X86ISelLowering.cpp revision ae16d6b9722dd6ff4a606308e3a14d200f3a903f
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG);
75
76
77/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
78/// sets things up to match to an AVX VEXTRACTF128 instruction or a
79/// simple subregister reference.  Idx is an index in the 128 bits we
80/// want.  It need not be aligned to a 128-bit bounday.  That makes
81/// lowering EXTRACT_VECTOR_ELT operations easier.
82static SDValue Extract128BitVector(SDValue Vec,
83                                   SDValue Idx,
84                                   SelectionDAG &DAG,
85                                   DebugLoc dl) {
86  EVT VT = Vec.getValueType();
87  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
88
89  EVT ElVT = VT.getVectorElementType();
90
91  int Factor = VT.getSizeInBits() / 128;
92
93  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(),
94                                  ElVT,
95                                  VT.getVectorNumElements() / Factor);
96
97  // Extract from UNDEF is UNDEF.
98  if (Vec.getOpcode() == ISD::UNDEF)
99    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
100
101  if (isa<ConstantSDNode>(Idx)) {
102    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
103
104    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
105    // we can match to VEXTRACTF128.
106    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
107
108    // This is the index of the first element of the 128-bit chunk
109    // we want.
110    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
111                                 * ElemsPerChunk);
112
113    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
114
115    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
116                                 VecIdx);
117
118    return Result;
119  }
120
121  return SDValue();
122}
123
124/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
125/// sets things up to match to an AVX VINSERTF128 instruction or a
126/// simple superregister reference.  Idx is an index in the 128 bits
127/// we want.  It need not be aligned to a 128-bit bounday.  That makes
128/// lowering INSERT_VECTOR_ELT operations easier.
129static SDValue Insert128BitVector(SDValue Result,
130                                  SDValue Vec,
131                                  SDValue Idx,
132                                  SelectionDAG &DAG,
133                                  DebugLoc dl) {
134  if (isa<ConstantSDNode>(Idx)) {
135    EVT VT = Vec.getValueType();
136    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
137
138    EVT ElVT = VT.getVectorElementType();
139
140    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
141
142    EVT ResultVT = Result.getValueType();
143
144    // Insert the relevant 128 bits.
145    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
146
147    // This is the index of the first element of the 128-bit chunk
148    // we want.
149    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
150                                 * ElemsPerChunk);
151
152    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
153
154    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
155                         VecIdx);
156    return Result;
157  }
158
159  return SDValue();
160}
161
162/// Given two vectors, concat them.
163static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG) {
164  DebugLoc dl = Lower.getDebugLoc();
165
166  assert(Lower.getValueType() == Upper.getValueType() && "Mismatched vectors!");
167
168  EVT VT = EVT::getVectorVT(*DAG.getContext(),
169                            Lower.getValueType().getVectorElementType(),
170                            Lower.getValueType().getVectorNumElements() * 2);
171
172  // TODO: Generalize to arbitrary vector length (this assumes 256-bit vectors).
173  assert(VT.getSizeInBits() == 256 && "Unsupported vector concat!");
174
175  // Insert the upper subvector.
176  SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
177                                   DAG.getConstant(
178                                     // This is half the length of the result
179                                     // vector.  Start inserting the upper 128
180                                     // bits here.
181                                     Lower.getValueType().getVectorNumElements(),
182                                     MVT::i32),
183                                   DAG, dl);
184
185  // Insert the lower subvector.
186  Vec = Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32), DAG, dl);
187  return Vec;
188}
189
190static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
191  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
192  bool is64Bit = Subtarget->is64Bit();
193
194  if (Subtarget->isTargetEnvMacho()) {
195    if (is64Bit)
196      return new X8664_MachoTargetObjectFile();
197    return new TargetLoweringObjectFileMachO();
198  }
199
200  if (Subtarget->isTargetELF()) {
201    if (is64Bit)
202      return new X8664_ELFTargetObjectFile(TM);
203    return new X8632_ELFTargetObjectFile(TM);
204  }
205  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
206    return new TargetLoweringObjectFileCOFF();
207  llvm_unreachable("unknown subtarget type");
208}
209
210X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
211  : TargetLowering(TM, createTLOF(TM)) {
212  Subtarget = &TM.getSubtarget<X86Subtarget>();
213  X86ScalarSSEf64 = Subtarget->hasXMMInt();
214  X86ScalarSSEf32 = Subtarget->hasXMM();
215  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
216
217  RegInfo = TM.getRegisterInfo();
218  TD = getTargetData();
219
220  // Set up the TargetLowering object.
221  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
222
223  // X86 is weird, it always uses i8 for shift amounts and setcc results.
224  setBooleanContents(ZeroOrOneBooleanContent);
225
226  // For 64-bit since we have so many registers use the ILP scheduler, for
227  // 32-bit code use the register pressure specific scheduling.
228  if (Subtarget->is64Bit())
229    setSchedulingPreference(Sched::ILP);
230  else
231    setSchedulingPreference(Sched::RegPressure);
232  setStackPointerRegisterToSaveRestore(X86StackPtr);
233
234  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
235    // Setup Windows compiler runtime calls.
236    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
237    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
238    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
239    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
240    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
241    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
242    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
243    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
244  }
245
246  if (Subtarget->isTargetDarwin()) {
247    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
248    setUseUnderscoreSetJmp(false);
249    setUseUnderscoreLongJmp(false);
250  } else if (Subtarget->isTargetMingw()) {
251    // MS runtime is weird: it exports _setjmp, but longjmp!
252    setUseUnderscoreSetJmp(true);
253    setUseUnderscoreLongJmp(false);
254  } else {
255    setUseUnderscoreSetJmp(true);
256    setUseUnderscoreLongJmp(true);
257  }
258
259  // Set up the register classes.
260  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
261  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
262  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
263  if (Subtarget->is64Bit())
264    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
265
266  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
267
268  // We don't accept any truncstore of integer registers.
269  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
270  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
271  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
272  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
273  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
274  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
275
276  // SETOEQ and SETUNE require checking two conditions.
277  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
278  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
279  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
280  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
281  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
282  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
283
284  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
285  // operation.
286  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
287  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
288  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
289
290  if (Subtarget->is64Bit()) {
291    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
292    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
293  } else if (!UseSoftFloat) {
294    // We have an algorithm for SSE2->double, and we turn this into a
295    // 64-bit FILD followed by conditional FADD for other targets.
296    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
297    // We have an algorithm for SSE2, and we turn this into a 64-bit
298    // FILD for other targets.
299    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
300  }
301
302  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
303  // this operation.
304  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
305  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
306
307  if (!UseSoftFloat) {
308    // SSE has no i16 to fp conversion, only i32
309    if (X86ScalarSSEf32) {
310      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
311      // f32 and f64 cases are Legal, f80 case is not
312      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
313    } else {
314      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
315      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
316    }
317  } else {
318    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
319    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
320  }
321
322  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
323  // are Legal, f80 is custom lowered.
324  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
325  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
326
327  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
328  // this operation.
329  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
330  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
331
332  if (X86ScalarSSEf32) {
333    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
334    // f32 and f64 cases are Legal, f80 case is not
335    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
336  } else {
337    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
338    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
339  }
340
341  // Handle FP_TO_UINT by promoting the destination to a larger signed
342  // conversion.
343  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
344  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
345  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
346
347  if (Subtarget->is64Bit()) {
348    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
349    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
350  } else if (!UseSoftFloat) {
351    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
352      // Expand FP_TO_UINT into a select.
353      // FIXME: We would like to use a Custom expander here eventually to do
354      // the optimal thing for SSE vs. the default expansion in the legalizer.
355      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
356    else
357      // With SSE3 we can use fisttpll to convert to a signed i64; without
358      // SSE, we're stuck with a fistpll.
359      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
360  }
361
362  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
363  if (!X86ScalarSSEf64) {
364    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
365    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
366    if (Subtarget->is64Bit()) {
367      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
368      // Without SSE, i64->f64 goes through memory.
369      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
370    }
371  }
372
373  // Scalar integer divide and remainder are lowered to use operations that
374  // produce two results, to match the available instructions. This exposes
375  // the two-result form to trivial CSE, which is able to combine x/y and x%y
376  // into a single instruction.
377  //
378  // Scalar integer multiply-high is also lowered to use two-result
379  // operations, to match the available instructions. However, plain multiply
380  // (low) operations are left as Legal, as there are single-result
381  // instructions for this in x86. Using the two-result multiply instructions
382  // when both high and low results are needed must be arranged by dagcombine.
383  for (unsigned i = 0, e = 4; i != e; ++i) {
384    MVT VT = IntVTs[i];
385    setOperationAction(ISD::MULHS, VT, Expand);
386    setOperationAction(ISD::MULHU, VT, Expand);
387    setOperationAction(ISD::SDIV, VT, Expand);
388    setOperationAction(ISD::UDIV, VT, Expand);
389    setOperationAction(ISD::SREM, VT, Expand);
390    setOperationAction(ISD::UREM, VT, Expand);
391
392    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
393    setOperationAction(ISD::ADDC, VT, Custom);
394    setOperationAction(ISD::ADDE, VT, Custom);
395    setOperationAction(ISD::SUBC, VT, Custom);
396    setOperationAction(ISD::SUBE, VT, Custom);
397  }
398
399  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
400  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
401  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
402  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
403  if (Subtarget->is64Bit())
404    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
405  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
406  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
407  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
408  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
409  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
410  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
411  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
412  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
413
414  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
415  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
416  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
417  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
418  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
419  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
420  if (Subtarget->is64Bit()) {
421    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
422    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
423  }
424
425  if (Subtarget->hasPOPCNT()) {
426    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
427  } else {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
429    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
430    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
431    if (Subtarget->is64Bit())
432      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
433  }
434
435  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
436  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
437
438  // These should be promoted to a larger select which is supported.
439  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
440  // X86 wants to expand cmov itself.
441  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
442  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
448  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
453  if (Subtarget->is64Bit()) {
454    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
455    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
456  }
457  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
458
459  // Darwin ABI issue.
460  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
461  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
462  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
463  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
464  if (Subtarget->is64Bit())
465    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
466  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
467  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
468  if (Subtarget->is64Bit()) {
469    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
470    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
471    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
472    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
473    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
474  }
475  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
476  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
477  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
478  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
479  if (Subtarget->is64Bit()) {
480    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
481    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
482    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
483  }
484
485  if (Subtarget->hasXMM())
486    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
487
488  // We may not have a libcall for MEMBARRIER so we should lower this.
489  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
490
491  // On X86 and X86-64, atomic operations are lowered to locked instructions.
492  // Locked instructions, in turn, have implicit fence semantics (all memory
493  // operations are flushed before issuing the locked instruction, and they
494  // are not buffered), so we can fold away the common pattern of
495  // fence-atomic-fence.
496  setShouldFoldAtomicFences(true);
497
498  // Expand certain atomics
499  for (unsigned i = 0, e = 4; i != e; ++i) {
500    MVT VT = IntVTs[i];
501    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
503  }
504
505  if (!Subtarget->is64Bit()) {
506    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
513  }
514
515  // FIXME - use subtarget debug flags
516  if (!Subtarget->isTargetDarwin() &&
517      !Subtarget->isTargetELF() &&
518      !Subtarget->isTargetCygMing()) {
519    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
520  }
521
522  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
523  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
526  if (Subtarget->is64Bit()) {
527    setExceptionPointerRegister(X86::RAX);
528    setExceptionSelectorRegister(X86::RDX);
529  } else {
530    setExceptionPointerRegister(X86::EAX);
531    setExceptionSelectorRegister(X86::EDX);
532  }
533  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
534  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
535
536  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
537
538  setOperationAction(ISD::TRAP, MVT::Other, Legal);
539
540  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
541  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
542  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
543  if (Subtarget->is64Bit()) {
544    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
545    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
546  } else {
547    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
549  }
550
551  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
552  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
553  if (Subtarget->is64Bit())
554    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
555  if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
556    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
557  else
558    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
559
560  if (!UseSoftFloat && X86ScalarSSEf64) {
561    // f32 and f64 use SSE.
562    // Set up the FP register classes.
563    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
564    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
565
566    // Use ANDPD to simulate FABS.
567    setOperationAction(ISD::FABS , MVT::f64, Custom);
568    setOperationAction(ISD::FABS , MVT::f32, Custom);
569
570    // Use XORP to simulate FNEG.
571    setOperationAction(ISD::FNEG , MVT::f64, Custom);
572    setOperationAction(ISD::FNEG , MVT::f32, Custom);
573
574    // Use ANDPD and ORPD to simulate FCOPYSIGN.
575    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
576    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
577
578    // We don't support sin/cos/fmod
579    setOperationAction(ISD::FSIN , MVT::f64, Expand);
580    setOperationAction(ISD::FCOS , MVT::f64, Expand);
581    setOperationAction(ISD::FSIN , MVT::f32, Expand);
582    setOperationAction(ISD::FCOS , MVT::f32, Expand);
583
584    // Expand FP immediates into loads from the stack, except for the special
585    // cases we handle.
586    addLegalFPImmediate(APFloat(+0.0)); // xorpd
587    addLegalFPImmediate(APFloat(+0.0f)); // xorps
588  } else if (!UseSoftFloat && X86ScalarSSEf32) {
589    // Use SSE for f32, x87 for f64.
590    // Set up the FP register classes.
591    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
592    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
593
594    // Use ANDPS to simulate FABS.
595    setOperationAction(ISD::FABS , MVT::f32, Custom);
596
597    // Use XORP to simulate FNEG.
598    setOperationAction(ISD::FNEG , MVT::f32, Custom);
599
600    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
601
602    // Use ANDPS and ORPS to simulate FCOPYSIGN.
603    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
604    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
605
606    // We don't support sin/cos/fmod
607    setOperationAction(ISD::FSIN , MVT::f32, Expand);
608    setOperationAction(ISD::FCOS , MVT::f32, Expand);
609
610    // Special cases we handle for FP constants.
611    addLegalFPImmediate(APFloat(+0.0f)); // xorps
612    addLegalFPImmediate(APFloat(+0.0)); // FLD0
613    addLegalFPImmediate(APFloat(+1.0)); // FLD1
614    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
615    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
616
617    if (!UnsafeFPMath) {
618      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
619      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
620    }
621  } else if (!UseSoftFloat) {
622    // f32 and f64 in x87.
623    // Set up the FP register classes.
624    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
625    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
626
627    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
628    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
629    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
630    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
631
632    if (!UnsafeFPMath) {
633      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
634      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
635    }
636    addLegalFPImmediate(APFloat(+0.0)); // FLD0
637    addLegalFPImmediate(APFloat(+1.0)); // FLD1
638    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
639    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
640    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
641    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
642    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
643    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
644  }
645
646  // Long double always uses X87.
647  if (!UseSoftFloat) {
648    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
649    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
650    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
651    {
652      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
653      addLegalFPImmediate(TmpFlt);  // FLD0
654      TmpFlt.changeSign();
655      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
656
657      bool ignored;
658      APFloat TmpFlt2(+1.0);
659      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
660                      &ignored);
661      addLegalFPImmediate(TmpFlt2);  // FLD1
662      TmpFlt2.changeSign();
663      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
664    }
665
666    if (!UnsafeFPMath) {
667      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
668      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
669    }
670  }
671
672  // Always use a library call for pow.
673  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
674  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
675  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
676
677  setOperationAction(ISD::FLOG, MVT::f80, Expand);
678  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
679  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
680  setOperationAction(ISD::FEXP, MVT::f80, Expand);
681  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
682
683  // First set operation action for all vector types to either promote
684  // (for widening) or expand (for scalarization). Then we will selectively
685  // turn on ones that can be effectively codegen'd.
686  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
687       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
688    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
703    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
705    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
706    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
738    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
742    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
743         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
744      setTruncStoreAction((MVT::SimpleValueType)VT,
745                          (MVT::SimpleValueType)InnerVT, Expand);
746    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
747    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
748    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
749  }
750
751  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
752  // with -msoft-float, disable use of MMX as well.
753  if (!UseSoftFloat && Subtarget->hasMMX()) {
754    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
755    // No operations on x86mmx supported, everything uses intrinsics.
756  }
757
758  // MMX-sized vectors (other than x86mmx) are expected to be expanded
759  // into smaller operations.
760  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
761  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
762  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
763  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
764  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
765  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
766  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
767  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
768  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
769  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
770  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
771  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
772  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
773  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
774  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
775  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
776  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
777  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
778  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
779  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
780  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
781  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
782  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
783  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
784  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
785  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
786  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
787  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
788  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
789
790  if (!UseSoftFloat && Subtarget->hasXMM()) {
791    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
792
793    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
794    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
795    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
796    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
797    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
798    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
799    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
800    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
801    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
802    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
803    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
804    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
805  }
806
807  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
808    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
809
810    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
811    // registers cannot be used even for integer operations.
812    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
813    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
814    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
815    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
816
817    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
818    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
819    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
820    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
821    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
822    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
823    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
824    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
825    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
826    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
827    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
828    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
829    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
830    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
831    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
832    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
833
834    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
835    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
836    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
837    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
838
839    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
840    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
842    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
843    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
844
845    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
846    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
847    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
848    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
849    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
850
851    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
852    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
853      EVT VT = (MVT::SimpleValueType)i;
854      // Do not attempt to custom lower non-power-of-2 vectors
855      if (!isPowerOf2_32(VT.getVectorNumElements()))
856        continue;
857      // Do not attempt to custom lower non-128-bit vectors
858      if (!VT.is128BitVector())
859        continue;
860      setOperationAction(ISD::BUILD_VECTOR,
861                         VT.getSimpleVT().SimpleTy, Custom);
862      setOperationAction(ISD::VECTOR_SHUFFLE,
863                         VT.getSimpleVT().SimpleTy, Custom);
864      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
865                         VT.getSimpleVT().SimpleTy, Custom);
866    }
867
868    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
869    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
870    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
871    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
872    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
873    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
874
875    if (Subtarget->is64Bit()) {
876      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
877      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
878    }
879
880    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
881    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
882      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
883      EVT VT = SVT;
884
885      // Do not attempt to promote non-128-bit vectors
886      if (!VT.is128BitVector())
887        continue;
888
889      setOperationAction(ISD::AND,    SVT, Promote);
890      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
891      setOperationAction(ISD::OR,     SVT, Promote);
892      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
893      setOperationAction(ISD::XOR,    SVT, Promote);
894      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
895      setOperationAction(ISD::LOAD,   SVT, Promote);
896      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
897      setOperationAction(ISD::SELECT, SVT, Promote);
898      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
899    }
900
901    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
902
903    // Custom lower v2i64 and v2f64 selects.
904    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
905    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
906    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
907    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
908
909    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
910    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
911  }
912
913  if (Subtarget->hasSSE41()) {
914    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
915    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
916    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
917    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
918    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
919    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
920    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
921    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
922    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
923    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
924
925    // FIXME: Do we need to handle scalar-to-vector here?
926    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
927
928    // Can turn SHL into an integer multiply.
929    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
930    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
931    setOperationAction(ISD::SRL,                MVT::v4i32, Legal);
932
933    // i8 and i16 vectors are custom , because the source register and source
934    // source memory operand types are not the same width.  f32 vectors are
935    // custom since the immediate controlling the insert encodes additional
936    // information.
937    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
938    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
939    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
940    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
941
942    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
943    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
944    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
945    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
946
947    if (Subtarget->is64Bit()) {
948      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
949      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
950    }
951  }
952
953  if (Subtarget->hasSSE42())
954    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
955
956  if (!UseSoftFloat && Subtarget->hasAVX()) {
957    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
958    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
959    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
960    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
961    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
962
963    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
964    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
965    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
966    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
967
968    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
969    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
970    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
971    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
972    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
973    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
974
975    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
976    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
977    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
978    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
979    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
980    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
981
982    // Custom lower build_vector, vector_shuffle, scalar_to_vector,
983    // insert_vector_elt extract_subvector and extract_vector_elt for
984    // 256-bit types.
985    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
986         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
987         ++i) {
988      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
989      // Do not attempt to custom lower non-256-bit vectors
990      if (!isPowerOf2_32(MVT(VT).getVectorNumElements())
991          || (MVT(VT).getSizeInBits() < 256))
992        continue;
993      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
994      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
995      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
996      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
997      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
998    }
999    // Custom-lower insert_subvector and extract_subvector based on
1000    // the result type.
1001    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1002         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1003         ++i) {
1004      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
1005      // Do not attempt to custom lower non-256-bit vectors
1006      if (!isPowerOf2_32(MVT(VT).getVectorNumElements()))
1007        continue;
1008
1009      if (MVT(VT).getSizeInBits() == 128) {
1010        setOperationAction(ISD::EXTRACT_SUBVECTOR,  VT, Custom);
1011      }
1012      else if (MVT(VT).getSizeInBits() == 256) {
1013        setOperationAction(ISD::INSERT_SUBVECTOR,  VT, Custom);
1014      }
1015    }
1016
1017    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1018    // Don't promote loads because we need them for VPERM vector index versions.
1019
1020    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1021         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1022         VT++) {
1023      if (!isPowerOf2_32(MVT((MVT::SimpleValueType)VT).getVectorNumElements())
1024          || (MVT((MVT::SimpleValueType)VT).getSizeInBits() < 256))
1025        continue;
1026      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
1027      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v4i64);
1028      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
1029      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v4i64);
1030      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
1031      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v4i64);
1032      //setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
1033      //AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v4i64);
1034      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
1035      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v4i64);
1036    }
1037  }
1038
1039  // We want to custom lower some of our intrinsics.
1040  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1041
1042
1043  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1044  // handle type legalization for these operations here.
1045  //
1046  // FIXME: We really should do custom legalization for addition and
1047  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1048  // than generic legalization for 64-bit multiplication-with-overflow, though.
1049  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1050    // Add/Sub/Mul with overflow operations are custom lowered.
1051    MVT VT = IntVTs[i];
1052    setOperationAction(ISD::SADDO, VT, Custom);
1053    setOperationAction(ISD::UADDO, VT, Custom);
1054    setOperationAction(ISD::SSUBO, VT, Custom);
1055    setOperationAction(ISD::USUBO, VT, Custom);
1056    setOperationAction(ISD::SMULO, VT, Custom);
1057    setOperationAction(ISD::UMULO, VT, Custom);
1058  }
1059
1060  // There are no 8-bit 3-address imul/mul instructions
1061  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1062  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1063
1064  if (!Subtarget->is64Bit()) {
1065    // These libcalls are not available in 32-bit.
1066    setLibcallName(RTLIB::SHL_I128, 0);
1067    setLibcallName(RTLIB::SRL_I128, 0);
1068    setLibcallName(RTLIB::SRA_I128, 0);
1069  }
1070
1071  // We have target-specific dag combine patterns for the following nodes:
1072  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1073  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1074  setTargetDAGCombine(ISD::BUILD_VECTOR);
1075  setTargetDAGCombine(ISD::SELECT);
1076  setTargetDAGCombine(ISD::SHL);
1077  setTargetDAGCombine(ISD::SRA);
1078  setTargetDAGCombine(ISD::SRL);
1079  setTargetDAGCombine(ISD::OR);
1080  setTargetDAGCombine(ISD::AND);
1081  setTargetDAGCombine(ISD::ADD);
1082  setTargetDAGCombine(ISD::SUB);
1083  setTargetDAGCombine(ISD::STORE);
1084  setTargetDAGCombine(ISD::ZERO_EXTEND);
1085  if (Subtarget->is64Bit())
1086    setTargetDAGCombine(ISD::MUL);
1087
1088  computeRegisterProperties();
1089
1090  // On Darwin, -Os means optimize for size without hurting performance,
1091  // do not reduce the limit.
1092  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1093  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1094  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1095  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1096  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1097  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1098  setPrefLoopAlignment(16);
1099  benefitFromCodePlacementOpt = true;
1100}
1101
1102
1103MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1104  return MVT::i8;
1105}
1106
1107
1108/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1109/// the desired ByVal argument alignment.
1110static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1111  if (MaxAlign == 16)
1112    return;
1113  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1114    if (VTy->getBitWidth() == 128)
1115      MaxAlign = 16;
1116  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1117    unsigned EltAlign = 0;
1118    getMaxByValAlign(ATy->getElementType(), EltAlign);
1119    if (EltAlign > MaxAlign)
1120      MaxAlign = EltAlign;
1121  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1122    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1123      unsigned EltAlign = 0;
1124      getMaxByValAlign(STy->getElementType(i), EltAlign);
1125      if (EltAlign > MaxAlign)
1126        MaxAlign = EltAlign;
1127      if (MaxAlign == 16)
1128        break;
1129    }
1130  }
1131  return;
1132}
1133
1134/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1135/// function arguments in the caller parameter area. For X86, aggregates
1136/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1137/// are at 4-byte boundaries.
1138unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1139  if (Subtarget->is64Bit()) {
1140    // Max of 8 and alignment of type.
1141    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1142    if (TyAlign > 8)
1143      return TyAlign;
1144    return 8;
1145  }
1146
1147  unsigned Align = 4;
1148  if (Subtarget->hasXMM())
1149    getMaxByValAlign(Ty, Align);
1150  return Align;
1151}
1152
1153/// getOptimalMemOpType - Returns the target specific optimal type for load
1154/// and store operations as a result of memset, memcpy, and memmove
1155/// lowering. If DstAlign is zero that means it's safe to destination
1156/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1157/// means there isn't a need to check it against alignment requirement,
1158/// probably because the source does not need to be loaded. If
1159/// 'NonScalarIntSafe' is true, that means it's safe to return a
1160/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1161/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1162/// constant so it does not need to be loaded.
1163/// It returns EVT::Other if the type should be determined using generic
1164/// target-independent logic.
1165EVT
1166X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1167                                       unsigned DstAlign, unsigned SrcAlign,
1168                                       bool NonScalarIntSafe,
1169                                       bool MemcpyStrSrc,
1170                                       MachineFunction &MF) const {
1171  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1172  // linux.  This is because the stack realignment code can't handle certain
1173  // cases like PR2962.  This should be removed when PR2962 is fixed.
1174  const Function *F = MF.getFunction();
1175  if (NonScalarIntSafe &&
1176      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1177    if (Size >= 16 &&
1178        (Subtarget->isUnalignedMemAccessFast() ||
1179         ((DstAlign == 0 || DstAlign >= 16) &&
1180          (SrcAlign == 0 || SrcAlign >= 16))) &&
1181        Subtarget->getStackAlignment() >= 16) {
1182      if (Subtarget->hasSSE2())
1183        return MVT::v4i32;
1184      if (Subtarget->hasSSE1())
1185        return MVT::v4f32;
1186    } else if (!MemcpyStrSrc && Size >= 8 &&
1187               !Subtarget->is64Bit() &&
1188               Subtarget->getStackAlignment() >= 8 &&
1189               Subtarget->hasXMMInt()) {
1190      // Do not use f64 to lower memcpy if source is string constant. It's
1191      // better to use i32 to avoid the loads.
1192      return MVT::f64;
1193    }
1194  }
1195  if (Subtarget->is64Bit() && Size >= 8)
1196    return MVT::i64;
1197  return MVT::i32;
1198}
1199
1200/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1201/// current function.  The returned value is a member of the
1202/// MachineJumpTableInfo::JTEntryKind enum.
1203unsigned X86TargetLowering::getJumpTableEncoding() const {
1204  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1205  // symbol.
1206  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1207      Subtarget->isPICStyleGOT())
1208    return MachineJumpTableInfo::EK_Custom32;
1209
1210  // Otherwise, use the normal jump table encoding heuristics.
1211  return TargetLowering::getJumpTableEncoding();
1212}
1213
1214const MCExpr *
1215X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1216                                             const MachineBasicBlock *MBB,
1217                                             unsigned uid,MCContext &Ctx) const{
1218  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1219         Subtarget->isPICStyleGOT());
1220  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1221  // entries.
1222  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1223                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1224}
1225
1226/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1227/// jumptable.
1228SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1229                                                    SelectionDAG &DAG) const {
1230  if (!Subtarget->is64Bit())
1231    // This doesn't have DebugLoc associated with it, but is not really the
1232    // same as a Register.
1233    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1234  return Table;
1235}
1236
1237/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1238/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1239/// MCExpr.
1240const MCExpr *X86TargetLowering::
1241getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1242                             MCContext &Ctx) const {
1243  // X86-64 uses RIP relative addressing based on the jump table label.
1244  if (Subtarget->isPICStyleRIPRel())
1245    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1246
1247  // Otherwise, the reference is relative to the PIC base.
1248  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1249}
1250
1251/// getFunctionAlignment - Return the Log2 alignment of this function.
1252unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1253  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1254}
1255
1256// FIXME: Why this routine is here? Move to RegInfo!
1257std::pair<const TargetRegisterClass*, uint8_t>
1258X86TargetLowering::findRepresentativeClass(EVT VT) const{
1259  const TargetRegisterClass *RRC = 0;
1260  uint8_t Cost = 1;
1261  switch (VT.getSimpleVT().SimpleTy) {
1262  default:
1263    return TargetLowering::findRepresentativeClass(VT);
1264  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1265    RRC = (Subtarget->is64Bit()
1266           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1267    break;
1268  case MVT::x86mmx:
1269    RRC = X86::VR64RegisterClass;
1270    break;
1271  case MVT::f32: case MVT::f64:
1272  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1273  case MVT::v4f32: case MVT::v2f64:
1274  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1275  case MVT::v4f64:
1276    RRC = X86::VR128RegisterClass;
1277    break;
1278  }
1279  return std::make_pair(RRC, Cost);
1280}
1281
1282bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1283                                               unsigned &Offset) const {
1284  if (!Subtarget->isTargetLinux())
1285    return false;
1286
1287  if (Subtarget->is64Bit()) {
1288    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1289    Offset = 0x28;
1290    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1291      AddressSpace = 256;
1292    else
1293      AddressSpace = 257;
1294  } else {
1295    // %gs:0x14 on i386
1296    Offset = 0x14;
1297    AddressSpace = 256;
1298  }
1299  return true;
1300}
1301
1302
1303//===----------------------------------------------------------------------===//
1304//               Return Value Calling Convention Implementation
1305//===----------------------------------------------------------------------===//
1306
1307#include "X86GenCallingConv.inc"
1308
1309bool
1310X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1311                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1312                        LLVMContext &Context) const {
1313  SmallVector<CCValAssign, 16> RVLocs;
1314  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1315                 RVLocs, Context);
1316  return CCInfo.CheckReturn(Outs, RetCC_X86);
1317}
1318
1319SDValue
1320X86TargetLowering::LowerReturn(SDValue Chain,
1321                               CallingConv::ID CallConv, bool isVarArg,
1322                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1323                               const SmallVectorImpl<SDValue> &OutVals,
1324                               DebugLoc dl, SelectionDAG &DAG) const {
1325  MachineFunction &MF = DAG.getMachineFunction();
1326  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1327
1328  SmallVector<CCValAssign, 16> RVLocs;
1329  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1330                 RVLocs, *DAG.getContext());
1331  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1332
1333  // Add the regs to the liveout set for the function.
1334  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1335  for (unsigned i = 0; i != RVLocs.size(); ++i)
1336    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1337      MRI.addLiveOut(RVLocs[i].getLocReg());
1338
1339  SDValue Flag;
1340
1341  SmallVector<SDValue, 6> RetOps;
1342  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1343  // Operand #1 = Bytes To Pop
1344  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1345                   MVT::i16));
1346
1347  // Copy the result values into the output registers.
1348  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1349    CCValAssign &VA = RVLocs[i];
1350    assert(VA.isRegLoc() && "Can only return in registers!");
1351    SDValue ValToCopy = OutVals[i];
1352    EVT ValVT = ValToCopy.getValueType();
1353
1354    // If this is x86-64, and we disabled SSE, we can't return FP values,
1355    // or SSE or MMX vectors.
1356    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1357         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1358          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1359      report_fatal_error("SSE register return with SSE disabled");
1360    }
1361    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1362    // llvm-gcc has never done it right and no one has noticed, so this
1363    // should be OK for now.
1364    if (ValVT == MVT::f64 &&
1365        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1366      report_fatal_error("SSE2 register return with SSE2 disabled");
1367
1368    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1369    // the RET instruction and handled by the FP Stackifier.
1370    if (VA.getLocReg() == X86::ST0 ||
1371        VA.getLocReg() == X86::ST1) {
1372      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1373      // change the value to the FP stack register class.
1374      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1375        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1376      RetOps.push_back(ValToCopy);
1377      // Don't emit a copytoreg.
1378      continue;
1379    }
1380
1381    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1382    // which is returned in RAX / RDX.
1383    if (Subtarget->is64Bit()) {
1384      if (ValVT == MVT::x86mmx) {
1385        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1386          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1387          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1388                                  ValToCopy);
1389          // If we don't have SSE2 available, convert to v4f32 so the generated
1390          // register is legal.
1391          if (!Subtarget->hasSSE2())
1392            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1393        }
1394      }
1395    }
1396
1397    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1398    Flag = Chain.getValue(1);
1399  }
1400
1401  // The x86-64 ABI for returning structs by value requires that we copy
1402  // the sret argument into %rax for the return. We saved the argument into
1403  // a virtual register in the entry block, so now we copy the value out
1404  // and into %rax.
1405  if (Subtarget->is64Bit() &&
1406      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1407    MachineFunction &MF = DAG.getMachineFunction();
1408    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1409    unsigned Reg = FuncInfo->getSRetReturnReg();
1410    assert(Reg &&
1411           "SRetReturnReg should have been set in LowerFormalArguments().");
1412    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1413
1414    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1415    Flag = Chain.getValue(1);
1416
1417    // RAX now acts like a return value.
1418    MRI.addLiveOut(X86::RAX);
1419  }
1420
1421  RetOps[0] = Chain;  // Update chain.
1422
1423  // Add the flag if we have it.
1424  if (Flag.getNode())
1425    RetOps.push_back(Flag);
1426
1427  return DAG.getNode(X86ISD::RET_FLAG, dl,
1428                     MVT::Other, &RetOps[0], RetOps.size());
1429}
1430
1431bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1432  if (N->getNumValues() != 1)
1433    return false;
1434  if (!N->hasNUsesOfValue(1, 0))
1435    return false;
1436
1437  SDNode *Copy = *N->use_begin();
1438  if (Copy->getOpcode() != ISD::CopyToReg &&
1439      Copy->getOpcode() != ISD::FP_EXTEND)
1440    return false;
1441
1442  bool HasRet = false;
1443  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1444       UI != UE; ++UI) {
1445    if (UI->getOpcode() != X86ISD::RET_FLAG)
1446      return false;
1447    HasRet = true;
1448  }
1449
1450  return HasRet;
1451}
1452
1453EVT
1454X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1455                                            ISD::NodeType ExtendKind) const {
1456  MVT ReturnMVT;
1457  // TODO: Is this also valid on 32-bit?
1458  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1459    ReturnMVT = MVT::i8;
1460  else
1461    ReturnMVT = MVT::i32;
1462
1463  EVT MinVT = getRegisterType(Context, ReturnMVT);
1464  return VT.bitsLT(MinVT) ? MinVT : VT;
1465}
1466
1467/// LowerCallResult - Lower the result values of a call into the
1468/// appropriate copies out of appropriate physical registers.
1469///
1470SDValue
1471X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1472                                   CallingConv::ID CallConv, bool isVarArg,
1473                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1474                                   DebugLoc dl, SelectionDAG &DAG,
1475                                   SmallVectorImpl<SDValue> &InVals) const {
1476
1477  // Assign locations to each value returned by this call.
1478  SmallVector<CCValAssign, 16> RVLocs;
1479  bool Is64Bit = Subtarget->is64Bit();
1480  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1481                 RVLocs, *DAG.getContext());
1482  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1483
1484  // Copy all of the result registers out of their specified physreg.
1485  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1486    CCValAssign &VA = RVLocs[i];
1487    EVT CopyVT = VA.getValVT();
1488
1489    // If this is x86-64, and we disabled SSE, we can't return FP values
1490    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1491        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1492      report_fatal_error("SSE register return with SSE disabled");
1493    }
1494
1495    SDValue Val;
1496
1497    // If this is a call to a function that returns an fp value on the floating
1498    // point stack, we must guarantee the the value is popped from the stack, so
1499    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1500    // if the return value is not used. We use the FpGET_ST0 instructions
1501    // instead.
1502    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1503      // If we prefer to use the value in xmm registers, copy it out as f80 and
1504      // use a truncate to move it from fp stack reg to xmm reg.
1505      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1506      bool isST0 = VA.getLocReg() == X86::ST0;
1507      unsigned Opc = 0;
1508      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1509      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1510      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1511      SDValue Ops[] = { Chain, InFlag };
1512      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
1513                                         Ops, 2), 1);
1514      Val = Chain.getValue(0);
1515
1516      // Round the f80 to the right size, which also moves it to the appropriate
1517      // xmm register.
1518      if (CopyVT != VA.getValVT())
1519        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1520                          // This truncation won't change the value.
1521                          DAG.getIntPtrConstant(1));
1522    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1523      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1524      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1525        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1526                                   MVT::v2i64, InFlag).getValue(1);
1527        Val = Chain.getValue(0);
1528        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1529                          Val, DAG.getConstant(0, MVT::i64));
1530      } else {
1531        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1532                                   MVT::i64, InFlag).getValue(1);
1533        Val = Chain.getValue(0);
1534      }
1535      Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val);
1536    } else {
1537      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1538                                 CopyVT, InFlag).getValue(1);
1539      Val = Chain.getValue(0);
1540    }
1541    InFlag = Chain.getValue(2);
1542    InVals.push_back(Val);
1543  }
1544
1545  return Chain;
1546}
1547
1548
1549//===----------------------------------------------------------------------===//
1550//                C & StdCall & Fast Calling Convention implementation
1551//===----------------------------------------------------------------------===//
1552//  StdCall calling convention seems to be standard for many Windows' API
1553//  routines and around. It differs from C calling convention just a little:
1554//  callee should clean up the stack, not caller. Symbols should be also
1555//  decorated in some fancy way :) It doesn't support any vector arguments.
1556//  For info on fast calling convention see Fast Calling Convention (tail call)
1557//  implementation LowerX86_32FastCCCallTo.
1558
1559/// CallIsStructReturn - Determines whether a call uses struct return
1560/// semantics.
1561static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1562  if (Outs.empty())
1563    return false;
1564
1565  return Outs[0].Flags.isSRet();
1566}
1567
1568/// ArgsAreStructReturn - Determines whether a function uses struct
1569/// return semantics.
1570static bool
1571ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1572  if (Ins.empty())
1573    return false;
1574
1575  return Ins[0].Flags.isSRet();
1576}
1577
1578/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1579/// by "Src" to address "Dst" with size and alignment information specified by
1580/// the specific parameter attribute. The copy will be passed as a byval
1581/// function parameter.
1582static SDValue
1583CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1584                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1585                          DebugLoc dl) {
1586  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1587
1588  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1589                       /*isVolatile*/false, /*AlwaysInline=*/true,
1590                       MachinePointerInfo(), MachinePointerInfo());
1591}
1592
1593/// IsTailCallConvention - Return true if the calling convention is one that
1594/// supports tail call optimization.
1595static bool IsTailCallConvention(CallingConv::ID CC) {
1596  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1597}
1598
1599bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1600  if (!CI->isTailCall())
1601    return false;
1602
1603  CallSite CS(CI);
1604  CallingConv::ID CalleeCC = CS.getCallingConv();
1605  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1606    return false;
1607
1608  return true;
1609}
1610
1611/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1612/// a tailcall target by changing its ABI.
1613static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1614  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1615}
1616
1617SDValue
1618X86TargetLowering::LowerMemArgument(SDValue Chain,
1619                                    CallingConv::ID CallConv,
1620                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1621                                    DebugLoc dl, SelectionDAG &DAG,
1622                                    const CCValAssign &VA,
1623                                    MachineFrameInfo *MFI,
1624                                    unsigned i) const {
1625  // Create the nodes corresponding to a load from this parameter slot.
1626  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1627  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1628  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1629  EVT ValVT;
1630
1631  // If value is passed by pointer we have address passed instead of the value
1632  // itself.
1633  if (VA.getLocInfo() == CCValAssign::Indirect)
1634    ValVT = VA.getLocVT();
1635  else
1636    ValVT = VA.getValVT();
1637
1638  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1639  // changed with more analysis.
1640  // In case of tail call optimization mark all arguments mutable. Since they
1641  // could be overwritten by lowering of arguments in case of a tail call.
1642  if (Flags.isByVal()) {
1643    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1644                                    VA.getLocMemOffset(), isImmutable);
1645    return DAG.getFrameIndex(FI, getPointerTy());
1646  } else {
1647    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1648                                    VA.getLocMemOffset(), isImmutable);
1649    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1650    return DAG.getLoad(ValVT, dl, Chain, FIN,
1651                       MachinePointerInfo::getFixedStack(FI),
1652                       false, false, 0);
1653  }
1654}
1655
1656SDValue
1657X86TargetLowering::LowerFormalArguments(SDValue Chain,
1658                                        CallingConv::ID CallConv,
1659                                        bool isVarArg,
1660                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1661                                        DebugLoc dl,
1662                                        SelectionDAG &DAG,
1663                                        SmallVectorImpl<SDValue> &InVals)
1664                                          const {
1665  MachineFunction &MF = DAG.getMachineFunction();
1666  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1667
1668  const Function* Fn = MF.getFunction();
1669  if (Fn->hasExternalLinkage() &&
1670      Subtarget->isTargetCygMing() &&
1671      Fn->getName() == "main")
1672    FuncInfo->setForceFramePointer(true);
1673
1674  MachineFrameInfo *MFI = MF.getFrameInfo();
1675  bool Is64Bit = Subtarget->is64Bit();
1676  bool IsWin64 = Subtarget->isTargetWin64();
1677
1678  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1679         "Var args not supported with calling convention fastcc or ghc");
1680
1681  // Assign locations to all of the incoming arguments.
1682  SmallVector<CCValAssign, 16> ArgLocs;
1683  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1684                 ArgLocs, *DAG.getContext());
1685
1686  // Allocate shadow area for Win64
1687  if (IsWin64) {
1688    CCInfo.AllocateStack(32, 8);
1689  }
1690
1691  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1692
1693  unsigned LastVal = ~0U;
1694  SDValue ArgValue;
1695  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1696    CCValAssign &VA = ArgLocs[i];
1697    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1698    // places.
1699    assert(VA.getValNo() != LastVal &&
1700           "Don't support value assigned to multiple locs yet");
1701    LastVal = VA.getValNo();
1702
1703    if (VA.isRegLoc()) {
1704      EVT RegVT = VA.getLocVT();
1705      TargetRegisterClass *RC = NULL;
1706      if (RegVT == MVT::i32)
1707        RC = X86::GR32RegisterClass;
1708      else if (Is64Bit && RegVT == MVT::i64)
1709        RC = X86::GR64RegisterClass;
1710      else if (RegVT == MVT::f32)
1711        RC = X86::FR32RegisterClass;
1712      else if (RegVT == MVT::f64)
1713        RC = X86::FR64RegisterClass;
1714      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1715        RC = X86::VR256RegisterClass;
1716      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1717        RC = X86::VR128RegisterClass;
1718      else if (RegVT == MVT::x86mmx)
1719        RC = X86::VR64RegisterClass;
1720      else
1721        llvm_unreachable("Unknown argument type!");
1722
1723      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1724      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1725
1726      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1727      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1728      // right size.
1729      if (VA.getLocInfo() == CCValAssign::SExt)
1730        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1731                               DAG.getValueType(VA.getValVT()));
1732      else if (VA.getLocInfo() == CCValAssign::ZExt)
1733        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1734                               DAG.getValueType(VA.getValVT()));
1735      else if (VA.getLocInfo() == CCValAssign::BCvt)
1736        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1737
1738      if (VA.isExtInLoc()) {
1739        // Handle MMX values passed in XMM regs.
1740        if (RegVT.isVector()) {
1741          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1742                                 ArgValue);
1743        } else
1744          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1745      }
1746    } else {
1747      assert(VA.isMemLoc());
1748      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1749    }
1750
1751    // If value is passed via pointer - do a load.
1752    if (VA.getLocInfo() == CCValAssign::Indirect)
1753      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1754                             MachinePointerInfo(), false, false, 0);
1755
1756    InVals.push_back(ArgValue);
1757  }
1758
1759  // The x86-64 ABI for returning structs by value requires that we copy
1760  // the sret argument into %rax for the return. Save the argument into
1761  // a virtual register so that we can access it from the return points.
1762  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1763    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1764    unsigned Reg = FuncInfo->getSRetReturnReg();
1765    if (!Reg) {
1766      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1767      FuncInfo->setSRetReturnReg(Reg);
1768    }
1769    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1770    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1771  }
1772
1773  unsigned StackSize = CCInfo.getNextStackOffset();
1774  // Align stack specially for tail calls.
1775  if (FuncIsMadeTailCallSafe(CallConv))
1776    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1777
1778  // If the function takes variable number of arguments, make a frame index for
1779  // the start of the first vararg value... for expansion of llvm.va_start.
1780  if (isVarArg) {
1781    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1782                    CallConv != CallingConv::X86_ThisCall)) {
1783      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1784    }
1785    if (Is64Bit) {
1786      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1787
1788      // FIXME: We should really autogenerate these arrays
1789      static const unsigned GPR64ArgRegsWin64[] = {
1790        X86::RCX, X86::RDX, X86::R8,  X86::R9
1791      };
1792      static const unsigned GPR64ArgRegs64Bit[] = {
1793        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1794      };
1795      static const unsigned XMMArgRegs64Bit[] = {
1796        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1797        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1798      };
1799      const unsigned *GPR64ArgRegs;
1800      unsigned NumXMMRegs = 0;
1801
1802      if (IsWin64) {
1803        // The XMM registers which might contain var arg parameters are shadowed
1804        // in their paired GPR.  So we only need to save the GPR to their home
1805        // slots.
1806        TotalNumIntRegs = 4;
1807        GPR64ArgRegs = GPR64ArgRegsWin64;
1808      } else {
1809        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1810        GPR64ArgRegs = GPR64ArgRegs64Bit;
1811
1812        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1813      }
1814      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1815                                                       TotalNumIntRegs);
1816
1817      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1818      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1819             "SSE register cannot be used when SSE is disabled!");
1820      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1821             "SSE register cannot be used when SSE is disabled!");
1822      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1823        // Kernel mode asks for SSE to be disabled, so don't push them
1824        // on the stack.
1825        TotalNumXMMRegs = 0;
1826
1827      if (IsWin64) {
1828        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1829        // Get to the caller-allocated home save location.  Add 8 to account
1830        // for the return address.
1831        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1832        FuncInfo->setRegSaveFrameIndex(
1833          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1834        // Fixup to set vararg frame on shadow area (4 x i64).
1835        if (NumIntRegs < 4)
1836          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1837      } else {
1838        // For X86-64, if there are vararg parameters that are passed via
1839        // registers, then we must store them to their spots on the stack so they
1840        // may be loaded by deferencing the result of va_next.
1841        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1842        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1843        FuncInfo->setRegSaveFrameIndex(
1844          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1845                               false));
1846      }
1847
1848      // Store the integer parameter registers.
1849      SmallVector<SDValue, 8> MemOps;
1850      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1851                                        getPointerTy());
1852      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1853      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1854        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1855                                  DAG.getIntPtrConstant(Offset));
1856        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1857                                     X86::GR64RegisterClass);
1858        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1859        SDValue Store =
1860          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1861                       MachinePointerInfo::getFixedStack(
1862                         FuncInfo->getRegSaveFrameIndex(), Offset),
1863                       false, false, 0);
1864        MemOps.push_back(Store);
1865        Offset += 8;
1866      }
1867
1868      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1869        // Now store the XMM (fp + vector) parameter registers.
1870        SmallVector<SDValue, 11> SaveXMMOps;
1871        SaveXMMOps.push_back(Chain);
1872
1873        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1874        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1875        SaveXMMOps.push_back(ALVal);
1876
1877        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1878                               FuncInfo->getRegSaveFrameIndex()));
1879        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1880                               FuncInfo->getVarArgsFPOffset()));
1881
1882        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1883          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1884                                       X86::VR128RegisterClass);
1885          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1886          SaveXMMOps.push_back(Val);
1887        }
1888        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1889                                     MVT::Other,
1890                                     &SaveXMMOps[0], SaveXMMOps.size()));
1891      }
1892
1893      if (!MemOps.empty())
1894        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1895                            &MemOps[0], MemOps.size());
1896    }
1897  }
1898
1899  // Some CCs need callee pop.
1900  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1901    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1902  } else {
1903    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1904    // If this is an sret function, the return should pop the hidden pointer.
1905    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1906      FuncInfo->setBytesToPopOnReturn(4);
1907  }
1908
1909  if (!Is64Bit) {
1910    // RegSaveFrameIndex is X86-64 only.
1911    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1912    if (CallConv == CallingConv::X86_FastCall ||
1913        CallConv == CallingConv::X86_ThisCall)
1914      // fastcc functions can't have varargs.
1915      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1916  }
1917
1918  return Chain;
1919}
1920
1921SDValue
1922X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1923                                    SDValue StackPtr, SDValue Arg,
1924                                    DebugLoc dl, SelectionDAG &DAG,
1925                                    const CCValAssign &VA,
1926                                    ISD::ArgFlagsTy Flags) const {
1927  unsigned LocMemOffset = VA.getLocMemOffset();
1928  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1929  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1930  if (Flags.isByVal())
1931    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1932
1933  return DAG.getStore(Chain, dl, Arg, PtrOff,
1934                      MachinePointerInfo::getStack(LocMemOffset),
1935                      false, false, 0);
1936}
1937
1938/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1939/// optimization is performed and it is required.
1940SDValue
1941X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1942                                           SDValue &OutRetAddr, SDValue Chain,
1943                                           bool IsTailCall, bool Is64Bit,
1944                                           int FPDiff, DebugLoc dl) const {
1945  // Adjust the Return address stack slot.
1946  EVT VT = getPointerTy();
1947  OutRetAddr = getReturnAddressFrameIndex(DAG);
1948
1949  // Load the "old" Return address.
1950  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1951                           false, false, 0);
1952  return SDValue(OutRetAddr.getNode(), 1);
1953}
1954
1955/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1956/// optimization is performed and it is required (FPDiff!=0).
1957static SDValue
1958EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1959                         SDValue Chain, SDValue RetAddrFrIdx,
1960                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1961  // Store the return address to the appropriate stack slot.
1962  if (!FPDiff) return Chain;
1963  // Calculate the new stack slot for the return address.
1964  int SlotSize = Is64Bit ? 8 : 4;
1965  int NewReturnAddrFI =
1966    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1967  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1968  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1969  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1970                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1971                       false, false, 0);
1972  return Chain;
1973}
1974
1975SDValue
1976X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1977                             CallingConv::ID CallConv, bool isVarArg,
1978                             bool &isTailCall,
1979                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1980                             const SmallVectorImpl<SDValue> &OutVals,
1981                             const SmallVectorImpl<ISD::InputArg> &Ins,
1982                             DebugLoc dl, SelectionDAG &DAG,
1983                             SmallVectorImpl<SDValue> &InVals) const {
1984  MachineFunction &MF = DAG.getMachineFunction();
1985  bool Is64Bit        = Subtarget->is64Bit();
1986  bool IsWin64        = Subtarget->isTargetWin64();
1987  bool IsStructRet    = CallIsStructReturn(Outs);
1988  bool IsSibcall      = false;
1989
1990  if (isTailCall) {
1991    // Check if it's really possible to do a tail call.
1992    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1993                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1994                                                   Outs, OutVals, Ins, DAG);
1995
1996    // Sibcalls are automatically detected tailcalls which do not require
1997    // ABI changes.
1998    if (!GuaranteedTailCallOpt && isTailCall)
1999      IsSibcall = true;
2000
2001    if (isTailCall)
2002      ++NumTailCalls;
2003  }
2004
2005  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2006         "Var args not supported with calling convention fastcc or ghc");
2007
2008  // Analyze operands of the call, assigning locations to each operand.
2009  SmallVector<CCValAssign, 16> ArgLocs;
2010  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2011                 ArgLocs, *DAG.getContext());
2012
2013  // Allocate shadow area for Win64
2014  if (IsWin64) {
2015    CCInfo.AllocateStack(32, 8);
2016  }
2017
2018  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2019
2020  // Get a count of how many bytes are to be pushed on the stack.
2021  unsigned NumBytes = CCInfo.getNextStackOffset();
2022  if (IsSibcall)
2023    // This is a sibcall. The memory operands are available in caller's
2024    // own caller's stack.
2025    NumBytes = 0;
2026  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2027    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2028
2029  int FPDiff = 0;
2030  if (isTailCall && !IsSibcall) {
2031    // Lower arguments at fp - stackoffset + fpdiff.
2032    unsigned NumBytesCallerPushed =
2033      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2034    FPDiff = NumBytesCallerPushed - NumBytes;
2035
2036    // Set the delta of movement of the returnaddr stackslot.
2037    // But only set if delta is greater than previous delta.
2038    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2039      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2040  }
2041
2042  if (!IsSibcall)
2043    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2044
2045  SDValue RetAddrFrIdx;
2046  // Load return adress for tail calls.
2047  if (isTailCall && FPDiff)
2048    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2049                                    Is64Bit, FPDiff, dl);
2050
2051  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2052  SmallVector<SDValue, 8> MemOpChains;
2053  SDValue StackPtr;
2054
2055  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2056  // of tail call optimization arguments are handle later.
2057  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2058    CCValAssign &VA = ArgLocs[i];
2059    EVT RegVT = VA.getLocVT();
2060    SDValue Arg = OutVals[i];
2061    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2062    bool isByVal = Flags.isByVal();
2063
2064    // Promote the value if needed.
2065    switch (VA.getLocInfo()) {
2066    default: llvm_unreachable("Unknown loc info!");
2067    case CCValAssign::Full: break;
2068    case CCValAssign::SExt:
2069      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2070      break;
2071    case CCValAssign::ZExt:
2072      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2073      break;
2074    case CCValAssign::AExt:
2075      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2076        // Special case: passing MMX values in XMM registers.
2077        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2078        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2079        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2080      } else
2081        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2082      break;
2083    case CCValAssign::BCvt:
2084      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2085      break;
2086    case CCValAssign::Indirect: {
2087      // Store the argument.
2088      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2089      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2090      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2091                           MachinePointerInfo::getFixedStack(FI),
2092                           false, false, 0);
2093      Arg = SpillSlot;
2094      break;
2095    }
2096    }
2097
2098    if (VA.isRegLoc()) {
2099      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2100      if (isVarArg && IsWin64) {
2101        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2102        // shadow reg if callee is a varargs function.
2103        unsigned ShadowReg = 0;
2104        switch (VA.getLocReg()) {
2105        case X86::XMM0: ShadowReg = X86::RCX; break;
2106        case X86::XMM1: ShadowReg = X86::RDX; break;
2107        case X86::XMM2: ShadowReg = X86::R8; break;
2108        case X86::XMM3: ShadowReg = X86::R9; break;
2109        }
2110        if (ShadowReg)
2111          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2112      }
2113    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2114      assert(VA.isMemLoc());
2115      if (StackPtr.getNode() == 0)
2116        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2117      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2118                                             dl, DAG, VA, Flags));
2119    }
2120  }
2121
2122  if (!MemOpChains.empty())
2123    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2124                        &MemOpChains[0], MemOpChains.size());
2125
2126  // Build a sequence of copy-to-reg nodes chained together with token chain
2127  // and flag operands which copy the outgoing args into registers.
2128  SDValue InFlag;
2129  // Tail call byval lowering might overwrite argument registers so in case of
2130  // tail call optimization the copies to registers are lowered later.
2131  if (!isTailCall)
2132    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2133      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2134                               RegsToPass[i].second, InFlag);
2135      InFlag = Chain.getValue(1);
2136    }
2137
2138  if (Subtarget->isPICStyleGOT()) {
2139    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2140    // GOT pointer.
2141    if (!isTailCall) {
2142      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2143                               DAG.getNode(X86ISD::GlobalBaseReg,
2144                                           DebugLoc(), getPointerTy()),
2145                               InFlag);
2146      InFlag = Chain.getValue(1);
2147    } else {
2148      // If we are tail calling and generating PIC/GOT style code load the
2149      // address of the callee into ECX. The value in ecx is used as target of
2150      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2151      // for tail calls on PIC/GOT architectures. Normally we would just put the
2152      // address of GOT into ebx and then call target@PLT. But for tail calls
2153      // ebx would be restored (since ebx is callee saved) before jumping to the
2154      // target@PLT.
2155
2156      // Note: The actual moving to ECX is done further down.
2157      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2158      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2159          !G->getGlobal()->hasProtectedVisibility())
2160        Callee = LowerGlobalAddress(Callee, DAG);
2161      else if (isa<ExternalSymbolSDNode>(Callee))
2162        Callee = LowerExternalSymbol(Callee, DAG);
2163    }
2164  }
2165
2166  if (Is64Bit && isVarArg && !IsWin64) {
2167    // From AMD64 ABI document:
2168    // For calls that may call functions that use varargs or stdargs
2169    // (prototype-less calls or calls to functions containing ellipsis (...) in
2170    // the declaration) %al is used as hidden argument to specify the number
2171    // of SSE registers used. The contents of %al do not need to match exactly
2172    // the number of registers, but must be an ubound on the number of SSE
2173    // registers used and is in the range 0 - 8 inclusive.
2174
2175    // Count the number of XMM registers allocated.
2176    static const unsigned XMMArgRegs[] = {
2177      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2178      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2179    };
2180    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2181    assert((Subtarget->hasXMM() || !NumXMMRegs)
2182           && "SSE registers cannot be used when SSE is disabled");
2183
2184    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2185                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2186    InFlag = Chain.getValue(1);
2187  }
2188
2189
2190  // For tail calls lower the arguments to the 'real' stack slot.
2191  if (isTailCall) {
2192    // Force all the incoming stack arguments to be loaded from the stack
2193    // before any new outgoing arguments are stored to the stack, because the
2194    // outgoing stack slots may alias the incoming argument stack slots, and
2195    // the alias isn't otherwise explicit. This is slightly more conservative
2196    // than necessary, because it means that each store effectively depends
2197    // on every argument instead of just those arguments it would clobber.
2198    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2199
2200    SmallVector<SDValue, 8> MemOpChains2;
2201    SDValue FIN;
2202    int FI = 0;
2203    // Do not flag preceeding copytoreg stuff together with the following stuff.
2204    InFlag = SDValue();
2205    if (GuaranteedTailCallOpt) {
2206      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2207        CCValAssign &VA = ArgLocs[i];
2208        if (VA.isRegLoc())
2209          continue;
2210        assert(VA.isMemLoc());
2211        SDValue Arg = OutVals[i];
2212        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2213        // Create frame index.
2214        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2215        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2216        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2217        FIN = DAG.getFrameIndex(FI, getPointerTy());
2218
2219        if (Flags.isByVal()) {
2220          // Copy relative to framepointer.
2221          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2222          if (StackPtr.getNode() == 0)
2223            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2224                                          getPointerTy());
2225          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2226
2227          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2228                                                           ArgChain,
2229                                                           Flags, DAG, dl));
2230        } else {
2231          // Store relative to framepointer.
2232          MemOpChains2.push_back(
2233            DAG.getStore(ArgChain, dl, Arg, FIN,
2234                         MachinePointerInfo::getFixedStack(FI),
2235                         false, false, 0));
2236        }
2237      }
2238    }
2239
2240    if (!MemOpChains2.empty())
2241      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2242                          &MemOpChains2[0], MemOpChains2.size());
2243
2244    // Copy arguments to their registers.
2245    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2246      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2247                               RegsToPass[i].second, InFlag);
2248      InFlag = Chain.getValue(1);
2249    }
2250    InFlag =SDValue();
2251
2252    // Store the return address to the appropriate stack slot.
2253    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2254                                     FPDiff, dl);
2255  }
2256
2257  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2258    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2259    // In the 64-bit large code model, we have to make all calls
2260    // through a register, since the call instruction's 32-bit
2261    // pc-relative offset may not be large enough to hold the whole
2262    // address.
2263  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2264    // If the callee is a GlobalAddress node (quite common, every direct call
2265    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2266    // it.
2267
2268    // We should use extra load for direct calls to dllimported functions in
2269    // non-JIT mode.
2270    const GlobalValue *GV = G->getGlobal();
2271    if (!GV->hasDLLImportLinkage()) {
2272      unsigned char OpFlags = 0;
2273
2274      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2275      // external symbols most go through the PLT in PIC mode.  If the symbol
2276      // has hidden or protected visibility, or if it is static or local, then
2277      // we don't need to use the PLT - we can directly call it.
2278      if (Subtarget->isTargetELF() &&
2279          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2280          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2281        OpFlags = X86II::MO_PLT;
2282      } else if (Subtarget->isPICStyleStubAny() &&
2283                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2284                 Subtarget->getDarwinVers() < 9) {
2285        // PC-relative references to external symbols should go through $stub,
2286        // unless we're building with the leopard linker or later, which
2287        // automatically synthesizes these stubs.
2288        OpFlags = X86II::MO_DARWIN_STUB;
2289      }
2290
2291      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2292                                          G->getOffset(), OpFlags);
2293    }
2294  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2295    unsigned char OpFlags = 0;
2296
2297    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2298    // external symbols should go through the PLT.
2299    if (Subtarget->isTargetELF() &&
2300        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2301      OpFlags = X86II::MO_PLT;
2302    } else if (Subtarget->isPICStyleStubAny() &&
2303               Subtarget->getDarwinVers() < 9) {
2304      // PC-relative references to external symbols should go through $stub,
2305      // unless we're building with the leopard linker or later, which
2306      // automatically synthesizes these stubs.
2307      OpFlags = X86II::MO_DARWIN_STUB;
2308    }
2309
2310    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2311                                         OpFlags);
2312  }
2313
2314  // Returns a chain & a flag for retval copy to use.
2315  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2316  SmallVector<SDValue, 8> Ops;
2317
2318  if (!IsSibcall && isTailCall) {
2319    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2320                           DAG.getIntPtrConstant(0, true), InFlag);
2321    InFlag = Chain.getValue(1);
2322  }
2323
2324  Ops.push_back(Chain);
2325  Ops.push_back(Callee);
2326
2327  if (isTailCall)
2328    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2329
2330  // Add argument registers to the end of the list so that they are known live
2331  // into the call.
2332  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2333    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2334                                  RegsToPass[i].second.getValueType()));
2335
2336  // Add an implicit use GOT pointer in EBX.
2337  if (!isTailCall && Subtarget->isPICStyleGOT())
2338    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2339
2340  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2341  if (Is64Bit && isVarArg && !IsWin64)
2342    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2343
2344  if (InFlag.getNode())
2345    Ops.push_back(InFlag);
2346
2347  if (isTailCall) {
2348    // We used to do:
2349    //// If this is the first return lowered for this function, add the regs
2350    //// to the liveout set for the function.
2351    // This isn't right, although it's probably harmless on x86; liveouts
2352    // should be computed from returns not tail calls.  Consider a void
2353    // function making a tail call to a function returning int.
2354    return DAG.getNode(X86ISD::TC_RETURN, dl,
2355                       NodeTys, &Ops[0], Ops.size());
2356  }
2357
2358  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2359  InFlag = Chain.getValue(1);
2360
2361  // Create the CALLSEQ_END node.
2362  unsigned NumBytesForCalleeToPush;
2363  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2364    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2365  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2366    // If this is a call to a struct-return function, the callee
2367    // pops the hidden struct pointer, so we have to push it back.
2368    // This is common for Darwin/X86, Linux & Mingw32 targets.
2369    NumBytesForCalleeToPush = 4;
2370  else
2371    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2372
2373  // Returns a flag for retval copy to use.
2374  if (!IsSibcall) {
2375    Chain = DAG.getCALLSEQ_END(Chain,
2376                               DAG.getIntPtrConstant(NumBytes, true),
2377                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2378                                                     true),
2379                               InFlag);
2380    InFlag = Chain.getValue(1);
2381  }
2382
2383  // Handle result values, copying them out of physregs into vregs that we
2384  // return.
2385  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2386                         Ins, dl, DAG, InVals);
2387}
2388
2389
2390//===----------------------------------------------------------------------===//
2391//                Fast Calling Convention (tail call) implementation
2392//===----------------------------------------------------------------------===//
2393
2394//  Like std call, callee cleans arguments, convention except that ECX is
2395//  reserved for storing the tail called function address. Only 2 registers are
2396//  free for argument passing (inreg). Tail call optimization is performed
2397//  provided:
2398//                * tailcallopt is enabled
2399//                * caller/callee are fastcc
2400//  On X86_64 architecture with GOT-style position independent code only local
2401//  (within module) calls are supported at the moment.
2402//  To keep the stack aligned according to platform abi the function
2403//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2404//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2405//  If a tail called function callee has more arguments than the caller the
2406//  caller needs to make sure that there is room to move the RETADDR to. This is
2407//  achieved by reserving an area the size of the argument delta right after the
2408//  original REtADDR, but before the saved framepointer or the spilled registers
2409//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2410//  stack layout:
2411//    arg1
2412//    arg2
2413//    RETADDR
2414//    [ new RETADDR
2415//      move area ]
2416//    (possible EBP)
2417//    ESI
2418//    EDI
2419//    local1 ..
2420
2421/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2422/// for a 16 byte align requirement.
2423unsigned
2424X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2425                                               SelectionDAG& DAG) const {
2426  MachineFunction &MF = DAG.getMachineFunction();
2427  const TargetMachine &TM = MF.getTarget();
2428  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2429  unsigned StackAlignment = TFI.getStackAlignment();
2430  uint64_t AlignMask = StackAlignment - 1;
2431  int64_t Offset = StackSize;
2432  uint64_t SlotSize = TD->getPointerSize();
2433  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2434    // Number smaller than 12 so just add the difference.
2435    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2436  } else {
2437    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2438    Offset = ((~AlignMask) & Offset) + StackAlignment +
2439      (StackAlignment-SlotSize);
2440  }
2441  return Offset;
2442}
2443
2444/// MatchingStackOffset - Return true if the given stack call argument is
2445/// already available in the same position (relatively) of the caller's
2446/// incoming argument stack.
2447static
2448bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2449                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2450                         const X86InstrInfo *TII) {
2451  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2452  int FI = INT_MAX;
2453  if (Arg.getOpcode() == ISD::CopyFromReg) {
2454    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2455    if (!TargetRegisterInfo::isVirtualRegister(VR))
2456      return false;
2457    MachineInstr *Def = MRI->getVRegDef(VR);
2458    if (!Def)
2459      return false;
2460    if (!Flags.isByVal()) {
2461      if (!TII->isLoadFromStackSlot(Def, FI))
2462        return false;
2463    } else {
2464      unsigned Opcode = Def->getOpcode();
2465      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2466          Def->getOperand(1).isFI()) {
2467        FI = Def->getOperand(1).getIndex();
2468        Bytes = Flags.getByValSize();
2469      } else
2470        return false;
2471    }
2472  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2473    if (Flags.isByVal())
2474      // ByVal argument is passed in as a pointer but it's now being
2475      // dereferenced. e.g.
2476      // define @foo(%struct.X* %A) {
2477      //   tail call @bar(%struct.X* byval %A)
2478      // }
2479      return false;
2480    SDValue Ptr = Ld->getBasePtr();
2481    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2482    if (!FINode)
2483      return false;
2484    FI = FINode->getIndex();
2485  } else
2486    return false;
2487
2488  assert(FI != INT_MAX);
2489  if (!MFI->isFixedObjectIndex(FI))
2490    return false;
2491  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2492}
2493
2494/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2495/// for tail call optimization. Targets which want to do tail call
2496/// optimization should implement this function.
2497bool
2498X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2499                                                     CallingConv::ID CalleeCC,
2500                                                     bool isVarArg,
2501                                                     bool isCalleeStructRet,
2502                                                     bool isCallerStructRet,
2503                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2504                                    const SmallVectorImpl<SDValue> &OutVals,
2505                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2506                                                     SelectionDAG& DAG) const {
2507  if (!IsTailCallConvention(CalleeCC) &&
2508      CalleeCC != CallingConv::C)
2509    return false;
2510
2511  // If -tailcallopt is specified, make fastcc functions tail-callable.
2512  const MachineFunction &MF = DAG.getMachineFunction();
2513  const Function *CallerF = DAG.getMachineFunction().getFunction();
2514  CallingConv::ID CallerCC = CallerF->getCallingConv();
2515  bool CCMatch = CallerCC == CalleeCC;
2516
2517  if (GuaranteedTailCallOpt) {
2518    if (IsTailCallConvention(CalleeCC) && CCMatch)
2519      return true;
2520    return false;
2521  }
2522
2523  // Look for obvious safe cases to perform tail call optimization that do not
2524  // require ABI changes. This is what gcc calls sibcall.
2525
2526  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2527  // emit a special epilogue.
2528  if (RegInfo->needsStackRealignment(MF))
2529    return false;
2530
2531  // Do not sibcall optimize vararg calls unless the call site is not passing
2532  // any arguments.
2533  if (isVarArg && !Outs.empty())
2534    return false;
2535
2536  // Also avoid sibcall optimization if either caller or callee uses struct
2537  // return semantics.
2538  if (isCalleeStructRet || isCallerStructRet)
2539    return false;
2540
2541  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2542  // Therefore if it's not used by the call it is not safe to optimize this into
2543  // a sibcall.
2544  bool Unused = false;
2545  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2546    if (!Ins[i].Used) {
2547      Unused = true;
2548      break;
2549    }
2550  }
2551  if (Unused) {
2552    SmallVector<CCValAssign, 16> RVLocs;
2553    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2554                   RVLocs, *DAG.getContext());
2555    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2556    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2557      CCValAssign &VA = RVLocs[i];
2558      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2559        return false;
2560    }
2561  }
2562
2563  // If the calling conventions do not match, then we'd better make sure the
2564  // results are returned in the same way as what the caller expects.
2565  if (!CCMatch) {
2566    SmallVector<CCValAssign, 16> RVLocs1;
2567    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2568                    RVLocs1, *DAG.getContext());
2569    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2570
2571    SmallVector<CCValAssign, 16> RVLocs2;
2572    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2573                    RVLocs2, *DAG.getContext());
2574    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2575
2576    if (RVLocs1.size() != RVLocs2.size())
2577      return false;
2578    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2579      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2580        return false;
2581      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2582        return false;
2583      if (RVLocs1[i].isRegLoc()) {
2584        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2585          return false;
2586      } else {
2587        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2588          return false;
2589      }
2590    }
2591  }
2592
2593  // If the callee takes no arguments then go on to check the results of the
2594  // call.
2595  if (!Outs.empty()) {
2596    // Check if stack adjustment is needed. For now, do not do this if any
2597    // argument is passed on the stack.
2598    SmallVector<CCValAssign, 16> ArgLocs;
2599    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2600                   ArgLocs, *DAG.getContext());
2601
2602    // Allocate shadow area for Win64
2603    if (Subtarget->isTargetWin64()) {
2604      CCInfo.AllocateStack(32, 8);
2605    }
2606
2607    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2608    if (CCInfo.getNextStackOffset()) {
2609      MachineFunction &MF = DAG.getMachineFunction();
2610      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2611        return false;
2612
2613      // Check if the arguments are already laid out in the right way as
2614      // the caller's fixed stack objects.
2615      MachineFrameInfo *MFI = MF.getFrameInfo();
2616      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2617      const X86InstrInfo *TII =
2618        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2619      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2620        CCValAssign &VA = ArgLocs[i];
2621        SDValue Arg = OutVals[i];
2622        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2623        if (VA.getLocInfo() == CCValAssign::Indirect)
2624          return false;
2625        if (!VA.isRegLoc()) {
2626          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2627                                   MFI, MRI, TII))
2628            return false;
2629        }
2630      }
2631    }
2632
2633    // If the tailcall address may be in a register, then make sure it's
2634    // possible to register allocate for it. In 32-bit, the call address can
2635    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2636    // callee-saved registers are restored. These happen to be the same
2637    // registers used to pass 'inreg' arguments so watch out for those.
2638    if (!Subtarget->is64Bit() &&
2639        !isa<GlobalAddressSDNode>(Callee) &&
2640        !isa<ExternalSymbolSDNode>(Callee)) {
2641      unsigned NumInRegs = 0;
2642      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2643        CCValAssign &VA = ArgLocs[i];
2644        if (!VA.isRegLoc())
2645          continue;
2646        unsigned Reg = VA.getLocReg();
2647        switch (Reg) {
2648        default: break;
2649        case X86::EAX: case X86::EDX: case X86::ECX:
2650          if (++NumInRegs == 3)
2651            return false;
2652          break;
2653        }
2654      }
2655    }
2656  }
2657
2658  // An stdcall caller is expected to clean up its arguments; the callee
2659  // isn't going to do that.
2660  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2661    return false;
2662
2663  return true;
2664}
2665
2666FastISel *
2667X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2668  return X86::createFastISel(funcInfo);
2669}
2670
2671
2672//===----------------------------------------------------------------------===//
2673//                           Other Lowering Hooks
2674//===----------------------------------------------------------------------===//
2675
2676static bool MayFoldLoad(SDValue Op) {
2677  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2678}
2679
2680static bool MayFoldIntoStore(SDValue Op) {
2681  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2682}
2683
2684static bool isTargetShuffle(unsigned Opcode) {
2685  switch(Opcode) {
2686  default: return false;
2687  case X86ISD::PSHUFD:
2688  case X86ISD::PSHUFHW:
2689  case X86ISD::PSHUFLW:
2690  case X86ISD::SHUFPD:
2691  case X86ISD::PALIGN:
2692  case X86ISD::SHUFPS:
2693  case X86ISD::MOVLHPS:
2694  case X86ISD::MOVLHPD:
2695  case X86ISD::MOVHLPS:
2696  case X86ISD::MOVLPS:
2697  case X86ISD::MOVLPD:
2698  case X86ISD::MOVSHDUP:
2699  case X86ISD::MOVSLDUP:
2700  case X86ISD::MOVDDUP:
2701  case X86ISD::MOVSS:
2702  case X86ISD::MOVSD:
2703  case X86ISD::UNPCKLPS:
2704  case X86ISD::UNPCKLPD:
2705  case X86ISD::VUNPCKLPS:
2706  case X86ISD::VUNPCKLPD:
2707  case X86ISD::VUNPCKLPSY:
2708  case X86ISD::VUNPCKLPDY:
2709  case X86ISD::PUNPCKLWD:
2710  case X86ISD::PUNPCKLBW:
2711  case X86ISD::PUNPCKLDQ:
2712  case X86ISD::PUNPCKLQDQ:
2713  case X86ISD::UNPCKHPS:
2714  case X86ISD::UNPCKHPD:
2715  case X86ISD::PUNPCKHWD:
2716  case X86ISD::PUNPCKHBW:
2717  case X86ISD::PUNPCKHDQ:
2718  case X86ISD::PUNPCKHQDQ:
2719    return true;
2720  }
2721  return false;
2722}
2723
2724static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2725                                               SDValue V1, SelectionDAG &DAG) {
2726  switch(Opc) {
2727  default: llvm_unreachable("Unknown x86 shuffle node");
2728  case X86ISD::MOVSHDUP:
2729  case X86ISD::MOVSLDUP:
2730  case X86ISD::MOVDDUP:
2731    return DAG.getNode(Opc, dl, VT, V1);
2732  }
2733
2734  return SDValue();
2735}
2736
2737static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2738                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2739  switch(Opc) {
2740  default: llvm_unreachable("Unknown x86 shuffle node");
2741  case X86ISD::PSHUFD:
2742  case X86ISD::PSHUFHW:
2743  case X86ISD::PSHUFLW:
2744    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2745  }
2746
2747  return SDValue();
2748}
2749
2750static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2751               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2752  switch(Opc) {
2753  default: llvm_unreachable("Unknown x86 shuffle node");
2754  case X86ISD::PALIGN:
2755  case X86ISD::SHUFPD:
2756  case X86ISD::SHUFPS:
2757    return DAG.getNode(Opc, dl, VT, V1, V2,
2758                       DAG.getConstant(TargetMask, MVT::i8));
2759  }
2760  return SDValue();
2761}
2762
2763static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2764                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2765  switch(Opc) {
2766  default: llvm_unreachable("Unknown x86 shuffle node");
2767  case X86ISD::MOVLHPS:
2768  case X86ISD::MOVLHPD:
2769  case X86ISD::MOVHLPS:
2770  case X86ISD::MOVLPS:
2771  case X86ISD::MOVLPD:
2772  case X86ISD::MOVSS:
2773  case X86ISD::MOVSD:
2774  case X86ISD::UNPCKLPS:
2775  case X86ISD::UNPCKLPD:
2776  case X86ISD::VUNPCKLPS:
2777  case X86ISD::VUNPCKLPD:
2778  case X86ISD::VUNPCKLPSY:
2779  case X86ISD::VUNPCKLPDY:
2780  case X86ISD::PUNPCKLWD:
2781  case X86ISD::PUNPCKLBW:
2782  case X86ISD::PUNPCKLDQ:
2783  case X86ISD::PUNPCKLQDQ:
2784  case X86ISD::UNPCKHPS:
2785  case X86ISD::UNPCKHPD:
2786  case X86ISD::PUNPCKHWD:
2787  case X86ISD::PUNPCKHBW:
2788  case X86ISD::PUNPCKHDQ:
2789  case X86ISD::PUNPCKHQDQ:
2790    return DAG.getNode(Opc, dl, VT, V1, V2);
2791  }
2792  return SDValue();
2793}
2794
2795SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2796  MachineFunction &MF = DAG.getMachineFunction();
2797  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2798  int ReturnAddrIndex = FuncInfo->getRAIndex();
2799
2800  if (ReturnAddrIndex == 0) {
2801    // Set up a frame object for the return address.
2802    uint64_t SlotSize = TD->getPointerSize();
2803    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2804                                                           false);
2805    FuncInfo->setRAIndex(ReturnAddrIndex);
2806  }
2807
2808  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2809}
2810
2811
2812bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2813                                       bool hasSymbolicDisplacement) {
2814  // Offset should fit into 32 bit immediate field.
2815  if (!isInt<32>(Offset))
2816    return false;
2817
2818  // If we don't have a symbolic displacement - we don't have any extra
2819  // restrictions.
2820  if (!hasSymbolicDisplacement)
2821    return true;
2822
2823  // FIXME: Some tweaks might be needed for medium code model.
2824  if (M != CodeModel::Small && M != CodeModel::Kernel)
2825    return false;
2826
2827  // For small code model we assume that latest object is 16MB before end of 31
2828  // bits boundary. We may also accept pretty large negative constants knowing
2829  // that all objects are in the positive half of address space.
2830  if (M == CodeModel::Small && Offset < 16*1024*1024)
2831    return true;
2832
2833  // For kernel code model we know that all object resist in the negative half
2834  // of 32bits address space. We may not accept negative offsets, since they may
2835  // be just off and we may accept pretty large positive ones.
2836  if (M == CodeModel::Kernel && Offset > 0)
2837    return true;
2838
2839  return false;
2840}
2841
2842/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2843/// specific condition code, returning the condition code and the LHS/RHS of the
2844/// comparison to make.
2845static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2846                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2847  if (!isFP) {
2848    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2849      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2850        // X > -1   -> X == 0, jump !sign.
2851        RHS = DAG.getConstant(0, RHS.getValueType());
2852        return X86::COND_NS;
2853      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2854        // X < 0   -> X == 0, jump on sign.
2855        return X86::COND_S;
2856      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2857        // X < 1   -> X <= 0
2858        RHS = DAG.getConstant(0, RHS.getValueType());
2859        return X86::COND_LE;
2860      }
2861    }
2862
2863    switch (SetCCOpcode) {
2864    default: llvm_unreachable("Invalid integer condition!");
2865    case ISD::SETEQ:  return X86::COND_E;
2866    case ISD::SETGT:  return X86::COND_G;
2867    case ISD::SETGE:  return X86::COND_GE;
2868    case ISD::SETLT:  return X86::COND_L;
2869    case ISD::SETLE:  return X86::COND_LE;
2870    case ISD::SETNE:  return X86::COND_NE;
2871    case ISD::SETULT: return X86::COND_B;
2872    case ISD::SETUGT: return X86::COND_A;
2873    case ISD::SETULE: return X86::COND_BE;
2874    case ISD::SETUGE: return X86::COND_AE;
2875    }
2876  }
2877
2878  // First determine if it is required or is profitable to flip the operands.
2879
2880  // If LHS is a foldable load, but RHS is not, flip the condition.
2881  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2882      !ISD::isNON_EXTLoad(RHS.getNode())) {
2883    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2884    std::swap(LHS, RHS);
2885  }
2886
2887  switch (SetCCOpcode) {
2888  default: break;
2889  case ISD::SETOLT:
2890  case ISD::SETOLE:
2891  case ISD::SETUGT:
2892  case ISD::SETUGE:
2893    std::swap(LHS, RHS);
2894    break;
2895  }
2896
2897  // On a floating point condition, the flags are set as follows:
2898  // ZF  PF  CF   op
2899  //  0 | 0 | 0 | X > Y
2900  //  0 | 0 | 1 | X < Y
2901  //  1 | 0 | 0 | X == Y
2902  //  1 | 1 | 1 | unordered
2903  switch (SetCCOpcode) {
2904  default: llvm_unreachable("Condcode should be pre-legalized away");
2905  case ISD::SETUEQ:
2906  case ISD::SETEQ:   return X86::COND_E;
2907  case ISD::SETOLT:              // flipped
2908  case ISD::SETOGT:
2909  case ISD::SETGT:   return X86::COND_A;
2910  case ISD::SETOLE:              // flipped
2911  case ISD::SETOGE:
2912  case ISD::SETGE:   return X86::COND_AE;
2913  case ISD::SETUGT:              // flipped
2914  case ISD::SETULT:
2915  case ISD::SETLT:   return X86::COND_B;
2916  case ISD::SETUGE:              // flipped
2917  case ISD::SETULE:
2918  case ISD::SETLE:   return X86::COND_BE;
2919  case ISD::SETONE:
2920  case ISD::SETNE:   return X86::COND_NE;
2921  case ISD::SETUO:   return X86::COND_P;
2922  case ISD::SETO:    return X86::COND_NP;
2923  case ISD::SETOEQ:
2924  case ISD::SETUNE:  return X86::COND_INVALID;
2925  }
2926}
2927
2928/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2929/// code. Current x86 isa includes the following FP cmov instructions:
2930/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2931static bool hasFPCMov(unsigned X86CC) {
2932  switch (X86CC) {
2933  default:
2934    return false;
2935  case X86::COND_B:
2936  case X86::COND_BE:
2937  case X86::COND_E:
2938  case X86::COND_P:
2939  case X86::COND_A:
2940  case X86::COND_AE:
2941  case X86::COND_NE:
2942  case X86::COND_NP:
2943    return true;
2944  }
2945}
2946
2947/// isFPImmLegal - Returns true if the target can instruction select the
2948/// specified FP immediate natively. If false, the legalizer will
2949/// materialize the FP immediate as a load from a constant pool.
2950bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2951  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2952    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2953      return true;
2954  }
2955  return false;
2956}
2957
2958/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2959/// the specified range (L, H].
2960static bool isUndefOrInRange(int Val, int Low, int Hi) {
2961  return (Val < 0) || (Val >= Low && Val < Hi);
2962}
2963
2964/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2965/// specified value.
2966static bool isUndefOrEqual(int Val, int CmpVal) {
2967  if (Val < 0 || Val == CmpVal)
2968    return true;
2969  return false;
2970}
2971
2972/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2973/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2974/// the second operand.
2975static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2976  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2977    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2978  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2979    return (Mask[0] < 2 && Mask[1] < 2);
2980  return false;
2981}
2982
2983bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2984  SmallVector<int, 8> M;
2985  N->getMask(M);
2986  return ::isPSHUFDMask(M, N->getValueType(0));
2987}
2988
2989/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2990/// is suitable for input to PSHUFHW.
2991static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2992  if (VT != MVT::v8i16)
2993    return false;
2994
2995  // Lower quadword copied in order or undef.
2996  for (int i = 0; i != 4; ++i)
2997    if (Mask[i] >= 0 && Mask[i] != i)
2998      return false;
2999
3000  // Upper quadword shuffled.
3001  for (int i = 4; i != 8; ++i)
3002    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3003      return false;
3004
3005  return true;
3006}
3007
3008bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3009  SmallVector<int, 8> M;
3010  N->getMask(M);
3011  return ::isPSHUFHWMask(M, N->getValueType(0));
3012}
3013
3014/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3015/// is suitable for input to PSHUFLW.
3016static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3017  if (VT != MVT::v8i16)
3018    return false;
3019
3020  // Upper quadword copied in order.
3021  for (int i = 4; i != 8; ++i)
3022    if (Mask[i] >= 0 && Mask[i] != i)
3023      return false;
3024
3025  // Lower quadword shuffled.
3026  for (int i = 0; i != 4; ++i)
3027    if (Mask[i] >= 4)
3028      return false;
3029
3030  return true;
3031}
3032
3033bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3034  SmallVector<int, 8> M;
3035  N->getMask(M);
3036  return ::isPSHUFLWMask(M, N->getValueType(0));
3037}
3038
3039/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3040/// is suitable for input to PALIGNR.
3041static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3042                          bool hasSSSE3) {
3043  int i, e = VT.getVectorNumElements();
3044
3045  // Do not handle v2i64 / v2f64 shuffles with palignr.
3046  if (e < 4 || !hasSSSE3)
3047    return false;
3048
3049  for (i = 0; i != e; ++i)
3050    if (Mask[i] >= 0)
3051      break;
3052
3053  // All undef, not a palignr.
3054  if (i == e)
3055    return false;
3056
3057  // Determine if it's ok to perform a palignr with only the LHS, since we
3058  // don't have access to the actual shuffle elements to see if RHS is undef.
3059  bool Unary = Mask[i] < (int)e;
3060  bool NeedsUnary = false;
3061
3062  int s = Mask[i] - i;
3063
3064  // Check the rest of the elements to see if they are consecutive.
3065  for (++i; i != e; ++i) {
3066    int m = Mask[i];
3067    if (m < 0)
3068      continue;
3069
3070    Unary = Unary && (m < (int)e);
3071    NeedsUnary = NeedsUnary || (m < s);
3072
3073    if (NeedsUnary && !Unary)
3074      return false;
3075    if (Unary && m != ((s+i) & (e-1)))
3076      return false;
3077    if (!Unary && m != (s+i))
3078      return false;
3079  }
3080  return true;
3081}
3082
3083bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
3084  SmallVector<int, 8> M;
3085  N->getMask(M);
3086  return ::isPALIGNRMask(M, N->getValueType(0), true);
3087}
3088
3089/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3090/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3091static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3092  int NumElems = VT.getVectorNumElements();
3093  if (NumElems != 2 && NumElems != 4)
3094    return false;
3095
3096  int Half = NumElems / 2;
3097  for (int i = 0; i < Half; ++i)
3098    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3099      return false;
3100  for (int i = Half; i < NumElems; ++i)
3101    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3102      return false;
3103
3104  return true;
3105}
3106
3107bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3108  SmallVector<int, 8> M;
3109  N->getMask(M);
3110  return ::isSHUFPMask(M, N->getValueType(0));
3111}
3112
3113/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3114/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3115/// half elements to come from vector 1 (which would equal the dest.) and
3116/// the upper half to come from vector 2.
3117static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3118  int NumElems = VT.getVectorNumElements();
3119
3120  if (NumElems != 2 && NumElems != 4)
3121    return false;
3122
3123  int Half = NumElems / 2;
3124  for (int i = 0; i < Half; ++i)
3125    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3126      return false;
3127  for (int i = Half; i < NumElems; ++i)
3128    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3129      return false;
3130  return true;
3131}
3132
3133static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3134  SmallVector<int, 8> M;
3135  N->getMask(M);
3136  return isCommutedSHUFPMask(M, N->getValueType(0));
3137}
3138
3139/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3140/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3141bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3142  if (N->getValueType(0).getVectorNumElements() != 4)
3143    return false;
3144
3145  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3146  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3147         isUndefOrEqual(N->getMaskElt(1), 7) &&
3148         isUndefOrEqual(N->getMaskElt(2), 2) &&
3149         isUndefOrEqual(N->getMaskElt(3), 3);
3150}
3151
3152/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3153/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3154/// <2, 3, 2, 3>
3155bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3156  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3157
3158  if (NumElems != 4)
3159    return false;
3160
3161  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3162  isUndefOrEqual(N->getMaskElt(1), 3) &&
3163  isUndefOrEqual(N->getMaskElt(2), 2) &&
3164  isUndefOrEqual(N->getMaskElt(3), 3);
3165}
3166
3167/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3168/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3169bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3170  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3171
3172  if (NumElems != 2 && NumElems != 4)
3173    return false;
3174
3175  for (unsigned i = 0; i < NumElems/2; ++i)
3176    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3177      return false;
3178
3179  for (unsigned i = NumElems/2; i < NumElems; ++i)
3180    if (!isUndefOrEqual(N->getMaskElt(i), i))
3181      return false;
3182
3183  return true;
3184}
3185
3186/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3187/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3188bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3189  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3190
3191  if ((NumElems != 2 && NumElems != 4)
3192      || N->getValueType(0).getSizeInBits() > 128)
3193    return false;
3194
3195  for (unsigned i = 0; i < NumElems/2; ++i)
3196    if (!isUndefOrEqual(N->getMaskElt(i), i))
3197      return false;
3198
3199  for (unsigned i = 0; i < NumElems/2; ++i)
3200    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3201      return false;
3202
3203  return true;
3204}
3205
3206/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3207/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3208static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3209                         bool V2IsSplat = false) {
3210  int NumElts = VT.getVectorNumElements();
3211  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3212    return false;
3213
3214  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3215  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3216  // sections.
3217  unsigned NumSections = VT.getSizeInBits() / 128;
3218  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3219  unsigned NumSectionElts = NumElts / NumSections;
3220
3221  unsigned Start = 0;
3222  unsigned End = NumSectionElts;
3223  for (unsigned s = 0; s < NumSections; ++s) {
3224    for (unsigned i = Start, j = s * NumSectionElts;
3225         i != End;
3226         i += 2, ++j) {
3227      int BitI  = Mask[i];
3228      int BitI1 = Mask[i+1];
3229      if (!isUndefOrEqual(BitI, j))
3230        return false;
3231      if (V2IsSplat) {
3232        if (!isUndefOrEqual(BitI1, NumElts))
3233          return false;
3234      } else {
3235        if (!isUndefOrEqual(BitI1, j + NumElts))
3236          return false;
3237      }
3238    }
3239    // Process the next 128 bits.
3240    Start += NumSectionElts;
3241    End += NumSectionElts;
3242  }
3243
3244  return true;
3245}
3246
3247bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3248  SmallVector<int, 8> M;
3249  N->getMask(M);
3250  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3251}
3252
3253/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3254/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3255static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3256                         bool V2IsSplat = false) {
3257  int NumElts = VT.getVectorNumElements();
3258  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3259    return false;
3260
3261  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3262    int BitI  = Mask[i];
3263    int BitI1 = Mask[i+1];
3264    if (!isUndefOrEqual(BitI, j + NumElts/2))
3265      return false;
3266    if (V2IsSplat) {
3267      if (isUndefOrEqual(BitI1, NumElts))
3268        return false;
3269    } else {
3270      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3271        return false;
3272    }
3273  }
3274  return true;
3275}
3276
3277bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3278  SmallVector<int, 8> M;
3279  N->getMask(M);
3280  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3281}
3282
3283/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3284/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3285/// <0, 0, 1, 1>
3286static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3287  int NumElems = VT.getVectorNumElements();
3288  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3289    return false;
3290
3291  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3292  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3293  // sections.
3294  unsigned NumSections = VT.getSizeInBits() / 128;
3295  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3296  unsigned NumSectionElts = NumElems / NumSections;
3297
3298  for (unsigned s = 0; s < NumSections; ++s) {
3299    for (unsigned i = s * NumSectionElts, j = s * NumSectionElts;
3300         i != NumSectionElts * (s + 1);
3301         i += 2, ++j) {
3302      int BitI  = Mask[i];
3303      int BitI1 = Mask[i+1];
3304
3305      if (!isUndefOrEqual(BitI, j))
3306        return false;
3307      if (!isUndefOrEqual(BitI1, j))
3308        return false;
3309    }
3310  }
3311
3312  return true;
3313}
3314
3315bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3316  SmallVector<int, 8> M;
3317  N->getMask(M);
3318  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3319}
3320
3321/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3322/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3323/// <2, 2, 3, 3>
3324static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3325  int NumElems = VT.getVectorNumElements();
3326  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3327    return false;
3328
3329  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3330    int BitI  = Mask[i];
3331    int BitI1 = Mask[i+1];
3332    if (!isUndefOrEqual(BitI, j))
3333      return false;
3334    if (!isUndefOrEqual(BitI1, j))
3335      return false;
3336  }
3337  return true;
3338}
3339
3340bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3341  SmallVector<int, 8> M;
3342  N->getMask(M);
3343  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3344}
3345
3346/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3347/// specifies a shuffle of elements that is suitable for input to MOVSS,
3348/// MOVSD, and MOVD, i.e. setting the lowest element.
3349static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3350  if (VT.getVectorElementType().getSizeInBits() < 32)
3351    return false;
3352
3353  int NumElts = VT.getVectorNumElements();
3354
3355  if (!isUndefOrEqual(Mask[0], NumElts))
3356    return false;
3357
3358  for (int i = 1; i < NumElts; ++i)
3359    if (!isUndefOrEqual(Mask[i], i))
3360      return false;
3361
3362  return true;
3363}
3364
3365bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3366  SmallVector<int, 8> M;
3367  N->getMask(M);
3368  return ::isMOVLMask(M, N->getValueType(0));
3369}
3370
3371/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3372/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3373/// element of vector 2 and the other elements to come from vector 1 in order.
3374static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3375                               bool V2IsSplat = false, bool V2IsUndef = false) {
3376  int NumOps = VT.getVectorNumElements();
3377  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3378    return false;
3379
3380  if (!isUndefOrEqual(Mask[0], 0))
3381    return false;
3382
3383  for (int i = 1; i < NumOps; ++i)
3384    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3385          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3386          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3387      return false;
3388
3389  return true;
3390}
3391
3392static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3393                           bool V2IsUndef = false) {
3394  SmallVector<int, 8> M;
3395  N->getMask(M);
3396  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3397}
3398
3399/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3400/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3401bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3402  if (N->getValueType(0).getVectorNumElements() != 4)
3403    return false;
3404
3405  // Expect 1, 1, 3, 3
3406  for (unsigned i = 0; i < 2; ++i) {
3407    int Elt = N->getMaskElt(i);
3408    if (Elt >= 0 && Elt != 1)
3409      return false;
3410  }
3411
3412  bool HasHi = false;
3413  for (unsigned i = 2; i < 4; ++i) {
3414    int Elt = N->getMaskElt(i);
3415    if (Elt >= 0 && Elt != 3)
3416      return false;
3417    if (Elt == 3)
3418      HasHi = true;
3419  }
3420  // Don't use movshdup if it can be done with a shufps.
3421  // FIXME: verify that matching u, u, 3, 3 is what we want.
3422  return HasHi;
3423}
3424
3425/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3426/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3427bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3428  if (N->getValueType(0).getVectorNumElements() != 4)
3429    return false;
3430
3431  // Expect 0, 0, 2, 2
3432  for (unsigned i = 0; i < 2; ++i)
3433    if (N->getMaskElt(i) > 0)
3434      return false;
3435
3436  bool HasHi = false;
3437  for (unsigned i = 2; i < 4; ++i) {
3438    int Elt = N->getMaskElt(i);
3439    if (Elt >= 0 && Elt != 2)
3440      return false;
3441    if (Elt == 2)
3442      HasHi = true;
3443  }
3444  // Don't use movsldup if it can be done with a shufps.
3445  return HasHi;
3446}
3447
3448/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3449/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3450bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3451  int e = N->getValueType(0).getVectorNumElements() / 2;
3452
3453  for (int i = 0; i < e; ++i)
3454    if (!isUndefOrEqual(N->getMaskElt(i), i))
3455      return false;
3456  for (int i = 0; i < e; ++i)
3457    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3458      return false;
3459  return true;
3460}
3461
3462/// isVEXTRACTF128Index - Return true if the specified
3463/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3464/// suitable for input to VEXTRACTF128.
3465bool X86::isVEXTRACTF128Index(SDNode *N) {
3466  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3467    return false;
3468
3469  // The index should be aligned on a 128-bit boundary.
3470  uint64_t Index =
3471    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3472
3473  unsigned VL = N->getValueType(0).getVectorNumElements();
3474  unsigned VBits = N->getValueType(0).getSizeInBits();
3475  unsigned ElSize = VBits / VL;
3476  bool Result = (Index * ElSize) % 128 == 0;
3477
3478  return Result;
3479}
3480
3481/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3482/// operand specifies a subvector insert that is suitable for input to
3483/// VINSERTF128.
3484bool X86::isVINSERTF128Index(SDNode *N) {
3485  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3486    return false;
3487
3488  // The index should be aligned on a 128-bit boundary.
3489  uint64_t Index =
3490    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3491
3492  unsigned VL = N->getValueType(0).getVectorNumElements();
3493  unsigned VBits = N->getValueType(0).getSizeInBits();
3494  unsigned ElSize = VBits / VL;
3495  bool Result = (Index * ElSize) % 128 == 0;
3496
3497  return Result;
3498}
3499
3500/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3501/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3502unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3503  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3504  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3505
3506  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3507  unsigned Mask = 0;
3508  for (int i = 0; i < NumOperands; ++i) {
3509    int Val = SVOp->getMaskElt(NumOperands-i-1);
3510    if (Val < 0) Val = 0;
3511    if (Val >= NumOperands) Val -= NumOperands;
3512    Mask |= Val;
3513    if (i != NumOperands - 1)
3514      Mask <<= Shift;
3515  }
3516  return Mask;
3517}
3518
3519/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3520/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3521unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3522  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3523  unsigned Mask = 0;
3524  // 8 nodes, but we only care about the last 4.
3525  for (unsigned i = 7; i >= 4; --i) {
3526    int Val = SVOp->getMaskElt(i);
3527    if (Val >= 0)
3528      Mask |= (Val - 4);
3529    if (i != 4)
3530      Mask <<= 2;
3531  }
3532  return Mask;
3533}
3534
3535/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3536/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3537unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3538  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3539  unsigned Mask = 0;
3540  // 8 nodes, but we only care about the first 4.
3541  for (int i = 3; i >= 0; --i) {
3542    int Val = SVOp->getMaskElt(i);
3543    if (Val >= 0)
3544      Mask |= Val;
3545    if (i != 0)
3546      Mask <<= 2;
3547  }
3548  return Mask;
3549}
3550
3551/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3552/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3553unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3554  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3555  EVT VVT = N->getValueType(0);
3556  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3557  int Val = 0;
3558
3559  unsigned i, e;
3560  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3561    Val = SVOp->getMaskElt(i);
3562    if (Val >= 0)
3563      break;
3564  }
3565  return (Val - i) * EltSize;
3566}
3567
3568/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3569/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3570/// instructions.
3571unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3572  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3573    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3574
3575  uint64_t Index =
3576    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3577
3578  EVT VecVT = N->getOperand(0).getValueType();
3579  EVT ElVT = VecVT.getVectorElementType();
3580
3581  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3582
3583  return Index / NumElemsPerChunk;
3584}
3585
3586/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3587/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3588/// instructions.
3589unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3590  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3591    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3592
3593  uint64_t Index =
3594    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3595
3596  EVT VecVT = N->getValueType(0);
3597  EVT ElVT = VecVT.getVectorElementType();
3598
3599  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3600
3601  return Index / NumElemsPerChunk;
3602}
3603
3604/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3605/// constant +0.0.
3606bool X86::isZeroNode(SDValue Elt) {
3607  return ((isa<ConstantSDNode>(Elt) &&
3608           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3609          (isa<ConstantFPSDNode>(Elt) &&
3610           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3611}
3612
3613/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3614/// their permute mask.
3615static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3616                                    SelectionDAG &DAG) {
3617  EVT VT = SVOp->getValueType(0);
3618  unsigned NumElems = VT.getVectorNumElements();
3619  SmallVector<int, 8> MaskVec;
3620
3621  for (unsigned i = 0; i != NumElems; ++i) {
3622    int idx = SVOp->getMaskElt(i);
3623    if (idx < 0)
3624      MaskVec.push_back(idx);
3625    else if (idx < (int)NumElems)
3626      MaskVec.push_back(idx + NumElems);
3627    else
3628      MaskVec.push_back(idx - NumElems);
3629  }
3630  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3631                              SVOp->getOperand(0), &MaskVec[0]);
3632}
3633
3634/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3635/// the two vector operands have swapped position.
3636static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3637  unsigned NumElems = VT.getVectorNumElements();
3638  for (unsigned i = 0; i != NumElems; ++i) {
3639    int idx = Mask[i];
3640    if (idx < 0)
3641      continue;
3642    else if (idx < (int)NumElems)
3643      Mask[i] = idx + NumElems;
3644    else
3645      Mask[i] = idx - NumElems;
3646  }
3647}
3648
3649/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3650/// match movhlps. The lower half elements should come from upper half of
3651/// V1 (and in order), and the upper half elements should come from the upper
3652/// half of V2 (and in order).
3653static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3654  if (Op->getValueType(0).getVectorNumElements() != 4)
3655    return false;
3656  for (unsigned i = 0, e = 2; i != e; ++i)
3657    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3658      return false;
3659  for (unsigned i = 2; i != 4; ++i)
3660    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3661      return false;
3662  return true;
3663}
3664
3665/// isScalarLoadToVector - Returns true if the node is a scalar load that
3666/// is promoted to a vector. It also returns the LoadSDNode by reference if
3667/// required.
3668static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3669  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3670    return false;
3671  N = N->getOperand(0).getNode();
3672  if (!ISD::isNON_EXTLoad(N))
3673    return false;
3674  if (LD)
3675    *LD = cast<LoadSDNode>(N);
3676  return true;
3677}
3678
3679/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3680/// match movlp{s|d}. The lower half elements should come from lower half of
3681/// V1 (and in order), and the upper half elements should come from the upper
3682/// half of V2 (and in order). And since V1 will become the source of the
3683/// MOVLP, it must be either a vector load or a scalar load to vector.
3684static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3685                               ShuffleVectorSDNode *Op) {
3686  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3687    return false;
3688  // Is V2 is a vector load, don't do this transformation. We will try to use
3689  // load folding shufps op.
3690  if (ISD::isNON_EXTLoad(V2))
3691    return false;
3692
3693  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3694
3695  if (NumElems != 2 && NumElems != 4)
3696    return false;
3697  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3698    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3699      return false;
3700  for (unsigned i = NumElems/2; i != NumElems; ++i)
3701    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3702      return false;
3703  return true;
3704}
3705
3706/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3707/// all the same.
3708static bool isSplatVector(SDNode *N) {
3709  if (N->getOpcode() != ISD::BUILD_VECTOR)
3710    return false;
3711
3712  SDValue SplatValue = N->getOperand(0);
3713  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3714    if (N->getOperand(i) != SplatValue)
3715      return false;
3716  return true;
3717}
3718
3719/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3720/// to an zero vector.
3721/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3722static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3723  SDValue V1 = N->getOperand(0);
3724  SDValue V2 = N->getOperand(1);
3725  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3726  for (unsigned i = 0; i != NumElems; ++i) {
3727    int Idx = N->getMaskElt(i);
3728    if (Idx >= (int)NumElems) {
3729      unsigned Opc = V2.getOpcode();
3730      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3731        continue;
3732      if (Opc != ISD::BUILD_VECTOR ||
3733          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3734        return false;
3735    } else if (Idx >= 0) {
3736      unsigned Opc = V1.getOpcode();
3737      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3738        continue;
3739      if (Opc != ISD::BUILD_VECTOR ||
3740          !X86::isZeroNode(V1.getOperand(Idx)))
3741        return false;
3742    }
3743  }
3744  return true;
3745}
3746
3747/// getZeroVector - Returns a vector of specified type with all zero elements.
3748///
3749static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3750                             DebugLoc dl) {
3751  assert(VT.isVector() && "Expected a vector type");
3752
3753  // Always build SSE zero vectors as <4 x i32> bitcasted
3754  // to their dest type. This ensures they get CSE'd.
3755  SDValue Vec;
3756  if (VT.getSizeInBits() == 128) {  // SSE
3757    if (HasSSE2) {  // SSE2
3758      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3759      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3760    } else { // SSE1
3761      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3762      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3763    }
3764  } else if (VT.getSizeInBits() == 256) { // AVX
3765    // 256-bit logic and arithmetic instructions in AVX are
3766    // all floating-point, no support for integer ops. Default
3767    // to emitting fp zeroed vectors then.
3768    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3769    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3770    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3771  }
3772  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3773}
3774
3775/// getOnesVector - Returns a vector of specified type with all bits set.
3776///
3777static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3778  assert(VT.isVector() && "Expected a vector type");
3779
3780  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3781  // type.  This ensures they get CSE'd.
3782  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3783  SDValue Vec;
3784  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3785  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3786}
3787
3788
3789/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3790/// that point to V2 points to its first element.
3791static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3792  EVT VT = SVOp->getValueType(0);
3793  unsigned NumElems = VT.getVectorNumElements();
3794
3795  bool Changed = false;
3796  SmallVector<int, 8> MaskVec;
3797  SVOp->getMask(MaskVec);
3798
3799  for (unsigned i = 0; i != NumElems; ++i) {
3800    if (MaskVec[i] > (int)NumElems) {
3801      MaskVec[i] = NumElems;
3802      Changed = true;
3803    }
3804  }
3805  if (Changed)
3806    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3807                                SVOp->getOperand(1), &MaskVec[0]);
3808  return SDValue(SVOp, 0);
3809}
3810
3811/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3812/// operation of specified width.
3813static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3814                       SDValue V2) {
3815  unsigned NumElems = VT.getVectorNumElements();
3816  SmallVector<int, 8> Mask;
3817  Mask.push_back(NumElems);
3818  for (unsigned i = 1; i != NumElems; ++i)
3819    Mask.push_back(i);
3820  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3821}
3822
3823/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3824static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3825                          SDValue V2) {
3826  unsigned NumElems = VT.getVectorNumElements();
3827  SmallVector<int, 8> Mask;
3828  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3829    Mask.push_back(i);
3830    Mask.push_back(i + NumElems);
3831  }
3832  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3833}
3834
3835/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3836static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3837                          SDValue V2) {
3838  unsigned NumElems = VT.getVectorNumElements();
3839  unsigned Half = NumElems/2;
3840  SmallVector<int, 8> Mask;
3841  for (unsigned i = 0; i != Half; ++i) {
3842    Mask.push_back(i + Half);
3843    Mask.push_back(i + NumElems + Half);
3844  }
3845  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3846}
3847
3848/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3849static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3850  EVT PVT = MVT::v4f32;
3851  EVT VT = SV->getValueType(0);
3852  DebugLoc dl = SV->getDebugLoc();
3853  SDValue V1 = SV->getOperand(0);
3854  int NumElems = VT.getVectorNumElements();
3855  int EltNo = SV->getSplatIndex();
3856
3857  // unpack elements to the correct location
3858  while (NumElems > 4) {
3859    if (EltNo < NumElems/2) {
3860      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3861    } else {
3862      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3863      EltNo -= NumElems/2;
3864    }
3865    NumElems >>= 1;
3866  }
3867
3868  // Perform the splat.
3869  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3870  V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3871  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3872  return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3873}
3874
3875/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3876/// vector of zero or undef vector.  This produces a shuffle where the low
3877/// element of V2 is swizzled into the zero/undef vector, landing at element
3878/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3879static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3880                                             bool isZero, bool HasSSE2,
3881                                             SelectionDAG &DAG) {
3882  EVT VT = V2.getValueType();
3883  SDValue V1 = isZero
3884    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3885  unsigned NumElems = VT.getVectorNumElements();
3886  SmallVector<int, 16> MaskVec;
3887  for (unsigned i = 0; i != NumElems; ++i)
3888    // If this is the insertion idx, put the low elt of V2 here.
3889    MaskVec.push_back(i == Idx ? NumElems : i);
3890  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3891}
3892
3893/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3894/// element of the result of the vector shuffle.
3895SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3896                            unsigned Depth) {
3897  if (Depth == 6)
3898    return SDValue();  // Limit search depth.
3899
3900  SDValue V = SDValue(N, 0);
3901  EVT VT = V.getValueType();
3902  unsigned Opcode = V.getOpcode();
3903
3904  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3905  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3906    Index = SV->getMaskElt(Index);
3907
3908    if (Index < 0)
3909      return DAG.getUNDEF(VT.getVectorElementType());
3910
3911    int NumElems = VT.getVectorNumElements();
3912    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3913    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3914  }
3915
3916  // Recurse into target specific vector shuffles to find scalars.
3917  if (isTargetShuffle(Opcode)) {
3918    int NumElems = VT.getVectorNumElements();
3919    SmallVector<unsigned, 16> ShuffleMask;
3920    SDValue ImmN;
3921
3922    switch(Opcode) {
3923    case X86ISD::SHUFPS:
3924    case X86ISD::SHUFPD:
3925      ImmN = N->getOperand(N->getNumOperands()-1);
3926      DecodeSHUFPSMask(NumElems,
3927                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3928                       ShuffleMask);
3929      break;
3930    case X86ISD::PUNPCKHBW:
3931    case X86ISD::PUNPCKHWD:
3932    case X86ISD::PUNPCKHDQ:
3933    case X86ISD::PUNPCKHQDQ:
3934      DecodePUNPCKHMask(NumElems, ShuffleMask);
3935      break;
3936    case X86ISD::UNPCKHPS:
3937    case X86ISD::UNPCKHPD:
3938      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3939      break;
3940    case X86ISD::PUNPCKLBW:
3941    case X86ISD::PUNPCKLWD:
3942    case X86ISD::PUNPCKLDQ:
3943    case X86ISD::PUNPCKLQDQ:
3944      DecodePUNPCKLMask(VT, ShuffleMask);
3945      break;
3946    case X86ISD::UNPCKLPS:
3947    case X86ISD::UNPCKLPD:
3948    case X86ISD::VUNPCKLPS:
3949    case X86ISD::VUNPCKLPD:
3950    case X86ISD::VUNPCKLPSY:
3951    case X86ISD::VUNPCKLPDY:
3952      DecodeUNPCKLPMask(VT, ShuffleMask);
3953      break;
3954    case X86ISD::MOVHLPS:
3955      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3956      break;
3957    case X86ISD::MOVLHPS:
3958      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3959      break;
3960    case X86ISD::PSHUFD:
3961      ImmN = N->getOperand(N->getNumOperands()-1);
3962      DecodePSHUFMask(NumElems,
3963                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3964                      ShuffleMask);
3965      break;
3966    case X86ISD::PSHUFHW:
3967      ImmN = N->getOperand(N->getNumOperands()-1);
3968      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3969                        ShuffleMask);
3970      break;
3971    case X86ISD::PSHUFLW:
3972      ImmN = N->getOperand(N->getNumOperands()-1);
3973      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3974                        ShuffleMask);
3975      break;
3976    case X86ISD::MOVSS:
3977    case X86ISD::MOVSD: {
3978      // The index 0 always comes from the first element of the second source,
3979      // this is why MOVSS and MOVSD are used in the first place. The other
3980      // elements come from the other positions of the first source vector.
3981      unsigned OpNum = (Index == 0) ? 1 : 0;
3982      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3983                                 Depth+1);
3984    }
3985    default:
3986      assert("not implemented for target shuffle node");
3987      return SDValue();
3988    }
3989
3990    Index = ShuffleMask[Index];
3991    if (Index < 0)
3992      return DAG.getUNDEF(VT.getVectorElementType());
3993
3994    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3995    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3996                               Depth+1);
3997  }
3998
3999  // Actual nodes that may contain scalar elements
4000  if (Opcode == ISD::BITCAST) {
4001    V = V.getOperand(0);
4002    EVT SrcVT = V.getValueType();
4003    unsigned NumElems = VT.getVectorNumElements();
4004
4005    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4006      return SDValue();
4007  }
4008
4009  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4010    return (Index == 0) ? V.getOperand(0)
4011                          : DAG.getUNDEF(VT.getVectorElementType());
4012
4013  if (V.getOpcode() == ISD::BUILD_VECTOR)
4014    return V.getOperand(Index);
4015
4016  return SDValue();
4017}
4018
4019/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4020/// shuffle operation which come from a consecutively from a zero. The
4021/// search can start in two diferent directions, from left or right.
4022static
4023unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4024                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4025  int i = 0;
4026
4027  while (i < NumElems) {
4028    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4029    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4030    if (!(Elt.getNode() &&
4031         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4032      break;
4033    ++i;
4034  }
4035
4036  return i;
4037}
4038
4039/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4040/// MaskE correspond consecutively to elements from one of the vector operands,
4041/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4042static
4043bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4044                              int OpIdx, int NumElems, unsigned &OpNum) {
4045  bool SeenV1 = false;
4046  bool SeenV2 = false;
4047
4048  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4049    int Idx = SVOp->getMaskElt(i);
4050    // Ignore undef indicies
4051    if (Idx < 0)
4052      continue;
4053
4054    if (Idx < NumElems)
4055      SeenV1 = true;
4056    else
4057      SeenV2 = true;
4058
4059    // Only accept consecutive elements from the same vector
4060    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4061      return false;
4062  }
4063
4064  OpNum = SeenV1 ? 0 : 1;
4065  return true;
4066}
4067
4068/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4069/// logical left shift of a vector.
4070static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4071                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4072  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4073  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4074              false /* check zeros from right */, DAG);
4075  unsigned OpSrc;
4076
4077  if (!NumZeros)
4078    return false;
4079
4080  // Considering the elements in the mask that are not consecutive zeros,
4081  // check if they consecutively come from only one of the source vectors.
4082  //
4083  //               V1 = {X, A, B, C}     0
4084  //                         \  \  \    /
4085  //   vector_shuffle V1, V2 <1, 2, 3, X>
4086  //
4087  if (!isShuffleMaskConsecutive(SVOp,
4088            0,                   // Mask Start Index
4089            NumElems-NumZeros-1, // Mask End Index
4090            NumZeros,            // Where to start looking in the src vector
4091            NumElems,            // Number of elements in vector
4092            OpSrc))              // Which source operand ?
4093    return false;
4094
4095  isLeft = false;
4096  ShAmt = NumZeros;
4097  ShVal = SVOp->getOperand(OpSrc);
4098  return true;
4099}
4100
4101/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4102/// logical left shift of a vector.
4103static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4104                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4105  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4106  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4107              true /* check zeros from left */, DAG);
4108  unsigned OpSrc;
4109
4110  if (!NumZeros)
4111    return false;
4112
4113  // Considering the elements in the mask that are not consecutive zeros,
4114  // check if they consecutively come from only one of the source vectors.
4115  //
4116  //                           0    { A, B, X, X } = V2
4117  //                          / \    /  /
4118  //   vector_shuffle V1, V2 <X, X, 4, 5>
4119  //
4120  if (!isShuffleMaskConsecutive(SVOp,
4121            NumZeros,     // Mask Start Index
4122            NumElems-1,   // Mask End Index
4123            0,            // Where to start looking in the src vector
4124            NumElems,     // Number of elements in vector
4125            OpSrc))       // Which source operand ?
4126    return false;
4127
4128  isLeft = true;
4129  ShAmt = NumZeros;
4130  ShVal = SVOp->getOperand(OpSrc);
4131  return true;
4132}
4133
4134/// isVectorShift - Returns true if the shuffle can be implemented as a
4135/// logical left or right shift of a vector.
4136static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4137                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4138  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4139      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4140    return true;
4141
4142  return false;
4143}
4144
4145/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4146///
4147static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4148                                       unsigned NumNonZero, unsigned NumZero,
4149                                       SelectionDAG &DAG,
4150                                       const TargetLowering &TLI) {
4151  if (NumNonZero > 8)
4152    return SDValue();
4153
4154  DebugLoc dl = Op.getDebugLoc();
4155  SDValue V(0, 0);
4156  bool First = true;
4157  for (unsigned i = 0; i < 16; ++i) {
4158    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4159    if (ThisIsNonZero && First) {
4160      if (NumZero)
4161        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4162      else
4163        V = DAG.getUNDEF(MVT::v8i16);
4164      First = false;
4165    }
4166
4167    if ((i & 1) != 0) {
4168      SDValue ThisElt(0, 0), LastElt(0, 0);
4169      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4170      if (LastIsNonZero) {
4171        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4172                              MVT::i16, Op.getOperand(i-1));
4173      }
4174      if (ThisIsNonZero) {
4175        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4176        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4177                              ThisElt, DAG.getConstant(8, MVT::i8));
4178        if (LastIsNonZero)
4179          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4180      } else
4181        ThisElt = LastElt;
4182
4183      if (ThisElt.getNode())
4184        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4185                        DAG.getIntPtrConstant(i/2));
4186    }
4187  }
4188
4189  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4190}
4191
4192/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4193///
4194static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4195                                     unsigned NumNonZero, unsigned NumZero,
4196                                     SelectionDAG &DAG,
4197                                     const TargetLowering &TLI) {
4198  if (NumNonZero > 4)
4199    return SDValue();
4200
4201  DebugLoc dl = Op.getDebugLoc();
4202  SDValue V(0, 0);
4203  bool First = true;
4204  for (unsigned i = 0; i < 8; ++i) {
4205    bool isNonZero = (NonZeros & (1 << i)) != 0;
4206    if (isNonZero) {
4207      if (First) {
4208        if (NumZero)
4209          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4210        else
4211          V = DAG.getUNDEF(MVT::v8i16);
4212        First = false;
4213      }
4214      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4215                      MVT::v8i16, V, Op.getOperand(i),
4216                      DAG.getIntPtrConstant(i));
4217    }
4218  }
4219
4220  return V;
4221}
4222
4223/// getVShift - Return a vector logical shift node.
4224///
4225static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4226                         unsigned NumBits, SelectionDAG &DAG,
4227                         const TargetLowering &TLI, DebugLoc dl) {
4228  EVT ShVT = MVT::v2i64;
4229  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4230  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4231  return DAG.getNode(ISD::BITCAST, dl, VT,
4232                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4233                             DAG.getConstant(NumBits,
4234                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4235}
4236
4237SDValue
4238X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4239                                          SelectionDAG &DAG) const {
4240
4241  // Check if the scalar load can be widened into a vector load. And if
4242  // the address is "base + cst" see if the cst can be "absorbed" into
4243  // the shuffle mask.
4244  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4245    SDValue Ptr = LD->getBasePtr();
4246    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4247      return SDValue();
4248    EVT PVT = LD->getValueType(0);
4249    if (PVT != MVT::i32 && PVT != MVT::f32)
4250      return SDValue();
4251
4252    int FI = -1;
4253    int64_t Offset = 0;
4254    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4255      FI = FINode->getIndex();
4256      Offset = 0;
4257    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4258               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4259      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4260      Offset = Ptr.getConstantOperandVal(1);
4261      Ptr = Ptr.getOperand(0);
4262    } else {
4263      return SDValue();
4264    }
4265
4266    SDValue Chain = LD->getChain();
4267    // Make sure the stack object alignment is at least 16.
4268    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4269    if (DAG.InferPtrAlignment(Ptr) < 16) {
4270      if (MFI->isFixedObjectIndex(FI)) {
4271        // Can't change the alignment. FIXME: It's possible to compute
4272        // the exact stack offset and reference FI + adjust offset instead.
4273        // If someone *really* cares about this. That's the way to implement it.
4274        return SDValue();
4275      } else {
4276        MFI->setObjectAlignment(FI, 16);
4277      }
4278    }
4279
4280    // (Offset % 16) must be multiple of 4. Then address is then
4281    // Ptr + (Offset & ~15).
4282    if (Offset < 0)
4283      return SDValue();
4284    if ((Offset % 16) & 3)
4285      return SDValue();
4286    int64_t StartOffset = Offset & ~15;
4287    if (StartOffset)
4288      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4289                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4290
4291    int EltNo = (Offset - StartOffset) >> 2;
4292    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4293    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4294    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4295                             LD->getPointerInfo().getWithOffset(StartOffset),
4296                             false, false, 0);
4297    // Canonicalize it to a v4i32 shuffle.
4298    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4299    return DAG.getNode(ISD::BITCAST, dl, VT,
4300                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4301                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4302  }
4303
4304  return SDValue();
4305}
4306
4307/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4308/// vector of type 'VT', see if the elements can be replaced by a single large
4309/// load which has the same value as a build_vector whose operands are 'elts'.
4310///
4311/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4312///
4313/// FIXME: we'd also like to handle the case where the last elements are zero
4314/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4315/// There's even a handy isZeroNode for that purpose.
4316static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4317                                        DebugLoc &DL, SelectionDAG &DAG) {
4318  EVT EltVT = VT.getVectorElementType();
4319  unsigned NumElems = Elts.size();
4320
4321  LoadSDNode *LDBase = NULL;
4322  unsigned LastLoadedElt = -1U;
4323
4324  // For each element in the initializer, see if we've found a load or an undef.
4325  // If we don't find an initial load element, or later load elements are
4326  // non-consecutive, bail out.
4327  for (unsigned i = 0; i < NumElems; ++i) {
4328    SDValue Elt = Elts[i];
4329
4330    if (!Elt.getNode() ||
4331        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4332      return SDValue();
4333    if (!LDBase) {
4334      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4335        return SDValue();
4336      LDBase = cast<LoadSDNode>(Elt.getNode());
4337      LastLoadedElt = i;
4338      continue;
4339    }
4340    if (Elt.getOpcode() == ISD::UNDEF)
4341      continue;
4342
4343    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4344    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4345      return SDValue();
4346    LastLoadedElt = i;
4347  }
4348
4349  // If we have found an entire vector of loads and undefs, then return a large
4350  // load of the entire vector width starting at the base pointer.  If we found
4351  // consecutive loads for the low half, generate a vzext_load node.
4352  if (LastLoadedElt == NumElems - 1) {
4353    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4354      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4355                         LDBase->getPointerInfo(),
4356                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4357    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4358                       LDBase->getPointerInfo(),
4359                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4360                       LDBase->getAlignment());
4361  } else if (NumElems == 4 && LastLoadedElt == 1) {
4362    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4363    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4364    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4365                                              Ops, 2, MVT::i32,
4366                                              LDBase->getMemOperand());
4367    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4368  }
4369  return SDValue();
4370}
4371
4372SDValue
4373X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4374  DebugLoc dl = Op.getDebugLoc();
4375
4376  EVT VT = Op.getValueType();
4377  EVT ExtVT = VT.getVectorElementType();
4378
4379  unsigned NumElems = Op.getNumOperands();
4380
4381  // For AVX-length vectors, build the individual 128-bit pieces and
4382  // use shuffles to put them in place.
4383  if (VT.getSizeInBits() > 256 &&
4384      Subtarget->hasAVX() &&
4385      !ISD::isBuildVectorAllZeros(Op.getNode())) {
4386    SmallVector<SDValue, 8> V;
4387    V.resize(NumElems);
4388    for (unsigned i = 0; i < NumElems; ++i) {
4389      V[i] = Op.getOperand(i);
4390    }
4391
4392    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4393
4394    // Build the lower subvector.
4395    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4396    // Build the upper subvector.
4397    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4398                                NumElems/2);
4399
4400    return ConcatVectors(Lower, Upper, DAG);
4401  }
4402
4403  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4404  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4405  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4406  // is present, so AllOnes is ignored.
4407  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4408      (Op.getValueType().getSizeInBits() != 256 &&
4409       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4410    // Canonicalize this to <4 x i32> (SSE) to
4411    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4412    // eliminated on x86-32 hosts.
4413    if (Op.getValueType() == MVT::v4i32)
4414      return Op;
4415
4416    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4417      return getOnesVector(Op.getValueType(), DAG, dl);
4418    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4419  }
4420
4421  unsigned EVTBits = ExtVT.getSizeInBits();
4422
4423  unsigned NumZero  = 0;
4424  unsigned NumNonZero = 0;
4425  unsigned NonZeros = 0;
4426  bool IsAllConstants = true;
4427  SmallSet<SDValue, 8> Values;
4428  for (unsigned i = 0; i < NumElems; ++i) {
4429    SDValue Elt = Op.getOperand(i);
4430    if (Elt.getOpcode() == ISD::UNDEF)
4431      continue;
4432    Values.insert(Elt);
4433    if (Elt.getOpcode() != ISD::Constant &&
4434        Elt.getOpcode() != ISD::ConstantFP)
4435      IsAllConstants = false;
4436    if (X86::isZeroNode(Elt))
4437      NumZero++;
4438    else {
4439      NonZeros |= (1 << i);
4440      NumNonZero++;
4441    }
4442  }
4443
4444  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4445  if (NumNonZero == 0)
4446    return DAG.getUNDEF(VT);
4447
4448  // Special case for single non-zero, non-undef, element.
4449  if (NumNonZero == 1) {
4450    unsigned Idx = CountTrailingZeros_32(NonZeros);
4451    SDValue Item = Op.getOperand(Idx);
4452
4453    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4454    // the value are obviously zero, truncate the value to i32 and do the
4455    // insertion that way.  Only do this if the value is non-constant or if the
4456    // value is a constant being inserted into element 0.  It is cheaper to do
4457    // a constant pool load than it is to do a movd + shuffle.
4458    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4459        (!IsAllConstants || Idx == 0)) {
4460      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4461        // Handle SSE only.
4462        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4463        EVT VecVT = MVT::v4i32;
4464        unsigned VecElts = 4;
4465
4466        // Truncate the value (which may itself be a constant) to i32, and
4467        // convert it to a vector with movd (S2V+shuffle to zero extend).
4468        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4469        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4470        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4471                                           Subtarget->hasSSE2(), DAG);
4472
4473        // Now we have our 32-bit value zero extended in the low element of
4474        // a vector.  If Idx != 0, swizzle it into place.
4475        if (Idx != 0) {
4476          SmallVector<int, 4> Mask;
4477          Mask.push_back(Idx);
4478          for (unsigned i = 1; i != VecElts; ++i)
4479            Mask.push_back(i);
4480          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4481                                      DAG.getUNDEF(Item.getValueType()),
4482                                      &Mask[0]);
4483        }
4484        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4485      }
4486    }
4487
4488    // If we have a constant or non-constant insertion into the low element of
4489    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4490    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4491    // depending on what the source datatype is.
4492    if (Idx == 0) {
4493      if (NumZero == 0) {
4494        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4495      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4496          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4497        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4498        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4499        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4500                                           DAG);
4501      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4502        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4503        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4504        EVT MiddleVT = MVT::v4i32;
4505        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4506        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4507                                           Subtarget->hasSSE2(), DAG);
4508        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4509      }
4510    }
4511
4512    // Is it a vector logical left shift?
4513    if (NumElems == 2 && Idx == 1 &&
4514        X86::isZeroNode(Op.getOperand(0)) &&
4515        !X86::isZeroNode(Op.getOperand(1))) {
4516      unsigned NumBits = VT.getSizeInBits();
4517      return getVShift(true, VT,
4518                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4519                                   VT, Op.getOperand(1)),
4520                       NumBits/2, DAG, *this, dl);
4521    }
4522
4523    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4524      return SDValue();
4525
4526    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4527    // is a non-constant being inserted into an element other than the low one,
4528    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4529    // movd/movss) to move this into the low element, then shuffle it into
4530    // place.
4531    if (EVTBits == 32) {
4532      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4533
4534      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4535      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4536                                         Subtarget->hasSSE2(), DAG);
4537      SmallVector<int, 8> MaskVec;
4538      for (unsigned i = 0; i < NumElems; i++)
4539        MaskVec.push_back(i == Idx ? 0 : 1);
4540      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4541    }
4542  }
4543
4544  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4545  if (Values.size() == 1) {
4546    if (EVTBits == 32) {
4547      // Instead of a shuffle like this:
4548      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4549      // Check if it's possible to issue this instead.
4550      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4551      unsigned Idx = CountTrailingZeros_32(NonZeros);
4552      SDValue Item = Op.getOperand(Idx);
4553      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4554        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4555    }
4556    return SDValue();
4557  }
4558
4559  // A vector full of immediates; various special cases are already
4560  // handled, so this is best done with a single constant-pool load.
4561  if (IsAllConstants)
4562    return SDValue();
4563
4564  // Let legalizer expand 2-wide build_vectors.
4565  if (EVTBits == 64) {
4566    if (NumNonZero == 1) {
4567      // One half is zero or undef.
4568      unsigned Idx = CountTrailingZeros_32(NonZeros);
4569      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4570                                 Op.getOperand(Idx));
4571      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4572                                         Subtarget->hasSSE2(), DAG);
4573    }
4574    return SDValue();
4575  }
4576
4577  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4578  if (EVTBits == 8 && NumElems == 16) {
4579    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4580                                        *this);
4581    if (V.getNode()) return V;
4582  }
4583
4584  if (EVTBits == 16 && NumElems == 8) {
4585    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4586                                      *this);
4587    if (V.getNode()) return V;
4588  }
4589
4590  // If element VT is == 32 bits, turn it into a number of shuffles.
4591  SmallVector<SDValue, 8> V;
4592  V.resize(NumElems);
4593  if (NumElems == 4 && NumZero > 0) {
4594    for (unsigned i = 0; i < 4; ++i) {
4595      bool isZero = !(NonZeros & (1 << i));
4596      if (isZero)
4597        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4598      else
4599        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4600    }
4601
4602    for (unsigned i = 0; i < 2; ++i) {
4603      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4604        default: break;
4605        case 0:
4606          V[i] = V[i*2];  // Must be a zero vector.
4607          break;
4608        case 1:
4609          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4610          break;
4611        case 2:
4612          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4613          break;
4614        case 3:
4615          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4616          break;
4617      }
4618    }
4619
4620    SmallVector<int, 8> MaskVec;
4621    bool Reverse = (NonZeros & 0x3) == 2;
4622    for (unsigned i = 0; i < 2; ++i)
4623      MaskVec.push_back(Reverse ? 1-i : i);
4624    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4625    for (unsigned i = 0; i < 2; ++i)
4626      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4627    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4628  }
4629
4630  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4631    // Check for a build vector of consecutive loads.
4632    for (unsigned i = 0; i < NumElems; ++i)
4633      V[i] = Op.getOperand(i);
4634
4635    // Check for elements which are consecutive loads.
4636    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4637    if (LD.getNode())
4638      return LD;
4639
4640    // For SSE 4.1, use insertps to put the high elements into the low element.
4641    if (getSubtarget()->hasSSE41()) {
4642      SDValue Result;
4643      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4644        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4645      else
4646        Result = DAG.getUNDEF(VT);
4647
4648      for (unsigned i = 1; i < NumElems; ++i) {
4649        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4650        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4651                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4652      }
4653      return Result;
4654    }
4655
4656    // Otherwise, expand into a number of unpckl*, start by extending each of
4657    // our (non-undef) elements to the full vector width with the element in the
4658    // bottom slot of the vector (which generates no code for SSE).
4659    for (unsigned i = 0; i < NumElems; ++i) {
4660      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4661        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4662      else
4663        V[i] = DAG.getUNDEF(VT);
4664    }
4665
4666    // Next, we iteratively mix elements, e.g. for v4f32:
4667    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4668    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4669    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4670    unsigned EltStride = NumElems >> 1;
4671    while (EltStride != 0) {
4672      for (unsigned i = 0; i < EltStride; ++i) {
4673        // If V[i+EltStride] is undef and this is the first round of mixing,
4674        // then it is safe to just drop this shuffle: V[i] is already in the
4675        // right place, the one element (since it's the first round) being
4676        // inserted as undef can be dropped.  This isn't safe for successive
4677        // rounds because they will permute elements within both vectors.
4678        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4679            EltStride == NumElems/2)
4680          continue;
4681
4682        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4683      }
4684      EltStride >>= 1;
4685    }
4686    return V[0];
4687  }
4688  return SDValue();
4689}
4690
4691SDValue
4692X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4693  // We support concatenate two MMX registers and place them in a MMX
4694  // register.  This is better than doing a stack convert.
4695  DebugLoc dl = Op.getDebugLoc();
4696  EVT ResVT = Op.getValueType();
4697  assert(Op.getNumOperands() == 2);
4698  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4699         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4700  int Mask[2];
4701  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4702  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4703  InVec = Op.getOperand(1);
4704  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4705    unsigned NumElts = ResVT.getVectorNumElements();
4706    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4707    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4708                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4709  } else {
4710    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4711    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4712    Mask[0] = 0; Mask[1] = 2;
4713    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4714  }
4715  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4716}
4717
4718// v8i16 shuffles - Prefer shuffles in the following order:
4719// 1. [all]   pshuflw, pshufhw, optional move
4720// 2. [ssse3] 1 x pshufb
4721// 3. [ssse3] 2 x pshufb + 1 x por
4722// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4723SDValue
4724X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4725                                            SelectionDAG &DAG) const {
4726  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4727  SDValue V1 = SVOp->getOperand(0);
4728  SDValue V2 = SVOp->getOperand(1);
4729  DebugLoc dl = SVOp->getDebugLoc();
4730  SmallVector<int, 8> MaskVals;
4731
4732  // Determine if more than 1 of the words in each of the low and high quadwords
4733  // of the result come from the same quadword of one of the two inputs.  Undef
4734  // mask values count as coming from any quadword, for better codegen.
4735  SmallVector<unsigned, 4> LoQuad(4);
4736  SmallVector<unsigned, 4> HiQuad(4);
4737  BitVector InputQuads(4);
4738  for (unsigned i = 0; i < 8; ++i) {
4739    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4740    int EltIdx = SVOp->getMaskElt(i);
4741    MaskVals.push_back(EltIdx);
4742    if (EltIdx < 0) {
4743      ++Quad[0];
4744      ++Quad[1];
4745      ++Quad[2];
4746      ++Quad[3];
4747      continue;
4748    }
4749    ++Quad[EltIdx / 4];
4750    InputQuads.set(EltIdx / 4);
4751  }
4752
4753  int BestLoQuad = -1;
4754  unsigned MaxQuad = 1;
4755  for (unsigned i = 0; i < 4; ++i) {
4756    if (LoQuad[i] > MaxQuad) {
4757      BestLoQuad = i;
4758      MaxQuad = LoQuad[i];
4759    }
4760  }
4761
4762  int BestHiQuad = -1;
4763  MaxQuad = 1;
4764  for (unsigned i = 0; i < 4; ++i) {
4765    if (HiQuad[i] > MaxQuad) {
4766      BestHiQuad = i;
4767      MaxQuad = HiQuad[i];
4768    }
4769  }
4770
4771  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4772  // of the two input vectors, shuffle them into one input vector so only a
4773  // single pshufb instruction is necessary. If There are more than 2 input
4774  // quads, disable the next transformation since it does not help SSSE3.
4775  bool V1Used = InputQuads[0] || InputQuads[1];
4776  bool V2Used = InputQuads[2] || InputQuads[3];
4777  if (Subtarget->hasSSSE3()) {
4778    if (InputQuads.count() == 2 && V1Used && V2Used) {
4779      BestLoQuad = InputQuads.find_first();
4780      BestHiQuad = InputQuads.find_next(BestLoQuad);
4781    }
4782    if (InputQuads.count() > 2) {
4783      BestLoQuad = -1;
4784      BestHiQuad = -1;
4785    }
4786  }
4787
4788  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4789  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4790  // words from all 4 input quadwords.
4791  SDValue NewV;
4792  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4793    SmallVector<int, 8> MaskV;
4794    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4795    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4796    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4797                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4798                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4799    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4800
4801    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4802    // source words for the shuffle, to aid later transformations.
4803    bool AllWordsInNewV = true;
4804    bool InOrder[2] = { true, true };
4805    for (unsigned i = 0; i != 8; ++i) {
4806      int idx = MaskVals[i];
4807      if (idx != (int)i)
4808        InOrder[i/4] = false;
4809      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4810        continue;
4811      AllWordsInNewV = false;
4812      break;
4813    }
4814
4815    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4816    if (AllWordsInNewV) {
4817      for (int i = 0; i != 8; ++i) {
4818        int idx = MaskVals[i];
4819        if (idx < 0)
4820          continue;
4821        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4822        if ((idx != i) && idx < 4)
4823          pshufhw = false;
4824        if ((idx != i) && idx > 3)
4825          pshuflw = false;
4826      }
4827      V1 = NewV;
4828      V2Used = false;
4829      BestLoQuad = 0;
4830      BestHiQuad = 1;
4831    }
4832
4833    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4834    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4835    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4836      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4837      unsigned TargetMask = 0;
4838      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4839                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4840      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4841                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4842      V1 = NewV.getOperand(0);
4843      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4844    }
4845  }
4846
4847  // If we have SSSE3, and all words of the result are from 1 input vector,
4848  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4849  // is present, fall back to case 4.
4850  if (Subtarget->hasSSSE3()) {
4851    SmallVector<SDValue,16> pshufbMask;
4852
4853    // If we have elements from both input vectors, set the high bit of the
4854    // shuffle mask element to zero out elements that come from V2 in the V1
4855    // mask, and elements that come from V1 in the V2 mask, so that the two
4856    // results can be OR'd together.
4857    bool TwoInputs = V1Used && V2Used;
4858    for (unsigned i = 0; i != 8; ++i) {
4859      int EltIdx = MaskVals[i] * 2;
4860      if (TwoInputs && (EltIdx >= 16)) {
4861        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4862        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4863        continue;
4864      }
4865      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4866      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4867    }
4868    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4869    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4870                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4871                                 MVT::v16i8, &pshufbMask[0], 16));
4872    if (!TwoInputs)
4873      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4874
4875    // Calculate the shuffle mask for the second input, shuffle it, and
4876    // OR it with the first shuffled input.
4877    pshufbMask.clear();
4878    for (unsigned i = 0; i != 8; ++i) {
4879      int EltIdx = MaskVals[i] * 2;
4880      if (EltIdx < 16) {
4881        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4882        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4883        continue;
4884      }
4885      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4886      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4887    }
4888    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4889    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4890                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4891                                 MVT::v16i8, &pshufbMask[0], 16));
4892    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4893    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4894  }
4895
4896  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4897  // and update MaskVals with new element order.
4898  BitVector InOrder(8);
4899  if (BestLoQuad >= 0) {
4900    SmallVector<int, 8> MaskV;
4901    for (int i = 0; i != 4; ++i) {
4902      int idx = MaskVals[i];
4903      if (idx < 0) {
4904        MaskV.push_back(-1);
4905        InOrder.set(i);
4906      } else if ((idx / 4) == BestLoQuad) {
4907        MaskV.push_back(idx & 3);
4908        InOrder.set(i);
4909      } else {
4910        MaskV.push_back(-1);
4911      }
4912    }
4913    for (unsigned i = 4; i != 8; ++i)
4914      MaskV.push_back(i);
4915    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4916                                &MaskV[0]);
4917
4918    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4919      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4920                               NewV.getOperand(0),
4921                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4922                               DAG);
4923  }
4924
4925  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4926  // and update MaskVals with the new element order.
4927  if (BestHiQuad >= 0) {
4928    SmallVector<int, 8> MaskV;
4929    for (unsigned i = 0; i != 4; ++i)
4930      MaskV.push_back(i);
4931    for (unsigned i = 4; i != 8; ++i) {
4932      int idx = MaskVals[i];
4933      if (idx < 0) {
4934        MaskV.push_back(-1);
4935        InOrder.set(i);
4936      } else if ((idx / 4) == BestHiQuad) {
4937        MaskV.push_back((idx & 3) + 4);
4938        InOrder.set(i);
4939      } else {
4940        MaskV.push_back(-1);
4941      }
4942    }
4943    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4944                                &MaskV[0]);
4945
4946    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4947      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4948                              NewV.getOperand(0),
4949                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4950                              DAG);
4951  }
4952
4953  // In case BestHi & BestLo were both -1, which means each quadword has a word
4954  // from each of the four input quadwords, calculate the InOrder bitvector now
4955  // before falling through to the insert/extract cleanup.
4956  if (BestLoQuad == -1 && BestHiQuad == -1) {
4957    NewV = V1;
4958    for (int i = 0; i != 8; ++i)
4959      if (MaskVals[i] < 0 || MaskVals[i] == i)
4960        InOrder.set(i);
4961  }
4962
4963  // The other elements are put in the right place using pextrw and pinsrw.
4964  for (unsigned i = 0; i != 8; ++i) {
4965    if (InOrder[i])
4966      continue;
4967    int EltIdx = MaskVals[i];
4968    if (EltIdx < 0)
4969      continue;
4970    SDValue ExtOp = (EltIdx < 8)
4971    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4972                  DAG.getIntPtrConstant(EltIdx))
4973    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4974                  DAG.getIntPtrConstant(EltIdx - 8));
4975    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4976                       DAG.getIntPtrConstant(i));
4977  }
4978  return NewV;
4979}
4980
4981// v16i8 shuffles - Prefer shuffles in the following order:
4982// 1. [ssse3] 1 x pshufb
4983// 2. [ssse3] 2 x pshufb + 1 x por
4984// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4985static
4986SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4987                                 SelectionDAG &DAG,
4988                                 const X86TargetLowering &TLI) {
4989  SDValue V1 = SVOp->getOperand(0);
4990  SDValue V2 = SVOp->getOperand(1);
4991  DebugLoc dl = SVOp->getDebugLoc();
4992  SmallVector<int, 16> MaskVals;
4993  SVOp->getMask(MaskVals);
4994
4995  // If we have SSSE3, case 1 is generated when all result bytes come from
4996  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4997  // present, fall back to case 3.
4998  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4999  bool V1Only = true;
5000  bool V2Only = true;
5001  for (unsigned i = 0; i < 16; ++i) {
5002    int EltIdx = MaskVals[i];
5003    if (EltIdx < 0)
5004      continue;
5005    if (EltIdx < 16)
5006      V2Only = false;
5007    else
5008      V1Only = false;
5009  }
5010
5011  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5012  if (TLI.getSubtarget()->hasSSSE3()) {
5013    SmallVector<SDValue,16> pshufbMask;
5014
5015    // If all result elements are from one input vector, then only translate
5016    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5017    //
5018    // Otherwise, we have elements from both input vectors, and must zero out
5019    // elements that come from V2 in the first mask, and V1 in the second mask
5020    // so that we can OR them together.
5021    bool TwoInputs = !(V1Only || V2Only);
5022    for (unsigned i = 0; i != 16; ++i) {
5023      int EltIdx = MaskVals[i];
5024      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5025        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5026        continue;
5027      }
5028      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5029    }
5030    // If all the elements are from V2, assign it to V1 and return after
5031    // building the first pshufb.
5032    if (V2Only)
5033      V1 = V2;
5034    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5035                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5036                                 MVT::v16i8, &pshufbMask[0], 16));
5037    if (!TwoInputs)
5038      return V1;
5039
5040    // Calculate the shuffle mask for the second input, shuffle it, and
5041    // OR it with the first shuffled input.
5042    pshufbMask.clear();
5043    for (unsigned i = 0; i != 16; ++i) {
5044      int EltIdx = MaskVals[i];
5045      if (EltIdx < 16) {
5046        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5047        continue;
5048      }
5049      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5050    }
5051    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5052                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5053                                 MVT::v16i8, &pshufbMask[0], 16));
5054    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5055  }
5056
5057  // No SSSE3 - Calculate in place words and then fix all out of place words
5058  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5059  // the 16 different words that comprise the two doublequadword input vectors.
5060  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5061  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5062  SDValue NewV = V2Only ? V2 : V1;
5063  for (int i = 0; i != 8; ++i) {
5064    int Elt0 = MaskVals[i*2];
5065    int Elt1 = MaskVals[i*2+1];
5066
5067    // This word of the result is all undef, skip it.
5068    if (Elt0 < 0 && Elt1 < 0)
5069      continue;
5070
5071    // This word of the result is already in the correct place, skip it.
5072    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5073      continue;
5074    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5075      continue;
5076
5077    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5078    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5079    SDValue InsElt;
5080
5081    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5082    // using a single extract together, load it and store it.
5083    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5084      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5085                           DAG.getIntPtrConstant(Elt1 / 2));
5086      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5087                        DAG.getIntPtrConstant(i));
5088      continue;
5089    }
5090
5091    // If Elt1 is defined, extract it from the appropriate source.  If the
5092    // source byte is not also odd, shift the extracted word left 8 bits
5093    // otherwise clear the bottom 8 bits if we need to do an or.
5094    if (Elt1 >= 0) {
5095      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5096                           DAG.getIntPtrConstant(Elt1 / 2));
5097      if ((Elt1 & 1) == 0)
5098        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5099                             DAG.getConstant(8,
5100                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5101      else if (Elt0 >= 0)
5102        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5103                             DAG.getConstant(0xFF00, MVT::i16));
5104    }
5105    // If Elt0 is defined, extract it from the appropriate source.  If the
5106    // source byte is not also even, shift the extracted word right 8 bits. If
5107    // Elt1 was also defined, OR the extracted values together before
5108    // inserting them in the result.
5109    if (Elt0 >= 0) {
5110      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5111                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5112      if ((Elt0 & 1) != 0)
5113        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5114                              DAG.getConstant(8,
5115                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5116      else if (Elt1 >= 0)
5117        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5118                             DAG.getConstant(0x00FF, MVT::i16));
5119      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5120                         : InsElt0;
5121    }
5122    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5123                       DAG.getIntPtrConstant(i));
5124  }
5125  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5126}
5127
5128/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5129/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5130/// done when every pair / quad of shuffle mask elements point to elements in
5131/// the right sequence. e.g.
5132/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5133static
5134SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5135                                 SelectionDAG &DAG, DebugLoc dl) {
5136  EVT VT = SVOp->getValueType(0);
5137  SDValue V1 = SVOp->getOperand(0);
5138  SDValue V2 = SVOp->getOperand(1);
5139  unsigned NumElems = VT.getVectorNumElements();
5140  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5141  EVT NewVT;
5142  switch (VT.getSimpleVT().SimpleTy) {
5143  default: assert(false && "Unexpected!");
5144  case MVT::v4f32: NewVT = MVT::v2f64; break;
5145  case MVT::v4i32: NewVT = MVT::v2i64; break;
5146  case MVT::v8i16: NewVT = MVT::v4i32; break;
5147  case MVT::v16i8: NewVT = MVT::v4i32; break;
5148  }
5149
5150  int Scale = NumElems / NewWidth;
5151  SmallVector<int, 8> MaskVec;
5152  for (unsigned i = 0; i < NumElems; i += Scale) {
5153    int StartIdx = -1;
5154    for (int j = 0; j < Scale; ++j) {
5155      int EltIdx = SVOp->getMaskElt(i+j);
5156      if (EltIdx < 0)
5157        continue;
5158      if (StartIdx == -1)
5159        StartIdx = EltIdx - (EltIdx % Scale);
5160      if (EltIdx != StartIdx + j)
5161        return SDValue();
5162    }
5163    if (StartIdx == -1)
5164      MaskVec.push_back(-1);
5165    else
5166      MaskVec.push_back(StartIdx / Scale);
5167  }
5168
5169  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5170  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5171  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5172}
5173
5174/// getVZextMovL - Return a zero-extending vector move low node.
5175///
5176static SDValue getVZextMovL(EVT VT, EVT OpVT,
5177                            SDValue SrcOp, SelectionDAG &DAG,
5178                            const X86Subtarget *Subtarget, DebugLoc dl) {
5179  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5180    LoadSDNode *LD = NULL;
5181    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5182      LD = dyn_cast<LoadSDNode>(SrcOp);
5183    if (!LD) {
5184      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5185      // instead.
5186      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5187      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5188          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5189          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5190          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5191        // PR2108
5192        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5193        return DAG.getNode(ISD::BITCAST, dl, VT,
5194                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5195                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5196                                                   OpVT,
5197                                                   SrcOp.getOperand(0)
5198                                                          .getOperand(0))));
5199      }
5200    }
5201  }
5202
5203  return DAG.getNode(ISD::BITCAST, dl, VT,
5204                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5205                                 DAG.getNode(ISD::BITCAST, dl,
5206                                             OpVT, SrcOp)));
5207}
5208
5209/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
5210/// shuffles.
5211static SDValue
5212LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5213  SDValue V1 = SVOp->getOperand(0);
5214  SDValue V2 = SVOp->getOperand(1);
5215  DebugLoc dl = SVOp->getDebugLoc();
5216  EVT VT = SVOp->getValueType(0);
5217
5218  SmallVector<std::pair<int, int>, 8> Locs;
5219  Locs.resize(4);
5220  SmallVector<int, 8> Mask1(4U, -1);
5221  SmallVector<int, 8> PermMask;
5222  SVOp->getMask(PermMask);
5223
5224  unsigned NumHi = 0;
5225  unsigned NumLo = 0;
5226  for (unsigned i = 0; i != 4; ++i) {
5227    int Idx = PermMask[i];
5228    if (Idx < 0) {
5229      Locs[i] = std::make_pair(-1, -1);
5230    } else {
5231      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5232      if (Idx < 4) {
5233        Locs[i] = std::make_pair(0, NumLo);
5234        Mask1[NumLo] = Idx;
5235        NumLo++;
5236      } else {
5237        Locs[i] = std::make_pair(1, NumHi);
5238        if (2+NumHi < 4)
5239          Mask1[2+NumHi] = Idx;
5240        NumHi++;
5241      }
5242    }
5243  }
5244
5245  if (NumLo <= 2 && NumHi <= 2) {
5246    // If no more than two elements come from either vector. This can be
5247    // implemented with two shuffles. First shuffle gather the elements.
5248    // The second shuffle, which takes the first shuffle as both of its
5249    // vector operands, put the elements into the right order.
5250    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5251
5252    SmallVector<int, 8> Mask2(4U, -1);
5253
5254    for (unsigned i = 0; i != 4; ++i) {
5255      if (Locs[i].first == -1)
5256        continue;
5257      else {
5258        unsigned Idx = (i < 2) ? 0 : 4;
5259        Idx += Locs[i].first * 2 + Locs[i].second;
5260        Mask2[i] = Idx;
5261      }
5262    }
5263
5264    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5265  } else if (NumLo == 3 || NumHi == 3) {
5266    // Otherwise, we must have three elements from one vector, call it X, and
5267    // one element from the other, call it Y.  First, use a shufps to build an
5268    // intermediate vector with the one element from Y and the element from X
5269    // that will be in the same half in the final destination (the indexes don't
5270    // matter). Then, use a shufps to build the final vector, taking the half
5271    // containing the element from Y from the intermediate, and the other half
5272    // from X.
5273    if (NumHi == 3) {
5274      // Normalize it so the 3 elements come from V1.
5275      CommuteVectorShuffleMask(PermMask, VT);
5276      std::swap(V1, V2);
5277    }
5278
5279    // Find the element from V2.
5280    unsigned HiIndex;
5281    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5282      int Val = PermMask[HiIndex];
5283      if (Val < 0)
5284        continue;
5285      if (Val >= 4)
5286        break;
5287    }
5288
5289    Mask1[0] = PermMask[HiIndex];
5290    Mask1[1] = -1;
5291    Mask1[2] = PermMask[HiIndex^1];
5292    Mask1[3] = -1;
5293    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5294
5295    if (HiIndex >= 2) {
5296      Mask1[0] = PermMask[0];
5297      Mask1[1] = PermMask[1];
5298      Mask1[2] = HiIndex & 1 ? 6 : 4;
5299      Mask1[3] = HiIndex & 1 ? 4 : 6;
5300      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5301    } else {
5302      Mask1[0] = HiIndex & 1 ? 2 : 0;
5303      Mask1[1] = HiIndex & 1 ? 0 : 2;
5304      Mask1[2] = PermMask[2];
5305      Mask1[3] = PermMask[3];
5306      if (Mask1[2] >= 0)
5307        Mask1[2] += 4;
5308      if (Mask1[3] >= 0)
5309        Mask1[3] += 4;
5310      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5311    }
5312  }
5313
5314  // Break it into (shuffle shuffle_hi, shuffle_lo).
5315  Locs.clear();
5316  Locs.resize(4);
5317  SmallVector<int,8> LoMask(4U, -1);
5318  SmallVector<int,8> HiMask(4U, -1);
5319
5320  SmallVector<int,8> *MaskPtr = &LoMask;
5321  unsigned MaskIdx = 0;
5322  unsigned LoIdx = 0;
5323  unsigned HiIdx = 2;
5324  for (unsigned i = 0; i != 4; ++i) {
5325    if (i == 2) {
5326      MaskPtr = &HiMask;
5327      MaskIdx = 1;
5328      LoIdx = 0;
5329      HiIdx = 2;
5330    }
5331    int Idx = PermMask[i];
5332    if (Idx < 0) {
5333      Locs[i] = std::make_pair(-1, -1);
5334    } else if (Idx < 4) {
5335      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5336      (*MaskPtr)[LoIdx] = Idx;
5337      LoIdx++;
5338    } else {
5339      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5340      (*MaskPtr)[HiIdx] = Idx;
5341      HiIdx++;
5342    }
5343  }
5344
5345  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5346  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5347  SmallVector<int, 8> MaskOps;
5348  for (unsigned i = 0; i != 4; ++i) {
5349    if (Locs[i].first == -1) {
5350      MaskOps.push_back(-1);
5351    } else {
5352      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5353      MaskOps.push_back(Idx);
5354    }
5355  }
5356  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5357}
5358
5359static bool MayFoldVectorLoad(SDValue V) {
5360  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5361    V = V.getOperand(0);
5362  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5363    V = V.getOperand(0);
5364  if (MayFoldLoad(V))
5365    return true;
5366  return false;
5367}
5368
5369// FIXME: the version above should always be used. Since there's
5370// a bug where several vector shuffles can't be folded because the
5371// DAG is not updated during lowering and a node claims to have two
5372// uses while it only has one, use this version, and let isel match
5373// another instruction if the load really happens to have more than
5374// one use. Remove this version after this bug get fixed.
5375// rdar://8434668, PR8156
5376static bool RelaxedMayFoldVectorLoad(SDValue V) {
5377  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5378    V = V.getOperand(0);
5379  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5380    V = V.getOperand(0);
5381  if (ISD::isNormalLoad(V.getNode()))
5382    return true;
5383  return false;
5384}
5385
5386/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5387/// a vector extract, and if both can be later optimized into a single load.
5388/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5389/// here because otherwise a target specific shuffle node is going to be
5390/// emitted for this shuffle, and the optimization not done.
5391/// FIXME: This is probably not the best approach, but fix the problem
5392/// until the right path is decided.
5393static
5394bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5395                                         const TargetLowering &TLI) {
5396  EVT VT = V.getValueType();
5397  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5398
5399  // Be sure that the vector shuffle is present in a pattern like this:
5400  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5401  if (!V.hasOneUse())
5402    return false;
5403
5404  SDNode *N = *V.getNode()->use_begin();
5405  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5406    return false;
5407
5408  SDValue EltNo = N->getOperand(1);
5409  if (!isa<ConstantSDNode>(EltNo))
5410    return false;
5411
5412  // If the bit convert changed the number of elements, it is unsafe
5413  // to examine the mask.
5414  bool HasShuffleIntoBitcast = false;
5415  if (V.getOpcode() == ISD::BITCAST) {
5416    EVT SrcVT = V.getOperand(0).getValueType();
5417    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5418      return false;
5419    V = V.getOperand(0);
5420    HasShuffleIntoBitcast = true;
5421  }
5422
5423  // Select the input vector, guarding against out of range extract vector.
5424  unsigned NumElems = VT.getVectorNumElements();
5425  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5426  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5427  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5428
5429  // Skip one more bit_convert if necessary
5430  if (V.getOpcode() == ISD::BITCAST)
5431    V = V.getOperand(0);
5432
5433  if (ISD::isNormalLoad(V.getNode())) {
5434    // Is the original load suitable?
5435    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5436
5437    // FIXME: avoid the multi-use bug that is preventing lots of
5438    // of foldings to be detected, this is still wrong of course, but
5439    // give the temporary desired behavior, and if it happens that
5440    // the load has real more uses, during isel it will not fold, and
5441    // will generate poor code.
5442    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5443      return false;
5444
5445    if (!HasShuffleIntoBitcast)
5446      return true;
5447
5448    // If there's a bitcast before the shuffle, check if the load type and
5449    // alignment is valid.
5450    unsigned Align = LN0->getAlignment();
5451    unsigned NewAlign =
5452      TLI.getTargetData()->getABITypeAlignment(
5453                                    VT.getTypeForEVT(*DAG.getContext()));
5454
5455    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5456      return false;
5457  }
5458
5459  return true;
5460}
5461
5462static
5463SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5464  EVT VT = Op.getValueType();
5465
5466  // Canonizalize to v2f64.
5467  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5468  return DAG.getNode(ISD::BITCAST, dl, VT,
5469                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5470                                          V1, DAG));
5471}
5472
5473static
5474SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5475                        bool HasSSE2) {
5476  SDValue V1 = Op.getOperand(0);
5477  SDValue V2 = Op.getOperand(1);
5478  EVT VT = Op.getValueType();
5479
5480  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5481
5482  if (HasSSE2 && VT == MVT::v2f64)
5483    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5484
5485  // v4f32 or v4i32
5486  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5487}
5488
5489static
5490SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5491  SDValue V1 = Op.getOperand(0);
5492  SDValue V2 = Op.getOperand(1);
5493  EVT VT = Op.getValueType();
5494
5495  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5496         "unsupported shuffle type");
5497
5498  if (V2.getOpcode() == ISD::UNDEF)
5499    V2 = V1;
5500
5501  // v4i32 or v4f32
5502  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5503}
5504
5505static
5506SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5507  SDValue V1 = Op.getOperand(0);
5508  SDValue V2 = Op.getOperand(1);
5509  EVT VT = Op.getValueType();
5510  unsigned NumElems = VT.getVectorNumElements();
5511
5512  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5513  // operand of these instructions is only memory, so check if there's a
5514  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5515  // same masks.
5516  bool CanFoldLoad = false;
5517
5518  // Trivial case, when V2 comes from a load.
5519  if (MayFoldVectorLoad(V2))
5520    CanFoldLoad = true;
5521
5522  // When V1 is a load, it can be folded later into a store in isel, example:
5523  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5524  //    turns into:
5525  //  (MOVLPSmr addr:$src1, VR128:$src2)
5526  // So, recognize this potential and also use MOVLPS or MOVLPD
5527  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5528    CanFoldLoad = true;
5529
5530  // Both of them can't be memory operations though.
5531  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5532    CanFoldLoad = false;
5533
5534  if (CanFoldLoad) {
5535    if (HasSSE2 && NumElems == 2)
5536      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5537
5538    if (NumElems == 4)
5539      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5540  }
5541
5542  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5543  // movl and movlp will both match v2i64, but v2i64 is never matched by
5544  // movl earlier because we make it strict to avoid messing with the movlp load
5545  // folding logic (see the code above getMOVLP call). Match it here then,
5546  // this is horrible, but will stay like this until we move all shuffle
5547  // matching to x86 specific nodes. Note that for the 1st condition all
5548  // types are matched with movsd.
5549  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5550    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5551  else if (HasSSE2)
5552    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5553
5554
5555  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5556
5557  // Invert the operand order and use SHUFPS to match it.
5558  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5559                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5560}
5561
5562static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) {
5563  switch(VT.getSimpleVT().SimpleTy) {
5564  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5565  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5566  case MVT::v4f32:
5567    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPS : X86ISD::UNPCKLPS;
5568  case MVT::v2f64:
5569    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5570  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5571  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5572  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5573  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5574  default:
5575    llvm_unreachable("Unknown type for unpckl");
5576  }
5577  return 0;
5578}
5579
5580static inline unsigned getUNPCKHOpcode(EVT VT) {
5581  switch(VT.getSimpleVT().SimpleTy) {
5582  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5583  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5584  case MVT::v4f32: return X86ISD::UNPCKHPS;
5585  case MVT::v2f64: return X86ISD::UNPCKHPD;
5586  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5587  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5588  default:
5589    llvm_unreachable("Unknown type for unpckh");
5590  }
5591  return 0;
5592}
5593
5594static
5595SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5596                               const TargetLowering &TLI,
5597                               const X86Subtarget *Subtarget) {
5598  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5599  EVT VT = Op.getValueType();
5600  DebugLoc dl = Op.getDebugLoc();
5601  SDValue V1 = Op.getOperand(0);
5602  SDValue V2 = Op.getOperand(1);
5603
5604  if (isZeroShuffle(SVOp))
5605    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5606
5607  // Handle splat operations
5608  if (SVOp->isSplat()) {
5609    // Special case, this is the only place now where it's
5610    // allowed to return a vector_shuffle operation without
5611    // using a target specific node, because *hopefully* it
5612    // will be optimized away by the dag combiner.
5613    if (VT.getVectorNumElements() <= 4 &&
5614        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5615      return Op;
5616
5617    // Handle splats by matching through known masks
5618    if (VT.getVectorNumElements() <= 4)
5619      return SDValue();
5620
5621    // Canonicalize all of the remaining to v4f32.
5622    return PromoteSplat(SVOp, DAG);
5623  }
5624
5625  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5626  // do it!
5627  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5628    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5629    if (NewOp.getNode())
5630      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5631  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5632    // FIXME: Figure out a cleaner way to do this.
5633    // Try to make use of movq to zero out the top part.
5634    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5635      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5636      if (NewOp.getNode()) {
5637        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5638          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5639                              DAG, Subtarget, dl);
5640      }
5641    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5642      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5643      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5644        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5645                            DAG, Subtarget, dl);
5646    }
5647  }
5648  return SDValue();
5649}
5650
5651SDValue
5652X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5653  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5654  SDValue V1 = Op.getOperand(0);
5655  SDValue V2 = Op.getOperand(1);
5656  EVT VT = Op.getValueType();
5657  DebugLoc dl = Op.getDebugLoc();
5658  unsigned NumElems = VT.getVectorNumElements();
5659  bool isMMX = VT.getSizeInBits() == 64;
5660  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5661  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5662  bool V1IsSplat = false;
5663  bool V2IsSplat = false;
5664  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5665  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5666  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5667  MachineFunction &MF = DAG.getMachineFunction();
5668  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5669
5670  // Shuffle operations on MMX not supported.
5671  if (isMMX)
5672    return Op;
5673
5674  // Vector shuffle lowering takes 3 steps:
5675  //
5676  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5677  //    narrowing and commutation of operands should be handled.
5678  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5679  //    shuffle nodes.
5680  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5681  //    so the shuffle can be broken into other shuffles and the legalizer can
5682  //    try the lowering again.
5683  //
5684  // The general ideia is that no vector_shuffle operation should be left to
5685  // be matched during isel, all of them must be converted to a target specific
5686  // node here.
5687
5688  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5689  // narrowing and commutation of operands should be handled. The actual code
5690  // doesn't include all of those, work in progress...
5691  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5692  if (NewOp.getNode())
5693    return NewOp;
5694
5695  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5696  // unpckh_undef). Only use pshufd if speed is more important than size.
5697  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5698    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5699      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG);
5700  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5701    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5702      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5703
5704  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5705      RelaxedMayFoldVectorLoad(V1))
5706    return getMOVDDup(Op, dl, V1, DAG);
5707
5708  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5709    return getMOVHighToLow(Op, dl, DAG);
5710
5711  // Use to match splats
5712  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5713      (VT == MVT::v2f64 || VT == MVT::v2i64))
5714    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5715
5716  if (X86::isPSHUFDMask(SVOp)) {
5717    // The actual implementation will match the mask in the if above and then
5718    // during isel it can match several different instructions, not only pshufd
5719    // as its name says, sad but true, emulate the behavior for now...
5720    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5721        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5722
5723    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5724
5725    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5726      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5727
5728    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5729      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5730                                  TargetMask, DAG);
5731
5732    if (VT == MVT::v4f32)
5733      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5734                                  TargetMask, DAG);
5735  }
5736
5737  // Check if this can be converted into a logical shift.
5738  bool isLeft = false;
5739  unsigned ShAmt = 0;
5740  SDValue ShVal;
5741  bool isShift = getSubtarget()->hasSSE2() &&
5742    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5743  if (isShift && ShVal.hasOneUse()) {
5744    // If the shifted value has multiple uses, it may be cheaper to use
5745    // v_set0 + movlhps or movhlps, etc.
5746    EVT EltVT = VT.getVectorElementType();
5747    ShAmt *= EltVT.getSizeInBits();
5748    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5749  }
5750
5751  if (X86::isMOVLMask(SVOp)) {
5752    if (V1IsUndef)
5753      return V2;
5754    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5755      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5756    if (!X86::isMOVLPMask(SVOp)) {
5757      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5758        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5759
5760      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5761        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5762    }
5763  }
5764
5765  // FIXME: fold these into legal mask.
5766  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5767    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5768
5769  if (X86::isMOVHLPSMask(SVOp))
5770    return getMOVHighToLow(Op, dl, DAG);
5771
5772  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5773    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5774
5775  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5776    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5777
5778  if (X86::isMOVLPMask(SVOp))
5779    return getMOVLP(Op, dl, DAG, HasSSE2);
5780
5781  if (ShouldXformToMOVHLPS(SVOp) ||
5782      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5783    return CommuteVectorShuffle(SVOp, DAG);
5784
5785  if (isShift) {
5786    // No better options. Use a vshl / vsrl.
5787    EVT EltVT = VT.getVectorElementType();
5788    ShAmt *= EltVT.getSizeInBits();
5789    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5790  }
5791
5792  bool Commuted = false;
5793  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5794  // 1,1,1,1 -> v8i16 though.
5795  V1IsSplat = isSplatVector(V1.getNode());
5796  V2IsSplat = isSplatVector(V2.getNode());
5797
5798  // Canonicalize the splat or undef, if present, to be on the RHS.
5799  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5800    Op = CommuteVectorShuffle(SVOp, DAG);
5801    SVOp = cast<ShuffleVectorSDNode>(Op);
5802    V1 = SVOp->getOperand(0);
5803    V2 = SVOp->getOperand(1);
5804    std::swap(V1IsSplat, V2IsSplat);
5805    std::swap(V1IsUndef, V2IsUndef);
5806    Commuted = true;
5807  }
5808
5809  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5810    // Shuffling low element of v1 into undef, just return v1.
5811    if (V2IsUndef)
5812      return V1;
5813    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5814    // the instruction selector will not match, so get a canonical MOVL with
5815    // swapped operands to undo the commute.
5816    return getMOVL(DAG, dl, VT, V2, V1);
5817  }
5818
5819  if (X86::isUNPCKLMask(SVOp))
5820    return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5821                                dl, VT, V1, V2, DAG);
5822
5823  if (X86::isUNPCKHMask(SVOp))
5824    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5825
5826  if (V2IsSplat) {
5827    // Normalize mask so all entries that point to V2 points to its first
5828    // element then try to match unpck{h|l} again. If match, return a
5829    // new vector_shuffle with the corrected mask.
5830    SDValue NewMask = NormalizeMask(SVOp, DAG);
5831    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5832    if (NSVOp != SVOp) {
5833      if (X86::isUNPCKLMask(NSVOp, true)) {
5834        return NewMask;
5835      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5836        return NewMask;
5837      }
5838    }
5839  }
5840
5841  if (Commuted) {
5842    // Commute is back and try unpck* again.
5843    // FIXME: this seems wrong.
5844    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5845    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5846
5847    if (X86::isUNPCKLMask(NewSVOp))
5848      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5849                                  dl, VT, V2, V1, DAG);
5850
5851    if (X86::isUNPCKHMask(NewSVOp))
5852      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5853  }
5854
5855  // Normalize the node to match x86 shuffle ops if needed
5856  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5857    return CommuteVectorShuffle(SVOp, DAG);
5858
5859  // The checks below are all present in isShuffleMaskLegal, but they are
5860  // inlined here right now to enable us to directly emit target specific
5861  // nodes, and remove one by one until they don't return Op anymore.
5862  SmallVector<int, 16> M;
5863  SVOp->getMask(M);
5864
5865  if (isPALIGNRMask(M, VT, HasSSSE3))
5866    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5867                                X86::getShufflePALIGNRImmediate(SVOp),
5868                                DAG);
5869
5870  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5871      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5872    if (VT == MVT::v2f64) {
5873      X86ISD::NodeType Opcode =
5874        getSubtarget()->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5875      return getTargetShuffleNode(Opcode, dl, VT, V1, V1, DAG);
5876    }
5877    if (VT == MVT::v2i64)
5878      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5879  }
5880
5881  if (isPSHUFHWMask(M, VT))
5882    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5883                                X86::getShufflePSHUFHWImmediate(SVOp),
5884                                DAG);
5885
5886  if (isPSHUFLWMask(M, VT))
5887    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5888                                X86::getShufflePSHUFLWImmediate(SVOp),
5889                                DAG);
5890
5891  if (isSHUFPMask(M, VT)) {
5892    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5893    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5894      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5895                                  TargetMask, DAG);
5896    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5897      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5898                                  TargetMask, DAG);
5899  }
5900
5901  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5902    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5903      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5904                                  dl, VT, V1, V1, DAG);
5905  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5906    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5907      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5908
5909  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5910  if (VT == MVT::v8i16) {
5911    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5912    if (NewOp.getNode())
5913      return NewOp;
5914  }
5915
5916  if (VT == MVT::v16i8) {
5917    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5918    if (NewOp.getNode())
5919      return NewOp;
5920  }
5921
5922  // Handle all 4 wide cases with a number of shuffles.
5923  if (NumElems == 4)
5924    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5925
5926  return SDValue();
5927}
5928
5929SDValue
5930X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5931                                                SelectionDAG &DAG) const {
5932  EVT VT = Op.getValueType();
5933  DebugLoc dl = Op.getDebugLoc();
5934  if (VT.getSizeInBits() == 8) {
5935    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5936                                    Op.getOperand(0), Op.getOperand(1));
5937    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5938                                    DAG.getValueType(VT));
5939    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5940  } else if (VT.getSizeInBits() == 16) {
5941    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5942    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5943    if (Idx == 0)
5944      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5945                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5946                                     DAG.getNode(ISD::BITCAST, dl,
5947                                                 MVT::v4i32,
5948                                                 Op.getOperand(0)),
5949                                     Op.getOperand(1)));
5950    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5951                                    Op.getOperand(0), Op.getOperand(1));
5952    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5953                                    DAG.getValueType(VT));
5954    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5955  } else if (VT == MVT::f32) {
5956    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5957    // the result back to FR32 register. It's only worth matching if the
5958    // result has a single use which is a store or a bitcast to i32.  And in
5959    // the case of a store, it's not worth it if the index is a constant 0,
5960    // because a MOVSSmr can be used instead, which is smaller and faster.
5961    if (!Op.hasOneUse())
5962      return SDValue();
5963    SDNode *User = *Op.getNode()->use_begin();
5964    if ((User->getOpcode() != ISD::STORE ||
5965         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5966          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5967        (User->getOpcode() != ISD::BITCAST ||
5968         User->getValueType(0) != MVT::i32))
5969      return SDValue();
5970    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5971                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5972                                              Op.getOperand(0)),
5973                                              Op.getOperand(1));
5974    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5975  } else if (VT == MVT::i32) {
5976    // ExtractPS works with constant index.
5977    if (isa<ConstantSDNode>(Op.getOperand(1)))
5978      return Op;
5979  }
5980  return SDValue();
5981}
5982
5983
5984SDValue
5985X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5986                                           SelectionDAG &DAG) const {
5987  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5988    return SDValue();
5989
5990  SDValue Vec = Op.getOperand(0);
5991  EVT VecVT = Vec.getValueType();
5992
5993  // If this is a 256-bit vector result, first extract the 128-bit
5994  // vector and then extract from the 128-bit vector.
5995  if (VecVT.getSizeInBits() > 128) {
5996    DebugLoc dl = Op.getNode()->getDebugLoc();
5997    unsigned NumElems = VecVT.getVectorNumElements();
5998    SDValue Idx = Op.getOperand(1);
5999
6000    if (!isa<ConstantSDNode>(Idx))
6001      return SDValue();
6002
6003    unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
6004    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6005
6006    // Get the 128-bit vector.
6007    bool Upper = IdxVal >= ExtractNumElems;
6008    Vec = Extract128BitVector(Vec, Idx, DAG, dl);
6009
6010    // Extract from it.
6011    SDValue ScaledIdx = Idx;
6012    if (Upper)
6013      ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
6014                              DAG.getConstant(ExtractNumElems,
6015                                              Idx.getValueType()));
6016    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6017                       ScaledIdx);
6018  }
6019
6020  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6021
6022  if (Subtarget->hasSSE41()) {
6023    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6024    if (Res.getNode())
6025      return Res;
6026  }
6027
6028  EVT VT = Op.getValueType();
6029  DebugLoc dl = Op.getDebugLoc();
6030  // TODO: handle v16i8.
6031  if (VT.getSizeInBits() == 16) {
6032    SDValue Vec = Op.getOperand(0);
6033    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6034    if (Idx == 0)
6035      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6036                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6037                                     DAG.getNode(ISD::BITCAST, dl,
6038                                                 MVT::v4i32, Vec),
6039                                     Op.getOperand(1)));
6040    // Transform it so it match pextrw which produces a 32-bit result.
6041    EVT EltVT = MVT::i32;
6042    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6043                                    Op.getOperand(0), Op.getOperand(1));
6044    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6045                                    DAG.getValueType(VT));
6046    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6047  } else if (VT.getSizeInBits() == 32) {
6048    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6049    if (Idx == 0)
6050      return Op;
6051
6052    // SHUFPS the element to the lowest double word, then movss.
6053    int Mask[4] = { Idx, -1, -1, -1 };
6054    EVT VVT = Op.getOperand(0).getValueType();
6055    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6056                                       DAG.getUNDEF(VVT), Mask);
6057    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6058                       DAG.getIntPtrConstant(0));
6059  } else if (VT.getSizeInBits() == 64) {
6060    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6061    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6062    //        to match extract_elt for f64.
6063    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6064    if (Idx == 0)
6065      return Op;
6066
6067    // UNPCKHPD the element to the lowest double word, then movsd.
6068    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6069    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6070    int Mask[2] = { 1, -1 };
6071    EVT VVT = Op.getOperand(0).getValueType();
6072    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6073                                       DAG.getUNDEF(VVT), Mask);
6074    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6075                       DAG.getIntPtrConstant(0));
6076  }
6077
6078  return SDValue();
6079}
6080
6081SDValue
6082X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6083                                               SelectionDAG &DAG) const {
6084  EVT VT = Op.getValueType();
6085  EVT EltVT = VT.getVectorElementType();
6086  DebugLoc dl = Op.getDebugLoc();
6087
6088  SDValue N0 = Op.getOperand(0);
6089  SDValue N1 = Op.getOperand(1);
6090  SDValue N2 = Op.getOperand(2);
6091
6092  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6093      isa<ConstantSDNode>(N2)) {
6094    unsigned Opc;
6095    if (VT == MVT::v8i16)
6096      Opc = X86ISD::PINSRW;
6097    else if (VT == MVT::v16i8)
6098      Opc = X86ISD::PINSRB;
6099    else
6100      Opc = X86ISD::PINSRB;
6101
6102    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6103    // argument.
6104    if (N1.getValueType() != MVT::i32)
6105      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6106    if (N2.getValueType() != MVT::i32)
6107      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6108    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6109  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6110    // Bits [7:6] of the constant are the source select.  This will always be
6111    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6112    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6113    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6114    // Bits [5:4] of the constant are the destination select.  This is the
6115    //  value of the incoming immediate.
6116    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6117    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6118    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6119    // Create this as a scalar to vector..
6120    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6121    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6122  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6123    // PINSR* works with constant index.
6124    return Op;
6125  }
6126  return SDValue();
6127}
6128
6129SDValue
6130X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6131  EVT VT = Op.getValueType();
6132  EVT EltVT = VT.getVectorElementType();
6133
6134  DebugLoc dl = Op.getDebugLoc();
6135  SDValue N0 = Op.getOperand(0);
6136  SDValue N1 = Op.getOperand(1);
6137  SDValue N2 = Op.getOperand(2);
6138
6139  // If this is a 256-bit vector result, first insert into a 128-bit
6140  // vector and then insert into the 256-bit vector.
6141  if (VT.getSizeInBits() > 128) {
6142    if (!isa<ConstantSDNode>(N2))
6143      return SDValue();
6144
6145    // Get the 128-bit vector.
6146    unsigned NumElems = VT.getVectorNumElements();
6147    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6148    bool Upper = IdxVal >= NumElems / 2;
6149
6150    SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
6151
6152    // Insert into it.
6153    SDValue ScaledN2 = N2;
6154    if (Upper)
6155      ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
6156                             DAG.getConstant(NumElems /
6157                                             (VT.getSizeInBits() / 128),
6158                                             N2.getValueType()));
6159    Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
6160                     N1, ScaledN2);
6161
6162    // Insert the 128-bit vector
6163    // FIXME: Why UNDEF?
6164    return Insert128BitVector(N0, Op, N2, DAG, dl);
6165  }
6166
6167  if (Subtarget->hasSSE41())
6168    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6169
6170  if (EltVT == MVT::i8)
6171    return SDValue();
6172
6173  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6174    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6175    // as its second argument.
6176    if (N1.getValueType() != MVT::i32)
6177      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6178    if (N2.getValueType() != MVT::i32)
6179      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6180    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6181  }
6182  return SDValue();
6183}
6184
6185SDValue
6186X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6187  LLVMContext *Context = DAG.getContext();
6188  DebugLoc dl = Op.getDebugLoc();
6189  EVT OpVT = Op.getValueType();
6190
6191  // If this is a 256-bit vector result, first insert into a 128-bit
6192  // vector and then insert into the 256-bit vector.
6193  if (OpVT.getSizeInBits() > 128) {
6194    // Insert into a 128-bit vector.
6195    EVT VT128 = EVT::getVectorVT(*Context,
6196                                 OpVT.getVectorElementType(),
6197                                 OpVT.getVectorNumElements() / 2);
6198
6199    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6200
6201    // Insert the 128-bit vector.
6202    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6203                              DAG.getConstant(0, MVT::i32),
6204                              DAG, dl);
6205  }
6206
6207  if (Op.getValueType() == MVT::v1i64 &&
6208      Op.getOperand(0).getValueType() == MVT::i64)
6209    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6210
6211  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6212  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6213         "Expected an SSE type!");
6214  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6215                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6216}
6217
6218// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6219// a simple subregister reference or explicit instructions to grab
6220// upper bits of a vector.
6221SDValue
6222X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6223  if (Subtarget->hasAVX()) {
6224    DebugLoc dl = Op.getNode()->getDebugLoc();
6225    SDValue Vec = Op.getNode()->getOperand(0);
6226    SDValue Idx = Op.getNode()->getOperand(1);
6227
6228    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6229        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6230        return Extract128BitVector(Vec, Idx, DAG, dl);
6231    }
6232  }
6233  return SDValue();
6234}
6235
6236// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6237// simple superregister reference or explicit instructions to insert
6238// the upper bits of a vector.
6239SDValue
6240X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6241  if (Subtarget->hasAVX()) {
6242    DebugLoc dl = Op.getNode()->getDebugLoc();
6243    SDValue Vec = Op.getNode()->getOperand(0);
6244    SDValue SubVec = Op.getNode()->getOperand(1);
6245    SDValue Idx = Op.getNode()->getOperand(2);
6246
6247    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6248        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6249      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6250    }
6251  }
6252  return SDValue();
6253}
6254
6255// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6256// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6257// one of the above mentioned nodes. It has to be wrapped because otherwise
6258// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6259// be used to form addressing mode. These wrapped nodes will be selected
6260// into MOV32ri.
6261SDValue
6262X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6263  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6264
6265  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6266  // global base reg.
6267  unsigned char OpFlag = 0;
6268  unsigned WrapperKind = X86ISD::Wrapper;
6269  CodeModel::Model M = getTargetMachine().getCodeModel();
6270
6271  if (Subtarget->isPICStyleRIPRel() &&
6272      (M == CodeModel::Small || M == CodeModel::Kernel))
6273    WrapperKind = X86ISD::WrapperRIP;
6274  else if (Subtarget->isPICStyleGOT())
6275    OpFlag = X86II::MO_GOTOFF;
6276  else if (Subtarget->isPICStyleStubPIC())
6277    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6278
6279  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6280                                             CP->getAlignment(),
6281                                             CP->getOffset(), OpFlag);
6282  DebugLoc DL = CP->getDebugLoc();
6283  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6284  // With PIC, the address is actually $g + Offset.
6285  if (OpFlag) {
6286    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6287                         DAG.getNode(X86ISD::GlobalBaseReg,
6288                                     DebugLoc(), getPointerTy()),
6289                         Result);
6290  }
6291
6292  return Result;
6293}
6294
6295SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6296  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6297
6298  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6299  // global base reg.
6300  unsigned char OpFlag = 0;
6301  unsigned WrapperKind = X86ISD::Wrapper;
6302  CodeModel::Model M = getTargetMachine().getCodeModel();
6303
6304  if (Subtarget->isPICStyleRIPRel() &&
6305      (M == CodeModel::Small || M == CodeModel::Kernel))
6306    WrapperKind = X86ISD::WrapperRIP;
6307  else if (Subtarget->isPICStyleGOT())
6308    OpFlag = X86II::MO_GOTOFF;
6309  else if (Subtarget->isPICStyleStubPIC())
6310    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6311
6312  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6313                                          OpFlag);
6314  DebugLoc DL = JT->getDebugLoc();
6315  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6316
6317  // With PIC, the address is actually $g + Offset.
6318  if (OpFlag)
6319    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6320                         DAG.getNode(X86ISD::GlobalBaseReg,
6321                                     DebugLoc(), getPointerTy()),
6322                         Result);
6323
6324  return Result;
6325}
6326
6327SDValue
6328X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6329  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6330
6331  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6332  // global base reg.
6333  unsigned char OpFlag = 0;
6334  unsigned WrapperKind = X86ISD::Wrapper;
6335  CodeModel::Model M = getTargetMachine().getCodeModel();
6336
6337  if (Subtarget->isPICStyleRIPRel() &&
6338      (M == CodeModel::Small || M == CodeModel::Kernel))
6339    WrapperKind = X86ISD::WrapperRIP;
6340  else if (Subtarget->isPICStyleGOT())
6341    OpFlag = X86II::MO_GOTOFF;
6342  else if (Subtarget->isPICStyleStubPIC())
6343    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6344
6345  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6346
6347  DebugLoc DL = Op.getDebugLoc();
6348  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6349
6350
6351  // With PIC, the address is actually $g + Offset.
6352  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6353      !Subtarget->is64Bit()) {
6354    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6355                         DAG.getNode(X86ISD::GlobalBaseReg,
6356                                     DebugLoc(), getPointerTy()),
6357                         Result);
6358  }
6359
6360  return Result;
6361}
6362
6363SDValue
6364X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6365  // Create the TargetBlockAddressAddress node.
6366  unsigned char OpFlags =
6367    Subtarget->ClassifyBlockAddressReference();
6368  CodeModel::Model M = getTargetMachine().getCodeModel();
6369  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6370  DebugLoc dl = Op.getDebugLoc();
6371  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6372                                       /*isTarget=*/true, OpFlags);
6373
6374  if (Subtarget->isPICStyleRIPRel() &&
6375      (M == CodeModel::Small || M == CodeModel::Kernel))
6376    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6377  else
6378    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6379
6380  // With PIC, the address is actually $g + Offset.
6381  if (isGlobalRelativeToPICBase(OpFlags)) {
6382    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6383                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6384                         Result);
6385  }
6386
6387  return Result;
6388}
6389
6390SDValue
6391X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6392                                      int64_t Offset,
6393                                      SelectionDAG &DAG) const {
6394  // Create the TargetGlobalAddress node, folding in the constant
6395  // offset if it is legal.
6396  unsigned char OpFlags =
6397    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6398  CodeModel::Model M = getTargetMachine().getCodeModel();
6399  SDValue Result;
6400  if (OpFlags == X86II::MO_NO_FLAG &&
6401      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6402    // A direct static reference to a global.
6403    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6404    Offset = 0;
6405  } else {
6406    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6407  }
6408
6409  if (Subtarget->isPICStyleRIPRel() &&
6410      (M == CodeModel::Small || M == CodeModel::Kernel))
6411    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6412  else
6413    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6414
6415  // With PIC, the address is actually $g + Offset.
6416  if (isGlobalRelativeToPICBase(OpFlags)) {
6417    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6418                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6419                         Result);
6420  }
6421
6422  // For globals that require a load from a stub to get the address, emit the
6423  // load.
6424  if (isGlobalStubReference(OpFlags))
6425    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6426                         MachinePointerInfo::getGOT(), false, false, 0);
6427
6428  // If there was a non-zero offset that we didn't fold, create an explicit
6429  // addition for it.
6430  if (Offset != 0)
6431    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6432                         DAG.getConstant(Offset, getPointerTy()));
6433
6434  return Result;
6435}
6436
6437SDValue
6438X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6439  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6440  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6441  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6442}
6443
6444static SDValue
6445GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6446           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6447           unsigned char OperandFlags) {
6448  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6449  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6450  DebugLoc dl = GA->getDebugLoc();
6451  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6452                                           GA->getValueType(0),
6453                                           GA->getOffset(),
6454                                           OperandFlags);
6455  if (InFlag) {
6456    SDValue Ops[] = { Chain,  TGA, *InFlag };
6457    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6458  } else {
6459    SDValue Ops[]  = { Chain, TGA };
6460    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6461  }
6462
6463  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6464  MFI->setAdjustsStack(true);
6465
6466  SDValue Flag = Chain.getValue(1);
6467  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6468}
6469
6470// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6471static SDValue
6472LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6473                                const EVT PtrVT) {
6474  SDValue InFlag;
6475  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6476  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6477                                     DAG.getNode(X86ISD::GlobalBaseReg,
6478                                                 DebugLoc(), PtrVT), InFlag);
6479  InFlag = Chain.getValue(1);
6480
6481  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6482}
6483
6484// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6485static SDValue
6486LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6487                                const EVT PtrVT) {
6488  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6489                    X86::RAX, X86II::MO_TLSGD);
6490}
6491
6492// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6493// "local exec" model.
6494static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6495                                   const EVT PtrVT, TLSModel::Model model,
6496                                   bool is64Bit) {
6497  DebugLoc dl = GA->getDebugLoc();
6498
6499  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6500  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6501                                                         is64Bit ? 257 : 256));
6502
6503  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6504                                      DAG.getIntPtrConstant(0),
6505                                      MachinePointerInfo(Ptr), false, false, 0);
6506
6507  unsigned char OperandFlags = 0;
6508  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6509  // initialexec.
6510  unsigned WrapperKind = X86ISD::Wrapper;
6511  if (model == TLSModel::LocalExec) {
6512    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6513  } else if (is64Bit) {
6514    assert(model == TLSModel::InitialExec);
6515    OperandFlags = X86II::MO_GOTTPOFF;
6516    WrapperKind = X86ISD::WrapperRIP;
6517  } else {
6518    assert(model == TLSModel::InitialExec);
6519    OperandFlags = X86II::MO_INDNTPOFF;
6520  }
6521
6522  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6523  // exec)
6524  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6525                                           GA->getValueType(0),
6526                                           GA->getOffset(), OperandFlags);
6527  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6528
6529  if (model == TLSModel::InitialExec)
6530    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6531                         MachinePointerInfo::getGOT(), false, false, 0);
6532
6533  // The address of the thread local variable is the add of the thread
6534  // pointer with the offset of the variable.
6535  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6536}
6537
6538SDValue
6539X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6540
6541  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6542  const GlobalValue *GV = GA->getGlobal();
6543
6544  if (Subtarget->isTargetELF()) {
6545    // TODO: implement the "local dynamic" model
6546    // TODO: implement the "initial exec"model for pic executables
6547
6548    // If GV is an alias then use the aliasee for determining
6549    // thread-localness.
6550    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6551      GV = GA->resolveAliasedGlobal(false);
6552
6553    TLSModel::Model model
6554      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6555
6556    switch (model) {
6557      case TLSModel::GeneralDynamic:
6558      case TLSModel::LocalDynamic: // not implemented
6559        if (Subtarget->is64Bit())
6560          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6561        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6562
6563      case TLSModel::InitialExec:
6564      case TLSModel::LocalExec:
6565        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6566                                   Subtarget->is64Bit());
6567    }
6568  } else if (Subtarget->isTargetDarwin()) {
6569    // Darwin only has one model of TLS.  Lower to that.
6570    unsigned char OpFlag = 0;
6571    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6572                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6573
6574    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6575    // global base reg.
6576    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6577                  !Subtarget->is64Bit();
6578    if (PIC32)
6579      OpFlag = X86II::MO_TLVP_PIC_BASE;
6580    else
6581      OpFlag = X86II::MO_TLVP;
6582    DebugLoc DL = Op.getDebugLoc();
6583    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6584                                                GA->getValueType(0),
6585                                                GA->getOffset(), OpFlag);
6586    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6587
6588    // With PIC32, the address is actually $g + Offset.
6589    if (PIC32)
6590      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6591                           DAG.getNode(X86ISD::GlobalBaseReg,
6592                                       DebugLoc(), getPointerTy()),
6593                           Offset);
6594
6595    // Lowering the machine isd will make sure everything is in the right
6596    // location.
6597    SDValue Chain = DAG.getEntryNode();
6598    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6599    SDValue Args[] = { Chain, Offset };
6600    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6601
6602    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6603    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6604    MFI->setAdjustsStack(true);
6605
6606    // And our return value (tls address) is in the standard call return value
6607    // location.
6608    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6609    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6610  }
6611
6612  assert(false &&
6613         "TLS not implemented for this target.");
6614
6615  llvm_unreachable("Unreachable");
6616  return SDValue();
6617}
6618
6619
6620/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6621/// take a 2 x i32 value to shift plus a shift amount.
6622SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6623  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6624  EVT VT = Op.getValueType();
6625  unsigned VTBits = VT.getSizeInBits();
6626  DebugLoc dl = Op.getDebugLoc();
6627  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6628  SDValue ShOpLo = Op.getOperand(0);
6629  SDValue ShOpHi = Op.getOperand(1);
6630  SDValue ShAmt  = Op.getOperand(2);
6631  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6632                                     DAG.getConstant(VTBits - 1, MVT::i8))
6633                       : DAG.getConstant(0, VT);
6634
6635  SDValue Tmp2, Tmp3;
6636  if (Op.getOpcode() == ISD::SHL_PARTS) {
6637    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6638    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6639  } else {
6640    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6641    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6642  }
6643
6644  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6645                                DAG.getConstant(VTBits, MVT::i8));
6646  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6647                             AndNode, DAG.getConstant(0, MVT::i8));
6648
6649  SDValue Hi, Lo;
6650  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6651  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6652  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6653
6654  if (Op.getOpcode() == ISD::SHL_PARTS) {
6655    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6656    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6657  } else {
6658    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6659    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6660  }
6661
6662  SDValue Ops[2] = { Lo, Hi };
6663  return DAG.getMergeValues(Ops, 2, dl);
6664}
6665
6666SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6667                                           SelectionDAG &DAG) const {
6668  EVT SrcVT = Op.getOperand(0).getValueType();
6669
6670  if (SrcVT.isVector())
6671    return SDValue();
6672
6673  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6674         "Unknown SINT_TO_FP to lower!");
6675
6676  // These are really Legal; return the operand so the caller accepts it as
6677  // Legal.
6678  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6679    return Op;
6680  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6681      Subtarget->is64Bit()) {
6682    return Op;
6683  }
6684
6685  DebugLoc dl = Op.getDebugLoc();
6686  unsigned Size = SrcVT.getSizeInBits()/8;
6687  MachineFunction &MF = DAG.getMachineFunction();
6688  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6689  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6690  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6691                               StackSlot,
6692                               MachinePointerInfo::getFixedStack(SSFI),
6693                               false, false, 0);
6694  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6695}
6696
6697SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6698                                     SDValue StackSlot,
6699                                     SelectionDAG &DAG) const {
6700  // Build the FILD
6701  DebugLoc DL = Op.getDebugLoc();
6702  SDVTList Tys;
6703  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6704  if (useSSE)
6705    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
6706  else
6707    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6708
6709  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6710
6711  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6712  MachineMemOperand *MMO =
6713    DAG.getMachineFunction()
6714    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6715                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6716
6717  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6718  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6719                                           X86ISD::FILD, DL,
6720                                           Tys, Ops, array_lengthof(Ops),
6721                                           SrcVT, MMO);
6722
6723  if (useSSE) {
6724    Chain = Result.getValue(1);
6725    SDValue InFlag = Result.getValue(2);
6726
6727    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6728    // shouldn't be necessary except that RFP cannot be live across
6729    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6730    MachineFunction &MF = DAG.getMachineFunction();
6731    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6732    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6733    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6734    Tys = DAG.getVTList(MVT::Other);
6735    SDValue Ops[] = {
6736      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6737    };
6738    MachineMemOperand *MMO =
6739      DAG.getMachineFunction()
6740      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6741                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6742
6743    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6744                                    Ops, array_lengthof(Ops),
6745                                    Op.getValueType(), MMO);
6746    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6747                         MachinePointerInfo::getFixedStack(SSFI),
6748                         false, false, 0);
6749  }
6750
6751  return Result;
6752}
6753
6754// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6755SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6756                                               SelectionDAG &DAG) const {
6757  // This algorithm is not obvious. Here it is in C code, more or less:
6758  /*
6759    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6760      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6761      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6762
6763      // Copy ints to xmm registers.
6764      __m128i xh = _mm_cvtsi32_si128( hi );
6765      __m128i xl = _mm_cvtsi32_si128( lo );
6766
6767      // Combine into low half of a single xmm register.
6768      __m128i x = _mm_unpacklo_epi32( xh, xl );
6769      __m128d d;
6770      double sd;
6771
6772      // Merge in appropriate exponents to give the integer bits the right
6773      // magnitude.
6774      x = _mm_unpacklo_epi32( x, exp );
6775
6776      // Subtract away the biases to deal with the IEEE-754 double precision
6777      // implicit 1.
6778      d = _mm_sub_pd( (__m128d) x, bias );
6779
6780      // All conversions up to here are exact. The correctly rounded result is
6781      // calculated using the current rounding mode using the following
6782      // horizontal add.
6783      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6784      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6785                                // store doesn't really need to be here (except
6786                                // maybe to zero the other double)
6787      return sd;
6788    }
6789  */
6790
6791  DebugLoc dl = Op.getDebugLoc();
6792  LLVMContext *Context = DAG.getContext();
6793
6794  // Build some magic constants.
6795  std::vector<Constant*> CV0;
6796  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6797  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6798  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6799  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6800  Constant *C0 = ConstantVector::get(CV0);
6801  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6802
6803  std::vector<Constant*> CV1;
6804  CV1.push_back(
6805    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6806  CV1.push_back(
6807    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6808  Constant *C1 = ConstantVector::get(CV1);
6809  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6810
6811  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6812                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6813                                        Op.getOperand(0),
6814                                        DAG.getIntPtrConstant(1)));
6815  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6816                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6817                                        Op.getOperand(0),
6818                                        DAG.getIntPtrConstant(0)));
6819  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6820  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6821                              MachinePointerInfo::getConstantPool(),
6822                              false, false, 16);
6823  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6824  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6825  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6826                              MachinePointerInfo::getConstantPool(),
6827                              false, false, 16);
6828  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6829
6830  // Add the halves; easiest way is to swap them into another reg first.
6831  int ShufMask[2] = { 1, -1 };
6832  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6833                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6834  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6835  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6836                     DAG.getIntPtrConstant(0));
6837}
6838
6839// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6840SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6841                                               SelectionDAG &DAG) const {
6842  DebugLoc dl = Op.getDebugLoc();
6843  // FP constant to bias correct the final result.
6844  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6845                                   MVT::f64);
6846
6847  // Load the 32-bit value into an XMM register.
6848  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6849                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6850                                         Op.getOperand(0),
6851                                         DAG.getIntPtrConstant(0)));
6852
6853  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6854                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6855                     DAG.getIntPtrConstant(0));
6856
6857  // Or the load with the bias.
6858  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6859                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6860                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6861                                                   MVT::v2f64, Load)),
6862                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6863                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6864                                                   MVT::v2f64, Bias)));
6865  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6866                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6867                   DAG.getIntPtrConstant(0));
6868
6869  // Subtract the bias.
6870  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6871
6872  // Handle final rounding.
6873  EVT DestVT = Op.getValueType();
6874
6875  if (DestVT.bitsLT(MVT::f64)) {
6876    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6877                       DAG.getIntPtrConstant(0));
6878  } else if (DestVT.bitsGT(MVT::f64)) {
6879    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6880  }
6881
6882  // Handle final rounding.
6883  return Sub;
6884}
6885
6886SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6887                                           SelectionDAG &DAG) const {
6888  SDValue N0 = Op.getOperand(0);
6889  DebugLoc dl = Op.getDebugLoc();
6890
6891  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6892  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6893  // the optimization here.
6894  if (DAG.SignBitIsZero(N0))
6895    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6896
6897  EVT SrcVT = N0.getValueType();
6898  EVT DstVT = Op.getValueType();
6899  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6900    return LowerUINT_TO_FP_i64(Op, DAG);
6901  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6902    return LowerUINT_TO_FP_i32(Op, DAG);
6903
6904  // Make a 64-bit buffer, and use it to build an FILD.
6905  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6906  if (SrcVT == MVT::i32) {
6907    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6908    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6909                                     getPointerTy(), StackSlot, WordOff);
6910    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6911                                  StackSlot, MachinePointerInfo(),
6912                                  false, false, 0);
6913    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6914                                  OffsetSlot, MachinePointerInfo(),
6915                                  false, false, 0);
6916    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6917    return Fild;
6918  }
6919
6920  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6921  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6922                                StackSlot, MachinePointerInfo(),
6923                               false, false, 0);
6924  // For i64 source, we need to add the appropriate power of 2 if the input
6925  // was negative.  This is the same as the optimization in
6926  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6927  // we must be careful to do the computation in x87 extended precision, not
6928  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6929  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6930  MachineMemOperand *MMO =
6931    DAG.getMachineFunction()
6932    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6933                          MachineMemOperand::MOLoad, 8, 8);
6934
6935  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6936  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6937  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6938                                         MVT::i64, MMO);
6939
6940  APInt FF(32, 0x5F800000ULL);
6941
6942  // Check whether the sign bit is set.
6943  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6944                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6945                                 ISD::SETLT);
6946
6947  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6948  SDValue FudgePtr = DAG.getConstantPool(
6949                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6950                                         getPointerTy());
6951
6952  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6953  SDValue Zero = DAG.getIntPtrConstant(0);
6954  SDValue Four = DAG.getIntPtrConstant(4);
6955  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6956                               Zero, Four);
6957  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6958
6959  // Load the value out, extending it from f32 to f80.
6960  // FIXME: Avoid the extend by constructing the right constant pool?
6961  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
6962                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6963                                 MVT::f32, false, false, 4);
6964  // Extend everything to 80 bits to force it to be done on x87.
6965  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6966  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6967}
6968
6969std::pair<SDValue,SDValue> X86TargetLowering::
6970FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6971  DebugLoc DL = Op.getDebugLoc();
6972
6973  EVT DstTy = Op.getValueType();
6974
6975  if (!IsSigned) {
6976    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6977    DstTy = MVT::i64;
6978  }
6979
6980  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6981         DstTy.getSimpleVT() >= MVT::i16 &&
6982         "Unknown FP_TO_SINT to lower!");
6983
6984  // These are really Legal.
6985  if (DstTy == MVT::i32 &&
6986      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6987    return std::make_pair(SDValue(), SDValue());
6988  if (Subtarget->is64Bit() &&
6989      DstTy == MVT::i64 &&
6990      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6991    return std::make_pair(SDValue(), SDValue());
6992
6993  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6994  // stack slot.
6995  MachineFunction &MF = DAG.getMachineFunction();
6996  unsigned MemSize = DstTy.getSizeInBits()/8;
6997  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6998  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6999
7000
7001
7002  unsigned Opc;
7003  switch (DstTy.getSimpleVT().SimpleTy) {
7004  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7005  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7006  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7007  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7008  }
7009
7010  SDValue Chain = DAG.getEntryNode();
7011  SDValue Value = Op.getOperand(0);
7012  EVT TheVT = Op.getOperand(0).getValueType();
7013  if (isScalarFPTypeInSSEReg(TheVT)) {
7014    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7015    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7016                         MachinePointerInfo::getFixedStack(SSFI),
7017                         false, false, 0);
7018    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7019    SDValue Ops[] = {
7020      Chain, StackSlot, DAG.getValueType(TheVT)
7021    };
7022
7023    MachineMemOperand *MMO =
7024      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7025                              MachineMemOperand::MOLoad, MemSize, MemSize);
7026    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7027                                    DstTy, MMO);
7028    Chain = Value.getValue(1);
7029    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7030    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7031  }
7032
7033  MachineMemOperand *MMO =
7034    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7035                            MachineMemOperand::MOStore, MemSize, MemSize);
7036
7037  // Build the FP_TO_INT*_IN_MEM
7038  SDValue Ops[] = { Chain, Value, StackSlot };
7039  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7040                                         Ops, 3, DstTy, MMO);
7041
7042  return std::make_pair(FIST, StackSlot);
7043}
7044
7045SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7046                                           SelectionDAG &DAG) const {
7047  if (Op.getValueType().isVector())
7048    return SDValue();
7049
7050  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7051  SDValue FIST = Vals.first, StackSlot = Vals.second;
7052  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7053  if (FIST.getNode() == 0) return Op;
7054
7055  // Load the result.
7056  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7057                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7058}
7059
7060SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7061                                           SelectionDAG &DAG) const {
7062  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7063  SDValue FIST = Vals.first, StackSlot = Vals.second;
7064  assert(FIST.getNode() && "Unexpected failure");
7065
7066  // Load the result.
7067  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7068                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7069}
7070
7071SDValue X86TargetLowering::LowerFABS(SDValue Op,
7072                                     SelectionDAG &DAG) const {
7073  LLVMContext *Context = DAG.getContext();
7074  DebugLoc dl = Op.getDebugLoc();
7075  EVT VT = Op.getValueType();
7076  EVT EltVT = VT;
7077  if (VT.isVector())
7078    EltVT = VT.getVectorElementType();
7079  std::vector<Constant*> CV;
7080  if (EltVT == MVT::f64) {
7081    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7082    CV.push_back(C);
7083    CV.push_back(C);
7084  } else {
7085    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7086    CV.push_back(C);
7087    CV.push_back(C);
7088    CV.push_back(C);
7089    CV.push_back(C);
7090  }
7091  Constant *C = ConstantVector::get(CV);
7092  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7093  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7094                             MachinePointerInfo::getConstantPool(),
7095                             false, false, 16);
7096  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7097}
7098
7099SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7100  LLVMContext *Context = DAG.getContext();
7101  DebugLoc dl = Op.getDebugLoc();
7102  EVT VT = Op.getValueType();
7103  EVT EltVT = VT;
7104  if (VT.isVector())
7105    EltVT = VT.getVectorElementType();
7106  std::vector<Constant*> CV;
7107  if (EltVT == MVT::f64) {
7108    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7109    CV.push_back(C);
7110    CV.push_back(C);
7111  } else {
7112    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7113    CV.push_back(C);
7114    CV.push_back(C);
7115    CV.push_back(C);
7116    CV.push_back(C);
7117  }
7118  Constant *C = ConstantVector::get(CV);
7119  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7120  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7121                             MachinePointerInfo::getConstantPool(),
7122                             false, false, 16);
7123  if (VT.isVector()) {
7124    return DAG.getNode(ISD::BITCAST, dl, VT,
7125                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7126                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7127                                Op.getOperand(0)),
7128                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7129  } else {
7130    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7131  }
7132}
7133
7134SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7135  LLVMContext *Context = DAG.getContext();
7136  SDValue Op0 = Op.getOperand(0);
7137  SDValue Op1 = Op.getOperand(1);
7138  DebugLoc dl = Op.getDebugLoc();
7139  EVT VT = Op.getValueType();
7140  EVT SrcVT = Op1.getValueType();
7141
7142  // If second operand is smaller, extend it first.
7143  if (SrcVT.bitsLT(VT)) {
7144    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7145    SrcVT = VT;
7146  }
7147  // And if it is bigger, shrink it first.
7148  if (SrcVT.bitsGT(VT)) {
7149    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7150    SrcVT = VT;
7151  }
7152
7153  // At this point the operands and the result should have the same
7154  // type, and that won't be f80 since that is not custom lowered.
7155
7156  // First get the sign bit of second operand.
7157  std::vector<Constant*> CV;
7158  if (SrcVT == MVT::f64) {
7159    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7160    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7161  } else {
7162    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7163    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7164    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7165    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7166  }
7167  Constant *C = ConstantVector::get(CV);
7168  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7169  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7170                              MachinePointerInfo::getConstantPool(),
7171                              false, false, 16);
7172  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7173
7174  // Shift sign bit right or left if the two operands have different types.
7175  if (SrcVT.bitsGT(VT)) {
7176    // Op0 is MVT::f32, Op1 is MVT::f64.
7177    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7178    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7179                          DAG.getConstant(32, MVT::i32));
7180    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7181    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7182                          DAG.getIntPtrConstant(0));
7183  }
7184
7185  // Clear first operand sign bit.
7186  CV.clear();
7187  if (VT == MVT::f64) {
7188    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7189    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7190  } else {
7191    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7192    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7193    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7194    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7195  }
7196  C = ConstantVector::get(CV);
7197  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7198  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7199                              MachinePointerInfo::getConstantPool(),
7200                              false, false, 16);
7201  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7202
7203  // Or the value with the sign bit.
7204  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7205}
7206
7207/// Emit nodes that will be selected as "test Op0,Op0", or something
7208/// equivalent.
7209SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7210                                    SelectionDAG &DAG) const {
7211  DebugLoc dl = Op.getDebugLoc();
7212
7213  // CF and OF aren't always set the way we want. Determine which
7214  // of these we need.
7215  bool NeedCF = false;
7216  bool NeedOF = false;
7217  switch (X86CC) {
7218  default: break;
7219  case X86::COND_A: case X86::COND_AE:
7220  case X86::COND_B: case X86::COND_BE:
7221    NeedCF = true;
7222    break;
7223  case X86::COND_G: case X86::COND_GE:
7224  case X86::COND_L: case X86::COND_LE:
7225  case X86::COND_O: case X86::COND_NO:
7226    NeedOF = true;
7227    break;
7228  }
7229
7230  // See if we can use the EFLAGS value from the operand instead of
7231  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7232  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7233  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7234    // Emit a CMP with 0, which is the TEST pattern.
7235    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7236                       DAG.getConstant(0, Op.getValueType()));
7237
7238  unsigned Opcode = 0;
7239  unsigned NumOperands = 0;
7240  switch (Op.getNode()->getOpcode()) {
7241  case ISD::ADD:
7242    // Due to an isel shortcoming, be conservative if this add is likely to be
7243    // selected as part of a load-modify-store instruction. When the root node
7244    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7245    // uses of other nodes in the match, such as the ADD in this case. This
7246    // leads to the ADD being left around and reselected, with the result being
7247    // two adds in the output.  Alas, even if none our users are stores, that
7248    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7249    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7250    // climbing the DAG back to the root, and it doesn't seem to be worth the
7251    // effort.
7252    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7253           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7254      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7255        goto default_case;
7256
7257    if (ConstantSDNode *C =
7258        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7259      // An add of one will be selected as an INC.
7260      if (C->getAPIntValue() == 1) {
7261        Opcode = X86ISD::INC;
7262        NumOperands = 1;
7263        break;
7264      }
7265
7266      // An add of negative one (subtract of one) will be selected as a DEC.
7267      if (C->getAPIntValue().isAllOnesValue()) {
7268        Opcode = X86ISD::DEC;
7269        NumOperands = 1;
7270        break;
7271      }
7272    }
7273
7274    // Otherwise use a regular EFLAGS-setting add.
7275    Opcode = X86ISD::ADD;
7276    NumOperands = 2;
7277    break;
7278  case ISD::AND: {
7279    // If the primary and result isn't used, don't bother using X86ISD::AND,
7280    // because a TEST instruction will be better.
7281    bool NonFlagUse = false;
7282    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7283           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7284      SDNode *User = *UI;
7285      unsigned UOpNo = UI.getOperandNo();
7286      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7287        // Look pass truncate.
7288        UOpNo = User->use_begin().getOperandNo();
7289        User = *User->use_begin();
7290      }
7291
7292      if (User->getOpcode() != ISD::BRCOND &&
7293          User->getOpcode() != ISD::SETCC &&
7294          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7295        NonFlagUse = true;
7296        break;
7297      }
7298    }
7299
7300    if (!NonFlagUse)
7301      break;
7302  }
7303    // FALL THROUGH
7304  case ISD::SUB:
7305  case ISD::OR:
7306  case ISD::XOR:
7307    // Due to the ISEL shortcoming noted above, be conservative if this op is
7308    // likely to be selected as part of a load-modify-store instruction.
7309    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7310           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7311      if (UI->getOpcode() == ISD::STORE)
7312        goto default_case;
7313
7314    // Otherwise use a regular EFLAGS-setting instruction.
7315    switch (Op.getNode()->getOpcode()) {
7316    default: llvm_unreachable("unexpected operator!");
7317    case ISD::SUB: Opcode = X86ISD::SUB; break;
7318    case ISD::OR:  Opcode = X86ISD::OR;  break;
7319    case ISD::XOR: Opcode = X86ISD::XOR; break;
7320    case ISD::AND: Opcode = X86ISD::AND; break;
7321    }
7322
7323    NumOperands = 2;
7324    break;
7325  case X86ISD::ADD:
7326  case X86ISD::SUB:
7327  case X86ISD::INC:
7328  case X86ISD::DEC:
7329  case X86ISD::OR:
7330  case X86ISD::XOR:
7331  case X86ISD::AND:
7332    return SDValue(Op.getNode(), 1);
7333  default:
7334  default_case:
7335    break;
7336  }
7337
7338  if (Opcode == 0)
7339    // Emit a CMP with 0, which is the TEST pattern.
7340    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7341                       DAG.getConstant(0, Op.getValueType()));
7342
7343  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7344  SmallVector<SDValue, 4> Ops;
7345  for (unsigned i = 0; i != NumOperands; ++i)
7346    Ops.push_back(Op.getOperand(i));
7347
7348  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7349  DAG.ReplaceAllUsesWith(Op, New);
7350  return SDValue(New.getNode(), 1);
7351}
7352
7353/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7354/// equivalent.
7355SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7356                                   SelectionDAG &DAG) const {
7357  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7358    if (C->getAPIntValue() == 0)
7359      return EmitTest(Op0, X86CC, DAG);
7360
7361  DebugLoc dl = Op0.getDebugLoc();
7362  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7363}
7364
7365/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7366/// if it's possible.
7367SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7368                                     DebugLoc dl, SelectionDAG &DAG) const {
7369  SDValue Op0 = And.getOperand(0);
7370  SDValue Op1 = And.getOperand(1);
7371  if (Op0.getOpcode() == ISD::TRUNCATE)
7372    Op0 = Op0.getOperand(0);
7373  if (Op1.getOpcode() == ISD::TRUNCATE)
7374    Op1 = Op1.getOperand(0);
7375
7376  SDValue LHS, RHS;
7377  if (Op1.getOpcode() == ISD::SHL)
7378    std::swap(Op0, Op1);
7379  if (Op0.getOpcode() == ISD::SHL) {
7380    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7381      if (And00C->getZExtValue() == 1) {
7382        // If we looked past a truncate, check that it's only truncating away
7383        // known zeros.
7384        unsigned BitWidth = Op0.getValueSizeInBits();
7385        unsigned AndBitWidth = And.getValueSizeInBits();
7386        if (BitWidth > AndBitWidth) {
7387          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7388          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7389          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7390            return SDValue();
7391        }
7392        LHS = Op1;
7393        RHS = Op0.getOperand(1);
7394      }
7395  } else if (Op1.getOpcode() == ISD::Constant) {
7396    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7397    SDValue AndLHS = Op0;
7398    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7399      LHS = AndLHS.getOperand(0);
7400      RHS = AndLHS.getOperand(1);
7401    }
7402  }
7403
7404  if (LHS.getNode()) {
7405    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7406    // instruction.  Since the shift amount is in-range-or-undefined, we know
7407    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7408    // the encoding for the i16 version is larger than the i32 version.
7409    // Also promote i16 to i32 for performance / code size reason.
7410    if (LHS.getValueType() == MVT::i8 ||
7411        LHS.getValueType() == MVT::i16)
7412      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7413
7414    // If the operand types disagree, extend the shift amount to match.  Since
7415    // BT ignores high bits (like shifts) we can use anyextend.
7416    if (LHS.getValueType() != RHS.getValueType())
7417      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7418
7419    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7420    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7421    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7422                       DAG.getConstant(Cond, MVT::i8), BT);
7423  }
7424
7425  return SDValue();
7426}
7427
7428SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7429  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7430  SDValue Op0 = Op.getOperand(0);
7431  SDValue Op1 = Op.getOperand(1);
7432  DebugLoc dl = Op.getDebugLoc();
7433  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7434
7435  // Optimize to BT if possible.
7436  // Lower (X & (1 << N)) == 0 to BT(X, N).
7437  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7438  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7439  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7440      Op1.getOpcode() == ISD::Constant &&
7441      cast<ConstantSDNode>(Op1)->isNullValue() &&
7442      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7443    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7444    if (NewSetCC.getNode())
7445      return NewSetCC;
7446  }
7447
7448  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7449  // these.
7450  if (Op1.getOpcode() == ISD::Constant &&
7451      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7452       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7453      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7454
7455    // If the input is a setcc, then reuse the input setcc or use a new one with
7456    // the inverted condition.
7457    if (Op0.getOpcode() == X86ISD::SETCC) {
7458      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7459      bool Invert = (CC == ISD::SETNE) ^
7460        cast<ConstantSDNode>(Op1)->isNullValue();
7461      if (!Invert) return Op0;
7462
7463      CCode = X86::GetOppositeBranchCondition(CCode);
7464      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7465                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7466    }
7467  }
7468
7469  bool isFP = Op1.getValueType().isFloatingPoint();
7470  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7471  if (X86CC == X86::COND_INVALID)
7472    return SDValue();
7473
7474  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7475  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7476                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7477}
7478
7479SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7480  SDValue Cond;
7481  SDValue Op0 = Op.getOperand(0);
7482  SDValue Op1 = Op.getOperand(1);
7483  SDValue CC = Op.getOperand(2);
7484  EVT VT = Op.getValueType();
7485  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7486  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7487  DebugLoc dl = Op.getDebugLoc();
7488
7489  if (isFP) {
7490    unsigned SSECC = 8;
7491    EVT VT0 = Op0.getValueType();
7492    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7493    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7494    bool Swap = false;
7495
7496    switch (SetCCOpcode) {
7497    default: break;
7498    case ISD::SETOEQ:
7499    case ISD::SETEQ:  SSECC = 0; break;
7500    case ISD::SETOGT:
7501    case ISD::SETGT: Swap = true; // Fallthrough
7502    case ISD::SETLT:
7503    case ISD::SETOLT: SSECC = 1; break;
7504    case ISD::SETOGE:
7505    case ISD::SETGE: Swap = true; // Fallthrough
7506    case ISD::SETLE:
7507    case ISD::SETOLE: SSECC = 2; break;
7508    case ISD::SETUO:  SSECC = 3; break;
7509    case ISD::SETUNE:
7510    case ISD::SETNE:  SSECC = 4; break;
7511    case ISD::SETULE: Swap = true;
7512    case ISD::SETUGE: SSECC = 5; break;
7513    case ISD::SETULT: Swap = true;
7514    case ISD::SETUGT: SSECC = 6; break;
7515    case ISD::SETO:   SSECC = 7; break;
7516    }
7517    if (Swap)
7518      std::swap(Op0, Op1);
7519
7520    // In the two special cases we can't handle, emit two comparisons.
7521    if (SSECC == 8) {
7522      if (SetCCOpcode == ISD::SETUEQ) {
7523        SDValue UNORD, EQ;
7524        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7525        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7526        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7527      }
7528      else if (SetCCOpcode == ISD::SETONE) {
7529        SDValue ORD, NEQ;
7530        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7531        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7532        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7533      }
7534      llvm_unreachable("Illegal FP comparison");
7535    }
7536    // Handle all other FP comparisons here.
7537    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7538  }
7539
7540  // We are handling one of the integer comparisons here.  Since SSE only has
7541  // GT and EQ comparisons for integer, swapping operands and multiple
7542  // operations may be required for some comparisons.
7543  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7544  bool Swap = false, Invert = false, FlipSigns = false;
7545
7546  switch (VT.getSimpleVT().SimpleTy) {
7547  default: break;
7548  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7549  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7550  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7551  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7552  }
7553
7554  switch (SetCCOpcode) {
7555  default: break;
7556  case ISD::SETNE:  Invert = true;
7557  case ISD::SETEQ:  Opc = EQOpc; break;
7558  case ISD::SETLT:  Swap = true;
7559  case ISD::SETGT:  Opc = GTOpc; break;
7560  case ISD::SETGE:  Swap = true;
7561  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7562  case ISD::SETULT: Swap = true;
7563  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7564  case ISD::SETUGE: Swap = true;
7565  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7566  }
7567  if (Swap)
7568    std::swap(Op0, Op1);
7569
7570  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7571  // bits of the inputs before performing those operations.
7572  if (FlipSigns) {
7573    EVT EltVT = VT.getVectorElementType();
7574    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7575                                      EltVT);
7576    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7577    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7578                                    SignBits.size());
7579    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7580    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7581  }
7582
7583  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7584
7585  // If the logical-not of the result is required, perform that now.
7586  if (Invert)
7587    Result = DAG.getNOT(dl, Result, VT);
7588
7589  return Result;
7590}
7591
7592// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7593static bool isX86LogicalCmp(SDValue Op) {
7594  unsigned Opc = Op.getNode()->getOpcode();
7595  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7596    return true;
7597  if (Op.getResNo() == 1 &&
7598      (Opc == X86ISD::ADD ||
7599       Opc == X86ISD::SUB ||
7600       Opc == X86ISD::ADC ||
7601       Opc == X86ISD::SBB ||
7602       Opc == X86ISD::SMUL ||
7603       Opc == X86ISD::UMUL ||
7604       Opc == X86ISD::INC ||
7605       Opc == X86ISD::DEC ||
7606       Opc == X86ISD::OR ||
7607       Opc == X86ISD::XOR ||
7608       Opc == X86ISD::AND))
7609    return true;
7610
7611  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7612    return true;
7613
7614  return false;
7615}
7616
7617static bool isZero(SDValue V) {
7618  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7619  return C && C->isNullValue();
7620}
7621
7622static bool isAllOnes(SDValue V) {
7623  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7624  return C && C->isAllOnesValue();
7625}
7626
7627SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7628  bool addTest = true;
7629  SDValue Cond  = Op.getOperand(0);
7630  SDValue Op1 = Op.getOperand(1);
7631  SDValue Op2 = Op.getOperand(2);
7632  DebugLoc DL = Op.getDebugLoc();
7633  SDValue CC;
7634
7635  if (Cond.getOpcode() == ISD::SETCC) {
7636    SDValue NewCond = LowerSETCC(Cond, DAG);
7637    if (NewCond.getNode())
7638      Cond = NewCond;
7639  }
7640
7641  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7642  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7643  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7644  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7645  if (Cond.getOpcode() == X86ISD::SETCC &&
7646      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7647      isZero(Cond.getOperand(1).getOperand(1))) {
7648    SDValue Cmp = Cond.getOperand(1);
7649
7650    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7651
7652    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7653        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7654      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7655
7656      SDValue CmpOp0 = Cmp.getOperand(0);
7657      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7658                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7659
7660      SDValue Res =   // Res = 0 or -1.
7661        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7662                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7663
7664      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7665        Res = DAG.getNOT(DL, Res, Res.getValueType());
7666
7667      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7668      if (N2C == 0 || !N2C->isNullValue())
7669        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7670      return Res;
7671    }
7672  }
7673
7674  // Look past (and (setcc_carry (cmp ...)), 1).
7675  if (Cond.getOpcode() == ISD::AND &&
7676      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7677    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7678    if (C && C->getAPIntValue() == 1)
7679      Cond = Cond.getOperand(0);
7680  }
7681
7682  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7683  // setting operand in place of the X86ISD::SETCC.
7684  if (Cond.getOpcode() == X86ISD::SETCC ||
7685      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7686    CC = Cond.getOperand(0);
7687
7688    SDValue Cmp = Cond.getOperand(1);
7689    unsigned Opc = Cmp.getOpcode();
7690    EVT VT = Op.getValueType();
7691
7692    bool IllegalFPCMov = false;
7693    if (VT.isFloatingPoint() && !VT.isVector() &&
7694        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7695      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7696
7697    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7698        Opc == X86ISD::BT) { // FIXME
7699      Cond = Cmp;
7700      addTest = false;
7701    }
7702  }
7703
7704  if (addTest) {
7705    // Look pass the truncate.
7706    if (Cond.getOpcode() == ISD::TRUNCATE)
7707      Cond = Cond.getOperand(0);
7708
7709    // We know the result of AND is compared against zero. Try to match
7710    // it to BT.
7711    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7712      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7713      if (NewSetCC.getNode()) {
7714        CC = NewSetCC.getOperand(0);
7715        Cond = NewSetCC.getOperand(1);
7716        addTest = false;
7717      }
7718    }
7719  }
7720
7721  if (addTest) {
7722    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7723    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7724  }
7725
7726  // a <  b ? -1 :  0 -> RES = ~setcc_carry
7727  // a <  b ?  0 : -1 -> RES = setcc_carry
7728  // a >= b ? -1 :  0 -> RES = setcc_carry
7729  // a >= b ?  0 : -1 -> RES = ~setcc_carry
7730  if (Cond.getOpcode() == X86ISD::CMP) {
7731    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
7732
7733    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
7734        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
7735      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7736                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
7737      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
7738        return DAG.getNOT(DL, Res, Res.getValueType());
7739      return Res;
7740    }
7741  }
7742
7743  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7744  // condition is true.
7745  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
7746  SDValue Ops[] = { Op2, Op1, CC, Cond };
7747  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7748}
7749
7750// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7751// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7752// from the AND / OR.
7753static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7754  Opc = Op.getOpcode();
7755  if (Opc != ISD::OR && Opc != ISD::AND)
7756    return false;
7757  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7758          Op.getOperand(0).hasOneUse() &&
7759          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7760          Op.getOperand(1).hasOneUse());
7761}
7762
7763// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7764// 1 and that the SETCC node has a single use.
7765static bool isXor1OfSetCC(SDValue Op) {
7766  if (Op.getOpcode() != ISD::XOR)
7767    return false;
7768  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7769  if (N1C && N1C->getAPIntValue() == 1) {
7770    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7771      Op.getOperand(0).hasOneUse();
7772  }
7773  return false;
7774}
7775
7776SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7777  bool addTest = true;
7778  SDValue Chain = Op.getOperand(0);
7779  SDValue Cond  = Op.getOperand(1);
7780  SDValue Dest  = Op.getOperand(2);
7781  DebugLoc dl = Op.getDebugLoc();
7782  SDValue CC;
7783
7784  if (Cond.getOpcode() == ISD::SETCC) {
7785    SDValue NewCond = LowerSETCC(Cond, DAG);
7786    if (NewCond.getNode())
7787      Cond = NewCond;
7788  }
7789#if 0
7790  // FIXME: LowerXALUO doesn't handle these!!
7791  else if (Cond.getOpcode() == X86ISD::ADD  ||
7792           Cond.getOpcode() == X86ISD::SUB  ||
7793           Cond.getOpcode() == X86ISD::SMUL ||
7794           Cond.getOpcode() == X86ISD::UMUL)
7795    Cond = LowerXALUO(Cond, DAG);
7796#endif
7797
7798  // Look pass (and (setcc_carry (cmp ...)), 1).
7799  if (Cond.getOpcode() == ISD::AND &&
7800      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7801    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7802    if (C && C->getAPIntValue() == 1)
7803      Cond = Cond.getOperand(0);
7804  }
7805
7806  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7807  // setting operand in place of the X86ISD::SETCC.
7808  if (Cond.getOpcode() == X86ISD::SETCC ||
7809      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7810    CC = Cond.getOperand(0);
7811
7812    SDValue Cmp = Cond.getOperand(1);
7813    unsigned Opc = Cmp.getOpcode();
7814    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7815    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7816      Cond = Cmp;
7817      addTest = false;
7818    } else {
7819      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7820      default: break;
7821      case X86::COND_O:
7822      case X86::COND_B:
7823        // These can only come from an arithmetic instruction with overflow,
7824        // e.g. SADDO, UADDO.
7825        Cond = Cond.getNode()->getOperand(1);
7826        addTest = false;
7827        break;
7828      }
7829    }
7830  } else {
7831    unsigned CondOpc;
7832    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7833      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7834      if (CondOpc == ISD::OR) {
7835        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7836        // two branches instead of an explicit OR instruction with a
7837        // separate test.
7838        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7839            isX86LogicalCmp(Cmp)) {
7840          CC = Cond.getOperand(0).getOperand(0);
7841          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7842                              Chain, Dest, CC, Cmp);
7843          CC = Cond.getOperand(1).getOperand(0);
7844          Cond = Cmp;
7845          addTest = false;
7846        }
7847      } else { // ISD::AND
7848        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7849        // two branches instead of an explicit AND instruction with a
7850        // separate test. However, we only do this if this block doesn't
7851        // have a fall-through edge, because this requires an explicit
7852        // jmp when the condition is false.
7853        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7854            isX86LogicalCmp(Cmp) &&
7855            Op.getNode()->hasOneUse()) {
7856          X86::CondCode CCode =
7857            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7858          CCode = X86::GetOppositeBranchCondition(CCode);
7859          CC = DAG.getConstant(CCode, MVT::i8);
7860          SDNode *User = *Op.getNode()->use_begin();
7861          // Look for an unconditional branch following this conditional branch.
7862          // We need this because we need to reverse the successors in order
7863          // to implement FCMP_OEQ.
7864          if (User->getOpcode() == ISD::BR) {
7865            SDValue FalseBB = User->getOperand(1);
7866            SDNode *NewBR =
7867              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7868            assert(NewBR == User);
7869            (void)NewBR;
7870            Dest = FalseBB;
7871
7872            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7873                                Chain, Dest, CC, Cmp);
7874            X86::CondCode CCode =
7875              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7876            CCode = X86::GetOppositeBranchCondition(CCode);
7877            CC = DAG.getConstant(CCode, MVT::i8);
7878            Cond = Cmp;
7879            addTest = false;
7880          }
7881        }
7882      }
7883    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7884      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7885      // It should be transformed during dag combiner except when the condition
7886      // is set by a arithmetics with overflow node.
7887      X86::CondCode CCode =
7888        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7889      CCode = X86::GetOppositeBranchCondition(CCode);
7890      CC = DAG.getConstant(CCode, MVT::i8);
7891      Cond = Cond.getOperand(0).getOperand(1);
7892      addTest = false;
7893    }
7894  }
7895
7896  if (addTest) {
7897    // Look pass the truncate.
7898    if (Cond.getOpcode() == ISD::TRUNCATE)
7899      Cond = Cond.getOperand(0);
7900
7901    // We know the result of AND is compared against zero. Try to match
7902    // it to BT.
7903    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7904      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7905      if (NewSetCC.getNode()) {
7906        CC = NewSetCC.getOperand(0);
7907        Cond = NewSetCC.getOperand(1);
7908        addTest = false;
7909      }
7910    }
7911  }
7912
7913  if (addTest) {
7914    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7915    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7916  }
7917  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7918                     Chain, Dest, CC, Cond);
7919}
7920
7921
7922// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7923// Calls to _alloca is needed to probe the stack when allocating more than 4k
7924// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7925// that the guard pages used by the OS virtual memory manager are allocated in
7926// correct sequence.
7927SDValue
7928X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7929                                           SelectionDAG &DAG) const {
7930  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7931         "This should be used only on Windows targets");
7932  DebugLoc dl = Op.getDebugLoc();
7933
7934  // Get the inputs.
7935  SDValue Chain = Op.getOperand(0);
7936  SDValue Size  = Op.getOperand(1);
7937  // FIXME: Ensure alignment here
7938
7939  SDValue Flag;
7940
7941  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7942
7943  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7944  Flag = Chain.getValue(1);
7945
7946  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7947
7948  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7949  Flag = Chain.getValue(1);
7950
7951  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7952
7953  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7954  return DAG.getMergeValues(Ops1, 2, dl);
7955}
7956
7957SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7958  MachineFunction &MF = DAG.getMachineFunction();
7959  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7960
7961  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7962  DebugLoc DL = Op.getDebugLoc();
7963
7964  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7965    // vastart just stores the address of the VarArgsFrameIndex slot into the
7966    // memory location argument.
7967    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7968                                   getPointerTy());
7969    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7970                        MachinePointerInfo(SV), false, false, 0);
7971  }
7972
7973  // __va_list_tag:
7974  //   gp_offset         (0 - 6 * 8)
7975  //   fp_offset         (48 - 48 + 8 * 16)
7976  //   overflow_arg_area (point to parameters coming in memory).
7977  //   reg_save_area
7978  SmallVector<SDValue, 8> MemOps;
7979  SDValue FIN = Op.getOperand(1);
7980  // Store gp_offset
7981  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7982                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7983                                               MVT::i32),
7984                               FIN, MachinePointerInfo(SV), false, false, 0);
7985  MemOps.push_back(Store);
7986
7987  // Store fp_offset
7988  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7989                    FIN, DAG.getIntPtrConstant(4));
7990  Store = DAG.getStore(Op.getOperand(0), DL,
7991                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7992                                       MVT::i32),
7993                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7994  MemOps.push_back(Store);
7995
7996  // Store ptr to overflow_arg_area
7997  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7998                    FIN, DAG.getIntPtrConstant(4));
7999  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8000                                    getPointerTy());
8001  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8002                       MachinePointerInfo(SV, 8),
8003                       false, false, 0);
8004  MemOps.push_back(Store);
8005
8006  // Store ptr to reg_save_area.
8007  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8008                    FIN, DAG.getIntPtrConstant(8));
8009  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8010                                    getPointerTy());
8011  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8012                       MachinePointerInfo(SV, 16), false, false, 0);
8013  MemOps.push_back(Store);
8014  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8015                     &MemOps[0], MemOps.size());
8016}
8017
8018SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8019  assert(Subtarget->is64Bit() &&
8020         "LowerVAARG only handles 64-bit va_arg!");
8021  assert((Subtarget->isTargetLinux() ||
8022          Subtarget->isTargetDarwin()) &&
8023          "Unhandled target in LowerVAARG");
8024  assert(Op.getNode()->getNumOperands() == 4);
8025  SDValue Chain = Op.getOperand(0);
8026  SDValue SrcPtr = Op.getOperand(1);
8027  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8028  unsigned Align = Op.getConstantOperandVal(3);
8029  DebugLoc dl = Op.getDebugLoc();
8030
8031  EVT ArgVT = Op.getNode()->getValueType(0);
8032  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8033  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8034  uint8_t ArgMode;
8035
8036  // Decide which area this value should be read from.
8037  // TODO: Implement the AMD64 ABI in its entirety. This simple
8038  // selection mechanism works only for the basic types.
8039  if (ArgVT == MVT::f80) {
8040    llvm_unreachable("va_arg for f80 not yet implemented");
8041  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8042    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8043  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8044    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8045  } else {
8046    llvm_unreachable("Unhandled argument type in LowerVAARG");
8047  }
8048
8049  if (ArgMode == 2) {
8050    // Sanity Check: Make sure using fp_offset makes sense.
8051    assert(!UseSoftFloat &&
8052           !(DAG.getMachineFunction()
8053                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8054           Subtarget->hasXMM());
8055  }
8056
8057  // Insert VAARG_64 node into the DAG
8058  // VAARG_64 returns two values: Variable Argument Address, Chain
8059  SmallVector<SDValue, 11> InstOps;
8060  InstOps.push_back(Chain);
8061  InstOps.push_back(SrcPtr);
8062  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8063  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8064  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8065  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8066  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8067                                          VTs, &InstOps[0], InstOps.size(),
8068                                          MVT::i64,
8069                                          MachinePointerInfo(SV),
8070                                          /*Align=*/0,
8071                                          /*Volatile=*/false,
8072                                          /*ReadMem=*/true,
8073                                          /*WriteMem=*/true);
8074  Chain = VAARG.getValue(1);
8075
8076  // Load the next argument and return it
8077  return DAG.getLoad(ArgVT, dl,
8078                     Chain,
8079                     VAARG,
8080                     MachinePointerInfo(),
8081                     false, false, 0);
8082}
8083
8084SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8085  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8086  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8087  SDValue Chain = Op.getOperand(0);
8088  SDValue DstPtr = Op.getOperand(1);
8089  SDValue SrcPtr = Op.getOperand(2);
8090  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8091  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8092  DebugLoc DL = Op.getDebugLoc();
8093
8094  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8095                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8096                       false,
8097                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8098}
8099
8100SDValue
8101X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8102  DebugLoc dl = Op.getDebugLoc();
8103  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8104  switch (IntNo) {
8105  default: return SDValue();    // Don't custom lower most intrinsics.
8106  // Comparison intrinsics.
8107  case Intrinsic::x86_sse_comieq_ss:
8108  case Intrinsic::x86_sse_comilt_ss:
8109  case Intrinsic::x86_sse_comile_ss:
8110  case Intrinsic::x86_sse_comigt_ss:
8111  case Intrinsic::x86_sse_comige_ss:
8112  case Intrinsic::x86_sse_comineq_ss:
8113  case Intrinsic::x86_sse_ucomieq_ss:
8114  case Intrinsic::x86_sse_ucomilt_ss:
8115  case Intrinsic::x86_sse_ucomile_ss:
8116  case Intrinsic::x86_sse_ucomigt_ss:
8117  case Intrinsic::x86_sse_ucomige_ss:
8118  case Intrinsic::x86_sse_ucomineq_ss:
8119  case Intrinsic::x86_sse2_comieq_sd:
8120  case Intrinsic::x86_sse2_comilt_sd:
8121  case Intrinsic::x86_sse2_comile_sd:
8122  case Intrinsic::x86_sse2_comigt_sd:
8123  case Intrinsic::x86_sse2_comige_sd:
8124  case Intrinsic::x86_sse2_comineq_sd:
8125  case Intrinsic::x86_sse2_ucomieq_sd:
8126  case Intrinsic::x86_sse2_ucomilt_sd:
8127  case Intrinsic::x86_sse2_ucomile_sd:
8128  case Intrinsic::x86_sse2_ucomigt_sd:
8129  case Intrinsic::x86_sse2_ucomige_sd:
8130  case Intrinsic::x86_sse2_ucomineq_sd: {
8131    unsigned Opc = 0;
8132    ISD::CondCode CC = ISD::SETCC_INVALID;
8133    switch (IntNo) {
8134    default: break;
8135    case Intrinsic::x86_sse_comieq_ss:
8136    case Intrinsic::x86_sse2_comieq_sd:
8137      Opc = X86ISD::COMI;
8138      CC = ISD::SETEQ;
8139      break;
8140    case Intrinsic::x86_sse_comilt_ss:
8141    case Intrinsic::x86_sse2_comilt_sd:
8142      Opc = X86ISD::COMI;
8143      CC = ISD::SETLT;
8144      break;
8145    case Intrinsic::x86_sse_comile_ss:
8146    case Intrinsic::x86_sse2_comile_sd:
8147      Opc = X86ISD::COMI;
8148      CC = ISD::SETLE;
8149      break;
8150    case Intrinsic::x86_sse_comigt_ss:
8151    case Intrinsic::x86_sse2_comigt_sd:
8152      Opc = X86ISD::COMI;
8153      CC = ISD::SETGT;
8154      break;
8155    case Intrinsic::x86_sse_comige_ss:
8156    case Intrinsic::x86_sse2_comige_sd:
8157      Opc = X86ISD::COMI;
8158      CC = ISD::SETGE;
8159      break;
8160    case Intrinsic::x86_sse_comineq_ss:
8161    case Intrinsic::x86_sse2_comineq_sd:
8162      Opc = X86ISD::COMI;
8163      CC = ISD::SETNE;
8164      break;
8165    case Intrinsic::x86_sse_ucomieq_ss:
8166    case Intrinsic::x86_sse2_ucomieq_sd:
8167      Opc = X86ISD::UCOMI;
8168      CC = ISD::SETEQ;
8169      break;
8170    case Intrinsic::x86_sse_ucomilt_ss:
8171    case Intrinsic::x86_sse2_ucomilt_sd:
8172      Opc = X86ISD::UCOMI;
8173      CC = ISD::SETLT;
8174      break;
8175    case Intrinsic::x86_sse_ucomile_ss:
8176    case Intrinsic::x86_sse2_ucomile_sd:
8177      Opc = X86ISD::UCOMI;
8178      CC = ISD::SETLE;
8179      break;
8180    case Intrinsic::x86_sse_ucomigt_ss:
8181    case Intrinsic::x86_sse2_ucomigt_sd:
8182      Opc = X86ISD::UCOMI;
8183      CC = ISD::SETGT;
8184      break;
8185    case Intrinsic::x86_sse_ucomige_ss:
8186    case Intrinsic::x86_sse2_ucomige_sd:
8187      Opc = X86ISD::UCOMI;
8188      CC = ISD::SETGE;
8189      break;
8190    case Intrinsic::x86_sse_ucomineq_ss:
8191    case Intrinsic::x86_sse2_ucomineq_sd:
8192      Opc = X86ISD::UCOMI;
8193      CC = ISD::SETNE;
8194      break;
8195    }
8196
8197    SDValue LHS = Op.getOperand(1);
8198    SDValue RHS = Op.getOperand(2);
8199    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8200    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8201    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8202    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8203                                DAG.getConstant(X86CC, MVT::i8), Cond);
8204    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8205  }
8206  // ptest and testp intrinsics. The intrinsic these come from are designed to
8207  // return an integer value, not just an instruction so lower it to the ptest
8208  // or testp pattern and a setcc for the result.
8209  case Intrinsic::x86_sse41_ptestz:
8210  case Intrinsic::x86_sse41_ptestc:
8211  case Intrinsic::x86_sse41_ptestnzc:
8212  case Intrinsic::x86_avx_ptestz_256:
8213  case Intrinsic::x86_avx_ptestc_256:
8214  case Intrinsic::x86_avx_ptestnzc_256:
8215  case Intrinsic::x86_avx_vtestz_ps:
8216  case Intrinsic::x86_avx_vtestc_ps:
8217  case Intrinsic::x86_avx_vtestnzc_ps:
8218  case Intrinsic::x86_avx_vtestz_pd:
8219  case Intrinsic::x86_avx_vtestc_pd:
8220  case Intrinsic::x86_avx_vtestnzc_pd:
8221  case Intrinsic::x86_avx_vtestz_ps_256:
8222  case Intrinsic::x86_avx_vtestc_ps_256:
8223  case Intrinsic::x86_avx_vtestnzc_ps_256:
8224  case Intrinsic::x86_avx_vtestz_pd_256:
8225  case Intrinsic::x86_avx_vtestc_pd_256:
8226  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8227    bool IsTestPacked = false;
8228    unsigned X86CC = 0;
8229    switch (IntNo) {
8230    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8231    case Intrinsic::x86_avx_vtestz_ps:
8232    case Intrinsic::x86_avx_vtestz_pd:
8233    case Intrinsic::x86_avx_vtestz_ps_256:
8234    case Intrinsic::x86_avx_vtestz_pd_256:
8235      IsTestPacked = true; // Fallthrough
8236    case Intrinsic::x86_sse41_ptestz:
8237    case Intrinsic::x86_avx_ptestz_256:
8238      // ZF = 1
8239      X86CC = X86::COND_E;
8240      break;
8241    case Intrinsic::x86_avx_vtestc_ps:
8242    case Intrinsic::x86_avx_vtestc_pd:
8243    case Intrinsic::x86_avx_vtestc_ps_256:
8244    case Intrinsic::x86_avx_vtestc_pd_256:
8245      IsTestPacked = true; // Fallthrough
8246    case Intrinsic::x86_sse41_ptestc:
8247    case Intrinsic::x86_avx_ptestc_256:
8248      // CF = 1
8249      X86CC = X86::COND_B;
8250      break;
8251    case Intrinsic::x86_avx_vtestnzc_ps:
8252    case Intrinsic::x86_avx_vtestnzc_pd:
8253    case Intrinsic::x86_avx_vtestnzc_ps_256:
8254    case Intrinsic::x86_avx_vtestnzc_pd_256:
8255      IsTestPacked = true; // Fallthrough
8256    case Intrinsic::x86_sse41_ptestnzc:
8257    case Intrinsic::x86_avx_ptestnzc_256:
8258      // ZF and CF = 0
8259      X86CC = X86::COND_A;
8260      break;
8261    }
8262
8263    SDValue LHS = Op.getOperand(1);
8264    SDValue RHS = Op.getOperand(2);
8265    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8266    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8267    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8268    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8269    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8270  }
8271
8272  // Fix vector shift instructions where the last operand is a non-immediate
8273  // i32 value.
8274  case Intrinsic::x86_sse2_pslli_w:
8275  case Intrinsic::x86_sse2_pslli_d:
8276  case Intrinsic::x86_sse2_pslli_q:
8277  case Intrinsic::x86_sse2_psrli_w:
8278  case Intrinsic::x86_sse2_psrli_d:
8279  case Intrinsic::x86_sse2_psrli_q:
8280  case Intrinsic::x86_sse2_psrai_w:
8281  case Intrinsic::x86_sse2_psrai_d:
8282  case Intrinsic::x86_mmx_pslli_w:
8283  case Intrinsic::x86_mmx_pslli_d:
8284  case Intrinsic::x86_mmx_pslli_q:
8285  case Intrinsic::x86_mmx_psrli_w:
8286  case Intrinsic::x86_mmx_psrli_d:
8287  case Intrinsic::x86_mmx_psrli_q:
8288  case Intrinsic::x86_mmx_psrai_w:
8289  case Intrinsic::x86_mmx_psrai_d: {
8290    SDValue ShAmt = Op.getOperand(2);
8291    if (isa<ConstantSDNode>(ShAmt))
8292      return SDValue();
8293
8294    unsigned NewIntNo = 0;
8295    EVT ShAmtVT = MVT::v4i32;
8296    switch (IntNo) {
8297    case Intrinsic::x86_sse2_pslli_w:
8298      NewIntNo = Intrinsic::x86_sse2_psll_w;
8299      break;
8300    case Intrinsic::x86_sse2_pslli_d:
8301      NewIntNo = Intrinsic::x86_sse2_psll_d;
8302      break;
8303    case Intrinsic::x86_sse2_pslli_q:
8304      NewIntNo = Intrinsic::x86_sse2_psll_q;
8305      break;
8306    case Intrinsic::x86_sse2_psrli_w:
8307      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8308      break;
8309    case Intrinsic::x86_sse2_psrli_d:
8310      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8311      break;
8312    case Intrinsic::x86_sse2_psrli_q:
8313      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8314      break;
8315    case Intrinsic::x86_sse2_psrai_w:
8316      NewIntNo = Intrinsic::x86_sse2_psra_w;
8317      break;
8318    case Intrinsic::x86_sse2_psrai_d:
8319      NewIntNo = Intrinsic::x86_sse2_psra_d;
8320      break;
8321    default: {
8322      ShAmtVT = MVT::v2i32;
8323      switch (IntNo) {
8324      case Intrinsic::x86_mmx_pslli_w:
8325        NewIntNo = Intrinsic::x86_mmx_psll_w;
8326        break;
8327      case Intrinsic::x86_mmx_pslli_d:
8328        NewIntNo = Intrinsic::x86_mmx_psll_d;
8329        break;
8330      case Intrinsic::x86_mmx_pslli_q:
8331        NewIntNo = Intrinsic::x86_mmx_psll_q;
8332        break;
8333      case Intrinsic::x86_mmx_psrli_w:
8334        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8335        break;
8336      case Intrinsic::x86_mmx_psrli_d:
8337        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8338        break;
8339      case Intrinsic::x86_mmx_psrli_q:
8340        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8341        break;
8342      case Intrinsic::x86_mmx_psrai_w:
8343        NewIntNo = Intrinsic::x86_mmx_psra_w;
8344        break;
8345      case Intrinsic::x86_mmx_psrai_d:
8346        NewIntNo = Intrinsic::x86_mmx_psra_d;
8347        break;
8348      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8349      }
8350      break;
8351    }
8352    }
8353
8354    // The vector shift intrinsics with scalars uses 32b shift amounts but
8355    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8356    // to be zero.
8357    SDValue ShOps[4];
8358    ShOps[0] = ShAmt;
8359    ShOps[1] = DAG.getConstant(0, MVT::i32);
8360    if (ShAmtVT == MVT::v4i32) {
8361      ShOps[2] = DAG.getUNDEF(MVT::i32);
8362      ShOps[3] = DAG.getUNDEF(MVT::i32);
8363      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8364    } else {
8365      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8366// FIXME this must be lowered to get rid of the invalid type.
8367    }
8368
8369    EVT VT = Op.getValueType();
8370    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8371    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8372                       DAG.getConstant(NewIntNo, MVT::i32),
8373                       Op.getOperand(1), ShAmt);
8374  }
8375  }
8376}
8377
8378SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8379                                           SelectionDAG &DAG) const {
8380  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8381  MFI->setReturnAddressIsTaken(true);
8382
8383  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8384  DebugLoc dl = Op.getDebugLoc();
8385
8386  if (Depth > 0) {
8387    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8388    SDValue Offset =
8389      DAG.getConstant(TD->getPointerSize(),
8390                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8391    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8392                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8393                                   FrameAddr, Offset),
8394                       MachinePointerInfo(), false, false, 0);
8395  }
8396
8397  // Just load the return address.
8398  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8399  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8400                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8401}
8402
8403SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8404  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8405  MFI->setFrameAddressIsTaken(true);
8406
8407  EVT VT = Op.getValueType();
8408  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8409  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8410  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8411  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8412  while (Depth--)
8413    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8414                            MachinePointerInfo(),
8415                            false, false, 0);
8416  return FrameAddr;
8417}
8418
8419SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8420                                                     SelectionDAG &DAG) const {
8421  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8422}
8423
8424SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8425  MachineFunction &MF = DAG.getMachineFunction();
8426  SDValue Chain     = Op.getOperand(0);
8427  SDValue Offset    = Op.getOperand(1);
8428  SDValue Handler   = Op.getOperand(2);
8429  DebugLoc dl       = Op.getDebugLoc();
8430
8431  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8432                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8433                                     getPointerTy());
8434  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8435
8436  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8437                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8438  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8439  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8440                       false, false, 0);
8441  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8442  MF.getRegInfo().addLiveOut(StoreAddrReg);
8443
8444  return DAG.getNode(X86ISD::EH_RETURN, dl,
8445                     MVT::Other,
8446                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8447}
8448
8449SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8450                                             SelectionDAG &DAG) const {
8451  SDValue Root = Op.getOperand(0);
8452  SDValue Trmp = Op.getOperand(1); // trampoline
8453  SDValue FPtr = Op.getOperand(2); // nested function
8454  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8455  DebugLoc dl  = Op.getDebugLoc();
8456
8457  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8458
8459  if (Subtarget->is64Bit()) {
8460    SDValue OutChains[6];
8461
8462    // Large code-model.
8463    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8464    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8465
8466    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8467    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8468
8469    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8470
8471    // Load the pointer to the nested function into R11.
8472    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8473    SDValue Addr = Trmp;
8474    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8475                                Addr, MachinePointerInfo(TrmpAddr),
8476                                false, false, 0);
8477
8478    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8479                       DAG.getConstant(2, MVT::i64));
8480    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8481                                MachinePointerInfo(TrmpAddr, 2),
8482                                false, false, 2);
8483
8484    // Load the 'nest' parameter value into R10.
8485    // R10 is specified in X86CallingConv.td
8486    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8487    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8488                       DAG.getConstant(10, MVT::i64));
8489    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8490                                Addr, MachinePointerInfo(TrmpAddr, 10),
8491                                false, false, 0);
8492
8493    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8494                       DAG.getConstant(12, MVT::i64));
8495    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8496                                MachinePointerInfo(TrmpAddr, 12),
8497                                false, false, 2);
8498
8499    // Jump to the nested function.
8500    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8501    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8502                       DAG.getConstant(20, MVT::i64));
8503    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8504                                Addr, MachinePointerInfo(TrmpAddr, 20),
8505                                false, false, 0);
8506
8507    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8508    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8509                       DAG.getConstant(22, MVT::i64));
8510    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8511                                MachinePointerInfo(TrmpAddr, 22),
8512                                false, false, 0);
8513
8514    SDValue Ops[] =
8515      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8516    return DAG.getMergeValues(Ops, 2, dl);
8517  } else {
8518    const Function *Func =
8519      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8520    CallingConv::ID CC = Func->getCallingConv();
8521    unsigned NestReg;
8522
8523    switch (CC) {
8524    default:
8525      llvm_unreachable("Unsupported calling convention");
8526    case CallingConv::C:
8527    case CallingConv::X86_StdCall: {
8528      // Pass 'nest' parameter in ECX.
8529      // Must be kept in sync with X86CallingConv.td
8530      NestReg = X86::ECX;
8531
8532      // Check that ECX wasn't needed by an 'inreg' parameter.
8533      const FunctionType *FTy = Func->getFunctionType();
8534      const AttrListPtr &Attrs = Func->getAttributes();
8535
8536      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8537        unsigned InRegCount = 0;
8538        unsigned Idx = 1;
8539
8540        for (FunctionType::param_iterator I = FTy->param_begin(),
8541             E = FTy->param_end(); I != E; ++I, ++Idx)
8542          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8543            // FIXME: should only count parameters that are lowered to integers.
8544            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8545
8546        if (InRegCount > 2) {
8547          report_fatal_error("Nest register in use - reduce number of inreg"
8548                             " parameters!");
8549        }
8550      }
8551      break;
8552    }
8553    case CallingConv::X86_FastCall:
8554    case CallingConv::X86_ThisCall:
8555    case CallingConv::Fast:
8556      // Pass 'nest' parameter in EAX.
8557      // Must be kept in sync with X86CallingConv.td
8558      NestReg = X86::EAX;
8559      break;
8560    }
8561
8562    SDValue OutChains[4];
8563    SDValue Addr, Disp;
8564
8565    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8566                       DAG.getConstant(10, MVT::i32));
8567    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8568
8569    // This is storing the opcode for MOV32ri.
8570    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8571    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8572    OutChains[0] = DAG.getStore(Root, dl,
8573                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8574                                Trmp, MachinePointerInfo(TrmpAddr),
8575                                false, false, 0);
8576
8577    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8578                       DAG.getConstant(1, MVT::i32));
8579    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8580                                MachinePointerInfo(TrmpAddr, 1),
8581                                false, false, 1);
8582
8583    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8584    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8585                       DAG.getConstant(5, MVT::i32));
8586    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8587                                MachinePointerInfo(TrmpAddr, 5),
8588                                false, false, 1);
8589
8590    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8591                       DAG.getConstant(6, MVT::i32));
8592    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8593                                MachinePointerInfo(TrmpAddr, 6),
8594                                false, false, 1);
8595
8596    SDValue Ops[] =
8597      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8598    return DAG.getMergeValues(Ops, 2, dl);
8599  }
8600}
8601
8602SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8603                                            SelectionDAG &DAG) const {
8604  /*
8605   The rounding mode is in bits 11:10 of FPSR, and has the following
8606   settings:
8607     00 Round to nearest
8608     01 Round to -inf
8609     10 Round to +inf
8610     11 Round to 0
8611
8612  FLT_ROUNDS, on the other hand, expects the following:
8613    -1 Undefined
8614     0 Round to 0
8615     1 Round to nearest
8616     2 Round to +inf
8617     3 Round to -inf
8618
8619  To perform the conversion, we do:
8620    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8621  */
8622
8623  MachineFunction &MF = DAG.getMachineFunction();
8624  const TargetMachine &TM = MF.getTarget();
8625  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8626  unsigned StackAlignment = TFI.getStackAlignment();
8627  EVT VT = Op.getValueType();
8628  DebugLoc DL = Op.getDebugLoc();
8629
8630  // Save FP Control Word to stack slot
8631  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8632  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8633
8634
8635  MachineMemOperand *MMO =
8636   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8637                           MachineMemOperand::MOStore, 2, 2);
8638
8639  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8640  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8641                                          DAG.getVTList(MVT::Other),
8642                                          Ops, 2, MVT::i16, MMO);
8643
8644  // Load FP Control Word from stack slot
8645  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8646                            MachinePointerInfo(), false, false, 0);
8647
8648  // Transform as necessary
8649  SDValue CWD1 =
8650    DAG.getNode(ISD::SRL, DL, MVT::i16,
8651                DAG.getNode(ISD::AND, DL, MVT::i16,
8652                            CWD, DAG.getConstant(0x800, MVT::i16)),
8653                DAG.getConstant(11, MVT::i8));
8654  SDValue CWD2 =
8655    DAG.getNode(ISD::SRL, DL, MVT::i16,
8656                DAG.getNode(ISD::AND, DL, MVT::i16,
8657                            CWD, DAG.getConstant(0x400, MVT::i16)),
8658                DAG.getConstant(9, MVT::i8));
8659
8660  SDValue RetVal =
8661    DAG.getNode(ISD::AND, DL, MVT::i16,
8662                DAG.getNode(ISD::ADD, DL, MVT::i16,
8663                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8664                            DAG.getConstant(1, MVT::i16)),
8665                DAG.getConstant(3, MVT::i16));
8666
8667
8668  return DAG.getNode((VT.getSizeInBits() < 16 ?
8669                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8670}
8671
8672SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8673  EVT VT = Op.getValueType();
8674  EVT OpVT = VT;
8675  unsigned NumBits = VT.getSizeInBits();
8676  DebugLoc dl = Op.getDebugLoc();
8677
8678  Op = Op.getOperand(0);
8679  if (VT == MVT::i8) {
8680    // Zero extend to i32 since there is not an i8 bsr.
8681    OpVT = MVT::i32;
8682    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8683  }
8684
8685  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8686  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8687  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8688
8689  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8690  SDValue Ops[] = {
8691    Op,
8692    DAG.getConstant(NumBits+NumBits-1, OpVT),
8693    DAG.getConstant(X86::COND_E, MVT::i8),
8694    Op.getValue(1)
8695  };
8696  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8697
8698  // Finally xor with NumBits-1.
8699  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8700
8701  if (VT == MVT::i8)
8702    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8703  return Op;
8704}
8705
8706SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8707  EVT VT = Op.getValueType();
8708  EVT OpVT = VT;
8709  unsigned NumBits = VT.getSizeInBits();
8710  DebugLoc dl = Op.getDebugLoc();
8711
8712  Op = Op.getOperand(0);
8713  if (VT == MVT::i8) {
8714    OpVT = MVT::i32;
8715    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8716  }
8717
8718  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8719  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8720  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8721
8722  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8723  SDValue Ops[] = {
8724    Op,
8725    DAG.getConstant(NumBits, OpVT),
8726    DAG.getConstant(X86::COND_E, MVT::i8),
8727    Op.getValue(1)
8728  };
8729  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8730
8731  if (VT == MVT::i8)
8732    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8733  return Op;
8734}
8735
8736SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8737  EVT VT = Op.getValueType();
8738  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8739  DebugLoc dl = Op.getDebugLoc();
8740
8741  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8742  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8743  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8744  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8745  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8746  //
8747  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8748  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8749  //  return AloBlo + AloBhi + AhiBlo;
8750
8751  SDValue A = Op.getOperand(0);
8752  SDValue B = Op.getOperand(1);
8753
8754  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8755                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8756                       A, DAG.getConstant(32, MVT::i32));
8757  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8758                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8759                       B, DAG.getConstant(32, MVT::i32));
8760  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8761                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8762                       A, B);
8763  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8764                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8765                       A, Bhi);
8766  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8767                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8768                       Ahi, B);
8769  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8770                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8771                       AloBhi, DAG.getConstant(32, MVT::i32));
8772  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8773                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8774                       AhiBlo, DAG.getConstant(32, MVT::i32));
8775  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8776  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8777  return Res;
8778}
8779
8780SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8781  EVT VT = Op.getValueType();
8782  DebugLoc dl = Op.getDebugLoc();
8783  SDValue R = Op.getOperand(0);
8784
8785  LLVMContext *Context = DAG.getContext();
8786
8787  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8788
8789  if (VT == MVT::v4i32) {
8790    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8791                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8792                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8793
8794    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8795
8796    std::vector<Constant*> CV(4, CI);
8797    Constant *C = ConstantVector::get(CV);
8798    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8799    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8800                                 MachinePointerInfo::getConstantPool(),
8801                                 false, false, 16);
8802
8803    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8804    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8805    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8806    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8807  }
8808  if (VT == MVT::v16i8) {
8809    // a = a << 5;
8810    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8811                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8812                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8813
8814    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8815    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8816
8817    std::vector<Constant*> CVM1(16, CM1);
8818    std::vector<Constant*> CVM2(16, CM2);
8819    Constant *C = ConstantVector::get(CVM1);
8820    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8821    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8822                            MachinePointerInfo::getConstantPool(),
8823                            false, false, 16);
8824
8825    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8826    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8827    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8828                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8829                    DAG.getConstant(4, MVT::i32));
8830    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8831    // a += a
8832    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8833
8834    C = ConstantVector::get(CVM2);
8835    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8836    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8837                    MachinePointerInfo::getConstantPool(),
8838                    false, false, 16);
8839
8840    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8841    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8842    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8843                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8844                    DAG.getConstant(2, MVT::i32));
8845    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8846    // a += a
8847    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8848
8849    // return pblendv(r, r+r, a);
8850    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
8851                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8852    return R;
8853  }
8854  return SDValue();
8855}
8856
8857SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8858  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8859  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8860  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8861  // has only one use.
8862  SDNode *N = Op.getNode();
8863  SDValue LHS = N->getOperand(0);
8864  SDValue RHS = N->getOperand(1);
8865  unsigned BaseOp = 0;
8866  unsigned Cond = 0;
8867  DebugLoc DL = Op.getDebugLoc();
8868  switch (Op.getOpcode()) {
8869  default: llvm_unreachable("Unknown ovf instruction!");
8870  case ISD::SADDO:
8871    // A subtract of one will be selected as a INC. Note that INC doesn't
8872    // set CF, so we can't do this for UADDO.
8873    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
8874      if (C->isOne()) {
8875        BaseOp = X86ISD::INC;
8876        Cond = X86::COND_O;
8877        break;
8878      }
8879    BaseOp = X86ISD::ADD;
8880    Cond = X86::COND_O;
8881    break;
8882  case ISD::UADDO:
8883    BaseOp = X86ISD::ADD;
8884    Cond = X86::COND_B;
8885    break;
8886  case ISD::SSUBO:
8887    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8888    // set CF, so we can't do this for USUBO.
8889    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
8890      if (C->isOne()) {
8891        BaseOp = X86ISD::DEC;
8892        Cond = X86::COND_O;
8893        break;
8894      }
8895    BaseOp = X86ISD::SUB;
8896    Cond = X86::COND_O;
8897    break;
8898  case ISD::USUBO:
8899    BaseOp = X86ISD::SUB;
8900    Cond = X86::COND_B;
8901    break;
8902  case ISD::SMULO:
8903    BaseOp = X86ISD::SMUL;
8904    Cond = X86::COND_O;
8905    break;
8906  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
8907    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
8908                                 MVT::i32);
8909    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
8910
8911    SDValue SetCC =
8912      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8913                  DAG.getConstant(X86::COND_O, MVT::i32),
8914                  SDValue(Sum.getNode(), 2));
8915
8916    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8917    return Sum;
8918  }
8919  }
8920
8921  // Also sets EFLAGS.
8922  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8923  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
8924
8925  SDValue SetCC =
8926    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
8927                DAG.getConstant(Cond, MVT::i32),
8928                SDValue(Sum.getNode(), 1));
8929
8930  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8931  return Sum;
8932}
8933
8934SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8935  DebugLoc dl = Op.getDebugLoc();
8936
8937  if (!Subtarget->hasSSE2()) {
8938    SDValue Chain = Op.getOperand(0);
8939    SDValue Zero = DAG.getConstant(0,
8940                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8941    SDValue Ops[] = {
8942      DAG.getRegister(X86::ESP, MVT::i32), // Base
8943      DAG.getTargetConstant(1, MVT::i8),   // Scale
8944      DAG.getRegister(0, MVT::i32),        // Index
8945      DAG.getTargetConstant(0, MVT::i32),  // Disp
8946      DAG.getRegister(0, MVT::i32),        // Segment.
8947      Zero,
8948      Chain
8949    };
8950    SDNode *Res =
8951      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8952                          array_lengthof(Ops));
8953    return SDValue(Res, 0);
8954  }
8955
8956  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8957  if (!isDev)
8958    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8959
8960  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8961  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8962  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8963  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8964
8965  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8966  if (!Op1 && !Op2 && !Op3 && Op4)
8967    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8968
8969  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8970  if (Op1 && !Op2 && !Op3 && !Op4)
8971    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8972
8973  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8974  //           (MFENCE)>;
8975  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8976}
8977
8978SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8979  EVT T = Op.getValueType();
8980  DebugLoc DL = Op.getDebugLoc();
8981  unsigned Reg = 0;
8982  unsigned size = 0;
8983  switch(T.getSimpleVT().SimpleTy) {
8984  default:
8985    assert(false && "Invalid value type!");
8986  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8987  case MVT::i16: Reg = X86::AX;  size = 2; break;
8988  case MVT::i32: Reg = X86::EAX; size = 4; break;
8989  case MVT::i64:
8990    assert(Subtarget->is64Bit() && "Node not type legal!");
8991    Reg = X86::RAX; size = 8;
8992    break;
8993  }
8994  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8995                                    Op.getOperand(2), SDValue());
8996  SDValue Ops[] = { cpIn.getValue(0),
8997                    Op.getOperand(1),
8998                    Op.getOperand(3),
8999                    DAG.getTargetConstant(size, MVT::i8),
9000                    cpIn.getValue(1) };
9001  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9002  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
9003  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
9004                                           Ops, 5, T, MMO);
9005  SDValue cpOut =
9006    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
9007  return cpOut;
9008}
9009
9010SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
9011                                                 SelectionDAG &DAG) const {
9012  assert(Subtarget->is64Bit() && "Result not type legalized?");
9013  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9014  SDValue TheChain = Op.getOperand(0);
9015  DebugLoc dl = Op.getDebugLoc();
9016  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9017  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9018  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9019                                   rax.getValue(2));
9020  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9021                            DAG.getConstant(32, MVT::i8));
9022  SDValue Ops[] = {
9023    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9024    rdx.getValue(1)
9025  };
9026  return DAG.getMergeValues(Ops, 2, dl);
9027}
9028
9029SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9030                                            SelectionDAG &DAG) const {
9031  EVT SrcVT = Op.getOperand(0).getValueType();
9032  EVT DstVT = Op.getValueType();
9033  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9034         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9035  assert((DstVT == MVT::i64 ||
9036          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9037         "Unexpected custom BITCAST");
9038  // i64 <=> MMX conversions are Legal.
9039  if (SrcVT==MVT::i64 && DstVT.isVector())
9040    return Op;
9041  if (DstVT==MVT::i64 && SrcVT.isVector())
9042    return Op;
9043  // MMX <=> MMX conversions are Legal.
9044  if (SrcVT.isVector() && DstVT.isVector())
9045    return Op;
9046  // All other conversions need to be expanded.
9047  return SDValue();
9048}
9049
9050SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9051  SDNode *Node = Op.getNode();
9052  DebugLoc dl = Node->getDebugLoc();
9053  EVT T = Node->getValueType(0);
9054  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9055                              DAG.getConstant(0, T), Node->getOperand(2));
9056  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9057                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9058                       Node->getOperand(0),
9059                       Node->getOperand(1), negOp,
9060                       cast<AtomicSDNode>(Node)->getSrcValue(),
9061                       cast<AtomicSDNode>(Node)->getAlignment());
9062}
9063
9064static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9065  EVT VT = Op.getNode()->getValueType(0);
9066
9067  // Let legalize expand this if it isn't a legal type yet.
9068  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9069    return SDValue();
9070
9071  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9072
9073  unsigned Opc;
9074  bool ExtraOp = false;
9075  switch (Op.getOpcode()) {
9076  default: assert(0 && "Invalid code");
9077  case ISD::ADDC: Opc = X86ISD::ADD; break;
9078  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9079  case ISD::SUBC: Opc = X86ISD::SUB; break;
9080  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9081  }
9082
9083  if (!ExtraOp)
9084    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9085                       Op.getOperand(1));
9086  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9087                     Op.getOperand(1), Op.getOperand(2));
9088}
9089
9090/// LowerOperation - Provide custom lowering hooks for some operations.
9091///
9092SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9093  switch (Op.getOpcode()) {
9094  default: llvm_unreachable("Should not custom lower this!");
9095  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9096  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9097  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9098  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9099  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9100  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9101  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9102  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9103  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9104  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9105  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9106  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9107  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9108  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9109  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9110  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9111  case ISD::SHL_PARTS:
9112  case ISD::SRA_PARTS:
9113  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
9114  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9115  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9116  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9117  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9118  case ISD::FABS:               return LowerFABS(Op, DAG);
9119  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9120  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9121  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9122  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9123  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9124  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9125  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9126  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9127  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9128  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9129  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9130  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9131  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9132  case ISD::FRAME_TO_ARGS_OFFSET:
9133                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9134  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9135  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9136  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9137  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9138  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9139  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9140  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9141  case ISD::SHL:                return LowerSHL(Op, DAG);
9142  case ISD::SADDO:
9143  case ISD::UADDO:
9144  case ISD::SSUBO:
9145  case ISD::USUBO:
9146  case ISD::SMULO:
9147  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9148  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9149  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9150  case ISD::ADDC:
9151  case ISD::ADDE:
9152  case ISD::SUBC:
9153  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9154  }
9155}
9156
9157void X86TargetLowering::
9158ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9159                        SelectionDAG &DAG, unsigned NewOp) const {
9160  EVT T = Node->getValueType(0);
9161  DebugLoc dl = Node->getDebugLoc();
9162  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9163
9164  SDValue Chain = Node->getOperand(0);
9165  SDValue In1 = Node->getOperand(1);
9166  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9167                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9168  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9169                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9170  SDValue Ops[] = { Chain, In1, In2L, In2H };
9171  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9172  SDValue Result =
9173    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9174                            cast<MemSDNode>(Node)->getMemOperand());
9175  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9176  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9177  Results.push_back(Result.getValue(2));
9178}
9179
9180/// ReplaceNodeResults - Replace a node with an illegal result type
9181/// with a new node built out of custom code.
9182void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9183                                           SmallVectorImpl<SDValue>&Results,
9184                                           SelectionDAG &DAG) const {
9185  DebugLoc dl = N->getDebugLoc();
9186  switch (N->getOpcode()) {
9187  default:
9188    assert(false && "Do not know how to custom type legalize this operation!");
9189    return;
9190  case ISD::ADDC:
9191  case ISD::ADDE:
9192  case ISD::SUBC:
9193  case ISD::SUBE:
9194    // We don't want to expand or promote these.
9195    return;
9196  case ISD::FP_TO_SINT: {
9197    std::pair<SDValue,SDValue> Vals =
9198        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9199    SDValue FIST = Vals.first, StackSlot = Vals.second;
9200    if (FIST.getNode() != 0) {
9201      EVT VT = N->getValueType(0);
9202      // Return a load from the stack slot.
9203      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9204                                    MachinePointerInfo(), false, false, 0));
9205    }
9206    return;
9207  }
9208  case ISD::READCYCLECOUNTER: {
9209    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9210    SDValue TheChain = N->getOperand(0);
9211    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9212    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9213                                     rd.getValue(1));
9214    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9215                                     eax.getValue(2));
9216    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9217    SDValue Ops[] = { eax, edx };
9218    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9219    Results.push_back(edx.getValue(1));
9220    return;
9221  }
9222  case ISD::ATOMIC_CMP_SWAP: {
9223    EVT T = N->getValueType(0);
9224    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9225    SDValue cpInL, cpInH;
9226    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9227                        DAG.getConstant(0, MVT::i32));
9228    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9229                        DAG.getConstant(1, MVT::i32));
9230    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9231    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9232                             cpInL.getValue(1));
9233    SDValue swapInL, swapInH;
9234    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9235                          DAG.getConstant(0, MVT::i32));
9236    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9237                          DAG.getConstant(1, MVT::i32));
9238    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9239                               cpInH.getValue(1));
9240    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9241                               swapInL.getValue(1));
9242    SDValue Ops[] = { swapInH.getValue(0),
9243                      N->getOperand(1),
9244                      swapInH.getValue(1) };
9245    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9246    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9247    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9248                                             Ops, 3, T, MMO);
9249    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9250                                        MVT::i32, Result.getValue(1));
9251    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9252                                        MVT::i32, cpOutL.getValue(2));
9253    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9254    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9255    Results.push_back(cpOutH.getValue(1));
9256    return;
9257  }
9258  case ISD::ATOMIC_LOAD_ADD:
9259    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9260    return;
9261  case ISD::ATOMIC_LOAD_AND:
9262    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9263    return;
9264  case ISD::ATOMIC_LOAD_NAND:
9265    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9266    return;
9267  case ISD::ATOMIC_LOAD_OR:
9268    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9269    return;
9270  case ISD::ATOMIC_LOAD_SUB:
9271    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9272    return;
9273  case ISD::ATOMIC_LOAD_XOR:
9274    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9275    return;
9276  case ISD::ATOMIC_SWAP:
9277    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9278    return;
9279  }
9280}
9281
9282const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9283  switch (Opcode) {
9284  default: return NULL;
9285  case X86ISD::BSF:                return "X86ISD::BSF";
9286  case X86ISD::BSR:                return "X86ISD::BSR";
9287  case X86ISD::SHLD:               return "X86ISD::SHLD";
9288  case X86ISD::SHRD:               return "X86ISD::SHRD";
9289  case X86ISD::FAND:               return "X86ISD::FAND";
9290  case X86ISD::FOR:                return "X86ISD::FOR";
9291  case X86ISD::FXOR:               return "X86ISD::FXOR";
9292  case X86ISD::FSRL:               return "X86ISD::FSRL";
9293  case X86ISD::FILD:               return "X86ISD::FILD";
9294  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9295  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9296  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9297  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9298  case X86ISD::FLD:                return "X86ISD::FLD";
9299  case X86ISD::FST:                return "X86ISD::FST";
9300  case X86ISD::CALL:               return "X86ISD::CALL";
9301  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9302  case X86ISD::BT:                 return "X86ISD::BT";
9303  case X86ISD::CMP:                return "X86ISD::CMP";
9304  case X86ISD::COMI:               return "X86ISD::COMI";
9305  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9306  case X86ISD::SETCC:              return "X86ISD::SETCC";
9307  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9308  case X86ISD::CMOV:               return "X86ISD::CMOV";
9309  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9310  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9311  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9312  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9313  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9314  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9315  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9316  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9317  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9318  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9319  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9320  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9321  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9322  case X86ISD::PANDN:              return "X86ISD::PANDN";
9323  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9324  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9325  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9326  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9327  case X86ISD::FMAX:               return "X86ISD::FMAX";
9328  case X86ISD::FMIN:               return "X86ISD::FMIN";
9329  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9330  case X86ISD::FRCP:               return "X86ISD::FRCP";
9331  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9332  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9333  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9334  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9335  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9336  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9337  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9338  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9339  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9340  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9341  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9342  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9343  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9344  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9345  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9346  case X86ISD::VSHL:               return "X86ISD::VSHL";
9347  case X86ISD::VSRL:               return "X86ISD::VSRL";
9348  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9349  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9350  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9351  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9352  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9353  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9354  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9355  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9356  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9357  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9358  case X86ISD::ADD:                return "X86ISD::ADD";
9359  case X86ISD::SUB:                return "X86ISD::SUB";
9360  case X86ISD::ADC:                return "X86ISD::ADC";
9361  case X86ISD::SBB:                return "X86ISD::SBB";
9362  case X86ISD::SMUL:               return "X86ISD::SMUL";
9363  case X86ISD::UMUL:               return "X86ISD::UMUL";
9364  case X86ISD::INC:                return "X86ISD::INC";
9365  case X86ISD::DEC:                return "X86ISD::DEC";
9366  case X86ISD::OR:                 return "X86ISD::OR";
9367  case X86ISD::XOR:                return "X86ISD::XOR";
9368  case X86ISD::AND:                return "X86ISD::AND";
9369  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9370  case X86ISD::PTEST:              return "X86ISD::PTEST";
9371  case X86ISD::TESTP:              return "X86ISD::TESTP";
9372  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9373  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9374  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9375  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9376  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9377  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9378  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9379  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9380  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9381  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9382  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9383  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9384  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9385  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9386  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9387  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9388  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9389  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9390  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9391  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9392  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9393  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9394  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9395  case X86ISD::VUNPCKLPS:          return "X86ISD::VUNPCKLPS";
9396  case X86ISD::VUNPCKLPD:          return "X86ISD::VUNPCKLPD";
9397  case X86ISD::VUNPCKLPSY:         return "X86ISD::VUNPCKLPSY";
9398  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
9399  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9400  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9401  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9402  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9403  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9404  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9405  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9406  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9407  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9408  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9409  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9410  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9411  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9412  }
9413}
9414
9415// isLegalAddressingMode - Return true if the addressing mode represented
9416// by AM is legal for this target, for a load/store of the specified type.
9417bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9418                                              const Type *Ty) const {
9419  // X86 supports extremely general addressing modes.
9420  CodeModel::Model M = getTargetMachine().getCodeModel();
9421  Reloc::Model R = getTargetMachine().getRelocationModel();
9422
9423  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9424  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9425    return false;
9426
9427  if (AM.BaseGV) {
9428    unsigned GVFlags =
9429      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9430
9431    // If a reference to this global requires an extra load, we can't fold it.
9432    if (isGlobalStubReference(GVFlags))
9433      return false;
9434
9435    // If BaseGV requires a register for the PIC base, we cannot also have a
9436    // BaseReg specified.
9437    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9438      return false;
9439
9440    // If lower 4G is not available, then we must use rip-relative addressing.
9441    if ((M != CodeModel::Small || R != Reloc::Static) &&
9442        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9443      return false;
9444  }
9445
9446  switch (AM.Scale) {
9447  case 0:
9448  case 1:
9449  case 2:
9450  case 4:
9451  case 8:
9452    // These scales always work.
9453    break;
9454  case 3:
9455  case 5:
9456  case 9:
9457    // These scales are formed with basereg+scalereg.  Only accept if there is
9458    // no basereg yet.
9459    if (AM.HasBaseReg)
9460      return false;
9461    break;
9462  default:  // Other stuff never works.
9463    return false;
9464  }
9465
9466  return true;
9467}
9468
9469
9470bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
9471  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9472    return false;
9473  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9474  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9475  if (NumBits1 <= NumBits2)
9476    return false;
9477  return true;
9478}
9479
9480bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9481  if (!VT1.isInteger() || !VT2.isInteger())
9482    return false;
9483  unsigned NumBits1 = VT1.getSizeInBits();
9484  unsigned NumBits2 = VT2.getSizeInBits();
9485  if (NumBits1 <= NumBits2)
9486    return false;
9487  return true;
9488}
9489
9490bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
9491  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9492  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9493}
9494
9495bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9496  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9497  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9498}
9499
9500bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9501  // i16 instructions are longer (0x66 prefix) and potentially slower.
9502  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9503}
9504
9505/// isShuffleMaskLegal - Targets can use this to indicate that they only
9506/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9507/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9508/// are assumed to be legal.
9509bool
9510X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9511                                      EVT VT) const {
9512  // Very little shuffling can be done for 64-bit vectors right now.
9513  if (VT.getSizeInBits() == 64)
9514    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9515
9516  // FIXME: pshufb, blends, shifts.
9517  return (VT.getVectorNumElements() == 2 ||
9518          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9519          isMOVLMask(M, VT) ||
9520          isSHUFPMask(M, VT) ||
9521          isPSHUFDMask(M, VT) ||
9522          isPSHUFHWMask(M, VT) ||
9523          isPSHUFLWMask(M, VT) ||
9524          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9525          isUNPCKLMask(M, VT) ||
9526          isUNPCKHMask(M, VT) ||
9527          isUNPCKL_v_undef_Mask(M, VT) ||
9528          isUNPCKH_v_undef_Mask(M, VT));
9529}
9530
9531bool
9532X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9533                                          EVT VT) const {
9534  unsigned NumElts = VT.getVectorNumElements();
9535  // FIXME: This collection of masks seems suspect.
9536  if (NumElts == 2)
9537    return true;
9538  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9539    return (isMOVLMask(Mask, VT)  ||
9540            isCommutedMOVLMask(Mask, VT, true) ||
9541            isSHUFPMask(Mask, VT) ||
9542            isCommutedSHUFPMask(Mask, VT));
9543  }
9544  return false;
9545}
9546
9547//===----------------------------------------------------------------------===//
9548//                           X86 Scheduler Hooks
9549//===----------------------------------------------------------------------===//
9550
9551// private utility function
9552MachineBasicBlock *
9553X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9554                                                       MachineBasicBlock *MBB,
9555                                                       unsigned regOpc,
9556                                                       unsigned immOpc,
9557                                                       unsigned LoadOpc,
9558                                                       unsigned CXchgOpc,
9559                                                       unsigned notOpc,
9560                                                       unsigned EAXreg,
9561                                                       TargetRegisterClass *RC,
9562                                                       bool invSrc) const {
9563  // For the atomic bitwise operator, we generate
9564  //   thisMBB:
9565  //   newMBB:
9566  //     ld  t1 = [bitinstr.addr]
9567  //     op  t2 = t1, [bitinstr.val]
9568  //     mov EAX = t1
9569  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9570  //     bz  newMBB
9571  //     fallthrough -->nextMBB
9572  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9573  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9574  MachineFunction::iterator MBBIter = MBB;
9575  ++MBBIter;
9576
9577  /// First build the CFG
9578  MachineFunction *F = MBB->getParent();
9579  MachineBasicBlock *thisMBB = MBB;
9580  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9581  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9582  F->insert(MBBIter, newMBB);
9583  F->insert(MBBIter, nextMBB);
9584
9585  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9586  nextMBB->splice(nextMBB->begin(), thisMBB,
9587                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9588                  thisMBB->end());
9589  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9590
9591  // Update thisMBB to fall through to newMBB
9592  thisMBB->addSuccessor(newMBB);
9593
9594  // newMBB jumps to itself and fall through to nextMBB
9595  newMBB->addSuccessor(nextMBB);
9596  newMBB->addSuccessor(newMBB);
9597
9598  // Insert instructions into newMBB based on incoming instruction
9599  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9600         "unexpected number of operands");
9601  DebugLoc dl = bInstr->getDebugLoc();
9602  MachineOperand& destOper = bInstr->getOperand(0);
9603  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9604  int numArgs = bInstr->getNumOperands() - 1;
9605  for (int i=0; i < numArgs; ++i)
9606    argOpers[i] = &bInstr->getOperand(i+1);
9607
9608  // x86 address has 4 operands: base, index, scale, and displacement
9609  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9610  int valArgIndx = lastAddrIndx + 1;
9611
9612  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9613  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9614  for (int i=0; i <= lastAddrIndx; ++i)
9615    (*MIB).addOperand(*argOpers[i]);
9616
9617  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9618  if (invSrc) {
9619    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9620  }
9621  else
9622    tt = t1;
9623
9624  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9625  assert((argOpers[valArgIndx]->isReg() ||
9626          argOpers[valArgIndx]->isImm()) &&
9627         "invalid operand");
9628  if (argOpers[valArgIndx]->isReg())
9629    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9630  else
9631    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9632  MIB.addReg(tt);
9633  (*MIB).addOperand(*argOpers[valArgIndx]);
9634
9635  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9636  MIB.addReg(t1);
9637
9638  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9639  for (int i=0; i <= lastAddrIndx; ++i)
9640    (*MIB).addOperand(*argOpers[i]);
9641  MIB.addReg(t2);
9642  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9643  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9644                    bInstr->memoperands_end());
9645
9646  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9647  MIB.addReg(EAXreg);
9648
9649  // insert branch
9650  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9651
9652  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9653  return nextMBB;
9654}
9655
9656// private utility function:  64 bit atomics on 32 bit host.
9657MachineBasicBlock *
9658X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9659                                                       MachineBasicBlock *MBB,
9660                                                       unsigned regOpcL,
9661                                                       unsigned regOpcH,
9662                                                       unsigned immOpcL,
9663                                                       unsigned immOpcH,
9664                                                       bool invSrc) const {
9665  // For the atomic bitwise operator, we generate
9666  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9667  //     ld t1,t2 = [bitinstr.addr]
9668  //   newMBB:
9669  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9670  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9671  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9672  //     mov ECX, EBX <- t5, t6
9673  //     mov EAX, EDX <- t1, t2
9674  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9675  //     mov t3, t4 <- EAX, EDX
9676  //     bz  newMBB
9677  //     result in out1, out2
9678  //     fallthrough -->nextMBB
9679
9680  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9681  const unsigned LoadOpc = X86::MOV32rm;
9682  const unsigned NotOpc = X86::NOT32r;
9683  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9684  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9685  MachineFunction::iterator MBBIter = MBB;
9686  ++MBBIter;
9687
9688  /// First build the CFG
9689  MachineFunction *F = MBB->getParent();
9690  MachineBasicBlock *thisMBB = MBB;
9691  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9692  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9693  F->insert(MBBIter, newMBB);
9694  F->insert(MBBIter, nextMBB);
9695
9696  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9697  nextMBB->splice(nextMBB->begin(), thisMBB,
9698                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9699                  thisMBB->end());
9700  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9701
9702  // Update thisMBB to fall through to newMBB
9703  thisMBB->addSuccessor(newMBB);
9704
9705  // newMBB jumps to itself and fall through to nextMBB
9706  newMBB->addSuccessor(nextMBB);
9707  newMBB->addSuccessor(newMBB);
9708
9709  DebugLoc dl = bInstr->getDebugLoc();
9710  // Insert instructions into newMBB based on incoming instruction
9711  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9712  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9713         "unexpected number of operands");
9714  MachineOperand& dest1Oper = bInstr->getOperand(0);
9715  MachineOperand& dest2Oper = bInstr->getOperand(1);
9716  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9717  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9718    argOpers[i] = &bInstr->getOperand(i+2);
9719
9720    // We use some of the operands multiple times, so conservatively just
9721    // clear any kill flags that might be present.
9722    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9723      argOpers[i]->setIsKill(false);
9724  }
9725
9726  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9727  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9728
9729  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9730  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9731  for (int i=0; i <= lastAddrIndx; ++i)
9732    (*MIB).addOperand(*argOpers[i]);
9733  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9734  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9735  // add 4 to displacement.
9736  for (int i=0; i <= lastAddrIndx-2; ++i)
9737    (*MIB).addOperand(*argOpers[i]);
9738  MachineOperand newOp3 = *(argOpers[3]);
9739  if (newOp3.isImm())
9740    newOp3.setImm(newOp3.getImm()+4);
9741  else
9742    newOp3.setOffset(newOp3.getOffset()+4);
9743  (*MIB).addOperand(newOp3);
9744  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9745
9746  // t3/4 are defined later, at the bottom of the loop
9747  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9748  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9749  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9750    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9751  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9752    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9753
9754  // The subsequent operations should be using the destination registers of
9755  //the PHI instructions.
9756  if (invSrc) {
9757    t1 = F->getRegInfo().createVirtualRegister(RC);
9758    t2 = F->getRegInfo().createVirtualRegister(RC);
9759    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9760    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9761  } else {
9762    t1 = dest1Oper.getReg();
9763    t2 = dest2Oper.getReg();
9764  }
9765
9766  int valArgIndx = lastAddrIndx + 1;
9767  assert((argOpers[valArgIndx]->isReg() ||
9768          argOpers[valArgIndx]->isImm()) &&
9769         "invalid operand");
9770  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9771  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9772  if (argOpers[valArgIndx]->isReg())
9773    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9774  else
9775    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9776  if (regOpcL != X86::MOV32rr)
9777    MIB.addReg(t1);
9778  (*MIB).addOperand(*argOpers[valArgIndx]);
9779  assert(argOpers[valArgIndx + 1]->isReg() ==
9780         argOpers[valArgIndx]->isReg());
9781  assert(argOpers[valArgIndx + 1]->isImm() ==
9782         argOpers[valArgIndx]->isImm());
9783  if (argOpers[valArgIndx + 1]->isReg())
9784    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9785  else
9786    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9787  if (regOpcH != X86::MOV32rr)
9788    MIB.addReg(t2);
9789  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9790
9791  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9792  MIB.addReg(t1);
9793  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9794  MIB.addReg(t2);
9795
9796  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9797  MIB.addReg(t5);
9798  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9799  MIB.addReg(t6);
9800
9801  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9802  for (int i=0; i <= lastAddrIndx; ++i)
9803    (*MIB).addOperand(*argOpers[i]);
9804
9805  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9806  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9807                    bInstr->memoperands_end());
9808
9809  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9810  MIB.addReg(X86::EAX);
9811  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9812  MIB.addReg(X86::EDX);
9813
9814  // insert branch
9815  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9816
9817  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9818  return nextMBB;
9819}
9820
9821// private utility function
9822MachineBasicBlock *
9823X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9824                                                      MachineBasicBlock *MBB,
9825                                                      unsigned cmovOpc) const {
9826  // For the atomic min/max operator, we generate
9827  //   thisMBB:
9828  //   newMBB:
9829  //     ld t1 = [min/max.addr]
9830  //     mov t2 = [min/max.val]
9831  //     cmp  t1, t2
9832  //     cmov[cond] t2 = t1
9833  //     mov EAX = t1
9834  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9835  //     bz   newMBB
9836  //     fallthrough -->nextMBB
9837  //
9838  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9839  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9840  MachineFunction::iterator MBBIter = MBB;
9841  ++MBBIter;
9842
9843  /// First build the CFG
9844  MachineFunction *F = MBB->getParent();
9845  MachineBasicBlock *thisMBB = MBB;
9846  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9847  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9848  F->insert(MBBIter, newMBB);
9849  F->insert(MBBIter, nextMBB);
9850
9851  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9852  nextMBB->splice(nextMBB->begin(), thisMBB,
9853                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9854                  thisMBB->end());
9855  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9856
9857  // Update thisMBB to fall through to newMBB
9858  thisMBB->addSuccessor(newMBB);
9859
9860  // newMBB jumps to newMBB and fall through to nextMBB
9861  newMBB->addSuccessor(nextMBB);
9862  newMBB->addSuccessor(newMBB);
9863
9864  DebugLoc dl = mInstr->getDebugLoc();
9865  // Insert instructions into newMBB based on incoming instruction
9866  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9867         "unexpected number of operands");
9868  MachineOperand& destOper = mInstr->getOperand(0);
9869  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9870  int numArgs = mInstr->getNumOperands() - 1;
9871  for (int i=0; i < numArgs; ++i)
9872    argOpers[i] = &mInstr->getOperand(i+1);
9873
9874  // x86 address has 4 operands: base, index, scale, and displacement
9875  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9876  int valArgIndx = lastAddrIndx + 1;
9877
9878  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9879  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9880  for (int i=0; i <= lastAddrIndx; ++i)
9881    (*MIB).addOperand(*argOpers[i]);
9882
9883  // We only support register and immediate values
9884  assert((argOpers[valArgIndx]->isReg() ||
9885          argOpers[valArgIndx]->isImm()) &&
9886         "invalid operand");
9887
9888  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9889  if (argOpers[valArgIndx]->isReg())
9890    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9891  else
9892    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9893  (*MIB).addOperand(*argOpers[valArgIndx]);
9894
9895  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9896  MIB.addReg(t1);
9897
9898  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9899  MIB.addReg(t1);
9900  MIB.addReg(t2);
9901
9902  // Generate movc
9903  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9904  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9905  MIB.addReg(t2);
9906  MIB.addReg(t1);
9907
9908  // Cmp and exchange if none has modified the memory location
9909  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9910  for (int i=0; i <= lastAddrIndx; ++i)
9911    (*MIB).addOperand(*argOpers[i]);
9912  MIB.addReg(t3);
9913  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9914  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9915                    mInstr->memoperands_end());
9916
9917  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9918  MIB.addReg(X86::EAX);
9919
9920  // insert branch
9921  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9922
9923  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9924  return nextMBB;
9925}
9926
9927// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9928// or XMM0_V32I8 in AVX all of this code can be replaced with that
9929// in the .td file.
9930MachineBasicBlock *
9931X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9932                            unsigned numArgs, bool memArg) const {
9933  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9934         "Target must have SSE4.2 or AVX features enabled");
9935
9936  DebugLoc dl = MI->getDebugLoc();
9937  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9938  unsigned Opc;
9939  if (!Subtarget->hasAVX()) {
9940    if (memArg)
9941      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9942    else
9943      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9944  } else {
9945    if (memArg)
9946      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9947    else
9948      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9949  }
9950
9951  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
9952  for (unsigned i = 0; i < numArgs; ++i) {
9953    MachineOperand &Op = MI->getOperand(i+1);
9954    if (!(Op.isReg() && Op.isImplicit()))
9955      MIB.addOperand(Op);
9956  }
9957  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9958    .addReg(X86::XMM0);
9959
9960  MI->eraseFromParent();
9961  return BB;
9962}
9963
9964MachineBasicBlock *
9965X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
9966  DebugLoc dl = MI->getDebugLoc();
9967  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9968
9969  // Address into RAX/EAX, other two args into ECX, EDX.
9970  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
9971  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
9972  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
9973  for (int i = 0; i < X86::AddrNumOperands; ++i)
9974    MIB.addOperand(MI->getOperand(i));
9975
9976  unsigned ValOps = X86::AddrNumOperands;
9977  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9978    .addReg(MI->getOperand(ValOps).getReg());
9979  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
9980    .addReg(MI->getOperand(ValOps+1).getReg());
9981
9982  // The instruction doesn't actually take any operands though.
9983  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
9984
9985  MI->eraseFromParent(); // The pseudo is gone now.
9986  return BB;
9987}
9988
9989MachineBasicBlock *
9990X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
9991  DebugLoc dl = MI->getDebugLoc();
9992  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9993
9994  // First arg in ECX, the second in EAX.
9995  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9996    .addReg(MI->getOperand(0).getReg());
9997  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
9998    .addReg(MI->getOperand(1).getReg());
9999
10000  // The instruction doesn't actually take any operands though.
10001  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
10002
10003  MI->eraseFromParent(); // The pseudo is gone now.
10004  return BB;
10005}
10006
10007MachineBasicBlock *
10008X86TargetLowering::EmitVAARG64WithCustomInserter(
10009                   MachineInstr *MI,
10010                   MachineBasicBlock *MBB) const {
10011  // Emit va_arg instruction on X86-64.
10012
10013  // Operands to this pseudo-instruction:
10014  // 0  ) Output        : destination address (reg)
10015  // 1-5) Input         : va_list address (addr, i64mem)
10016  // 6  ) ArgSize       : Size (in bytes) of vararg type
10017  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10018  // 8  ) Align         : Alignment of type
10019  // 9  ) EFLAGS (implicit-def)
10020
10021  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10022  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10023
10024  unsigned DestReg = MI->getOperand(0).getReg();
10025  MachineOperand &Base = MI->getOperand(1);
10026  MachineOperand &Scale = MI->getOperand(2);
10027  MachineOperand &Index = MI->getOperand(3);
10028  MachineOperand &Disp = MI->getOperand(4);
10029  MachineOperand &Segment = MI->getOperand(5);
10030  unsigned ArgSize = MI->getOperand(6).getImm();
10031  unsigned ArgMode = MI->getOperand(7).getImm();
10032  unsigned Align = MI->getOperand(8).getImm();
10033
10034  // Memory Reference
10035  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10036  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10037  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10038
10039  // Machine Information
10040  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10041  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10042  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10043  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10044  DebugLoc DL = MI->getDebugLoc();
10045
10046  // struct va_list {
10047  //   i32   gp_offset
10048  //   i32   fp_offset
10049  //   i64   overflow_area (address)
10050  //   i64   reg_save_area (address)
10051  // }
10052  // sizeof(va_list) = 24
10053  // alignment(va_list) = 8
10054
10055  unsigned TotalNumIntRegs = 6;
10056  unsigned TotalNumXMMRegs = 8;
10057  bool UseGPOffset = (ArgMode == 1);
10058  bool UseFPOffset = (ArgMode == 2);
10059  unsigned MaxOffset = TotalNumIntRegs * 8 +
10060                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10061
10062  /* Align ArgSize to a multiple of 8 */
10063  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10064  bool NeedsAlign = (Align > 8);
10065
10066  MachineBasicBlock *thisMBB = MBB;
10067  MachineBasicBlock *overflowMBB;
10068  MachineBasicBlock *offsetMBB;
10069  MachineBasicBlock *endMBB;
10070
10071  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10072  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10073  unsigned OffsetReg = 0;
10074
10075  if (!UseGPOffset && !UseFPOffset) {
10076    // If we only pull from the overflow region, we don't create a branch.
10077    // We don't need to alter control flow.
10078    OffsetDestReg = 0; // unused
10079    OverflowDestReg = DestReg;
10080
10081    offsetMBB = NULL;
10082    overflowMBB = thisMBB;
10083    endMBB = thisMBB;
10084  } else {
10085    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10086    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10087    // If not, pull from overflow_area. (branch to overflowMBB)
10088    //
10089    //       thisMBB
10090    //         |     .
10091    //         |        .
10092    //     offsetMBB   overflowMBB
10093    //         |        .
10094    //         |     .
10095    //        endMBB
10096
10097    // Registers for the PHI in endMBB
10098    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10099    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10100
10101    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10102    MachineFunction *MF = MBB->getParent();
10103    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10104    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10105    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10106
10107    MachineFunction::iterator MBBIter = MBB;
10108    ++MBBIter;
10109
10110    // Insert the new basic blocks
10111    MF->insert(MBBIter, offsetMBB);
10112    MF->insert(MBBIter, overflowMBB);
10113    MF->insert(MBBIter, endMBB);
10114
10115    // Transfer the remainder of MBB and its successor edges to endMBB.
10116    endMBB->splice(endMBB->begin(), thisMBB,
10117                    llvm::next(MachineBasicBlock::iterator(MI)),
10118                    thisMBB->end());
10119    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10120
10121    // Make offsetMBB and overflowMBB successors of thisMBB
10122    thisMBB->addSuccessor(offsetMBB);
10123    thisMBB->addSuccessor(overflowMBB);
10124
10125    // endMBB is a successor of both offsetMBB and overflowMBB
10126    offsetMBB->addSuccessor(endMBB);
10127    overflowMBB->addSuccessor(endMBB);
10128
10129    // Load the offset value into a register
10130    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10131    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10132      .addOperand(Base)
10133      .addOperand(Scale)
10134      .addOperand(Index)
10135      .addDisp(Disp, UseFPOffset ? 4 : 0)
10136      .addOperand(Segment)
10137      .setMemRefs(MMOBegin, MMOEnd);
10138
10139    // Check if there is enough room left to pull this argument.
10140    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10141      .addReg(OffsetReg)
10142      .addImm(MaxOffset + 8 - ArgSizeA8);
10143
10144    // Branch to "overflowMBB" if offset >= max
10145    // Fall through to "offsetMBB" otherwise
10146    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10147      .addMBB(overflowMBB);
10148  }
10149
10150  // In offsetMBB, emit code to use the reg_save_area.
10151  if (offsetMBB) {
10152    assert(OffsetReg != 0);
10153
10154    // Read the reg_save_area address.
10155    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10156    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10157      .addOperand(Base)
10158      .addOperand(Scale)
10159      .addOperand(Index)
10160      .addDisp(Disp, 16)
10161      .addOperand(Segment)
10162      .setMemRefs(MMOBegin, MMOEnd);
10163
10164    // Zero-extend the offset
10165    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10166      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10167        .addImm(0)
10168        .addReg(OffsetReg)
10169        .addImm(X86::sub_32bit);
10170
10171    // Add the offset to the reg_save_area to get the final address.
10172    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10173      .addReg(OffsetReg64)
10174      .addReg(RegSaveReg);
10175
10176    // Compute the offset for the next argument
10177    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10178    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10179      .addReg(OffsetReg)
10180      .addImm(UseFPOffset ? 16 : 8);
10181
10182    // Store it back into the va_list.
10183    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10184      .addOperand(Base)
10185      .addOperand(Scale)
10186      .addOperand(Index)
10187      .addDisp(Disp, UseFPOffset ? 4 : 0)
10188      .addOperand(Segment)
10189      .addReg(NextOffsetReg)
10190      .setMemRefs(MMOBegin, MMOEnd);
10191
10192    // Jump to endMBB
10193    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10194      .addMBB(endMBB);
10195  }
10196
10197  //
10198  // Emit code to use overflow area
10199  //
10200
10201  // Load the overflow_area address into a register.
10202  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10203  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10204    .addOperand(Base)
10205    .addOperand(Scale)
10206    .addOperand(Index)
10207    .addDisp(Disp, 8)
10208    .addOperand(Segment)
10209    .setMemRefs(MMOBegin, MMOEnd);
10210
10211  // If we need to align it, do so. Otherwise, just copy the address
10212  // to OverflowDestReg.
10213  if (NeedsAlign) {
10214    // Align the overflow address
10215    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10216    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10217
10218    // aligned_addr = (addr + (align-1)) & ~(align-1)
10219    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10220      .addReg(OverflowAddrReg)
10221      .addImm(Align-1);
10222
10223    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10224      .addReg(TmpReg)
10225      .addImm(~(uint64_t)(Align-1));
10226  } else {
10227    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10228      .addReg(OverflowAddrReg);
10229  }
10230
10231  // Compute the next overflow address after this argument.
10232  // (the overflow address should be kept 8-byte aligned)
10233  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10234  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10235    .addReg(OverflowDestReg)
10236    .addImm(ArgSizeA8);
10237
10238  // Store the new overflow address.
10239  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10240    .addOperand(Base)
10241    .addOperand(Scale)
10242    .addOperand(Index)
10243    .addDisp(Disp, 8)
10244    .addOperand(Segment)
10245    .addReg(NextAddrReg)
10246    .setMemRefs(MMOBegin, MMOEnd);
10247
10248  // If we branched, emit the PHI to the front of endMBB.
10249  if (offsetMBB) {
10250    BuildMI(*endMBB, endMBB->begin(), DL,
10251            TII->get(X86::PHI), DestReg)
10252      .addReg(OffsetDestReg).addMBB(offsetMBB)
10253      .addReg(OverflowDestReg).addMBB(overflowMBB);
10254  }
10255
10256  // Erase the pseudo instruction
10257  MI->eraseFromParent();
10258
10259  return endMBB;
10260}
10261
10262MachineBasicBlock *
10263X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10264                                                 MachineInstr *MI,
10265                                                 MachineBasicBlock *MBB) const {
10266  // Emit code to save XMM registers to the stack. The ABI says that the
10267  // number of registers to save is given in %al, so it's theoretically
10268  // possible to do an indirect jump trick to avoid saving all of them,
10269  // however this code takes a simpler approach and just executes all
10270  // of the stores if %al is non-zero. It's less code, and it's probably
10271  // easier on the hardware branch predictor, and stores aren't all that
10272  // expensive anyway.
10273
10274  // Create the new basic blocks. One block contains all the XMM stores,
10275  // and one block is the final destination regardless of whether any
10276  // stores were performed.
10277  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10278  MachineFunction *F = MBB->getParent();
10279  MachineFunction::iterator MBBIter = MBB;
10280  ++MBBIter;
10281  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10282  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10283  F->insert(MBBIter, XMMSaveMBB);
10284  F->insert(MBBIter, EndMBB);
10285
10286  // Transfer the remainder of MBB and its successor edges to EndMBB.
10287  EndMBB->splice(EndMBB->begin(), MBB,
10288                 llvm::next(MachineBasicBlock::iterator(MI)),
10289                 MBB->end());
10290  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10291
10292  // The original block will now fall through to the XMM save block.
10293  MBB->addSuccessor(XMMSaveMBB);
10294  // The XMMSaveMBB will fall through to the end block.
10295  XMMSaveMBB->addSuccessor(EndMBB);
10296
10297  // Now add the instructions.
10298  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10299  DebugLoc DL = MI->getDebugLoc();
10300
10301  unsigned CountReg = MI->getOperand(0).getReg();
10302  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10303  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10304
10305  if (!Subtarget->isTargetWin64()) {
10306    // If %al is 0, branch around the XMM save block.
10307    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10308    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10309    MBB->addSuccessor(EndMBB);
10310  }
10311
10312  // In the XMM save block, save all the XMM argument registers.
10313  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10314    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10315    MachineMemOperand *MMO =
10316      F->getMachineMemOperand(
10317          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10318        MachineMemOperand::MOStore,
10319        /*Size=*/16, /*Align=*/16);
10320    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10321      .addFrameIndex(RegSaveFrameIndex)
10322      .addImm(/*Scale=*/1)
10323      .addReg(/*IndexReg=*/0)
10324      .addImm(/*Disp=*/Offset)
10325      .addReg(/*Segment=*/0)
10326      .addReg(MI->getOperand(i).getReg())
10327      .addMemOperand(MMO);
10328  }
10329
10330  MI->eraseFromParent();   // The pseudo instruction is gone now.
10331
10332  return EndMBB;
10333}
10334
10335MachineBasicBlock *
10336X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10337                                     MachineBasicBlock *BB) const {
10338  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10339  DebugLoc DL = MI->getDebugLoc();
10340
10341  // To "insert" a SELECT_CC instruction, we actually have to insert the
10342  // diamond control-flow pattern.  The incoming instruction knows the
10343  // destination vreg to set, the condition code register to branch on, the
10344  // true/false values to select between, and a branch opcode to use.
10345  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10346  MachineFunction::iterator It = BB;
10347  ++It;
10348
10349  //  thisMBB:
10350  //  ...
10351  //   TrueVal = ...
10352  //   cmpTY ccX, r1, r2
10353  //   bCC copy1MBB
10354  //   fallthrough --> copy0MBB
10355  MachineBasicBlock *thisMBB = BB;
10356  MachineFunction *F = BB->getParent();
10357  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10358  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10359  F->insert(It, copy0MBB);
10360  F->insert(It, sinkMBB);
10361
10362  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10363  // live into the sink and copy blocks.
10364  const MachineFunction *MF = BB->getParent();
10365  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10366  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10367
10368  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10369    const MachineOperand &MO = MI->getOperand(I);
10370    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10371    unsigned Reg = MO.getReg();
10372    if (Reg != X86::EFLAGS) continue;
10373    copy0MBB->addLiveIn(Reg);
10374    sinkMBB->addLiveIn(Reg);
10375  }
10376
10377  // Transfer the remainder of BB and its successor edges to sinkMBB.
10378  sinkMBB->splice(sinkMBB->begin(), BB,
10379                  llvm::next(MachineBasicBlock::iterator(MI)),
10380                  BB->end());
10381  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10382
10383  // Add the true and fallthrough blocks as its successors.
10384  BB->addSuccessor(copy0MBB);
10385  BB->addSuccessor(sinkMBB);
10386
10387  // Create the conditional branch instruction.
10388  unsigned Opc =
10389    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10390  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10391
10392  //  copy0MBB:
10393  //   %FalseValue = ...
10394  //   # fallthrough to sinkMBB
10395  copy0MBB->addSuccessor(sinkMBB);
10396
10397  //  sinkMBB:
10398  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10399  //  ...
10400  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10401          TII->get(X86::PHI), MI->getOperand(0).getReg())
10402    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10403    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10404
10405  MI->eraseFromParent();   // The pseudo instruction is gone now.
10406  return sinkMBB;
10407}
10408
10409MachineBasicBlock *
10410X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10411                                          MachineBasicBlock *BB) const {
10412  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10413  DebugLoc DL = MI->getDebugLoc();
10414
10415  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10416  // non-trivial part is impdef of ESP.
10417  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
10418  // mingw-w64.
10419
10420  const char *StackProbeSymbol =
10421      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10422
10423  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10424    .addExternalSymbol(StackProbeSymbol)
10425    .addReg(X86::EAX, RegState::Implicit)
10426    .addReg(X86::ESP, RegState::Implicit)
10427    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10428    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10429    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10430
10431  MI->eraseFromParent();   // The pseudo instruction is gone now.
10432  return BB;
10433}
10434
10435MachineBasicBlock *
10436X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10437                                      MachineBasicBlock *BB) const {
10438  // This is pretty easy.  We're taking the value that we received from
10439  // our load from the relocation, sticking it in either RDI (x86-64)
10440  // or EAX and doing an indirect call.  The return value will then
10441  // be in the normal return register.
10442  const X86InstrInfo *TII
10443    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10444  DebugLoc DL = MI->getDebugLoc();
10445  MachineFunction *F = BB->getParent();
10446
10447  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10448  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10449
10450  if (Subtarget->is64Bit()) {
10451    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10452                                      TII->get(X86::MOV64rm), X86::RDI)
10453    .addReg(X86::RIP)
10454    .addImm(0).addReg(0)
10455    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10456                      MI->getOperand(3).getTargetFlags())
10457    .addReg(0);
10458    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10459    addDirectMem(MIB, X86::RDI);
10460  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10461    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10462                                      TII->get(X86::MOV32rm), X86::EAX)
10463    .addReg(0)
10464    .addImm(0).addReg(0)
10465    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10466                      MI->getOperand(3).getTargetFlags())
10467    .addReg(0);
10468    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10469    addDirectMem(MIB, X86::EAX);
10470  } else {
10471    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10472                                      TII->get(X86::MOV32rm), X86::EAX)
10473    .addReg(TII->getGlobalBaseReg(F))
10474    .addImm(0).addReg(0)
10475    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10476                      MI->getOperand(3).getTargetFlags())
10477    .addReg(0);
10478    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10479    addDirectMem(MIB, X86::EAX);
10480  }
10481
10482  MI->eraseFromParent(); // The pseudo instruction is gone now.
10483  return BB;
10484}
10485
10486MachineBasicBlock *
10487X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10488                                               MachineBasicBlock *BB) const {
10489  switch (MI->getOpcode()) {
10490  default: assert(false && "Unexpected instr type to insert");
10491  case X86::TAILJMPd64:
10492  case X86::TAILJMPr64:
10493  case X86::TAILJMPm64:
10494    assert(!"TAILJMP64 would not be touched here.");
10495  case X86::TCRETURNdi64:
10496  case X86::TCRETURNri64:
10497  case X86::TCRETURNmi64:
10498    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
10499    // On AMD64, additional defs should be added before register allocation.
10500    if (!Subtarget->isTargetWin64()) {
10501      MI->addRegisterDefined(X86::RSI);
10502      MI->addRegisterDefined(X86::RDI);
10503      MI->addRegisterDefined(X86::XMM6);
10504      MI->addRegisterDefined(X86::XMM7);
10505      MI->addRegisterDefined(X86::XMM8);
10506      MI->addRegisterDefined(X86::XMM9);
10507      MI->addRegisterDefined(X86::XMM10);
10508      MI->addRegisterDefined(X86::XMM11);
10509      MI->addRegisterDefined(X86::XMM12);
10510      MI->addRegisterDefined(X86::XMM13);
10511      MI->addRegisterDefined(X86::XMM14);
10512      MI->addRegisterDefined(X86::XMM15);
10513    }
10514    return BB;
10515  case X86::WIN_ALLOCA:
10516    return EmitLoweredWinAlloca(MI, BB);
10517  case X86::TLSCall_32:
10518  case X86::TLSCall_64:
10519    return EmitLoweredTLSCall(MI, BB);
10520  case X86::CMOV_GR8:
10521  case X86::CMOV_FR32:
10522  case X86::CMOV_FR64:
10523  case X86::CMOV_V4F32:
10524  case X86::CMOV_V2F64:
10525  case X86::CMOV_V2I64:
10526  case X86::CMOV_GR16:
10527  case X86::CMOV_GR32:
10528  case X86::CMOV_RFP32:
10529  case X86::CMOV_RFP64:
10530  case X86::CMOV_RFP80:
10531    return EmitLoweredSelect(MI, BB);
10532
10533  case X86::FP32_TO_INT16_IN_MEM:
10534  case X86::FP32_TO_INT32_IN_MEM:
10535  case X86::FP32_TO_INT64_IN_MEM:
10536  case X86::FP64_TO_INT16_IN_MEM:
10537  case X86::FP64_TO_INT32_IN_MEM:
10538  case X86::FP64_TO_INT64_IN_MEM:
10539  case X86::FP80_TO_INT16_IN_MEM:
10540  case X86::FP80_TO_INT32_IN_MEM:
10541  case X86::FP80_TO_INT64_IN_MEM: {
10542    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10543    DebugLoc DL = MI->getDebugLoc();
10544
10545    // Change the floating point control register to use "round towards zero"
10546    // mode when truncating to an integer value.
10547    MachineFunction *F = BB->getParent();
10548    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10549    addFrameReference(BuildMI(*BB, MI, DL,
10550                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10551
10552    // Load the old value of the high byte of the control word...
10553    unsigned OldCW =
10554      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10555    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10556                      CWFrameIdx);
10557
10558    // Set the high part to be round to zero...
10559    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10560      .addImm(0xC7F);
10561
10562    // Reload the modified control word now...
10563    addFrameReference(BuildMI(*BB, MI, DL,
10564                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10565
10566    // Restore the memory image of control word to original value
10567    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10568      .addReg(OldCW);
10569
10570    // Get the X86 opcode to use.
10571    unsigned Opc;
10572    switch (MI->getOpcode()) {
10573    default: llvm_unreachable("illegal opcode!");
10574    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10575    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10576    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10577    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10578    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10579    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10580    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10581    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10582    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10583    }
10584
10585    X86AddressMode AM;
10586    MachineOperand &Op = MI->getOperand(0);
10587    if (Op.isReg()) {
10588      AM.BaseType = X86AddressMode::RegBase;
10589      AM.Base.Reg = Op.getReg();
10590    } else {
10591      AM.BaseType = X86AddressMode::FrameIndexBase;
10592      AM.Base.FrameIndex = Op.getIndex();
10593    }
10594    Op = MI->getOperand(1);
10595    if (Op.isImm())
10596      AM.Scale = Op.getImm();
10597    Op = MI->getOperand(2);
10598    if (Op.isImm())
10599      AM.IndexReg = Op.getImm();
10600    Op = MI->getOperand(3);
10601    if (Op.isGlobal()) {
10602      AM.GV = Op.getGlobal();
10603    } else {
10604      AM.Disp = Op.getImm();
10605    }
10606    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10607                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10608
10609    // Reload the original control word now.
10610    addFrameReference(BuildMI(*BB, MI, DL,
10611                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10612
10613    MI->eraseFromParent();   // The pseudo instruction is gone now.
10614    return BB;
10615  }
10616    // String/text processing lowering.
10617  case X86::PCMPISTRM128REG:
10618  case X86::VPCMPISTRM128REG:
10619    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10620  case X86::PCMPISTRM128MEM:
10621  case X86::VPCMPISTRM128MEM:
10622    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10623  case X86::PCMPESTRM128REG:
10624  case X86::VPCMPESTRM128REG:
10625    return EmitPCMP(MI, BB, 5, false /* in mem */);
10626  case X86::PCMPESTRM128MEM:
10627  case X86::VPCMPESTRM128MEM:
10628    return EmitPCMP(MI, BB, 5, true /* in mem */);
10629
10630    // Thread synchronization.
10631  case X86::MONITOR:
10632    return EmitMonitor(MI, BB);
10633  case X86::MWAIT:
10634    return EmitMwait(MI, BB);
10635
10636    // Atomic Lowering.
10637  case X86::ATOMAND32:
10638    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10639                                               X86::AND32ri, X86::MOV32rm,
10640                                               X86::LCMPXCHG32,
10641                                               X86::NOT32r, X86::EAX,
10642                                               X86::GR32RegisterClass);
10643  case X86::ATOMOR32:
10644    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10645                                               X86::OR32ri, X86::MOV32rm,
10646                                               X86::LCMPXCHG32,
10647                                               X86::NOT32r, X86::EAX,
10648                                               X86::GR32RegisterClass);
10649  case X86::ATOMXOR32:
10650    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10651                                               X86::XOR32ri, X86::MOV32rm,
10652                                               X86::LCMPXCHG32,
10653                                               X86::NOT32r, X86::EAX,
10654                                               X86::GR32RegisterClass);
10655  case X86::ATOMNAND32:
10656    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10657                                               X86::AND32ri, X86::MOV32rm,
10658                                               X86::LCMPXCHG32,
10659                                               X86::NOT32r, X86::EAX,
10660                                               X86::GR32RegisterClass, true);
10661  case X86::ATOMMIN32:
10662    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10663  case X86::ATOMMAX32:
10664    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10665  case X86::ATOMUMIN32:
10666    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10667  case X86::ATOMUMAX32:
10668    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10669
10670  case X86::ATOMAND16:
10671    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10672                                               X86::AND16ri, X86::MOV16rm,
10673                                               X86::LCMPXCHG16,
10674                                               X86::NOT16r, X86::AX,
10675                                               X86::GR16RegisterClass);
10676  case X86::ATOMOR16:
10677    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10678                                               X86::OR16ri, X86::MOV16rm,
10679                                               X86::LCMPXCHG16,
10680                                               X86::NOT16r, X86::AX,
10681                                               X86::GR16RegisterClass);
10682  case X86::ATOMXOR16:
10683    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10684                                               X86::XOR16ri, X86::MOV16rm,
10685                                               X86::LCMPXCHG16,
10686                                               X86::NOT16r, X86::AX,
10687                                               X86::GR16RegisterClass);
10688  case X86::ATOMNAND16:
10689    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10690                                               X86::AND16ri, X86::MOV16rm,
10691                                               X86::LCMPXCHG16,
10692                                               X86::NOT16r, X86::AX,
10693                                               X86::GR16RegisterClass, true);
10694  case X86::ATOMMIN16:
10695    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10696  case X86::ATOMMAX16:
10697    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10698  case X86::ATOMUMIN16:
10699    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10700  case X86::ATOMUMAX16:
10701    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10702
10703  case X86::ATOMAND8:
10704    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10705                                               X86::AND8ri, X86::MOV8rm,
10706                                               X86::LCMPXCHG8,
10707                                               X86::NOT8r, X86::AL,
10708                                               X86::GR8RegisterClass);
10709  case X86::ATOMOR8:
10710    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10711                                               X86::OR8ri, X86::MOV8rm,
10712                                               X86::LCMPXCHG8,
10713                                               X86::NOT8r, X86::AL,
10714                                               X86::GR8RegisterClass);
10715  case X86::ATOMXOR8:
10716    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10717                                               X86::XOR8ri, X86::MOV8rm,
10718                                               X86::LCMPXCHG8,
10719                                               X86::NOT8r, X86::AL,
10720                                               X86::GR8RegisterClass);
10721  case X86::ATOMNAND8:
10722    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10723                                               X86::AND8ri, X86::MOV8rm,
10724                                               X86::LCMPXCHG8,
10725                                               X86::NOT8r, X86::AL,
10726                                               X86::GR8RegisterClass, true);
10727  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10728  // This group is for 64-bit host.
10729  case X86::ATOMAND64:
10730    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10731                                               X86::AND64ri32, X86::MOV64rm,
10732                                               X86::LCMPXCHG64,
10733                                               X86::NOT64r, X86::RAX,
10734                                               X86::GR64RegisterClass);
10735  case X86::ATOMOR64:
10736    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10737                                               X86::OR64ri32, X86::MOV64rm,
10738                                               X86::LCMPXCHG64,
10739                                               X86::NOT64r, X86::RAX,
10740                                               X86::GR64RegisterClass);
10741  case X86::ATOMXOR64:
10742    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10743                                               X86::XOR64ri32, X86::MOV64rm,
10744                                               X86::LCMPXCHG64,
10745                                               X86::NOT64r, X86::RAX,
10746                                               X86::GR64RegisterClass);
10747  case X86::ATOMNAND64:
10748    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10749                                               X86::AND64ri32, X86::MOV64rm,
10750                                               X86::LCMPXCHG64,
10751                                               X86::NOT64r, X86::RAX,
10752                                               X86::GR64RegisterClass, true);
10753  case X86::ATOMMIN64:
10754    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10755  case X86::ATOMMAX64:
10756    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10757  case X86::ATOMUMIN64:
10758    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10759  case X86::ATOMUMAX64:
10760    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10761
10762  // This group does 64-bit operations on a 32-bit host.
10763  case X86::ATOMAND6432:
10764    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10765                                               X86::AND32rr, X86::AND32rr,
10766                                               X86::AND32ri, X86::AND32ri,
10767                                               false);
10768  case X86::ATOMOR6432:
10769    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10770                                               X86::OR32rr, X86::OR32rr,
10771                                               X86::OR32ri, X86::OR32ri,
10772                                               false);
10773  case X86::ATOMXOR6432:
10774    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10775                                               X86::XOR32rr, X86::XOR32rr,
10776                                               X86::XOR32ri, X86::XOR32ri,
10777                                               false);
10778  case X86::ATOMNAND6432:
10779    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10780                                               X86::AND32rr, X86::AND32rr,
10781                                               X86::AND32ri, X86::AND32ri,
10782                                               true);
10783  case X86::ATOMADD6432:
10784    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10785                                               X86::ADD32rr, X86::ADC32rr,
10786                                               X86::ADD32ri, X86::ADC32ri,
10787                                               false);
10788  case X86::ATOMSUB6432:
10789    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10790                                               X86::SUB32rr, X86::SBB32rr,
10791                                               X86::SUB32ri, X86::SBB32ri,
10792                                               false);
10793  case X86::ATOMSWAP6432:
10794    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10795                                               X86::MOV32rr, X86::MOV32rr,
10796                                               X86::MOV32ri, X86::MOV32ri,
10797                                               false);
10798  case X86::VASTART_SAVE_XMM_REGS:
10799    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10800
10801  case X86::VAARG_64:
10802    return EmitVAARG64WithCustomInserter(MI, BB);
10803  }
10804}
10805
10806//===----------------------------------------------------------------------===//
10807//                           X86 Optimization Hooks
10808//===----------------------------------------------------------------------===//
10809
10810void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10811                                                       const APInt &Mask,
10812                                                       APInt &KnownZero,
10813                                                       APInt &KnownOne,
10814                                                       const SelectionDAG &DAG,
10815                                                       unsigned Depth) const {
10816  unsigned Opc = Op.getOpcode();
10817  assert((Opc >= ISD::BUILTIN_OP_END ||
10818          Opc == ISD::INTRINSIC_WO_CHAIN ||
10819          Opc == ISD::INTRINSIC_W_CHAIN ||
10820          Opc == ISD::INTRINSIC_VOID) &&
10821         "Should use MaskedValueIsZero if you don't know whether Op"
10822         " is a target node!");
10823
10824  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10825  switch (Opc) {
10826  default: break;
10827  case X86ISD::ADD:
10828  case X86ISD::SUB:
10829  case X86ISD::ADC:
10830  case X86ISD::SBB:
10831  case X86ISD::SMUL:
10832  case X86ISD::UMUL:
10833  case X86ISD::INC:
10834  case X86ISD::DEC:
10835  case X86ISD::OR:
10836  case X86ISD::XOR:
10837  case X86ISD::AND:
10838    // These nodes' second result is a boolean.
10839    if (Op.getResNo() == 0)
10840      break;
10841    // Fallthrough
10842  case X86ISD::SETCC:
10843    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10844                                       Mask.getBitWidth() - 1);
10845    break;
10846  }
10847}
10848
10849unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10850                                                         unsigned Depth) const {
10851  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10852  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10853    return Op.getValueType().getScalarType().getSizeInBits();
10854
10855  // Fallback case.
10856  return 1;
10857}
10858
10859/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10860/// node is a GlobalAddress + offset.
10861bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10862                                       const GlobalValue* &GA,
10863                                       int64_t &Offset) const {
10864  if (N->getOpcode() == X86ISD::Wrapper) {
10865    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10866      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10867      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10868      return true;
10869    }
10870  }
10871  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10872}
10873
10874/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10875/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10876/// if the load addresses are consecutive, non-overlapping, and in the right
10877/// order.
10878static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10879                                     TargetLowering::DAGCombinerInfo &DCI) {
10880  DebugLoc dl = N->getDebugLoc();
10881  EVT VT = N->getValueType(0);
10882
10883  if (VT.getSizeInBits() != 128)
10884    return SDValue();
10885
10886  // Don't create instructions with illegal types after legalize types has run.
10887  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10888  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
10889    return SDValue();
10890
10891  SmallVector<SDValue, 16> Elts;
10892  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10893    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10894
10895  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10896}
10897
10898/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10899/// generation and convert it from being a bunch of shuffles and extracts
10900/// to a simple store and scalar loads to extract the elements.
10901static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10902                                                const TargetLowering &TLI) {
10903  SDValue InputVector = N->getOperand(0);
10904
10905  // Only operate on vectors of 4 elements, where the alternative shuffling
10906  // gets to be more expensive.
10907  if (InputVector.getValueType() != MVT::v4i32)
10908    return SDValue();
10909
10910  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10911  // single use which is a sign-extend or zero-extend, and all elements are
10912  // used.
10913  SmallVector<SDNode *, 4> Uses;
10914  unsigned ExtractedElements = 0;
10915  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10916       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10917    if (UI.getUse().getResNo() != InputVector.getResNo())
10918      return SDValue();
10919
10920    SDNode *Extract = *UI;
10921    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10922      return SDValue();
10923
10924    if (Extract->getValueType(0) != MVT::i32)
10925      return SDValue();
10926    if (!Extract->hasOneUse())
10927      return SDValue();
10928    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10929        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10930      return SDValue();
10931    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10932      return SDValue();
10933
10934    // Record which element was extracted.
10935    ExtractedElements |=
10936      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10937
10938    Uses.push_back(Extract);
10939  }
10940
10941  // If not all the elements were used, this may not be worthwhile.
10942  if (ExtractedElements != 15)
10943    return SDValue();
10944
10945  // Ok, we've now decided to do the transformation.
10946  DebugLoc dl = InputVector.getDebugLoc();
10947
10948  // Store the value to a temporary stack slot.
10949  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10950  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10951                            MachinePointerInfo(), false, false, 0);
10952
10953  // Replace each use (extract) with a load of the appropriate element.
10954  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10955       UE = Uses.end(); UI != UE; ++UI) {
10956    SDNode *Extract = *UI;
10957
10958    // Compute the element's address.
10959    SDValue Idx = Extract->getOperand(1);
10960    unsigned EltSize =
10961        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10962    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10963    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10964
10965    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10966                                     StackPtr, OffsetVal);
10967
10968    // Load the scalar.
10969    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10970                                     ScalarAddr, MachinePointerInfo(),
10971                                     false, false, 0);
10972
10973    // Replace the exact with the load.
10974    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10975  }
10976
10977  // The replacement was made in place; don't return anything.
10978  return SDValue();
10979}
10980
10981/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10982static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10983                                    const X86Subtarget *Subtarget) {
10984  DebugLoc DL = N->getDebugLoc();
10985  SDValue Cond = N->getOperand(0);
10986  // Get the LHS/RHS of the select.
10987  SDValue LHS = N->getOperand(1);
10988  SDValue RHS = N->getOperand(2);
10989
10990  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10991  // instructions match the semantics of the common C idiom x<y?x:y but not
10992  // x<=y?x:y, because of how they handle negative zero (which can be
10993  // ignored in unsafe-math mode).
10994  if (Subtarget->hasSSE2() &&
10995      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10996      Cond.getOpcode() == ISD::SETCC) {
10997    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10998
10999    unsigned Opcode = 0;
11000    // Check for x CC y ? x : y.
11001    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
11002        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
11003      switch (CC) {
11004      default: break;
11005      case ISD::SETULT:
11006        // Converting this to a min would handle NaNs incorrectly, and swapping
11007        // the operands would cause it to handle comparisons between positive
11008        // and negative zero incorrectly.
11009        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11010          if (!UnsafeFPMath &&
11011              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11012            break;
11013          std::swap(LHS, RHS);
11014        }
11015        Opcode = X86ISD::FMIN;
11016        break;
11017      case ISD::SETOLE:
11018        // Converting this to a min would handle comparisons between positive
11019        // and negative zero incorrectly.
11020        if (!UnsafeFPMath &&
11021            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11022          break;
11023        Opcode = X86ISD::FMIN;
11024        break;
11025      case ISD::SETULE:
11026        // Converting this to a min would handle both negative zeros and NaNs
11027        // incorrectly, but we can swap the operands to fix both.
11028        std::swap(LHS, RHS);
11029      case ISD::SETOLT:
11030      case ISD::SETLT:
11031      case ISD::SETLE:
11032        Opcode = X86ISD::FMIN;
11033        break;
11034
11035      case ISD::SETOGE:
11036        // Converting this to a max would handle comparisons between positive
11037        // and negative zero incorrectly.
11038        if (!UnsafeFPMath &&
11039            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
11040          break;
11041        Opcode = X86ISD::FMAX;
11042        break;
11043      case ISD::SETUGT:
11044        // Converting this to a max would handle NaNs incorrectly, and swapping
11045        // the operands would cause it to handle comparisons between positive
11046        // and negative zero incorrectly.
11047        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11048          if (!UnsafeFPMath &&
11049              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11050            break;
11051          std::swap(LHS, RHS);
11052        }
11053        Opcode = X86ISD::FMAX;
11054        break;
11055      case ISD::SETUGE:
11056        // Converting this to a max would handle both negative zeros and NaNs
11057        // incorrectly, but we can swap the operands to fix both.
11058        std::swap(LHS, RHS);
11059      case ISD::SETOGT:
11060      case ISD::SETGT:
11061      case ISD::SETGE:
11062        Opcode = X86ISD::FMAX;
11063        break;
11064      }
11065    // Check for x CC y ? y : x -- a min/max with reversed arms.
11066    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11067               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11068      switch (CC) {
11069      default: break;
11070      case ISD::SETOGE:
11071        // Converting this to a min would handle comparisons between positive
11072        // and negative zero incorrectly, and swapping the operands would
11073        // cause it to handle NaNs incorrectly.
11074        if (!UnsafeFPMath &&
11075            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11076          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11077            break;
11078          std::swap(LHS, RHS);
11079        }
11080        Opcode = X86ISD::FMIN;
11081        break;
11082      case ISD::SETUGT:
11083        // Converting this to a min would handle NaNs incorrectly.
11084        if (!UnsafeFPMath &&
11085            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11086          break;
11087        Opcode = X86ISD::FMIN;
11088        break;
11089      case ISD::SETUGE:
11090        // Converting this to a min would handle both negative zeros and NaNs
11091        // incorrectly, but we can swap the operands to fix both.
11092        std::swap(LHS, RHS);
11093      case ISD::SETOGT:
11094      case ISD::SETGT:
11095      case ISD::SETGE:
11096        Opcode = X86ISD::FMIN;
11097        break;
11098
11099      case ISD::SETULT:
11100        // Converting this to a max would handle NaNs incorrectly.
11101        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11102          break;
11103        Opcode = X86ISD::FMAX;
11104        break;
11105      case ISD::SETOLE:
11106        // Converting this to a max would handle comparisons between positive
11107        // and negative zero incorrectly, and swapping the operands would
11108        // cause it to handle NaNs incorrectly.
11109        if (!UnsafeFPMath &&
11110            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11111          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11112            break;
11113          std::swap(LHS, RHS);
11114        }
11115        Opcode = X86ISD::FMAX;
11116        break;
11117      case ISD::SETULE:
11118        // Converting this to a max would handle both negative zeros and NaNs
11119        // incorrectly, but we can swap the operands to fix both.
11120        std::swap(LHS, RHS);
11121      case ISD::SETOLT:
11122      case ISD::SETLT:
11123      case ISD::SETLE:
11124        Opcode = X86ISD::FMAX;
11125        break;
11126      }
11127    }
11128
11129    if (Opcode)
11130      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11131  }
11132
11133  // If this is a select between two integer constants, try to do some
11134  // optimizations.
11135  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11136    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11137      // Don't do this for crazy integer types.
11138      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11139        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11140        // so that TrueC (the true value) is larger than FalseC.
11141        bool NeedsCondInvert = false;
11142
11143        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11144            // Efficiently invertible.
11145            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11146             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11147              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11148          NeedsCondInvert = true;
11149          std::swap(TrueC, FalseC);
11150        }
11151
11152        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11153        if (FalseC->getAPIntValue() == 0 &&
11154            TrueC->getAPIntValue().isPowerOf2()) {
11155          if (NeedsCondInvert) // Invert the condition if needed.
11156            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11157                               DAG.getConstant(1, Cond.getValueType()));
11158
11159          // Zero extend the condition if needed.
11160          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11161
11162          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11163          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11164                             DAG.getConstant(ShAmt, MVT::i8));
11165        }
11166
11167        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11168        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11169          if (NeedsCondInvert) // Invert the condition if needed.
11170            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11171                               DAG.getConstant(1, Cond.getValueType()));
11172
11173          // Zero extend the condition if needed.
11174          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11175                             FalseC->getValueType(0), Cond);
11176          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11177                             SDValue(FalseC, 0));
11178        }
11179
11180        // Optimize cases that will turn into an LEA instruction.  This requires
11181        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11182        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11183          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11184          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11185
11186          bool isFastMultiplier = false;
11187          if (Diff < 10) {
11188            switch ((unsigned char)Diff) {
11189              default: break;
11190              case 1:  // result = add base, cond
11191              case 2:  // result = lea base(    , cond*2)
11192              case 3:  // result = lea base(cond, cond*2)
11193              case 4:  // result = lea base(    , cond*4)
11194              case 5:  // result = lea base(cond, cond*4)
11195              case 8:  // result = lea base(    , cond*8)
11196              case 9:  // result = lea base(cond, cond*8)
11197                isFastMultiplier = true;
11198                break;
11199            }
11200          }
11201
11202          if (isFastMultiplier) {
11203            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11204            if (NeedsCondInvert) // Invert the condition if needed.
11205              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11206                                 DAG.getConstant(1, Cond.getValueType()));
11207
11208            // Zero extend the condition if needed.
11209            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11210                               Cond);
11211            // Scale the condition by the difference.
11212            if (Diff != 1)
11213              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11214                                 DAG.getConstant(Diff, Cond.getValueType()));
11215
11216            // Add the base if non-zero.
11217            if (FalseC->getAPIntValue() != 0)
11218              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11219                                 SDValue(FalseC, 0));
11220            return Cond;
11221          }
11222        }
11223      }
11224  }
11225
11226  return SDValue();
11227}
11228
11229/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11230static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11231                                  TargetLowering::DAGCombinerInfo &DCI) {
11232  DebugLoc DL = N->getDebugLoc();
11233
11234  // If the flag operand isn't dead, don't touch this CMOV.
11235  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11236    return SDValue();
11237
11238  // If this is a select between two integer constants, try to do some
11239  // optimizations.  Note that the operands are ordered the opposite of SELECT
11240  // operands.
11241  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
11242    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
11243      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11244      // larger than FalseC (the false value).
11245      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11246
11247      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11248        CC = X86::GetOppositeBranchCondition(CC);
11249        std::swap(TrueC, FalseC);
11250      }
11251
11252      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11253      // This is efficient for any integer data type (including i8/i16) and
11254      // shift amount.
11255      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11256        SDValue Cond = N->getOperand(3);
11257        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11258                           DAG.getConstant(CC, MVT::i8), Cond);
11259
11260        // Zero extend the condition if needed.
11261        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11262
11263        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11264        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11265                           DAG.getConstant(ShAmt, MVT::i8));
11266        if (N->getNumValues() == 2)  // Dead flag value?
11267          return DCI.CombineTo(N, Cond, SDValue());
11268        return Cond;
11269      }
11270
11271      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11272      // for any integer data type, including i8/i16.
11273      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11274        SDValue Cond = N->getOperand(3);
11275        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11276                           DAG.getConstant(CC, MVT::i8), Cond);
11277
11278        // Zero extend the condition if needed.
11279        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11280                           FalseC->getValueType(0), Cond);
11281        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11282                           SDValue(FalseC, 0));
11283
11284        if (N->getNumValues() == 2)  // Dead flag value?
11285          return DCI.CombineTo(N, Cond, SDValue());
11286        return Cond;
11287      }
11288
11289      // Optimize cases that will turn into an LEA instruction.  This requires
11290      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11291      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11292        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11293        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11294
11295        bool isFastMultiplier = false;
11296        if (Diff < 10) {
11297          switch ((unsigned char)Diff) {
11298          default: break;
11299          case 1:  // result = add base, cond
11300          case 2:  // result = lea base(    , cond*2)
11301          case 3:  // result = lea base(cond, cond*2)
11302          case 4:  // result = lea base(    , cond*4)
11303          case 5:  // result = lea base(cond, cond*4)
11304          case 8:  // result = lea base(    , cond*8)
11305          case 9:  // result = lea base(cond, cond*8)
11306            isFastMultiplier = true;
11307            break;
11308          }
11309        }
11310
11311        if (isFastMultiplier) {
11312          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11313          SDValue Cond = N->getOperand(3);
11314          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11315                             DAG.getConstant(CC, MVT::i8), Cond);
11316          // Zero extend the condition if needed.
11317          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11318                             Cond);
11319          // Scale the condition by the difference.
11320          if (Diff != 1)
11321            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11322                               DAG.getConstant(Diff, Cond.getValueType()));
11323
11324          // Add the base if non-zero.
11325          if (FalseC->getAPIntValue() != 0)
11326            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11327                               SDValue(FalseC, 0));
11328          if (N->getNumValues() == 2)  // Dead flag value?
11329            return DCI.CombineTo(N, Cond, SDValue());
11330          return Cond;
11331        }
11332      }
11333    }
11334  }
11335  return SDValue();
11336}
11337
11338
11339/// PerformMulCombine - Optimize a single multiply with constant into two
11340/// in order to implement it with two cheaper instructions, e.g.
11341/// LEA + SHL, LEA + LEA.
11342static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11343                                 TargetLowering::DAGCombinerInfo &DCI) {
11344  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11345    return SDValue();
11346
11347  EVT VT = N->getValueType(0);
11348  if (VT != MVT::i64)
11349    return SDValue();
11350
11351  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11352  if (!C)
11353    return SDValue();
11354  uint64_t MulAmt = C->getZExtValue();
11355  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11356    return SDValue();
11357
11358  uint64_t MulAmt1 = 0;
11359  uint64_t MulAmt2 = 0;
11360  if ((MulAmt % 9) == 0) {
11361    MulAmt1 = 9;
11362    MulAmt2 = MulAmt / 9;
11363  } else if ((MulAmt % 5) == 0) {
11364    MulAmt1 = 5;
11365    MulAmt2 = MulAmt / 5;
11366  } else if ((MulAmt % 3) == 0) {
11367    MulAmt1 = 3;
11368    MulAmt2 = MulAmt / 3;
11369  }
11370  if (MulAmt2 &&
11371      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11372    DebugLoc DL = N->getDebugLoc();
11373
11374    if (isPowerOf2_64(MulAmt2) &&
11375        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11376      // If second multiplifer is pow2, issue it first. We want the multiply by
11377      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11378      // is an add.
11379      std::swap(MulAmt1, MulAmt2);
11380
11381    SDValue NewMul;
11382    if (isPowerOf2_64(MulAmt1))
11383      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11384                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11385    else
11386      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11387                           DAG.getConstant(MulAmt1, VT));
11388
11389    if (isPowerOf2_64(MulAmt2))
11390      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11391                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11392    else
11393      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11394                           DAG.getConstant(MulAmt2, VT));
11395
11396    // Do not add new nodes to DAG combiner worklist.
11397    DCI.CombineTo(N, NewMul, false);
11398  }
11399  return SDValue();
11400}
11401
11402static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11403  SDValue N0 = N->getOperand(0);
11404  SDValue N1 = N->getOperand(1);
11405  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11406  EVT VT = N0.getValueType();
11407
11408  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11409  // since the result of setcc_c is all zero's or all ones.
11410  if (N1C && N0.getOpcode() == ISD::AND &&
11411      N0.getOperand(1).getOpcode() == ISD::Constant) {
11412    SDValue N00 = N0.getOperand(0);
11413    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11414        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11415          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11416         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11417      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11418      APInt ShAmt = N1C->getAPIntValue();
11419      Mask = Mask.shl(ShAmt);
11420      if (Mask != 0)
11421        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11422                           N00, DAG.getConstant(Mask, VT));
11423    }
11424  }
11425
11426  return SDValue();
11427}
11428
11429/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
11430///                       when possible.
11431static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
11432                                   const X86Subtarget *Subtarget) {
11433  EVT VT = N->getValueType(0);
11434  if (!VT.isVector() && VT.isInteger() &&
11435      N->getOpcode() == ISD::SHL)
11436    return PerformSHLCombine(N, DAG);
11437
11438  // On X86 with SSE2 support, we can transform this to a vector shift if
11439  // all elements are shifted by the same amount.  We can't do this in legalize
11440  // because the a constant vector is typically transformed to a constant pool
11441  // so we have no knowledge of the shift amount.
11442  if (!Subtarget->hasSSE2())
11443    return SDValue();
11444
11445  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11446    return SDValue();
11447
11448  SDValue ShAmtOp = N->getOperand(1);
11449  EVT EltVT = VT.getVectorElementType();
11450  DebugLoc DL = N->getDebugLoc();
11451  SDValue BaseShAmt = SDValue();
11452  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11453    unsigned NumElts = VT.getVectorNumElements();
11454    unsigned i = 0;
11455    for (; i != NumElts; ++i) {
11456      SDValue Arg = ShAmtOp.getOperand(i);
11457      if (Arg.getOpcode() == ISD::UNDEF) continue;
11458      BaseShAmt = Arg;
11459      break;
11460    }
11461    for (; i != NumElts; ++i) {
11462      SDValue Arg = ShAmtOp.getOperand(i);
11463      if (Arg.getOpcode() == ISD::UNDEF) continue;
11464      if (Arg != BaseShAmt) {
11465        return SDValue();
11466      }
11467    }
11468  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
11469             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
11470    SDValue InVec = ShAmtOp.getOperand(0);
11471    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11472      unsigned NumElts = InVec.getValueType().getVectorNumElements();
11473      unsigned i = 0;
11474      for (; i != NumElts; ++i) {
11475        SDValue Arg = InVec.getOperand(i);
11476        if (Arg.getOpcode() == ISD::UNDEF) continue;
11477        BaseShAmt = Arg;
11478        break;
11479      }
11480    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11481       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11482         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
11483         if (C->getZExtValue() == SplatIdx)
11484           BaseShAmt = InVec.getOperand(1);
11485       }
11486    }
11487    if (BaseShAmt.getNode() == 0)
11488      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
11489                              DAG.getIntPtrConstant(0));
11490  } else
11491    return SDValue();
11492
11493  // The shift amount is an i32.
11494  if (EltVT.bitsGT(MVT::i32))
11495    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
11496  else if (EltVT.bitsLT(MVT::i32))
11497    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
11498
11499  // The shift amount is identical so we can do a vector shift.
11500  SDValue  ValOp = N->getOperand(0);
11501  switch (N->getOpcode()) {
11502  default:
11503    llvm_unreachable("Unknown shift opcode!");
11504    break;
11505  case ISD::SHL:
11506    if (VT == MVT::v2i64)
11507      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11508                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11509                         ValOp, BaseShAmt);
11510    if (VT == MVT::v4i32)
11511      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11512                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11513                         ValOp, BaseShAmt);
11514    if (VT == MVT::v8i16)
11515      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11516                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11517                         ValOp, BaseShAmt);
11518    break;
11519  case ISD::SRA:
11520    if (VT == MVT::v4i32)
11521      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11522                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11523                         ValOp, BaseShAmt);
11524    if (VT == MVT::v8i16)
11525      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11526                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11527                         ValOp, BaseShAmt);
11528    break;
11529  case ISD::SRL:
11530    if (VT == MVT::v2i64)
11531      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11532                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11533                         ValOp, BaseShAmt);
11534    if (VT == MVT::v4i32)
11535      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11536                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11537                         ValOp, BaseShAmt);
11538    if (VT ==  MVT::v8i16)
11539      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11540                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11541                         ValOp, BaseShAmt);
11542    break;
11543  }
11544  return SDValue();
11545}
11546
11547
11548static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
11549                                 TargetLowering::DAGCombinerInfo &DCI,
11550                                 const X86Subtarget *Subtarget) {
11551  if (DCI.isBeforeLegalizeOps())
11552    return SDValue();
11553
11554  // Want to form PANDN nodes, in the hopes of then easily combining them with
11555  // OR and AND nodes to form PBLEND/PSIGN.
11556  EVT VT = N->getValueType(0);
11557  if (VT != MVT::v2i64)
11558    return SDValue();
11559
11560  SDValue N0 = N->getOperand(0);
11561  SDValue N1 = N->getOperand(1);
11562  DebugLoc DL = N->getDebugLoc();
11563
11564  // Check LHS for vnot
11565  if (N0.getOpcode() == ISD::XOR &&
11566      ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
11567    return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1);
11568
11569  // Check RHS for vnot
11570  if (N1.getOpcode() == ISD::XOR &&
11571      ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
11572    return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0);
11573
11574  return SDValue();
11575}
11576
11577static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
11578                                TargetLowering::DAGCombinerInfo &DCI,
11579                                const X86Subtarget *Subtarget) {
11580  if (DCI.isBeforeLegalizeOps())
11581    return SDValue();
11582
11583  EVT VT = N->getValueType(0);
11584  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
11585    return SDValue();
11586
11587  SDValue N0 = N->getOperand(0);
11588  SDValue N1 = N->getOperand(1);
11589
11590  // look for psign/blend
11591  if (Subtarget->hasSSSE3()) {
11592    if (VT == MVT::v2i64) {
11593      // Canonicalize pandn to RHS
11594      if (N0.getOpcode() == X86ISD::PANDN)
11595        std::swap(N0, N1);
11596      // or (and (m, x), (pandn m, y))
11597      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) {
11598        SDValue Mask = N1.getOperand(0);
11599        SDValue X    = N1.getOperand(1);
11600        SDValue Y;
11601        if (N0.getOperand(0) == Mask)
11602          Y = N0.getOperand(1);
11603        if (N0.getOperand(1) == Mask)
11604          Y = N0.getOperand(0);
11605
11606        // Check to see if the mask appeared in both the AND and PANDN and
11607        if (!Y.getNode())
11608          return SDValue();
11609
11610        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
11611        if (Mask.getOpcode() != ISD::BITCAST ||
11612            X.getOpcode() != ISD::BITCAST ||
11613            Y.getOpcode() != ISD::BITCAST)
11614          return SDValue();
11615
11616        // Look through mask bitcast.
11617        Mask = Mask.getOperand(0);
11618        EVT MaskVT = Mask.getValueType();
11619
11620        // Validate that the Mask operand is a vector sra node.  The sra node
11621        // will be an intrinsic.
11622        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
11623          return SDValue();
11624
11625        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
11626        // there is no psrai.b
11627        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
11628        case Intrinsic::x86_sse2_psrai_w:
11629        case Intrinsic::x86_sse2_psrai_d:
11630          break;
11631        default: return SDValue();
11632        }
11633
11634        // Check that the SRA is all signbits.
11635        SDValue SraC = Mask.getOperand(2);
11636        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
11637        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
11638        if ((SraAmt + 1) != EltBits)
11639          return SDValue();
11640
11641        DebugLoc DL = N->getDebugLoc();
11642
11643        // Now we know we at least have a plendvb with the mask val.  See if
11644        // we can form a psignb/w/d.
11645        // psign = x.type == y.type == mask.type && y = sub(0, x);
11646        X = X.getOperand(0);
11647        Y = Y.getOperand(0);
11648        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
11649            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
11650            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
11651          unsigned Opc = 0;
11652          switch (EltBits) {
11653          case 8: Opc = X86ISD::PSIGNB; break;
11654          case 16: Opc = X86ISD::PSIGNW; break;
11655          case 32: Opc = X86ISD::PSIGND; break;
11656          default: break;
11657          }
11658          if (Opc) {
11659            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
11660            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
11661          }
11662        }
11663        // PBLENDVB only available on SSE 4.1
11664        if (!Subtarget->hasSSE41())
11665          return SDValue();
11666
11667        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
11668        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
11669        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
11670        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
11671        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
11672      }
11673    }
11674  }
11675
11676  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
11677  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
11678    std::swap(N0, N1);
11679  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
11680    return SDValue();
11681  if (!N0.hasOneUse() || !N1.hasOneUse())
11682    return SDValue();
11683
11684  SDValue ShAmt0 = N0.getOperand(1);
11685  if (ShAmt0.getValueType() != MVT::i8)
11686    return SDValue();
11687  SDValue ShAmt1 = N1.getOperand(1);
11688  if (ShAmt1.getValueType() != MVT::i8)
11689    return SDValue();
11690  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11691    ShAmt0 = ShAmt0.getOperand(0);
11692  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11693    ShAmt1 = ShAmt1.getOperand(0);
11694
11695  DebugLoc DL = N->getDebugLoc();
11696  unsigned Opc = X86ISD::SHLD;
11697  SDValue Op0 = N0.getOperand(0);
11698  SDValue Op1 = N1.getOperand(0);
11699  if (ShAmt0.getOpcode() == ISD::SUB) {
11700    Opc = X86ISD::SHRD;
11701    std::swap(Op0, Op1);
11702    std::swap(ShAmt0, ShAmt1);
11703  }
11704
11705  unsigned Bits = VT.getSizeInBits();
11706  if (ShAmt1.getOpcode() == ISD::SUB) {
11707    SDValue Sum = ShAmt1.getOperand(0);
11708    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11709      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11710      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11711        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11712      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11713        return DAG.getNode(Opc, DL, VT,
11714                           Op0, Op1,
11715                           DAG.getNode(ISD::TRUNCATE, DL,
11716                                       MVT::i8, ShAmt0));
11717    }
11718  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11719    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11720    if (ShAmt0C &&
11721        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11722      return DAG.getNode(Opc, DL, VT,
11723                         N0.getOperand(0), N1.getOperand(0),
11724                         DAG.getNode(ISD::TRUNCATE, DL,
11725                                       MVT::i8, ShAmt0));
11726  }
11727
11728  return SDValue();
11729}
11730
11731/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11732static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11733                                   const X86Subtarget *Subtarget) {
11734  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11735  // the FP state in cases where an emms may be missing.
11736  // A preferable solution to the general problem is to figure out the right
11737  // places to insert EMMS.  This qualifies as a quick hack.
11738
11739  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11740  StoreSDNode *St = cast<StoreSDNode>(N);
11741  EVT VT = St->getValue().getValueType();
11742  if (VT.getSizeInBits() != 64)
11743    return SDValue();
11744
11745  const Function *F = DAG.getMachineFunction().getFunction();
11746  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11747  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11748    && Subtarget->hasSSE2();
11749  if ((VT.isVector() ||
11750       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11751      isa<LoadSDNode>(St->getValue()) &&
11752      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11753      St->getChain().hasOneUse() && !St->isVolatile()) {
11754    SDNode* LdVal = St->getValue().getNode();
11755    LoadSDNode *Ld = 0;
11756    int TokenFactorIndex = -1;
11757    SmallVector<SDValue, 8> Ops;
11758    SDNode* ChainVal = St->getChain().getNode();
11759    // Must be a store of a load.  We currently handle two cases:  the load
11760    // is a direct child, and it's under an intervening TokenFactor.  It is
11761    // possible to dig deeper under nested TokenFactors.
11762    if (ChainVal == LdVal)
11763      Ld = cast<LoadSDNode>(St->getChain());
11764    else if (St->getValue().hasOneUse() &&
11765             ChainVal->getOpcode() == ISD::TokenFactor) {
11766      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11767        if (ChainVal->getOperand(i).getNode() == LdVal) {
11768          TokenFactorIndex = i;
11769          Ld = cast<LoadSDNode>(St->getValue());
11770        } else
11771          Ops.push_back(ChainVal->getOperand(i));
11772      }
11773    }
11774
11775    if (!Ld || !ISD::isNormalLoad(Ld))
11776      return SDValue();
11777
11778    // If this is not the MMX case, i.e. we are just turning i64 load/store
11779    // into f64 load/store, avoid the transformation if there are multiple
11780    // uses of the loaded value.
11781    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11782      return SDValue();
11783
11784    DebugLoc LdDL = Ld->getDebugLoc();
11785    DebugLoc StDL = N->getDebugLoc();
11786    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11787    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11788    // pair instead.
11789    if (Subtarget->is64Bit() || F64IsLegal) {
11790      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11791      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11792                                  Ld->getPointerInfo(), Ld->isVolatile(),
11793                                  Ld->isNonTemporal(), Ld->getAlignment());
11794      SDValue NewChain = NewLd.getValue(1);
11795      if (TokenFactorIndex != -1) {
11796        Ops.push_back(NewChain);
11797        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11798                               Ops.size());
11799      }
11800      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11801                          St->getPointerInfo(),
11802                          St->isVolatile(), St->isNonTemporal(),
11803                          St->getAlignment());
11804    }
11805
11806    // Otherwise, lower to two pairs of 32-bit loads / stores.
11807    SDValue LoAddr = Ld->getBasePtr();
11808    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11809                                 DAG.getConstant(4, MVT::i32));
11810
11811    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11812                               Ld->getPointerInfo(),
11813                               Ld->isVolatile(), Ld->isNonTemporal(),
11814                               Ld->getAlignment());
11815    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11816                               Ld->getPointerInfo().getWithOffset(4),
11817                               Ld->isVolatile(), Ld->isNonTemporal(),
11818                               MinAlign(Ld->getAlignment(), 4));
11819
11820    SDValue NewChain = LoLd.getValue(1);
11821    if (TokenFactorIndex != -1) {
11822      Ops.push_back(LoLd);
11823      Ops.push_back(HiLd);
11824      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11825                             Ops.size());
11826    }
11827
11828    LoAddr = St->getBasePtr();
11829    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11830                         DAG.getConstant(4, MVT::i32));
11831
11832    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11833                                St->getPointerInfo(),
11834                                St->isVolatile(), St->isNonTemporal(),
11835                                St->getAlignment());
11836    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11837                                St->getPointerInfo().getWithOffset(4),
11838                                St->isVolatile(),
11839                                St->isNonTemporal(),
11840                                MinAlign(St->getAlignment(), 4));
11841    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11842  }
11843  return SDValue();
11844}
11845
11846/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11847/// X86ISD::FXOR nodes.
11848static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11849  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11850  // F[X]OR(0.0, x) -> x
11851  // F[X]OR(x, 0.0) -> x
11852  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11853    if (C->getValueAPF().isPosZero())
11854      return N->getOperand(1);
11855  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11856    if (C->getValueAPF().isPosZero())
11857      return N->getOperand(0);
11858  return SDValue();
11859}
11860
11861/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11862static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11863  // FAND(0.0, x) -> 0.0
11864  // FAND(x, 0.0) -> 0.0
11865  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11866    if (C->getValueAPF().isPosZero())
11867      return N->getOperand(0);
11868  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11869    if (C->getValueAPF().isPosZero())
11870      return N->getOperand(1);
11871  return SDValue();
11872}
11873
11874static SDValue PerformBTCombine(SDNode *N,
11875                                SelectionDAG &DAG,
11876                                TargetLowering::DAGCombinerInfo &DCI) {
11877  // BT ignores high bits in the bit index operand.
11878  SDValue Op1 = N->getOperand(1);
11879  if (Op1.hasOneUse()) {
11880    unsigned BitWidth = Op1.getValueSizeInBits();
11881    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11882    APInt KnownZero, KnownOne;
11883    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11884                                          !DCI.isBeforeLegalizeOps());
11885    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11886    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11887        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11888      DCI.CommitTargetLoweringOpt(TLO);
11889  }
11890  return SDValue();
11891}
11892
11893static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11894  SDValue Op = N->getOperand(0);
11895  if (Op.getOpcode() == ISD::BITCAST)
11896    Op = Op.getOperand(0);
11897  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11898  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11899      VT.getVectorElementType().getSizeInBits() ==
11900      OpVT.getVectorElementType().getSizeInBits()) {
11901    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
11902  }
11903  return SDValue();
11904}
11905
11906static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11907  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
11908  //           (and (i32 x86isd::setcc_carry), 1)
11909  // This eliminates the zext. This transformation is necessary because
11910  // ISD::SETCC is always legalized to i8.
11911  DebugLoc dl = N->getDebugLoc();
11912  SDValue N0 = N->getOperand(0);
11913  EVT VT = N->getValueType(0);
11914  if (N0.getOpcode() == ISD::AND &&
11915      N0.hasOneUse() &&
11916      N0.getOperand(0).hasOneUse()) {
11917    SDValue N00 = N0.getOperand(0);
11918    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11919      return SDValue();
11920    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11921    if (!C || C->getZExtValue() != 1)
11922      return SDValue();
11923    return DAG.getNode(ISD::AND, dl, VT,
11924                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11925                                   N00.getOperand(0), N00.getOperand(1)),
11926                       DAG.getConstant(1, VT));
11927  }
11928
11929  return SDValue();
11930}
11931
11932// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
11933static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
11934  unsigned X86CC = N->getConstantOperandVal(0);
11935  SDValue EFLAG = N->getOperand(1);
11936  DebugLoc DL = N->getDebugLoc();
11937
11938  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
11939  // a zext and produces an all-ones bit which is more useful than 0/1 in some
11940  // cases.
11941  if (X86CC == X86::COND_B)
11942    return DAG.getNode(ISD::AND, DL, MVT::i8,
11943                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
11944                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
11945                       DAG.getConstant(1, MVT::i8));
11946
11947  return SDValue();
11948}
11949
11950// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
11951static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
11952                                 X86TargetLowering::DAGCombinerInfo &DCI) {
11953  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
11954  // the result is either zero or one (depending on the input carry bit).
11955  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
11956  if (X86::isZeroNode(N->getOperand(0)) &&
11957      X86::isZeroNode(N->getOperand(1)) &&
11958      // We don't have a good way to replace an EFLAGS use, so only do this when
11959      // dead right now.
11960      SDValue(N, 1).use_empty()) {
11961    DebugLoc DL = N->getDebugLoc();
11962    EVT VT = N->getValueType(0);
11963    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
11964    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
11965                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
11966                                           DAG.getConstant(X86::COND_B,MVT::i8),
11967                                           N->getOperand(2)),
11968                               DAG.getConstant(1, VT));
11969    return DCI.CombineTo(N, Res1, CarryOut);
11970  }
11971
11972  return SDValue();
11973}
11974
11975// fold (add Y, (sete  X, 0)) -> adc  0, Y
11976//      (add Y, (setne X, 0)) -> sbb -1, Y
11977//      (sub (sete  X, 0), Y) -> sbb  0, Y
11978//      (sub (setne X, 0), Y) -> adc -1, Y
11979static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
11980  DebugLoc DL = N->getDebugLoc();
11981
11982  // Look through ZExts.
11983  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
11984  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
11985    return SDValue();
11986
11987  SDValue SetCC = Ext.getOperand(0);
11988  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
11989    return SDValue();
11990
11991  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
11992  if (CC != X86::COND_E && CC != X86::COND_NE)
11993    return SDValue();
11994
11995  SDValue Cmp = SetCC.getOperand(1);
11996  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
11997      !X86::isZeroNode(Cmp.getOperand(1)) ||
11998      !Cmp.getOperand(0).getValueType().isInteger())
11999    return SDValue();
12000
12001  SDValue CmpOp0 = Cmp.getOperand(0);
12002  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
12003                               DAG.getConstant(1, CmpOp0.getValueType()));
12004
12005  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
12006  if (CC == X86::COND_NE)
12007    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
12008                       DL, OtherVal.getValueType(), OtherVal,
12009                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
12010  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
12011                     DL, OtherVal.getValueType(), OtherVal,
12012                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12013}
12014
12015SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12016                                             DAGCombinerInfo &DCI) const {
12017  SelectionDAG &DAG = DCI.DAG;
12018  switch (N->getOpcode()) {
12019  default: break;
12020  case ISD::EXTRACT_VECTOR_ELT:
12021    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12022  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12023  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12024  case ISD::ADD:
12025  case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG);
12026  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12027  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12028  case ISD::SHL:
12029  case ISD::SRA:
12030  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12031  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12032  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12033  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12034  case X86ISD::FXOR:
12035  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12036  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12037  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12038  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12039  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12040  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12041  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12042  case X86ISD::SHUFPD:
12043  case X86ISD::PALIGN:
12044  case X86ISD::PUNPCKHBW:
12045  case X86ISD::PUNPCKHWD:
12046  case X86ISD::PUNPCKHDQ:
12047  case X86ISD::PUNPCKHQDQ:
12048  case X86ISD::UNPCKHPS:
12049  case X86ISD::UNPCKHPD:
12050  case X86ISD::PUNPCKLBW:
12051  case X86ISD::PUNPCKLWD:
12052  case X86ISD::PUNPCKLDQ:
12053  case X86ISD::PUNPCKLQDQ:
12054  case X86ISD::UNPCKLPS:
12055  case X86ISD::UNPCKLPD:
12056  case X86ISD::VUNPCKLPS:
12057  case X86ISD::VUNPCKLPD:
12058  case X86ISD::VUNPCKLPSY:
12059  case X86ISD::VUNPCKLPDY:
12060  case X86ISD::MOVHLPS:
12061  case X86ISD::MOVLHPS:
12062  case X86ISD::PSHUFD:
12063  case X86ISD::PSHUFHW:
12064  case X86ISD::PSHUFLW:
12065  case X86ISD::MOVSS:
12066  case X86ISD::MOVSD:
12067  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12068  }
12069
12070  return SDValue();
12071}
12072
12073/// isTypeDesirableForOp - Return true if the target has native support for
12074/// the specified value type and it is 'desirable' to use the type for the
12075/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12076/// instruction encodings are longer and some i16 instructions are slow.
12077bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12078  if (!isTypeLegal(VT))
12079    return false;
12080  if (VT != MVT::i16)
12081    return true;
12082
12083  switch (Opc) {
12084  default:
12085    return true;
12086  case ISD::LOAD:
12087  case ISD::SIGN_EXTEND:
12088  case ISD::ZERO_EXTEND:
12089  case ISD::ANY_EXTEND:
12090  case ISD::SHL:
12091  case ISD::SRL:
12092  case ISD::SUB:
12093  case ISD::ADD:
12094  case ISD::MUL:
12095  case ISD::AND:
12096  case ISD::OR:
12097  case ISD::XOR:
12098    return false;
12099  }
12100}
12101
12102/// IsDesirableToPromoteOp - This method query the target whether it is
12103/// beneficial for dag combiner to promote the specified node. If true, it
12104/// should return the desired promotion type by reference.
12105bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12106  EVT VT = Op.getValueType();
12107  if (VT != MVT::i16)
12108    return false;
12109
12110  bool Promote = false;
12111  bool Commute = false;
12112  switch (Op.getOpcode()) {
12113  default: break;
12114  case ISD::LOAD: {
12115    LoadSDNode *LD = cast<LoadSDNode>(Op);
12116    // If the non-extending load has a single use and it's not live out, then it
12117    // might be folded.
12118    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
12119                                                     Op.hasOneUse()*/) {
12120      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12121             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
12122        // The only case where we'd want to promote LOAD (rather then it being
12123        // promoted as an operand is when it's only use is liveout.
12124        if (UI->getOpcode() != ISD::CopyToReg)
12125          return false;
12126      }
12127    }
12128    Promote = true;
12129    break;
12130  }
12131  case ISD::SIGN_EXTEND:
12132  case ISD::ZERO_EXTEND:
12133  case ISD::ANY_EXTEND:
12134    Promote = true;
12135    break;
12136  case ISD::SHL:
12137  case ISD::SRL: {
12138    SDValue N0 = Op.getOperand(0);
12139    // Look out for (store (shl (load), x)).
12140    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
12141      return false;
12142    Promote = true;
12143    break;
12144  }
12145  case ISD::ADD:
12146  case ISD::MUL:
12147  case ISD::AND:
12148  case ISD::OR:
12149  case ISD::XOR:
12150    Commute = true;
12151    // fallthrough
12152  case ISD::SUB: {
12153    SDValue N0 = Op.getOperand(0);
12154    SDValue N1 = Op.getOperand(1);
12155    if (!Commute && MayFoldLoad(N1))
12156      return false;
12157    // Avoid disabling potential load folding opportunities.
12158    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
12159      return false;
12160    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
12161      return false;
12162    Promote = true;
12163  }
12164  }
12165
12166  PVT = MVT::i32;
12167  return Promote;
12168}
12169
12170//===----------------------------------------------------------------------===//
12171//                           X86 Inline Assembly Support
12172//===----------------------------------------------------------------------===//
12173
12174bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
12175  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12176
12177  std::string AsmStr = IA->getAsmString();
12178
12179  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
12180  SmallVector<StringRef, 4> AsmPieces;
12181  SplitString(AsmStr, AsmPieces, ";\n");
12182
12183  switch (AsmPieces.size()) {
12184  default: return false;
12185  case 1:
12186    AsmStr = AsmPieces[0];
12187    AsmPieces.clear();
12188    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
12189
12190    // FIXME: this should verify that we are targetting a 486 or better.  If not,
12191    // we will turn this bswap into something that will be lowered to logical ops
12192    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
12193    // so don't worry about this.
12194    // bswap $0
12195    if (AsmPieces.size() == 2 &&
12196        (AsmPieces[0] == "bswap" ||
12197         AsmPieces[0] == "bswapq" ||
12198         AsmPieces[0] == "bswapl") &&
12199        (AsmPieces[1] == "$0" ||
12200         AsmPieces[1] == "${0:q}")) {
12201      // No need to check constraints, nothing other than the equivalent of
12202      // "=r,0" would be valid here.
12203      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12204      if (!Ty || Ty->getBitWidth() % 16 != 0)
12205        return false;
12206      return IntrinsicLowering::LowerToByteSwap(CI);
12207    }
12208    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
12209    if (CI->getType()->isIntegerTy(16) &&
12210        AsmPieces.size() == 3 &&
12211        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
12212        AsmPieces[1] == "$$8," &&
12213        AsmPieces[2] == "${0:w}" &&
12214        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12215      AsmPieces.clear();
12216      const std::string &ConstraintsStr = IA->getConstraintString();
12217      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12218      std::sort(AsmPieces.begin(), AsmPieces.end());
12219      if (AsmPieces.size() == 4 &&
12220          AsmPieces[0] == "~{cc}" &&
12221          AsmPieces[1] == "~{dirflag}" &&
12222          AsmPieces[2] == "~{flags}" &&
12223          AsmPieces[3] == "~{fpsr}") {
12224        const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12225        if (!Ty || Ty->getBitWidth() % 16 != 0)
12226          return false;
12227        return IntrinsicLowering::LowerToByteSwap(CI);
12228      }
12229    }
12230    break;
12231  case 3:
12232    if (CI->getType()->isIntegerTy(32) &&
12233        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12234      SmallVector<StringRef, 4> Words;
12235      SplitString(AsmPieces[0], Words, " \t,");
12236      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12237          Words[2] == "${0:w}") {
12238        Words.clear();
12239        SplitString(AsmPieces[1], Words, " \t,");
12240        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
12241            Words[2] == "$0") {
12242          Words.clear();
12243          SplitString(AsmPieces[2], Words, " \t,");
12244          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12245              Words[2] == "${0:w}") {
12246            AsmPieces.clear();
12247            const std::string &ConstraintsStr = IA->getConstraintString();
12248            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12249            std::sort(AsmPieces.begin(), AsmPieces.end());
12250            if (AsmPieces.size() == 4 &&
12251                AsmPieces[0] == "~{cc}" &&
12252                AsmPieces[1] == "~{dirflag}" &&
12253                AsmPieces[2] == "~{flags}" &&
12254                AsmPieces[3] == "~{fpsr}") {
12255              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12256              if (!Ty || Ty->getBitWidth() % 16 != 0)
12257                return false;
12258              return IntrinsicLowering::LowerToByteSwap(CI);
12259            }
12260          }
12261        }
12262      }
12263    }
12264
12265    if (CI->getType()->isIntegerTy(64)) {
12266      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
12267      if (Constraints.size() >= 2 &&
12268          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
12269          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
12270        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
12271        SmallVector<StringRef, 4> Words;
12272        SplitString(AsmPieces[0], Words, " \t");
12273        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
12274          Words.clear();
12275          SplitString(AsmPieces[1], Words, " \t");
12276          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
12277            Words.clear();
12278            SplitString(AsmPieces[2], Words, " \t,");
12279            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
12280                Words[2] == "%edx") {
12281              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12282              if (!Ty || Ty->getBitWidth() % 16 != 0)
12283                return false;
12284              return IntrinsicLowering::LowerToByteSwap(CI);
12285            }
12286          }
12287        }
12288      }
12289    }
12290    break;
12291  }
12292  return false;
12293}
12294
12295
12296
12297/// getConstraintType - Given a constraint letter, return the type of
12298/// constraint it is for this target.
12299X86TargetLowering::ConstraintType
12300X86TargetLowering::getConstraintType(const std::string &Constraint) const {
12301  if (Constraint.size() == 1) {
12302    switch (Constraint[0]) {
12303    case 'R':
12304    case 'q':
12305    case 'Q':
12306    case 'f':
12307    case 't':
12308    case 'u':
12309    case 'y':
12310    case 'x':
12311    case 'Y':
12312      return C_RegisterClass;
12313    case 'a':
12314    case 'b':
12315    case 'c':
12316    case 'd':
12317    case 'S':
12318    case 'D':
12319    case 'A':
12320      return C_Register;
12321    case 'I':
12322    case 'J':
12323    case 'K':
12324    case 'L':
12325    case 'M':
12326    case 'N':
12327    case 'G':
12328    case 'C':
12329    case 'e':
12330    case 'Z':
12331      return C_Other;
12332    default:
12333      break;
12334    }
12335  }
12336  return TargetLowering::getConstraintType(Constraint);
12337}
12338
12339/// Examine constraint type and operand type and determine a weight value.
12340/// This object must already have been set up with the operand type
12341/// and the current alternative constraint selected.
12342TargetLowering::ConstraintWeight
12343  X86TargetLowering::getSingleConstraintMatchWeight(
12344    AsmOperandInfo &info, const char *constraint) const {
12345  ConstraintWeight weight = CW_Invalid;
12346  Value *CallOperandVal = info.CallOperandVal;
12347    // If we don't have a value, we can't do a match,
12348    // but allow it at the lowest weight.
12349  if (CallOperandVal == NULL)
12350    return CW_Default;
12351  const Type *type = CallOperandVal->getType();
12352  // Look at the constraint type.
12353  switch (*constraint) {
12354  default:
12355    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12356  case 'R':
12357  case 'q':
12358  case 'Q':
12359  case 'a':
12360  case 'b':
12361  case 'c':
12362  case 'd':
12363  case 'S':
12364  case 'D':
12365  case 'A':
12366    if (CallOperandVal->getType()->isIntegerTy())
12367      weight = CW_SpecificReg;
12368    break;
12369  case 'f':
12370  case 't':
12371  case 'u':
12372      if (type->isFloatingPointTy())
12373        weight = CW_SpecificReg;
12374      break;
12375  case 'y':
12376      if (type->isX86_MMXTy() && Subtarget->hasMMX())
12377        weight = CW_SpecificReg;
12378      break;
12379  case 'x':
12380  case 'Y':
12381    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
12382      weight = CW_Register;
12383    break;
12384  case 'I':
12385    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
12386      if (C->getZExtValue() <= 31)
12387        weight = CW_Constant;
12388    }
12389    break;
12390  case 'J':
12391    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12392      if (C->getZExtValue() <= 63)
12393        weight = CW_Constant;
12394    }
12395    break;
12396  case 'K':
12397    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12398      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
12399        weight = CW_Constant;
12400    }
12401    break;
12402  case 'L':
12403    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12404      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
12405        weight = CW_Constant;
12406    }
12407    break;
12408  case 'M':
12409    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12410      if (C->getZExtValue() <= 3)
12411        weight = CW_Constant;
12412    }
12413    break;
12414  case 'N':
12415    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12416      if (C->getZExtValue() <= 0xff)
12417        weight = CW_Constant;
12418    }
12419    break;
12420  case 'G':
12421  case 'C':
12422    if (dyn_cast<ConstantFP>(CallOperandVal)) {
12423      weight = CW_Constant;
12424    }
12425    break;
12426  case 'e':
12427    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12428      if ((C->getSExtValue() >= -0x80000000LL) &&
12429          (C->getSExtValue() <= 0x7fffffffLL))
12430        weight = CW_Constant;
12431    }
12432    break;
12433  case 'Z':
12434    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12435      if (C->getZExtValue() <= 0xffffffff)
12436        weight = CW_Constant;
12437    }
12438    break;
12439  }
12440  return weight;
12441}
12442
12443/// LowerXConstraint - try to replace an X constraint, which matches anything,
12444/// with another that has more specific requirements based on the type of the
12445/// corresponding operand.
12446const char *X86TargetLowering::
12447LowerXConstraint(EVT ConstraintVT) const {
12448  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
12449  // 'f' like normal targets.
12450  if (ConstraintVT.isFloatingPoint()) {
12451    if (Subtarget->hasXMMInt())
12452      return "Y";
12453    if (Subtarget->hasXMM())
12454      return "x";
12455  }
12456
12457  return TargetLowering::LowerXConstraint(ConstraintVT);
12458}
12459
12460/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12461/// vector.  If it is invalid, don't add anything to Ops.
12462void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12463                                                     char Constraint,
12464                                                     std::vector<SDValue>&Ops,
12465                                                     SelectionDAG &DAG) const {
12466  SDValue Result(0, 0);
12467
12468  switch (Constraint) {
12469  default: break;
12470  case 'I':
12471    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12472      if (C->getZExtValue() <= 31) {
12473        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12474        break;
12475      }
12476    }
12477    return;
12478  case 'J':
12479    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12480      if (C->getZExtValue() <= 63) {
12481        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12482        break;
12483      }
12484    }
12485    return;
12486  case 'K':
12487    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12488      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
12489        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12490        break;
12491      }
12492    }
12493    return;
12494  case 'N':
12495    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12496      if (C->getZExtValue() <= 255) {
12497        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12498        break;
12499      }
12500    }
12501    return;
12502  case 'e': {
12503    // 32-bit signed value
12504    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12505      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12506                                           C->getSExtValue())) {
12507        // Widen to 64 bits here to get it sign extended.
12508        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
12509        break;
12510      }
12511    // FIXME gcc accepts some relocatable values here too, but only in certain
12512    // memory models; it's complicated.
12513    }
12514    return;
12515  }
12516  case 'Z': {
12517    // 32-bit unsigned value
12518    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12519      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12520                                           C->getZExtValue())) {
12521        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12522        break;
12523      }
12524    }
12525    // FIXME gcc accepts some relocatable values here too, but only in certain
12526    // memory models; it's complicated.
12527    return;
12528  }
12529  case 'i': {
12530    // Literal immediates are always ok.
12531    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
12532      // Widen to 64 bits here to get it sign extended.
12533      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
12534      break;
12535    }
12536
12537    // In any sort of PIC mode addresses need to be computed at runtime by
12538    // adding in a register or some sort of table lookup.  These can't
12539    // be used as immediates.
12540    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
12541      return;
12542
12543    // If we are in non-pic codegen mode, we allow the address of a global (with
12544    // an optional displacement) to be used with 'i'.
12545    GlobalAddressSDNode *GA = 0;
12546    int64_t Offset = 0;
12547
12548    // Match either (GA), (GA+C), (GA+C1+C2), etc.
12549    while (1) {
12550      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
12551        Offset += GA->getOffset();
12552        break;
12553      } else if (Op.getOpcode() == ISD::ADD) {
12554        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12555          Offset += C->getZExtValue();
12556          Op = Op.getOperand(0);
12557          continue;
12558        }
12559      } else if (Op.getOpcode() == ISD::SUB) {
12560        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12561          Offset += -C->getZExtValue();
12562          Op = Op.getOperand(0);
12563          continue;
12564        }
12565      }
12566
12567      // Otherwise, this isn't something we can handle, reject it.
12568      return;
12569    }
12570
12571    const GlobalValue *GV = GA->getGlobal();
12572    // If we require an extra load to get this address, as in PIC mode, we
12573    // can't accept it.
12574    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
12575                                                        getTargetMachine())))
12576      return;
12577
12578    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
12579                                        GA->getValueType(0), Offset);
12580    break;
12581  }
12582  }
12583
12584  if (Result.getNode()) {
12585    Ops.push_back(Result);
12586    return;
12587  }
12588  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12589}
12590
12591std::vector<unsigned> X86TargetLowering::
12592getRegClassForInlineAsmConstraint(const std::string &Constraint,
12593                                  EVT VT) const {
12594  if (Constraint.size() == 1) {
12595    // FIXME: not handling fp-stack yet!
12596    switch (Constraint[0]) {      // GCC X86 Constraint Letters
12597    default: break;  // Unknown constraint letter
12598    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
12599      if (Subtarget->is64Bit()) {
12600        if (VT == MVT::i32)
12601          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
12602                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
12603                                       X86::R10D,X86::R11D,X86::R12D,
12604                                       X86::R13D,X86::R14D,X86::R15D,
12605                                       X86::EBP, X86::ESP, 0);
12606        else if (VT == MVT::i16)
12607          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
12608                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
12609                                       X86::R10W,X86::R11W,X86::R12W,
12610                                       X86::R13W,X86::R14W,X86::R15W,
12611                                       X86::BP,  X86::SP, 0);
12612        else if (VT == MVT::i8)
12613          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
12614                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
12615                                       X86::R10B,X86::R11B,X86::R12B,
12616                                       X86::R13B,X86::R14B,X86::R15B,
12617                                       X86::BPL, X86::SPL, 0);
12618
12619        else if (VT == MVT::i64)
12620          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
12621                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
12622                                       X86::R10, X86::R11, X86::R12,
12623                                       X86::R13, X86::R14, X86::R15,
12624                                       X86::RBP, X86::RSP, 0);
12625
12626        break;
12627      }
12628      // 32-bit fallthrough
12629    case 'Q':   // Q_REGS
12630      if (VT == MVT::i32)
12631        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
12632      else if (VT == MVT::i16)
12633        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
12634      else if (VT == MVT::i8)
12635        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
12636      else if (VT == MVT::i64)
12637        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
12638      break;
12639    }
12640  }
12641
12642  return std::vector<unsigned>();
12643}
12644
12645std::pair<unsigned, const TargetRegisterClass*>
12646X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
12647                                                EVT VT) const {
12648  // First, see if this is a constraint that directly corresponds to an LLVM
12649  // register class.
12650  if (Constraint.size() == 1) {
12651    // GCC Constraint Letters
12652    switch (Constraint[0]) {
12653    default: break;
12654    case 'r':   // GENERAL_REGS
12655    case 'l':   // INDEX_REGS
12656      if (VT == MVT::i8)
12657        return std::make_pair(0U, X86::GR8RegisterClass);
12658      if (VT == MVT::i16)
12659        return std::make_pair(0U, X86::GR16RegisterClass);
12660      if (VT == MVT::i32 || !Subtarget->is64Bit())
12661        return std::make_pair(0U, X86::GR32RegisterClass);
12662      return std::make_pair(0U, X86::GR64RegisterClass);
12663    case 'R':   // LEGACY_REGS
12664      if (VT == MVT::i8)
12665        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
12666      if (VT == MVT::i16)
12667        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
12668      if (VT == MVT::i32 || !Subtarget->is64Bit())
12669        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
12670      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
12671    case 'f':  // FP Stack registers.
12672      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
12673      // value to the correct fpstack register class.
12674      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
12675        return std::make_pair(0U, X86::RFP32RegisterClass);
12676      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
12677        return std::make_pair(0U, X86::RFP64RegisterClass);
12678      return std::make_pair(0U, X86::RFP80RegisterClass);
12679    case 'y':   // MMX_REGS if MMX allowed.
12680      if (!Subtarget->hasMMX()) break;
12681      return std::make_pair(0U, X86::VR64RegisterClass);
12682    case 'Y':   // SSE_REGS if SSE2 allowed
12683      if (!Subtarget->hasXMMInt()) break;
12684      // FALL THROUGH.
12685    case 'x':   // SSE_REGS if SSE1 allowed
12686      if (!Subtarget->hasXMM()) break;
12687
12688      switch (VT.getSimpleVT().SimpleTy) {
12689      default: break;
12690      // Scalar SSE types.
12691      case MVT::f32:
12692      case MVT::i32:
12693        return std::make_pair(0U, X86::FR32RegisterClass);
12694      case MVT::f64:
12695      case MVT::i64:
12696        return std::make_pair(0U, X86::FR64RegisterClass);
12697      // Vector types.
12698      case MVT::v16i8:
12699      case MVT::v8i16:
12700      case MVT::v4i32:
12701      case MVT::v2i64:
12702      case MVT::v4f32:
12703      case MVT::v2f64:
12704        return std::make_pair(0U, X86::VR128RegisterClass);
12705      }
12706      break;
12707    }
12708  }
12709
12710  // Use the default implementation in TargetLowering to convert the register
12711  // constraint into a member of a register class.
12712  std::pair<unsigned, const TargetRegisterClass*> Res;
12713  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
12714
12715  // Not found as a standard register?
12716  if (Res.second == 0) {
12717    // Map st(0) -> st(7) -> ST0
12718    if (Constraint.size() == 7 && Constraint[0] == '{' &&
12719        tolower(Constraint[1]) == 's' &&
12720        tolower(Constraint[2]) == 't' &&
12721        Constraint[3] == '(' &&
12722        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
12723        Constraint[5] == ')' &&
12724        Constraint[6] == '}') {
12725
12726      Res.first = X86::ST0+Constraint[4]-'0';
12727      Res.second = X86::RFP80RegisterClass;
12728      return Res;
12729    }
12730
12731    // GCC allows "st(0)" to be called just plain "st".
12732    if (StringRef("{st}").equals_lower(Constraint)) {
12733      Res.first = X86::ST0;
12734      Res.second = X86::RFP80RegisterClass;
12735      return Res;
12736    }
12737
12738    // flags -> EFLAGS
12739    if (StringRef("{flags}").equals_lower(Constraint)) {
12740      Res.first = X86::EFLAGS;
12741      Res.second = X86::CCRRegisterClass;
12742      return Res;
12743    }
12744
12745    // 'A' means EAX + EDX.
12746    if (Constraint == "A") {
12747      Res.first = X86::EAX;
12748      Res.second = X86::GR32_ADRegisterClass;
12749      return Res;
12750    }
12751    return Res;
12752  }
12753
12754  // Otherwise, check to see if this is a register class of the wrong value
12755  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
12756  // turn into {ax},{dx}.
12757  if (Res.second->hasType(VT))
12758    return Res;   // Correct type already, nothing to do.
12759
12760  // All of the single-register GCC register classes map their values onto
12761  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
12762  // really want an 8-bit or 32-bit register, map to the appropriate register
12763  // class and return the appropriate register.
12764  if (Res.second == X86::GR16RegisterClass) {
12765    if (VT == MVT::i8) {
12766      unsigned DestReg = 0;
12767      switch (Res.first) {
12768      default: break;
12769      case X86::AX: DestReg = X86::AL; break;
12770      case X86::DX: DestReg = X86::DL; break;
12771      case X86::CX: DestReg = X86::CL; break;
12772      case X86::BX: DestReg = X86::BL; break;
12773      }
12774      if (DestReg) {
12775        Res.first = DestReg;
12776        Res.second = X86::GR8RegisterClass;
12777      }
12778    } else if (VT == MVT::i32) {
12779      unsigned DestReg = 0;
12780      switch (Res.first) {
12781      default: break;
12782      case X86::AX: DestReg = X86::EAX; break;
12783      case X86::DX: DestReg = X86::EDX; break;
12784      case X86::CX: DestReg = X86::ECX; break;
12785      case X86::BX: DestReg = X86::EBX; break;
12786      case X86::SI: DestReg = X86::ESI; break;
12787      case X86::DI: DestReg = X86::EDI; break;
12788      case X86::BP: DestReg = X86::EBP; break;
12789      case X86::SP: DestReg = X86::ESP; break;
12790      }
12791      if (DestReg) {
12792        Res.first = DestReg;
12793        Res.second = X86::GR32RegisterClass;
12794      }
12795    } else if (VT == MVT::i64) {
12796      unsigned DestReg = 0;
12797      switch (Res.first) {
12798      default: break;
12799      case X86::AX: DestReg = X86::RAX; break;
12800      case X86::DX: DestReg = X86::RDX; break;
12801      case X86::CX: DestReg = X86::RCX; break;
12802      case X86::BX: DestReg = X86::RBX; break;
12803      case X86::SI: DestReg = X86::RSI; break;
12804      case X86::DI: DestReg = X86::RDI; break;
12805      case X86::BP: DestReg = X86::RBP; break;
12806      case X86::SP: DestReg = X86::RSP; break;
12807      }
12808      if (DestReg) {
12809        Res.first = DestReg;
12810        Res.second = X86::GR64RegisterClass;
12811      }
12812    }
12813  } else if (Res.second == X86::FR32RegisterClass ||
12814             Res.second == X86::FR64RegisterClass ||
12815             Res.second == X86::VR128RegisterClass) {
12816    // Handle references to XMM physical registers that got mapped into the
12817    // wrong class.  This can happen with constraints like {xmm0} where the
12818    // target independent register mapper will just pick the first match it can
12819    // find, ignoring the required type.
12820    if (VT == MVT::f32)
12821      Res.second = X86::FR32RegisterClass;
12822    else if (VT == MVT::f64)
12823      Res.second = X86::FR64RegisterClass;
12824    else if (X86::VR128RegisterClass->hasType(VT))
12825      Res.second = X86::VR128RegisterClass;
12826  }
12827
12828  return Res;
12829}
12830