X86ISelLowering.cpp revision ad043e85f8916c2a932cdd5893f0f2dd75a16994
1f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
3f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//                     The LLVM Compiler Infrastructure
4f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
5f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file was developed by Chris Lattner and is distributed under
6f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// the University of Illinois Open Source License. See LICENSE.TXT for details.
7f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
8f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
9f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
10f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// This file defines the interfaces that X86 uses to lower LLVM code into a
11f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette// selection DAG.
12f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//
13f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette//===----------------------------------------------------------------------===//
14f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
15f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86.h"
16f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86InstrBuilder.h"
17f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86ISelLowering.h"
18f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86MachineFunctionInfo.h"
19f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "X86TargetMachine.h"
20f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CallingConv.h"
21f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Constants.h"
22f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/DerivedTypes.h"
23f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Function.h"
24f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Intrinsics.h"
25f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/VectorExtras.h"
26f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/CallingConvLower.h"
28f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFrameInfo.h"
29f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineFunction.h"
30f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/MachineInstrBuilder.h"
31f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/SelectionDAG.h"
32f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/CodeGen/SSARegMap.h"
33f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Support/MathExtras.h"
34f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/Target/TargetOptions.h"
35f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette#include "llvm/ADT/StringExtras.h"
36f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viveretteusing namespace llvm;
37f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
38f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan ViveretteX86TargetLowering::X86TargetLowering(TargetMachine &TM)
39f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  : TargetLowering(TM) {
40f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  Subtarget = &TM.getSubtarget<X86Subtarget>();
41f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86ScalarSSE = Subtarget->hasSSE2();
42f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
43f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
44f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the TargetLowering object.
45f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
46f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // X86 is weird, it always uses i8 for shift amounts and setcc results.
47f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setShiftAmountType(MVT::i8);
48f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setSetCCResultType(MVT::i8);
49f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setSetCCResultContents(ZeroOrOneSetCCResult);
50f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setSchedulingPreference(SchedulingForRegPressure);
51f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
52f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setStackPointerRegisterToSaveRestore(X86StackPtr);
53f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
54f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->isTargetDarwin()) {
55f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
56f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(false);
57f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
58f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else if (Subtarget->isTargetMingw()) {
59f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // MS runtime is weird: it exports _setjmp, but longjmp!
60f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
61f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(false);
62f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
63f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreSetJmp(true);
64f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setUseUnderscoreLongJmp(true);
65f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
66f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
67f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Set up the register classes.
68f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
69f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
70f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
71f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit())
72f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
73f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
74f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
75f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
76f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
77f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // operation.
78f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
79f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
80f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
81f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
82f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (Subtarget->is64Bit()) {
83f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
84f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
85f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
86f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    if (X86ScalarSSE)
87f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
88f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
89f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    else
90f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
91f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
92f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
93f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
94f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // this operation.
95f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
96f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
97f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // SSE has no i16 to fp conversion, only i32
98f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (X86ScalarSSE)
99f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
100f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  else {
101f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
102f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
103f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
104f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
105f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (!Subtarget->is64Bit()) {
106f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
107f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
108f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
109f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
110f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
111f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
112f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // this operation.
113f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
114f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
115f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
116f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  if (X86ScalarSSE) {
117f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
118f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  } else {
119f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
120f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
121f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  }
122f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette
123f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // Handle FP_TO_UINT by promoting the destination to a larger signed
124f11879ae94e7598cb6ae59fdc13104947b66e3e6Alan Viverette  // conversion.
125  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
126  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
127  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
128
129  if (Subtarget->is64Bit()) {
130    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
131    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
132  } else {
133    if (X86ScalarSSE && !Subtarget->hasSSE3())
134      // Expand FP_TO_UINT into a select.
135      // FIXME: We would like to use a Custom expander here eventually to do
136      // the optimal thing for SSE vs. the default expansion in the legalizer.
137      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
138    else
139      // With SSE3 we can use fisttpll to convert to a signed i64.
140      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
141  }
142
143  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
144  if (!X86ScalarSSE) {
145    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
146    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
147  }
148
149  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
150  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
151  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
152  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
153  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
154  if (Subtarget->is64Bit())
155    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
156  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
157  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
158  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
159  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
160  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
161
162  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
163  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
164  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
165  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
166  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
167  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
168  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
169  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
170  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
171  if (Subtarget->is64Bit()) {
172    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
173    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
174    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
175  }
176
177  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
178  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
179
180  // These should be promoted to a larger select which is supported.
181  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
182  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
183  // X86 wants to expand cmov itself.
184  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
185  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
186  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
187  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
188  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
189  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
190  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
191  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
192  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
193  if (Subtarget->is64Bit()) {
194    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
195    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
196  }
197  // X86 ret instruction may pop stack.
198  setOperationAction(ISD::RET             , MVT::Other, Custom);
199  // Darwin ABI issue.
200  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
201  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
202  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
203  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
204  if (Subtarget->is64Bit()) {
205    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
206    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
207    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
208    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
209  }
210  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
211  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
212  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
213  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
214  // X86 wants to expand memset / memcpy itself.
215  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
216  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
217
218  // We don't have line number support yet.
219  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
220  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
221  // FIXME - use subtarget debug flags
222  if (!Subtarget->isTargetDarwin() &&
223      !Subtarget->isTargetELF() &&
224      !Subtarget->isTargetCygMing())
225    setOperationAction(ISD::LABEL, MVT::Other, Expand);
226
227  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
228  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
229  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
230  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
231  if (Subtarget->is64Bit())
232    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
233  else
234    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
235
236  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
237  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
238  if (Subtarget->is64Bit())
239    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
240  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
241
242  if (X86ScalarSSE) {
243    // Set up the FP register classes.
244    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
245    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
246
247    // Use ANDPD to simulate FABS.
248    setOperationAction(ISD::FABS , MVT::f64, Custom);
249    setOperationAction(ISD::FABS , MVT::f32, Custom);
250
251    // Use XORP to simulate FNEG.
252    setOperationAction(ISD::FNEG , MVT::f64, Custom);
253    setOperationAction(ISD::FNEG , MVT::f32, Custom);
254
255    // Use ANDPD and ORPD to simulate FCOPYSIGN.
256    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
257    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
258
259    // We don't support sin/cos/fmod
260    setOperationAction(ISD::FSIN , MVT::f64, Expand);
261    setOperationAction(ISD::FCOS , MVT::f64, Expand);
262    setOperationAction(ISD::FREM , MVT::f64, Expand);
263    setOperationAction(ISD::FSIN , MVT::f32, Expand);
264    setOperationAction(ISD::FCOS , MVT::f32, Expand);
265    setOperationAction(ISD::FREM , MVT::f32, Expand);
266
267    // Expand FP immediates into loads from the stack, except for the special
268    // cases we handle.
269    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
270    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
271    addLegalFPImmediate(+0.0); // xorps / xorpd
272  } else {
273    // Set up the FP register classes.
274    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
275
276    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
277    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
278    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
279
280    if (!UnsafeFPMath) {
281      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
282      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
283    }
284
285    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
286    addLegalFPImmediate(+0.0); // FLD0
287    addLegalFPImmediate(+1.0); // FLD1
288    addLegalFPImmediate(-0.0); // FLD0/FCHS
289    addLegalFPImmediate(-1.0); // FLD1/FCHS
290  }
291
292  // First set operation action for all vector types to expand. Then we
293  // will selectively turn on ones that can be effectively codegen'd.
294  for (unsigned VT = (unsigned)MVT::Vector + 1;
295       VT != (unsigned)MVT::LAST_VALUETYPE; VT++) {
296    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
297    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
298    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
299    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
300    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
301    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
302    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
303    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
304    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
305    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
306    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
307    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
308    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
309    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
310    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
311  }
312
313  if (Subtarget->hasMMX()) {
314    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
315    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
316    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
317    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
318
319    // FIXME: add MMX packed arithmetics
320
321    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
322    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
323    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
324
325    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
326    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
327    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
328
329    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
330    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
331
332    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
333    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
334    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
335    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
336    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
337    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
338    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
339
340    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
341    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
342    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
343    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
344    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
345    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
346    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
347
348    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
349    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
350    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
351    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
352    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
353    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
354    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
355
356    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
357    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
358    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
359    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
360    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
361    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
362    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
363
364    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
365    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
366    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
367    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
368
369    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
370    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
371    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
372    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
373
374    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
375    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
376  }
377
378  if (Subtarget->hasSSE1()) {
379    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
380
381    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
382    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
383    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
384    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
385    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
386    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
387    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
388    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
389    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
390  }
391
392  if (Subtarget->hasSSE2()) {
393    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
394    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
395    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
396    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
397    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
398
399    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
400    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
401    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
402    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
403    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
404    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
405    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
406    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
407    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
408    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
409    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
410    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
411    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
412
413    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
414    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
415    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
416    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
417    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
418    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
419
420    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
421    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
422      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
423      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
424      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
425    }
426    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
427    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
428    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
429    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
430    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
431    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
432
433    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
434    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
435      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
436      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
437      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
438      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
439      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
440      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
441      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
442      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
443      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
444      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
445    }
446
447    // Custom lower v2i64 and v2f64 selects.
448    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
449    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
450    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
451    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
452  }
453
454  // We want to custom lower some of our intrinsics.
455  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
456
457  // We have target-specific dag combine patterns for the following nodes:
458  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
459  setTargetDAGCombine(ISD::SELECT);
460
461  computeRegisterProperties();
462
463  // FIXME: These should be based on subtarget info. Plus, the values should
464  // be smaller when we are in optimizing for size mode.
465  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
466  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
467  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
468  allowUnalignedMemoryAccesses = true; // x86 supports it!
469}
470
471
472//===----------------------------------------------------------------------===//
473//               Return Value Calling Convention Implementation
474//===----------------------------------------------------------------------===//
475
476#include "X86GenCallingConv.inc"
477
478/// LowerRET - Lower an ISD::RET node.
479SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
480  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
481
482  SmallVector<CCValAssign, 16> RVLocs;
483  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
484  CCState CCInfo(CC, getTargetMachine(), RVLocs);
485  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
486
487
488  // If this is the first return lowered for this function, add the regs to the
489  // liveout set for the function.
490  if (DAG.getMachineFunction().liveout_empty()) {
491    for (unsigned i = 0; i != RVLocs.size(); ++i)
492      if (RVLocs[i].isRegLoc())
493        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
494  }
495
496  SDOperand Chain = Op.getOperand(0);
497  SDOperand Flag;
498
499  // Copy the result values into the output registers.
500  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
501      RVLocs[0].getLocReg() != X86::ST0) {
502    for (unsigned i = 0; i != RVLocs.size(); ++i) {
503      CCValAssign &VA = RVLocs[i];
504      assert(VA.isRegLoc() && "Can only return in registers!");
505      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
506                               Flag);
507      Flag = Chain.getValue(1);
508    }
509  } else {
510    // We need to handle a destination of ST0 specially, because it isn't really
511    // a register.
512    SDOperand Value = Op.getOperand(1);
513
514    // If this is an FP return with ScalarSSE, we need to move the value from
515    // an XMM register onto the fp-stack.
516    if (X86ScalarSSE) {
517      SDOperand MemLoc;
518
519      // If this is a load into a scalarsse value, don't store the loaded value
520      // back to the stack, only to reload it: just replace the scalar-sse load.
521      if (ISD::isNON_EXTLoad(Value.Val) &&
522          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
523        Chain  = Value.getOperand(0);
524        MemLoc = Value.getOperand(1);
525      } else {
526        // Spill the value to memory and reload it into top of stack.
527        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
528        MachineFunction &MF = DAG.getMachineFunction();
529        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
530        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
531        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
532      }
533      SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
534      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
535      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
536      Chain = Value.getValue(1);
537    }
538
539    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
540    SDOperand Ops[] = { Chain, Value };
541    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
542    Flag = Chain.getValue(1);
543  }
544
545  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
546  if (Flag.Val)
547    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
548  else
549    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
550}
551
552
553/// LowerCallResult - Lower the result values of an ISD::CALL into the
554/// appropriate copies out of appropriate physical registers.  This assumes that
555/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
556/// being lowered.  The returns a SDNode with the same number of values as the
557/// ISD::CALL.
558SDNode *X86TargetLowering::
559LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
560                unsigned CallingConv, SelectionDAG &DAG) {
561
562  // Assign locations to each value returned by this call.
563  SmallVector<CCValAssign, 16> RVLocs;
564  CCState CCInfo(CallingConv, getTargetMachine(), RVLocs);
565  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
566
567
568  SmallVector<SDOperand, 8> ResultVals;
569
570  // Copy all of the result registers out of their specified physreg.
571  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
572    for (unsigned i = 0; i != RVLocs.size(); ++i) {
573      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
574                                 RVLocs[i].getValVT(), InFlag).getValue(1);
575      InFlag = Chain.getValue(2);
576      ResultVals.push_back(Chain.getValue(0));
577    }
578  } else {
579    // Copies from the FP stack are special, as ST0 isn't a valid register
580    // before the fp stackifier runs.
581
582    // Copy ST0 into an RFP register with FP_GET_RESULT.
583    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
584    SDOperand GROps[] = { Chain, InFlag };
585    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
586    Chain  = RetVal.getValue(1);
587    InFlag = RetVal.getValue(2);
588
589    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
590    // an XMM register.
591    if (X86ScalarSSE) {
592      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
593      // shouldn't be necessary except that RFP cannot be live across
594      // multiple blocks. When stackifier is fixed, they can be uncoupled.
595      MachineFunction &MF = DAG.getMachineFunction();
596      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
597      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
598      SDOperand Ops[] = {
599        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
600      };
601      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
602      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
603      Chain = RetVal.getValue(1);
604    }
605
606    if (RVLocs[0].getValVT() == MVT::f32 && !X86ScalarSSE)
607      // FIXME: we would really like to remember that this FP_ROUND
608      // operation is okay to eliminate if we allow excess FP precision.
609      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
610    ResultVals.push_back(RetVal);
611  }
612
613  // Merge everything together with a MERGE_VALUES node.
614  ResultVals.push_back(Chain);
615  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
616                     &ResultVals[0], ResultVals.size()).Val;
617}
618
619
620//===----------------------------------------------------------------------===//
621//                C & StdCall Calling Convention implementation
622//===----------------------------------------------------------------------===//
623//  StdCall calling convention seems to be standard for many Windows' API
624//  routines and around. It differs from C calling convention just a little:
625//  callee should clean up the stack, not caller. Symbols should be also
626//  decorated in some fancy way :) It doesn't support any vector arguments.
627
628/// AddLiveIn - This helper function adds the specified physical register to the
629/// MachineFunction as a live in value.  It also creates a corresponding virtual
630/// register for it.
631static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
632                          const TargetRegisterClass *RC) {
633  assert(RC->contains(PReg) && "Not the correct regclass!");
634  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
635  MF.addLiveIn(PReg, VReg);
636  return VReg;
637}
638
639SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
640                                               bool isStdCall) {
641  unsigned NumArgs = Op.Val->getNumValues() - 1;
642  MachineFunction &MF = DAG.getMachineFunction();
643  MachineFrameInfo *MFI = MF.getFrameInfo();
644  SDOperand Root = Op.getOperand(0);
645  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
646
647  // Assign locations to all of the incoming arguments.
648  SmallVector<CCValAssign, 16> ArgLocs;
649  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
650                 ArgLocs);
651  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
652
653  SmallVector<SDOperand, 8> ArgValues;
654  unsigned LastVal = ~0U;
655  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
656    CCValAssign &VA = ArgLocs[i];
657    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
658    // places.
659    assert(VA.getValNo() != LastVal &&
660           "Don't support value assigned to multiple locs yet");
661    LastVal = VA.getValNo();
662
663    if (VA.isRegLoc()) {
664      MVT::ValueType RegVT = VA.getLocVT();
665      TargetRegisterClass *RC;
666      if (RegVT == MVT::i32)
667        RC = X86::GR32RegisterClass;
668      else {
669        assert(MVT::isVector(RegVT));
670        RC = X86::VR128RegisterClass;
671      }
672
673      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
674      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
675
676      // If this is an 8 or 16-bit value, it is really passed promoted to 32
677      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
678      // right size.
679      if (VA.getLocInfo() == CCValAssign::SExt)
680        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
681                               DAG.getValueType(VA.getValVT()));
682      else if (VA.getLocInfo() == CCValAssign::ZExt)
683        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
684                               DAG.getValueType(VA.getValVT()));
685
686      if (VA.getLocInfo() != CCValAssign::Full)
687        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
688
689      ArgValues.push_back(ArgValue);
690    } else {
691      assert(VA.isMemLoc());
692
693      // Create the nodes corresponding to a load from this parameter slot.
694      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
695                                      VA.getLocMemOffset());
696      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
697      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
698    }
699  }
700
701  unsigned StackSize = CCInfo.getNextStackOffset();
702
703  ArgValues.push_back(Root);
704
705  // If the function takes variable number of arguments, make a frame index for
706  // the start of the first vararg value... for expansion of llvm.va_start.
707  if (isVarArg)
708    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
709
710  if (isStdCall && !isVarArg) {
711    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
712    BytesCallerReserves = 0;
713  } else {
714    BytesToPopOnReturn  = 0; // Callee pops nothing.
715
716    // If this is an sret function, the return should pop the hidden pointer.
717    if (NumArgs &&
718        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
719         ISD::ParamFlags::StructReturn))
720      BytesToPopOnReturn = 4;
721
722    BytesCallerReserves = StackSize;
723  }
724
725  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
726  ReturnAddrIndex = 0;            // No return address slot generated yet.
727
728  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
729
730  // Return the new list of results.
731  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
732                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
733}
734
735SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
736                                            unsigned CC) {
737  SDOperand Chain     = Op.getOperand(0);
738  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
739  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
740  SDOperand Callee    = Op.getOperand(4);
741  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
742
743  // Analyze operands of the call, assigning locations to each operand.
744  SmallVector<CCValAssign, 16> ArgLocs;
745  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
746  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
747
748  // Get a count of how many bytes are to be pushed on the stack.
749  unsigned NumBytes = CCInfo.getNextStackOffset();
750
751  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
752
753  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
754  SmallVector<SDOperand, 8> MemOpChains;
755
756  SDOperand StackPtr;
757
758  // Walk the register/memloc assignments, inserting copies/loads.
759  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
760    CCValAssign &VA = ArgLocs[i];
761    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
762
763    // Promote the value if needed.
764    switch (VA.getLocInfo()) {
765    default: assert(0 && "Unknown loc info!");
766    case CCValAssign::Full: break;
767    case CCValAssign::SExt:
768      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
769      break;
770    case CCValAssign::ZExt:
771      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
772      break;
773    case CCValAssign::AExt:
774      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
775      break;
776    }
777
778    if (VA.isRegLoc()) {
779      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
780    } else {
781      assert(VA.isMemLoc());
782      if (StackPtr.Val == 0)
783        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
784      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
785      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
786      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
787    }
788  }
789
790  // If the first argument is an sret pointer, remember it.
791  bool isSRet = NumOps &&
792    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
793     ISD::ParamFlags::StructReturn);
794
795  if (!MemOpChains.empty())
796    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
797                        &MemOpChains[0], MemOpChains.size());
798
799  // Build a sequence of copy-to-reg nodes chained together with token chain
800  // and flag operands which copy the outgoing args into registers.
801  SDOperand InFlag;
802  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
803    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
804                             InFlag);
805    InFlag = Chain.getValue(1);
806  }
807
808  // ELF / PIC requires GOT in the EBX register before function calls via PLT
809  // GOT pointer.
810  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
811      Subtarget->isPICStyleGOT()) {
812    Chain = DAG.getCopyToReg(Chain, X86::EBX,
813                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
814                             InFlag);
815    InFlag = Chain.getValue(1);
816  }
817
818  // If the callee is a GlobalAddress node (quite common, every direct call is)
819  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
820  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
821    // We should use extra load for direct calls to dllimported functions in
822    // non-JIT mode.
823    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
824                                        getTargetMachine(), true))
825      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
826  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
827    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
828
829  // Returns a chain & a flag for retval copy to use.
830  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
831  SmallVector<SDOperand, 8> Ops;
832  Ops.push_back(Chain);
833  Ops.push_back(Callee);
834
835  // Add argument registers to the end of the list so that they are known live
836  // into the call.
837  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
838    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
839                                  RegsToPass[i].second.getValueType()));
840
841  // Add an implicit use GOT pointer in EBX.
842  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
843      Subtarget->isPICStyleGOT())
844    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
845
846  if (InFlag.Val)
847    Ops.push_back(InFlag);
848
849  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
850                      NodeTys, &Ops[0], Ops.size());
851  InFlag = Chain.getValue(1);
852
853  // Create the CALLSEQ_END node.
854  unsigned NumBytesForCalleeToPush = 0;
855
856  if (CC == CallingConv::X86_StdCall) {
857    if (isVarArg)
858      NumBytesForCalleeToPush = isSRet ? 4 : 0;
859    else
860      NumBytesForCalleeToPush = NumBytes;
861  } else {
862    // If this is is a call to a struct-return function, the callee
863    // pops the hidden struct pointer, so we have to push it back.
864    // This is common for Darwin/X86, Linux & Mingw32 targets.
865    NumBytesForCalleeToPush = isSRet ? 4 : 0;
866  }
867
868  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
869  Ops.clear();
870  Ops.push_back(Chain);
871  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
872  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
873  Ops.push_back(InFlag);
874  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
875  InFlag = Chain.getValue(1);
876
877  // Handle result values, copying them out of physregs into vregs that we
878  // return.
879  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
880}
881
882
883//===----------------------------------------------------------------------===//
884//                   FastCall Calling Convention implementation
885//===----------------------------------------------------------------------===//
886//
887// The X86 'fastcall' calling convention passes up to two integer arguments in
888// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
889// and requires that the callee pop its arguments off the stack (allowing proper
890// tail calls), and has the same return value conventions as C calling convs.
891//
892// This calling convention always arranges for the callee pop value to be 8n+4
893// bytes, which is needed for tail recursion elimination and stack alignment
894// reasons.
895SDOperand
896X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
897  MachineFunction &MF = DAG.getMachineFunction();
898  MachineFrameInfo *MFI = MF.getFrameInfo();
899  SDOperand Root = Op.getOperand(0);
900
901  // Assign locations to all of the incoming arguments.
902  SmallVector<CCValAssign, 16> ArgLocs;
903  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
904                 ArgLocs);
905  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
906
907  SmallVector<SDOperand, 8> ArgValues;
908  unsigned LastVal = ~0U;
909  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
910    CCValAssign &VA = ArgLocs[i];
911    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
912    // places.
913    assert(VA.getValNo() != LastVal &&
914           "Don't support value assigned to multiple locs yet");
915    LastVal = VA.getValNo();
916
917    if (VA.isRegLoc()) {
918      MVT::ValueType RegVT = VA.getLocVT();
919      TargetRegisterClass *RC;
920      if (RegVT == MVT::i32)
921        RC = X86::GR32RegisterClass;
922      else {
923        assert(MVT::isVector(RegVT));
924        RC = X86::VR128RegisterClass;
925      }
926
927      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
928      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
929
930      // If this is an 8 or 16-bit value, it is really passed promoted to 32
931      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
932      // right size.
933      if (VA.getLocInfo() == CCValAssign::SExt)
934        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
935                               DAG.getValueType(VA.getValVT()));
936      else if (VA.getLocInfo() == CCValAssign::ZExt)
937        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
938                               DAG.getValueType(VA.getValVT()));
939
940      if (VA.getLocInfo() != CCValAssign::Full)
941        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
942
943      ArgValues.push_back(ArgValue);
944    } else {
945      assert(VA.isMemLoc());
946
947      // Create the nodes corresponding to a load from this parameter slot.
948      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
949                                      VA.getLocMemOffset());
950      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
951      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
952    }
953  }
954
955  ArgValues.push_back(Root);
956
957  unsigned StackSize = CCInfo.getNextStackOffset();
958
959  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
960    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
961    // arguments and the arguments after the retaddr has been pushed are aligned.
962    if ((StackSize & 7) == 0)
963      StackSize += 4;
964  }
965
966  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
967  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
968  ReturnAddrIndex = 0;             // No return address slot generated yet.
969  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
970  BytesCallerReserves = 0;
971
972  MF.getInfo<X86FunctionInfo>()->setBytesToPopOnReturn(BytesToPopOnReturn);
973
974  // Return the new list of results.
975  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
976                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
977}
978
979SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
980                                               unsigned CC) {
981  SDOperand Chain     = Op.getOperand(0);
982  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
983  SDOperand Callee    = Op.getOperand(4);
984
985  // Analyze operands of the call, assigning locations to each operand.
986  SmallVector<CCValAssign, 16> ArgLocs;
987  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
988  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
989
990  // Get a count of how many bytes are to be pushed on the stack.
991  unsigned NumBytes = CCInfo.getNextStackOffset();
992
993  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
994    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
995    // arguments and the arguments after the retaddr has been pushed are aligned.
996    if ((NumBytes & 7) == 0)
997      NumBytes += 4;
998  }
999
1000  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1001
1002  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1003  SmallVector<SDOperand, 8> MemOpChains;
1004
1005  SDOperand StackPtr;
1006
1007  // Walk the register/memloc assignments, inserting copies/loads.
1008  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1009    CCValAssign &VA = ArgLocs[i];
1010    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1011
1012    // Promote the value if needed.
1013    switch (VA.getLocInfo()) {
1014      default: assert(0 && "Unknown loc info!");
1015      case CCValAssign::Full: break;
1016      case CCValAssign::SExt:
1017        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1018        break;
1019      case CCValAssign::ZExt:
1020        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1021        break;
1022      case CCValAssign::AExt:
1023        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1024        break;
1025    }
1026
1027    if (VA.isRegLoc()) {
1028      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1029    } else {
1030      assert(VA.isMemLoc());
1031      if (StackPtr.Val == 0)
1032        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1033      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1034      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1035      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1036    }
1037  }
1038
1039  if (!MemOpChains.empty())
1040    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1041                        &MemOpChains[0], MemOpChains.size());
1042
1043  // Build a sequence of copy-to-reg nodes chained together with token chain
1044  // and flag operands which copy the outgoing args into registers.
1045  SDOperand InFlag;
1046  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1047    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1048                             InFlag);
1049    InFlag = Chain.getValue(1);
1050  }
1051
1052  // If the callee is a GlobalAddress node (quite common, every direct call is)
1053  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1054  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1055    // We should use extra load for direct calls to dllimported functions in
1056    // non-JIT mode.
1057    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1058                                        getTargetMachine(), true))
1059      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1060  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1061    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1062
1063  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1064  // GOT pointer.
1065  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1066      Subtarget->isPICStyleGOT()) {
1067    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1068                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1069                             InFlag);
1070    InFlag = Chain.getValue(1);
1071  }
1072
1073  // Returns a chain & a flag for retval copy to use.
1074  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1075  SmallVector<SDOperand, 8> Ops;
1076  Ops.push_back(Chain);
1077  Ops.push_back(Callee);
1078
1079  // Add argument registers to the end of the list so that they are known live
1080  // into the call.
1081  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1082    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1083                                  RegsToPass[i].second.getValueType()));
1084
1085  // Add an implicit use GOT pointer in EBX.
1086  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1087      Subtarget->isPICStyleGOT())
1088    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1089
1090  if (InFlag.Val)
1091    Ops.push_back(InFlag);
1092
1093  // FIXME: Do not generate X86ISD::TAILCALL for now.
1094  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1095                      NodeTys, &Ops[0], Ops.size());
1096  InFlag = Chain.getValue(1);
1097
1098  // Returns a flag for retval copy to use.
1099  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1100  Ops.clear();
1101  Ops.push_back(Chain);
1102  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1103  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1104  Ops.push_back(InFlag);
1105  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1106  InFlag = Chain.getValue(1);
1107
1108  // Handle result values, copying them out of physregs into vregs that we
1109  // return.
1110  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1111}
1112
1113
1114//===----------------------------------------------------------------------===//
1115//                 X86-64 C Calling Convention implementation
1116//===----------------------------------------------------------------------===//
1117
1118SDOperand
1119X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1120  MachineFunction &MF = DAG.getMachineFunction();
1121  MachineFrameInfo *MFI = MF.getFrameInfo();
1122  SDOperand Root = Op.getOperand(0);
1123  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1124
1125  static const unsigned GPR64ArgRegs[] = {
1126    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1127  };
1128  static const unsigned XMMArgRegs[] = {
1129    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1130    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1131  };
1132
1133
1134  // Assign locations to all of the incoming arguments.
1135  SmallVector<CCValAssign, 16> ArgLocs;
1136  CCState CCInfo(MF.getFunction()->getCallingConv(), getTargetMachine(),
1137                 ArgLocs);
1138  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1139
1140  SmallVector<SDOperand, 8> ArgValues;
1141  unsigned LastVal = ~0U;
1142  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1143    CCValAssign &VA = ArgLocs[i];
1144    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1145    // places.
1146    assert(VA.getValNo() != LastVal &&
1147           "Don't support value assigned to multiple locs yet");
1148    LastVal = VA.getValNo();
1149
1150    if (VA.isRegLoc()) {
1151      MVT::ValueType RegVT = VA.getLocVT();
1152      TargetRegisterClass *RC;
1153      if (RegVT == MVT::i32)
1154        RC = X86::GR32RegisterClass;
1155      else if (RegVT == MVT::i64)
1156        RC = X86::GR64RegisterClass;
1157      else if (RegVT == MVT::f32)
1158        RC = X86::FR32RegisterClass;
1159      else if (RegVT == MVT::f64)
1160        RC = X86::FR64RegisterClass;
1161      else {
1162        assert(MVT::isVector(RegVT));
1163        RC = X86::VR128RegisterClass;
1164      }
1165
1166      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1167      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1168
1169      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1170      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1171      // right size.
1172      if (VA.getLocInfo() == CCValAssign::SExt)
1173        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1174                               DAG.getValueType(VA.getValVT()));
1175      else if (VA.getLocInfo() == CCValAssign::ZExt)
1176        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1177                               DAG.getValueType(VA.getValVT()));
1178
1179      if (VA.getLocInfo() != CCValAssign::Full)
1180        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1181
1182      ArgValues.push_back(ArgValue);
1183    } else {
1184      assert(VA.isMemLoc());
1185
1186      // Create the nodes corresponding to a load from this parameter slot.
1187      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1188                                      VA.getLocMemOffset());
1189      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1190      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1191    }
1192  }
1193
1194  unsigned StackSize = CCInfo.getNextStackOffset();
1195
1196  // If the function takes variable number of arguments, make a frame index for
1197  // the start of the first vararg value... for expansion of llvm.va_start.
1198  if (isVarArg) {
1199    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1200    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1201
1202    // For X86-64, if there are vararg parameters that are passed via
1203    // registers, then we must store them to their spots on the stack so they
1204    // may be loaded by deferencing the result of va_next.
1205    VarArgsGPOffset = NumIntRegs * 8;
1206    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1207    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1208    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1209
1210    // Store the integer parameter registers.
1211    SmallVector<SDOperand, 8> MemOps;
1212    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1213    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1214                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1215    for (; NumIntRegs != 6; ++NumIntRegs) {
1216      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1217                                X86::GR64RegisterClass);
1218      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1219      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1220      MemOps.push_back(Store);
1221      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1222                        DAG.getConstant(8, getPointerTy()));
1223    }
1224
1225    // Now store the XMM (fp + vector) parameter registers.
1226    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1227                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1228    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1229      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1230                                X86::VR128RegisterClass);
1231      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1232      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1233      MemOps.push_back(Store);
1234      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1235                        DAG.getConstant(16, getPointerTy()));
1236    }
1237    if (!MemOps.empty())
1238        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1239                           &MemOps[0], MemOps.size());
1240  }
1241
1242  ArgValues.push_back(Root);
1243
1244  ReturnAddrIndex = 0;     // No return address slot generated yet.
1245  BytesToPopOnReturn = 0;  // Callee pops nothing.
1246  BytesCallerReserves = StackSize;
1247
1248  // Return the new list of results.
1249  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1250                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1251}
1252
1253SDOperand
1254X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1255                                        unsigned CC) {
1256  SDOperand Chain     = Op.getOperand(0);
1257  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1258  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1259  SDOperand Callee    = Op.getOperand(4);
1260
1261  // Analyze operands of the call, assigning locations to each operand.
1262  SmallVector<CCValAssign, 16> ArgLocs;
1263  CCState CCInfo(CC, getTargetMachine(), ArgLocs);
1264  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1265
1266  // Get a count of how many bytes are to be pushed on the stack.
1267  unsigned NumBytes = CCInfo.getNextStackOffset();
1268  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1269
1270  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1271  SmallVector<SDOperand, 8> MemOpChains;
1272
1273  SDOperand StackPtr;
1274
1275  // Walk the register/memloc assignments, inserting copies/loads.
1276  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1277    CCValAssign &VA = ArgLocs[i];
1278    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1279
1280    // Promote the value if needed.
1281    switch (VA.getLocInfo()) {
1282    default: assert(0 && "Unknown loc info!");
1283    case CCValAssign::Full: break;
1284    case CCValAssign::SExt:
1285      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1286      break;
1287    case CCValAssign::ZExt:
1288      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1289      break;
1290    case CCValAssign::AExt:
1291      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1292      break;
1293    }
1294
1295    if (VA.isRegLoc()) {
1296      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1297    } else {
1298      assert(VA.isMemLoc());
1299      if (StackPtr.Val == 0)
1300        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1301      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1302      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1303      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1304    }
1305  }
1306
1307  if (!MemOpChains.empty())
1308    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1309                        &MemOpChains[0], MemOpChains.size());
1310
1311  // Build a sequence of copy-to-reg nodes chained together with token chain
1312  // and flag operands which copy the outgoing args into registers.
1313  SDOperand InFlag;
1314  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1315    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1316                             InFlag);
1317    InFlag = Chain.getValue(1);
1318  }
1319
1320  if (isVarArg) {
1321    // From AMD64 ABI document:
1322    // For calls that may call functions that use varargs or stdargs
1323    // (prototype-less calls or calls to functions containing ellipsis (...) in
1324    // the declaration) %al is used as hidden argument to specify the number
1325    // of SSE registers used. The contents of %al do not need to match exactly
1326    // the number of registers, but must be an ubound on the number of SSE
1327    // registers used and is in the range 0 - 8 inclusive.
1328
1329    // Count the number of XMM registers allocated.
1330    static const unsigned XMMArgRegs[] = {
1331      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1332      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1333    };
1334    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1335
1336    Chain = DAG.getCopyToReg(Chain, X86::AL,
1337                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1338    InFlag = Chain.getValue(1);
1339  }
1340
1341  // If the callee is a GlobalAddress node (quite common, every direct call is)
1342  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1343  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1344    // We should use extra load for direct calls to dllimported functions in
1345    // non-JIT mode.
1346    if (getTargetMachine().getCodeModel() != CodeModel::Large
1347	&& !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1348					   getTargetMachine(), true))
1349      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1350  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1351    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1352      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1353
1354  // Returns a chain & a flag for retval copy to use.
1355  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1356  SmallVector<SDOperand, 8> Ops;
1357  Ops.push_back(Chain);
1358  Ops.push_back(Callee);
1359
1360  // Add argument registers to the end of the list so that they are known live
1361  // into the call.
1362  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1363    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1364                                  RegsToPass[i].second.getValueType()));
1365
1366  if (InFlag.Val)
1367    Ops.push_back(InFlag);
1368
1369  // FIXME: Do not generate X86ISD::TAILCALL for now.
1370  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1371                      NodeTys, &Ops[0], Ops.size());
1372  InFlag = Chain.getValue(1);
1373
1374  // Returns a flag for retval copy to use.
1375  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1376  Ops.clear();
1377  Ops.push_back(Chain);
1378  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1379  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1380  Ops.push_back(InFlag);
1381  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1382  InFlag = Chain.getValue(1);
1383
1384  // Handle result values, copying them out of physregs into vregs that we
1385  // return.
1386  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1387}
1388
1389
1390//===----------------------------------------------------------------------===//
1391//                           Other Lowering Hooks
1392//===----------------------------------------------------------------------===//
1393
1394
1395SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1396  if (ReturnAddrIndex == 0) {
1397    // Set up a frame object for the return address.
1398    MachineFunction &MF = DAG.getMachineFunction();
1399    if (Subtarget->is64Bit())
1400      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1401    else
1402      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1403  }
1404
1405  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1406}
1407
1408
1409
1410/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1411/// specific condition code. It returns a false if it cannot do a direct
1412/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1413/// needed.
1414static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1415                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1416                           SelectionDAG &DAG) {
1417  X86CC = X86::COND_INVALID;
1418  if (!isFP) {
1419    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1420      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1421        // X > -1   -> X == 0, jump !sign.
1422        RHS = DAG.getConstant(0, RHS.getValueType());
1423        X86CC = X86::COND_NS;
1424        return true;
1425      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1426        // X < 0   -> X == 0, jump on sign.
1427        X86CC = X86::COND_S;
1428        return true;
1429      }
1430    }
1431
1432    switch (SetCCOpcode) {
1433    default: break;
1434    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1435    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1436    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1437    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1438    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1439    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1440    case ISD::SETULT: X86CC = X86::COND_B;  break;
1441    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1442    case ISD::SETULE: X86CC = X86::COND_BE; break;
1443    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1444    }
1445  } else {
1446    // On a floating point condition, the flags are set as follows:
1447    // ZF  PF  CF   op
1448    //  0 | 0 | 0 | X > Y
1449    //  0 | 0 | 1 | X < Y
1450    //  1 | 0 | 0 | X == Y
1451    //  1 | 1 | 1 | unordered
1452    bool Flip = false;
1453    switch (SetCCOpcode) {
1454    default: break;
1455    case ISD::SETUEQ:
1456    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1457    case ISD::SETOLT: Flip = true; // Fallthrough
1458    case ISD::SETOGT:
1459    case ISD::SETGT: X86CC = X86::COND_A;  break;
1460    case ISD::SETOLE: Flip = true; // Fallthrough
1461    case ISD::SETOGE:
1462    case ISD::SETGE: X86CC = X86::COND_AE; break;
1463    case ISD::SETUGT: Flip = true; // Fallthrough
1464    case ISD::SETULT:
1465    case ISD::SETLT: X86CC = X86::COND_B;  break;
1466    case ISD::SETUGE: Flip = true; // Fallthrough
1467    case ISD::SETULE:
1468    case ISD::SETLE: X86CC = X86::COND_BE; break;
1469    case ISD::SETONE:
1470    case ISD::SETNE: X86CC = X86::COND_NE; break;
1471    case ISD::SETUO: X86CC = X86::COND_P;  break;
1472    case ISD::SETO:  X86CC = X86::COND_NP; break;
1473    }
1474    if (Flip)
1475      std::swap(LHS, RHS);
1476  }
1477
1478  return X86CC != X86::COND_INVALID;
1479}
1480
1481/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1482/// code. Current x86 isa includes the following FP cmov instructions:
1483/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1484static bool hasFPCMov(unsigned X86CC) {
1485  switch (X86CC) {
1486  default:
1487    return false;
1488  case X86::COND_B:
1489  case X86::COND_BE:
1490  case X86::COND_E:
1491  case X86::COND_P:
1492  case X86::COND_A:
1493  case X86::COND_AE:
1494  case X86::COND_NE:
1495  case X86::COND_NP:
1496    return true;
1497  }
1498}
1499
1500/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1501/// true if Op is undef or if its value falls within the specified range (L, H].
1502static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1503  if (Op.getOpcode() == ISD::UNDEF)
1504    return true;
1505
1506  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1507  return (Val >= Low && Val < Hi);
1508}
1509
1510/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1511/// true if Op is undef or if its value equal to the specified value.
1512static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1513  if (Op.getOpcode() == ISD::UNDEF)
1514    return true;
1515  return cast<ConstantSDNode>(Op)->getValue() == Val;
1516}
1517
1518/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1519/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1520bool X86::isPSHUFDMask(SDNode *N) {
1521  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1522
1523  if (N->getNumOperands() != 4)
1524    return false;
1525
1526  // Check if the value doesn't reference the second vector.
1527  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1528    SDOperand Arg = N->getOperand(i);
1529    if (Arg.getOpcode() == ISD::UNDEF) continue;
1530    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1531    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
1532      return false;
1533  }
1534
1535  return true;
1536}
1537
1538/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1539/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1540bool X86::isPSHUFHWMask(SDNode *N) {
1541  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1542
1543  if (N->getNumOperands() != 8)
1544    return false;
1545
1546  // Lower quadword copied in order.
1547  for (unsigned i = 0; i != 4; ++i) {
1548    SDOperand Arg = N->getOperand(i);
1549    if (Arg.getOpcode() == ISD::UNDEF) continue;
1550    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1551    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1552      return false;
1553  }
1554
1555  // Upper quadword shuffled.
1556  for (unsigned i = 4; i != 8; ++i) {
1557    SDOperand Arg = N->getOperand(i);
1558    if (Arg.getOpcode() == ISD::UNDEF) continue;
1559    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1560    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1561    if (Val < 4 || Val > 7)
1562      return false;
1563  }
1564
1565  return true;
1566}
1567
1568/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1569/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1570bool X86::isPSHUFLWMask(SDNode *N) {
1571  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1572
1573  if (N->getNumOperands() != 8)
1574    return false;
1575
1576  // Upper quadword copied in order.
1577  for (unsigned i = 4; i != 8; ++i)
1578    if (!isUndefOrEqual(N->getOperand(i), i))
1579      return false;
1580
1581  // Lower quadword shuffled.
1582  for (unsigned i = 0; i != 4; ++i)
1583    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1584      return false;
1585
1586  return true;
1587}
1588
1589/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1590/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1591static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1592  if (NumElems != 2 && NumElems != 4) return false;
1593
1594  unsigned Half = NumElems / 2;
1595  for (unsigned i = 0; i < Half; ++i)
1596    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1597      return false;
1598  for (unsigned i = Half; i < NumElems; ++i)
1599    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1600      return false;
1601
1602  return true;
1603}
1604
1605bool X86::isSHUFPMask(SDNode *N) {
1606  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1607  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1608}
1609
1610/// isCommutedSHUFP - Returns true if the shuffle mask is except
1611/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1612/// half elements to come from vector 1 (which would equal the dest.) and
1613/// the upper half to come from vector 2.
1614static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1615  if (NumOps != 2 && NumOps != 4) return false;
1616
1617  unsigned Half = NumOps / 2;
1618  for (unsigned i = 0; i < Half; ++i)
1619    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1620      return false;
1621  for (unsigned i = Half; i < NumOps; ++i)
1622    if (!isUndefOrInRange(Ops[i], 0, NumOps))
1623      return false;
1624  return true;
1625}
1626
1627static bool isCommutedSHUFP(SDNode *N) {
1628  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1629  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1630}
1631
1632/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1633/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1634bool X86::isMOVHLPSMask(SDNode *N) {
1635  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1636
1637  if (N->getNumOperands() != 4)
1638    return false;
1639
1640  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1641  return isUndefOrEqual(N->getOperand(0), 6) &&
1642         isUndefOrEqual(N->getOperand(1), 7) &&
1643         isUndefOrEqual(N->getOperand(2), 2) &&
1644         isUndefOrEqual(N->getOperand(3), 3);
1645}
1646
1647/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1648/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1649/// <2, 3, 2, 3>
1650bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1651  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1652
1653  if (N->getNumOperands() != 4)
1654    return false;
1655
1656  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1657  return isUndefOrEqual(N->getOperand(0), 2) &&
1658         isUndefOrEqual(N->getOperand(1), 3) &&
1659         isUndefOrEqual(N->getOperand(2), 2) &&
1660         isUndefOrEqual(N->getOperand(3), 3);
1661}
1662
1663/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1664/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1665bool X86::isMOVLPMask(SDNode *N) {
1666  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1667
1668  unsigned NumElems = N->getNumOperands();
1669  if (NumElems != 2 && NumElems != 4)
1670    return false;
1671
1672  for (unsigned i = 0; i < NumElems/2; ++i)
1673    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1674      return false;
1675
1676  for (unsigned i = NumElems/2; i < NumElems; ++i)
1677    if (!isUndefOrEqual(N->getOperand(i), i))
1678      return false;
1679
1680  return true;
1681}
1682
1683/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1684/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1685/// and MOVLHPS.
1686bool X86::isMOVHPMask(SDNode *N) {
1687  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1688
1689  unsigned NumElems = N->getNumOperands();
1690  if (NumElems != 2 && NumElems != 4)
1691    return false;
1692
1693  for (unsigned i = 0; i < NumElems/2; ++i)
1694    if (!isUndefOrEqual(N->getOperand(i), i))
1695      return false;
1696
1697  for (unsigned i = 0; i < NumElems/2; ++i) {
1698    SDOperand Arg = N->getOperand(i + NumElems/2);
1699    if (!isUndefOrEqual(Arg, i + NumElems))
1700      return false;
1701  }
1702
1703  return true;
1704}
1705
1706/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1707/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1708bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1709                         bool V2IsSplat = false) {
1710  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1711    return false;
1712
1713  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1714    SDOperand BitI  = Elts[i];
1715    SDOperand BitI1 = Elts[i+1];
1716    if (!isUndefOrEqual(BitI, j))
1717      return false;
1718    if (V2IsSplat) {
1719      if (isUndefOrEqual(BitI1, NumElts))
1720        return false;
1721    } else {
1722      if (!isUndefOrEqual(BitI1, j + NumElts))
1723        return false;
1724    }
1725  }
1726
1727  return true;
1728}
1729
1730bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1731  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1732  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1733}
1734
1735/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1736/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1737bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1738                         bool V2IsSplat = false) {
1739  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1740    return false;
1741
1742  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1743    SDOperand BitI  = Elts[i];
1744    SDOperand BitI1 = Elts[i+1];
1745    if (!isUndefOrEqual(BitI, j + NumElts/2))
1746      return false;
1747    if (V2IsSplat) {
1748      if (isUndefOrEqual(BitI1, NumElts))
1749        return false;
1750    } else {
1751      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1752        return false;
1753    }
1754  }
1755
1756  return true;
1757}
1758
1759bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1760  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1761  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1762}
1763
1764/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1765/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1766/// <0, 0, 1, 1>
1767bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1768  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1769
1770  unsigned NumElems = N->getNumOperands();
1771  if (NumElems != 4 && NumElems != 8 && NumElems != 16)
1772    return false;
1773
1774  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1775    SDOperand BitI  = N->getOperand(i);
1776    SDOperand BitI1 = N->getOperand(i+1);
1777
1778    if (!isUndefOrEqual(BitI, j))
1779      return false;
1780    if (!isUndefOrEqual(BitI1, j))
1781      return false;
1782  }
1783
1784  return true;
1785}
1786
1787/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1788/// specifies a shuffle of elements that is suitable for input to MOVSS,
1789/// MOVSD, and MOVD, i.e. setting the lowest element.
1790static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1791  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1792    return false;
1793
1794  if (!isUndefOrEqual(Elts[0], NumElts))
1795    return false;
1796
1797  for (unsigned i = 1; i < NumElts; ++i) {
1798    if (!isUndefOrEqual(Elts[i], i))
1799      return false;
1800  }
1801
1802  return true;
1803}
1804
1805bool X86::isMOVLMask(SDNode *N) {
1806  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1807  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1808}
1809
1810/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1811/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
1812/// element of vector 2 and the other elements to come from vector 1 in order.
1813static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1814                           bool V2IsSplat = false,
1815                           bool V2IsUndef = false) {
1816  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1817    return false;
1818
1819  if (!isUndefOrEqual(Ops[0], 0))
1820    return false;
1821
1822  for (unsigned i = 1; i < NumOps; ++i) {
1823    SDOperand Arg = Ops[i];
1824    if (!(isUndefOrEqual(Arg, i+NumOps) ||
1825          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1826          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1827      return false;
1828  }
1829
1830  return true;
1831}
1832
1833static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1834                           bool V2IsUndef = false) {
1835  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1836  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1837                        V2IsSplat, V2IsUndef);
1838}
1839
1840/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1841/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1842bool X86::isMOVSHDUPMask(SDNode *N) {
1843  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1844
1845  if (N->getNumOperands() != 4)
1846    return false;
1847
1848  // Expect 1, 1, 3, 3
1849  for (unsigned i = 0; i < 2; ++i) {
1850    SDOperand Arg = N->getOperand(i);
1851    if (Arg.getOpcode() == ISD::UNDEF) continue;
1852    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1853    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1854    if (Val != 1) return false;
1855  }
1856
1857  bool HasHi = false;
1858  for (unsigned i = 2; i < 4; ++i) {
1859    SDOperand Arg = N->getOperand(i);
1860    if (Arg.getOpcode() == ISD::UNDEF) continue;
1861    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1862    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1863    if (Val != 3) return false;
1864    HasHi = true;
1865  }
1866
1867  // Don't use movshdup if it can be done with a shufps.
1868  return HasHi;
1869}
1870
1871/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1872/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
1873bool X86::isMOVSLDUPMask(SDNode *N) {
1874  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1875
1876  if (N->getNumOperands() != 4)
1877    return false;
1878
1879  // Expect 0, 0, 2, 2
1880  for (unsigned i = 0; i < 2; ++i) {
1881    SDOperand Arg = N->getOperand(i);
1882    if (Arg.getOpcode() == ISD::UNDEF) continue;
1883    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1884    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1885    if (Val != 0) return false;
1886  }
1887
1888  bool HasHi = false;
1889  for (unsigned i = 2; i < 4; ++i) {
1890    SDOperand Arg = N->getOperand(i);
1891    if (Arg.getOpcode() == ISD::UNDEF) continue;
1892    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1893    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1894    if (Val != 2) return false;
1895    HasHi = true;
1896  }
1897
1898  // Don't use movshdup if it can be done with a shufps.
1899  return HasHi;
1900}
1901
1902/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
1903/// a splat of a single element.
1904static bool isSplatMask(SDNode *N) {
1905  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1906
1907  // This is a splat operation if each element of the permute is the same, and
1908  // if the value doesn't reference the second vector.
1909  unsigned NumElems = N->getNumOperands();
1910  SDOperand ElementBase;
1911  unsigned i = 0;
1912  for (; i != NumElems; ++i) {
1913    SDOperand Elt = N->getOperand(i);
1914    if (isa<ConstantSDNode>(Elt)) {
1915      ElementBase = Elt;
1916      break;
1917    }
1918  }
1919
1920  if (!ElementBase.Val)
1921    return false;
1922
1923  for (; i != NumElems; ++i) {
1924    SDOperand Arg = N->getOperand(i);
1925    if (Arg.getOpcode() == ISD::UNDEF) continue;
1926    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1927    if (Arg != ElementBase) return false;
1928  }
1929
1930  // Make sure it is a splat of the first vector operand.
1931  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
1932}
1933
1934/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
1935/// a splat of a single element and it's a 2 or 4 element mask.
1936bool X86::isSplatMask(SDNode *N) {
1937  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1938
1939  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
1940  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
1941    return false;
1942  return ::isSplatMask(N);
1943}
1944
1945/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
1946/// specifies a splat of zero element.
1947bool X86::isSplatLoMask(SDNode *N) {
1948  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1949
1950  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
1951    if (!isUndefOrEqual(N->getOperand(i), 0))
1952      return false;
1953  return true;
1954}
1955
1956/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
1957/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
1958/// instructions.
1959unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
1960  unsigned NumOperands = N->getNumOperands();
1961  unsigned Shift = (NumOperands == 4) ? 2 : 1;
1962  unsigned Mask = 0;
1963  for (unsigned i = 0; i < NumOperands; ++i) {
1964    unsigned Val = 0;
1965    SDOperand Arg = N->getOperand(NumOperands-i-1);
1966    if (Arg.getOpcode() != ISD::UNDEF)
1967      Val = cast<ConstantSDNode>(Arg)->getValue();
1968    if (Val >= NumOperands) Val -= NumOperands;
1969    Mask |= Val;
1970    if (i != NumOperands - 1)
1971      Mask <<= Shift;
1972  }
1973
1974  return Mask;
1975}
1976
1977/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
1978/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
1979/// instructions.
1980unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
1981  unsigned Mask = 0;
1982  // 8 nodes, but we only care about the last 4.
1983  for (unsigned i = 7; i >= 4; --i) {
1984    unsigned Val = 0;
1985    SDOperand Arg = N->getOperand(i);
1986    if (Arg.getOpcode() != ISD::UNDEF)
1987      Val = cast<ConstantSDNode>(Arg)->getValue();
1988    Mask |= (Val - 4);
1989    if (i != 4)
1990      Mask <<= 2;
1991  }
1992
1993  return Mask;
1994}
1995
1996/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
1997/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
1998/// instructions.
1999unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2000  unsigned Mask = 0;
2001  // 8 nodes, but we only care about the first 4.
2002  for (int i = 3; i >= 0; --i) {
2003    unsigned Val = 0;
2004    SDOperand Arg = N->getOperand(i);
2005    if (Arg.getOpcode() != ISD::UNDEF)
2006      Val = cast<ConstantSDNode>(Arg)->getValue();
2007    Mask |= Val;
2008    if (i != 0)
2009      Mask <<= 2;
2010  }
2011
2012  return Mask;
2013}
2014
2015/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2016/// specifies a 8 element shuffle that can be broken into a pair of
2017/// PSHUFHW and PSHUFLW.
2018static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2019  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2020
2021  if (N->getNumOperands() != 8)
2022    return false;
2023
2024  // Lower quadword shuffled.
2025  for (unsigned i = 0; i != 4; ++i) {
2026    SDOperand Arg = N->getOperand(i);
2027    if (Arg.getOpcode() == ISD::UNDEF) continue;
2028    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2029    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2030    if (Val > 4)
2031      return false;
2032  }
2033
2034  // Upper quadword shuffled.
2035  for (unsigned i = 4; i != 8; ++i) {
2036    SDOperand Arg = N->getOperand(i);
2037    if (Arg.getOpcode() == ISD::UNDEF) continue;
2038    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2039    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2040    if (Val < 4 || Val > 7)
2041      return false;
2042  }
2043
2044  return true;
2045}
2046
2047/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2048/// values in ther permute mask.
2049static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2050                                      SDOperand &V2, SDOperand &Mask,
2051                                      SelectionDAG &DAG) {
2052  MVT::ValueType VT = Op.getValueType();
2053  MVT::ValueType MaskVT = Mask.getValueType();
2054  MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT);
2055  unsigned NumElems = Mask.getNumOperands();
2056  SmallVector<SDOperand, 8> MaskVec;
2057
2058  for (unsigned i = 0; i != NumElems; ++i) {
2059    SDOperand Arg = Mask.getOperand(i);
2060    if (Arg.getOpcode() == ISD::UNDEF) {
2061      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2062      continue;
2063    }
2064    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2065    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2066    if (Val < NumElems)
2067      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2068    else
2069      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2070  }
2071
2072  std::swap(V1, V2);
2073  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2074  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2075}
2076
2077/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2078/// match movhlps. The lower half elements should come from upper half of
2079/// V1 (and in order), and the upper half elements should come from the upper
2080/// half of V2 (and in order).
2081static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2082  unsigned NumElems = Mask->getNumOperands();
2083  if (NumElems != 4)
2084    return false;
2085  for (unsigned i = 0, e = 2; i != e; ++i)
2086    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2087      return false;
2088  for (unsigned i = 2; i != 4; ++i)
2089    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2090      return false;
2091  return true;
2092}
2093
2094/// isScalarLoadToVector - Returns true if the node is a scalar load that
2095/// is promoted to a vector.
2096static inline bool isScalarLoadToVector(SDNode *N) {
2097  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2098    N = N->getOperand(0).Val;
2099    return ISD::isNON_EXTLoad(N);
2100  }
2101  return false;
2102}
2103
2104/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2105/// match movlp{s|d}. The lower half elements should come from lower half of
2106/// V1 (and in order), and the upper half elements should come from the upper
2107/// half of V2 (and in order). And since V1 will become the source of the
2108/// MOVLP, it must be either a vector load or a scalar load to vector.
2109static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2110  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2111    return false;
2112  // Is V2 is a vector load, don't do this transformation. We will try to use
2113  // load folding shufps op.
2114  if (ISD::isNON_EXTLoad(V2))
2115    return false;
2116
2117  unsigned NumElems = Mask->getNumOperands();
2118  if (NumElems != 2 && NumElems != 4)
2119    return false;
2120  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2121    if (!isUndefOrEqual(Mask->getOperand(i), i))
2122      return false;
2123  for (unsigned i = NumElems/2; i != NumElems; ++i)
2124    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2125      return false;
2126  return true;
2127}
2128
2129/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2130/// all the same.
2131static bool isSplatVector(SDNode *N) {
2132  if (N->getOpcode() != ISD::BUILD_VECTOR)
2133    return false;
2134
2135  SDOperand SplatValue = N->getOperand(0);
2136  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2137    if (N->getOperand(i) != SplatValue)
2138      return false;
2139  return true;
2140}
2141
2142/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2143/// to an undef.
2144static bool isUndefShuffle(SDNode *N) {
2145  if (N->getOpcode() != ISD::BUILD_VECTOR)
2146    return false;
2147
2148  SDOperand V1 = N->getOperand(0);
2149  SDOperand V2 = N->getOperand(1);
2150  SDOperand Mask = N->getOperand(2);
2151  unsigned NumElems = Mask.getNumOperands();
2152  for (unsigned i = 0; i != NumElems; ++i) {
2153    SDOperand Arg = Mask.getOperand(i);
2154    if (Arg.getOpcode() != ISD::UNDEF) {
2155      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2156      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2157        return false;
2158      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2159        return false;
2160    }
2161  }
2162  return true;
2163}
2164
2165/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2166/// that point to V2 points to its first element.
2167static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2168  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2169
2170  bool Changed = false;
2171  SmallVector<SDOperand, 8> MaskVec;
2172  unsigned NumElems = Mask.getNumOperands();
2173  for (unsigned i = 0; i != NumElems; ++i) {
2174    SDOperand Arg = Mask.getOperand(i);
2175    if (Arg.getOpcode() != ISD::UNDEF) {
2176      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2177      if (Val > NumElems) {
2178        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2179        Changed = true;
2180      }
2181    }
2182    MaskVec.push_back(Arg);
2183  }
2184
2185  if (Changed)
2186    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2187                       &MaskVec[0], MaskVec.size());
2188  return Mask;
2189}
2190
2191/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2192/// operation of specified width.
2193static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2194  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2195  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2196
2197  SmallVector<SDOperand, 8> MaskVec;
2198  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2199  for (unsigned i = 1; i != NumElems; ++i)
2200    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2201  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2202}
2203
2204/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2205/// of specified width.
2206static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2207  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2208  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2209  SmallVector<SDOperand, 8> MaskVec;
2210  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2211    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2212    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2213  }
2214  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2215}
2216
2217/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2218/// of specified width.
2219static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2220  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2221  MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2222  unsigned Half = NumElems/2;
2223  SmallVector<SDOperand, 8> MaskVec;
2224  for (unsigned i = 0; i != Half; ++i) {
2225    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2226    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2227  }
2228  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2229}
2230
2231/// getZeroVector - Returns a vector of specified type with all zero elements.
2232///
2233static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2234  assert(MVT::isVector(VT) && "Expected a vector type");
2235  unsigned NumElems = getVectorNumElements(VT);
2236  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2237  bool isFP = MVT::isFloatingPoint(EVT);
2238  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2239  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2240  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2241}
2242
2243/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2244///
2245static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2246  SDOperand V1 = Op.getOperand(0);
2247  SDOperand Mask = Op.getOperand(2);
2248  MVT::ValueType VT = Op.getValueType();
2249  unsigned NumElems = Mask.getNumOperands();
2250  Mask = getUnpacklMask(NumElems, DAG);
2251  while (NumElems != 4) {
2252    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2253    NumElems >>= 1;
2254  }
2255  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2256
2257  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2258  Mask = getZeroVector(MaskVT, DAG);
2259  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2260                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2261  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2262}
2263
2264/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2265/// constant +0.0.
2266static inline bool isZeroNode(SDOperand Elt) {
2267  return ((isa<ConstantSDNode>(Elt) &&
2268           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2269          (isa<ConstantFPSDNode>(Elt) &&
2270           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2271}
2272
2273/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2274/// vector and zero or undef vector.
2275static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2276                                             unsigned NumElems, unsigned Idx,
2277                                             bool isZero, SelectionDAG &DAG) {
2278  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2279  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2280  MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2281  SDOperand Zero = DAG.getConstant(0, EVT);
2282  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2283  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2284  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2285                               &MaskVec[0], MaskVec.size());
2286  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2287}
2288
2289/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2290///
2291static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2292                                       unsigned NumNonZero, unsigned NumZero,
2293                                       SelectionDAG &DAG, TargetLowering &TLI) {
2294  if (NumNonZero > 8)
2295    return SDOperand();
2296
2297  SDOperand V(0, 0);
2298  bool First = true;
2299  for (unsigned i = 0; i < 16; ++i) {
2300    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2301    if (ThisIsNonZero && First) {
2302      if (NumZero)
2303        V = getZeroVector(MVT::v8i16, DAG);
2304      else
2305        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2306      First = false;
2307    }
2308
2309    if ((i & 1) != 0) {
2310      SDOperand ThisElt(0, 0), LastElt(0, 0);
2311      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2312      if (LastIsNonZero) {
2313        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2314      }
2315      if (ThisIsNonZero) {
2316        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2317        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2318                              ThisElt, DAG.getConstant(8, MVT::i8));
2319        if (LastIsNonZero)
2320          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2321      } else
2322        ThisElt = LastElt;
2323
2324      if (ThisElt.Val)
2325        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2326                        DAG.getConstant(i/2, TLI.getPointerTy()));
2327    }
2328  }
2329
2330  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2331}
2332
2333/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2334///
2335static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2336                                       unsigned NumNonZero, unsigned NumZero,
2337                                       SelectionDAG &DAG, TargetLowering &TLI) {
2338  if (NumNonZero > 4)
2339    return SDOperand();
2340
2341  SDOperand V(0, 0);
2342  bool First = true;
2343  for (unsigned i = 0; i < 8; ++i) {
2344    bool isNonZero = (NonZeros & (1 << i)) != 0;
2345    if (isNonZero) {
2346      if (First) {
2347        if (NumZero)
2348          V = getZeroVector(MVT::v8i16, DAG);
2349        else
2350          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2351        First = false;
2352      }
2353      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2354                      DAG.getConstant(i, TLI.getPointerTy()));
2355    }
2356  }
2357
2358  return V;
2359}
2360
2361SDOperand
2362X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2363  // All zero's are handled with pxor.
2364  if (ISD::isBuildVectorAllZeros(Op.Val))
2365    return Op;
2366
2367  // All one's are handled with pcmpeqd.
2368  if (ISD::isBuildVectorAllOnes(Op.Val))
2369    return Op;
2370
2371  MVT::ValueType VT = Op.getValueType();
2372  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
2373  unsigned EVTBits = MVT::getSizeInBits(EVT);
2374
2375  unsigned NumElems = Op.getNumOperands();
2376  unsigned NumZero  = 0;
2377  unsigned NumNonZero = 0;
2378  unsigned NonZeros = 0;
2379  std::set<SDOperand> Values;
2380  for (unsigned i = 0; i < NumElems; ++i) {
2381    SDOperand Elt = Op.getOperand(i);
2382    if (Elt.getOpcode() != ISD::UNDEF) {
2383      Values.insert(Elt);
2384      if (isZeroNode(Elt))
2385        NumZero++;
2386      else {
2387        NonZeros |= (1 << i);
2388        NumNonZero++;
2389      }
2390    }
2391  }
2392
2393  if (NumNonZero == 0)
2394    // Must be a mix of zero and undef. Return a zero vector.
2395    return getZeroVector(VT, DAG);
2396
2397  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2398  if (Values.size() == 1)
2399    return SDOperand();
2400
2401  // Special case for single non-zero element.
2402  if (NumNonZero == 1) {
2403    unsigned Idx = CountTrailingZeros_32(NonZeros);
2404    SDOperand Item = Op.getOperand(Idx);
2405    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2406    if (Idx == 0)
2407      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2408      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2409                                         NumZero > 0, DAG);
2410
2411    if (EVTBits == 32) {
2412      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2413      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2414                                         DAG);
2415      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2416      MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
2417      SmallVector<SDOperand, 8> MaskVec;
2418      for (unsigned i = 0; i < NumElems; i++)
2419        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2420      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2421                                   &MaskVec[0], MaskVec.size());
2422      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2423                         DAG.getNode(ISD::UNDEF, VT), Mask);
2424    }
2425  }
2426
2427  // Let legalizer expand 2-wide build_vector's.
2428  if (EVTBits == 64)
2429    return SDOperand();
2430
2431  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2432  if (EVTBits == 8 && NumElems == 16) {
2433    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2434                                        *this);
2435    if (V.Val) return V;
2436  }
2437
2438  if (EVTBits == 16 && NumElems == 8) {
2439    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2440                                        *this);
2441    if (V.Val) return V;
2442  }
2443
2444  // If element VT is == 32 bits, turn it into a number of shuffles.
2445  SmallVector<SDOperand, 8> V;
2446  V.resize(NumElems);
2447  if (NumElems == 4 && NumZero > 0) {
2448    for (unsigned i = 0; i < 4; ++i) {
2449      bool isZero = !(NonZeros & (1 << i));
2450      if (isZero)
2451        V[i] = getZeroVector(VT, DAG);
2452      else
2453        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2454    }
2455
2456    for (unsigned i = 0; i < 2; ++i) {
2457      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2458        default: break;
2459        case 0:
2460          V[i] = V[i*2];  // Must be a zero vector.
2461          break;
2462        case 1:
2463          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2464                             getMOVLMask(NumElems, DAG));
2465          break;
2466        case 2:
2467          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2468                             getMOVLMask(NumElems, DAG));
2469          break;
2470        case 3:
2471          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2472                             getUnpacklMask(NumElems, DAG));
2473          break;
2474      }
2475    }
2476
2477    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2478    // clears the upper bits.
2479    // FIXME: we can do the same for v4f32 case when we know both parts of
2480    // the lower half come from scalar_to_vector (loadf32). We should do
2481    // that in post legalizer dag combiner with target specific hooks.
2482    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2483      return V[0];
2484    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2485    MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT);
2486    SmallVector<SDOperand, 8> MaskVec;
2487    bool Reverse = (NonZeros & 0x3) == 2;
2488    for (unsigned i = 0; i < 2; ++i)
2489      if (Reverse)
2490        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2491      else
2492        MaskVec.push_back(DAG.getConstant(i, EVT));
2493    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2494    for (unsigned i = 0; i < 2; ++i)
2495      if (Reverse)
2496        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2497      else
2498        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2499    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2500                                     &MaskVec[0], MaskVec.size());
2501    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2502  }
2503
2504  if (Values.size() > 2) {
2505    // Expand into a number of unpckl*.
2506    // e.g. for v4f32
2507    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2508    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2509    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2510    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2511    for (unsigned i = 0; i < NumElems; ++i)
2512      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2513    NumElems >>= 1;
2514    while (NumElems != 0) {
2515      for (unsigned i = 0; i < NumElems; ++i)
2516        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2517                           UnpckMask);
2518      NumElems >>= 1;
2519    }
2520    return V[0];
2521  }
2522
2523  return SDOperand();
2524}
2525
2526SDOperand
2527X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2528  SDOperand V1 = Op.getOperand(0);
2529  SDOperand V2 = Op.getOperand(1);
2530  SDOperand PermMask = Op.getOperand(2);
2531  MVT::ValueType VT = Op.getValueType();
2532  unsigned NumElems = PermMask.getNumOperands();
2533  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2534  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2535  bool V1IsSplat = false;
2536  bool V2IsSplat = false;
2537
2538  if (isUndefShuffle(Op.Val))
2539    return DAG.getNode(ISD::UNDEF, VT);
2540
2541  if (isSplatMask(PermMask.Val)) {
2542    if (NumElems <= 4) return Op;
2543    // Promote it to a v4i32 splat.
2544    return PromoteSplat(Op, DAG);
2545  }
2546
2547  if (X86::isMOVLMask(PermMask.Val))
2548    return (V1IsUndef) ? V2 : Op;
2549
2550  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2551      X86::isMOVSLDUPMask(PermMask.Val) ||
2552      X86::isMOVHLPSMask(PermMask.Val) ||
2553      X86::isMOVHPMask(PermMask.Val) ||
2554      X86::isMOVLPMask(PermMask.Val))
2555    return Op;
2556
2557  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2558      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2559    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2560
2561  bool Commuted = false;
2562  V1IsSplat = isSplatVector(V1.Val);
2563  V2IsSplat = isSplatVector(V2.Val);
2564  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2565    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2566    std::swap(V1IsSplat, V2IsSplat);
2567    std::swap(V1IsUndef, V2IsUndef);
2568    Commuted = true;
2569  }
2570
2571  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2572    if (V2IsUndef) return V1;
2573    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2574    if (V2IsSplat) {
2575      // V2 is a splat, so the mask may be malformed. That is, it may point
2576      // to any V2 element. The instruction selectior won't like this. Get
2577      // a corrected mask and commute to form a proper MOVS{S|D}.
2578      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2579      if (NewMask.Val != PermMask.Val)
2580        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2581    }
2582    return Op;
2583  }
2584
2585  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2586      X86::isUNPCKLMask(PermMask.Val) ||
2587      X86::isUNPCKHMask(PermMask.Val))
2588    return Op;
2589
2590  if (V2IsSplat) {
2591    // Normalize mask so all entries that point to V2 points to its first
2592    // element then try to match unpck{h|l} again. If match, return a
2593    // new vector_shuffle with the corrected mask.
2594    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2595    if (NewMask.Val != PermMask.Val) {
2596      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2597        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2598        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2599      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2600        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2601        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2602      }
2603    }
2604  }
2605
2606  // Normalize the node to match x86 shuffle ops if needed
2607  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2608      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2609
2610  if (Commuted) {
2611    // Commute is back and try unpck* again.
2612    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2613    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2614        X86::isUNPCKLMask(PermMask.Val) ||
2615        X86::isUNPCKHMask(PermMask.Val))
2616      return Op;
2617  }
2618
2619  // If VT is integer, try PSHUF* first, then SHUFP*.
2620  if (MVT::isInteger(VT)) {
2621    if (X86::isPSHUFDMask(PermMask.Val) ||
2622        X86::isPSHUFHWMask(PermMask.Val) ||
2623        X86::isPSHUFLWMask(PermMask.Val)) {
2624      if (V2.getOpcode() != ISD::UNDEF)
2625        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2626                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2627      return Op;
2628    }
2629
2630    if (X86::isSHUFPMask(PermMask.Val))
2631      return Op;
2632
2633    // Handle v8i16 shuffle high / low shuffle node pair.
2634    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2635      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2636      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2637      SmallVector<SDOperand, 8> MaskVec;
2638      for (unsigned i = 0; i != 4; ++i)
2639        MaskVec.push_back(PermMask.getOperand(i));
2640      for (unsigned i = 4; i != 8; ++i)
2641        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2642      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2643                                   &MaskVec[0], MaskVec.size());
2644      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2645      MaskVec.clear();
2646      for (unsigned i = 0; i != 4; ++i)
2647        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2648      for (unsigned i = 4; i != 8; ++i)
2649        MaskVec.push_back(PermMask.getOperand(i));
2650      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2651      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2652    }
2653  } else {
2654    // Floating point cases in the other order.
2655    if (X86::isSHUFPMask(PermMask.Val))
2656      return Op;
2657    if (X86::isPSHUFDMask(PermMask.Val) ||
2658        X86::isPSHUFHWMask(PermMask.Val) ||
2659        X86::isPSHUFLWMask(PermMask.Val)) {
2660      if (V2.getOpcode() != ISD::UNDEF)
2661        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2662                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2663      return Op;
2664    }
2665  }
2666
2667  if (NumElems == 4) {
2668    MVT::ValueType MaskVT = PermMask.getValueType();
2669    MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT);
2670    SmallVector<std::pair<int, int>, 8> Locs;
2671    Locs.reserve(NumElems);
2672    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2673    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2674    unsigned NumHi = 0;
2675    unsigned NumLo = 0;
2676    // If no more than two elements come from either vector. This can be
2677    // implemented with two shuffles. First shuffle gather the elements.
2678    // The second shuffle, which takes the first shuffle as both of its
2679    // vector operands, put the elements into the right order.
2680    for (unsigned i = 0; i != NumElems; ++i) {
2681      SDOperand Elt = PermMask.getOperand(i);
2682      if (Elt.getOpcode() == ISD::UNDEF) {
2683        Locs[i] = std::make_pair(-1, -1);
2684      } else {
2685        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2686        if (Val < NumElems) {
2687          Locs[i] = std::make_pair(0, NumLo);
2688          Mask1[NumLo] = Elt;
2689          NumLo++;
2690        } else {
2691          Locs[i] = std::make_pair(1, NumHi);
2692          if (2+NumHi < NumElems)
2693            Mask1[2+NumHi] = Elt;
2694          NumHi++;
2695        }
2696      }
2697    }
2698    if (NumLo <= 2 && NumHi <= 2) {
2699      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2700                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2701                                   &Mask1[0], Mask1.size()));
2702      for (unsigned i = 0; i != NumElems; ++i) {
2703        if (Locs[i].first == -1)
2704          continue;
2705        else {
2706          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2707          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2708          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2709        }
2710      }
2711
2712      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2713                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2714                                     &Mask2[0], Mask2.size()));
2715    }
2716
2717    // Break it into (shuffle shuffle_hi, shuffle_lo).
2718    Locs.clear();
2719    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2720    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2721    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2722    unsigned MaskIdx = 0;
2723    unsigned LoIdx = 0;
2724    unsigned HiIdx = NumElems/2;
2725    for (unsigned i = 0; i != NumElems; ++i) {
2726      if (i == NumElems/2) {
2727        MaskPtr = &HiMask;
2728        MaskIdx = 1;
2729        LoIdx = 0;
2730        HiIdx = NumElems/2;
2731      }
2732      SDOperand Elt = PermMask.getOperand(i);
2733      if (Elt.getOpcode() == ISD::UNDEF) {
2734        Locs[i] = std::make_pair(-1, -1);
2735      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2736        Locs[i] = std::make_pair(MaskIdx, LoIdx);
2737        (*MaskPtr)[LoIdx] = Elt;
2738        LoIdx++;
2739      } else {
2740        Locs[i] = std::make_pair(MaskIdx, HiIdx);
2741        (*MaskPtr)[HiIdx] = Elt;
2742        HiIdx++;
2743      }
2744    }
2745
2746    SDOperand LoShuffle =
2747      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2748                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2749                              &LoMask[0], LoMask.size()));
2750    SDOperand HiShuffle =
2751      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2752                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2753                              &HiMask[0], HiMask.size()));
2754    SmallVector<SDOperand, 8> MaskOps;
2755    for (unsigned i = 0; i != NumElems; ++i) {
2756      if (Locs[i].first == -1) {
2757        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2758      } else {
2759        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2760        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2761      }
2762    }
2763    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2764                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2765                                   &MaskOps[0], MaskOps.size()));
2766  }
2767
2768  return SDOperand();
2769}
2770
2771SDOperand
2772X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2773  if (!isa<ConstantSDNode>(Op.getOperand(1)))
2774    return SDOperand();
2775
2776  MVT::ValueType VT = Op.getValueType();
2777  // TODO: handle v16i8.
2778  if (MVT::getSizeInBits(VT) == 16) {
2779    // Transform it so it match pextrw which produces a 32-bit result.
2780    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2781    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2782                                    Op.getOperand(0), Op.getOperand(1));
2783    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
2784                                    DAG.getValueType(VT));
2785    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
2786  } else if (MVT::getSizeInBits(VT) == 32) {
2787    SDOperand Vec = Op.getOperand(0);
2788    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2789    if (Idx == 0)
2790      return Op;
2791    // SHUFPS the element to the lowest double word, then movss.
2792    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2793    SmallVector<SDOperand, 8> IdxVec;
2794    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT)));
2795    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2796    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2797    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2798    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2799                                 &IdxVec[0], IdxVec.size());
2800    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2801                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2802    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2803                       DAG.getConstant(0, getPointerTy()));
2804  } else if (MVT::getSizeInBits(VT) == 64) {
2805    SDOperand Vec = Op.getOperand(0);
2806    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2807    if (Idx == 0)
2808      return Op;
2809
2810    // UNPCKHPD the element to the lowest double word, then movsd.
2811    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
2812    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
2813    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2814    SmallVector<SDOperand, 8> IdxVec;
2815    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT)));
2816    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT)));
2817    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2818                                 &IdxVec[0], IdxVec.size());
2819    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2820                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2821    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2822                       DAG.getConstant(0, getPointerTy()));
2823  }
2824
2825  return SDOperand();
2826}
2827
2828SDOperand
2829X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2830  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
2831  // as its second argument.
2832  MVT::ValueType VT = Op.getValueType();
2833  MVT::ValueType BaseVT = MVT::getVectorBaseType(VT);
2834  SDOperand N0 = Op.getOperand(0);
2835  SDOperand N1 = Op.getOperand(1);
2836  SDOperand N2 = Op.getOperand(2);
2837  if (MVT::getSizeInBits(BaseVT) == 16) {
2838    if (N1.getValueType() != MVT::i32)
2839      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
2840    if (N2.getValueType() != MVT::i32)
2841      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32);
2842    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
2843  } else if (MVT::getSizeInBits(BaseVT) == 32) {
2844    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
2845    if (Idx == 0) {
2846      // Use a movss.
2847      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
2848      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2849      MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT);
2850      SmallVector<SDOperand, 8> MaskVec;
2851      MaskVec.push_back(DAG.getConstant(4, BaseVT));
2852      for (unsigned i = 1; i <= 3; ++i)
2853        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2854      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
2855                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2856                                     &MaskVec[0], MaskVec.size()));
2857    } else {
2858      // Use two pinsrw instructions to insert a 32 bit value.
2859      Idx <<= 1;
2860      if (MVT::isFloatingPoint(N1.getValueType())) {
2861        if (ISD::isNON_EXTLoad(N1.Val)) {
2862          // Just load directly from f32mem to GR32.
2863          LoadSDNode *LD = cast<LoadSDNode>(N1);
2864          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
2865                           LD->getSrcValue(), LD->getSrcValueOffset());
2866        } else {
2867          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
2868          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
2869          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
2870                           DAG.getConstant(0, getPointerTy()));
2871        }
2872      }
2873      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
2874      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
2875                       DAG.getConstant(Idx, getPointerTy()));
2876      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
2877      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
2878                       DAG.getConstant(Idx+1, getPointerTy()));
2879      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
2880    }
2881  }
2882
2883  return SDOperand();
2884}
2885
2886SDOperand
2887X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2888  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
2889  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
2890}
2891
2892// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2893// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
2894// one of the above mentioned nodes. It has to be wrapped because otherwise
2895// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2896// be used to form addressing mode. These wrapped nodes will be selected
2897// into MOV32ri.
2898SDOperand
2899X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
2900  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2901  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
2902                                               getPointerTy(),
2903                                               CP->getAlignment());
2904  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2905  // With PIC, the address is actually $g + Offset.
2906  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2907      !Subtarget->isPICStyleRIPRel()) {
2908    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2909                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2910                         Result);
2911  }
2912
2913  return Result;
2914}
2915
2916SDOperand
2917X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
2918  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2919  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
2920  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2921  // With PIC, the address is actually $g + Offset.
2922  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2923      !Subtarget->isPICStyleRIPRel()) {
2924    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2925                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2926                         Result);
2927  }
2928
2929  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
2930  // load the value at address GV, not the value of GV itself. This means that
2931  // the GlobalAddress must be in the base or index register of the address, not
2932  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
2933  // The same applies for external symbols during PIC codegen
2934  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
2935    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
2936
2937  return Result;
2938}
2939
2940SDOperand
2941X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
2942  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
2943  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
2944  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2945  // With PIC, the address is actually $g + Offset.
2946  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2947      !Subtarget->isPICStyleRIPRel()) {
2948    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2949                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2950                         Result);
2951  }
2952
2953  return Result;
2954}
2955
2956SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
2957  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2958  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
2959  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
2960  // With PIC, the address is actually $g + Offset.
2961  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2962      !Subtarget->isPICStyleRIPRel()) {
2963    Result = DAG.getNode(ISD::ADD, getPointerTy(),
2964                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
2965                         Result);
2966  }
2967
2968  return Result;
2969}
2970
2971SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
2972    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2973           "Not an i64 shift!");
2974    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
2975    SDOperand ShOpLo = Op.getOperand(0);
2976    SDOperand ShOpHi = Op.getOperand(1);
2977    SDOperand ShAmt  = Op.getOperand(2);
2978    SDOperand Tmp1 = isSRA ?
2979      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
2980      DAG.getConstant(0, MVT::i32);
2981
2982    SDOperand Tmp2, Tmp3;
2983    if (Op.getOpcode() == ISD::SHL_PARTS) {
2984      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
2985      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
2986    } else {
2987      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
2988      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
2989    }
2990
2991    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
2992    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
2993                                    DAG.getConstant(32, MVT::i8));
2994    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
2995    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
2996
2997    SDOperand Hi, Lo;
2998    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
2999
3000    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3001    SmallVector<SDOperand, 4> Ops;
3002    if (Op.getOpcode() == ISD::SHL_PARTS) {
3003      Ops.push_back(Tmp2);
3004      Ops.push_back(Tmp3);
3005      Ops.push_back(CC);
3006      Ops.push_back(InFlag);
3007      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3008      InFlag = Hi.getValue(1);
3009
3010      Ops.clear();
3011      Ops.push_back(Tmp3);
3012      Ops.push_back(Tmp1);
3013      Ops.push_back(CC);
3014      Ops.push_back(InFlag);
3015      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3016    } else {
3017      Ops.push_back(Tmp2);
3018      Ops.push_back(Tmp3);
3019      Ops.push_back(CC);
3020      Ops.push_back(InFlag);
3021      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3022      InFlag = Lo.getValue(1);
3023
3024      Ops.clear();
3025      Ops.push_back(Tmp3);
3026      Ops.push_back(Tmp1);
3027      Ops.push_back(CC);
3028      Ops.push_back(InFlag);
3029      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3030    }
3031
3032    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3033    Ops.clear();
3034    Ops.push_back(Lo);
3035    Ops.push_back(Hi);
3036    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3037}
3038
3039SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3040  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3041         Op.getOperand(0).getValueType() >= MVT::i16 &&
3042         "Unknown SINT_TO_FP to lower!");
3043
3044  SDOperand Result;
3045  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3046  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3047  MachineFunction &MF = DAG.getMachineFunction();
3048  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3049  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3050  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3051                                 StackSlot, NULL, 0);
3052
3053  // Build the FILD
3054  SDVTList Tys;
3055  if (X86ScalarSSE)
3056    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3057  else
3058    Tys = DAG.getVTList(MVT::f64, MVT::Other);
3059  SmallVector<SDOperand, 8> Ops;
3060  Ops.push_back(Chain);
3061  Ops.push_back(StackSlot);
3062  Ops.push_back(DAG.getValueType(SrcVT));
3063  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3064                       Tys, &Ops[0], Ops.size());
3065
3066  if (X86ScalarSSE) {
3067    Chain = Result.getValue(1);
3068    SDOperand InFlag = Result.getValue(2);
3069
3070    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3071    // shouldn't be necessary except that RFP cannot be live across
3072    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3073    MachineFunction &MF = DAG.getMachineFunction();
3074    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3075    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3076    Tys = DAG.getVTList(MVT::Other);
3077    SmallVector<SDOperand, 8> Ops;
3078    Ops.push_back(Chain);
3079    Ops.push_back(Result);
3080    Ops.push_back(StackSlot);
3081    Ops.push_back(DAG.getValueType(Op.getValueType()));
3082    Ops.push_back(InFlag);
3083    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3084    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3085  }
3086
3087  return Result;
3088}
3089
3090SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3091  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3092         "Unknown FP_TO_SINT to lower!");
3093  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3094  // stack slot.
3095  MachineFunction &MF = DAG.getMachineFunction();
3096  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3097  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3098  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3099
3100  unsigned Opc;
3101  switch (Op.getValueType()) {
3102    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3103    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3104    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3105    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3106  }
3107
3108  SDOperand Chain = DAG.getEntryNode();
3109  SDOperand Value = Op.getOperand(0);
3110  if (X86ScalarSSE) {
3111    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3112    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3113    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
3114    SDOperand Ops[] = {
3115      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3116    };
3117    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3118    Chain = Value.getValue(1);
3119    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3120    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3121  }
3122
3123  // Build the FP_TO_INT*_IN_MEM
3124  SDOperand Ops[] = { Chain, Value, StackSlot };
3125  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3126
3127  // Load the result.
3128  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3129}
3130
3131SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3132  MVT::ValueType VT = Op.getValueType();
3133  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3134  std::vector<Constant*> CV;
3135  if (VT == MVT::f64) {
3136    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
3137    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3138  } else {
3139    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
3140    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3141    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3142    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3143  }
3144  Constant *CS = ConstantStruct::get(CV);
3145  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3146  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3147  SmallVector<SDOperand, 3> Ops;
3148  Ops.push_back(DAG.getEntryNode());
3149  Ops.push_back(CPIdx);
3150  Ops.push_back(DAG.getSrcValue(NULL));
3151  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3152  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3153}
3154
3155SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3156  MVT::ValueType VT = Op.getValueType();
3157  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3158  std::vector<Constant*> CV;
3159  if (VT == MVT::f64) {
3160    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
3161    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3162  } else {
3163    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
3164    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3165    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3166    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3167  }
3168  Constant *CS = ConstantStruct::get(CV);
3169  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3170  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3171  SmallVector<SDOperand, 3> Ops;
3172  Ops.push_back(DAG.getEntryNode());
3173  Ops.push_back(CPIdx);
3174  Ops.push_back(DAG.getSrcValue(NULL));
3175  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3176  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3177}
3178
3179SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3180  SDOperand Op0 = Op.getOperand(0);
3181  SDOperand Op1 = Op.getOperand(1);
3182  MVT::ValueType VT = Op.getValueType();
3183  MVT::ValueType SrcVT = Op1.getValueType();
3184  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3185
3186  // If second operand is smaller, extend it first.
3187  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3188    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3189    SrcVT = VT;
3190  }
3191
3192  // First get the sign bit of second operand.
3193  std::vector<Constant*> CV;
3194  if (SrcVT == MVT::f64) {
3195    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3196    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3197  } else {
3198    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3199    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3200    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3201    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3202  }
3203  Constant *CS = ConstantStruct::get(CV);
3204  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3205  SDVTList Tys = DAG.getVTList(SrcVT, MVT::Other);
3206  SmallVector<SDOperand, 3> Ops;
3207  Ops.push_back(DAG.getEntryNode());
3208  Ops.push_back(CPIdx);
3209  Ops.push_back(DAG.getSrcValue(NULL));
3210  SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3211  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3212
3213  // Shift sign bit right or left if the two operands have different types.
3214  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3215    // Op0 is MVT::f32, Op1 is MVT::f64.
3216    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3217    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3218                          DAG.getConstant(32, MVT::i32));
3219    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3220    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3221                          DAG.getConstant(0, getPointerTy()));
3222  }
3223
3224  // Clear first operand sign bit.
3225  CV.clear();
3226  if (VT == MVT::f64) {
3227    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3228    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3229  } else {
3230    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3231    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3232    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3233    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3234  }
3235  CS = ConstantStruct::get(CV);
3236  CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3237  Tys = DAG.getVTList(VT, MVT::Other);
3238  Ops.clear();
3239  Ops.push_back(DAG.getEntryNode());
3240  Ops.push_back(CPIdx);
3241  Ops.push_back(DAG.getSrcValue(NULL));
3242  SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3243  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3244
3245  // Or the value with the sign bit.
3246  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3247}
3248
3249SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3250                                        SDOperand Chain) {
3251  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3252  SDOperand Cond;
3253  SDOperand Op0 = Op.getOperand(0);
3254  SDOperand Op1 = Op.getOperand(1);
3255  SDOperand CC = Op.getOperand(2);
3256  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3257  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3258  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3259  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3260  unsigned X86CC;
3261
3262  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3263                     Op0, Op1, DAG)) {
3264    SDOperand Ops1[] = { Chain, Op0, Op1 };
3265    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3266    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3267    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3268  }
3269
3270  assert(isFP && "Illegal integer SetCC!");
3271
3272  SDOperand COps[] = { Chain, Op0, Op1 };
3273  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3274
3275  switch (SetCCOpcode) {
3276  default: assert(false && "Illegal floating point SetCC!");
3277  case ISD::SETOEQ: {  // !PF & ZF
3278    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3279    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3280    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3281                         Tmp1.getValue(1) };
3282    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3283    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3284  }
3285  case ISD::SETUNE: {  // PF | !ZF
3286    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3287    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3288    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3289                         Tmp1.getValue(1) };
3290    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3291    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3292  }
3293  }
3294}
3295
3296SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3297  bool addTest = true;
3298  SDOperand Chain = DAG.getEntryNode();
3299  SDOperand Cond  = Op.getOperand(0);
3300  SDOperand CC;
3301  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3302
3303  if (Cond.getOpcode() == ISD::SETCC)
3304    Cond = LowerSETCC(Cond, DAG, Chain);
3305
3306  if (Cond.getOpcode() == X86ISD::SETCC) {
3307    CC = Cond.getOperand(0);
3308
3309    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3310    // (since flag operand cannot be shared). Use it as the condition setting
3311    // operand in place of the X86ISD::SETCC.
3312    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3313    // to use a test instead of duplicating the X86ISD::CMP (for register
3314    // pressure reason)?
3315    SDOperand Cmp = Cond.getOperand(1);
3316    unsigned Opc = Cmp.getOpcode();
3317    bool IllegalFPCMov = !X86ScalarSSE &&
3318      MVT::isFloatingPoint(Op.getValueType()) &&
3319      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3320    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3321        !IllegalFPCMov) {
3322      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3323      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3324      addTest = false;
3325    }
3326  }
3327
3328  if (addTest) {
3329    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3330    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3331    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3332  }
3333
3334  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3335  SmallVector<SDOperand, 4> Ops;
3336  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3337  // condition is true.
3338  Ops.push_back(Op.getOperand(2));
3339  Ops.push_back(Op.getOperand(1));
3340  Ops.push_back(CC);
3341  Ops.push_back(Cond.getValue(1));
3342  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3343}
3344
3345SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3346  bool addTest = true;
3347  SDOperand Chain = Op.getOperand(0);
3348  SDOperand Cond  = Op.getOperand(1);
3349  SDOperand Dest  = Op.getOperand(2);
3350  SDOperand CC;
3351  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3352
3353  if (Cond.getOpcode() == ISD::SETCC)
3354    Cond = LowerSETCC(Cond, DAG, Chain);
3355
3356  if (Cond.getOpcode() == X86ISD::SETCC) {
3357    CC = Cond.getOperand(0);
3358
3359    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3360    // (since flag operand cannot be shared). Use it as the condition setting
3361    // operand in place of the X86ISD::SETCC.
3362    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3363    // to use a test instead of duplicating the X86ISD::CMP (for register
3364    // pressure reason)?
3365    SDOperand Cmp = Cond.getOperand(1);
3366    unsigned Opc = Cmp.getOpcode();
3367    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3368      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3369      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3370      addTest = false;
3371    }
3372  }
3373
3374  if (addTest) {
3375    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3376    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3377    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3378  }
3379  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3380                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3381}
3382
3383SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3384  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3385
3386  if (Subtarget->is64Bit())
3387    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3388  else
3389    switch (CallingConv) {
3390    default:
3391      assert(0 && "Unsupported calling convention");
3392    case CallingConv::Fast:
3393      // TODO: Implement fastcc
3394      // Falls through
3395    case CallingConv::C:
3396    case CallingConv::X86_StdCall:
3397      return LowerCCCCallTo(Op, DAG, CallingConv);
3398    case CallingConv::X86_FastCall:
3399      return LowerFastCCCallTo(Op, DAG, CallingConv);
3400    }
3401}
3402
3403SDOperand
3404X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3405  MachineFunction &MF = DAG.getMachineFunction();
3406  const Function* Fn = MF.getFunction();
3407  if (Fn->hasExternalLinkage() &&
3408      Subtarget->isTargetCygMing() &&
3409      Fn->getName() == "main")
3410    MF.getInfo<X86FunctionInfo>()->setForceFramePointer(true);
3411
3412  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3413  if (Subtarget->is64Bit())
3414    return LowerX86_64CCCArguments(Op, DAG);
3415  else
3416    switch(CC) {
3417    default:
3418      assert(0 && "Unsupported calling convention");
3419    case CallingConv::Fast:
3420      // TODO: implement fastcc.
3421
3422      // Falls through
3423    case CallingConv::C:
3424      return LowerCCCArguments(Op, DAG);
3425    case CallingConv::X86_StdCall:
3426      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(StdCall);
3427      return LowerCCCArguments(Op, DAG, true);
3428    case CallingConv::X86_FastCall:
3429      MF.getInfo<X86FunctionInfo>()->setDecorationStyle(FastCall);
3430      return LowerFastCCArguments(Op, DAG);
3431    }
3432}
3433
3434SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3435  SDOperand InFlag(0, 0);
3436  SDOperand Chain = Op.getOperand(0);
3437  unsigned Align =
3438    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3439  if (Align == 0) Align = 1;
3440
3441  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3442  // If not DWORD aligned, call memset if size is less than the threshold.
3443  // It knows how to align to the right boundary first.
3444  if ((Align & 3) != 0 ||
3445      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3446    MVT::ValueType IntPtr = getPointerTy();
3447    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3448    TargetLowering::ArgListTy Args;
3449    TargetLowering::ArgListEntry Entry;
3450    Entry.Node = Op.getOperand(1);
3451    Entry.Ty = IntPtrTy;
3452    Args.push_back(Entry);
3453    // Extend the unsigned i8 argument to be an int value for the call.
3454    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3455    Entry.Ty = IntPtrTy;
3456    Args.push_back(Entry);
3457    Entry.Node = Op.getOperand(3);
3458    Args.push_back(Entry);
3459    std::pair<SDOperand,SDOperand> CallResult =
3460      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3461                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3462    return CallResult.second;
3463  }
3464
3465  MVT::ValueType AVT;
3466  SDOperand Count;
3467  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3468  unsigned BytesLeft = 0;
3469  bool TwoRepStos = false;
3470  if (ValC) {
3471    unsigned ValReg;
3472    uint64_t Val = ValC->getValue() & 255;
3473
3474    // If the value is a constant, then we can potentially use larger sets.
3475    switch (Align & 3) {
3476      case 2:   // WORD aligned
3477        AVT = MVT::i16;
3478        ValReg = X86::AX;
3479        Val = (Val << 8) | Val;
3480        break;
3481      case 0:  // DWORD aligned
3482        AVT = MVT::i32;
3483        ValReg = X86::EAX;
3484        Val = (Val << 8)  | Val;
3485        Val = (Val << 16) | Val;
3486        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3487          AVT = MVT::i64;
3488          ValReg = X86::RAX;
3489          Val = (Val << 32) | Val;
3490        }
3491        break;
3492      default:  // Byte aligned
3493        AVT = MVT::i8;
3494        ValReg = X86::AL;
3495        Count = Op.getOperand(3);
3496        break;
3497    }
3498
3499    if (AVT > MVT::i8) {
3500      if (I) {
3501        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3502        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3503        BytesLeft = I->getValue() % UBytes;
3504      } else {
3505        assert(AVT >= MVT::i32 &&
3506               "Do not use rep;stos if not at least DWORD aligned");
3507        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3508                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3509        TwoRepStos = true;
3510      }
3511    }
3512
3513    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3514                              InFlag);
3515    InFlag = Chain.getValue(1);
3516  } else {
3517    AVT = MVT::i8;
3518    Count  = Op.getOperand(3);
3519    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3520    InFlag = Chain.getValue(1);
3521  }
3522
3523  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3524                            Count, InFlag);
3525  InFlag = Chain.getValue(1);
3526  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3527                            Op.getOperand(1), InFlag);
3528  InFlag = Chain.getValue(1);
3529
3530  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3531  SmallVector<SDOperand, 8> Ops;
3532  Ops.push_back(Chain);
3533  Ops.push_back(DAG.getValueType(AVT));
3534  Ops.push_back(InFlag);
3535  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3536
3537  if (TwoRepStos) {
3538    InFlag = Chain.getValue(1);
3539    Count = Op.getOperand(3);
3540    MVT::ValueType CVT = Count.getValueType();
3541    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3542                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3543    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3544                              Left, InFlag);
3545    InFlag = Chain.getValue(1);
3546    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3547    Ops.clear();
3548    Ops.push_back(Chain);
3549    Ops.push_back(DAG.getValueType(MVT::i8));
3550    Ops.push_back(InFlag);
3551    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3552  } else if (BytesLeft) {
3553    // Issue stores for the last 1 - 7 bytes.
3554    SDOperand Value;
3555    unsigned Val = ValC->getValue() & 255;
3556    unsigned Offset = I->getValue() - BytesLeft;
3557    SDOperand DstAddr = Op.getOperand(1);
3558    MVT::ValueType AddrVT = DstAddr.getValueType();
3559    if (BytesLeft >= 4) {
3560      Val = (Val << 8)  | Val;
3561      Val = (Val << 16) | Val;
3562      Value = DAG.getConstant(Val, MVT::i32);
3563      Chain = DAG.getStore(Chain, Value,
3564                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3565                                       DAG.getConstant(Offset, AddrVT)),
3566                           NULL, 0);
3567      BytesLeft -= 4;
3568      Offset += 4;
3569    }
3570    if (BytesLeft >= 2) {
3571      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3572      Chain = DAG.getStore(Chain, Value,
3573                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3574                                       DAG.getConstant(Offset, AddrVT)),
3575                           NULL, 0);
3576      BytesLeft -= 2;
3577      Offset += 2;
3578    }
3579    if (BytesLeft == 1) {
3580      Value = DAG.getConstant(Val, MVT::i8);
3581      Chain = DAG.getStore(Chain, Value,
3582                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3583                                       DAG.getConstant(Offset, AddrVT)),
3584                           NULL, 0);
3585    }
3586  }
3587
3588  return Chain;
3589}
3590
3591SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3592  SDOperand Chain = Op.getOperand(0);
3593  unsigned Align =
3594    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3595  if (Align == 0) Align = 1;
3596
3597  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3598  // If not DWORD aligned, call memcpy if size is less than the threshold.
3599  // It knows how to align to the right boundary first.
3600  if ((Align & 3) != 0 ||
3601      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3602    MVT::ValueType IntPtr = getPointerTy();
3603    TargetLowering::ArgListTy Args;
3604    TargetLowering::ArgListEntry Entry;
3605    Entry.Ty = getTargetData()->getIntPtrType();
3606    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3607    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3608    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3609    std::pair<SDOperand,SDOperand> CallResult =
3610      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3611                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3612    return CallResult.second;
3613  }
3614
3615  MVT::ValueType AVT;
3616  SDOperand Count;
3617  unsigned BytesLeft = 0;
3618  bool TwoRepMovs = false;
3619  switch (Align & 3) {
3620    case 2:   // WORD aligned
3621      AVT = MVT::i16;
3622      break;
3623    case 0:  // DWORD aligned
3624      AVT = MVT::i32;
3625      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
3626        AVT = MVT::i64;
3627      break;
3628    default:  // Byte aligned
3629      AVT = MVT::i8;
3630      Count = Op.getOperand(3);
3631      break;
3632  }
3633
3634  if (AVT > MVT::i8) {
3635    if (I) {
3636      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3637      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3638      BytesLeft = I->getValue() % UBytes;
3639    } else {
3640      assert(AVT >= MVT::i32 &&
3641             "Do not use rep;movs if not at least DWORD aligned");
3642      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3643                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3644      TwoRepMovs = true;
3645    }
3646  }
3647
3648  SDOperand InFlag(0, 0);
3649  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3650                            Count, InFlag);
3651  InFlag = Chain.getValue(1);
3652  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3653                            Op.getOperand(1), InFlag);
3654  InFlag = Chain.getValue(1);
3655  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
3656                            Op.getOperand(2), InFlag);
3657  InFlag = Chain.getValue(1);
3658
3659  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3660  SmallVector<SDOperand, 8> Ops;
3661  Ops.push_back(Chain);
3662  Ops.push_back(DAG.getValueType(AVT));
3663  Ops.push_back(InFlag);
3664  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3665
3666  if (TwoRepMovs) {
3667    InFlag = Chain.getValue(1);
3668    Count = Op.getOperand(3);
3669    MVT::ValueType CVT = Count.getValueType();
3670    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3671                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3672    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3673                              Left, InFlag);
3674    InFlag = Chain.getValue(1);
3675    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3676    Ops.clear();
3677    Ops.push_back(Chain);
3678    Ops.push_back(DAG.getValueType(MVT::i8));
3679    Ops.push_back(InFlag);
3680    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3681  } else if (BytesLeft) {
3682    // Issue loads and stores for the last 1 - 7 bytes.
3683    unsigned Offset = I->getValue() - BytesLeft;
3684    SDOperand DstAddr = Op.getOperand(1);
3685    MVT::ValueType DstVT = DstAddr.getValueType();
3686    SDOperand SrcAddr = Op.getOperand(2);
3687    MVT::ValueType SrcVT = SrcAddr.getValueType();
3688    SDOperand Value;
3689    if (BytesLeft >= 4) {
3690      Value = DAG.getLoad(MVT::i32, Chain,
3691                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3692                                      DAG.getConstant(Offset, SrcVT)),
3693                          NULL, 0);
3694      Chain = Value.getValue(1);
3695      Chain = DAG.getStore(Chain, Value,
3696                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3697                                       DAG.getConstant(Offset, DstVT)),
3698                           NULL, 0);
3699      BytesLeft -= 4;
3700      Offset += 4;
3701    }
3702    if (BytesLeft >= 2) {
3703      Value = DAG.getLoad(MVT::i16, Chain,
3704                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3705                                      DAG.getConstant(Offset, SrcVT)),
3706                          NULL, 0);
3707      Chain = Value.getValue(1);
3708      Chain = DAG.getStore(Chain, Value,
3709                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3710                                       DAG.getConstant(Offset, DstVT)),
3711                           NULL, 0);
3712      BytesLeft -= 2;
3713      Offset += 2;
3714    }
3715
3716    if (BytesLeft == 1) {
3717      Value = DAG.getLoad(MVT::i8, Chain,
3718                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3719                                      DAG.getConstant(Offset, SrcVT)),
3720                          NULL, 0);
3721      Chain = Value.getValue(1);
3722      Chain = DAG.getStore(Chain, Value,
3723                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3724                                       DAG.getConstant(Offset, DstVT)),
3725                           NULL, 0);
3726    }
3727  }
3728
3729  return Chain;
3730}
3731
3732SDOperand
3733X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
3734  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3735  SDOperand TheOp = Op.getOperand(0);
3736  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
3737  if (Subtarget->is64Bit()) {
3738    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
3739    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
3740                                         MVT::i64, Copy1.getValue(2));
3741    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
3742                                DAG.getConstant(32, MVT::i8));
3743    SDOperand Ops[] = {
3744      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
3745    };
3746
3747    Tys = DAG.getVTList(MVT::i64, MVT::Other);
3748    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
3749  }
3750
3751  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
3752  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
3753                                       MVT::i32, Copy1.getValue(2));
3754  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
3755  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
3756  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
3757}
3758
3759SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
3760  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
3761
3762  if (!Subtarget->is64Bit()) {
3763    // vastart just stores the address of the VarArgsFrameIndex slot into the
3764    // memory location argument.
3765    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
3766    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
3767                        SV->getOffset());
3768  }
3769
3770  // __va_list_tag:
3771  //   gp_offset         (0 - 6 * 8)
3772  //   fp_offset         (48 - 48 + 8 * 16)
3773  //   overflow_arg_area (point to parameters coming in memory).
3774  //   reg_save_area
3775  SmallVector<SDOperand, 8> MemOps;
3776  SDOperand FIN = Op.getOperand(1);
3777  // Store gp_offset
3778  SDOperand Store = DAG.getStore(Op.getOperand(0),
3779                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
3780                                 FIN, SV->getValue(), SV->getOffset());
3781  MemOps.push_back(Store);
3782
3783  // Store fp_offset
3784  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3785                    DAG.getConstant(4, getPointerTy()));
3786  Store = DAG.getStore(Op.getOperand(0),
3787                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
3788                       FIN, SV->getValue(), SV->getOffset());
3789  MemOps.push_back(Store);
3790
3791  // Store ptr to overflow_arg_area
3792  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3793                    DAG.getConstant(4, getPointerTy()));
3794  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
3795  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
3796                       SV->getOffset());
3797  MemOps.push_back(Store);
3798
3799  // Store ptr to reg_save_area.
3800  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
3801                    DAG.getConstant(8, getPointerTy()));
3802  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
3803  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
3804                       SV->getOffset());
3805  MemOps.push_back(Store);
3806  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
3807}
3808
3809SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
3810  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
3811  SDOperand Chain = Op.getOperand(0);
3812  SDOperand DstPtr = Op.getOperand(1);
3813  SDOperand SrcPtr = Op.getOperand(2);
3814  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
3815  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
3816
3817  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
3818                       SrcSV->getValue(), SrcSV->getOffset());
3819  Chain = SrcPtr.getValue(1);
3820  for (unsigned i = 0; i < 3; ++i) {
3821    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
3822                                SrcSV->getValue(), SrcSV->getOffset());
3823    Chain = Val.getValue(1);
3824    Chain = DAG.getStore(Chain, Val, DstPtr,
3825                         DstSV->getValue(), DstSV->getOffset());
3826    if (i == 2)
3827      break;
3828    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
3829                         DAG.getConstant(8, getPointerTy()));
3830    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
3831                         DAG.getConstant(8, getPointerTy()));
3832  }
3833  return Chain;
3834}
3835
3836SDOperand
3837X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
3838  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
3839  switch (IntNo) {
3840  default: return SDOperand();    // Don't custom lower most intrinsics.
3841    // Comparison intrinsics.
3842  case Intrinsic::x86_sse_comieq_ss:
3843  case Intrinsic::x86_sse_comilt_ss:
3844  case Intrinsic::x86_sse_comile_ss:
3845  case Intrinsic::x86_sse_comigt_ss:
3846  case Intrinsic::x86_sse_comige_ss:
3847  case Intrinsic::x86_sse_comineq_ss:
3848  case Intrinsic::x86_sse_ucomieq_ss:
3849  case Intrinsic::x86_sse_ucomilt_ss:
3850  case Intrinsic::x86_sse_ucomile_ss:
3851  case Intrinsic::x86_sse_ucomigt_ss:
3852  case Intrinsic::x86_sse_ucomige_ss:
3853  case Intrinsic::x86_sse_ucomineq_ss:
3854  case Intrinsic::x86_sse2_comieq_sd:
3855  case Intrinsic::x86_sse2_comilt_sd:
3856  case Intrinsic::x86_sse2_comile_sd:
3857  case Intrinsic::x86_sse2_comigt_sd:
3858  case Intrinsic::x86_sse2_comige_sd:
3859  case Intrinsic::x86_sse2_comineq_sd:
3860  case Intrinsic::x86_sse2_ucomieq_sd:
3861  case Intrinsic::x86_sse2_ucomilt_sd:
3862  case Intrinsic::x86_sse2_ucomile_sd:
3863  case Intrinsic::x86_sse2_ucomigt_sd:
3864  case Intrinsic::x86_sse2_ucomige_sd:
3865  case Intrinsic::x86_sse2_ucomineq_sd: {
3866    unsigned Opc = 0;
3867    ISD::CondCode CC = ISD::SETCC_INVALID;
3868    switch (IntNo) {
3869    default: break;
3870    case Intrinsic::x86_sse_comieq_ss:
3871    case Intrinsic::x86_sse2_comieq_sd:
3872      Opc = X86ISD::COMI;
3873      CC = ISD::SETEQ;
3874      break;
3875    case Intrinsic::x86_sse_comilt_ss:
3876    case Intrinsic::x86_sse2_comilt_sd:
3877      Opc = X86ISD::COMI;
3878      CC = ISD::SETLT;
3879      break;
3880    case Intrinsic::x86_sse_comile_ss:
3881    case Intrinsic::x86_sse2_comile_sd:
3882      Opc = X86ISD::COMI;
3883      CC = ISD::SETLE;
3884      break;
3885    case Intrinsic::x86_sse_comigt_ss:
3886    case Intrinsic::x86_sse2_comigt_sd:
3887      Opc = X86ISD::COMI;
3888      CC = ISD::SETGT;
3889      break;
3890    case Intrinsic::x86_sse_comige_ss:
3891    case Intrinsic::x86_sse2_comige_sd:
3892      Opc = X86ISD::COMI;
3893      CC = ISD::SETGE;
3894      break;
3895    case Intrinsic::x86_sse_comineq_ss:
3896    case Intrinsic::x86_sse2_comineq_sd:
3897      Opc = X86ISD::COMI;
3898      CC = ISD::SETNE;
3899      break;
3900    case Intrinsic::x86_sse_ucomieq_ss:
3901    case Intrinsic::x86_sse2_ucomieq_sd:
3902      Opc = X86ISD::UCOMI;
3903      CC = ISD::SETEQ;
3904      break;
3905    case Intrinsic::x86_sse_ucomilt_ss:
3906    case Intrinsic::x86_sse2_ucomilt_sd:
3907      Opc = X86ISD::UCOMI;
3908      CC = ISD::SETLT;
3909      break;
3910    case Intrinsic::x86_sse_ucomile_ss:
3911    case Intrinsic::x86_sse2_ucomile_sd:
3912      Opc = X86ISD::UCOMI;
3913      CC = ISD::SETLE;
3914      break;
3915    case Intrinsic::x86_sse_ucomigt_ss:
3916    case Intrinsic::x86_sse2_ucomigt_sd:
3917      Opc = X86ISD::UCOMI;
3918      CC = ISD::SETGT;
3919      break;
3920    case Intrinsic::x86_sse_ucomige_ss:
3921    case Intrinsic::x86_sse2_ucomige_sd:
3922      Opc = X86ISD::UCOMI;
3923      CC = ISD::SETGE;
3924      break;
3925    case Intrinsic::x86_sse_ucomineq_ss:
3926    case Intrinsic::x86_sse2_ucomineq_sd:
3927      Opc = X86ISD::UCOMI;
3928      CC = ISD::SETNE;
3929      break;
3930    }
3931
3932    unsigned X86CC;
3933    SDOperand LHS = Op.getOperand(1);
3934    SDOperand RHS = Op.getOperand(2);
3935    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
3936
3937    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3938    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
3939    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
3940    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3941    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3942    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
3943    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
3944  }
3945  }
3946}
3947
3948SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3949  // Depths > 0 not supported yet!
3950  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3951    return SDOperand();
3952
3953  // Just load the return address
3954  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
3955  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3956}
3957
3958SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
3959  // Depths > 0 not supported yet!
3960  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3961    return SDOperand();
3962
3963  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
3964  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
3965                     DAG.getConstant(4, getPointerTy()));
3966}
3967
3968/// LowerOperation - Provide custom lowering hooks for some operations.
3969///
3970SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3971  switch (Op.getOpcode()) {
3972  default: assert(0 && "Should not custom lower this!");
3973  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3974  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3975  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3976  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
3977  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3978  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3979  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3980  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
3981  case ISD::SHL_PARTS:
3982  case ISD::SRA_PARTS:
3983  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
3984  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3985  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3986  case ISD::FABS:               return LowerFABS(Op, DAG);
3987  case ISD::FNEG:               return LowerFNEG(Op, DAG);
3988  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
3989  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
3990  case ISD::SELECT:             return LowerSELECT(Op, DAG);
3991  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
3992  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3993  case ISD::CALL:               return LowerCALL(Op, DAG);
3994  case ISD::RET:                return LowerRET(Op, DAG);
3995  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
3996  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
3997  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
3998  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
3999  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4000  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4001  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4002  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4003  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4004  }
4005  return SDOperand();
4006}
4007
4008const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4009  switch (Opcode) {
4010  default: return NULL;
4011  case X86ISD::SHLD:               return "X86ISD::SHLD";
4012  case X86ISD::SHRD:               return "X86ISD::SHRD";
4013  case X86ISD::FAND:               return "X86ISD::FAND";
4014  case X86ISD::FOR:                return "X86ISD::FOR";
4015  case X86ISD::FXOR:               return "X86ISD::FXOR";
4016  case X86ISD::FSRL:               return "X86ISD::FSRL";
4017  case X86ISD::FILD:               return "X86ISD::FILD";
4018  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4019  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4020  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4021  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4022  case X86ISD::FLD:                return "X86ISD::FLD";
4023  case X86ISD::FST:                return "X86ISD::FST";
4024  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4025  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4026  case X86ISD::CALL:               return "X86ISD::CALL";
4027  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4028  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4029  case X86ISD::CMP:                return "X86ISD::CMP";
4030  case X86ISD::COMI:               return "X86ISD::COMI";
4031  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4032  case X86ISD::SETCC:              return "X86ISD::SETCC";
4033  case X86ISD::CMOV:               return "X86ISD::CMOV";
4034  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4035  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4036  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4037  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4038  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
4039  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
4040  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4041  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4042  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4043  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4044  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4045  case X86ISD::FMAX:               return "X86ISD::FMAX";
4046  case X86ISD::FMIN:               return "X86ISD::FMIN";
4047  }
4048}
4049
4050// isLegalAddressingMode - Return true if the addressing mode represented
4051// by AM is legal for this target, for a load/store of the specified type.
4052bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4053                                              const Type *Ty) const {
4054  // X86 supports extremely general addressing modes.
4055
4056  // X86 allows a sign-extended 32-bit immediate field as a displacement.
4057  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4058    return false;
4059
4060  if (AM.BaseGV) {
4061    // X86-64 only supports addr of globals in small code model.
4062    if (Subtarget->is64Bit() &&
4063        getTargetMachine().getCodeModel() != CodeModel::Small)
4064      return false;
4065
4066    // We can only fold this if we don't need a load either.
4067    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4068      return false;
4069  }
4070
4071  switch (AM.Scale) {
4072  case 0:
4073  case 1:
4074  case 2:
4075  case 4:
4076  case 8:
4077    // These scales always work.
4078    break;
4079  case 3:
4080  case 5:
4081  case 9:
4082    // These scales are formed with basereg+scalereg.  Only accept if there is
4083    // no basereg yet.
4084    if (AM.HasBaseReg)
4085      return false;
4086    break;
4087  default:  // Other stuff never works.
4088    return false;
4089  }
4090
4091  return true;
4092}
4093
4094
4095/// isLegalAddressImmediate - Return true if the integer value can be used
4096/// as the offset of the target addressing mode for load / store of the
4097/// given type.
4098bool X86TargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4099  // X86 allows a sign-extended 32-bit immediate field.
4100  return (V > -(1LL << 32) && V < (1LL << 32)-1);
4101}
4102
4103/// isLegalAddressImmediate - Return true if the GlobalValue can be used as
4104/// the offset of the target addressing mode.
4105bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const {
4106  // In 64-bit mode, GV is 64-bit so it won't fit in the 32-bit displacement
4107  // field unless we are in small code model.
4108  if (Subtarget->is64Bit() &&
4109      getTargetMachine().getCodeModel() != CodeModel::Small)
4110    return false;
4111
4112  return (!Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false));
4113}
4114
4115/// isLegalAddressScale - Return true if the integer value can be used as the
4116/// scale of the target addressing mode for load / store of the given type.
4117bool X86TargetLowering::isLegalAddressScale(int64_t S, const Type *Ty) const {
4118  switch (S) {
4119  default:
4120    return false;
4121  case 2: case 4: case 8:
4122    return true;
4123  // FIXME: These require both scale + index last and thus more expensive.
4124  // How to tell LSR to try for 2, 4, 8 first?
4125  case 3: case 5: case 9:
4126    return true;
4127  }
4128}
4129
4130/// isLegalAddressScaleAndImm - Return true if S works for IsLegalAddressScale
4131/// and V works for isLegalAddressImmediate _and_ both can be applied
4132/// simultaneously to the same instruction.
4133bool X86TargetLowering::isLegalAddressScaleAndImm(int64_t S, int64_t V,
4134                                               const Type* Ty) const {
4135  return isLegalAddressScale(S, Ty) && isLegalAddressImmediate(V, Ty);
4136}
4137
4138/// isLegalAddressScaleAndImm - Return true if S works for IsLegalAddressScale
4139/// and GV works for isLegalAddressImmediate _and_ both can be applied
4140/// simultaneously to the same instruction.
4141bool X86TargetLowering::isLegalAddressScaleAndImm(int64_t S, GlobalValue *GV,
4142                                                  const Type* Ty) const {
4143  return isLegalAddressScale(S, Ty) && isLegalAddressImmediate(GV);
4144}
4145
4146/// isShuffleMaskLegal - Targets can use this to indicate that they only
4147/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4148/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4149/// are assumed to be legal.
4150bool
4151X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4152  // Only do shuffles on 128-bit vector types for now.
4153  if (MVT::getSizeInBits(VT) == 64) return false;
4154  return (Mask.Val->getNumOperands() <= 4 ||
4155          isSplatMask(Mask.Val)  ||
4156          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4157          X86::isUNPCKLMask(Mask.Val) ||
4158          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4159          X86::isUNPCKHMask(Mask.Val));
4160}
4161
4162bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4163                                               MVT::ValueType EVT,
4164                                               SelectionDAG &DAG) const {
4165  unsigned NumElts = BVOps.size();
4166  // Only do shuffles on 128-bit vector types for now.
4167  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4168  if (NumElts == 2) return true;
4169  if (NumElts == 4) {
4170    return (isMOVLMask(&BVOps[0], 4)  ||
4171            isCommutedMOVL(&BVOps[0], 4, true) ||
4172            isSHUFPMask(&BVOps[0], 4) ||
4173            isCommutedSHUFP(&BVOps[0], 4));
4174  }
4175  return false;
4176}
4177
4178//===----------------------------------------------------------------------===//
4179//                           X86 Scheduler Hooks
4180//===----------------------------------------------------------------------===//
4181
4182MachineBasicBlock *
4183X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4184                                           MachineBasicBlock *BB) {
4185  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4186  switch (MI->getOpcode()) {
4187  default: assert(false && "Unexpected instr type to insert");
4188  case X86::CMOV_FR32:
4189  case X86::CMOV_FR64:
4190  case X86::CMOV_V4F32:
4191  case X86::CMOV_V2F64:
4192  case X86::CMOV_V2I64: {
4193    // To "insert" a SELECT_CC instruction, we actually have to insert the
4194    // diamond control-flow pattern.  The incoming instruction knows the
4195    // destination vreg to set, the condition code register to branch on, the
4196    // true/false values to select between, and a branch opcode to use.
4197    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4198    ilist<MachineBasicBlock>::iterator It = BB;
4199    ++It;
4200
4201    //  thisMBB:
4202    //  ...
4203    //   TrueVal = ...
4204    //   cmpTY ccX, r1, r2
4205    //   bCC copy1MBB
4206    //   fallthrough --> copy0MBB
4207    MachineBasicBlock *thisMBB = BB;
4208    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4209    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4210    unsigned Opc =
4211      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4212    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4213    MachineFunction *F = BB->getParent();
4214    F->getBasicBlockList().insert(It, copy0MBB);
4215    F->getBasicBlockList().insert(It, sinkMBB);
4216    // Update machine-CFG edges by first adding all successors of the current
4217    // block to the new block which will contain the Phi node for the select.
4218    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4219        e = BB->succ_end(); i != e; ++i)
4220      sinkMBB->addSuccessor(*i);
4221    // Next, remove all successors of the current block, and add the true
4222    // and fallthrough blocks as its successors.
4223    while(!BB->succ_empty())
4224      BB->removeSuccessor(BB->succ_begin());
4225    BB->addSuccessor(copy0MBB);
4226    BB->addSuccessor(sinkMBB);
4227
4228    //  copy0MBB:
4229    //   %FalseValue = ...
4230    //   # fallthrough to sinkMBB
4231    BB = copy0MBB;
4232
4233    // Update machine-CFG edges
4234    BB->addSuccessor(sinkMBB);
4235
4236    //  sinkMBB:
4237    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4238    //  ...
4239    BB = sinkMBB;
4240    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4241      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4242      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4243
4244    delete MI;   // The pseudo instruction is gone now.
4245    return BB;
4246  }
4247
4248  case X86::FP_TO_INT16_IN_MEM:
4249  case X86::FP_TO_INT32_IN_MEM:
4250  case X86::FP_TO_INT64_IN_MEM: {
4251    // Change the floating point control register to use "round towards zero"
4252    // mode when truncating to an integer value.
4253    MachineFunction *F = BB->getParent();
4254    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4255    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4256
4257    // Load the old value of the high byte of the control word...
4258    unsigned OldCW =
4259      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4260    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4261
4262    // Set the high part to be round to zero...
4263    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4264      .addImm(0xC7F);
4265
4266    // Reload the modified control word now...
4267    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4268
4269    // Restore the memory image of control word to original value
4270    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4271      .addReg(OldCW);
4272
4273    // Get the X86 opcode to use.
4274    unsigned Opc;
4275    switch (MI->getOpcode()) {
4276    default: assert(0 && "illegal opcode!");
4277    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
4278    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
4279    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
4280    }
4281
4282    X86AddressMode AM;
4283    MachineOperand &Op = MI->getOperand(0);
4284    if (Op.isRegister()) {
4285      AM.BaseType = X86AddressMode::RegBase;
4286      AM.Base.Reg = Op.getReg();
4287    } else {
4288      AM.BaseType = X86AddressMode::FrameIndexBase;
4289      AM.Base.FrameIndex = Op.getFrameIndex();
4290    }
4291    Op = MI->getOperand(1);
4292    if (Op.isImmediate())
4293      AM.Scale = Op.getImm();
4294    Op = MI->getOperand(2);
4295    if (Op.isImmediate())
4296      AM.IndexReg = Op.getImm();
4297    Op = MI->getOperand(3);
4298    if (Op.isGlobalAddress()) {
4299      AM.GV = Op.getGlobal();
4300    } else {
4301      AM.Disp = Op.getImm();
4302    }
4303    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4304                      .addReg(MI->getOperand(4).getReg());
4305
4306    // Reload the original control word now.
4307    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4308
4309    delete MI;   // The pseudo instruction is gone now.
4310    return BB;
4311  }
4312  }
4313}
4314
4315//===----------------------------------------------------------------------===//
4316//                           X86 Optimization Hooks
4317//===----------------------------------------------------------------------===//
4318
4319void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4320                                                       uint64_t Mask,
4321                                                       uint64_t &KnownZero,
4322                                                       uint64_t &KnownOne,
4323                                                       unsigned Depth) const {
4324  unsigned Opc = Op.getOpcode();
4325  assert((Opc >= ISD::BUILTIN_OP_END ||
4326          Opc == ISD::INTRINSIC_WO_CHAIN ||
4327          Opc == ISD::INTRINSIC_W_CHAIN ||
4328          Opc == ISD::INTRINSIC_VOID) &&
4329         "Should use MaskedValueIsZero if you don't know whether Op"
4330         " is a target node!");
4331
4332  KnownZero = KnownOne = 0;   // Don't know anything.
4333  switch (Opc) {
4334  default: break;
4335  case X86ISD::SETCC:
4336    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4337    break;
4338  }
4339}
4340
4341/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4342/// element of the result of the vector shuffle.
4343static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4344  MVT::ValueType VT = N->getValueType(0);
4345  SDOperand PermMask = N->getOperand(2);
4346  unsigned NumElems = PermMask.getNumOperands();
4347  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4348  i %= NumElems;
4349  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4350    return (i == 0)
4351      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4352  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4353    SDOperand Idx = PermMask.getOperand(i);
4354    if (Idx.getOpcode() == ISD::UNDEF)
4355      return DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(VT));
4356    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4357  }
4358  return SDOperand();
4359}
4360
4361/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4362/// node is a GlobalAddress + an offset.
4363static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4364  unsigned Opc = N->getOpcode();
4365  if (Opc == X86ISD::Wrapper) {
4366    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4367      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4368      return true;
4369    }
4370  } else if (Opc == ISD::ADD) {
4371    SDOperand N1 = N->getOperand(0);
4372    SDOperand N2 = N->getOperand(1);
4373    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4374      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4375      if (V) {
4376        Offset += V->getSignExtended();
4377        return true;
4378      }
4379    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4380      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4381      if (V) {
4382        Offset += V->getSignExtended();
4383        return true;
4384      }
4385    }
4386  }
4387  return false;
4388}
4389
4390/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4391/// + Dist * Size.
4392static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4393                              MachineFrameInfo *MFI) {
4394  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4395    return false;
4396
4397  SDOperand Loc = N->getOperand(1);
4398  SDOperand BaseLoc = Base->getOperand(1);
4399  if (Loc.getOpcode() == ISD::FrameIndex) {
4400    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4401      return false;
4402    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
4403    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4404    int FS  = MFI->getObjectSize(FI);
4405    int BFS = MFI->getObjectSize(BFI);
4406    if (FS != BFS || FS != Size) return false;
4407    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4408  } else {
4409    GlobalValue *GV1 = NULL;
4410    GlobalValue *GV2 = NULL;
4411    int64_t Offset1 = 0;
4412    int64_t Offset2 = 0;
4413    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4414    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4415    if (isGA1 && isGA2 && GV1 == GV2)
4416      return Offset1 == (Offset2 + Dist*Size);
4417  }
4418
4419  return false;
4420}
4421
4422static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4423                              const X86Subtarget *Subtarget) {
4424  GlobalValue *GV;
4425  int64_t Offset;
4426  if (isGAPlusOffset(Base, GV, Offset))
4427    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4428  else {
4429    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4430    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
4431    if (BFI < 0)
4432      // Fixed objects do not specify alignment, however the offsets are known.
4433      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4434              (MFI->getObjectOffset(BFI) % 16) == 0);
4435    else
4436      return MFI->getObjectAlignment(BFI) >= 16;
4437  }
4438  return false;
4439}
4440
4441
4442/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4443/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4444/// if the load addresses are consecutive, non-overlapping, and in the right
4445/// order.
4446static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4447                                       const X86Subtarget *Subtarget) {
4448  MachineFunction &MF = DAG.getMachineFunction();
4449  MachineFrameInfo *MFI = MF.getFrameInfo();
4450  MVT::ValueType VT = N->getValueType(0);
4451  MVT::ValueType EVT = MVT::getVectorBaseType(VT);
4452  SDOperand PermMask = N->getOperand(2);
4453  int NumElems = (int)PermMask.getNumOperands();
4454  SDNode *Base = NULL;
4455  for (int i = 0; i < NumElems; ++i) {
4456    SDOperand Idx = PermMask.getOperand(i);
4457    if (Idx.getOpcode() == ISD::UNDEF) {
4458      if (!Base) return SDOperand();
4459    } else {
4460      SDOperand Arg =
4461        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4462      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4463        return SDOperand();
4464      if (!Base)
4465        Base = Arg.Val;
4466      else if (!isConsecutiveLoad(Arg.Val, Base,
4467                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4468        return SDOperand();
4469    }
4470  }
4471
4472  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4473  if (isAlign16) {
4474    LoadSDNode *LD = cast<LoadSDNode>(Base);
4475    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4476                       LD->getSrcValueOffset());
4477  } else {
4478    // Just use movups, it's shorter.
4479    SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
4480    SmallVector<SDOperand, 3> Ops;
4481    Ops.push_back(Base->getOperand(0));
4482    Ops.push_back(Base->getOperand(1));
4483    Ops.push_back(Base->getOperand(2));
4484    return DAG.getNode(ISD::BIT_CONVERT, VT,
4485                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
4486  }
4487}
4488
4489/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4490static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4491                                      const X86Subtarget *Subtarget) {
4492  SDOperand Cond = N->getOperand(0);
4493
4494  // If we have SSE[12] support, try to form min/max nodes.
4495  if (Subtarget->hasSSE2() &&
4496      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4497    if (Cond.getOpcode() == ISD::SETCC) {
4498      // Get the LHS/RHS of the select.
4499      SDOperand LHS = N->getOperand(1);
4500      SDOperand RHS = N->getOperand(2);
4501      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4502
4503      unsigned Opcode = 0;
4504      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4505        switch (CC) {
4506        default: break;
4507        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4508        case ISD::SETULE:
4509        case ISD::SETLE:
4510          if (!UnsafeFPMath) break;
4511          // FALL THROUGH.
4512        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
4513        case ISD::SETLT:
4514          Opcode = X86ISD::FMIN;
4515          break;
4516
4517        case ISD::SETOGT: // (X > Y) ? X : Y -> max
4518        case ISD::SETUGT:
4519        case ISD::SETGT:
4520          if (!UnsafeFPMath) break;
4521          // FALL THROUGH.
4522        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
4523        case ISD::SETGE:
4524          Opcode = X86ISD::FMAX;
4525          break;
4526        }
4527      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4528        switch (CC) {
4529        default: break;
4530        case ISD::SETOGT: // (X > Y) ? Y : X -> min
4531        case ISD::SETUGT:
4532        case ISD::SETGT:
4533          if (!UnsafeFPMath) break;
4534          // FALL THROUGH.
4535        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
4536        case ISD::SETGE:
4537          Opcode = X86ISD::FMIN;
4538          break;
4539
4540        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
4541        case ISD::SETULE:
4542        case ISD::SETLE:
4543          if (!UnsafeFPMath) break;
4544          // FALL THROUGH.
4545        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
4546        case ISD::SETLT:
4547          Opcode = X86ISD::FMAX;
4548          break;
4549        }
4550      }
4551
4552      if (Opcode)
4553        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4554    }
4555
4556  }
4557
4558  return SDOperand();
4559}
4560
4561
4562SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
4563                                               DAGCombinerInfo &DCI) const {
4564  SelectionDAG &DAG = DCI.DAG;
4565  switch (N->getOpcode()) {
4566  default: break;
4567  case ISD::VECTOR_SHUFFLE:
4568    return PerformShuffleCombine(N, DAG, Subtarget);
4569  case ISD::SELECT:
4570    return PerformSELECTCombine(N, DAG, Subtarget);
4571  }
4572
4573  return SDOperand();
4574}
4575
4576//===----------------------------------------------------------------------===//
4577//                           X86 Inline Assembly Support
4578//===----------------------------------------------------------------------===//
4579
4580/// getConstraintType - Given a constraint letter, return the type of
4581/// constraint it is for this target.
4582X86TargetLowering::ConstraintType
4583X86TargetLowering::getConstraintType(const std::string &Constraint) const {
4584  if (Constraint.size() == 1) {
4585    switch (Constraint[0]) {
4586    case 'A':
4587    case 'r':
4588    case 'R':
4589    case 'l':
4590    case 'q':
4591    case 'Q':
4592    case 'x':
4593    case 'Y':
4594      return C_RegisterClass;
4595    default:
4596      break;
4597    }
4598  }
4599  return TargetLowering::getConstraintType(Constraint);
4600}
4601
4602/// isOperandValidForConstraint - Return the specified operand (possibly
4603/// modified) if the specified SDOperand is valid for the specified target
4604/// constraint letter, otherwise return null.
4605SDOperand X86TargetLowering::
4606isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
4607  switch (Constraint) {
4608  default: break;
4609  case 'I':
4610    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4611      if (C->getValue() <= 31)
4612        return Op;
4613    }
4614    return SDOperand(0,0);
4615  case 'N':
4616    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4617      if (C->getValue() <= 255)
4618        return Op;
4619    }
4620    return SDOperand(0,0);
4621  case 'i':
4622    // Literal immediates are always ok.
4623    if (isa<ConstantSDNode>(Op)) return Op;
4624
4625    // If we are in non-pic codegen mode, we allow the address of a global to
4626    // be used with 'i'.
4627    if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4628      if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4629        return SDOperand(0, 0);
4630
4631      if (GA->getOpcode() != ISD::TargetGlobalAddress)
4632        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4633                                        GA->getOffset());
4634      return Op;
4635    }
4636
4637    // Otherwise, not valid for this mode.
4638    return SDOperand(0, 0);
4639  }
4640  return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
4641}
4642
4643std::vector<unsigned> X86TargetLowering::
4644getRegClassForInlineAsmConstraint(const std::string &Constraint,
4645                                  MVT::ValueType VT) const {
4646  if (Constraint.size() == 1) {
4647    // FIXME: not handling fp-stack yet!
4648    // FIXME: not handling MMX registers yet ('y' constraint).
4649    switch (Constraint[0]) {      // GCC X86 Constraint Letters
4650    default: break;  // Unknown constraint letter
4651    case 'A':   // EAX/EDX
4652      if (VT == MVT::i32 || VT == MVT::i64)
4653        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
4654      break;
4655    case 'r':   // GENERAL_REGS
4656    case 'R':   // LEGACY_REGS
4657      if (VT == MVT::i64 && Subtarget->is64Bit())
4658        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
4659                                     X86::RSI, X86::RDI, X86::RBP, X86::RSP,
4660                                     X86::R8,  X86::R9,  X86::R10, X86::R11,
4661                                     X86::R12, X86::R13, X86::R14, X86::R15, 0);
4662      if (VT == MVT::i32)
4663        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
4664                                     X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0);
4665      else if (VT == MVT::i16)
4666        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
4667                                     X86::SI, X86::DI, X86::BP, X86::SP, 0);
4668      else if (VT == MVT::i8)
4669        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
4670      break;
4671    case 'l':   // INDEX_REGS
4672      if (VT == MVT::i32)
4673        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
4674                                     X86::ESI, X86::EDI, X86::EBP, 0);
4675      else if (VT == MVT::i16)
4676        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
4677                                     X86::SI, X86::DI, X86::BP, 0);
4678      else if (VT == MVT::i8)
4679        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
4680      break;
4681    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
4682    case 'Q':   // Q_REGS
4683      if (VT == MVT::i32)
4684        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
4685      else if (VT == MVT::i16)
4686        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
4687      else if (VT == MVT::i8)
4688        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
4689        break;
4690    case 'x':   // SSE_REGS if SSE1 allowed
4691      if (Subtarget->hasSSE1())
4692        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
4693                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
4694                                     0);
4695      return std::vector<unsigned>();
4696    case 'Y':   // SSE_REGS if SSE2 allowed
4697      if (Subtarget->hasSSE2())
4698        return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
4699                                     X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7,
4700                                     0);
4701      return std::vector<unsigned>();
4702    }
4703  }
4704
4705  return std::vector<unsigned>();
4706}
4707
4708std::pair<unsigned, const TargetRegisterClass*>
4709X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4710                                                MVT::ValueType VT) const {
4711  // First, see if this is a constraint that directly corresponds to an LLVM
4712  // register class.
4713  if (Constraint.size() == 1) {
4714    // GCC Constraint Letters
4715    switch (Constraint[0]) {
4716    default: break;
4717    case 'x':
4718      if (VT == MVT::f32)
4719        return std::make_pair(0U, X86::FR32RegisterClass);
4720      if (VT == MVT::f64)
4721        return std::make_pair(0U, X86::FR64RegisterClass);
4722      break;
4723    }
4724  }
4725
4726  // Use the default implementation in TargetLowering to convert the register
4727  // constraint into a member of a register class.
4728  std::pair<unsigned, const TargetRegisterClass*> Res;
4729  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4730
4731  // Not found as a standard register?
4732  if (Res.second == 0) {
4733    // GCC calls "st(0)" just plain "st".
4734    if (StringsEqualNoCase("{st}", Constraint)) {
4735      Res.first = X86::ST0;
4736      Res.second = X86::RSTRegisterClass;
4737    }
4738
4739    return Res;
4740  }
4741
4742  // Otherwise, check to see if this is a register class of the wrong value
4743  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
4744  // turn into {ax},{dx}.
4745  if (Res.second->hasType(VT))
4746    return Res;   // Correct type already, nothing to do.
4747
4748  // All of the single-register GCC register classes map their values onto
4749  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
4750  // really want an 8-bit or 32-bit register, map to the appropriate register
4751  // class and return the appropriate register.
4752  if (Res.second != X86::GR16RegisterClass)
4753    return Res;
4754
4755  if (VT == MVT::i8) {
4756    unsigned DestReg = 0;
4757    switch (Res.first) {
4758    default: break;
4759    case X86::AX: DestReg = X86::AL; break;
4760    case X86::DX: DestReg = X86::DL; break;
4761    case X86::CX: DestReg = X86::CL; break;
4762    case X86::BX: DestReg = X86::BL; break;
4763    }
4764    if (DestReg) {
4765      Res.first = DestReg;
4766      Res.second = Res.second = X86::GR8RegisterClass;
4767    }
4768  } else if (VT == MVT::i32) {
4769    unsigned DestReg = 0;
4770    switch (Res.first) {
4771    default: break;
4772    case X86::AX: DestReg = X86::EAX; break;
4773    case X86::DX: DestReg = X86::EDX; break;
4774    case X86::CX: DestReg = X86::ECX; break;
4775    case X86::BX: DestReg = X86::EBX; break;
4776    case X86::SI: DestReg = X86::ESI; break;
4777    case X86::DI: DestReg = X86::EDI; break;
4778    case X86::BP: DestReg = X86::EBP; break;
4779    case X86::SP: DestReg = X86::ESP; break;
4780    }
4781    if (DestReg) {
4782      Res.first = DestReg;
4783      Res.second = Res.second = X86::GR32RegisterClass;
4784    }
4785  } else if (VT == MVT::i64) {
4786    unsigned DestReg = 0;
4787    switch (Res.first) {
4788    default: break;
4789    case X86::AX: DestReg = X86::RAX; break;
4790    case X86::DX: DestReg = X86::RDX; break;
4791    case X86::CX: DestReg = X86::RCX; break;
4792    case X86::BX: DestReg = X86::RBX; break;
4793    case X86::SI: DestReg = X86::RSI; break;
4794    case X86::DI: DestReg = X86::RDI; break;
4795    case X86::BP: DestReg = X86::RBP; break;
4796    case X86::SP: DestReg = X86::RSP; break;
4797    }
4798    if (DestReg) {
4799      Res.first = DestReg;
4800      Res.second = Res.second = X86::GR64RegisterClass;
4801    }
4802  }
4803
4804  return Res;
4805}
4806