLinux() ||
9218          Subtarget->isTargetDarwin()) &&
9219          "Unhandled target in LowerVAARG");
9220  assert(Op.getNode()->getNumOperands() == 4);
9221  SDValue Chain = Op.getOperand(0);
9222  SDValue SrcPtr = Op.getOperand(1);
9223  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9224  unsigned Align = Op.getConstantOperandVal(3);
9225  DebugLoc dl = Op.getDebugLoc();
9226
9227  EVT ArgVT = Op.getNode()->getValueType(0);
9228  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9229  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9230  uint8_t ArgMode;
9231
9232  // Decide which area this value should be read from.
9233  // TODO: Implement the AMD64 ABI in its entirety. This simple
9234  // selection mechanism works only for the basic types.
9235  if (ArgVT == MVT::f80) {
9236    llvm_unreachable("va_arg for f80 not yet implemented");
9237  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9238    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9239  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9240    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9241  } else {
9242    llvm_unreachable("Unhandled argument type in LowerVAARG");
9243  }
9244
9245  if (ArgMode == 2) {
9246    // Sanity Check: Make sure using fp_offset makes sense.
9247    assert(!getTargetMachine().Options.UseSoftFloat &&
9248           !(DAG.getMachineFunction()
9249                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9250           Subtarget->hasSSE1());
9251  }
9252
9253  // Insert VAARG_64 node into the DAG
9254  // VAARG_64 returns two values: Variable Argument Address, Chain
9255  SmallVector<SDValue, 11> InstOps;
9256  InstOps.push_back(Chain);
9257  InstOps.push_back(SrcPtr);
9258  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9259  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9260  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9261  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9262  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9263                                          VTs, &InstOps[0], InstOps.size(),
9264                                          MVT::i64,
9265                                          MachinePointerInfo(SV),
9266                                          /*Align=*/0,
9267                                          /*Volatile=*/false,
9268                                          /*ReadMem=*/true,
9269                                          /*WriteMem=*/true);
9270  Chain = VAARG.getValue(1);
9271
9272  // Load the next argument and return it
9273  return DAG.getLoad(ArgVT, dl,
9274                     Chain,
9275                     VAARG,
9276                     MachinePointerInfo(),
9277                     false, false, false, 0);
9278}
9279
9280SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9281  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9282  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9283  SDValue Chain = Op.getOperand(0);
9284  SDValue DstPtr = Op.getOperand(1);
9285  SDValue SrcPtr = Op.getOperand(2);
9286  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9287  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9288  DebugLoc DL = Op.getDebugLoc();
9289
9290  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9291                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9292                       false,
9293                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9294}
9295
9296// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9297// may or may not be a constant. Takes immediate version of shift as input.
9298static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9299                                   SDValue SrcOp, SDValue ShAmt,
9300                                   SelectionDAG &DAG) {
9301  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9302
9303  if (isa<ConstantSDNode>(ShAmt)) {
9304    switch (Opc) {
9305      default: llvm_unreachable("Unknown target vector shift node");
9306      case X86ISD::VSHLI:
9307      case X86ISD::VSRLI:
9308      case X86ISD::VSRAI:
9309        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9310    }
9311  }
9312
9313  // Change opcode to non-immediate version
9314  switch (Opc) {
9315    default: llvm_unreachable("Unknown target vector shift node");
9316    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9317    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9318    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9319  }
9320
9321  // Need to build a vector containing shift amount
9322  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9323  SDValue ShOps[4];
9324  ShOps[0] = ShAmt;
9325  ShOps[1] = DAG.getConstant(0, MVT::i32);
9326  ShOps[2] = DAG.getUNDEF(MVT::i32);
9327  ShOps[3] = DAG.getUNDEF(MVT::i32);
9328  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9329  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9330  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9331}
9332
9333SDValue
9334X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9335  DebugLoc dl = Op.getDebugLoc();
9336  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9337  switch (IntNo) {
9338  default: return SDValue();    // Don't custom lower most intrinsics.
9339  // Comparison intrinsics.
9340  case Intrinsic::x86_sse_comieq_ss:
9341  case Intrinsic::x86_sse_comilt_ss:
9342  case Intrinsic::x86_sse_comile_ss:
9343  case Intrinsic::x86_sse_comigt_ss:
9344  case Intrinsic::x86_sse_comige_ss:
9345  case Intrinsic::x86_sse_comineq_ss:
9346  case Intrinsic::x86_sse_ucomieq_ss:
9347  case Intrinsic::x86_sse_ucomilt_ss:
9348  case Intrinsic::x86_sse_ucomile_ss:
9349  case Intrinsic::x86_sse_ucomigt_ss:
9350  case Intrinsic::x86_sse_ucomige_ss:
9351  case Intrinsic::x86_sse_ucomineq_ss:
9352  case Intrinsic::x86_sse2_comieq_sd:
9353  case Intrinsic::x86_sse2_comilt_sd:
9354  case Intrinsic::x86_sse2_comile_sd:
9355  case Intrinsic::x86_sse2_comigt_sd:
9356  case Intrinsic::x86_sse2_comige_sd:
9357  case Intrinsic::x86_sse2_comineq_sd:
9358  case Intrinsic::x86_sse2_ucomieq_sd:
9359  case Intrinsic::x86_sse2_ucomilt_sd:
9360  case Intrinsic::x86_sse2_ucomile_sd:
9361  case Intrinsic::x86_sse2_ucomigt_sd:
9362  case Intrinsic::x86_sse2_ucomige_sd:
9363  case Intrinsic::x86_sse2_ucomineq_sd: {
9364    unsigned Opc = 0;
9365    ISD::CondCode CC = ISD::SETCC_INVALID;
9366    switch (IntNo) {
9367    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9368    case Intrinsic::x86_sse_comieq_ss:
9369    case Intrinsic::x86_sse2_comieq_sd:
9370      Opc = X86ISD::COMI;
9371      CC = ISD::SETEQ;
9372      break;
9373    case Intrinsic::x86_sse_comilt_ss:
9374    case Intrinsic::x86_sse2_comilt_sd:
9375      Opc = X86ISD::COMI;
9376      CC = ISD::SETLT;
9377      break;
9378    case Intrinsic::x86_sse_comile_ss:
9379    case Intrinsic::x86_sse2_comile_sd:
9380      Opc = X86ISD::COMI;
9381      CC = ISD::SETLE;
9382      break;
9383    case Intrinsic::x86_sse_comigt_ss:
9384    case Intrinsic::x86_sse2_comigt_sd:
9385      Opc = X86ISD::COMI;
9386      CC = ISD::SETGT;
9387      break;
9388    case Intrinsic::x86_sse_comige_ss:
9389    case Intrinsic::x86_sse2_comige_sd:
9390      Opc = X86ISD::COMI;
9391      CC = ISD::SETGE;
9392      break;
9393    case Intrinsic::x86_sse_comineq_ss:
9394    case Intrinsic::x86_sse2_comineq_sd:
9395      Opc = X86ISD::COMI;
9396      CC = ISD::SETNE;
9397      break;
9398    case Intrinsic::x86_sse_ucomieq_ss:
9399    case Intrinsic::x86_sse2_ucomieq_sd:
9400      Opc = X86ISD::UCOMI;
9401      CC = ISD::SETEQ;
9402      break;
9403    case Intrinsic::x86_sse_ucomilt_ss:
9404    case Intrinsic::x86_sse2_ucomilt_sd:
9405      Opc = X86ISD::UCOMI;
9406      CC = ISD::SETLT;
9407      break;
9408    case Intrinsic::x86_sse_ucomile_ss:
9409    case Intrinsic::x86_sse2_ucomile_sd:
9410      Opc = X86ISD::UCOMI;
9411      CC = ISD::SETLE;
9412      break;
9413    case Intrinsic::x86_sse_ucomigt_ss:
9414    case Intrinsic::x86_sse2_ucomigt_sd:
9415      Opc = X86ISD::UCOMI;
9416      CC = ISD::SETGT;
9417      break;
9418    case Intrinsic::x86_sse_ucomige_ss:
9419    case Intrinsic::x86_sse2_ucomige_sd:
9420      Opc = X86ISD::UCOMI;
9421      CC = ISD::SETGE;
9422      break;
9423    case Intrinsic::x86_sse_ucomineq_ss:
9424    case Intrinsic::x86_sse2_ucomineq_sd:
9425      Opc = X86ISD::UCOMI;
9426      CC = ISD::SETNE;
9427      break;
9428    }
9429
9430    SDValue LHS = Op.getOperand(1);
9431    SDValue RHS = Op.getOperand(2);
9432    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9433    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9434    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9435    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9436                                DAG.getConstant(X86CC, MVT::i8), Cond);
9437    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9438  }
9439  // XOP comparison intrinsics
9440  case Intrinsic::x86_xop_vpcomltb:
9441  case Intrinsic::x86_xop_vpcomltw:
9442  case Intrinsic::x86_xop_vpcomltd:
9443  case Intrinsic::x86_xop_vpcomltq:
9444  case Intrinsic::x86_xop_vpcomltub:
9445  case Intrinsic::x86_xop_vpcomltuw:
9446  case Intrinsic::x86_xop_vpcomltud:
9447  case Intrinsic::x86_xop_vpcomltuq:
9448  case Intrinsic::x86_xop_vpcomleb:
9449  case Intrinsic::x86_xop_vpcomlew:
9450  case Intrinsic::x86_xop_vpcomled:
9451  case Intrinsic::x86_xop_vpcomleq:
9452  case Intrinsic::x86_xop_vpcomleub:
9453  case Intrinsic::x86_xop_vpcomleuw:
9454  case Intrinsic::x86_xop_vpcomleud:
9455  case Intrinsic::x86_xop_vpcomleuq:
9456  case Intrinsic::x86_xop_vpcomgtb:
9457  case Intrinsic::x86_xop_vpcomgtw:
9458  case Intrinsic::x86_xop_vpcomgtd:
9459  case Intrinsic::x86_xop_vpcomgtq:
9460  case Intrinsic::x86_xop_vpcomgtub:
9461  case Intrinsic::x86_xop_vpcomgtuw:
9462  case Intrinsic::x86_xop_vpcomgtud:
9463  case Intrinsic::x86_xop_vpcomgtuq:
9464  case Intrinsic::x86_xop_vpcomgeb:
9465  case Intrinsic::x86_xop_vpcomgew:
9466  case Intrinsic::x86_xop_vpcomged:
9467  case Intrinsic::x86_xop_vpcomgeq:
9468  case Intrinsic::x86_xop_vpcomgeub:
9469  case Intrinsic::x86_xop_vpcomgeuw:
9470  case Intrinsic::x86_xop_vpcomgeud:
9471  case Intrinsic::x86_xop_vpcomgeuq:
9472  case Intrinsic::x86_xop_vpcomeqb:
9473  case Intrinsic::x86_xop_vpcomeqw:
9474  case Intrinsic::x86_xop_vpcomeqd:
9475  case Intrinsic::x86_xop_vpcomeqq:
9476  case Intrinsic::x86_xop_vpcomequb:
9477  case Intrinsic::x86_xop_vpcomequw:
9478  case Intrinsic::x86_xop_vpcomequd:
9479  case Intrinsic::x86_xop_vpcomequq:
9480  case Intrinsic::x86_xop_vpcomneb:
9481  case Intrinsic::x86_xop_vpcomnew:
9482  case Intrinsic::x86_xop_vpcomned:
9483  case Intrinsic::x86_xop_vpcomneq:
9484  case Intrinsic::x86_xop_vpcomneub:
9485  case Intrinsic::x86_xop_vpcomneuw:
9486  case Intrinsic::x86_xop_vpcomneud:
9487  case Intrinsic::x86_xop_vpcomneuq:
9488  case Intrinsic::x86_xop_vpcomfalseb:
9489  case Intrinsic::x86_xop_vpcomfalsew:
9490  case Intrinsic::x86_xop_vpcomfalsed:
9491  case Intrinsic::x86_xop_vpcomfalseq:
9492  case Intrinsic::x86_xop_vpcomfalseub:
9493  case Intrinsic::x86_xop_vpcomfalseuw:
9494  case Intrinsic::x86_xop_vpcomfalseud:
9495  case Intrinsic::x86_xop_vpcomfalseuq:
9496  case Intrinsic::x86_xop_vpcomtrueb:
9497  case Intrinsic::x86_xop_vpcomtruew:
9498  case Intrinsic::x86_xop_vpcomtrued:
9499  case Intrinsic::x86_xop_vpcomtrueq:
9500  case Intrinsic::x86_xop_vpcomtrueub:
9501  case Intrinsic::x86_xop_vpcomtrueuw:
9502  case Intrinsic::x86_xop_vpcomtrueud:
9503  case Intrinsic::x86_xop_vpcomtrueuq: {
9504    unsigned CC = 0;
9505    unsigned Opc = 0;
9506
9507    switch (IntNo) {
9508    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9509    case Intrinsic::x86_xop_vpcomltb:
9510    case Intrinsic::x86_xop_vpcomltw:
9511    case Intrinsic::x86_xop_vpcomltd:
9512    case Intrinsic::x86_xop_vpcomltq:
9513      CC = 0;
9514      Opc = X86ISD::VPCOM;
9515      break;
9516    case Intrinsic::x86_xop_vpcomltub:
9517    case Intrinsic::x86_xop_vpcomltuw:
9518    case Intrinsic::x86_xop_vpcomltud:
9519    case Intrinsic::x86_xop_vpcomltuq:
9520      CC = 0;
9521      Opc = X86ISD::VPCOMU;
9522      break;
9523    case Intrinsic::x86_xop_vpcomleb:
9524    case Intrinsic::x86_xop_vpcomlew:
9525    case Intrinsic::x86_xop_vpcomled:
9526    case Intrinsic::x86_xop_vpcomleq:
9527      CC = 1;
9528      Opc = X86ISD::VPCOM;
9529      break;
9530    case Intrinsic::x86_xop_vpcomleub:
9531    case Intrinsic::x86_xop_vpcomleuw:
9532    case Intrinsic::x86_xop_vpcomleud:
9533    case Intrinsic::x86_xop_vpcomleuq:
9534      CC = 1;
9535      Opc = X86ISD::VPCOMU;
9536      break;
9537    case Intrinsic::x86_xop_vpcomgtb:
9538    case Intrinsic::x86_xop_vpcomgtw:
9539    case Intrinsic::x86_xop_vpcomgtd:
9540    case Intrinsic::x86_xop_vpcomgtq:
9541      CC = 2;
9542      Opc = X86ISD::VPCOM;
9543      break;
9544    case Intrinsic::x86_xop_vpcomgtub:
9545    case Intrinsic::x86_xop_vpcomgtuw:
9546    case Intrinsic::x86_xop_vpcomgtud:
9547    case Intrinsic::x86_xop_vpcomgtuq:
9548      CC = 2;
9549      Opc = X86ISD::VPCOMU;
9550      break;
9551    case Intrinsic::x86_xop_vpcomgeb:
9552    case Intrinsic::x86_xop_vpcomgew:
9553    case Intrinsic::x86_xop_vpcomged:
9554    case Intrinsic::x86_xop_vpcomgeq:
9555      CC = 3;
9556      Opc = X86ISD::VPCOM;
9557      break;
9558    case Intrinsic::x86_xop_vpcomgeub:
9559    case Intrinsic::x86_xop_vpcomgeuw:
9560    case Intrinsic::x86_xop_vpcomgeud:
9561    case Intrinsic::x86_xop_vpcomgeuq:
9562      CC = 3;
9563      Opc = X86ISD::VPCOMU;
9564      break;
9565    case Intrinsic::x86_xop_vpcomeqb:
9566    case Intrinsic::x86_xop_vpcomeqw:
9567    case Intrinsic::x86_xop_vpcomeqd:
9568    case Intrinsic::x86_xop_vpcomeqq:
9569      CC = 4;
9570      Opc = X86ISD::VPCOM;
9571      break;
9572    case Intrinsic::x86_xop_vpcomequb:
9573    case Intrinsic::x86_xop_vpcomequw:
9574    case Intrinsic::x86_xop_vpcomequd:
9575    case Intrinsic::x86_xop_vpcomequq:
9576      CC = 4;
9577      Opc = X86ISD::VPCOMU;
9578      break;
9579    case Intrinsic::x86_xop_vpcomneb:
9580    case Intrinsic::x86_xop_vpcomnew:
9581    case Intrinsic::x86_xop_vpcomned:
9582    case Intrinsic::x86_xop_vpcomneq:
9583      CC = 5;
9584      Opc = X86ISD::VPCOM;
9585      break;
9586    case Intrinsic::x86_xop_vpcomneub:
9587    case Intrinsic::x86_xop_vpcomneuw:
9588    case Intrinsic::x86_xop_vpcomneud:
9589    case Intrinsic::x86_xop_vpcomneuq:
9590      CC = 5;
9591      Opc = X86ISD::VPCOMU;
9592      break;
9593    case Intrinsic::x86_xop_vpcomfalseb:
9594    case Intrinsic::x86_xop_vpcomfalsew:
9595    case Intrinsic::x86_xop_vpcomfalsed:
9596    case Intrinsic::x86_xop_vpcomfalseq:
9597      CC = 6;
9598      Opc = X86ISD::VPCOM;
9599      break;
9600    case Intrinsic::x86_xop_vpcomfalseub:
9601    case Intrinsic::x86_xop_vpcomfalseuw:
9602    case Intrinsic::x86_xop_vpcomfalseud:
9603    case Intrinsic::x86_xop_vpcomfalseuq:
9604      CC = 6;
9605      Opc = X86ISD::VPCOMU;
9606      break;
9607    case Intrinsic::x86_xop_vpcomtrueb:
9608    case Intrinsic::x86_xop_vpcomtruew:
9609    case Intrinsic::x86_xop_vpcomtrued:
9610    case Intrinsic::x86_xop_vpcomtrueq:
9611      CC = 7;
9612      Opc = X86ISD::VPCOM;
9613      break;
9614    case Intrinsic::x86_xop_vpcomtrueub:
9615    case Intrinsic::x86_xop_vpcomtrueuw:
9616    case Intrinsic::x86_xop_vpcomtrueud:
9617    case Intrinsic::x86_xop_vpcomtrueuq:
9618      CC = 7;
9619      Opc = X86ISD::VPCOMU;
9620      break;
9621    }
9622
9623    SDValue LHS = Op.getOperand(1);
9624    SDValue RHS = Op.getOperand(2);
9625    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9626                       DAG.getConstant(CC, MVT::i8));
9627  }
9628
9629  // Arithmetic intrinsics.
9630  case Intrinsic::x86_sse2_pmulu_dq:
9631  case Intrinsic::x86_avx2_pmulu_dq:
9632    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9633                       Op.getOperand(1), Op.getOperand(2));
9634  case Intrinsic::x86_sse3_hadd_ps:
9635  case Intrinsic::x86_sse3_hadd_pd:
9636  case Intrinsic::x86_avx_hadd_ps_256:
9637  case Intrinsic::x86_avx_hadd_pd_256:
9638    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9639                       Op.getOperand(1), Op.getOperand(2));
9640  case Intrinsic::x86_sse3_hsub_ps:
9641  case Intrinsic::x86_sse3_hsub_pd:
9642  case Intrinsic::x86_avx_hsub_ps_256:
9643  case Intrinsic::x86_avx_hsub_pd_256:
9644    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9645                       Op.getOperand(1), Op.getOperand(2));
9646  case Intrinsic::x86_ssse3_phadd_w_128:
9647  case Intrinsic::x86_ssse3_phadd_d_128:
9648  case Intrinsic::x86_avx2_phadd_w:
9649  case Intrinsic::x86_avx2_phadd_d:
9650    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9651                       Op.getOperand(1), Op.getOperand(2));
9652  case Intrinsic::x86_ssse3_phsub_w_128:
9653  case Intrinsic::x86_ssse3_phsub_d_128:
9654  case Intrinsic::x86_avx2_phsub_w:
9655  case Intrinsic::x86_avx2_phsub_d:
9656    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9657                       Op.getOperand(1), Op.getOperand(2));
9658  case Intrinsic::x86_avx2_psllv_d:
9659  case Intrinsic::x86_avx2_psllv_q:
9660  case Intrinsic::x86_avx2_psllv_d_256:
9661  case Intrinsic::x86_avx2_psllv_q_256:
9662    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9663                      Op.getOperand(1), Op.getOperand(2));
9664  case Intrinsic::x86_avx2_psrlv_d:
9665  case Intrinsic::x86_avx2_psrlv_q:
9666  case Intrinsic::x86_avx2_psrlv_d_256:
9667  case Intrinsic::x86_avx2_psrlv_q_256:
9668    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9669                      Op.getOperand(1), Op.getOperand(2));
9670  case Intrinsic::x86_avx2_psrav_d:
9671  case Intrinsic::x86_avx2_psrav_d_256:
9672    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9673                      Op.getOperand(1), Op.getOperand(2));
9674  case Intrinsic::x86_ssse3_pshuf_b_128:
9675  case Intrinsic::x86_avx2_pshuf_b:
9676    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9677                       Op.getOperand(1), Op.getOperand(2));
9678  case Intrinsic::x86_ssse3_psign_b_128:
9679  case Intrinsic::x86_ssse3_psign_w_128:
9680  case Intrinsic::x86_ssse3_psign_d_128:
9681  case Intrinsic::x86_avx2_psign_b:
9682  case Intrinsic::x86_avx2_psign_w:
9683  case Intrinsic::x86_avx2_psign_d:
9684    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9685                       Op.getOperand(1), Op.getOperand(2));
9686  case Intrinsic::x86_sse41_insertps:
9687    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9688                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9689  case Intrinsic::x86_avx_vperm2f128_ps_256:
9690  case Intrinsic::x86_avx_vperm2f128_pd_256:
9691  case Intrinsic::x86_avx_vperm2f128_si_256:
9692  case Intrinsic::x86_avx2_vperm2i128:
9693    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9694                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9695  case Intrinsic::x86_avx2_permd:
9696  case Intrinsic::x86_avx2_permps:
9697    // Operands intentionally swapped. Mask is last operand to intrinsic,
9698    // but second operand for node/intruction.
9699    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9700                       Op.getOperand(2), Op.getOperand(1));
9701
9702  // ptest and testp intrinsics. The intrinsic these come from are designed to
9703  // return an integer value, not just an instruction so lower it to the ptest
9704  // or testp pattern and a setcc for the result.
9705  case Intrinsic::x86_sse41_ptestz:
9706  case Intrinsic::x86_sse41_ptestc:
9707  case Intrinsic::x86_sse41_ptestnzc:
9708  case Intrinsic::x86_avx_ptestz_256:
9709  case Intrinsic::x86_avx_ptestc_256:
9710  case Intrinsic::x86_avx_ptestnzc_256:
9711  case Intrinsic::x86_avx_vtestz_ps:
9712  case Intrinsic::x86_avx_vtestc_ps:
9713  case Intrinsic::x86_avx_vtestnzc_ps:
9714  case Intrinsic::x86_avx_vtestz_pd:
9715  case Intrinsic::x86_avx_vtestc_pd:
9716  case Intrinsic::x86_avx_vtestnzc_pd:
9717  case Intrinsic::x86_avx_vtestz_ps_256:
9718  case Intrinsic::x86_avx_vtestc_ps_256:
9719  case Intrinsic::x86_avx_vtestnzc_ps_256:
9720  case Intrinsic::x86_avx_vtestz_pd_256:
9721  case Intrinsic::x86_avx_vtestc_pd_256:
9722  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9723    bool IsTestPacked = false;
9724    unsigned X86CC = 0;
9725    switch (IntNo) {
9726    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9727    case Intrinsic::x86_avx_vtestz_ps:
9728    case Intrinsic::x86_avx_vtestz_pd:
9729    case Intrinsic::x86_avx_vtestz_ps_256:
9730    case Intrinsic::x86_avx_vtestz_pd_256:
9731      IsTestPacked = true; // Fallthrough
9732    case Intrinsic::x86_sse41_ptestz:
9733    case Intrinsic::x86_avx_ptestz_256:
9734      // ZF = 1
9735      X86CC = X86::COND_E;
9736      break;
9737    case Intrinsic::x86_avx_vtestc_ps:
9738    case Intrinsic::x86_avx_vtestc_pd:
9739    case Intrinsic::x86_avx_vtestc_ps_256:
9740    case Intrinsic::x86_avx_vtestc_pd_256:
9741      IsTestPacked = true; // Fallthrough
9742    case Intrinsic::x86_sse41_ptestc:
9743    case Intrinsic::x86_avx_ptestc_256:
9744      // CF = 1
9745      X86CC = X86::COND_B;
9746      break;
9747    case Intrinsic::x86_avx_vtestnzc_ps:
9748    case Intrinsic::x86_avx_vtestnzc_pd:
9749    case Intrinsic::x86_avx_vtestnzc_ps_256:
9750    case Intrinsic::x86_avx_vtestnzc_pd_256:
9751      IsTestPacked = true; // Fallthrough
9752    case Intrinsic::x86_sse41_ptestnzc:
9753    case Intrinsic::x86_avx_ptestnzc_256:
9754      // ZF and CF = 0
9755      X86CC = X86::COND_A;
9756      break;
9757    }
9758
9759    SDValue LHS = Op.getOperand(1);
9760    SDValue RHS = Op.getOperand(2);
9761    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9762    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9763    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9764    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9765    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9766  }
9767
9768  // SSE/AVX shift intrinsics
9769  case Intrinsic::x86_sse2_psll_w:
9770  case Intrinsic::x86_sse2_psll_d:
9771  case Intrinsic::x86_sse2_psll_q:
9772  case Intrinsic::x86_avx2_psll_w:
9773  case Intrinsic::x86_avx2_psll_d:
9774  case Intrinsic::x86_avx2_psll_q:
9775    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9776                       Op.getOperand(1), Op.getOperand(2));
9777  case Intrinsic::x86_sse2_psrl_w:
9778  case Intrinsic::x86_sse2_psrl_d:
9779  case Intrinsic::x86_sse2_psrl_q:
9780  case Intrinsic::x86_avx2_psrl_w:
9781  case Intrinsic::x86_avx2_psrl_d:
9782  case Intrinsic::x86_avx2_psrl_q:
9783    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9784                       Op.getOperand(1), Op.getOperand(2));
9785  case Intrinsic::x86_sse2_psra_w:
9786  case Intrinsic::x86_sse2_psra_d:
9787  case Intrinsic::x86_avx2_psra_w:
9788  case Intrinsic::x86_avx2_psra_d:
9789    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9790                       Op.getOperand(1), Op.getOperand(2));
9791  case Intrinsic::x86_sse2_pslli_w:
9792  case Intrinsic::x86_sse2_pslli_d:
9793  case Intrinsic::x86_sse2_pslli_q:
9794  case Intrinsic::x86_avx2_pslli_w:
9795  case Intrinsic::x86_avx2_pslli_d:
9796  case Intrinsic::x86_avx2_pslli_q:
9797    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9798                               Op.getOperand(1), Op.getOperand(2), DAG);
9799  case Intrinsic::x86_sse2_psrli_w:
9800  case Intrinsic::x86_sse2_psrli_d:
9801  case Intrinsic::x86_sse2_psrli_q:
9802  case Intrinsic::x86_avx2_psrli_w:
9803  case Intrinsic::x86_avx2_psrli_d:
9804  case Intrinsic::x86_avx2_psrli_q:
9805    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9806                               Op.getOperand(1), Op.getOperand(2), DAG);
9807  case Intrinsic::x86_sse2_psrai_w:
9808  case Intrinsic::x86_sse2_psrai_d:
9809  case Intrinsic::x86_avx2_psrai_w:
9810  case Intrinsic::x86_avx2_psrai_d:
9811    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9812                               Op.getOperand(1), Op.getOperand(2), DAG);
9813  // Fix vector shift instructions where the last operand is a non-immediate
9814  // i32 value.
9815  case Intrinsic::x86_mmx_pslli_w:
9816  case Intrinsic::x86_mmx_pslli_d:
9817  case Intrinsic::x86_mmx_pslli_q:
9818  case Intrinsic::x86_mmx_psrli_w:
9819  case Intrinsic::x86_mmx_psrli_d:
9820  case Intrinsic::x86_mmx_psrli_q:
9821  case Intrinsic::x86_mmx_psrai_w:
9822  case Intrinsic::x86_mmx_psrai_d: {
9823    SDValue ShAmt = Op.getOperand(2);
9824    if (isa<ConstantSDNode>(ShAmt))
9825      return SDValue();
9826
9827    unsigned NewIntNo = 0;
9828    switch (IntNo) {
9829    case Intrinsic::x86_mmx_pslli_w:
9830      NewIntNo = Intrinsic::x86_mmx_psll_w;
9831      break;
9832    case Intrinsic::x86_mmx_pslli_d:
9833      NewIntNo = Intrinsic::x86_mmx_psll_d;
9834      break;
9835    case Intrinsic::x86_mmx_pslli_q:
9836      NewIntNo = Intrinsic::x86_mmx_psll_q;
9837      break;
9838    case Intrinsic::x86_mmx_psrli_w:
9839      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9840      break;
9841    case Intrinsic::x86_mmx_psrli_d:
9842      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9843      break;
9844    case Intrinsic::x86_mmx_psrli_q:
9845      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9846      break;
9847    case Intrinsic::x86_mmx_psrai_w:
9848      NewIntNo = Intrinsic::x86_mmx_psra_w;
9849      break;
9850    case Intrinsic::x86_mmx_psrai_d:
9851      NewIntNo = Intrinsic::x86_mmx_psra_d;
9852      break;
9853    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9854    }
9855
9856    // The vector shift intrinsics with scalars uses 32b shift amounts but
9857    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9858    // to be zero.
9859    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9860                         DAG.getConstant(0, MVT::i32));
9861// FIXME this must be lowered to get rid of the invalid type.
9862
9863    EVT VT = Op.getValueType();
9864    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9865    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9866                       DAG.getConstant(NewIntNo, MVT::i32),
9867                       Op.getOperand(1), ShAmt);
9868  }
9869  }
9870}
9871
9872SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9873                                           SelectionDAG &DAG) const {
9874  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9875  MFI->setReturnAddressIsTaken(true);
9876
9877  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9878  DebugLoc dl = Op.getDebugLoc();
9879
9880  if (Depth > 0) {
9881    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9882    SDValue Offset =
9883      DAG.getConstant(TD->getPointerSize(),
9884                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9885    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9886                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9887                                   FrameAddr, Offset),
9888                       MachinePointerInfo(), false, false, false, 0);
9889  }
9890
9891  // Just load the return address.
9892  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9893  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9894                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9895}
9896
9897SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9898  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9899  MFI->setFrameAddressIsTaken(true);
9900
9901  EVT VT = Op.getValueType();
9902  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9903  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9904  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9905  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9906  while (Depth--)
9907    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9908                            MachinePointerInfo(),
9909                            false, false, false, 0);
9910  return FrameAddr;
9911}
9912
9913SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9914                                                     SelectionDAG &DAG) const {
9915  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9916}
9917
9918SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9919  MachineFunction &MF = DAG.getMachineFunction();
9920  SDValue Chain     = Op.getOperand(0);
9921  SDValue Offset    = Op.getOperand(1);
9922  SDValue Handler   = Op.getOperand(2);
9923  DebugLoc dl       = Op.getDebugLoc();
9924
9925  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9926                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9927                                     getPointerTy());
9928  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9929
9930  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9931                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9932  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9933  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9934                       false, false, 0);
9935  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9936  MF.getRegInfo().addLiveOut(StoreAddrReg);
9937
9938  return DAG.getNode(X86ISD::EH_RETURN, dl,
9939                     MVT::Other,
9940                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9941}
9942
9943SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9944                                                  SelectionDAG &DAG) const {
9945  return Op.getOperand(0);
9946}
9947
9948SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9949                                                SelectionDAG &DAG) const {
9950  SDValue Root = Op.getOperand(0);
9951  SDValue Trmp = Op.getOperand(1); // trampoline
9952  SDValue FPtr = Op.getOperand(2); // nested function
9953  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9954  DebugLoc dl  = Op.getDebugLoc();
9955
9956  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9957
9958  if (Subtarget->is64Bit()) {
9959    SDValue OutChains[6];
9960
9961    // Large code-model.
9962    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9963    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9964
9965    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9966    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9967
9968    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9969
9970    // Load the pointer to the nested function into R11.
9971    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9972    SDValue Addr = Trmp;
9973    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9974                                Addr, MachinePointerInfo(TrmpAddr),
9975                                false, false, 0);
9976
9977    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9978                       DAG.getConstant(2, MVT::i64));
9979    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9980                                MachinePointerInfo(TrmpAddr, 2),
9981                                false, false, 2);
9982
9983    // Load the 'nest' parameter value into R10.
9984    // R10 is specified in X86CallingConv.td
9985    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9986    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9987                       DAG.getConstant(10, MVT::i64));
9988    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9989                                Addr, MachinePointerInfo(TrmpAddr, 10),
9990                                false, false, 0);
9991
9992    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9993                       DAG.getConstant(12, MVT::i64));
9994    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9995                                MachinePointerInfo(TrmpAddr, 12),
9996                                false, false, 2);
9997
9998    // Jump to the nested function.
9999    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10000    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10001                       DAG.getConstant(20, MVT::i64));
10002    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10003                                Addr, MachinePointerInfo(TrmpAddr, 20),
10004                                false, false, 0);
10005
10006    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10007    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10008                       DAG.getConstant(22, MVT::i64));
10009    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10010                                MachinePointerInfo(TrmpAddr, 22),
10011                                false, false, 0);
10012
10013    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10014  } else {
10015    const Function *Func =
10016      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10017    CallingConv::ID CC = Func->getCallingConv();
10018    unsigned NestReg;
10019
10020    switch (CC) {
10021    default:
10022      llvm_unreachable("Unsupported calling convention");
10023    case CallingConv::C:
10024    case CallingConv::X86_StdCall: {
10025      // Pass 'nest' parameter in ECX.
10026      // Must be kept in sync with X86CallingConv.td
10027      NestReg = X86::ECX;
10028
10029      // Check that ECX wasn't needed by an 'inreg' parameter.
10030      FunctionType *FTy = Func->getFunctionType();
10031      const AttrListPtr &Attrs = Func->getAttributes();
10032
10033      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10034        unsigned InRegCount = 0;
10035        unsigned Idx = 1;
10036
10037        for (FunctionType::param_iterator I = FTy->param_begin(),
10038             E = FTy->param_end(); I != E; ++I, ++Idx)
10039          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
10040            // FIXME: should only count parameters that are lowered to integers.
10041            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10042
10043        if (InRegCount > 2) {
10044          report_fatal_error("Nest register in use - reduce number of inreg"
10045                             " parameters!");
10046        }
10047      }
10048      break;
10049    }
10050    case CallingConv::X86_FastCall:
10051    case CallingConv::X86_ThisCall:
10052    case CallingConv::Fast:
10053      // Pass 'nest' parameter in EAX.
10054      // Must be kept in sync with X86CallingConv.td
10055      NestReg = X86::EAX;
10056      break;
10057    }
10058
10059    SDValue OutChains[4];
10060    SDValue Addr, Disp;
10061
10062    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10063                       DAG.getConstant(10, MVT::i32));
10064    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10065
10066    // This is storing the opcode for MOV32ri.
10067    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10068    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10069    OutChains[0] = DAG.getStore(Root, dl,
10070                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10071                                Trmp, MachinePointerInfo(TrmpAddr),
10072                                false, false, 0);
10073
10074    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10075                       DAG.getConstant(1, MVT::i32));
10076    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10077                                MachinePointerInfo(TrmpAddr, 1),
10078                                false, false, 1);
10079
10080    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10081    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10082                       DAG.getConstant(5, MVT::i32));
10083    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10084                                MachinePointerInfo(TrmpAddr, 5),
10085                                false, false, 1);
10086
10087    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10088                       DAG.getConstant(6, MVT::i32));
10089    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10090                                MachinePointerInfo(TrmpAddr, 6),
10091                                false, false, 1);
10092
10093    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10094  }
10095}
10096
10097SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10098                                            SelectionDAG &DAG) const {
10099  /*
10100   The rounding mode is in bits 11:10 of FPSR, and has the following
10101   settings:
10102     00 Round to nearest
10103     01 Round to -inf
10104     10 Round to +inf
10105     11 Round to 0
10106
10107  FLT_ROUNDS, on the other hand, expects the following:
10108    -1 Undefined
10109     0 Round to 0
10110     1 Round to nearest
10111     2 Round to +inf
10112     3 Round to -inf
10113
10114  To perform the conversion, we do:
10115    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10116  */
10117
10118  MachineFunction &MF = DAG.getMachineFunction();
10119  const TargetMachine &TM = MF.getTarget();
10120  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10121  unsigned StackAlignment = TFI.getStackAlignment();
10122  EVT VT = Op.getValueType();
10123  DebugLoc DL = Op.getDebugLoc();
10124
10125  // Save FP Control Word to stack slot
10126  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10127  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10128
10129
10130  MachineMemOperand *MMO =
10131   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10132                           MachineMemOperand::MOStore, 2, 2);
10133
10134  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10135  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10136                                          DAG.getVTList(MVT::Other),
10137                                          Ops, 2, MVT::i16, MMO);
10138
10139  // Load FP Control Word from stack slot
10140  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10141                            MachinePointerInfo(), false, false, false, 0);
10142
10143  // Transform as necessary
10144  SDValue CWD1 =
10145    DAG.getNode(ISD::SRL, DL, MVT::i16,
10146                DAG.getNode(ISD::AND, DL, MVT::i16,
10147                            CWD, DAG.getConstant(0x800, MVT::i16)),
10148                DAG.getConstant(11, MVT::i8));
10149  SDValue CWD2 =
10150    DAG.getNode(ISD::SRL, DL, MVT::i16,
10151                DAG.getNode(ISD::AND, DL, MVT::i16,
10152                            CWD, DAG.getConstant(0x400, MVT::i16)),
10153                DAG.getConstant(9, MVT::i8));
10154
10155  SDValue RetVal =
10156    DAG.getNode(ISD::AND, DL, MVT::i16,
10157                DAG.getNode(ISD::ADD, DL, MVT::i16,
10158                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10159                            DAG.getConstant(1, MVT::i16)),
10160                DAG.getConstant(3, MVT::i16));
10161
10162
10163  return DAG.getNode((VT.getSizeInBits() < 16 ?
10164                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10165}
10166
10167SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10168  EVT VT = Op.getValueType();
10169  EVT OpVT = VT;
10170  unsigned NumBits = VT.getSizeInBits();
10171  DebugLoc dl = Op.getDebugLoc();
10172
10173  Op = Op.getOperand(0);
10174  if (VT == MVT::i8) {
10175    // Zero extend to i32 since there is not an i8 bsr.
10176    OpVT = MVT::i32;
10177    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10178  }
10179
10180  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10181  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10182  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10183
10184  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10185  SDValue Ops[] = {
10186    Op,
10187    DAG.getConstant(NumBits+NumBits-1, OpVT),
10188    DAG.getConstant(X86::COND_E, MVT::i8),
10189    Op.getValue(1)
10190  };
10191  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10192
10193  // Finally xor with NumBits-1.
10194  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10195
10196  if (VT == MVT::i8)
10197    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10198  return Op;
10199}
10200
10201SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10202                                                SelectionDAG &DAG) const {
10203  EVT VT = Op.getValueType();
10204  EVT OpVT = VT;
10205  unsigned NumBits = VT.getSizeInBits();
10206  DebugLoc dl = Op.getDebugLoc();
10207
10208  Op = Op.getOperand(0);
10209  if (VT == MVT::i8) {
10210    // Zero extend to i32 since there is not an i8 bsr.
10211    OpVT = MVT::i32;
10212    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10213  }
10214
10215  // Issue a bsr (scan bits in reverse).
10216  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10217  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10218
10219  // And xor with NumBits-1.
10220  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10221
10222  if (VT == MVT::i8)
10223    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10224  return Op;
10225}
10226
10227SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10228  EVT VT = Op.getValueType();
10229  unsigned NumBits = VT.getSizeInBits();
10230  DebugLoc dl = Op.getDebugLoc();
10231  Op = Op.getOperand(0);
10232
10233  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10234  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10235  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10236
10237  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10238  SDValue Ops[] = {
10239    Op,
10240    DAG.getConstant(NumBits, VT),
10241    DAG.getConstant(X86::COND_E, MVT::i8),
10242    Op.getValue(1)
10243  };
10244  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10245}
10246
10247// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10248// ones, and then concatenate the result back.
10249static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10250  EVT VT = Op.getValueType();
10251
10252  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10253         "Unsupported value type for operation");
10254
10255  unsigned NumElems = VT.getVectorNumElements();
10256  DebugLoc dl = Op.getDebugLoc();
10257
10258  // Extract the LHS vectors
10259  SDValue LHS = Op.getOperand(0);
10260  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10261  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10262
10263  // Extract the RHS vectors
10264  SDValue RHS = Op.getOperand(1);
10265  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10266  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10267
10268  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10269  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10270
10271  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10272                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10273                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10274}
10275
10276SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10277  assert(Op.getValueType().getSizeInBits() == 256 &&
10278         Op.getValueType().isInteger() &&
10279         "Only handle AVX 256-bit vector integer operation");
10280  return Lower256IntArith(Op, DAG);
10281}
10282
10283SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10284  assert(Op.getValueType().getSizeInBits() == 256 &&
10285         Op.getValueType().isInteger() &&
10286         "Only handle AVX 256-bit vector integer operation");
10287  return Lower256IntArith(Op, DAG);
10288}
10289
10290SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10291  EVT VT = Op.getValueType();
10292
10293  // Decompose 256-bit ops into smaller 128-bit ops.
10294  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10295    return Lower256IntArith(Op, DAG);
10296
10297  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10298         "Only know how to lower V2I64/V4I64 multiply");
10299
10300  DebugLoc dl = Op.getDebugLoc();
10301
10302  //  Ahi = psrlqi(a, 32);
10303  //  Bhi = psrlqi(b, 32);
10304  //
10305  //  AloBlo = pmuludq(a, b);
10306  //  AloBhi = pmuludq(a, Bhi);
10307  //  AhiBlo = pmuludq(Ahi, b);
10308
10309  //  AloBhi = psllqi(AloBhi, 32);
10310  //  AhiBlo = psllqi(AhiBlo, 32);
10311  //  return AloBlo + AloBhi + AhiBlo;
10312
10313  SDValue A = Op.getOperand(0);
10314  SDValue B = Op.getOperand(1);
10315
10316  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10317
10318  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10319  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10320
10321  // Bit cast to 32-bit vectors for MULUDQ
10322  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10323  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10324  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10325  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10326  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10327
10328  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10329  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10330  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10331
10332  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10333  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10334
10335  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10336  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10337}
10338
10339SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10340
10341  EVT VT = Op.getValueType();
10342  DebugLoc dl = Op.getDebugLoc();
10343  SDValue R = Op.getOperand(0);
10344  SDValue Amt = Op.getOperand(1);
10345  LLVMContext *Context = DAG.getContext();
10346
10347  if (!Subtarget->hasSSE2())
10348    return SDValue();
10349
10350  // Optimize shl/srl/sra with constant shift amount.
10351  if (isSplatVector(Amt.getNode())) {
10352    SDValue SclrAmt = Amt->getOperand(0);
10353    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10354      uint64_t ShiftAmt = C->getZExtValue();
10355
10356      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10357          (Subtarget->hasAVX2() &&
10358           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10359        if (Op.getOpcode() == ISD::SHL)
10360          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10361                             DAG.getConstant(ShiftAmt, MVT::i32));
10362        if (Op.getOpcode() == ISD::SRL)
10363          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10364                             DAG.getConstant(ShiftAmt, MVT::i32));
10365        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10366          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10367                             DAG.getConstant(ShiftAmt, MVT::i32));
10368      }
10369
10370      if (VT == MVT::v16i8) {
10371        if (Op.getOpcode() == ISD::SHL) {
10372          // Make a large shift.
10373          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10374                                    DAG.getConstant(ShiftAmt, MVT::i32));
10375          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10376          // Zero out the rightmost bits.
10377          SmallVector<SDValue, 16> V(16,
10378                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10379                                                     MVT::i8));
10380          return DAG.getNode(ISD::AND, dl, VT, SHL,
10381                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10382        }
10383        if (Op.getOpcode() == ISD::SRL) {
10384          // Make a large shift.
10385          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10386                                    DAG.getConstant(ShiftAmt, MVT::i32));
10387          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10388          // Zero out the leftmost bits.
10389          SmallVector<SDValue, 16> V(16,
10390                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10391                                                     MVT::i8));
10392          return DAG.getNode(ISD::AND, dl, VT, SRL,
10393                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10394        }
10395        if (Op.getOpcode() == ISD::SRA) {
10396          if (ShiftAmt == 7) {
10397            // R s>> 7  ===  R s< 0
10398            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10399            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10400          }
10401
10402          // R s>> a === ((R u>> a) ^ m) - m
10403          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10404          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10405                                                         MVT::i8));
10406          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10407          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10408          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10409          return Res;
10410        }
10411        llvm_unreachable("Unknown shift opcode.");
10412      }
10413
10414      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10415        if (Op.getOpcode() == ISD::SHL) {
10416          // Make a large shift.
10417          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10418                                    DAG.getConstant(ShiftAmt, MVT::i32));
10419          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10420          // Zero out the rightmost bits.
10421          SmallVector<SDValue, 32> V(32,
10422                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10423                                                     MVT::i8));
10424          return DAG.getNode(ISD::AND, dl, VT, SHL,
10425                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10426        }
10427        if (Op.getOpcode() == ISD::SRL) {
10428          // Make a large shift.
10429          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10430                                    DAG.getConstant(ShiftAmt, MVT::i32));
10431          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10432          // Zero out the leftmost bits.
10433          SmallVector<SDValue, 32> V(32,
10434                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10435                                                     MVT::i8));
10436          return DAG.getNode(ISD::AND, dl, VT, SRL,
10437                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10438        }
10439        if (Op.getOpcode() == ISD::SRA) {
10440          if (ShiftAmt == 7) {
10441            // R s>> 7  ===  R s< 0
10442            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10443            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10444          }
10445
10446          // R s>> a === ((R u>> a) ^ m) - m
10447          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10448          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10449                                                         MVT::i8));
10450          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10451          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10452          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10453          return Res;
10454        }
10455        llvm_unreachable("Unknown shift opcode.");
10456      }
10457    }
10458  }
10459
10460  // Lower SHL with variable shift amount.
10461  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10462    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10463                     DAG.getConstant(23, MVT::i32));
10464
10465    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10466    Constant *C = ConstantDataVector::get(*Context, CV);
10467    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10468    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10469                                 MachinePointerInfo::getConstantPool(),
10470                                 false, false, false, 16);
10471
10472    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10473    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10474    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10475    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10476  }
10477  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10478    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10479
10480    // a = a << 5;
10481    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10482                     DAG.getConstant(5, MVT::i32));
10483    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10484
10485    // Turn 'a' into a mask suitable for VSELECT
10486    SDValue VSelM = DAG.getConstant(0x80, VT);
10487    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10488    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10489
10490    SDValue CM1 = DAG.getConstant(0x0f, VT);
10491    SDValue CM2 = DAG.getConstant(0x3f, VT);
10492
10493    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10494    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10495    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10496                            DAG.getConstant(4, MVT::i32), DAG);
10497    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10498    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10499
10500    // a += a
10501    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10502    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10503    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10504
10505    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10506    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10507    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10508                            DAG.getConstant(2, MVT::i32), DAG);
10509    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10510    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10511
10512    // a += a
10513    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10514    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10515    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10516
10517    // return VSELECT(r, r+r, a);
10518    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10519                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10520    return R;
10521  }
10522
10523  // Decompose 256-bit shifts into smaller 128-bit shifts.
10524  if (VT.getSizeInBits() == 256) {
10525    unsigned NumElems = VT.getVectorNumElements();
10526    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10527    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10528
10529    // Extract the two vectors
10530    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10531    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10532
10533    // Recreate the shift amount vectors
10534    SDValue Amt1, Amt2;
10535    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10536      // Constant shift amount
10537      SmallVector<SDValue, 4> Amt1Csts;
10538      SmallVector<SDValue, 4> Amt2Csts;
10539      for (unsigned i = 0; i != NumElems/2; ++i)
10540        Amt1Csts.push_back(Amt->getOperand(i));
10541      for (unsigned i = NumElems/2; i != NumElems; ++i)
10542        Amt2Csts.push_back(Amt->getOperand(i));
10543
10544      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10545                                 &Amt1Csts[0], NumElems/2);
10546      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10547                                 &Amt2Csts[0], NumElems/2);
10548    } else {
10549      // Variable shift amount
10550      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
10551      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
10552    }
10553
10554    // Issue new vector shifts for the smaller types
10555    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10556    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10557
10558    // Concatenate the result back
10559    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10560  }
10561
10562  return SDValue();
10563}
10564
10565SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10566  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10567  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10568  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10569  // has only one use.
10570  SDNode *N = Op.getNode();
10571  SDValue LHS = N->getOperand(0);
10572  SDValue RHS = N->getOperand(1);
10573  unsigned BaseOp = 0;
10574  unsigned Cond = 0;
10575  DebugLoc DL = Op.getDebugLoc();
10576  switch (Op.getOpcode()) {
10577  default: llvm_unreachable("Unknown ovf instruction!");
10578  case ISD::SADDO:
10579    // A subtract of one will be selected as a INC. Note that INC doesn't
10580    // set CF, so we can't do this for UADDO.
10581    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10582      if (C->isOne()) {
10583        BaseOp = X86ISD::INC;
10584        Cond = X86::COND_O;
10585        break;
10586      }
10587    BaseOp = X86ISD::ADD;
10588    Cond = X86::COND_O;
10589    break;
10590  case ISD::UADDO:
10591    BaseOp = X86ISD::ADD;
10592    Cond = X86::COND_B;
10593    break;
10594  case ISD::SSUBO:
10595    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10596    // set CF, so we can't do this for USUBO.
10597    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10598      if (C->isOne()) {
10599        BaseOp = X86ISD::DEC;
10600        Cond = X86::COND_O;
10601        break;
10602      }
10603    BaseOp = X86ISD::SUB;
10604    Cond = X86::COND_O;
10605    break;
10606  case ISD::USUBO:
10607    BaseOp = X86ISD::SUB;
10608    Cond = X86::COND_B;
10609    break;
10610  case ISD::SMULO:
10611    BaseOp = X86ISD::SMUL;
10612    Cond = X86::COND_O;
10613    break;
10614  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10615    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10616                                 MVT::i32);
10617    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10618
10619    SDValue SetCC =
10620      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10621                  DAG.getConstant(X86::COND_O, MVT::i32),
10622                  SDValue(Sum.getNode(), 2));
10623
10624    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10625  }
10626  }
10627
10628  // Also sets EFLAGS.
10629  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10630  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10631
10632  SDValue SetCC =
10633    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10634                DAG.getConstant(Cond, MVT::i32),
10635                SDValue(Sum.getNode(), 1));
10636
10637  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10638}
10639
10640SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10641                                                  SelectionDAG &DAG) const {
10642  DebugLoc dl = Op.getDebugLoc();
10643  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10644  EVT VT = Op.getValueType();
10645
10646  if (!Subtarget->hasSSE2() || !VT.isVector())
10647    return SDValue();
10648
10649  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10650                      ExtraVT.getScalarType().getSizeInBits();
10651  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10652
10653  switch (VT.getSimpleVT().SimpleTy) {
10654    default: return SDValue();
10655    case MVT::v8i32:
10656    case MVT::v16i16:
10657      if (!Subtarget->hasAVX())
10658        return SDValue();
10659      if (!Subtarget->hasAVX2()) {
10660        // needs to be split
10661        unsigned NumElems = VT.getVectorNumElements();
10662
10663        // Extract the LHS vectors
10664        SDValue LHS = Op.getOperand(0);
10665        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10666        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10667
10668        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10669        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10670
10671        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10672        int ExtraNumElems = ExtraVT.getVectorNumElements();
10673        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10674                                   ExtraNumElems/2);
10675        SDValue Extra = DAG.getValueType(ExtraVT);
10676
10677        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10678        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10679
10680        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10681      }
10682      // fall through
10683    case MVT::v4i32:
10684    case MVT::v8i16: {
10685      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10686                                         Op.getOperand(0), ShAmt, DAG);
10687      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10688    }
10689  }
10690}
10691
10692
10693SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10694  DebugLoc dl = Op.getDebugLoc();
10695
10696  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10697  // There isn't any reason to disable it if the target processor supports it.
10698  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10699    SDValue Chain = Op.getOperand(0);
10700    SDValue Zero = DAG.getConstant(0, MVT::i32);
10701    SDValue Ops[] = {
10702      DAG.getRegister(X86::ESP, MVT::i32), // Base
10703      DAG.getTargetConstant(1, MVT::i8),   // Scale
10704      DAG.getRegister(0, MVT::i32),        // Index
10705      DAG.getTargetConstant(0, MVT::i32),  // Disp
10706      DAG.getRegister(0, MVT::i32),        // Segment.
10707      Zero,
10708      Chain
10709    };
10710    SDNode *Res =
10711      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10712                          array_lengthof(Ops));
10713    return SDValue(Res, 0);
10714  }
10715
10716  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10717  if (!isDev)
10718    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10719
10720  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10721  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10722  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10723  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10724
10725  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10726  if (!Op1 && !Op2 && !Op3 && Op4)
10727    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10728
10729  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10730  if (Op1 && !Op2 && !Op3 && !Op4)
10731    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10732
10733  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10734  //           (MFENCE)>;
10735  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10736}
10737
10738SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10739                                             SelectionDAG &DAG) const {
10740  DebugLoc dl = Op.getDebugLoc();
10741  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10742    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10743  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10744    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10745
10746  // The only fence that needs an instruction is a sequentially-consistent
10747  // cross-thread fence.
10748  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10749    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10750    // no-sse2). There isn't any reason to disable it if the target processor
10751    // supports it.
10752    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10753      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10754
10755    SDValue Chain = Op.getOperand(0);
10756    SDValue Zero = DAG.getConstant(0, MVT::i32);
10757    SDValue Ops[] = {
10758      DAG.getRegister(X86::ESP, MVT::i32), // Base
10759      DAG.getTargetConstant(1, MVT::i8),   // Scale
10760      DAG.getRegister(0, MVT::i32),        // Index
10761      DAG.getTargetConstant(0, MVT::i32),  // Disp
10762      DAG.getRegister(0, MVT::i32),        // Segment.
10763      Zero,
10764      Chain
10765    };
10766    SDNode *Res =
10767      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10768                         array_lengthof(Ops));
10769    return SDValue(Res, 0);
10770  }
10771
10772  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10773  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10774}
10775
10776
10777SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10778  EVT T = Op.getValueType();
10779  DebugLoc DL = Op.getDebugLoc();
10780  unsigned Reg = 0;
10781  unsigned size = 0;
10782  switch(T.getSimpleVT().SimpleTy) {
10783  default: llvm_unreachable("Invalid value type!");
10784  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10785  case MVT::i16: Reg = X86::AX;  size = 2; break;
10786  case MVT::i32: Reg = X86::EAX; size = 4; break;
10787  case MVT::i64:
10788    assert(Subtarget->is64Bit() && "Node not type legal!");
10789    Reg = X86::RAX; size = 8;
10790    break;
10791  }
10792  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10793                                    Op.getOperand(2), SDValue());
10794  SDValue Ops[] = { cpIn.getValue(0),
10795                    Op.getOperand(1),
10796                    Op.getOperand(3),
10797                    DAG.getTargetConstant(size, MVT::i8),
10798                    cpIn.getValue(1) };
10799  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10800  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10801  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10802                                           Ops, 5, T, MMO);
10803  SDValue cpOut =
10804    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10805  return cpOut;
10806}
10807
10808SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10809                                                 SelectionDAG &DAG) const {
10810  assert(Subtarget->is64Bit() && "Result not type legalized?");
10811  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10812  SDValue TheChain = Op.getOperand(0);
10813  DebugLoc dl = Op.getDebugLoc();
10814  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10815  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10816  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10817                                   rax.getValue(2));
10818  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10819                            DAG.getConstant(32, MVT::i8));
10820  SDValue Ops[] = {
10821    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10822    rdx.getValue(1)
10823  };
10824  return DAG.getMergeValues(Ops, 2, dl);
10825}
10826
10827SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10828                                            SelectionDAG &DAG) const {
10829  EVT SrcVT = Op.getOperand(0).getValueType();
10830  EVT DstVT = Op.getValueType();
10831  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10832         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10833  assert((DstVT == MVT::i64 ||
10834          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10835         "Unexpected custom BITCAST");
10836  // i64 <=> MMX conversions are Legal.
10837  if (SrcVT==MVT::i64 && DstVT.isVector())
10838    return Op;
10839  if (DstVT==MVT::i64 && SrcVT.isVector())
10840    return Op;
10841  // MMX <=> MMX conversions are Legal.
10842  if (SrcVT.isVector() && DstVT.isVector())
10843    return Op;
10844  // All other conversions need to be expanded.
10845  return SDValue();
10846}
10847
10848SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10849  SDNode *Node = Op.getNode();
10850  DebugLoc dl = Node->getDebugLoc();
10851  EVT T = Node->getValueType(0);
10852  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10853                              DAG.getConstant(0, T), Node->getOperand(2));
10854  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10855                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10856                       Node->getOperand(0),
10857                       Node->getOperand(1), negOp,
10858                       cast<AtomicSDNode>(Node)->getSrcValue(),
10859                       cast<AtomicSDNode>(Node)->getAlignment(),
10860                       cast<AtomicSDNode>(Node)->getOrdering(),
10861                       cast<AtomicSDNode>(Node)->getSynchScope());
10862}
10863
10864static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10865  SDNode *Node = Op.getNode();
10866  DebugLoc dl = Node->getDebugLoc();
10867  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10868
10869  // Convert seq_cst store -> xchg
10870  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10871  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10872  //        (The only way to get a 16-byte store is cmpxchg16b)
10873  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10874  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10875      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10876    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10877                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10878                                 Node->getOperand(0),
10879                                 Node->getOperand(1), Node->getOperand(2),
10880                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10881                                 cast<AtomicSDNode>(Node)->getOrdering(),
10882                                 cast<AtomicSDNode>(Node)->getSynchScope());
10883    return Swap.getValue(1);
10884  }
10885  // Other atomic stores have a simple pattern.
10886  return Op;
10887}
10888
10889static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10890  EVT VT = Op.getNode()->getValueType(0);
10891
10892  // Let legalize expand this if it isn't a legal type yet.
10893  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10894    return SDValue();
10895
10896  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10897
10898  unsigned Opc;
10899  bool ExtraOp = false;
10900  switch (Op.getOpcode()) {
10901  default: llvm_unreachable("Invalid code");
10902  case ISD::ADDC: Opc = X86ISD::ADD; break;
10903  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10904  case ISD::SUBC: Opc = X86ISD::SUB; break;
10905  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10906  }
10907
10908  if (!ExtraOp)
10909    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10910                       Op.getOperand(1));
10911  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10912                     Op.getOperand(1), Op.getOperand(2));
10913}
10914
10915/// LowerOperation - Provide custom lowering hooks for some operations.
10916///
10917SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10918  switch (Op.getOpcode()) {
10919  default: llvm_unreachable("Should not custom lower this!");
10920  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10921  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10922  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10923  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10924  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10925  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10926  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10927  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10928  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10929  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10930  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10931  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10932  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10933  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10934  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10935  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10936  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10937  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10938  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10939  case ISD::SHL_PARTS:
10940  case ISD::SRA_PARTS:
10941  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10942  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10943  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10944  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10945  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10946  case ISD::FABS:               return LowerFABS(Op, DAG);
10947  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10948  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10949  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10950  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10951  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10952  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10953  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10954  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10955  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10956  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10957  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10958  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10959  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10960  case ISD::FRAME_TO_ARGS_OFFSET:
10961                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10962  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10963  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10964  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10965  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10966  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10967  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10968  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10969  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10970  case ISD::MUL:                return LowerMUL(Op, DAG);
10971  case ISD::SRA:
10972  case ISD::SRL:
10973  case ISD::SHL:                return LowerShift(Op, DAG);
10974  case ISD::SADDO:
10975  case ISD::UADDO:
10976  case ISD::SSUBO:
10977  case ISD::USUBO:
10978  case ISD::SMULO:
10979  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10980  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10981  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10982  case ISD::ADDC:
10983  case ISD::ADDE:
10984  case ISD::SUBC:
10985  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10986  case ISD::ADD:                return LowerADD(Op, DAG);
10987  case ISD::SUB:                return LowerSUB(Op, DAG);
10988  }
10989}
10990
10991static void ReplaceATOMIC_LOAD(SDNode *Node,
10992                                  SmallVectorImpl<SDValue> &Results,
10993                                  SelectionDAG &DAG) {
10994  DebugLoc dl = Node->getDebugLoc();
10995  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10996
10997  // Convert wide load -> cmpxchg8b/cmpxchg16b
10998  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10999  //        (The only way to get a 16-byte load is cmpxchg16b)
11000  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11001  SDValue Zero = DAG.getConstant(0, VT);
11002  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11003                               Node->getOperand(0),
11004                               Node->getOperand(1), Zero, Zero,
11005                               cast<AtomicSDNode>(Node)->getMemOperand(),
11006                               cast<AtomicSDNode>(Node)->getOrdering(),
11007                               cast<AtomicSDNode>(Node)->getSynchScope());
11008  Results.push_back(Swap.getValue(0));
11009  Results.push_back(Swap.getValue(1));
11010}
11011
11012void X86TargetLowering::
11013ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11014                        SelectionDAG &DAG, unsigned NewOp) const {
11015  DebugLoc dl = Node->getDebugLoc();
11016  assert (Node->getValueType(0) == MVT::i64 &&
11017          "Only know how to expand i64 atomics");
11018
11019  SDValue Chain = Node->getOperand(0);
11020  SDValue In1 = Node->getOperand(1);
11021  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11022                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11023  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11024                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11025  SDValue Ops[] = { Chain, In1, In2L, In2H };
11026  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11027  SDValue Result =
11028    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11029                            cast<MemSDNode>(Node)->getMemOperand());
11030  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11031  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11032  Results.push_back(Result.getValue(2));
11033}
11034
11035/// ReplaceNodeResults - Replace a node with an illegal result type
11036/// with a new node built out of custom code.
11037void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11038                                           SmallVectorImpl<SDValue>&Results,
11039                                           SelectionDAG &DAG) const {
11040  DebugLoc dl = N->getDebugLoc();
11041  switch (N->getOpcode()) {
11042  default:
11043    llvm_unreachable("Do not know how to custom type legalize this operation!");
11044  case ISD::SIGN_EXTEND_INREG:
11045  case ISD::ADDC:
11046  case ISD::ADDE:
11047  case ISD::SUBC:
11048  case ISD::SUBE:
11049    // We don't want to expand or promote these.
11050    return;
11051  case ISD::FP_TO_SINT:
11052  case ISD::FP_TO_UINT: {
11053    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11054
11055    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11056      return;
11057
11058    std::pair<SDValue,SDValue> Vals =
11059        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11060    SDValue FIST = Vals.first, StackSlot = Vals.second;
11061    if (FIST.getNode() != 0) {
11062      EVT VT = N->getValueType(0);
11063      // Return a load from the stack slot.
11064      if (StackSlot.getNode() != 0)
11065        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11066                                      MachinePointerInfo(),
11067                                      false, false, false, 0));
11068      else
11069        Results.push_back(FIST);
11070    }
11071    return;
11072  }
11073  case ISD::READCYCLECOUNTER: {
11074    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11075    SDValue TheChain = N->getOperand(0);
11076    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11077    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11078                                     rd.getValue(1));
11079    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11080                                     eax.getValue(2));
11081    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11082    SDValue Ops[] = { eax, edx };
11083    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11084    Results.push_back(edx.getValue(1));
11085    return;
11086  }
11087  case ISD::ATOMIC_CMP_SWAP: {
11088    EVT T = N->getValueType(0);
11089    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11090    bool Regs64bit = T == MVT::i128;
11091    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11092    SDValue cpInL, cpInH;
11093    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11094                        DAG.getConstant(0, HalfT));
11095    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11096                        DAG.getConstant(1, HalfT));
11097    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11098                             Regs64bit ? X86::RAX : X86::EAX,
11099                             cpInL, SDValue());
11100    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11101                             Regs64bit ? X86::RDX : X86::EDX,
11102                             cpInH, cpInL.getValue(1));
11103    SDValue swapInL, swapInH;
11104    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11105                          DAG.getConstant(0, HalfT));
11106    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11107                          DAG.getConstant(1, HalfT));
11108    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11109                               Regs64bit ? X86::RBX : X86::EBX,
11110                               swapInL, cpInH.getValue(1));
11111    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11112                               Regs64bit ? X86::RCX : X86::ECX,
11113                               swapInH, swapInL.getValue(1));
11114    SDValue Ops[] = { swapInH.getValue(0),
11115                      N->getOperand(1),
11116                      swapInH.getValue(1) };
11117    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11118    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11119    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11120                                  X86ISD::LCMPXCHG8_DAG;
11121    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11122                                             Ops, 3, T, MMO);
11123    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11124                                        Regs64bit ? X86::RAX : X86::EAX,
11125                                        HalfT, Result.getValue(1));
11126    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11127                                        Regs64bit ? X86::RDX : X86::EDX,
11128                                        HalfT, cpOutL.getValue(2));
11129    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11130    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11131    Results.push_back(cpOutH.getValue(1));
11132    return;
11133  }
11134  case ISD::ATOMIC_LOAD_ADD:
11135    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11136    return;
11137  case ISD::ATOMIC_LOAD_AND:
11138    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11139    return;
11140  case ISD::ATOMIC_LOAD_NAND:
11141    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11142    return;
11143  case ISD::ATOMIC_LOAD_OR:
11144    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11145    return;
11146  case ISD::ATOMIC_LOAD_SUB:
11147    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11148    return;
11149  case ISD::ATOMIC_LOAD_XOR:
11150    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11151    return;
11152  case ISD::ATOMIC_SWAP:
11153    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11154    return;
11155  case ISD::ATOMIC_LOAD:
11156    ReplaceATOMIC_LOAD(N, Results, DAG);
11157  }
11158}
11159
11160const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11161  switch (Opcode) {
11162  default: return NULL;
11163  case X86ISD::BSF:                return "X86ISD::BSF";
11164  case X86ISD::BSR:                return "X86ISD::BSR";
11165  case X86ISD::SHLD:               return "X86ISD::SHLD";
11166  case X86ISD::SHRD:               return "X86ISD::SHRD";
11167  case X86ISD::FAND:               return "X86ISD::FAND";
11168  case X86ISD::FOR:                return "X86ISD::FOR";
11169  case X86ISD::FXOR:               return "X86ISD::FXOR";
11170  case X86ISD::FSRL:               return "X86ISD::FSRL";
11171  case X86ISD::FILD:               return "X86ISD::FILD";
11172  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11173  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11174  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11175  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11176  case X86ISD::FLD:                return "X86ISD::FLD";
11177  case X86ISD::FST:                return "X86ISD::FST";
11178  case X86ISD::CALL:               return "X86ISD::CALL";
11179  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11180  case X86ISD::BT:                 return "X86ISD::BT";
11181  case X86ISD::CMP:                return "X86ISD::CMP";
11182  case X86ISD::COMI:               return "X86ISD::COMI";
11183  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11184  case X86ISD::SETCC:              return "X86ISD::SETCC";
11185  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11186  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11187  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11188  case X86ISD::CMOV:               return "X86ISD::CMOV";
11189  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11190  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11191  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11192  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11193  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11194  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11195  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11196  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11197  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11198  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11199  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11200  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11201  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11202  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11203  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11204  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11205  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11206  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11207  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11208  case X86ISD::HADD:               return "X86ISD::HADD";
11209  case X86ISD::HSUB:               return "X86ISD::HSUB";
11210  case X86ISD::FHADD:              return "X86ISD::FHADD";
11211  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11212  case X86ISD::FMAX:               return "X86ISD::FMAX";
11213  case X86ISD::FMIN:               return "X86ISD::FMIN";
11214  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11215  case X86ISD::FRCP:               return "X86ISD::FRCP";
11216  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11217  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11218  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11219  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11220  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11221  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11222  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11223  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11224  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11225  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11226  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11227  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11228  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11229  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11230  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11231  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11232  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11233  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11234  case X86ISD::VSHL:               return "X86ISD::VSHL";
11235  case X86ISD::VSRL:               return "X86ISD::VSRL";
11236  case X86ISD::VSRA:               return "X86ISD::VSRA";
11237  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11238  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11239  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11240  case X86ISD::CMPP:               return "X86ISD::CMPP";
11241  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11242  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11243  case X86ISD::ADD:                return "X86ISD::ADD";
11244  case X86ISD::SUB:                return "X86ISD::SUB";
11245  case X86ISD::ADC:                return "X86ISD::ADC";
11246  case X86ISD::SBB:                return "X86ISD::SBB";
11247  case X86ISD::SMUL:               return "X86ISD::SMUL";
11248  case X86ISD::UMUL:               return "X86ISD::UMUL";
11249  case X86ISD::INC:                return "X86ISD::INC";
11250  case X86ISD::DEC:                return "X86ISD::DEC";
11251  case X86ISD::OR:                 return "X86ISD::OR";
11252  case X86ISD::XOR:                return "X86ISD::XOR";
11253  case X86ISD::AND:                return "X86ISD::AND";
11254  case X86ISD::ANDN:               return "X86ISD::ANDN";
11255  case X86ISD::BLSI:               return "X86ISD::BLSI";
11256  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11257  case X86ISD::BLSR:               return "X86ISD::BLSR";
11258  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11259  case X86ISD::PTEST:              return "X86ISD::PTEST";
11260  case X86ISD::TESTP:              return "X86ISD::TESTP";
11261  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11262  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11263  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11264  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11265  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11266  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11267  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11268  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11269  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11270  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11271  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11272  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11273  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11274  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11275  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11276  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11277  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11278  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11279  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11280  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11281  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11282  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11283  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11284  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11285  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11286  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11287  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11288  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11289  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11290  case X86ISD::SAHF:               return "X86ISD::SAHF";
11291  }
11292}
11293
11294// isLegalAddressingMode - Return true if the addressing mode represented
11295// by AM is legal for this target, for a load/store of the specified type.
11296bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11297                                              Type *Ty) const {
11298  // X86 supports extremely general addressing modes.
11299  CodeModel::Model M = getTargetMachine().getCodeModel();
11300  Reloc::Model R = getTargetMachine().getRelocationModel();
11301
11302  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11303  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11304    return false;
11305
11306  if (AM.BaseGV) {
11307    unsigned GVFlags =
11308      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11309
11310    // If a reference to this global requires an extra load, we can't fold it.
11311    if (isGlobalStubReference(GVFlags))
11312      return false;
11313
11314    // If BaseGV requires a register for the PIC base, we cannot also have a
11315    // BaseReg specified.
11316    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11317      return false;
11318
11319    // If lower 4G is not available, then we must use rip-relative addressing.
11320    if ((M != CodeModel::Small || R != Reloc::Static) &&
11321        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11322      return false;
11323  }
11324
11325  switch (AM.Scale) {
11326  case 0:
11327  case 1:
11328  case 2:
11329  case 4:
11330  case 8:
11331    // These scales always work.
11332    break;
11333  case 3:
11334  case 5:
11335  case 9:
11336    // These scales are formed with basereg+scalereg.  Only accept if there is
11337    // no basereg yet.
11338    if (AM.HasBaseReg)
11339      return false;
11340    break;
11341  default:  // Other stuff never works.
11342    return false;
11343  }
11344
11345  return true;
11346}
11347
11348
11349bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11350  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11351    return false;
11352  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11353  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11354  if (NumBits1 <= NumBits2)
11355    return false;
11356  return true;
11357}
11358
11359bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11360  if (!VT1.isInteger() || !VT2.isInteger())
11361    return false;
11362  unsigned NumBits1 = VT1.getSizeInBits();
11363  unsigned NumBits2 = VT2.getSizeInBits();
11364  if (NumBits1 <= NumBits2)
11365    return false;
11366  return true;
11367}
11368
11369bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11370  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11371  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11372}
11373
11374bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11375  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11376  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11377}
11378
11379bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11380  // i16 instructions are longer (0x66 prefix) and potentially slower.
11381  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11382}
11383
11384/// isShuffleMaskLegal - Targets can use this to indicate that they only
11385/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11386/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11387/// are assumed to be legal.
11388bool
11389X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11390                                      EVT VT) const {
11391  // Very little shuffling can be done for 64-bit vectors right now.
11392  if (VT.getSizeInBits() == 64)
11393    return false;
11394
11395  // FIXME: pshufb, blends, shifts.
11396  return (VT.getVectorNumElements() == 2 ||
11397          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11398          isMOVLMask(M, VT) ||
11399          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11400          isPSHUFDMask(M, VT) ||
11401          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11402          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11403          isPALIGNRMask(M, VT, Subtarget) ||
11404          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11405          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11406          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11407          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11408}
11409
11410bool
11411X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11412                                          EVT VT) const {
11413  unsigned NumElts = VT.getVectorNumElements();
11414  // FIXME: This collection of masks seems suspect.
11415  if (NumElts == 2)
11416    return true;
11417  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11418    return (isMOVLMask(Mask, VT)  ||
11419            isCommutedMOVLMask(Mask, VT, true) ||
11420            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11421            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11422  }
11423  return false;
11424}
11425
11426//===----------------------------------------------------------------------===//
11427//                           X86 Scheduler Hooks
11428//===----------------------------------------------------------------------===//
11429
11430// private utility function
11431MachineBasicBlock *
11432X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11433                                                       MachineBasicBlock *MBB,
11434                                                       unsigned regOpc,
11435                                                       unsigned immOpc,
11436                                                       unsigned LoadOpc,
11437                                                       unsigned CXchgOpc,
11438                                                       unsigned notOpc,
11439                                                       unsigned EAXreg,
11440                                                 const TargetRegisterClass *RC,
11441                                                       bool Invert) const {
11442  // For the atomic bitwise operator, we generate
11443  //   thisMBB:
11444  //   newMBB:
11445  //     ld  t1 = [bitinstr.addr]
11446  //     op  t2 = t1, [bitinstr.val]
11447  //     not t3 = t2  (if Invert)
11448  //     mov EAX = t1
11449  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11450  //     bz  newMBB
11451  //     fallthrough -->nextMBB
11452  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11453  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11454  MachineFunction::iterator MBBIter = MBB;
11455  ++MBBIter;
11456
11457  /// First build the CFG
11458  MachineFunction *F = MBB->getParent();
11459  MachineBasicBlock *thisMBB = MBB;
11460  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11461  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11462  F->insert(MBBIter, newMBB);
11463  F->insert(MBBIter, nextMBB);
11464
11465  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11466  nextMBB->splice(nextMBB->begin(), thisMBB,
11467                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11468                  thisMBB->end());
11469  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11470
11471  // Update thisMBB to fall through to newMBB
11472  thisMBB->addSuccessor(newMBB);
11473
11474  // newMBB jumps to itself and fall through to nextMBB
11475  newMBB->addSuccessor(nextMBB);
11476  newMBB->addSuccessor(newMBB);
11477
11478  // Insert instructions into newMBB based on incoming instruction
11479  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11480         "unexpected number of operands");
11481  DebugLoc dl = bInstr->getDebugLoc();
11482  MachineOperand& destOper = bInstr->getOperand(0);
11483  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11484  int numArgs = bInstr->getNumOperands() - 1;
11485  for (int i=0; i < numArgs; ++i)
11486    argOpers[i] = &bInstr->getOperand(i+1);
11487
11488  // x86 address has 4 operands: base, index, scale, and displacement
11489  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11490  int valArgIndx = lastAddrIndx + 1;
11491
11492  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11493  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11494  for (int i=0; i <= lastAddrIndx; ++i)
11495    (*MIB).addOperand(*argOpers[i]);
11496
11497  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11498  assert((argOpers[valArgIndx]->isReg() ||
11499          argOpers[valArgIndx]->isImm()) &&
11500         "invalid operand");
11501  if (argOpers[valArgIndx]->isReg())
11502    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11503  else
11504    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11505  MIB.addReg(t1);
11506  (*MIB).addOperand(*argOpers[valArgIndx]);
11507
11508  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11509  if (Invert) {
11510    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11511  }
11512  else
11513    t3 = t2;
11514
11515  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11516  MIB.addReg(t1);
11517
11518  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11519  for (int i=0; i <= lastAddrIndx; ++i)
11520    (*MIB).addOperand(*argOpers[i]);
11521  MIB.addReg(t3);
11522  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11523  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11524                    bInstr->memoperands_end());
11525
11526  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11527  MIB.addReg(EAXreg);
11528
11529  // insert branch
11530  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11531
11532  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11533  return nextMBB;
11534}
11535
11536// private utility function:  64 bit atomics on 32 bit host.
11537MachineBasicBlock *
11538X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11539                                                       MachineBasicBlock *MBB,
11540                                                       unsigned regOpcL,
11541                                                       unsigned regOpcH,
11542                                                       unsigned immOpcL,
11543                                                       unsigned immOpcH,
11544                                                       bool Invert) const {
11545  // For the atomic bitwise operator, we generate
11546  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11547  //     ld t1,t2 = [bitinstr.addr]
11548  //   newMBB:
11549  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11550  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11551  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11552  //     neg t7, t8 < t5, t6  (if Invert)
11553  //     mov ECX, EBX <- t5, t6
11554  //     mov EAX, EDX <- t1, t2
11555  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11556  //     mov t3, t4 <- EAX, EDX
11557  //     bz  newMBB
11558  //     result in out1, out2
11559  //     fallthrough -->nextMBB
11560
11561  const TargetRegisterClass *RC = &X86::GR32RegClass;
11562  const unsigned LoadOpc = X86::MOV32rm;
11563  const unsigned NotOpc = X86::NOT32r;
11564  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11565  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11566  MachineFunction::iterator MBBIter = MBB;
11567  ++MBBIter;
11568
11569  /// First build the CFG
11570  MachineFunction *F = MBB->getParent();
11571  MachineBasicBlock *thisMBB = MBB;
11572  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11573  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11574  F->insert(MBBIter, newMBB);
11575  F->insert(MBBIter, nextMBB);
11576
11577  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11578  nextMBB->splice(nextMBB->begin(), thisMBB,
11579                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11580                  thisMBB->end());
11581  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11582
11583  // Update thisMBB to fall through to newMBB
11584  thisMBB->addSuccessor(newMBB);
11585
11586  // newMBB jumps to itself and fall through to nextMBB
11587  newMBB->addSuccessor(nextMBB);
11588  newMBB->addSuccessor(newMBB);
11589
11590  DebugLoc dl = bInstr->getDebugLoc();
11591  // Insert instructions into newMBB based on incoming instruction
11592  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11593  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11594         "unexpected number of operands");
11595  MachineOperand& dest1Oper = bInstr->getOperand(0);
11596  MachineOperand& dest2Oper = bInstr->getOperand(1);
11597  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11598  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11599    argOpers[i] = &bInstr->getOperand(i+2);
11600
11601    // We use some of the operands multiple times, so conservatively just
11602    // clear any kill flags that might be present.
11603    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11604      argOpers[i]->setIsKill(false);
11605  }
11606
11607  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11608  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11609
11610  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11611  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11612  for (int i=0; i <= lastAddrIndx; ++i)
11613    (*MIB).addOperand(*argOpers[i]);
11614  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11615  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11616  // add 4 to displacement.
11617  for (int i=0; i <= lastAddrIndx-2; ++i)
11618    (*MIB).addOperand(*argOpers[i]);
11619  MachineOperand newOp3 = *(argOpers[3]);
11620  if (newOp3.isImm())
11621    newOp3.setImm(newOp3.getImm()+4);
11622  else
11623    newOp3.setOffset(newOp3.getOffset()+4);
11624  (*MIB).addOperand(newOp3);
11625  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11626
11627  // t3/4 are defined later, at the bottom of the loop
11628  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11629  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11630  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11631    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11632  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11633    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11634
11635  // The subsequent operations should be using the destination registers of
11636  // the PHI instructions.
11637  t1 = dest1Oper.getReg();
11638  t2 = dest2Oper.getReg();
11639
11640  int valArgIndx = lastAddrIndx + 1;
11641  assert((argOpers[valArgIndx]->isReg() ||
11642          argOpers[valArgIndx]->isImm()) &&
11643         "invalid operand");
11644  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11645  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11646  if (argOpers[valArgIndx]->isReg())
11647    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11648  else
11649    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11650  if (regOpcL != X86::MOV32rr)
11651    MIB.addReg(t1);
11652  (*MIB).addOperand(*argOpers[valArgIndx]);
11653  assert(argOpers[valArgIndx + 1]->isReg() ==
11654         argOpers[valArgIndx]->isReg());
11655  assert(argOpers[valArgIndx + 1]->isImm() ==
11656         argOpers[valArgIndx]->isImm());
11657  if (argOpers[valArgIndx + 1]->isReg())
11658    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11659  else
11660    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11661  if (regOpcH != X86::MOV32rr)
11662    MIB.addReg(t2);
11663  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11664
11665  unsigned t7, t8;
11666  if (Invert) {
11667    t7 = F->getRegInfo().createVirtualRegister(RC);
11668    t8 = F->getRegInfo().createVirtualRegister(RC);
11669    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
11670    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
11671  } else {
11672    t7 = t5;
11673    t8 = t6;
11674  }
11675
11676  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11677  MIB.addReg(t1);
11678  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11679  MIB.addReg(t2);
11680
11681  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11682  MIB.addReg(t7);
11683  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11684  MIB.addReg(t8);
11685
11686  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11687  for (int i=0; i <= lastAddrIndx; ++i)
11688    (*MIB).addOperand(*argOpers[i]);
11689
11690  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11691  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11692                    bInstr->memoperands_end());
11693
11694  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11695  MIB.addReg(X86::EAX);
11696  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11697  MIB.addReg(X86::EDX);
11698
11699  // insert branch
11700  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11701
11702  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11703  return nextMBB;
11704}
11705
11706// private utility function
11707MachineBasicBlock *
11708X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11709                                                      MachineBasicBlock *MBB,
11710                                                      unsigned cmovOpc) const {
11711  // For the atomic min/max operator, we generate
11712  //   thisMBB:
11713  //   newMBB:
11714  //     ld t1 = [min/max.addr]
11715  //     mov t2 = [min/max.val]
11716  //     cmp  t1, t2
11717  //     cmov[cond] t2 = t1
11718  //     mov EAX = t1
11719  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11720  //     bz   newMBB
11721  //     fallthrough -->nextMBB
11722  //
11723  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11724  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11725  MachineFunction::iterator MBBIter = MBB;
11726  ++MBBIter;
11727
11728  /// First build the CFG
11729  MachineFunction *F = MBB->getParent();
11730  MachineBasicBlock *thisMBB = MBB;
11731  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11732  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11733  F->insert(MBBIter, newMBB);
11734  F->insert(MBBIter, nextMBB);
11735
11736  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11737  nextMBB->splice(nextMBB->begin(), thisMBB,
11738                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11739                  thisMBB->end());
11740  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11741
11742  // Update thisMBB to fall through to newMBB
11743  thisMBB->addSuccessor(newMBB);
11744
11745  // newMBB jumps to newMBB and fall through to nextMBB
11746  newMBB->addSuccessor(nextMBB);
11747  newMBB->addSuccessor(newMBB);
11748
11749  DebugLoc dl = mInstr->getDebugLoc();
11750  // Insert instructions into newMBB based on incoming instruction
11751  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11752         "unexpected number of operands");
11753  MachineOperand& destOper = mInstr->getOperand(0);
11754  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11755  int numArgs = mInstr->getNumOperands() - 1;
11756  for (int i=0; i < numArgs; ++i)
11757    argOpers[i] = &mInstr->getOperand(i+1);
11758
11759  // x86 address has 4 operands: base, index, scale, and displacement
11760  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11761  int valArgIndx = lastAddrIndx + 1;
11762
11763  unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11764  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11765  for (int i=0; i <= lastAddrIndx; ++i)
11766    (*MIB).addOperand(*argOpers[i]);
11767
11768  // We only support register and immediate values
11769  assert((argOpers[valArgIndx]->isReg() ||
11770          argOpers[valArgIndx]->isImm()) &&
11771         "invalid operand");
11772
11773  unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11774  if (argOpers[valArgIndx]->isReg())
11775    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11776  else
11777    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11778  (*MIB).addOperand(*argOpers[valArgIndx]);
11779
11780  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11781  MIB.addReg(t1);
11782
11783  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11784  MIB.addReg(t1);
11785  MIB.addReg(t2);
11786
11787  // Generate movc
11788  unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11789  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11790  MIB.addReg(t2);
11791  MIB.addReg(t1);
11792
11793  // Cmp and exchange if none has modified the memory location
11794  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11795  for (int i=0; i <= lastAddrIndx; ++i)
11796    (*MIB).addOperand(*argOpers[i]);
11797  MIB.addReg(t3);
11798  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11799  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11800                    mInstr->memoperands_end());
11801
11802  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11803  MIB.addReg(X86::EAX);
11804
11805  // insert branch
11806  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11807
11808  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11809  return nextMBB;
11810}
11811
11812// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11813// or XMM0_V32I8 in AVX all of this code can be replaced with that
11814// in the .td file.
11815MachineBasicBlock *
11816X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11817                            unsigned numArgs, bool memArg) const {
11818  assert(Subtarget->hasSSE42() &&
11819         "Target must have SSE4.2 or AVX features enabled");
11820
11821  DebugLoc dl = MI->getDebugLoc();
11822  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11823  unsigned Opc;
11824  if (!Subtarget->hasAVX()) {
11825    if (memArg)
11826      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11827    else
11828      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11829  } else {
11830    if (memArg)
11831      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11832    else
11833      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11834  }
11835
11836  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11837  for (unsigned i = 0; i < numArgs; ++i) {
11838    MachineOperand &Op = MI->getOperand(i+1);
11839    if (!(Op.isReg() && Op.isImplicit()))
11840      MIB.addOperand(Op);
11841  }
11842  BuildMI(*BB, MI, dl,
11843    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11844             MI->getOperand(0).getReg())
11845    .addReg(X86::XMM0);
11846
11847  MI->eraseFromParent();
11848  return BB;
11849}
11850
11851MachineBasicBlock *
11852X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11853  DebugLoc dl = MI->getDebugLoc();
11854  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11855
11856  // Address into RAX/EAX, other two args into ECX, EDX.
11857  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11858  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11859  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11860  for (int i = 0; i < X86::AddrNumOperands; ++i)
11861    MIB.addOperand(MI->getOperand(i));
11862
11863  unsigned ValOps = X86::AddrNumOperands;
11864  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11865    .addReg(MI->getOperand(ValOps).getReg());
11866  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11867    .addReg(MI->getOperand(ValOps+1).getReg());
11868
11869  // The instruction doesn't actually take any operands though.
11870  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11871
11872  MI->eraseFromParent(); // The pseudo is gone now.
11873  return BB;
11874}
11875
11876MachineBasicBlock *
11877X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11878  DebugLoc dl = MI->getDebugLoc();
11879  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11880
11881  // First arg in ECX, the second in EAX.
11882  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11883    .addReg(MI->getOperand(0).getReg());
11884  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11885    .addReg(MI->getOperand(1).getReg());
11886
11887  // The instruction doesn't actually take any operands though.
11888  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11889
11890  MI->eraseFromParent(); // The pseudo is gone now.
11891  return BB;
11892}
11893
11894MachineBasicBlock *
11895X86TargetLowering::EmitVAARG64WithCustomInserter(
11896                   MachineInstr *MI,
11897                   MachineBasicBlock *MBB) const {
11898  // Emit va_arg instruction on X86-64.
11899
11900  // Operands to this pseudo-instruction:
11901  // 0  ) Output        : destination address (reg)
11902  // 1-5) Input         : va_list address (addr, i64mem)
11903  // 6  ) ArgSize       : Size (in bytes) of vararg type
11904  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11905  // 8  ) Align         : Alignment of type
11906  // 9  ) EFLAGS (implicit-def)
11907
11908  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11909  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11910
11911  unsigned DestReg = MI->getOperand(0).getReg();
11912  MachineOperand &Base = MI->getOperand(1);
11913  MachineOperand &Scale = MI->getOperand(2);
11914  MachineOperand &Index = MI->getOperand(3);
11915  MachineOperand &Disp = MI->getOperand(4);
11916  MachineOperand &Segment = MI->getOperand(5);
11917  unsigned ArgSize = MI->getOperand(6).getImm();
11918  unsigned ArgMode = MI->getOperand(7).getImm();
11919  unsigned Align = MI->getOperand(8).getImm();
11920
11921  // Memory Reference
11922  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11923  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11924  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11925
11926  // Machine Information
11927  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11928  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11929  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11930  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11931  DebugLoc DL = MI->getDebugLoc();
11932
11933  // struct va_list {
11934  //   i32   gp_offset
11935  //   i32   fp_offset
11936  //   i64   overflow_area (address)
11937  //   i64   reg_save_area (address)
11938  // }
11939  // sizeof(va_list) = 24
11940  // alignment(va_list) = 8
11941
11942  unsigned TotalNumIntRegs = 6;
11943  unsigned TotalNumXMMRegs = 8;
11944  bool UseGPOffset = (ArgMode == 1);
11945  bool UseFPOffset = (ArgMode == 2);
11946  unsigned MaxOffset = TotalNumIntRegs * 8 +
11947                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11948
11949  /* Align ArgSize to a multiple of 8 */
11950  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11951  bool NeedsAlign = (Align > 8);
11952
11953  MachineBasicBlock *thisMBB = MBB;
11954  MachineBasicBlock *overflowMBB;
11955  MachineBasicBlock *offsetMBB;
11956  MachineBasicBlock *endMBB;
11957
11958  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11959  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11960  unsigned OffsetReg = 0;
11961
11962  if (!UseGPOffset && !UseFPOffset) {
11963    // If we only pull from the overflow region, we don't create a branch.
11964    // We don't need to alter control flow.
11965    OffsetDestReg = 0; // unused
11966    OverflowDestReg = DestReg;
11967
11968    offsetMBB = NULL;
11969    overflowMBB = thisMBB;
11970    endMBB = thisMBB;
11971  } else {
11972    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11973    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11974    // If not, pull from overflow_area. (branch to overflowMBB)
11975    //
11976    //       thisMBB
11977    //         |     .
11978    //         |        .
11979    //     offsetMBB   overflowMBB
11980    //         |        .
11981    //         |     .
11982    //        endMBB
11983
11984    // Registers for the PHI in endMBB
11985    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11986    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11987
11988    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11989    MachineFunction *MF = MBB->getParent();
11990    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11991    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11992    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11993
11994    MachineFunction::iterator MBBIter = MBB;
11995    ++MBBIter;
11996
11997    // Insert the new basic blocks
11998    MF->insert(MBBIter, offsetMBB);
11999    MF->insert(MBBIter, overflowMBB);
12000    MF->insert(MBBIter, endMBB);
12001
12002    // Transfer the remainder of MBB and its successor edges to endMBB.
12003    endMBB->splice(endMBB->begin(), thisMBB,
12004                    llvm::next(MachineBasicBlock::iterator(MI)),
12005                    thisMBB->end());
12006    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12007
12008    // Make offsetMBB and overflowMBB successors of thisMBB
12009    thisMBB->addSuccessor(offsetMBB);
12010    thisMBB->addSuccessor(overflowMBB);
12011
12012    // endMBB is a successor of both offsetMBB and overflowMBB
12013    offsetMBB->addSuccessor(endMBB);
12014    overflowMBB->addSuccessor(endMBB);
12015
12016    // Load the offset value into a register
12017    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12018    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12019      .addOperand(Base)
12020      .addOperand(Scale)
12021      .addOperand(Index)
12022      .addDisp(Disp, UseFPOffset ? 4 : 0)
12023      .addOperand(Segment)
12024      .setMemRefs(MMOBegin, MMOEnd);
12025
12026    // Check if there is enough room left to pull this argument.
12027    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12028      .addReg(OffsetReg)
12029      .addImm(MaxOffset + 8 - ArgSizeA8);
12030
12031    // Branch to "overflowMBB" if offset >= max
12032    // Fall through to "offsetMBB" otherwise
12033    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12034      .addMBB(overflowMBB);
12035  }
12036
12037  // In offsetMBB, emit code to use the reg_save_area.
12038  if (offsetMBB) {
12039    assert(OffsetReg != 0);
12040
12041    // Read the reg_save_area address.
12042    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12043    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12044      .addOperand(Base)
12045      .addOperand(Scale)
12046      .addOperand(Index)
12047      .addDisp(Disp, 16)
12048      .addOperand(Segment)
12049      .setMemRefs(MMOBegin, MMOEnd);
12050
12051    // Zero-extend the offset
12052    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12053      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12054        .addImm(0)
12055        .addReg(OffsetReg)
12056        .addImm(X86::sub_32bit);
12057
12058    // Add the offset to the reg_save_area to get the final address.
12059    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12060      .addReg(OffsetReg64)
12061      .addReg(RegSaveReg);
12062
12063    // Compute the offset for the next argument
12064    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12065    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12066      .addReg(OffsetReg)
12067      .addImm(UseFPOffset ? 16 : 8);
12068
12069    // Store it back into the va_list.
12070    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12071      .addOperand(Base)
12072      .addOperand(Scale)
12073      .addOperand(Index)
12074      .addDisp(Disp, UseFPOffset ? 4 : 0)
12075      .addOperand(Segment)
12076      .addReg(NextOffsetReg)
12077      .setMemRefs(MMOBegin, MMOEnd);
12078
12079    // Jump to endMBB
12080    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12081      .addMBB(endMBB);
12082  }
12083
12084  //
12085  // Emit code to use overflow area
12086  //
12087
12088  // Load the overflow_area address into a register.
12089  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12090  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12091    .addOperand(Base)
12092    .addOperand(Scale)
12093    .addOperand(Index)
12094    .addDisp(Disp, 8)
12095    .addOperand(Segment)
12096    .setMemRefs(MMOBegin, MMOEnd);
12097
12098  // If we need to align it, do so. Otherwise, just copy the address
12099  // to OverflowDestReg.
12100  if (NeedsAlign) {
12101    // Align the overflow address
12102    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12103    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12104
12105    // aligned_addr = (addr + (align-1)) & ~(align-1)
12106    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12107      .addReg(OverflowAddrReg)
12108      .addImm(Align-1);
12109
12110    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12111      .addReg(TmpReg)
12112      .addImm(~(uint64_t)(Align-1));
12113  } else {
12114    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12115      .addReg(OverflowAddrReg);
12116  }
12117
12118  // Compute the next overflow address after this argument.
12119  // (the overflow address should be kept 8-byte aligned)
12120  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12121  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12122    .addReg(OverflowDestReg)
12123    .addImm(ArgSizeA8);
12124
12125  // Store the new overflow address.
12126  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12127    .addOperand(Base)
12128    .addOperand(Scale)
12129    .addOperand(Index)
12130    .addDisp(Disp, 8)
12131    .addOperand(Segment)
12132    .addReg(NextAddrReg)
12133    .setMemRefs(MMOBegin, MMOEnd);
12134
12135  // If we branched, emit the PHI to the front of endMBB.
12136  if (offsetMBB) {
12137    BuildMI(*endMBB, endMBB->begin(), DL,
12138            TII->get(X86::PHI), DestReg)
12139      .addReg(OffsetDestReg).addMBB(offsetMBB)
12140      .addReg(OverflowDestReg).addMBB(overflowMBB);
12141  }
12142
12143  // Erase the pseudo instruction
12144  MI->eraseFromParent();
12145
12146  return endMBB;
12147}
12148
12149MachineBasicBlock *
12150X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12151                                                 MachineInstr *MI,
12152                                                 MachineBasicBlock *MBB) const {
12153  // Emit code to save XMM registers to the stack. The ABI says that the
12154  // number of registers to save is given in %al, so it's theoretically
12155  // possible to do an indirect jump trick to avoid saving all of them,
12156  // however this code takes a simpler approach and just executes all
12157  // of the stores if %al is non-zero. It's less code, and it's probably
12158  // easier on the hardware branch predictor, and stores aren't all that
12159  // expensive anyway.
12160
12161  // Create the new basic blocks. One block contains all the XMM stores,
12162  // and one block is the final destination regardless of whether any
12163  // stores were performed.
12164  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12165  MachineFunction *F = MBB->getParent();
12166  MachineFunction::iterator MBBIter = MBB;
12167  ++MBBIter;
12168  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12169  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12170  F->insert(MBBIter, XMMSaveMBB);
12171  F->insert(MBBIter, EndMBB);
12172
12173  // Transfer the remainder of MBB and its successor edges to EndMBB.
12174  EndMBB->splice(EndMBB->begin(), MBB,
12175                 llvm::next(MachineBasicBlock::iterator(MI)),
12176                 MBB->end());
12177  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12178
12179  // The original block will now fall through to the XMM save block.
12180  MBB->addSuccessor(XMMSaveMBB);
12181  // The XMMSaveMBB will fall through to the end block.
12182  XMMSaveMBB->addSuccessor(EndMBB);
12183
12184  // Now add the instructions.
12185  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12186  DebugLoc DL = MI->getDebugLoc();
12187
12188  unsigned CountReg = MI->getOperand(0).getReg();
12189  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12190  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12191
12192  if (!Subtarget->isTargetWin64()) {
12193    // If %al is 0, branch around the XMM save block.
12194    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12195    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12196    MBB->addSuccessor(EndMBB);
12197  }
12198
12199  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12200  // In the XMM save block, save all the XMM argument registers.
12201  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12202    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12203    MachineMemOperand *MMO =
12204      F->getMachineMemOperand(
12205          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12206        MachineMemOperand::MOStore,
12207        /*Size=*/16, /*Align=*/16);
12208    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12209      .addFrameIndex(RegSaveFrameIndex)
12210      .addImm(/*Scale=*/1)
12211      .addReg(/*IndexReg=*/0)
12212      .addImm(/*Disp=*/Offset)
12213      .addReg(/*Segment=*/0)
12214      .addReg(MI->getOperand(i).getReg())
12215      .addMemOperand(MMO);
12216  }
12217
12218  MI->eraseFromParent();   // The pseudo instruction is gone now.
12219
12220  return EndMBB;
12221}
12222
12223// The EFLAGS operand of SelectItr might be missing a kill marker
12224// because there were multiple uses of EFLAGS, and ISel didn't know
12225// which to mark. Figure out whether SelectItr should have had a
12226// kill marker, and set it if it should. Returns the correct kill
12227// marker value.
12228static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12229                                     MachineBasicBlock* BB,
12230                                     const TargetRegisterInfo* TRI) {
12231  // Scan forward through BB for a use/def of EFLAGS.
12232  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12233  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12234    const MachineInstr& mi = *miI;
12235    if (mi.readsRegister(X86::EFLAGS))
12236      return false;
12237    if (mi.definesRegister(X86::EFLAGS))
12238      break; // Should have kill-flag - update below.
12239  }
12240
12241  // If we hit the end of the block, check whether EFLAGS is live into a
12242  // successor.
12243  if (miI == BB->end()) {
12244    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12245                                          sEnd = BB->succ_end();
12246         sItr != sEnd; ++sItr) {
12247      MachineBasicBlock* succ = *sItr;
12248      if (succ->isLiveIn(X86::EFLAGS))
12249        return false;
12250    }
12251  }
12252
12253  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12254  // out. SelectMI should have a kill flag on EFLAGS.
12255  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12256  return true;
12257}
12258
12259MachineBasicBlock *
12260X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12261                                     MachineBasicBlock *BB) const {
12262  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12263  DebugLoc DL = MI->getDebugLoc();
12264
12265  // To "insert" a SELECT_CC instruction, we actually have to insert the
12266  // diamond control-flow pattern.  The incoming instruction knows the
12267  // destination vreg to set, the condition code register to branch on, the
12268  // true/false values to select between, and a branch opcode to use.
12269  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12270  MachineFunction::iterator It = BB;
12271  ++It;
12272
12273  //  thisMBB:
12274  //  ...
12275  //   TrueVal = ...
12276  //   cmpTY ccX, r1, r2
12277  //   bCC copy1MBB
12278  //   fallthrough --> copy0MBB
12279  MachineBasicBlock *thisMBB = BB;
12280  MachineFunction *F = BB->getParent();
12281  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12282  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12283  F->insert(It, copy0MBB);
12284  F->insert(It, sinkMBB);
12285
12286  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12287  // live into the sink and copy blocks.
12288  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12289  if (!MI->killsRegister(X86::EFLAGS) &&
12290      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12291    copy0MBB->addLiveIn(X86::EFLAGS);
12292    sinkMBB->addLiveIn(X86::EFLAGS);
12293  }
12294
12295  // Transfer the remainder of BB and its successor edges to sinkMBB.
12296  sinkMBB->splice(sinkMBB->begin(), BB,
12297                  llvm::next(MachineBasicBlock::iterator(MI)),
12298                  BB->end());
12299  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12300
12301  // Add the true and fallthrough blocks as its successors.
12302  BB->addSuccessor(copy0MBB);
12303  BB->addSuccessor(sinkMBB);
12304
12305  // Create the conditional branch instruction.
12306  unsigned Opc =
12307    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12308  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12309
12310  //  copy0MBB:
12311  //   %FalseValue = ...
12312  //   # fallthrough to sinkMBB
12313  copy0MBB->addSuccessor(sinkMBB);
12314
12315  //  sinkMBB:
12316  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12317  //  ...
12318  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12319          TII->get(X86::PHI), MI->getOperand(0).getReg())
12320    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12321    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12322
12323  MI->eraseFromParent();   // The pseudo instruction is gone now.
12324  return sinkMBB;
12325}
12326
12327MachineBasicBlock *
12328X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12329                                        bool Is64Bit) const {
12330  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12331  DebugLoc DL = MI->getDebugLoc();
12332  MachineFunction *MF = BB->getParent();
12333  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12334
12335  assert(getTargetMachine().Options.EnableSegmentedStacks);
12336
12337  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12338  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12339
12340  // BB:
12341  //  ... [Till the alloca]
12342  // If stacklet is not large enough, jump to mallocMBB
12343  //
12344  // bumpMBB:
12345  //  Allocate by subtracting from RSP
12346  //  Jump to continueMBB
12347  //
12348  // mallocMBB:
12349  //  Allocate by call to runtime
12350  //
12351  // continueMBB:
12352  //  ...
12353  //  [rest of original BB]
12354  //
12355
12356  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12357  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12358  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12359
12360  MachineRegisterInfo &MRI = MF->getRegInfo();
12361  const TargetRegisterClass *AddrRegClass =
12362    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12363
12364  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12365    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12366    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12367    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12368    sizeVReg = MI->getOperand(1).getReg(),
12369    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12370
12371  MachineFunction::iterator MBBIter = BB;
12372  ++MBBIter;
12373
12374  MF->insert(MBBIter, bumpMBB);
12375  MF->insert(MBBIter, mallocMBB);
12376  MF->insert(MBBIter, continueMBB);
12377
12378  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12379                      (MachineBasicBlock::iterator(MI)), BB->end());
12380  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12381
12382  // Add code to the main basic block to check if the stack limit has been hit,
12383  // and if so, jump to mallocMBB otherwise to bumpMBB.
12384  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12385  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12386    .addReg(tmpSPVReg).addReg(sizeVReg);
12387  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12388    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12389    .addReg(SPLimitVReg);
12390  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12391
12392  // bumpMBB simply decreases the stack pointer, since we know the current
12393  // stacklet has enough space.
12394  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12395    .addReg(SPLimitVReg);
12396  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12397    .addReg(SPLimitVReg);
12398  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12399
12400  // Calls into a routine in libgcc to allocate more space from the heap.
12401  const uint32_t *RegMask =
12402    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12403  if (Is64Bit) {
12404    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12405      .addReg(sizeVReg);
12406    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12407      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12408      .addRegMask(RegMask)
12409      .addReg(X86::RAX, RegState::ImplicitDefine);
12410  } else {
12411    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12412      .addImm(12);
12413    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12414    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12415      .addExternalSymbol("__morestack_allocate_stack_space")
12416      .addRegMask(RegMask)
12417      .addReg(X86::EAX, RegState::ImplicitDefine);
12418  }
12419
12420  if (!Is64Bit)
12421    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12422      .addImm(16);
12423
12424  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12425    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12426  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12427
12428  // Set up the CFG correctly.
12429  BB->addSuccessor(bumpMBB);
12430  BB->addSuccessor(mallocMBB);
12431  mallocMBB->addSuccessor(continueMBB);
12432  bumpMBB->addSuccessor(continueMBB);
12433
12434  // Take care of the PHI nodes.
12435  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12436          MI->getOperand(0).getReg())
12437    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12438    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12439
12440  // Delete the original pseudo instruction.
12441  MI->eraseFromParent();
12442
12443  // And we're done.
12444  return continueMBB;
12445}
12446
12447MachineBasicBlock *
12448X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12449                                          MachineBasicBlock *BB) const {
12450  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12451  DebugLoc DL = MI->getDebugLoc();
12452
12453  assert(!Subtarget->isTargetEnvMacho());
12454
12455  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12456  // non-trivial part is impdef of ESP.
12457
12458  if (Subtarget->isTargetWin64()) {
12459    if (Subtarget->isTargetCygMing()) {
12460      // ___chkstk(Mingw64):
12461      // Clobbers R10, R11, RAX and EFLAGS.
12462      // Updates RSP.
12463      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12464        .addExternalSymbol("___chkstk")
12465        .addReg(X86::RAX, RegState::Implicit)
12466        .addReg(X86::RSP, RegState::Implicit)
12467        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12468        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12469        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12470    } else {
12471      // __chkstk(MSVCRT): does not update stack pointer.
12472      // Clobbers R10, R11 and EFLAGS.
12473      // FIXME: RAX(allocated size) might be reused and not killed.
12474      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12475        .addExternalSymbol("__chkstk")
12476        .addReg(X86::RAX, RegState::Implicit)
12477        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12478      // RAX has the offset to subtracted from RSP.
12479      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12480        .addReg(X86::RSP)
12481        .addReg(X86::RAX);
12482    }
12483  } else {
12484    const char *StackProbeSymbol =
12485      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12486
12487    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12488      .addExternalSymbol(StackProbeSymbol)
12489      .addReg(X86::EAX, RegState::Implicit)
12490      .addReg(X86::ESP, RegState::Implicit)
12491      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12492      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12493      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12494  }
12495
12496  MI->eraseFromParent();   // The pseudo instruction is gone now.
12497  return BB;
12498}
12499
12500MachineBasicBlock *
12501X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12502                                      MachineBasicBlock *BB) const {
12503  // This is pretty easy.  We're taking the value that we received from
12504  // our load from the relocation, sticking it in either RDI (x86-64)
12505  // or EAX and doing an indirect call.  The return value will then
12506  // be in the normal return register.
12507  const X86InstrInfo *TII
12508    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12509  DebugLoc DL = MI->getDebugLoc();
12510  MachineFunction *F = BB->getParent();
12511
12512  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12513  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12514
12515  // Get a register mask for the lowered call.
12516  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12517  // proper register mask.
12518  const uint32_t *RegMask =
12519    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12520  if (Subtarget->is64Bit()) {
12521    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12522                                      TII->get(X86::MOV64rm), X86::RDI)
12523    .addReg(X86::RIP)
12524    .addImm(0).addReg(0)
12525    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12526                      MI->getOperand(3).getTargetFlags())
12527    .addReg(0);
12528    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12529    addDirectMem(MIB, X86::RDI);
12530    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12531  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12532    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12533                                      TII->get(X86::MOV32rm), X86::EAX)
12534    .addReg(0)
12535    .addImm(0).addReg(0)
12536    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12537                      MI->getOperand(3).getTargetFlags())
12538    .addReg(0);
12539    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12540    addDirectMem(MIB, X86::EAX);
12541    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12542  } else {
12543    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12544                                      TII->get(X86::MOV32rm), X86::EAX)
12545    .addReg(TII->getGlobalBaseReg(F))
12546    .addImm(0).addReg(0)
12547    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12548                      MI->getOperand(3).getTargetFlags())
12549    .addReg(0);
12550    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12551    addDirectMem(MIB, X86::EAX);
12552    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12553  }
12554
12555  MI->eraseFromParent(); // The pseudo instruction is gone now.
12556  return BB;
12557}
12558
12559MachineBasicBlock *
12560X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12561                                               MachineBasicBlock *BB) const {
12562  switch (MI->getOpcode()) {
12563  default: llvm_unreachable("Unexpected instr type to insert");
12564  case X86::TAILJMPd64:
12565  case X86::TAILJMPr64:
12566  case X86::TAILJMPm64:
12567    llvm_unreachable("TAILJMP64 would not be touched here.");
12568  case X86::TCRETURNdi64:
12569  case X86::TCRETURNri64:
12570  case X86::TCRETURNmi64:
12571    return BB;
12572  case X86::WIN_ALLOCA:
12573    return EmitLoweredWinAlloca(MI, BB);
12574  case X86::SEG_ALLOCA_32:
12575    return EmitLoweredSegAlloca(MI, BB, false);
12576  case X86::SEG_ALLOCA_64:
12577    return EmitLoweredSegAlloca(MI, BB, true);
12578  case X86::TLSCall_32:
12579  case X86::TLSCall_64:
12580    return EmitLoweredTLSCall(MI, BB);
12581  case X86::CMOV_GR8:
12582  case X86::CMOV_FR32:
12583  case X86::CMOV_FR64:
12584  case X86::CMOV_V4F32:
12585  case X86::CMOV_V2F64:
12586  case X86::CMOV_V2I64:
12587  case X86::CMOV_V8F32:
12588  case X86::CMOV_V4F64:
12589  case X86::CMOV_V4I64:
12590  case X86::CMOV_GR16:
12591  case X86::CMOV_GR32:
12592  case X86::CMOV_RFP32:
12593  case X86::CMOV_RFP64:
12594  case X86::CMOV_RFP80:
12595    return EmitLoweredSelect(MI, BB);
12596
12597  case X86::FP32_TO_INT16_IN_MEM:
12598  case X86::FP32_TO_INT32_IN_MEM:
12599  case X86::FP32_TO_INT64_IN_MEM:
12600  case X86::FP64_TO_INT16_IN_MEM:
12601  case X86::FP64_TO_INT32_IN_MEM:
12602  case X86::FP64_TO_INT64_IN_MEM:
12603  case X86::FP80_TO_INT16_IN_MEM:
12604  case X86::FP80_TO_INT32_IN_MEM:
12605  case X86::FP80_TO_INT64_IN_MEM: {
12606    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12607    DebugLoc DL = MI->getDebugLoc();
12608
12609    // Change the floating point control register to use "round towards zero"
12610    // mode when truncating to an integer value.
12611    MachineFunction *F = BB->getParent();
12612    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12613    addFrameReference(BuildMI(*BB, MI, DL,
12614                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12615
12616    // Load the old value of the high byte of the control word...
12617    unsigned OldCW =
12618      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
12619    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12620                      CWFrameIdx);
12621
12622    // Set the high part to be round to zero...
12623    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12624      .addImm(0xC7F);
12625
12626    // Reload the modified control word now...
12627    addFrameReference(BuildMI(*BB, MI, DL,
12628                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12629
12630    // Restore the memory image of control word to original value
12631    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12632      .addReg(OldCW);
12633
12634    // Get the X86 opcode to use.
12635    unsigned Opc;
12636    switch (MI->getOpcode()) {
12637    default: llvm_unreachable("illegal opcode!");
12638    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12639    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12640    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12641    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12642    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12643    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12644    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12645    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12646    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12647    }
12648
12649    X86AddressMode AM;
12650    MachineOperand &Op = MI->getOperand(0);
12651    if (Op.isReg()) {
12652      AM.BaseType = X86AddressMode::RegBase;
12653      AM.Base.Reg = Op.getReg();
12654    } else {
12655      AM.BaseType = X86AddressMode::FrameIndexBase;
12656      AM.Base.FrameIndex = Op.getIndex();
12657    }
12658    Op = MI->getOperand(1);
12659    if (Op.isImm())
12660      AM.Scale = Op.getImm();
12661    Op = MI->getOperand(2);
12662    if (Op.isImm())
12663      AM.IndexReg = Op.getImm();
12664    Op = MI->getOperand(3);
12665    if (Op.isGlobal()) {
12666      AM.GV = Op.getGlobal();
12667    } else {
12668      AM.Disp = Op.getImm();
12669    }
12670    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12671                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12672
12673    // Reload the original control word now.
12674    addFrameReference(BuildMI(*BB, MI, DL,
12675                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12676
12677    MI->eraseFromParent();   // The pseudo instruction is gone now.
12678    return BB;
12679  }
12680    // String/text processing lowering.
12681  case X86::PCMPISTRM128REG:
12682  case X86::VPCMPISTRM128REG:
12683    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12684  case X86::PCMPISTRM128MEM:
12685  case X86::VPCMPISTRM128MEM:
12686    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12687  case X86::PCMPESTRM128REG:
12688  case X86::VPCMPESTRM128REG:
12689    return EmitPCMP(MI, BB, 5, false /* in mem */);
12690  case X86::PCMPESTRM128MEM:
12691  case X86::VPCMPESTRM128MEM:
12692    return EmitPCMP(MI, BB, 5, true /* in mem */);
12693
12694    // Thread synchronization.
12695  case X86::MONITOR:
12696    return EmitMonitor(MI, BB);
12697  case X86::MWAIT:
12698    return EmitMwait(MI, BB);
12699
12700    // Atomic Lowering.
12701  case X86::ATOMAND32:
12702    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12703                                               X86::AND32ri, X86::MOV32rm,
12704                                               X86::LCMPXCHG32,
12705                                               X86::NOT32r, X86::EAX,
12706                                               &X86::GR32RegClass);
12707  case X86::ATOMOR32:
12708    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12709                                               X86::OR32ri, X86::MOV32rm,
12710                                               X86::LCMPXCHG32,
12711                                               X86::NOT32r, X86::EAX,
12712                                               &X86::GR32RegClass);
12713  case X86::ATOMXOR32:
12714    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12715                                               X86::XOR32ri, X86::MOV32rm,
12716                                               X86::LCMPXCHG32,
12717                                               X86::NOT32r, X86::EAX,
12718                                               &X86::GR32RegClass);
12719  case X86::ATOMNAND32:
12720    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12721                                               X86::AND32ri, X86::MOV32rm,
12722                                               X86::LCMPXCHG32,
12723                                               X86::NOT32r, X86::EAX,
12724                                               &X86::GR32RegClass, true);
12725  case X86::ATOMMIN32:
12726    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12727  case X86::ATOMMAX32:
12728    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12729  case X86::ATOMUMIN32:
12730    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12731  case X86::ATOMUMAX32:
12732    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12733
12734  case X86::ATOMAND16:
12735    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12736                                               X86::AND16ri, X86::MOV16rm,
12737                                               X86::LCMPXCHG16,
12738                                               X86::NOT16r, X86::AX,
12739                                               &X86::GR16RegClass);
12740  case X86::ATOMOR16:
12741    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12742                                               X86::OR16ri, X86::MOV16rm,
12743                                               X86::LCMPXCHG16,
12744                                               X86::NOT16r, X86::AX,
12745                                               &X86::GR16RegClass);
12746  case X86::ATOMXOR16:
12747    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12748                                               X86::XOR16ri, X86::MOV16rm,
12749                                               X86::LCMPXCHG16,
12750                                               X86::NOT16r, X86::AX,
12751                                               &X86::GR16RegClass);
12752  case X86::ATOMNAND16:
12753    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12754                                               X86::AND16ri, X86::MOV16rm,
12755                                               X86::LCMPXCHG16,
12756                                               X86::NOT16r, X86::AX,
12757                                               &X86::GR16RegClass, true);
12758  case X86::ATOMMIN16:
12759    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12760  case X86::ATOMMAX16:
12761    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12762  case X86::ATOMUMIN16:
12763    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12764  case X86::ATOMUMAX16:
12765    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12766
12767  case X86::ATOMAND8:
12768    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12769                                               X86::AND8ri, X86::MOV8rm,
12770                                               X86::LCMPXCHG8,
12771                                               X86::NOT8r, X86::AL,
12772                                               &X86::GR8RegClass);
12773  case X86::ATOMOR8:
12774    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12775                                               X86::OR8ri, X86::MOV8rm,
12776                                               X86::LCMPXCHG8,
12777                                               X86::NOT8r, X86::AL,
12778                                               &X86::GR8RegClass);
12779  case X86::ATOMXOR8:
12780    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12781                                               X86::XOR8ri, X86::MOV8rm,
12782                                               X86::LCMPXCHG8,
12783                                               X86::NOT8r, X86::AL,
12784                                               &X86::GR8RegClass);
12785  case X86::ATOMNAND8:
12786    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12787                                               X86::AND8ri, X86::MOV8rm,
12788                                               X86::LCMPXCHG8,
12789                                               X86::NOT8r, X86::AL,
12790                                               &X86::GR8RegClass, true);
12791  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12792  // This group is for 64-bit host.
12793  case X86::ATOMAND64:
12794    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12795                                               X86::AND64ri32, X86::MOV64rm,
12796                                               X86::LCMPXCHG64,
12797                                               X86::NOT64r, X86::RAX,
12798                                               &X86::GR64RegClass);
12799  case X86::ATOMOR64:
12800    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12801                                               X86::OR64ri32, X86::MOV64rm,
12802                                               X86::LCMPXCHG64,
12803                                               X86::NOT64r, X86::RAX,
12804                                               &X86::GR64RegClass);
12805  case X86::ATOMXOR64:
12806    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12807                                               X86::XOR64ri32, X86::MOV64rm,
12808                                               X86::LCMPXCHG64,
12809                                               X86::NOT64r, X86::RAX,
12810                                               &X86::GR64RegClass);
12811  case X86::ATOMNAND64:
12812    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12813                                               X86::AND64ri32, X86::MOV64rm,
12814                                               X86::LCMPXCHG64,
12815                                               X86::NOT64r, X86::RAX,
12816                                               &X86::GR64RegClass, true);
12817  case X86::ATOMMIN64:
12818    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12819  case X86::ATOMMAX64:
12820    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12821  case X86::ATOMUMIN64:
12822    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12823  case X86::ATOMUMAX64:
12824    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12825
12826  // This group does 64-bit operations on a 32-bit host.
12827  case X86::ATOMAND6432:
12828    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12829                                               X86::AND32rr, X86::AND32rr,
12830                                               X86::AND32ri, X86::AND32ri,
12831                                               false);
12832  case X86::ATOMOR6432:
12833    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12834                                               X86::OR32rr, X86::OR32rr,
12835                                               X86::OR32ri, X86::OR32ri,
12836                                               false);
12837  case X86::ATOMXOR6432:
12838    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12839                                               X86::XOR32rr, X86::XOR32rr,
12840                                               X86::XOR32ri, X86::XOR32ri,
12841                                               false);
12842  case X86::ATOMNAND6432:
12843    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12844                                               X86::AND32rr, X86::AND32rr,
12845                                               X86::AND32ri, X86::AND32ri,
12846                                               true);
12847  case X86::ATOMADD6432:
12848    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12849                                               X86::ADD32rr, X86::ADC32rr,
12850                                               X86::ADD32ri, X86::ADC32ri,
12851                                               false);
12852  case X86::ATOMSUB6432:
12853    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12854                                               X86::SUB32rr, X86::SBB32rr,
12855                                               X86::SUB32ri, X86::SBB32ri,
12856                                               false);
12857  case X86::ATOMSWAP6432:
12858    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12859                                               X86::MOV32rr, X86::MOV32rr,
12860                                               X86::MOV32ri, X86::MOV32ri,
12861                                               false);
12862  case X86::VASTART_SAVE_XMM_REGS:
12863    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12864
12865  case X86::VAARG_64:
12866    return EmitVAARG64WithCustomInserter(MI, BB);
12867  }
12868}
12869
12870//===----------------------------------------------------------------------===//
12871//                           X86 Optimization Hooks
12872//===----------------------------------------------------------------------===//
12873
12874void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12875                                                       APInt &KnownZero,
12876                                                       APInt &KnownOne,
12877                                                       const SelectionDAG &DAG,
12878                                                       unsigned Depth) const {
12879  unsigned BitWidth = KnownZero.getBitWidth();
12880  unsigned Opc = Op.getOpcode();
12881  assert((Opc >= ISD::BUILTIN_OP_END ||
12882          Opc == ISD::INTRINSIC_WO_CHAIN ||
12883          Opc == ISD::INTRINSIC_W_CHAIN ||
12884          Opc == ISD::INTRINSIC_VOID) &&
12885         "Should use MaskedValueIsZero if you don't know whether Op"
12886         " is a target node!");
12887
12888  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12889  switch (Opc) {
12890  default: break;
12891  case X86ISD::ADD:
12892  case X86ISD::SUB:
12893  case X86ISD::ADC:
12894  case X86ISD::SBB:
12895  case X86ISD::SMUL:
12896  case X86ISD::UMUL:
12897  case X86ISD::INC:
12898  case X86ISD::DEC:
12899  case X86ISD::OR:
12900  case X86ISD::XOR:
12901  case X86ISD::AND:
12902    // These nodes' second result is a boolean.
12903    if (Op.getResNo() == 0)
12904      break;
12905    // Fallthrough
12906  case X86ISD::SETCC:
12907    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12908    break;
12909  case ISD::INTRINSIC_WO_CHAIN: {
12910    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12911    unsigned NumLoBits = 0;
12912    switch (IntId) {
12913    default: break;
12914    case Intrinsic::x86_sse_movmsk_ps:
12915    case Intrinsic::x86_avx_movmsk_ps_256:
12916    case Intrinsic::x86_sse2_movmsk_pd:
12917    case Intrinsic::x86_avx_movmsk_pd_256:
12918    case Intrinsic::x86_mmx_pmovmskb:
12919    case Intrinsic::x86_sse2_pmovmskb_128:
12920    case Intrinsic::x86_avx2_pmovmskb: {
12921      // High bits of movmskp{s|d}, pmovmskb are known zero.
12922      switch (IntId) {
12923        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12924        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12925        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12926        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12927        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12928        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12929        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12930        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12931      }
12932      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12933      break;
12934    }
12935    }
12936    break;
12937  }
12938  }
12939}
12940
12941unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12942                                                         unsigned Depth) const {
12943  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12944  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12945    return Op.getValueType().getScalarType().getSizeInBits();
12946
12947  // Fallback case.
12948  return 1;
12949}
12950
12951/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12952/// node is a GlobalAddress + offset.
12953bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12954                                       const GlobalValue* &GA,
12955                                       int64_t &Offset) const {
12956  if (N->getOpcode() == X86ISD::Wrapper) {
12957    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12958      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12959      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12960      return true;
12961    }
12962  }
12963  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12964}
12965
12966/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12967/// same as extracting the high 128-bit part of 256-bit vector and then
12968/// inserting the result into the low part of a new 256-bit vector
12969static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12970  EVT VT = SVOp->getValueType(0);
12971  unsigned NumElems = VT.getVectorNumElements();
12972
12973  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12974  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
12975    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12976        SVOp->getMaskElt(j) >= 0)
12977      return false;
12978
12979  return true;
12980}
12981
12982/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12983/// same as extracting the low 128-bit part of 256-bit vector and then
12984/// inserting the result into the high part of a new 256-bit vector
12985static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12986  EVT VT = SVOp->getValueType(0);
12987  unsigned NumElems = VT.getVectorNumElements();
12988
12989  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12990  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
12991    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12992        SVOp->getMaskElt(j) >= 0)
12993      return false;
12994
12995  return true;
12996}
12997
12998/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12999static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13000                                        TargetLowering::DAGCombinerInfo &DCI,
13001                                        const X86Subtarget* Subtarget) {
13002  DebugLoc dl = N->getDebugLoc();
13003  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13004  SDValue V1 = SVOp->getOperand(0);
13005  SDValue V2 = SVOp->getOperand(1);
13006  EVT VT = SVOp->getValueType(0);
13007  unsigned NumElems = VT.getVectorNumElements();
13008
13009  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13010      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13011    //
13012    //                   0,0,0,...
13013    //                      |
13014    //    V      UNDEF    BUILD_VECTOR    UNDEF
13015    //     \      /           \           /
13016    //  CONCAT_VECTOR         CONCAT_VECTOR
13017    //         \                  /
13018    //          \                /
13019    //          RESULT: V + zero extended
13020    //
13021    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13022        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13023        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13024      return SDValue();
13025
13026    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13027      return SDValue();
13028
13029    // To match the shuffle mask, the first half of the mask should
13030    // be exactly the first vector, and all the rest a splat with the
13031    // first element of the second one.
13032    for (unsigned i = 0; i != NumElems/2; ++i)
13033      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13034          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13035        return SDValue();
13036
13037    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13038    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13039      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13040      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13041      SDValue ResNode =
13042        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13043                                Ld->getMemoryVT(),
13044                                Ld->getPointerInfo(),
13045                                Ld->getAlignment(),
13046                                false/*isVolatile*/, true/*ReadMem*/,
13047                                false/*WriteMem*/);
13048      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13049    }
13050
13051    // Emit a zeroed vector and insert the desired subvector on its
13052    // first half.
13053    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13054    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13055    return DCI.CombineTo(N, InsV);
13056  }
13057
13058  //===--------------------------------------------------------------------===//
13059  // Combine some shuffles into subvector extracts and inserts:
13060  //
13061
13062  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13063  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13064    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13065    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13066    return DCI.CombineTo(N, InsV);
13067  }
13068
13069  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13070  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13071    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13072    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13073    return DCI.CombineTo(N, InsV);
13074  }
13075
13076  return SDValue();
13077}
13078
13079/// PerformShuffleCombine - Performs several different shuffle combines.
13080static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13081                                     TargetLowering::DAGCombinerInfo &DCI,
13082                                     const X86Subtarget *Subtarget) {
13083  DebugLoc dl = N->getDebugLoc();
13084  EVT VT = N->getValueType(0);
13085
13086  // Don't create instructions with illegal types after legalize types has run.
13087  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13088  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13089    return SDValue();
13090
13091  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13092  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
13093      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13094    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13095
13096  // Only handle 128 wide vector from here on.
13097  if (VT.getSizeInBits() != 128)
13098    return SDValue();
13099
13100  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13101  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13102  // consecutive, non-overlapping, and in the right order.
13103  SmallVector<SDValue, 16> Elts;
13104  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13105    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13106
13107  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13108}
13109
13110
13111/// DCI, PerformTruncateCombine - Converts truncate operation to
13112/// a sequence of vector shuffle operations.
13113/// It is possible when we truncate 256-bit vector to 128-bit vector
13114
13115SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13116                                                  DAGCombinerInfo &DCI) const {
13117  if (!DCI.isBeforeLegalizeOps())
13118    return SDValue();
13119
13120  if (!Subtarget->hasAVX())
13121    return SDValue();
13122
13123  EVT VT = N->getValueType(0);
13124  SDValue Op = N->getOperand(0);
13125  EVT OpVT = Op.getValueType();
13126  DebugLoc dl = N->getDebugLoc();
13127
13128  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13129
13130    if (Subtarget->hasAVX2()) {
13131      // AVX2: v4i64 -> v4i32
13132
13133      // VPERMD
13134      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13135
13136      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13137      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13138                                ShufMask);
13139
13140      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13141                         DAG.getIntPtrConstant(0));
13142    }
13143
13144    // AVX: v4i64 -> v4i32
13145    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13146                               DAG.getIntPtrConstant(0));
13147
13148    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13149                               DAG.getIntPtrConstant(2));
13150
13151    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13152    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13153
13154    // PSHUFD
13155    static const int ShufMask1[] = {0, 2, 0, 0};
13156
13157    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT), ShufMask1);
13158    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT), ShufMask1);
13159
13160    // MOVLHPS
13161    static const int ShufMask2[] = {0, 1, 4, 5};
13162
13163    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13164  }
13165
13166  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13167
13168    if (Subtarget->hasAVX2()) {
13169      // AVX2: v8i32 -> v8i16
13170
13171      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13172
13173      // PSHUFB
13174      SmallVector<SDValue,32> pshufbMask;
13175      for (unsigned i = 0; i < 2; ++i) {
13176        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13177        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13178        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13179        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13180        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13181        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13182        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13183        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13184        for (unsigned j = 0; j < 8; ++j)
13185          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13186      }
13187      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13188                               &pshufbMask[0], 32);
13189      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13190
13191      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13192
13193      static const int ShufMask[] = {0,  2,  -1,  -1};
13194      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13195                                &ShufMask[0]);
13196
13197      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13198                       DAG.getIntPtrConstant(0));
13199
13200      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13201    }
13202
13203    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13204                               DAG.getIntPtrConstant(0));
13205
13206    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13207                               DAG.getIntPtrConstant(4));
13208
13209    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13210    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13211
13212    // PSHUFB
13213    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13214                                   -1, -1, -1, -1, -1, -1, -1, -1};
13215
13216    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, DAG.getUNDEF(MVT::v16i8),
13217                                ShufMask1);
13218    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, DAG.getUNDEF(MVT::v16i8),
13219                                ShufMask1);
13220
13221    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13222    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13223
13224    // MOVLHPS
13225    static const int ShufMask2[] = {0, 1, 4, 5};
13226
13227    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13228    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13229  }
13230
13231  return SDValue();
13232}
13233
13234/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13235/// specific shuffle of a load can be folded into a single element load.
13236/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13237/// shuffles have been customed lowered so we need to handle those here.
13238static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13239                                         TargetLowering::DAGCombinerInfo &DCI) {
13240  if (DCI.isBeforeLegalizeOps())
13241    return SDValue();
13242
13243  SDValue InVec = N->getOperand(0);
13244  SDValue EltNo = N->getOperand(1);
13245
13246  if (!isa<ConstantSDNode>(EltNo))
13247    return SDValue();
13248
13249  EVT VT = InVec.getValueType();
13250
13251  bool HasShuffleIntoBitcast = false;
13252  if (InVec.getOpcode() == ISD::BITCAST) {
13253    // Don't duplicate a load with other uses.
13254    if (!InVec.hasOneUse())
13255      return SDValue();
13256    EVT BCVT = InVec.getOperand(0).getValueType();
13257    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13258      return SDValue();
13259    InVec = InVec.getOperand(0);
13260    HasShuffleIntoBitcast = true;
13261  }
13262
13263  if (!isTargetShuffle(InVec.getOpcode()))
13264    return SDValue();
13265
13266  // Don't duplicate a load with other uses.
13267  if (!InVec.hasOneUse())
13268    return SDValue();
13269
13270  SmallVector<int, 16> ShuffleMask;
13271  bool UnaryShuffle;
13272  if (!getTargetShuffleMask(InVec.getNode(), VT, ShuffleMask, UnaryShuffle))
13273    return SDValue();
13274
13275  // Select the input vector, guarding against out of range extract vector.
13276  unsigned NumElems = VT.getVectorNumElements();
13277  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13278  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13279  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13280                                         : InVec.getOperand(1);
13281
13282  // If inputs to shuffle are the same for both ops, then allow 2 uses
13283  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13284
13285  if (LdNode.getOpcode() == ISD::BITCAST) {
13286    // Don't duplicate a load with other uses.
13287    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13288      return SDValue();
13289
13290    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13291    LdNode = LdNode.getOperand(0);
13292  }
13293
13294  if (!ISD::isNormalLoad(LdNode.getNode()))
13295    return SDValue();
13296
13297  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13298
13299  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13300    return SDValue();
13301
13302  if (HasShuffleIntoBitcast) {
13303    // If there's a bitcast before the shuffle, check if the load type and
13304    // alignment is valid.
13305    unsigned Align = LN0->getAlignment();
13306    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13307    unsigned NewAlign = TLI.getTargetData()->
13308      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13309
13310    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13311      return SDValue();
13312  }
13313
13314  // All checks match so transform back to vector_shuffle so that DAG combiner
13315  // can finish the job
13316  DebugLoc dl = N->getDebugLoc();
13317
13318  // Create shuffle node taking into account the case that its a unary shuffle
13319  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13320  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13321                                 InVec.getOperand(0), Shuffle,
13322                                 &ShuffleMask[0]);
13323  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13324  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13325                     EltNo);
13326}
13327
13328/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13329/// generation and convert it from being a bunch of shuffles and extracts
13330/// to a simple store and scalar loads to extract the elements.
13331static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13332                                         TargetLowering::DAGCombinerInfo &DCI) {
13333  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13334  if (NewOp.getNode())
13335    return NewOp;
13336
13337  SDValue InputVector = N->getOperand(0);
13338
13339  // Only operate on vectors of 4 elements, where the alternative shuffling
13340  // gets to be more expensive.
13341  if (InputVector.getValueType() != MVT::v4i32)
13342    return SDValue();
13343
13344  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13345  // single use which is a sign-extend or zero-extend, and all elements are
13346  // used.
13347  SmallVector<SDNode *, 4> Uses;
13348  unsigned ExtractedElements = 0;
13349  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13350       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13351    if (UI.getUse().getResNo() != InputVector.getResNo())
13352      return SDValue();
13353
13354    SDNode *Extract = *UI;
13355    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13356      return SDValue();
13357
13358    if (Extract->getValueType(0) != MVT::i32)
13359      return SDValue();
13360    if (!Extract->hasOneUse())
13361      return SDValue();
13362    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13363        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13364      return SDValue();
13365    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13366      return SDValue();
13367
13368    // Record which element was extracted.
13369    ExtractedElements |=
13370      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13371
13372    Uses.push_back(Extract);
13373  }
13374
13375  // If not all the elements were used, this may not be worthwhile.
13376  if (ExtractedElements != 15)
13377    return SDValue();
13378
13379  // Ok, we've now decided to do the transformation.
13380  DebugLoc dl = InputVector.getDebugLoc();
13381
13382  // Store the value to a temporary stack slot.
13383  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13384  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13385                            MachinePointerInfo(), false, false, 0);
13386
13387  // Replace each use (extract) with a load of the appropriate element.
13388  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13389       UE = Uses.end(); UI != UE; ++UI) {
13390    SDNode *Extract = *UI;
13391
13392    // cOMpute the element's address.
13393    SDValue Idx = Extract->getOperand(1);
13394    unsigned EltSize =
13395        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13396    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13397    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13398    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13399
13400    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13401                                     StackPtr, OffsetVal);
13402
13403    // Load the scalar.
13404    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13405                                     ScalarAddr, MachinePointerInfo(),
13406                                     false, false, false, 0);
13407
13408    // Replace the exact with the load.
13409    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13410  }
13411
13412  // The replacement was made in place; don't return anything.
13413  return SDValue();
13414}
13415
13416/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13417/// nodes.
13418static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13419                                    TargetLowering::DAGCombinerInfo &DCI,
13420                                    const X86Subtarget *Subtarget) {
13421
13422
13423  DebugLoc DL = N->getDebugLoc();
13424  SDValue Cond = N->getOperand(0);
13425  // Get the LHS/RHS of the select.
13426  SDValue LHS = N->getOperand(1);
13427  SDValue RHS = N->getOperand(2);
13428  EVT VT = LHS.getValueType();
13429
13430  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13431  // instructions match the semantics of the common C idiom x<y?x:y but not
13432  // x<=y?x:y, because of how they handle negative zero (which can be
13433  // ignored in unsafe-math mode).
13434  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13435      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13436      (Subtarget->hasSSE2() ||
13437       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13438    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13439
13440    unsigned Opcode = 0;
13441    // Check for x CC y ? x : y.
13442    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13443        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13444      switch (CC) {
13445      default: break;
13446      case ISD::SETULT:
13447        // Converting this to a min would handle NaNs incorrectly, and swapping
13448        // the operands would cause it to handle comparisons between positive
13449        // and negative zero incorrectly.
13450        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13451          if (!DAG.getTarget().Options.UnsafeFPMath &&
13452              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13453            break;
13454          std::swap(LHS, RHS);
13455        }
13456        Opcode = X86ISD::FMIN;
13457        break;
13458      case ISD::SETOLE:
13459        // Converting this to a min would handle comparisons between positive
13460        // and negative zero incorrectly.
13461        if (!DAG.getTarget().Options.UnsafeFPMath &&
13462            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13463          break;
13464        Opcode = X86ISD::FMIN;
13465        break;
13466      case ISD::SETULE:
13467        // Converting this to a min would handle both negative zeros and NaNs
13468        // incorrectly, but we can swap the operands to fix both.
13469        std::swap(LHS, RHS);
13470      case ISD::SETOLT:
13471      case ISD::SETLT:
13472      case ISD::SETLE:
13473        Opcode = X86ISD::FMIN;
13474        break;
13475
13476      case ISD::SETOGE:
13477        // Converting this to a max would handle comparisons between positive
13478        // and negative zero incorrectly.
13479        if (!DAG.getTarget().Options.UnsafeFPMath &&
13480            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13481          break;
13482        Opcode = X86ISD::FMAX;
13483        break;
13484      case ISD::SETUGT:
13485        // Converting this to a max would handle NaNs incorrectly, and swapping
13486        // the operands would cause it to handle comparisons between positive
13487        // and negative zero incorrectly.
13488        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13489          if (!DAG.getTarget().Options.UnsafeFPMath &&
13490              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13491            break;
13492          std::swap(LHS, RHS);
13493        }
13494        Opcode = X86ISD::FMAX;
13495        break;
13496      case ISD::SETUGE:
13497        // Converting this to a max would handle both negative zeros and NaNs
13498        // incorrectly, but we can swap the operands to fix both.
13499        std::swap(LHS, RHS);
13500      case ISD::SETOGT:
13501      case ISD::SETGT:
13502      case ISD::SETGE:
13503        Opcode = X86ISD::FMAX;
13504        break;
13505      }
13506    // Check for x CC y ? y : x -- a min/max with reversed arms.
13507    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13508               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13509      switch (CC) {
13510      default: break;
13511      case ISD::SETOGE:
13512        // Converting this to a min would handle comparisons between positive
13513        // and negative zero incorrectly, and swapping the operands would
13514        // cause it to handle NaNs incorrectly.
13515        if (!DAG.getTarget().Options.UnsafeFPMath &&
13516            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13517          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13518            break;
13519          std::swap(LHS, RHS);
13520        }
13521        Opcode = X86ISD::FMIN;
13522        break;
13523      case ISD::SETUGT:
13524        // Converting this to a min would handle NaNs incorrectly.
13525        if (!DAG.getTarget().Options.UnsafeFPMath &&
13526            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13527          break;
13528        Opcode = X86ISD::FMIN;
13529        break;
13530      case ISD::SETUGE:
13531        // Converting this to a min would handle both negative zeros and NaNs
13532        // incorrectly, but we can swap the operands to fix both.
13533        std::swap(LHS, RHS);
13534      case ISD::SETOGT:
13535      case ISD::SETGT:
13536      case ISD::SETGE:
13537        Opcode = X86ISD::FMIN;
13538        break;
13539
13540      case ISD::SETULT:
13541        // Converting this to a max would handle NaNs incorrectly.
13542        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13543          break;
13544        Opcode = X86ISD::FMAX;
13545        break;
13546      case ISD::SETOLE:
13547        // Converting this to a max would handle comparisons between positive
13548        // and negative zero incorrectly, and swapping the operands would
13549        // cause it to handle NaNs incorrectly.
13550        if (!DAG.getTarget().Options.UnsafeFPMath &&
13551            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13552          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13553            break;
13554          std::swap(LHS, RHS);
13555        }
13556        Opcode = X86ISD::FMAX;
13557        break;
13558      case ISD::SETULE:
13559        // Converting this to a max would handle both negative zeros and NaNs
13560        // incorrectly, but we can swap the operands to fix both.
13561        std::swap(LHS, RHS);
13562      case ISD::SETOLT:
13563      case ISD::SETLT:
13564      case ISD::SETLE:
13565        Opcode = X86ISD::FMAX;
13566        break;
13567      }
13568    }
13569
13570    if (Opcode)
13571      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13572  }
13573
13574  // If this is a select between two integer constants, try to do some
13575  // optimizations.
13576  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13577    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13578      // Don't do this for crazy integer types.
13579      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13580        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13581        // so that TrueC (the true value) is larger than FalseC.
13582        bool NeedsCondInvert = false;
13583
13584        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13585            // Efficiently invertible.
13586            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13587             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13588              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13589          NeedsCondInvert = true;
13590          std::swap(TrueC, FalseC);
13591        }
13592
13593        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13594        if (FalseC->getAPIntValue() == 0 &&
13595            TrueC->getAPIntValue().isPowerOf2()) {
13596          if (NeedsCondInvert) // Invert the condition if needed.
13597            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13598                               DAG.getConstant(1, Cond.getValueType()));
13599
13600          // Zero extend the condition if needed.
13601          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13602
13603          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13604          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13605                             DAG.getConstant(ShAmt, MVT::i8));
13606        }
13607
13608        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13609        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13610          if (NeedsCondInvert) // Invert the condition if needed.
13611            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13612                               DAG.getConstant(1, Cond.getValueType()));
13613
13614          // Zero extend the condition if needed.
13615          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13616                             FalseC->getValueType(0), Cond);
13617          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13618                             SDValue(FalseC, 0));
13619        }
13620
13621        // Optimize cases that will turn into an LEA instruction.  This requires
13622        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13623        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13624          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13625          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13626
13627          bool isFastMultiplier = false;
13628          if (Diff < 10) {
13629            switch ((unsigned char)Diff) {
13630              default: break;
13631              case 1:  // result = add base, cond
13632              case 2:  // result = lea base(    , cond*2)
13633              case 3:  // result = lea base(cond, cond*2)
13634              case 4:  // result = lea base(    , cond*4)
13635              case 5:  // result = lea base(cond, cond*4)
13636              case 8:  // result = lea base(    , cond*8)
13637              case 9:  // result = lea base(cond, cond*8)
13638                isFastMultiplier = true;
13639                break;
13640            }
13641          }
13642
13643          if (isFastMultiplier) {
13644            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13645            if (NeedsCondInvert) // Invert the condition if needed.
13646              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13647                                 DAG.getConstant(1, Cond.getValueType()));
13648
13649            // Zero extend the condition if needed.
13650            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13651                               Cond);
13652            // Scale the condition by the difference.
13653            if (Diff != 1)
13654              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13655                                 DAG.getConstant(Diff, Cond.getValueType()));
13656
13657            // Add the base if non-zero.
13658            if (FalseC->getAPIntValue() != 0)
13659              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13660                                 SDValue(FalseC, 0));
13661            return Cond;
13662          }
13663        }
13664      }
13665  }
13666
13667  // Canonicalize max and min:
13668  // (x > y) ? x : y -> (x >= y) ? x : y
13669  // (x < y) ? x : y -> (x <= y) ? x : y
13670  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13671  // the need for an extra compare
13672  // against zero. e.g.
13673  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13674  // subl   %esi, %edi
13675  // testl  %edi, %edi
13676  // movl   $0, %eax
13677  // cmovgl %edi, %eax
13678  // =>
13679  // xorl   %eax, %eax
13680  // subl   %esi, $edi
13681  // cmovsl %eax, %edi
13682  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13683      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13684      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13685    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13686    switch (CC) {
13687    default: break;
13688    case ISD::SETLT:
13689    case ISD::SETGT: {
13690      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13691      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13692                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13693      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13694    }
13695    }
13696  }
13697
13698  // If we know that this node is legal then we know that it is going to be
13699  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13700  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13701  // to simplify previous instructions.
13702  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13703  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13704      !DCI.isBeforeLegalize() &&
13705      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13706    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13707    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13708    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13709
13710    APInt KnownZero, KnownOne;
13711    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13712                                          DCI.isBeforeLegalizeOps());
13713    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13714        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13715      DCI.CommitTargetLoweringOpt(TLO);
13716  }
13717
13718  return SDValue();
13719}
13720
13721/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13722static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13723                                  TargetLowering::DAGCombinerInfo &DCI) {
13724  DebugLoc DL = N->getDebugLoc();
13725
13726  // If the flag operand isn't dead, don't touch this CMOV.
13727  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13728    return SDValue();
13729
13730  SDValue FalseOp = N->getOperand(0);
13731  SDValue TrueOp = N->getOperand(1);
13732  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13733  SDValue Cond = N->getOperand(3);
13734  if (CC == X86::COND_E || CC == X86::COND_NE) {
13735    switch (Cond.getOpcode()) {
13736    default: break;
13737    case X86ISD::BSR:
13738    case X86ISD::BSF:
13739      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13740      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13741        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13742    }
13743  }
13744
13745  // If this is a select between two integer constants, try to do some
13746  // optimizations.  Note that the operands are ordered the opposite of SELECT
13747  // operands.
13748  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13749    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13750      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13751      // larger than FalseC (the false value).
13752      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13753        CC = X86::GetOppositeBranchCondition(CC);
13754        std::swap(TrueC, FalseC);
13755      }
13756
13757      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13758      // This is efficient for any integer data type (including i8/i16) and
13759      // shift amount.
13760      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13761        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13762                           DAG.getConstant(CC, MVT::i8), Cond);
13763
13764        // Zero extend the condition if needed.
13765        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13766
13767        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13768        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13769                           DAG.getConstant(ShAmt, MVT::i8));
13770        if (N->getNumValues() == 2)  // Dead flag value?
13771          return DCI.CombineTo(N, Cond, SDValue());
13772        return Cond;
13773      }
13774
13775      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13776      // for any integer data type, including i8/i16.
13777      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13778        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13779                           DAG.getConstant(CC, MVT::i8), Cond);
13780
13781        // Zero extend the condition if needed.
13782        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13783                           FalseC->getValueType(0), Cond);
13784        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13785                           SDValue(FalseC, 0));
13786
13787        if (N->getNumValues() == 2)  // Dead flag value?
13788          return DCI.CombineTo(N, Cond, SDValue());
13789        return Cond;
13790      }
13791
13792      // Optimize cases that will turn into an LEA instruction.  This requires
13793      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13794      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13795        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13796        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13797
13798        bool isFastMultiplier = false;
13799        if (Diff < 10) {
13800          switch ((unsigned char)Diff) {
13801          default: break;
13802          case 1:  // result = add base, cond
13803          case 2:  // result = lea base(    , cond*2)
13804          case 3:  // result = lea base(cond, cond*2)
13805          case 4:  // result = lea base(    , cond*4)
13806          case 5:  // result = lea base(cond, cond*4)
13807          case 8:  // result = lea base(    , cond*8)
13808          case 9:  // result = lea base(cond, cond*8)
13809            isFastMultiplier = true;
13810            break;
13811          }
13812        }
13813
13814        if (isFastMultiplier) {
13815          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13816          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13817                             DAG.getConstant(CC, MVT::i8), Cond);
13818          // Zero extend the condition if needed.
13819          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13820                             Cond);
13821          // Scale the condition by the difference.
13822          if (Diff != 1)
13823            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13824                               DAG.getConstant(Diff, Cond.getValueType()));
13825
13826          // Add the base if non-zero.
13827          if (FalseC->getAPIntValue() != 0)
13828            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13829                               SDValue(FalseC, 0));
13830          if (N->getNumValues() == 2)  // Dead flag value?
13831            return DCI.CombineTo(N, Cond, SDValue());
13832          return Cond;
13833        }
13834      }
13835    }
13836  }
13837  return SDValue();
13838}
13839
13840
13841/// PerformMulCombine - Optimize a single multiply with constant into two
13842/// in order to implement it with two cheaper instructions, e.g.
13843/// LEA + SHL, LEA + LEA.
13844static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13845                                 TargetLowering::DAGCombinerInfo &DCI) {
13846  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13847    return SDValue();
13848
13849  EVT VT = N->getValueType(0);
13850  if (VT != MVT::i64)
13851    return SDValue();
13852
13853  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13854  if (!C)
13855    return SDValue();
13856  uint64_t MulAmt = C->getZExtValue();
13857  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13858    return SDValue();
13859
13860  uint64_t MulAmt1 = 0;
13861  uint64_t MulAmt2 = 0;
13862  if ((MulAmt % 9) == 0) {
13863    MulAmt1 = 9;
13864    MulAmt2 = MulAmt / 9;
13865  } else if ((MulAmt % 5) == 0) {
13866    MulAmt1 = 5;
13867    MulAmt2 = MulAmt / 5;
13868  } else if ((MulAmt % 3) == 0) {
13869    MulAmt1 = 3;
13870    MulAmt2 = MulAmt / 3;
13871  }
13872  if (MulAmt2 &&
13873      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13874    DebugLoc DL = N->getDebugLoc();
13875
13876    if (isPowerOf2_64(MulAmt2) &&
13877        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13878      // If second multiplifer is pow2, issue it first. We want the multiply by
13879      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13880      // is an add.
13881      std::swap(MulAmt1, MulAmt2);
13882
13883    SDValue NewMul;
13884    if (isPowerOf2_64(MulAmt1))
13885      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13886                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13887    else
13888      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13889                           DAG.getConstant(MulAmt1, VT));
13890
13891    if (isPowerOf2_64(MulAmt2))
13892      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13893                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13894    else
13895      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13896                           DAG.getConstant(MulAmt2, VT));
13897
13898    // Do not add new nodes to DAG combiner worklist.
13899    DCI.CombineTo(N, NewMul, false);
13900  }
13901  return SDValue();
13902}
13903
13904static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13905  SDValue N0 = N->getOperand(0);
13906  SDValue N1 = N->getOperand(1);
13907  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13908  EVT VT = N0.getValueType();
13909
13910  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13911  // since the result of setcc_c is all zero's or all ones.
13912  if (VT.isInteger() && !VT.isVector() &&
13913      N1C && N0.getOpcode() == ISD::AND &&
13914      N0.getOperand(1).getOpcode() == ISD::Constant) {
13915    SDValue N00 = N0.getOperand(0);
13916    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13917        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13918          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13919         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13920      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13921      APInt ShAmt = N1C->getAPIntValue();
13922      Mask = Mask.shl(ShAmt);
13923      if (Mask != 0)
13924        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13925                           N00, DAG.getConstant(Mask, VT));
13926    }
13927  }
13928
13929
13930  // Hardware support for vector shifts is sparse which makes us scalarize the
13931  // vector operations in many cases. Also, on sandybridge ADD is faster than
13932  // shl.
13933  // (shl V, 1) -> add V,V
13934  if (isSplatVector(N1.getNode())) {
13935    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13936    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13937    // We shift all of the values by one. In many cases we do not have
13938    // hardware support for this operation. This is better expressed as an ADD
13939    // of two values.
13940    if (N1C && (1 == N1C->getZExtValue())) {
13941      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13942    }
13943  }
13944
13945  return SDValue();
13946}
13947
13948/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13949///                       when possible.
13950static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13951                                   TargetLowering::DAGCombinerInfo &DCI,
13952                                   const X86Subtarget *Subtarget) {
13953  EVT VT = N->getValueType(0);
13954  if (N->getOpcode() == ISD::SHL) {
13955    SDValue V = PerformSHLCombine(N, DAG);
13956    if (V.getNode()) return V;
13957  }
13958
13959  // On X86 with SSE2 support, we can transform this to a vector shift if
13960  // all elements are shifted by the same amount.  We can't do this in legalize
13961  // because the a constant vector is typically transformed to a constant pool
13962  // so we have no knowledge of the shift amount.
13963  if (!Subtarget->hasSSE2())
13964    return SDValue();
13965
13966  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13967      (!Subtarget->hasAVX2() ||
13968       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13969    return SDValue();
13970
13971  SDValue ShAmtOp = N->getOperand(1);
13972  EVT EltVT = VT.getVectorElementType();
13973  DebugLoc DL = N->getDebugLoc();
13974  SDValue BaseShAmt = SDValue();
13975  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13976    unsigned NumElts = VT.getVectorNumElements();
13977    unsigned i = 0;
13978    for (; i != NumElts; ++i) {
13979      SDValue Arg = ShAmtOp.getOperand(i);
13980      if (Arg.getOpcode() == ISD::UNDEF) continue;
13981      BaseShAmt = Arg;
13982      break;
13983    }
13984    // Handle the case where the build_vector is all undef
13985    // FIXME: Should DAG allow this?
13986    if (i == NumElts)
13987      return SDValue();
13988
13989    for (; i != NumElts; ++i) {
13990      SDValue Arg = ShAmtOp.getOperand(i);
13991      if (Arg.getOpcode() == ISD::UNDEF) continue;
13992      if (Arg != BaseShAmt) {
13993        return SDValue();
13994      }
13995    }
13996  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13997             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13998    SDValue InVec = ShAmtOp.getOperand(0);
13999    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
14000      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14001      unsigned i = 0;
14002      for (; i != NumElts; ++i) {
14003        SDValue Arg = InVec.getOperand(i);
14004        if (Arg.getOpcode() == ISD::UNDEF) continue;
14005        BaseShAmt = Arg;
14006        break;
14007      }
14008    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14009       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14010         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14011         if (C->getZExtValue() == SplatIdx)
14012           BaseShAmt = InVec.getOperand(1);
14013       }
14014    }
14015    if (BaseShAmt.getNode() == 0) {
14016      // Don't create instructions with illegal types after legalize
14017      // types has run.
14018      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14019          !DCI.isBeforeLegalize())
14020        return SDValue();
14021
14022      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14023                              DAG.getIntPtrConstant(0));
14024    }
14025  } else
14026    return SDValue();
14027
14028  // The shift amount is an i32.
14029  if (EltVT.bitsGT(MVT::i32))
14030    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14031  else if (EltVT.bitsLT(MVT::i32))
14032    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14033
14034  // The shift amount is identical so we can do a vector shift.
14035  SDValue  ValOp = N->getOperand(0);
14036  switch (N->getOpcode()) {
14037  default:
14038    llvm_unreachable("Unknown shift opcode!");
14039  case ISD::SHL:
14040    switch (VT.getSimpleVT().SimpleTy) {
14041    default: return SDValue();
14042    case MVT::v2i64:
14043    case MVT::v4i32:
14044    case MVT::v8i16:
14045    case MVT::v4i64:
14046    case MVT::v8i32:
14047    case MVT::v16i16:
14048      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14049    }
14050  case ISD::SRA:
14051    switch (VT.getSimpleVT().SimpleTy) {
14052    default: return SDValue();
14053    case MVT::v4i32:
14054    case MVT::v8i16:
14055    case MVT::v8i32:
14056    case MVT::v16i16:
14057      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14058    }
14059  case ISD::SRL:
14060    switch (VT.getSimpleVT().SimpleTy) {
14061    default: return SDValue();
14062    case MVT::v2i64:
14063    case MVT::v4i32:
14064    case MVT::v8i16:
14065    case MVT::v4i64:
14066    case MVT::v8i32:
14067    case MVT::v16i16:
14068      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14069    }
14070  }
14071}
14072
14073
14074// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14075// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14076// and friends.  Likewise for OR -> CMPNEQSS.
14077static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14078                            TargetLowering::DAGCombinerInfo &DCI,
14079                            const X86Subtarget *Subtarget) {
14080  unsigned opcode;
14081
14082  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14083  // we're requiring SSE2 for both.
14084  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14085    SDValue N0 = N->getOperand(0);
14086    SDValue N1 = N->getOperand(1);
14087    SDValue CMP0 = N0->getOperand(1);
14088    SDValue CMP1 = N1->getOperand(1);
14089    DebugLoc DL = N->getDebugLoc();
14090
14091    // The SETCCs should both refer to the same CMP.
14092    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14093      return SDValue();
14094
14095    SDValue CMP00 = CMP0->getOperand(0);
14096    SDValue CMP01 = CMP0->getOperand(1);
14097    EVT     VT    = CMP00.getValueType();
14098
14099    if (VT == MVT::f32 || VT == MVT::f64) {
14100      bool ExpectingFlags = false;
14101      // Check for any users that want flags:
14102      for (SDNode::use_iterator UI = N->use_begin(),
14103             UE = N->use_end();
14104           !ExpectingFlags && UI != UE; ++UI)
14105        switch (UI->getOpcode()) {
14106        default:
14107        case ISD::BR_CC:
14108        case ISD::BRCOND:
14109        case ISD::SELECT:
14110          ExpectingFlags = true;
14111          break;
14112        case ISD::CopyToReg:
14113        case ISD::SIGN_EXTEND:
14114        case ISD::ZERO_EXTEND:
14115        case ISD::ANY_EXTEND:
14116          break;
14117        }
14118
14119      if (!ExpectingFlags) {
14120        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14121        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14122
14123        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14124          X86::CondCode tmp = cc0;
14125          cc0 = cc1;
14126          cc1 = tmp;
14127        }
14128
14129        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14130            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14131          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14132          X86ISD::NodeType NTOperator = is64BitFP ?
14133            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14134          // FIXME: need symbolic constants for these magic numbers.
14135          // See X86ATTInstPrinter.cpp:printSSECC().
14136          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14137          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14138                                              DAG.getConstant(x86cc, MVT::i8));
14139          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14140                                              OnesOrZeroesF);
14141          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14142                                      DAG.getConstant(1, MVT::i32));
14143          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14144          return OneBitOfTruth;
14145        }
14146      }
14147    }
14148  }
14149  return SDValue();
14150}
14151
14152/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14153/// so it can be folded inside ANDNP.
14154static bool CanFoldXORWithAllOnes(const SDNode *N) {
14155  EVT VT = N->getValueType(0);
14156
14157  // Match direct AllOnes for 128 and 256-bit vectors
14158  if (ISD::isBuildVectorAllOnes(N))
14159    return true;
14160
14161  // Look through a bit convert.
14162  if (N->getOpcode() == ISD::BITCAST)
14163    N = N->getOperand(0).getNode();
14164
14165  // Sometimes the operand may come from a insert_subvector building a 256-bit
14166  // allones vector
14167  if (VT.getSizeInBits() == 256 &&
14168      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14169    SDValue V1 = N->getOperand(0);
14170    SDValue V2 = N->getOperand(1);
14171
14172    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14173        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14174        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14175        ISD::isBuildVectorAllOnes(V2.getNode()))
14176      return true;
14177  }
14178
14179  return false;
14180}
14181
14182static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14183                                 TargetLowering::DAGCombinerInfo &DCI,
14184                                 const X86Subtarget *Subtarget) {
14185  if (DCI.isBeforeLegalizeOps())
14186    return SDValue();
14187
14188  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14189  if (R.getNode())
14190    return R;
14191
14192  EVT VT = N->getValueType(0);
14193
14194  // Create ANDN, BLSI, and BLSR instructions
14195  // BLSI is X & (-X)
14196  // BLSR is X & (X-1)
14197  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14198    SDValue N0 = N->getOperand(0);
14199    SDValue N1 = N->getOperand(1);
14200    DebugLoc DL = N->getDebugLoc();
14201
14202    // Check LHS for not
14203    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14204      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14205    // Check RHS for not
14206    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14207      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14208
14209    // Check LHS for neg
14210    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14211        isZero(N0.getOperand(0)))
14212      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14213
14214    // Check RHS for neg
14215    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14216        isZero(N1.getOperand(0)))
14217      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14218
14219    // Check LHS for X-1
14220    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14221        isAllOnes(N0.getOperand(1)))
14222      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14223
14224    // Check RHS for X-1
14225    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14226        isAllOnes(N1.getOperand(1)))
14227      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14228
14229    return SDValue();
14230  }
14231
14232  // Want to form ANDNP nodes:
14233  // 1) In the hopes of then easily combining them with OR and AND nodes
14234  //    to form PBLEND/PSIGN.
14235  // 2) To match ANDN packed intrinsics
14236  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14237    return SDValue();
14238
14239  SDValue N0 = N->getOperand(0);
14240  SDValue N1 = N->getOperand(1);
14241  DebugLoc DL = N->getDebugLoc();
14242
14243  // Check LHS for vnot
14244  if (N0.getOpcode() == ISD::XOR &&
14245      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14246      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14247    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14248
14249  // Check RHS for vnot
14250  if (N1.getOpcode() == ISD::XOR &&
14251      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14252      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14253    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14254
14255  return SDValue();
14256}
14257
14258static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14259                                TargetLowering::DAGCombinerInfo &DCI,
14260                                const X86Subtarget *Subtarget) {
14261  if (DCI.isBeforeLegalizeOps())
14262    return SDValue();
14263
14264  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14265  if (R.getNode())
14266    return R;
14267
14268  EVT VT = N->getValueType(0);
14269
14270  SDValue N0 = N->getOperand(0);
14271  SDValue N1 = N->getOperand(1);
14272
14273  // look for psign/blend
14274  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14275    if (!Subtarget->hasSSSE3() ||
14276        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14277      return SDValue();
14278
14279    // Canonicalize pandn to RHS
14280    if (N0.getOpcode() == X86ISD::ANDNP)
14281      std::swap(N0, N1);
14282    // or (and (m, y), (pandn m, x))
14283    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14284      SDValue Mask = N1.getOperand(0);
14285      SDValue X    = N1.getOperand(1);
14286      SDValue Y;
14287      if (N0.getOperand(0) == Mask)
14288        Y = N0.getOperand(1);
14289      if (N0.getOperand(1) == Mask)
14290        Y = N0.getOperand(0);
14291
14292      // Check to see if the mask appeared in both the AND and ANDNP and
14293      if (!Y.getNode())
14294        return SDValue();
14295
14296      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14297      // Look through mask bitcast.
14298      if (Mask.getOpcode() == ISD::BITCAST)
14299        Mask = Mask.getOperand(0);
14300      if (X.getOpcode() == ISD::BITCAST)
14301        X = X.getOperand(0);
14302      if (Y.getOpcode() == ISD::BITCAST)
14303        Y = Y.getOperand(0);
14304
14305      EVT MaskVT = Mask.getValueType();
14306
14307      // Validate that the Mask operand is a vector sra node.
14308      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14309      // there is no psrai.b
14310      if (Mask.getOpcode() != X86ISD::VSRAI)
14311        return SDValue();
14312
14313      // Check that the SRA is all signbits.
14314      SDValue SraC = Mask.getOperand(1);
14315      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14316      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14317      if ((SraAmt + 1) != EltBits)
14318        return SDValue();
14319
14320      DebugLoc DL = N->getDebugLoc();
14321
14322      // Now we know we at least have a plendvb with the mask val.  See if
14323      // we can form a psignb/w/d.
14324      // psign = x.type == y.type == mask.type && y = sub(0, x);
14325      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14326          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14327          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14328        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14329               "Unsupported VT for PSIGN");
14330        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14331        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14332      }
14333      // PBLENDVB only available on SSE 4.1
14334      if (!Subtarget->hasSSE41())
14335        return SDValue();
14336
14337      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14338
14339      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14340      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14341      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14342      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14343      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14344    }
14345  }
14346
14347  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14348    return SDValue();
14349
14350  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14351  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14352    std::swap(N0, N1);
14353  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14354    return SDValue();
14355  if (!N0.hasOneUse() || !N1.hasOneUse())
14356    return SDValue();
14357
14358  SDValue ShAmt0 = N0.getOperand(1);
14359  if (ShAmt0.getValueType() != MVT::i8)
14360    return SDValue();
14361  SDValue ShAmt1 = N1.getOperand(1);
14362  if (ShAmt1.getValueType() != MVT::i8)
14363    return SDValue();
14364  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14365    ShAmt0 = ShAmt0.getOperand(0);
14366  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14367    ShAmt1 = ShAmt1.getOperand(0);
14368
14369  DebugLoc DL = N->getDebugLoc();
14370  unsigned Opc = X86ISD::SHLD;
14371  SDValue Op0 = N0.getOperand(0);
14372  SDValue Op1 = N1.getOperand(0);
14373  if (ShAmt0.getOpcode() == ISD::SUB) {
14374    Opc = X86ISD::SHRD;
14375    std::swap(Op0, Op1);
14376    std::swap(ShAmt0, ShAmt1);
14377  }
14378
14379  unsigned Bits = VT.getSizeInBits();
14380  if (ShAmt1.getOpcode() == ISD::SUB) {
14381    SDValue Sum = ShAmt1.getOperand(0);
14382    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14383      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14384      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14385        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14386      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14387        return DAG.getNode(Opc, DL, VT,
14388                           Op0, Op1,
14389                           DAG.getNode(ISD::TRUNCATE, DL,
14390                                       MVT::i8, ShAmt0));
14391    }
14392  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14393    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14394    if (ShAmt0C &&
14395        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14396      return DAG.getNode(Opc, DL, VT,
14397                         N0.getOperand(0), N1.getOperand(0),
14398                         DAG.getNode(ISD::TRUNCATE, DL,
14399                                       MVT::i8, ShAmt0));
14400  }
14401
14402  return SDValue();
14403}
14404
14405// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14406static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14407                                 TargetLowering::DAGCombinerInfo &DCI,
14408                                 const X86Subtarget *Subtarget) {
14409  if (DCI.isBeforeLegalizeOps())
14410    return SDValue();
14411
14412  EVT VT = N->getValueType(0);
14413
14414  if (VT != MVT::i32 && VT != MVT::i64)
14415    return SDValue();
14416
14417  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14418
14419  // Create BLSMSK instructions by finding X ^ (X-1)
14420  SDValue N0 = N->getOperand(0);
14421  SDValue N1 = N->getOperand(1);
14422  DebugLoc DL = N->getDebugLoc();
14423
14424  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14425      isAllOnes(N0.getOperand(1)))
14426    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14427
14428  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14429      isAllOnes(N1.getOperand(1)))
14430    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14431
14432  return SDValue();
14433}
14434
14435/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14436static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14437                                   const X86Subtarget *Subtarget) {
14438  LoadSDNode *Ld = cast<LoadSDNode>(N);
14439  EVT RegVT = Ld->getValueType(0);
14440  EVT MemVT = Ld->getMemoryVT();
14441  DebugLoc dl = Ld->getDebugLoc();
14442  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14443
14444  ISD::LoadExtType Ext = Ld->getExtensionType();
14445
14446  // If this is a vector EXT Load then attempt to optimize it using a
14447  // shuffle. We need SSE4 for the shuffles.
14448  // TODO: It is possible to support ZExt by zeroing the undef values
14449  // during the shuffle phase or after the shuffle.
14450  if (RegVT.isVector() && RegVT.isInteger() &&
14451      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14452    assert(MemVT != RegVT && "Cannot extend to the same type");
14453    assert(MemVT.isVector() && "Must load a vector from memory");
14454
14455    unsigned NumElems = RegVT.getVectorNumElements();
14456    unsigned RegSz = RegVT.getSizeInBits();
14457    unsigned MemSz = MemVT.getSizeInBits();
14458    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14459    // All sizes must be a power of two
14460    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14461
14462    // Attempt to load the original value using a single load op.
14463    // Find a scalar type which is equal to the loaded word size.
14464    MVT SclrLoadTy = MVT::i8;
14465    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14466         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14467      MVT Tp = (MVT::SimpleValueType)tp;
14468      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14469        SclrLoadTy = Tp;
14470        break;
14471      }
14472    }
14473
14474    // Proceed if a load word is found.
14475    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14476
14477    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14478      RegSz/SclrLoadTy.getSizeInBits());
14479
14480    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14481                                  RegSz/MemVT.getScalarType().getSizeInBits());
14482    // Can't shuffle using an illegal type.
14483    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14484
14485    // Perform a single load.
14486    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14487                                  Ld->getBasePtr(),
14488                                  Ld->getPointerInfo(), Ld->isVolatile(),
14489                                  Ld->isNonTemporal(), Ld->isInvariant(),
14490                                  Ld->getAlignment());
14491
14492    // Insert the word loaded into a vector.
14493    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14494      LoadUnitVecVT, ScalarLoad);
14495
14496    // Bitcast the loaded value to a vector of the original element type, in
14497    // the size of the target vector type.
14498    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14499                                    ScalarInVector);
14500    unsigned SizeRatio = RegSz/MemSz;
14501
14502    // Redistribute the loaded elements into the different locations.
14503    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14504    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14505
14506    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14507                                         DAG.getUNDEF(WideVecVT),
14508                                         &ShuffleVec[0]);
14509
14510    // Bitcast to the requested type.
14511    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14512    // Replace the original load with the new sequence
14513    // and return the new chain.
14514    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14515    return SDValue(ScalarLoad.getNode(), 1);
14516  }
14517
14518  return SDValue();
14519}
14520
14521/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14522static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14523                                   const X86Subtarget *Subtarget) {
14524  StoreSDNode *St = cast<StoreSDNode>(N);
14525  EVT VT = St->getValue().getValueType();
14526  EVT StVT = St->getMemoryVT();
14527  DebugLoc dl = St->getDebugLoc();
14528  SDValue StoredVal = St->getOperand(1);
14529  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14530
14531  // If we are saving a concatenation of two XMM registers, perform two stores.
14532  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14533  // 128-bit ones. If in the future the cost becomes only one memory access the
14534  // first version would be better.
14535  if (VT.getSizeInBits() == 256 &&
14536      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14537      StoredVal.getNumOperands() == 2) {
14538
14539    SDValue Value0 = StoredVal.getOperand(0);
14540    SDValue Value1 = StoredVal.getOperand(1);
14541
14542    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14543    SDValue Ptr0 = St->getBasePtr();
14544    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14545
14546    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14547                                St->getPointerInfo(), St->isVolatile(),
14548                                St->isNonTemporal(), St->getAlignment());
14549    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14550                                St->getPointerInfo(), St->isVolatile(),
14551                                St->isNonTemporal(), St->getAlignment());
14552    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14553  }
14554
14555  // Optimize trunc store (of multiple scalars) to shuffle and store.
14556  // First, pack all of the elements in one place. Next, store to memory
14557  // in fewer chunks.
14558  if (St->isTruncatingStore() && VT.isVector()) {
14559    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14560    unsigned NumElems = VT.getVectorNumElements();
14561    assert(StVT != VT && "Cannot truncate to the same type");
14562    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14563    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14564
14565    // From, To sizes and ElemCount must be pow of two
14566    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14567    // We are going to use the original vector elt for storing.
14568    // Accumulated smaller vector elements must be a multiple of the store size.
14569    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14570
14571    unsigned SizeRatio  = FromSz / ToSz;
14572
14573    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14574
14575    // Create a type on which we perform the shuffle
14576    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14577            StVT.getScalarType(), NumElems*SizeRatio);
14578
14579    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14580
14581    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14582    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14583    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14584
14585    // Can't shuffle using an illegal type
14586    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14587
14588    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14589                                         DAG.getUNDEF(WideVecVT),
14590                                         &ShuffleVec[0]);
14591    // At this point all of the data is stored at the bottom of the
14592    // register. We now need to save it to mem.
14593
14594    // Find the largest store unit
14595    MVT StoreType = MVT::i8;
14596    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14597         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14598      MVT Tp = (MVT::SimpleValueType)tp;
14599      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14600        StoreType = Tp;
14601    }
14602
14603    // Bitcast the original vector into a vector of store-size units
14604    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14605            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14606    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14607    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14608    SmallVector<SDValue, 8> Chains;
14609    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14610                                        TLI.getPointerTy());
14611    SDValue Ptr = St->getBasePtr();
14612
14613    // Perform one or more big stores into memory.
14614    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14615      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14616                                   StoreType, ShuffWide,
14617                                   DAG.getIntPtrConstant(i));
14618      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14619                                St->getPointerInfo(), St->isVolatile(),
14620                                St->isNonTemporal(), St->getAlignment());
14621      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14622      Chains.push_back(Ch);
14623    }
14624
14625    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14626                               Chains.size());
14627  }
14628
14629
14630  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14631  // the FP state in cases where an emms may be missing.
14632  // A preferable solution to the general problem is to figure out the right
14633  // places to insert EMMS.  This qualifies as a quick hack.
14634
14635  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14636  if (VT.getSizeInBits() != 64)
14637    return SDValue();
14638
14639  const Function *F = DAG.getMachineFunction().getFunction();
14640  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14641  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14642                     && Subtarget->hasSSE2();
14643  if ((VT.isVector() ||
14644       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14645      isa<LoadSDNode>(St->getValue()) &&
14646      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14647      St->getChain().hasOneUse() && !St->isVolatile()) {
14648    SDNode* LdVal = St->getValue().getNode();
14649    LoadSDNode *Ld = 0;
14650    int TokenFactorIndex = -1;
14651    SmallVector<SDValue, 8> Ops;
14652    SDNode* ChainVal = St->getChain().getNode();
14653    // Must be a store of a load.  We currently handle two cases:  the load
14654    // is a direct child, and it's under an intervening TokenFactor.  It is
14655    // possible to dig deeper under nested TokenFactors.
14656    if (ChainVal == LdVal)
14657      Ld = cast<LoadSDNode>(St->getChain());
14658    else if (St->getValue().hasOneUse() &&
14659             ChainVal->getOpcode() == ISD::TokenFactor) {
14660      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14661        if (ChainVal->getOperand(i).getNode() == LdVal) {
14662          TokenFactorIndex = i;
14663          Ld = cast<LoadSDNode>(St->getValue());
14664        } else
14665          Ops.push_back(ChainVal->getOperand(i));
14666      }
14667    }
14668
14669    if (!Ld || !ISD::isNormalLoad(Ld))
14670      return SDValue();
14671
14672    // If this is not the MMX case, i.e. we are just turning i64 load/store
14673    // into f64 load/store, avoid the transformation if there are multiple
14674    // uses of the loaded value.
14675    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14676      return SDValue();
14677
14678    DebugLoc LdDL = Ld->getDebugLoc();
14679    DebugLoc StDL = N->getDebugLoc();
14680    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14681    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14682    // pair instead.
14683    if (Subtarget->is64Bit() || F64IsLegal) {
14684      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14685      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14686                                  Ld->getPointerInfo(), Ld->isVolatile(),
14687                                  Ld->isNonTemporal(), Ld->isInvariant(),
14688                                  Ld->getAlignment());
14689      SDValue NewChain = NewLd.getValue(1);
14690      if (TokenFactorIndex != -1) {
14691        Ops.push_back(NewChain);
14692        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14693                               Ops.size());
14694      }
14695      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14696                          St->getPointerInfo(),
14697                          St->isVolatile(), St->isNonTemporal(),
14698                          St->getAlignment());
14699    }
14700
14701    // Otherwise, lower to two pairs of 32-bit loads / stores.
14702    SDValue LoAddr = Ld->getBasePtr();
14703    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14704                                 DAG.getConstant(4, MVT::i32));
14705
14706    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14707                               Ld->getPointerInfo(),
14708                               Ld->isVolatile(), Ld->isNonTemporal(),
14709                               Ld->isInvariant(), Ld->getAlignment());
14710    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14711                               Ld->getPointerInfo().getWithOffset(4),
14712                               Ld->isVolatile(), Ld->isNonTemporal(),
14713                               Ld->isInvariant(),
14714                               MinAlign(Ld->getAlignment(), 4));
14715
14716    SDValue NewChain = LoLd.getValue(1);
14717    if (TokenFactorIndex != -1) {
14718      Ops.push_back(LoLd);
14719      Ops.push_back(HiLd);
14720      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14721                             Ops.size());
14722    }
14723
14724    LoAddr = St->getBasePtr();
14725    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14726                         DAG.getConstant(4, MVT::i32));
14727
14728    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14729                                St->getPointerInfo(),
14730                                St->isVolatile(), St->isNonTemporal(),
14731                                St->getAlignment());
14732    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14733                                St->getPointerInfo().getWithOffset(4),
14734                                St->isVolatile(),
14735                                St->isNonTemporal(),
14736                                MinAlign(St->getAlignment(), 4));
14737    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14738  }
14739  return SDValue();
14740}
14741
14742/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14743/// and return the operands for the horizontal operation in LHS and RHS.  A
14744/// horizontal operation performs the binary operation on successive elements
14745/// of its first operand, then on successive elements of its second operand,
14746/// returning the resulting values in a vector.  For example, if
14747///   A = < float a0, float a1, float a2, float a3 >
14748/// and
14749///   B = < float b0, float b1, float b2, float b3 >
14750/// then the result of doing a horizontal operation on A and B is
14751///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14752/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14753/// A horizontal-op B, for some already available A and B, and if so then LHS is
14754/// set to A, RHS to B, and the routine returns 'true'.
14755/// Note that the binary operation should have the property that if one of the
14756/// operands is UNDEF then the result is UNDEF.
14757static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14758  // Look for the following pattern: if
14759  //   A = < float a0, float a1, float a2, float a3 >
14760  //   B = < float b0, float b1, float b2, float b3 >
14761  // and
14762  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14763  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14764  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14765  // which is A horizontal-op B.
14766
14767  // At least one of the operands should be a vector shuffle.
14768  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14769      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14770    return false;
14771
14772  EVT VT = LHS.getValueType();
14773
14774  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14775         "Unsupported vector type for horizontal add/sub");
14776
14777  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14778  // operate independently on 128-bit lanes.
14779  unsigned NumElts = VT.getVectorNumElements();
14780  unsigned NumLanes = VT.getSizeInBits()/128;
14781  unsigned NumLaneElts = NumElts / NumLanes;
14782  assert((NumLaneElts % 2 == 0) &&
14783         "Vector type should have an even number of elements in each lane");
14784  unsigned HalfLaneElts = NumLaneElts/2;
14785
14786  // View LHS in the form
14787  //   LHS = VECTOR_SHUFFLE A, B, LMask
14788  // If LHS is not a shuffle then pretend it is the shuffle
14789  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14790  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14791  // type VT.
14792  SDValue A, B;
14793  SmallVector<int, 16> LMask(NumElts);
14794  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14795    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14796      A = LHS.getOperand(0);
14797    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14798      B = LHS.getOperand(1);
14799    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14800    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14801  } else {
14802    if (LHS.getOpcode() != ISD::UNDEF)
14803      A = LHS;
14804    for (unsigned i = 0; i != NumElts; ++i)
14805      LMask[i] = i;
14806  }
14807
14808  // Likewise, view RHS in the form
14809  //   RHS = VECTOR_SHUFFLE C, D, RMask
14810  SDValue C, D;
14811  SmallVector<int, 16> RMask(NumElts);
14812  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14813    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14814      C = RHS.getOperand(0);
14815    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14816      D = RHS.getOperand(1);
14817    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14818    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14819  } else {
14820    if (RHS.getOpcode() != ISD::UNDEF)
14821      C = RHS;
14822    for (unsigned i = 0; i != NumElts; ++i)
14823      RMask[i] = i;
14824  }
14825
14826  // Check that the shuffles are both shuffling the same vectors.
14827  if (!(A == C && B == D) && !(A == D && B == C))
14828    return false;
14829
14830  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14831  if (!A.getNode() && !B.getNode())
14832    return false;
14833
14834  // If A and B occur in reverse order in RHS, then "swap" them (which means
14835  // rewriting the mask).
14836  if (A != C)
14837    CommuteVectorShuffleMask(RMask, NumElts);
14838
14839  // At this point LHS and RHS are equivalent to
14840  //   LHS = VECTOR_SHUFFLE A, B, LMask
14841  //   RHS = VECTOR_SHUFFLE A, B, RMask
14842  // Check that the masks correspond to performing a horizontal operation.
14843  for (unsigned i = 0; i != NumElts; ++i) {
14844    int LIdx = LMask[i], RIdx = RMask[i];
14845
14846    // Ignore any UNDEF components.
14847    if (LIdx < 0 || RIdx < 0 ||
14848        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14849        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14850      continue;
14851
14852    // Check that successive elements are being operated on.  If not, this is
14853    // not a horizontal operation.
14854    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14855    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14856    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14857    if (!(LIdx == Index && RIdx == Index + 1) &&
14858        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14859      return false;
14860  }
14861
14862  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14863  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14864  return true;
14865}
14866
14867/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14868static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14869                                  const X86Subtarget *Subtarget) {
14870  EVT VT = N->getValueType(0);
14871  SDValue LHS = N->getOperand(0);
14872  SDValue RHS = N->getOperand(1);
14873
14874  // Try to synthesize horizontal adds from adds of shuffles.
14875  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14876       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14877      isHorizontalBinOp(LHS, RHS, true))
14878    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14879  return SDValue();
14880}
14881
14882/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14883static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14884                                  const X86Subtarget *Subtarget) {
14885  EVT VT = N->getValueType(0);
14886  SDValue LHS = N->getOperand(0);
14887  SDValue RHS = N->getOperand(1);
14888
14889  // Try to synthesize horizontal subs from subs of shuffles.
14890  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14891       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14892      isHorizontalBinOp(LHS, RHS, false))
14893    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14894  return SDValue();
14895}
14896
14897/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14898/// X86ISD::FXOR nodes.
14899static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14900  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14901  // F[X]OR(0.0, x) -> x
14902  // F[X]OR(x, 0.0) -> x
14903  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14904    if (C->getValueAPF().isPosZero())
14905      return N->getOperand(1);
14906  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14907    if (C->getValueAPF().isPosZero())
14908      return N->getOperand(0);
14909  return SDValue();
14910}
14911
14912/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14913static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14914  // FAND(0.0, x) -> 0.0
14915  // FAND(x, 0.0) -> 0.0
14916  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14917    if (C->getValueAPF().isPosZero())
14918      return N->getOperand(0);
14919  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14920    if (C->getValueAPF().isPosZero())
14921      return N->getOperand(1);
14922  return SDValue();
14923}
14924
14925static SDValue PerformBTCombine(SDNode *N,
14926                                SelectionDAG &DAG,
14927                                TargetLowering::DAGCombinerInfo &DCI) {
14928  // BT ignores high bits in the bit index operand.
14929  SDValue Op1 = N->getOperand(1);
14930  if (Op1.hasOneUse()) {
14931    unsigned BitWidth = Op1.getValueSizeInBits();
14932    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14933    APInt KnownZero, KnownOne;
14934    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14935                                          !DCI.isBeforeLegalizeOps());
14936    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14937    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14938        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14939      DCI.CommitTargetLoweringOpt(TLO);
14940  }
14941  return SDValue();
14942}
14943
14944static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14945  SDValue Op = N->getOperand(0);
14946  if (Op.getOpcode() == ISD::BITCAST)
14947    Op = Op.getOperand(0);
14948  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14949  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14950      VT.getVectorElementType().getSizeInBits() ==
14951      OpVT.getVectorElementType().getSizeInBits()) {
14952    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14953  }
14954  return SDValue();
14955}
14956
14957static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14958                                  TargetLowering::DAGCombinerInfo &DCI,
14959                                  const X86Subtarget *Subtarget) {
14960  if (!DCI.isBeforeLegalizeOps())
14961    return SDValue();
14962
14963  if (!Subtarget->hasAVX())
14964    return SDValue();
14965
14966  EVT VT = N->getValueType(0);
14967  SDValue Op = N->getOperand(0);
14968  EVT OpVT = Op.getValueType();
14969  DebugLoc dl = N->getDebugLoc();
14970
14971  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14972      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14973
14974    if (Subtarget->hasAVX2())
14975      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
14976
14977    // Optimize vectors in AVX mode
14978    // Sign extend  v8i16 to v8i32 and
14979    //              v4i32 to v4i64
14980    //
14981    // Divide input vector into two parts
14982    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14983    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14984    // concat the vectors to original VT
14985
14986    unsigned NumElems = OpVT.getVectorNumElements();
14987    SmallVector<int,8> ShufMask1(NumElems, -1);
14988    for (unsigned i = 0; i != NumElems/2; ++i)
14989      ShufMask1[i] = i;
14990
14991    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14992                                        &ShufMask1[0]);
14993
14994    SmallVector<int,8> ShufMask2(NumElems, -1);
14995    for (unsigned i = 0; i != NumElems/2; ++i)
14996      ShufMask2[i] = i + NumElems/2;
14997
14998    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14999                                        &ShufMask2[0]);
15000
15001    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15002                                  VT.getVectorNumElements()/2);
15003
15004    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15005    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15006
15007    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15008  }
15009  return SDValue();
15010}
15011
15012static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15013                                  TargetLowering::DAGCombinerInfo &DCI,
15014                                  const X86Subtarget *Subtarget) {
15015  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15016  //           (and (i32 x86isd::setcc_carry), 1)
15017  // This eliminates the zext. This transformation is necessary because
15018  // ISD::SETCC is always legalized to i8.
15019  DebugLoc dl = N->getDebugLoc();
15020  SDValue N0 = N->getOperand(0);
15021  EVT VT = N->getValueType(0);
15022  EVT OpVT = N0.getValueType();
15023
15024  if (N0.getOpcode() == ISD::AND &&
15025      N0.hasOneUse() &&
15026      N0.getOperand(0).hasOneUse()) {
15027    SDValue N00 = N0.getOperand(0);
15028    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15029      return SDValue();
15030    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15031    if (!C || C->getZExtValue() != 1)
15032      return SDValue();
15033    return DAG.getNode(ISD::AND, dl, VT,
15034                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15035                                   N00.getOperand(0), N00.getOperand(1)),
15036                       DAG.getConstant(1, VT));
15037  }
15038
15039  // Optimize vectors in AVX mode:
15040  //
15041  //   v8i16 -> v8i32
15042  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15043  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15044  //   Concat upper and lower parts.
15045  //
15046  //   v4i32 -> v4i64
15047  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15048  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15049  //   Concat upper and lower parts.
15050  //
15051  if (!DCI.isBeforeLegalizeOps())
15052    return SDValue();
15053
15054  if (!Subtarget->hasAVX())
15055    return SDValue();
15056
15057  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15058      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15059
15060    if (Subtarget->hasAVX2())
15061      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15062
15063    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15064    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15065    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15066
15067    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15068                               VT.getVectorNumElements()/2);
15069
15070    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15071    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15072
15073    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15074  }
15075
15076  return SDValue();
15077}
15078
15079// Optimize x == -y --> x+y == 0
15080//          x != -y --> x+y != 0
15081static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15082  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15083  SDValue LHS = N->getOperand(0);
15084  SDValue RHS = N->getOperand(1);
15085
15086  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15087    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15088      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15089        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15090                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15091        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15092                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15093      }
15094  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15095    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15096      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15097        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15098                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15099        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15100                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15101      }
15102  return SDValue();
15103}
15104
15105// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15106static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15107  unsigned X86CC = N->getConstantOperandVal(0);
15108  SDValue EFLAG = N->getOperand(1);
15109  DebugLoc DL = N->getDebugLoc();
15110
15111  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15112  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15113  // cases.
15114  if (X86CC == X86::COND_B)
15115    return DAG.getNode(ISD::AND, DL, MVT::i8,
15116                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15117                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
15118                       DAG.getConstant(1, MVT::i8));
15119
15120  return SDValue();
15121}
15122
15123static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
15124  SDValue Op0 = N->getOperand(0);
15125  EVT InVT = Op0->getValueType(0);
15126
15127  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
15128  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15129    DebugLoc dl = N->getDebugLoc();
15130    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15131    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
15132    // Notice that we use SINT_TO_FP because we know that the high bits
15133    // are zero and SINT_TO_FP is better supported by the hardware.
15134    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15135  }
15136
15137  return SDValue();
15138}
15139
15140static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
15141                                        const X86TargetLowering *XTLI) {
15142  SDValue Op0 = N->getOperand(0);
15143  EVT InVT = Op0->getValueType(0);
15144
15145  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
15146  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15147    DebugLoc dl = N->getDebugLoc();
15148    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15149    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
15150    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15151  }
15152
15153  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
15154  // a 32-bit target where SSE doesn't support i64->FP operations.
15155  if (Op0.getOpcode() == ISD::LOAD) {
15156    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
15157    EVT VT = Ld->getValueType(0);
15158    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
15159        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
15160        !XTLI->getSubtarget()->is64Bit() &&
15161        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
15162      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
15163                                          Ld->getChain(), Op0, DAG);
15164      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
15165      return FILDChain;
15166    }
15167  }
15168  return SDValue();
15169}
15170
15171static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
15172  EVT VT = N->getValueType(0);
15173
15174  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
15175  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
15176    DebugLoc dl = N->getDebugLoc();
15177    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15178    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
15179    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
15180  }
15181
15182  return SDValue();
15183}
15184
15185// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
15186static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
15187                                 X86TargetLowering::DAGCombinerInfo &DCI) {
15188  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
15189  // the result is either zero or one (depending on the input carry bit).
15190  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
15191  if (X86::isZeroNode(N->getOperand(0)) &&
15192      X86::isZeroNode(N->getOperand(1)) &&
15193      // We don't have a good way to replace an EFLAGS use, so only do this when
15194      // dead right now.
15195      SDValue(N, 1).use_empty()) {
15196    DebugLoc DL = N->getDebugLoc();
15197    EVT VT = N->getValueType(0);
15198    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
15199    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
15200                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
15201                                           DAG.getConstant(X86::COND_B,MVT::i8),
15202                                           N->getOperand(2)),
15203                               DAG.getConstant(1, VT));
15204    return DCI.CombineTo(N, Res1, CarryOut);
15205  }
15206
15207  return SDValue();
15208}
15209
15210// fold (add Y, (sete  X, 0)) -> adc  0, Y
15211//      (add Y, (setne X, 0)) -> sbb -1, Y
15212//      (sub (sete  X, 0), Y) -> sbb  0, Y
15213//      (sub (setne X, 0), Y) -> adc -1, Y
15214static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
15215  DebugLoc DL = N->getDebugLoc();
15216
15217  // Look through ZExts.
15218  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15219  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
15220    return SDValue();
15221
15222  SDValue SetCC = Ext.getOperand(0);
15223  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
15224    return SDValue();
15225
15226  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
15227  if (CC != X86::COND_E && CC != X86::COND_NE)
15228    return SDValue();
15229
15230  SDValue Cmp = SetCC.getOperand(1);
15231  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
15232      !X86::isZeroNode(Cmp.getOperand(1)) ||
15233      !Cmp.getOperand(0).getValueType().isInteger())
15234    return SDValue();
15235
15236  SDValue CmpOp0 = Cmp.getOperand(0);
15237  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
15238                               DAG.getConstant(1, CmpOp0.getValueType()));
15239
15240  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
15241  if (CC == X86::COND_NE)
15242    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
15243                       DL, OtherVal.getValueType(), OtherVal,
15244                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
15245  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
15246                     DL, OtherVal.getValueType(), OtherVal,
15247                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
15248}
15249
15250/// PerformADDCombine - Do target-specific dag combines on integer adds.
15251static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
15252                                 const X86Subtarget *Subtarget) {
15253  EVT VT = N->getValueType(0);
15254  SDValue Op0 = N->getOperand(0);
15255  SDValue Op1 = N->getOperand(1);
15256
15257  // Try to synthesize horizontal adds from adds of shuffles.
15258  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15259       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15260      isHorizontalBinOp(Op0, Op1, true))
15261    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
15262
15263  return OptimizeConditionalInDecrement(N, DAG);
15264}
15265
15266static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
15267                                 const X86Subtarget *Subtarget) {
15268  SDValue Op0 = N->getOperand(0);
15269  SDValue Op1 = N->getOperand(1);
15270
15271  // X86 can't encode an immediate LHS of a sub. See if we can push the
15272  // negation into a preceding instruction.
15273  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15274    // If the RHS of the sub is a XOR with one use and a constant, invert the
15275    // immediate. Then add one to the LHS of the sub so we can turn
15276    // X-Y -> X+~Y+1, saving one register.
15277    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15278        isa<ConstantSDNode>(Op1.getOperand(1))) {
15279      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15280      EVT VT = Op0.getValueType();
15281      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15282                                   Op1.getOperand(0),
15283                                   DAG.getConstant(~XorC, VT));
15284      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15285                         DAG.getConstant(C->getAPIntValue()+1, VT));
15286    }
15287  }
15288
15289  // Try to synthesize horizontal adds from adds of shuffles.
15290  EVT VT = N->getValueType(0);
15291  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15292       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15293      isHorizontalBinOp(Op0, Op1, true))
15294    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15295
15296  return OptimizeConditionalInDecrement(N, DAG);
15297}
15298
15299SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15300                                             DAGCombinerInfo &DCI) const {
15301  SelectionDAG &DAG = DCI.DAG;
15302  switch (N->getOpcode()) {
15303  default: break;
15304  case ISD::EXTRACT_VECTOR_ELT:
15305    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15306  case ISD::VSELECT:
15307  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15308  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15309  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15310  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15311  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15312  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15313  case ISD::SHL:
15314  case ISD::SRA:
15315  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15316  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15317  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15318  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15319  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
15320  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15321  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
15322  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15323  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
15324  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15325  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15326  case X86ISD::FXOR:
15327  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15328  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15329  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15330  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15331  case ISD::ANY_EXTEND:
15332  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
15333  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15334  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15335  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
15336  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15337  case X86ISD::SHUFP:       // Handle all target specific shuffles
15338  case X86ISD::PALIGN:
15339  case X86ISD::UNPCKH:
15340  case X86ISD::UNPCKL:
15341  case X86ISD::MOVHLPS:
15342  case X86ISD::MOVLHPS:
15343  case X86ISD::PSHUFD:
15344  case X86ISD::PSHUFHW:
15345  case X86ISD::PSHUFLW:
15346  case X86ISD::MOVSS:
15347  case X86ISD::MOVSD:
15348  case X86ISD::VPERMILP:
15349  case X86ISD::VPERM2X128:
15350  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15351  }
15352
15353  return SDValue();
15354}
15355
15356/// isTypeDesirableForOp - Return true if the target has native support for
15357/// the specified value type and it is 'desirable' to use the type for the
15358/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15359/// instruction encodings are longer and some i16 instructions are slow.
15360bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15361  if (!isTypeLegal(VT))
15362    return false;
15363  if (VT != MVT::i16)
15364    return true;
15365
15366  switch (Opc) {
15367  default:
15368    return true;
15369  case ISD::LOAD:
15370  case ISD::SIGN_EXTEND:
15371  case ISD::ZERO_EXTEND:
15372  case ISD::ANY_EXTEND:
15373  case ISD::SHL:
15374  case ISD::SRL:
15375  case ISD::SUB:
15376  case ISD::ADD:
15377  case ISD::MUL:
15378  case ISD::AND:
15379  case ISD::OR:
15380  case ISD::XOR:
15381    return false;
15382  }
15383}
15384
15385/// IsDesirableToPromoteOp - This method query the target whether it is
15386/// beneficial for dag combiner to promote the specified node. If true, it
15387/// should return the desired promotion type by reference.
15388bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15389  EVT VT = Op.getValueType();
15390  if (VT != MVT::i16)
15391    return false;
15392
15393  bool Promote = false;
15394  bool Commute = false;
15395  switch (Op.getOpcode()) {
15396  default: break;
15397  case ISD::LOAD: {
15398    LoadSDNode *LD = cast<LoadSDNode>(Op);
15399    // If the non-extending load has a single use and it's not live out, then it
15400    // might be folded.
15401    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15402                                                     Op.hasOneUse()*/) {
15403      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15404             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15405        // The only case where we'd want to promote LOAD (rather then it being
15406        // promoted as an operand is when it's only use is liveout.
15407        if (UI->getOpcode() != ISD::CopyToReg)
15408          return false;
15409      }
15410    }
15411    Promote = true;
15412    break;
15413  }
15414  case ISD::SIGN_EXTEND:
15415  case ISD::ZERO_EXTEND:
15416  case ISD::ANY_EXTEND:
15417    Promote = true;
15418    break;
15419  case ISD::SHL:
15420  case ISD::SRL: {
15421    SDValue N0 = Op.getOperand(0);
15422    // Look out for (store (shl (load), x)).
15423    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15424      return false;
15425    Promote = true;
15426    break;
15427  }
15428  case ISD::ADD:
15429  case ISD::MUL:
15430  case ISD::AND:
15431  case ISD::OR:
15432  case ISD::XOR:
15433    Commute = true;
15434    // fallthrough
15435  case ISD::SUB: {
15436    SDValue N0 = Op.getOperand(0);
15437    SDValue N1 = Op.getOperand(1);
15438    if (!Commute && MayFoldLoad(N1))
15439      return false;
15440    // Avoid disabling potential load folding opportunities.
15441    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15442      return false;
15443    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15444      return false;
15445    Promote = true;
15446  }
15447  }
15448
15449  PVT = MVT::i32;
15450  return Promote;
15451}
15452
15453//===----------------------------------------------------------------------===//
15454//                           X86 Inline Assembly Support
15455//===----------------------------------------------------------------------===//
15456
15457namespace {
15458  // Helper to match a string separated by whitespace.
15459  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15460    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15461
15462    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15463      StringRef piece(*args[i]);
15464      if (!s.startswith(piece)) // Check if the piece matches.
15465        return false;
15466
15467      s = s.substr(piece.size());
15468      StringRef::size_type pos = s.find_first_not_of(" \t");
15469      if (pos == 0) // We matched a prefix.
15470        return false;
15471
15472      s = s.substr(pos);
15473    }
15474
15475    return s.empty();
15476  }
15477  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15478}
15479
15480bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15481  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15482
15483  std::string AsmStr = IA->getAsmString();
15484
15485  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15486  if (!Ty || Ty->getBitWidth() % 16 != 0)
15487    return false;
15488
15489  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15490  SmallVector<StringRef, 4> AsmPieces;
15491  SplitString(AsmStr, AsmPieces, ";\n");
15492
15493  switch (AsmPieces.size()) {
15494  default: return false;
15495  case 1:
15496    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15497    // we will turn this bswap into something that will be lowered to logical
15498    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15499    // lower so don't worry about this.
15500    // bswap $0
15501    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15502        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15503        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15504        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15505        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15506        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15507      // No need to check constraints, nothing other than the equivalent of
15508      // "=r,0" would be valid here.
15509      return IntrinsicLowering::LowerToByteSwap(CI);
15510    }
15511
15512    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15513    if (CI->getType()->isIntegerTy(16) &&
15514        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15515        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15516         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15517      AsmPieces.clear();
15518      const std::string &ConstraintsStr = IA->getConstraintString();
15519      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15520      std::sort(AsmPieces.begin(), AsmPieces.end());
15521      if (AsmPieces.size() == 4 &&
15522          AsmPieces[0] == "~{cc}" &&
15523          AsmPieces[1] == "~{dirflag}" &&
15524          AsmPieces[2] == "~{flags}" &&
15525          AsmPieces[3] == "~{fpsr}")
15526      return IntrinsicLowering::LowerToByteSwap(CI);
15527    }
15528    break;
15529  case 3:
15530    if (CI->getType()->isIntegerTy(32) &&
15531        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15532        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15533        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15534        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15535      AsmPieces.clear();
15536      const std::string &ConstraintsStr = IA->getConstraintString();
15537      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15538      std::sort(AsmPieces.begin(), AsmPieces.end());
15539      if (AsmPieces.size() == 4 &&
15540          AsmPieces[0] == "~{cc}" &&
15541          AsmPieces[1] == "~{dirflag}" &&
15542          AsmPieces[2] == "~{flags}" &&
15543          AsmPieces[3] == "~{fpsr}")
15544        return IntrinsicLowering::LowerToByteSwap(CI);
15545    }
15546
15547    if (CI->getType()->isIntegerTy(64)) {
15548      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15549      if (Constraints.size() >= 2 &&
15550          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15551          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15552        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15553        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15554            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15555            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15556          return IntrinsicLowering::LowerToByteSwap(CI);
15557      }
15558    }
15559    break;
15560  }
15561  return false;
15562}
15563
15564
15565
15566/// getConstraintType - Given a constraint letter, return the type of
15567/// constraint it is for this target.
15568X86TargetLowering::ConstraintType
15569X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15570  if (Constraint.size() == 1) {
15571    switch (Constraint[0]) {
15572    case 'R':
15573    case 'q':
15574    case 'Q':
15575    case 'f':
15576    case 't':
15577    case 'u':
15578    case 'y':
15579    case 'x':
15580    case 'Y':
15581    case 'l':
15582      return C_RegisterClass;
15583    case 'a':
15584    case 'b':
15585    case 'c':
15586    case 'd':
15587    case 'S':
15588    case 'D':
15589    case 'A':
15590      return C_Register;
15591    case 'I':
15592    case 'J':
15593    case 'K':
15594    case 'L':
15595    case 'M':
15596    case 'N':
15597    case 'G':
15598    case 'C':
15599    case 'e':
15600    case 'Z':
15601      return C_Other;
15602    default:
15603      break;
15604    }
15605  }
15606  return TargetLowering::getConstraintType(Constraint);
15607}
15608
15609/// Examine constraint type and operand type and determine a weight value.
15610/// This object must already have been set up with the operand type
15611/// and the current alternative constraint selected.
15612TargetLowering::ConstraintWeight
15613  X86TargetLowering::getSingleConstraintMatchWeight(
15614    AsmOperandInfo &info, const char *constraint) const {
15615  ConstraintWeight weight = CW_Invalid;
15616  Value *CallOperandVal = info.CallOperandVal;
15617    // If we don't have a value, we can't do a match,
15618    // but allow it at the lowest weight.
15619  if (CallOperandVal == NULL)
15620    return CW_Default;
15621  Type *type = CallOperandVal->getType();
15622  // Look at the constraint type.
15623  switch (*constraint) {
15624  default:
15625    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15626  case 'R':
15627  case 'q':
15628  case 'Q':
15629  case 'a':
15630  case 'b':
15631  case 'c':
15632  case 'd':
15633  case 'S':
15634  case 'D':
15635  case 'A':
15636    if (CallOperandVal->getType()->isIntegerTy())
15637      weight = CW_SpecificReg;
15638    break;
15639  case 'f':
15640  case 't':
15641  case 'u':
15642      if (type->isFloatingPointTy())
15643        weight = CW_SpecificReg;
15644      break;
15645  case 'y':
15646      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15647        weight = CW_SpecificReg;
15648      break;
15649  case 'x':
15650  case 'Y':
15651    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15652        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15653      weight = CW_Register;
15654    break;
15655  case 'I':
15656    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15657      if (C->getZExtValue() <= 31)
15658        weight = CW_Constant;
15659    }
15660    break;
15661  case 'J':
15662    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15663      if (C->getZExtValue() <= 63)
15664        weight = CW_Constant;
15665    }
15666    break;
15667  case 'K':
15668    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15669      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15670        weight = CW_Constant;
15671    }
15672    break;
15673  case 'L':
15674    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15675      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15676        weight = CW_Constant;
15677    }
15678    break;
15679  case 'M':
15680    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15681      if (C->getZExtValue() <= 3)
15682        weight = CW_Constant;
15683    }
15684    break;
15685  case 'N':
15686    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15687      if (C->getZExtValue() <= 0xff)
15688        weight = CW_Constant;
15689    }
15690    break;
15691  case 'G':
15692  case 'C':
15693    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15694      weight = CW_Constant;
15695    }
15696    break;
15697  case 'e':
15698    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15699      if ((C->getSExtValue() >= -0x80000000LL) &&
15700          (C->getSExtValue() <= 0x7fffffffLL))
15701        weight = CW_Constant;
15702    }
15703    break;
15704  case 'Z':
15705    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15706      if (C->getZExtValue() <= 0xffffffff)
15707        weight = CW_Constant;
15708    }
15709    break;
15710  }
15711  return weight;
15712}
15713
15714/// LowerXConstraint - try to replace an X constraint, which matches anything,
15715/// with another that has more specific requirements based on the type of the
15716/// corresponding operand.
15717const char *X86TargetLowering::
15718LowerXConstraint(EVT ConstraintVT) const {
15719  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15720  // 'f' like normal targets.
15721  if (ConstraintVT.isFloatingPoint()) {
15722    if (Subtarget->hasSSE2())
15723      return "Y";
15724    if (Subtarget->hasSSE1())
15725      return "x";
15726  }
15727
15728  return TargetLowering::LowerXConstraint(ConstraintVT);
15729}
15730
15731/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15732/// vector.  If it is invalid, don't add anything to Ops.
15733void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15734                                                     std::string &Constraint,
15735                                                     std::vector<SDValue>&Ops,
15736                                                     SelectionDAG &DAG) const {
15737  SDValue Result(0, 0);
15738
15739  // Only support length 1 constraints for now.
15740  if (Constraint.length() > 1) return;
15741
15742  char ConstraintLetter = Constraint[0];
15743  switch (ConstraintLetter) {
15744  default: break;
15745  case 'I':
15746    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15747      if (C->getZExtValue() <= 31) {
15748        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15749        break;
15750      }
15751    }
15752    return;
15753  case 'J':
15754    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15755      if (C->getZExtValue() <= 63) {
15756        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15757        break;
15758      }
15759    }
15760    return;
15761  case 'K':
15762    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15763      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15764        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15765        break;
15766      }
15767    }
15768    return;
15769  case 'N':
15770    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15771      if (C->getZExtValue() <= 255) {
15772        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15773        break;
15774      }
15775    }
15776    return;
15777  case 'e': {
15778    // 32-bit signed value
15779    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15780      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15781                                           C->getSExtValue())) {
15782        // Widen to 64 bits here to get it sign extended.
15783        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15784        break;
15785      }
15786    // FIXME gcc accepts some relocatable values here too, but only in certain
15787    // memory models; it's complicated.
15788    }
15789    return;
15790  }
15791  case 'Z': {
15792    // 32-bit unsigned value
15793    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15794      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15795                                           C->getZExtValue())) {
15796        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15797        break;
15798      }
15799    }
15800    // FIXME gcc accepts some relocatable values here too, but only in certain
15801    // memory models; it's complicated.
15802    return;
15803  }
15804  case 'i': {
15805    // Literal immediates are always ok.
15806    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15807      // Widen to 64 bits here to get it sign extended.
15808      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15809      break;
15810    }
15811
15812    // In any sort of PIC mode addresses need to be computed at runtime by
15813    // adding in a register or some sort of table lookup.  These can't
15814    // be used as immediates.
15815    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15816      return;
15817
15818    // If we are in non-pic codegen mode, we allow the address of a global (with
15819    // an optional displacement) to be used with 'i'.
15820    GlobalAddressSDNode *GA = 0;
15821    int64_t Offset = 0;
15822
15823    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15824    while (1) {
15825      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15826        Offset += GA->getOffset();
15827        break;
15828      } else if (Op.getOpcode() == ISD::ADD) {
15829        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15830          Offset += C->getZExtValue();
15831          Op = Op.getOperand(0);
15832          continue;
15833        }
15834      } else if (Op.getOpcode() == ISD::SUB) {
15835        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15836          Offset += -C->getZExtValue();
15837          Op = Op.getOperand(0);
15838          continue;
15839        }
15840      }
15841
15842      // Otherwise, this isn't something we can handle, reject it.
15843      return;
15844    }
15845
15846    const GlobalValue *GV = GA->getGlobal();
15847    // If we require an extra load to get this address, as in PIC mode, we
15848    // can't accept it.
15849    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15850                                                        getTargetMachine())))
15851      return;
15852
15853    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15854                                        GA->getValueType(0), Offset);
15855    break;
15856  }
15857  }
15858
15859  if (Result.getNode()) {
15860    Ops.push_back(Result);
15861    return;
15862  }
15863  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15864}
15865
15866std::pair<unsigned, const TargetRegisterClass*>
15867X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15868                                                EVT VT) const {
15869  // First, see if this is a constraint that directly corresponds to an LLVM
15870  // register class.
15871  if (Constraint.size() == 1) {
15872    // GCC Constraint Letters
15873    switch (Constraint[0]) {
15874    default: break;
15875      // TODO: Slight differences here in allocation order and leaving
15876      // RIP in the class. Do they matter any more here than they do
15877      // in the normal allocation?
15878    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15879      if (Subtarget->is64Bit()) {
15880        if (VT == MVT::i32 || VT == MVT::f32)
15881          return std::make_pair(0U, &X86::GR32RegClass);
15882        if (VT == MVT::i16)
15883          return std::make_pair(0U, &X86::GR16RegClass);
15884        if (VT == MVT::i8 || VT == MVT::i1)
15885          return std::make_pair(0U, &X86::GR8RegClass);
15886        if (VT == MVT::i64 || VT == MVT::f64)
15887          return std::make_pair(0U, &X86::GR64RegClass);
15888        break;
15889      }
15890      // 32-bit fallthrough
15891    case 'Q':   // Q_REGS
15892      if (VT == MVT::i32 || VT == MVT::f32)
15893        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
15894      if (VT == MVT::i16)
15895        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
15896      if (VT == MVT::i8 || VT == MVT::i1)
15897        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
15898      if (VT == MVT::i64)
15899        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
15900      break;
15901    case 'r':   // GENERAL_REGS
15902    case 'l':   // INDEX_REGS
15903      if (VT == MVT::i8 || VT == MVT::i1)
15904        return std::make_pair(0U, &X86::GR8RegClass);
15905      if (VT == MVT::i16)
15906        return std::make_pair(0U, &X86::GR16RegClass);
15907      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15908        return std::make_pair(0U, &X86::GR32RegClass);
15909      return std::make_pair(0U, &X86::GR64RegClass);
15910    case 'R':   // LEGACY_REGS
15911      if (VT == MVT::i8 || VT == MVT::i1)
15912        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
15913      if (VT == MVT::i16)
15914        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
15915      if (VT == MVT::i32 || !Subtarget->is64Bit())
15916        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
15917      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
15918    case 'f':  // FP Stack registers.
15919      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15920      // value to the correct fpstack register class.
15921      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15922        return std::make_pair(0U, &X86::RFP32RegClass);
15923      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15924        return std::make_pair(0U, &X86::RFP64RegClass);
15925      return std::make_pair(0U, &X86::RFP80RegClass);
15926    case 'y':   // MMX_REGS if MMX allowed.
15927      if (!Subtarget->hasMMX()) break;
15928      return std::make_pair(0U, &X86::VR64RegClass);
15929    case 'Y':   // SSE_REGS if SSE2 allowed
15930      if (!Subtarget->hasSSE2()) break;
15931      // FALL THROUGH.
15932    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15933      if (!Subtarget->hasSSE1()) break;
15934
15935      switch (VT.getSimpleVT().SimpleTy) {
15936      default: break;
15937      // Scalar SSE types.
15938      case MVT::f32:
15939      case MVT::i32:
15940        return std::make_pair(0U, &X86::FR32RegClass);
15941      case MVT::f64:
15942      case MVT::i64:
15943        return std::make_pair(0U, &X86::FR64RegClass);
15944      // Vector types.
15945      case MVT::v16i8:
15946      case MVT::v8i16:
15947      case MVT::v4i32:
15948      case MVT::v2i64:
15949      case MVT::v4f32:
15950      case MVT::v2f64:
15951        return std::make_pair(0U, &X86::VR128RegClass);
15952      // AVX types.
15953      case MVT::v32i8:
15954      case MVT::v16i16:
15955      case MVT::v8i32:
15956      case MVT::v4i64:
15957      case MVT::v8f32:
15958      case MVT::v4f64:
15959        return std::make_pair(0U, &X86::VR256RegClass);
15960      }
15961      break;
15962    }
15963  }
15964
15965  // Use the default implementation in TargetLowering to convert the register
15966  // constraint into a member of a register class.
15967  std::pair<unsigned, const TargetRegisterClass*> Res;
15968  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15969
15970  // Not found as a standard register?
15971  if (Res.second == 0) {
15972    // Map st(0) -> st(7) -> ST0
15973    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15974        tolower(Constraint[1]) == 's' &&
15975        tolower(Constraint[2]) == 't' &&
15976        Constraint[3] == '(' &&
15977        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15978        Constraint[5] == ')' &&
15979        Constraint[6] == '}') {
15980
15981      Res.first = X86::ST0+Constraint[4]-'0';
15982      Res.second = &X86::RFP80RegClass;
15983      return Res;
15984    }
15985
15986    // GCC allows "st(0)" to be called just plain "st".
15987    if (StringRef("{st}").equals_lower(Constraint)) {
15988      Res.first = X86::ST0;
15989      Res.second = &X86::RFP80RegClass;
15990      return Res;
15991    }
15992
15993    // flags -> EFLAGS
15994    if (StringRef("{flags}").equals_lower(Constraint)) {
15995      Res.first = X86::EFLAGS;
15996      Res.second = &X86::CCRRegClass;
15997      return Res;
15998    }
15999
16000    // 'A' means EAX + EDX.
16001    if (Constraint == "A") {
16002      Res.first = X86::EAX;
16003      Res.second = &X86::GR32_ADRegClass;
16004      return Res;
16005    }
16006    return Res;
16007  }
16008
16009  // Otherwise, check to see if this is a register class of the wrong value
16010  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16011  // turn into {ax},{dx}.
16012  if (Res.second->hasType(VT))
16013    return Res;   // Correct type already, nothing to do.
16014
16015  // All of the single-register GCC register classes map their values onto
16016  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16017  // really want an 8-bit or 32-bit register, map to the appropriate register
16018  // class and return the appropriate register.
16019  if (Res.second == &X86::GR16RegClass) {
16020    if (VT == MVT::i8) {
16021      unsigned DestReg = 0;
16022      switch (Res.first) {
16023      default: break;
16024      case X86::AX: DestReg = X86::AL; break;
16025      case X86::DX: DestReg = X86::DL; break;
16026      case X86::CX: DestReg = X86::CL; break;
16027      case X86::BX: DestReg = X86::BL; break;
16028      }
16029      if (DestReg) {
16030        Res.first = DestReg;
16031        Res.second = &X86::GR8RegClass;
16032      }
16033    } else if (VT == MVT::i32) {
16034      unsigned DestReg = 0;
16035      switch (Res.first) {
16036      default: break;
16037      case X86::AX: DestReg = X86::EAX; break;
16038      case X86::DX: DestReg = X86::EDX; break;
16039      case X86::CX: DestReg = X86::ECX; break;
16040      case X86::BX: DestReg = X86::EBX; break;
16041      case X86::SI: DestReg = X86::ESI; break;
16042      case X86::DI: DestReg = X86::EDI; break;
16043      case X86::BP: DestReg = X86::EBP; break;
16044      case X86::SP: DestReg = X86::ESP; break;
16045      }
16046      if (DestReg) {
16047        Res.first = DestReg;
16048        Res.second = &X86::GR32RegClass;
16049      }
16050    } else if (VT == MVT::i64) {
16051      unsigned DestReg = 0;
16052      switch (Res.first) {
16053      default: break;
16054      case X86::AX: DestReg = X86::RAX; break;
16055      case X86::DX: DestReg = X86::RDX; break;
16056      case X86::CX: DestReg = X86::RCX; break;
16057      case X86::BX: DestReg = X86::RBX; break;
16058      case X86::SI: DestReg = X86::RSI; break;
16059      case X86::DI: DestReg = X86::RDI; break;
16060      case X86::BP: DestReg = X86::RBP; break;
16061      case X86::SP: DestReg = X86::RSP; break;
16062      }
16063      if (DestReg) {
16064        Res.first = DestReg;
16065        Res.second = &X86::GR64RegClass;
16066      }
16067    }
16068  } else if (Res.second == &X86::FR32RegClass ||
16069             Res.second == &X86::FR64RegClass ||
16070             Res.second == &X86::VR128RegClass) {
16071    // Handle references to XMM physical registers that got mapped into the
16072    // wrong class.  This can happen with constraints like {xmm0} where the
16073    // target independent register mapper will just pick the first match it can
16074    // find, ignoring the required type.
16075    if (VT == MVT::f32)
16076      Res.second = &X86::FR32RegClass;
16077    else if (VT == MVT::f64)
16078      Res.second = &X86::FR64RegClass;
16079    else if (X86::VR128RegClass.hasType(VT))
16080      Res.second = &X86::VR128RegClass;
16081  }
16082
16083  return Res;
16084}
16085