X86ISelLowering.cpp revision b1cacc74232164a9d80ee65d20e0095b25eb74d8
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
162
163  RegInfo = TM.getRegisterInfo();
164  TD = getTargetData();
165
166  // Set up the TargetLowering object.
167  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
168
169  // X86 is weird, it always uses i8 for shift amounts and setcc results.
170  setBooleanContents(ZeroOrOneBooleanContent);
171  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
172  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
173
174  // For 64-bit since we have so many registers use the ILP scheduler, for
175  // 32-bit code use the register pressure specific scheduling.
176  // For Atom, always use ILP scheduling.
177  if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::ILP);
179  else if (Subtarget->is64Bit())
180    setSchedulingPreference(Sched::ILP);
181  else
182    setSchedulingPreference(Sched::RegPressure);
183  setStackPointerRegisterToSaveRestore(X86StackPtr);
184
185  // Bypass i32 with i8 on Atom when compiling with O2
186  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
187    addBypassSlowDivType(Type::getInt32Ty(getGlobalContext()), Type::getInt8Ty(getGlobalContext()));
188
189  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
190    // Setup Windows compiler runtime calls.
191    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
192    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
193    setLibcallName(RTLIB::SREM_I64, "_allrem");
194    setLibcallName(RTLIB::UREM_I64, "_aullrem");
195    setLibcallName(RTLIB::MUL_I64, "_allmul");
196    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
200    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
201
202    // The _ftol2 runtime function has an unusual calling conv, which
203    // is modeled by a special pseudo-instruction.
204    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
205    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
206    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
207    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, &X86::GR8RegClass);
225  addRegisterClass(MVT::i16, &X86::GR16RegClass);
226  addRegisterClass(MVT::i32, &X86::GR32RegClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, &X86::GR64RegClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
257  } else if (!TM.Options.UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!TM.Options.UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!TM.Options.UseSoftFloat) {
315    // Since AVX is a superset of SSE3, only check for SSE here.
316    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
317      // Expand FP_TO_UINT into a select.
318      // FIXME: We would like to use a Custom expander here eventually to do
319      // the optimal thing for SSE vs. the default expansion in the legalizer.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
321    else
322      // With SSE3 we can use fisttpll to convert to a signed i64; without
323      // SSE, we're stuck with a fistpll.
324      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
325  }
326
327  if (isTargetFTOL()) {
328    // Use the _ftol2 runtime function, which has a pseudo-instruction
329    // to handle its weird calling convention.
330    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
331  }
332
333  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
334  if (!X86ScalarSSEf64) {
335    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
336    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
337    if (Subtarget->is64Bit()) {
338      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
339      // Without SSE, i64->f64 goes through memory.
340      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
341    }
342  }
343
344  // Scalar integer divide and remainder are lowered to use operations that
345  // produce two results, to match the available instructions. This exposes
346  // the two-result form to trivial CSE, which is able to combine x/y and x%y
347  // into a single instruction.
348  //
349  // Scalar integer multiply-high is also lowered to use two-result
350  // operations, to match the available instructions. However, plain multiply
351  // (low) operations are left as Legal, as there are single-result
352  // instructions for this in x86. Using the two-result multiply instructions
353  // when both high and low results are needed must be arranged by dagcombine.
354  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
355    MVT VT = IntVTs[i];
356    setOperationAction(ISD::MULHS, VT, Expand);
357    setOperationAction(ISD::MULHU, VT, Expand);
358    setOperationAction(ISD::SDIV, VT, Expand);
359    setOperationAction(ISD::UDIV, VT, Expand);
360    setOperationAction(ISD::SREM, VT, Expand);
361    setOperationAction(ISD::UREM, VT, Expand);
362
363    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
364    setOperationAction(ISD::ADDC, VT, Custom);
365    setOperationAction(ISD::ADDE, VT, Custom);
366    setOperationAction(ISD::SUBC, VT, Custom);
367    setOperationAction(ISD::SUBE, VT, Custom);
368  }
369
370  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
371  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
372  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
373  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
374  if (Subtarget->is64Bit())
375    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
378  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
379  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
382  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
383  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
384
385  // Promote the i8 variants and force them on up to i32 which has a shorter
386  // encoding.
387  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
388  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
389  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
390  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
391  if (Subtarget->hasBMI()) {
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
393    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
396  } else {
397    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
398    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
399    if (Subtarget->is64Bit())
400      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
401  }
402
403  if (Subtarget->hasLZCNT()) {
404    // When promoting the i8 variants, force them to i32 for a shorter
405    // encoding.
406    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
407    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
409    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
411    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
412    if (Subtarget->is64Bit())
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
414  } else {
415    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
417    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
420    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
421    if (Subtarget->is64Bit()) {
422      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
423      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
424    }
425  }
426
427  if (Subtarget->hasPOPCNT()) {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
429  } else {
430    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
432    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
433    if (Subtarget->is64Bit())
434      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
435  }
436
437  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
438  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
439
440  // These should be promoted to a larger select which is supported.
441  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
442  // X86 wants to expand cmov itself.
443  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
448  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
454  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
457    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
458  }
459  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
460
461  // Darwin ABI issue.
462  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
463  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
464  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
465  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
466  if (Subtarget->is64Bit())
467    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
468  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
469  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
470  if (Subtarget->is64Bit()) {
471    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
472    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
473    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
474    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
475    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
476  }
477  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
478  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
479  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
480  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
481  if (Subtarget->is64Bit()) {
482    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
483    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
484    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
485  }
486
487  if (Subtarget->hasSSE1())
488    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
489
490  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
491  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
492
493  // On X86 and X86-64, atomic operations are lowered to locked instructions.
494  // Locked instructions, in turn, have implicit fence semantics (all memory
495  // operations are flushed before issuing the locked instruction, and they
496  // are not buffered), so we can fold away the common pattern of
497  // fence-atomic-fence.
498  setShouldFoldAtomicFences(true);
499
500  // Expand certain atomics
501  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
502    MVT VT = IntVTs[i];
503    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
505    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
506  }
507
508  if (!Subtarget->is64Bit()) {
509    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
513    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
514    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
515    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
516    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
517  }
518
519  if (Subtarget->hasCmpxchg16b()) {
520    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
521  }
522
523  // FIXME - use subtarget debug flags
524  if (!Subtarget->isTargetDarwin() &&
525      !Subtarget->isTargetELF() &&
526      !Subtarget->isTargetCygMing()) {
527    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
528  }
529
530  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
531  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
532  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
533  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
534  if (Subtarget->is64Bit()) {
535    setExceptionPointerRegister(X86::RAX);
536    setExceptionSelectorRegister(X86::RDX);
537  } else {
538    setExceptionPointerRegister(X86::EAX);
539    setExceptionSelectorRegister(X86::EDX);
540  }
541  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
542  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
543
544  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
545  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
546
547  setOperationAction(ISD::TRAP, MVT::Other, Legal);
548
549  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
550  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
551  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
552  if (Subtarget->is64Bit()) {
553    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
554    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
555  } else {
556    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
557    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
558  }
559
560  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
561  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
562
563  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Custom);
566  else if (TM.Options.EnableSegmentedStacks)
567    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
568                       MVT::i64 : MVT::i32, Custom);
569  else
570    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
571                       MVT::i64 : MVT::i32, Expand);
572
573  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
574    // f32 and f64 use SSE.
575    // Set up the FP register classes.
576    addRegisterClass(MVT::f32, &X86::FR32RegClass);
577    addRegisterClass(MVT::f64, &X86::FR64RegClass);
578
579    // Use ANDPD to simulate FABS.
580    setOperationAction(ISD::FABS , MVT::f64, Custom);
581    setOperationAction(ISD::FABS , MVT::f32, Custom);
582
583    // Use XORP to simulate FNEG.
584    setOperationAction(ISD::FNEG , MVT::f64, Custom);
585    setOperationAction(ISD::FNEG , MVT::f32, Custom);
586
587    // Use ANDPD and ORPD to simulate FCOPYSIGN.
588    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
589    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
590
591    // Lower this to FGETSIGNx86 plus an AND.
592    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
593    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
594
595    // We don't support sin/cos/fmod
596    setOperationAction(ISD::FSIN , MVT::f64, Expand);
597    setOperationAction(ISD::FCOS , MVT::f64, Expand);
598    setOperationAction(ISD::FSIN , MVT::f32, Expand);
599    setOperationAction(ISD::FCOS , MVT::f32, Expand);
600
601    // Expand FP immediates into loads from the stack, except for the special
602    // cases we handle.
603    addLegalFPImmediate(APFloat(+0.0)); // xorpd
604    addLegalFPImmediate(APFloat(+0.0f)); // xorps
605  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
606    // Use SSE for f32, x87 for f64.
607    // Set up the FP register classes.
608    addRegisterClass(MVT::f32, &X86::FR32RegClass);
609    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
610
611    // Use ANDPS to simulate FABS.
612    setOperationAction(ISD::FABS , MVT::f32, Custom);
613
614    // Use XORP to simulate FNEG.
615    setOperationAction(ISD::FNEG , MVT::f32, Custom);
616
617    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
618
619    // Use ANDPS and ORPS to simulate FCOPYSIGN.
620    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
622
623    // We don't support sin/cos/fmod
624    setOperationAction(ISD::FSIN , MVT::f32, Expand);
625    setOperationAction(ISD::FCOS , MVT::f32, Expand);
626
627    // Special cases we handle for FP constants.
628    addLegalFPImmediate(APFloat(+0.0f)); // xorps
629    addLegalFPImmediate(APFloat(+0.0)); // FLD0
630    addLegalFPImmediate(APFloat(+1.0)); // FLD1
631    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
632    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
633
634    if (!TM.Options.UnsafeFPMath) {
635      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
636      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
637    }
638  } else if (!TM.Options.UseSoftFloat) {
639    // f32 and f64 in x87.
640    // Set up the FP register classes.
641    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
642    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
643
644    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
645    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
646    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
647    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
648
649    if (!TM.Options.UnsafeFPMath) {
650      setOperationAction(ISD::FSIN           , MVT::f32  , Expand);
651      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
652      setOperationAction(ISD::FCOS           , MVT::f32  , Expand);
653      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
654    }
655    addLegalFPImmediate(APFloat(+0.0)); // FLD0
656    addLegalFPImmediate(APFloat(+1.0)); // FLD1
657    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
658    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
659    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
660    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
661    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
662    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
663  }
664
665  // We don't support FMA.
666  setOperationAction(ISD::FMA, MVT::f64, Expand);
667  setOperationAction(ISD::FMA, MVT::f32, Expand);
668
669  // Long double always uses X87.
670  if (!TM.Options.UseSoftFloat) {
671    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
672    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
673    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
674    {
675      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
676      addLegalFPImmediate(TmpFlt);  // FLD0
677      TmpFlt.changeSign();
678      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
679
680      bool ignored;
681      APFloat TmpFlt2(+1.0);
682      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
683                      &ignored);
684      addLegalFPImmediate(TmpFlt2);  // FLD1
685      TmpFlt2.changeSign();
686      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
687    }
688
689    if (!TM.Options.UnsafeFPMath) {
690      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
691      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
692    }
693
694    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
695    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
696    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
697    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
698    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
699    setOperationAction(ISD::FMA, MVT::f80, Expand);
700  }
701
702  // Always use a library call for pow.
703  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
704  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
705  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
706
707  setOperationAction(ISD::FLOG, MVT::f80, Expand);
708  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
709  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
710  setOperationAction(ISD::FEXP, MVT::f80, Expand);
711  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
712
713  // First set operation action for all vector types to either promote
714  // (for widening) or expand (for scalarization). Then we will selectively
715  // turn on ones that can be effectively codegen'd.
716  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
717           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
718    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
733    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
735    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
736    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::FMA,  (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::FFLOOR, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
770    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
771    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
772    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
773    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
774    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
775    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
776    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
777    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
778             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
779      setTruncStoreAction((MVT::SimpleValueType)VT,
780                          (MVT::SimpleValueType)InnerVT, Expand);
781    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
782    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
783    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
784  }
785
786  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
787  // with -msoft-float, disable use of MMX as well.
788  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
789    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
790    // No operations on x86mmx supported, everything uses intrinsics.
791  }
792
793  // MMX-sized vectors (other than x86mmx) are expected to be expanded
794  // into smaller operations.
795  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
796  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
797  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
798  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
799  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
800  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
801  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
802  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
803  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
804  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
805  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
806  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
807  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
808  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
809  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
810  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
811  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
812  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
813  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
814  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
815  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
816  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
817  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
818  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
819  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
820  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
821  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
822  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
823  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
824
825  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
826    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
827
828    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
829    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
830    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
831    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
832    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
833    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
834    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
835    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
836    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
837    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
838    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
839    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
840  }
841
842  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
843    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
844
845    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
846    // registers cannot be used even for integer operations.
847    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
848    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
849    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
850    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
851
852    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
853    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
854    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
855    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
856    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
857    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
858    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
859    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
860    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
861    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
862    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
863    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
864    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
865    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
866    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
867    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
868    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
869
870    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
871    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
872    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
873    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
874
875    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
876    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
877    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
878    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
879    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
880
881    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
882    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
883      MVT VT = (MVT::SimpleValueType)i;
884      // Do not attempt to custom lower non-power-of-2 vectors
885      if (!isPowerOf2_32(VT.getVectorNumElements()))
886        continue;
887      // Do not attempt to custom lower non-128-bit vectors
888      if (!VT.is128BitVector())
889        continue;
890      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
891      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
892      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
893    }
894
895    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
896    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
897    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
898    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
899    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
900    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
901
902    if (Subtarget->is64Bit()) {
903      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
904      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
905    }
906
907    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
908    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
909      MVT VT = (MVT::SimpleValueType)i;
910
911      // Do not attempt to promote non-128-bit vectors
912      if (!VT.is128BitVector())
913        continue;
914
915      setOperationAction(ISD::AND,    VT, Promote);
916      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
917      setOperationAction(ISD::OR,     VT, Promote);
918      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
919      setOperationAction(ISD::XOR,    VT, Promote);
920      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
921      setOperationAction(ISD::LOAD,   VT, Promote);
922      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
923      setOperationAction(ISD::SELECT, VT, Promote);
924      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
925    }
926
927    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
928
929    // Custom lower v2i64 and v2f64 selects.
930    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
931    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
932    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
933    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
934
935    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
936    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
937
938    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
939  }
940
941  if (Subtarget->hasSSE41()) {
942    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
943    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
944    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
945    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
946    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
947    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
948    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
949    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
950    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
951    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
952
953    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
954    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
955
956    // FIXME: Do we need to handle scalar-to-vector here?
957    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
958
959    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
960    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
961    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
962    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
963    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
964
965    // i8 and i16 vectors are custom , because the source register and source
966    // source memory operand types are not the same width.  f32 vectors are
967    // custom since the immediate controlling the insert encodes additional
968    // information.
969    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
970    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
971    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
972    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
973
974    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
975    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
976    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
977    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
978
979    // FIXME: these should be Legal but thats only for the case where
980    // the index is constant.  For now custom expand to deal with that.
981    if (Subtarget->is64Bit()) {
982      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
983      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
984    }
985  }
986
987  if (Subtarget->hasSSE2()) {
988    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
990
991    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
992    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
993
994    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
995    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
996
997    if (Subtarget->hasAVX2()) {
998      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
999      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1000
1001      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1002      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1003
1004      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1005    } else {
1006      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1007      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1008
1009      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1010      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1011
1012      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1013    }
1014  }
1015
1016  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1017    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1018    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1019    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1020    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1021    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1022    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1023
1024    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1025    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1026    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1027
1028    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1030    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1031    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1032    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1033    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1034    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1035    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1036
1037    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1038    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1039    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1040    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1041    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1042    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1043    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1044    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1045
1046    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1047    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1048    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1049
1050    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1051
1052    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1056    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1057
1058    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1059    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1060
1061    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1063    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1064    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1065
1066    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1067    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1068    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1069
1070    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1072    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1073    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1074
1075    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1076      setOperationAction(ISD::FMA,             MVT::v8f32, Custom);
1077      setOperationAction(ISD::FMA,             MVT::v4f64, Custom);
1078      setOperationAction(ISD::FMA,             MVT::v4f32, Custom);
1079      setOperationAction(ISD::FMA,             MVT::v2f64, Custom);
1080      setOperationAction(ISD::FMA,             MVT::f32, Custom);
1081      setOperationAction(ISD::FMA,             MVT::f64, Custom);
1082    }
1083
1084    if (Subtarget->hasAVX2()) {
1085      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1086      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1087      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1088      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1089
1090      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1091      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1092      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1093      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1094
1095      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1096      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1097      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1098      // Don't lower v32i8 because there is no 128-bit byte mul
1099
1100      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1101
1102      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1103      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1104
1105      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1106      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1107
1108      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1109    } else {
1110      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1111      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1112      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1113      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1114
1115      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1116      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1117      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1118      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1119
1120      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1121      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1122      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1123      // Don't lower v32i8 because there is no 128-bit byte mul
1124
1125      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1126      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1127
1128      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1129      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1130
1131      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1132    }
1133
1134    // Custom lower several nodes for 256-bit types.
1135    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1136             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1137      MVT VT = (MVT::SimpleValueType)i;
1138
1139      // Extract subvector is special because the value type
1140      // (result) is 128-bit but the source is 256-bit wide.
1141      if (VT.is128BitVector())
1142        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1143
1144      // Do not attempt to custom lower other non-256-bit vectors
1145      if (!VT.is256BitVector())
1146        continue;
1147
1148      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1149      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1150      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1151      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1152      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1153      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1154      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1155    }
1156
1157    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1158    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1159      MVT VT = (MVT::SimpleValueType)i;
1160
1161      // Do not attempt to promote non-256-bit vectors
1162      if (!VT.is256BitVector())
1163        continue;
1164
1165      setOperationAction(ISD::AND,    VT, Promote);
1166      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1167      setOperationAction(ISD::OR,     VT, Promote);
1168      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1169      setOperationAction(ISD::XOR,    VT, Promote);
1170      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1171      setOperationAction(ISD::LOAD,   VT, Promote);
1172      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1173      setOperationAction(ISD::SELECT, VT, Promote);
1174      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1175    }
1176  }
1177
1178  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1179  // of this type with custom code.
1180  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1181           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1182    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1183                       Custom);
1184  }
1185
1186  // We want to custom lower some of our intrinsics.
1187  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1188  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1189
1190
1191  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1192  // handle type legalization for these operations here.
1193  //
1194  // FIXME: We really should do custom legalization for addition and
1195  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1196  // than generic legalization for 64-bit multiplication-with-overflow, though.
1197  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1198    // Add/Sub/Mul with overflow operations are custom lowered.
1199    MVT VT = IntVTs[i];
1200    setOperationAction(ISD::SADDO, VT, Custom);
1201    setOperationAction(ISD::UADDO, VT, Custom);
1202    setOperationAction(ISD::SSUBO, VT, Custom);
1203    setOperationAction(ISD::USUBO, VT, Custom);
1204    setOperationAction(ISD::SMULO, VT, Custom);
1205    setOperationAction(ISD::UMULO, VT, Custom);
1206  }
1207
1208  // There are no 8-bit 3-address imul/mul instructions
1209  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1210  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1211
1212  if (!Subtarget->is64Bit()) {
1213    // These libcalls are not available in 32-bit.
1214    setLibcallName(RTLIB::SHL_I128, 0);
1215    setLibcallName(RTLIB::SRL_I128, 0);
1216    setLibcallName(RTLIB::SRA_I128, 0);
1217  }
1218
1219  // We have target-specific dag combine patterns for the following nodes:
1220  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1221  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1222  setTargetDAGCombine(ISD::VSELECT);
1223  setTargetDAGCombine(ISD::SELECT);
1224  setTargetDAGCombine(ISD::SHL);
1225  setTargetDAGCombine(ISD::SRA);
1226  setTargetDAGCombine(ISD::SRL);
1227  setTargetDAGCombine(ISD::OR);
1228  setTargetDAGCombine(ISD::AND);
1229  setTargetDAGCombine(ISD::ADD);
1230  setTargetDAGCombine(ISD::FADD);
1231  setTargetDAGCombine(ISD::FSUB);
1232  setTargetDAGCombine(ISD::FMA);
1233  setTargetDAGCombine(ISD::SUB);
1234  setTargetDAGCombine(ISD::LOAD);
1235  setTargetDAGCombine(ISD::STORE);
1236  setTargetDAGCombine(ISD::ZERO_EXTEND);
1237  setTargetDAGCombine(ISD::ANY_EXTEND);
1238  setTargetDAGCombine(ISD::SIGN_EXTEND);
1239  setTargetDAGCombine(ISD::TRUNCATE);
1240  setTargetDAGCombine(ISD::UINT_TO_FP);
1241  setTargetDAGCombine(ISD::SINT_TO_FP);
1242  setTargetDAGCombine(ISD::SETCC);
1243  setTargetDAGCombine(ISD::FP_TO_SINT);
1244  if (Subtarget->is64Bit())
1245    setTargetDAGCombine(ISD::MUL);
1246  setTargetDAGCombine(ISD::XOR);
1247
1248  computeRegisterProperties();
1249
1250  // On Darwin, -Os means optimize for size without hurting performance,
1251  // do not reduce the limit.
1252  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1253  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1254  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1255  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1256  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1257  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1258  setPrefLoopAlignment(4); // 2^4 bytes.
1259  benefitFromCodePlacementOpt = true;
1260
1261  // Predictable cmov don't hurt on atom because it's in-order.
1262  predictableSelectIsExpensive = !Subtarget->isAtom();
1263
1264  setPrefFunctionAlignment(4); // 2^4 bytes.
1265}
1266
1267
1268EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1269  if (!VT.isVector()) return MVT::i8;
1270  return VT.changeVectorElementTypeToInteger();
1271}
1272
1273
1274/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1275/// the desired ByVal argument alignment.
1276static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1277  if (MaxAlign == 16)
1278    return;
1279  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1280    if (VTy->getBitWidth() == 128)
1281      MaxAlign = 16;
1282  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1283    unsigned EltAlign = 0;
1284    getMaxByValAlign(ATy->getElementType(), EltAlign);
1285    if (EltAlign > MaxAlign)
1286      MaxAlign = EltAlign;
1287  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1288    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1289      unsigned EltAlign = 0;
1290      getMaxByValAlign(STy->getElementType(i), EltAlign);
1291      if (EltAlign > MaxAlign)
1292        MaxAlign = EltAlign;
1293      if (MaxAlign == 16)
1294        break;
1295    }
1296  }
1297}
1298
1299/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1300/// function arguments in the caller parameter area. For X86, aggregates
1301/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1302/// are at 4-byte boundaries.
1303unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1304  if (Subtarget->is64Bit()) {
1305    // Max of 8 and alignment of type.
1306    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1307    if (TyAlign > 8)
1308      return TyAlign;
1309    return 8;
1310  }
1311
1312  unsigned Align = 4;
1313  if (Subtarget->hasSSE1())
1314    getMaxByValAlign(Ty, Align);
1315  return Align;
1316}
1317
1318/// getOptimalMemOpType - Returns the target specific optimal type for load
1319/// and store operations as a result of memset, memcpy, and memmove
1320/// lowering. If DstAlign is zero that means it's safe to destination
1321/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1322/// means there isn't a need to check it against alignment requirement,
1323/// probably because the source does not need to be loaded. If
1324/// 'IsZeroVal' is true, that means it's safe to return a
1325/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1326/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1327/// constant so it does not need to be loaded.
1328/// It returns EVT::Other if the type should be determined using generic
1329/// target-independent logic.
1330EVT
1331X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1332                                       unsigned DstAlign, unsigned SrcAlign,
1333                                       bool IsZeroVal,
1334                                       bool MemcpyStrSrc,
1335                                       MachineFunction &MF) const {
1336  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1337  // linux.  This is because the stack realignment code can't handle certain
1338  // cases like PR2962.  This should be removed when PR2962 is fixed.
1339  const Function *F = MF.getFunction();
1340  if (IsZeroVal &&
1341      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1342    if (Size >= 16 &&
1343        (Subtarget->isUnalignedMemAccessFast() ||
1344         ((DstAlign == 0 || DstAlign >= 16) &&
1345          (SrcAlign == 0 || SrcAlign >= 16))) &&
1346        Subtarget->getStackAlignment() >= 16) {
1347      if (Subtarget->getStackAlignment() >= 32) {
1348        if (Subtarget->hasAVX2())
1349          return MVT::v8i32;
1350        if (Subtarget->hasAVX())
1351          return MVT::v8f32;
1352      }
1353      if (Subtarget->hasSSE2())
1354        return MVT::v4i32;
1355      if (Subtarget->hasSSE1())
1356        return MVT::v4f32;
1357    } else if (!MemcpyStrSrc && Size >= 8 &&
1358               !Subtarget->is64Bit() &&
1359               Subtarget->getStackAlignment() >= 8 &&
1360               Subtarget->hasSSE2()) {
1361      // Do not use f64 to lower memcpy if source is string constant. It's
1362      // better to use i32 to avoid the loads.
1363      return MVT::f64;
1364    }
1365  }
1366  if (Subtarget->is64Bit() && Size >= 8)
1367    return MVT::i64;
1368  return MVT::i32;
1369}
1370
1371/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1372/// current function.  The returned value is a member of the
1373/// MachineJumpTableInfo::JTEntryKind enum.
1374unsigned X86TargetLowering::getJumpTableEncoding() const {
1375  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1376  // symbol.
1377  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1378      Subtarget->isPICStyleGOT())
1379    return MachineJumpTableInfo::EK_Custom32;
1380
1381  // Otherwise, use the normal jump table encoding heuristics.
1382  return TargetLowering::getJumpTableEncoding();
1383}
1384
1385const MCExpr *
1386X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1387                                             const MachineBasicBlock *MBB,
1388                                             unsigned uid,MCContext &Ctx) const{
1389  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1390         Subtarget->isPICStyleGOT());
1391  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1392  // entries.
1393  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1394                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1395}
1396
1397/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1398/// jumptable.
1399SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1400                                                    SelectionDAG &DAG) const {
1401  if (!Subtarget->is64Bit())
1402    // This doesn't have DebugLoc associated with it, but is not really the
1403    // same as a Register.
1404    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1405  return Table;
1406}
1407
1408/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1409/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1410/// MCExpr.
1411const MCExpr *X86TargetLowering::
1412getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1413                             MCContext &Ctx) const {
1414  // X86-64 uses RIP relative addressing based on the jump table label.
1415  if (Subtarget->isPICStyleRIPRel())
1416    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1417
1418  // Otherwise, the reference is relative to the PIC base.
1419  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1420}
1421
1422// FIXME: Why this routine is here? Move to RegInfo!
1423std::pair<const TargetRegisterClass*, uint8_t>
1424X86TargetLowering::findRepresentativeClass(EVT VT) const{
1425  const TargetRegisterClass *RRC = 0;
1426  uint8_t Cost = 1;
1427  switch (VT.getSimpleVT().SimpleTy) {
1428  default:
1429    return TargetLowering::findRepresentativeClass(VT);
1430  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1431    RRC = Subtarget->is64Bit() ?
1432      (const TargetRegisterClass*)&X86::GR64RegClass :
1433      (const TargetRegisterClass*)&X86::GR32RegClass;
1434    break;
1435  case MVT::x86mmx:
1436    RRC = &X86::VR64RegClass;
1437    break;
1438  case MVT::f32: case MVT::f64:
1439  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1440  case MVT::v4f32: case MVT::v2f64:
1441  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1442  case MVT::v4f64:
1443    RRC = &X86::VR128RegClass;
1444    break;
1445  }
1446  return std::make_pair(RRC, Cost);
1447}
1448
1449bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1450                                               unsigned &Offset) const {
1451  if (!Subtarget->isTargetLinux())
1452    return false;
1453
1454  if (Subtarget->is64Bit()) {
1455    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1456    Offset = 0x28;
1457    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1458      AddressSpace = 256;
1459    else
1460      AddressSpace = 257;
1461  } else {
1462    // %gs:0x14 on i386
1463    Offset = 0x14;
1464    AddressSpace = 256;
1465  }
1466  return true;
1467}
1468
1469
1470//===----------------------------------------------------------------------===//
1471//               Return Value Calling Convention Implementation
1472//===----------------------------------------------------------------------===//
1473
1474#include "X86GenCallingConv.inc"
1475
1476bool
1477X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1478                                  MachineFunction &MF, bool isVarArg,
1479                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1480                        LLVMContext &Context) const {
1481  SmallVector<CCValAssign, 16> RVLocs;
1482  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1483                 RVLocs, Context);
1484  return CCInfo.CheckReturn(Outs, RetCC_X86);
1485}
1486
1487SDValue
1488X86TargetLowering::LowerReturn(SDValue Chain,
1489                               CallingConv::ID CallConv, bool isVarArg,
1490                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1491                               const SmallVectorImpl<SDValue> &OutVals,
1492                               DebugLoc dl, SelectionDAG &DAG) const {
1493  MachineFunction &MF = DAG.getMachineFunction();
1494  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1495
1496  SmallVector<CCValAssign, 16> RVLocs;
1497  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1498                 RVLocs, *DAG.getContext());
1499  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1500
1501  // Add the regs to the liveout set for the function.
1502  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1503  for (unsigned i = 0; i != RVLocs.size(); ++i)
1504    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1505      MRI.addLiveOut(RVLocs[i].getLocReg());
1506
1507  SDValue Flag;
1508
1509  SmallVector<SDValue, 6> RetOps;
1510  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1511  // Operand #1 = Bytes To Pop
1512  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1513                   MVT::i16));
1514
1515  // Copy the result values into the output registers.
1516  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1517    CCValAssign &VA = RVLocs[i];
1518    assert(VA.isRegLoc() && "Can only return in registers!");
1519    SDValue ValToCopy = OutVals[i];
1520    EVT ValVT = ValToCopy.getValueType();
1521
1522    // Promote values to the appropriate types
1523    if (VA.getLocInfo() == CCValAssign::SExt)
1524      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1525    else if (VA.getLocInfo() == CCValAssign::ZExt)
1526      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1527    else if (VA.getLocInfo() == CCValAssign::AExt)
1528      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1529    else if (VA.getLocInfo() == CCValAssign::BCvt)
1530      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1531
1532    // If this is x86-64, and we disabled SSE, we can't return FP values,
1533    // or SSE or MMX vectors.
1534    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1535         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1536          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1537      report_fatal_error("SSE register return with SSE disabled");
1538    }
1539    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1540    // llvm-gcc has never done it right and no one has noticed, so this
1541    // should be OK for now.
1542    if (ValVT == MVT::f64 &&
1543        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1544      report_fatal_error("SSE2 register return with SSE2 disabled");
1545
1546    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1547    // the RET instruction and handled by the FP Stackifier.
1548    if (VA.getLocReg() == X86::ST0 ||
1549        VA.getLocReg() == X86::ST1) {
1550      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1551      // change the value to the FP stack register class.
1552      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1553        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1554      RetOps.push_back(ValToCopy);
1555      // Don't emit a copytoreg.
1556      continue;
1557    }
1558
1559    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1560    // which is returned in RAX / RDX.
1561    if (Subtarget->is64Bit()) {
1562      if (ValVT == MVT::x86mmx) {
1563        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1564          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1565          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1566                                  ValToCopy);
1567          // If we don't have SSE2 available, convert to v4f32 so the generated
1568          // register is legal.
1569          if (!Subtarget->hasSSE2())
1570            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1571        }
1572      }
1573    }
1574
1575    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1576    Flag = Chain.getValue(1);
1577  }
1578
1579  // The x86-64 ABI for returning structs by value requires that we copy
1580  // the sret argument into %rax for the return. We saved the argument into
1581  // a virtual register in the entry block, so now we copy the value out
1582  // and into %rax.
1583  if (Subtarget->is64Bit() &&
1584      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1585    MachineFunction &MF = DAG.getMachineFunction();
1586    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1587    unsigned Reg = FuncInfo->getSRetReturnReg();
1588    assert(Reg &&
1589           "SRetReturnReg should have been set in LowerFormalArguments().");
1590    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1591
1592    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1593    Flag = Chain.getValue(1);
1594
1595    // RAX now acts like a return value.
1596    MRI.addLiveOut(X86::RAX);
1597  }
1598
1599  RetOps[0] = Chain;  // Update chain.
1600
1601  // Add the flag if we have it.
1602  if (Flag.getNode())
1603    RetOps.push_back(Flag);
1604
1605  return DAG.getNode(X86ISD::RET_FLAG, dl,
1606                     MVT::Other, &RetOps[0], RetOps.size());
1607}
1608
1609bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1610  if (N->getNumValues() != 1)
1611    return false;
1612  if (!N->hasNUsesOfValue(1, 0))
1613    return false;
1614
1615  SDValue TCChain = Chain;
1616  SDNode *Copy = *N->use_begin();
1617  if (Copy->getOpcode() == ISD::CopyToReg) {
1618    // If the copy has a glue operand, we conservatively assume it isn't safe to
1619    // perform a tail call.
1620    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1621      return false;
1622    TCChain = Copy->getOperand(0);
1623  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1624    return false;
1625
1626  bool HasRet = false;
1627  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1628       UI != UE; ++UI) {
1629    if (UI->getOpcode() != X86ISD::RET_FLAG)
1630      return false;
1631    HasRet = true;
1632  }
1633
1634  if (!HasRet)
1635    return false;
1636
1637  Chain = TCChain;
1638  return true;
1639}
1640
1641EVT
1642X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1643                                            ISD::NodeType ExtendKind) const {
1644  MVT ReturnMVT;
1645  // TODO: Is this also valid on 32-bit?
1646  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1647    ReturnMVT = MVT::i8;
1648  else
1649    ReturnMVT = MVT::i32;
1650
1651  EVT MinVT = getRegisterType(Context, ReturnMVT);
1652  return VT.bitsLT(MinVT) ? MinVT : VT;
1653}
1654
1655/// LowerCallResult - Lower the result values of a call into the
1656/// appropriate copies out of appropriate physical registers.
1657///
1658SDValue
1659X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1660                                   CallingConv::ID CallConv, bool isVarArg,
1661                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1662                                   DebugLoc dl, SelectionDAG &DAG,
1663                                   SmallVectorImpl<SDValue> &InVals) const {
1664
1665  // Assign locations to each value returned by this call.
1666  SmallVector<CCValAssign, 16> RVLocs;
1667  bool Is64Bit = Subtarget->is64Bit();
1668  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1669                 getTargetMachine(), RVLocs, *DAG.getContext());
1670  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1671
1672  // Copy all of the result registers out of their specified physreg.
1673  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1674    CCValAssign &VA = RVLocs[i];
1675    EVT CopyVT = VA.getValVT();
1676
1677    // If this is x86-64, and we disabled SSE, we can't return FP values
1678    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1679        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1680      report_fatal_error("SSE register return with SSE disabled");
1681    }
1682
1683    SDValue Val;
1684
1685    // If this is a call to a function that returns an fp value on the floating
1686    // point stack, we must guarantee the value is popped from the stack, so
1687    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1688    // if the return value is not used. We use the FpPOP_RETVAL instruction
1689    // instead.
1690    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1691      // If we prefer to use the value in xmm registers, copy it out as f80 and
1692      // use a truncate to move it from fp stack reg to xmm reg.
1693      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1694      SDValue Ops[] = { Chain, InFlag };
1695      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1696                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1697      Val = Chain.getValue(0);
1698
1699      // Round the f80 to the right size, which also moves it to the appropriate
1700      // xmm register.
1701      if (CopyVT != VA.getValVT())
1702        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1703                          // This truncation won't change the value.
1704                          DAG.getIntPtrConstant(1));
1705    } else {
1706      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1707                                 CopyVT, InFlag).getValue(1);
1708      Val = Chain.getValue(0);
1709    }
1710    InFlag = Chain.getValue(2);
1711    InVals.push_back(Val);
1712  }
1713
1714  return Chain;
1715}
1716
1717
1718//===----------------------------------------------------------------------===//
1719//                C & StdCall & Fast Calling Convention implementation
1720//===----------------------------------------------------------------------===//
1721//  StdCall calling convention seems to be standard for many Windows' API
1722//  routines and around. It differs from C calling convention just a little:
1723//  callee should clean up the stack, not caller. Symbols should be also
1724//  decorated in some fancy way :) It doesn't support any vector arguments.
1725//  For info on fast calling convention see Fast Calling Convention (tail call)
1726//  implementation LowerX86_32FastCCCallTo.
1727
1728/// CallIsStructReturn - Determines whether a call uses struct return
1729/// semantics.
1730enum StructReturnType {
1731  NotStructReturn,
1732  RegStructReturn,
1733  StackStructReturn
1734};
1735static StructReturnType
1736callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1737  if (Outs.empty())
1738    return NotStructReturn;
1739
1740  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1741  if (!Flags.isSRet())
1742    return NotStructReturn;
1743  if (Flags.isInReg())
1744    return RegStructReturn;
1745  return StackStructReturn;
1746}
1747
1748/// ArgsAreStructReturn - Determines whether a function uses struct
1749/// return semantics.
1750static StructReturnType
1751argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1752  if (Ins.empty())
1753    return NotStructReturn;
1754
1755  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1756  if (!Flags.isSRet())
1757    return NotStructReturn;
1758  if (Flags.isInReg())
1759    return RegStructReturn;
1760  return StackStructReturn;
1761}
1762
1763/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1764/// by "Src" to address "Dst" with size and alignment information specified by
1765/// the specific parameter attribute. The copy will be passed as a byval
1766/// function parameter.
1767static SDValue
1768CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1769                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1770                          DebugLoc dl) {
1771  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1772
1773  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1774                       /*isVolatile*/false, /*AlwaysInline=*/true,
1775                       MachinePointerInfo(), MachinePointerInfo());
1776}
1777
1778/// IsTailCallConvention - Return true if the calling convention is one that
1779/// supports tail call optimization.
1780static bool IsTailCallConvention(CallingConv::ID CC) {
1781  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1782}
1783
1784bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1785  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1786    return false;
1787
1788  CallSite CS(CI);
1789  CallingConv::ID CalleeCC = CS.getCallingConv();
1790  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1791    return false;
1792
1793  return true;
1794}
1795
1796/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1797/// a tailcall target by changing its ABI.
1798static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1799                                   bool GuaranteedTailCallOpt) {
1800  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1801}
1802
1803SDValue
1804X86TargetLowering::LowerMemArgument(SDValue Chain,
1805                                    CallingConv::ID CallConv,
1806                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1807                                    DebugLoc dl, SelectionDAG &DAG,
1808                                    const CCValAssign &VA,
1809                                    MachineFrameInfo *MFI,
1810                                    unsigned i) const {
1811  // Create the nodes corresponding to a load from this parameter slot.
1812  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1813  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1814                              getTargetMachine().Options.GuaranteedTailCallOpt);
1815  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1816  EVT ValVT;
1817
1818  // If value is passed by pointer we have address passed instead of the value
1819  // itself.
1820  if (VA.getLocInfo() == CCValAssign::Indirect)
1821    ValVT = VA.getLocVT();
1822  else
1823    ValVT = VA.getValVT();
1824
1825  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1826  // changed with more analysis.
1827  // In case of tail call optimization mark all arguments mutable. Since they
1828  // could be overwritten by lowering of arguments in case of a tail call.
1829  if (Flags.isByVal()) {
1830    unsigned Bytes = Flags.getByValSize();
1831    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1832    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1833    return DAG.getFrameIndex(FI, getPointerTy());
1834  } else {
1835    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1836                                    VA.getLocMemOffset(), isImmutable);
1837    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1838    return DAG.getLoad(ValVT, dl, Chain, FIN,
1839                       MachinePointerInfo::getFixedStack(FI),
1840                       false, false, false, 0);
1841  }
1842}
1843
1844SDValue
1845X86TargetLowering::LowerFormalArguments(SDValue Chain,
1846                                        CallingConv::ID CallConv,
1847                                        bool isVarArg,
1848                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1849                                        DebugLoc dl,
1850                                        SelectionDAG &DAG,
1851                                        SmallVectorImpl<SDValue> &InVals)
1852                                          const {
1853  MachineFunction &MF = DAG.getMachineFunction();
1854  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1855
1856  const Function* Fn = MF.getFunction();
1857  if (Fn->hasExternalLinkage() &&
1858      Subtarget->isTargetCygMing() &&
1859      Fn->getName() == "main")
1860    FuncInfo->setForceFramePointer(true);
1861
1862  MachineFrameInfo *MFI = MF.getFrameInfo();
1863  bool Is64Bit = Subtarget->is64Bit();
1864  bool IsWindows = Subtarget->isTargetWindows();
1865  bool IsWin64 = Subtarget->isTargetWin64();
1866
1867  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1868         "Var args not supported with calling convention fastcc or ghc");
1869
1870  // Assign locations to all of the incoming arguments.
1871  SmallVector<CCValAssign, 16> ArgLocs;
1872  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1873                 ArgLocs, *DAG.getContext());
1874
1875  // Allocate shadow area for Win64
1876  if (IsWin64) {
1877    CCInfo.AllocateStack(32, 8);
1878  }
1879
1880  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1881
1882  unsigned LastVal = ~0U;
1883  SDValue ArgValue;
1884  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1885    CCValAssign &VA = ArgLocs[i];
1886    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1887    // places.
1888    assert(VA.getValNo() != LastVal &&
1889           "Don't support value assigned to multiple locs yet");
1890    (void)LastVal;
1891    LastVal = VA.getValNo();
1892
1893    if (VA.isRegLoc()) {
1894      EVT RegVT = VA.getLocVT();
1895      const TargetRegisterClass *RC;
1896      if (RegVT == MVT::i32)
1897        RC = &X86::GR32RegClass;
1898      else if (Is64Bit && RegVT == MVT::i64)
1899        RC = &X86::GR64RegClass;
1900      else if (RegVT == MVT::f32)
1901        RC = &X86::FR32RegClass;
1902      else if (RegVT == MVT::f64)
1903        RC = &X86::FR64RegClass;
1904      else if (RegVT.is256BitVector())
1905        RC = &X86::VR256RegClass;
1906      else if (RegVT.is128BitVector())
1907        RC = &X86::VR128RegClass;
1908      else if (RegVT == MVT::x86mmx)
1909        RC = &X86::VR64RegClass;
1910      else
1911        llvm_unreachable("Unknown argument type!");
1912
1913      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1914      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1915
1916      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1917      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1918      // right size.
1919      if (VA.getLocInfo() == CCValAssign::SExt)
1920        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1921                               DAG.getValueType(VA.getValVT()));
1922      else if (VA.getLocInfo() == CCValAssign::ZExt)
1923        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1924                               DAG.getValueType(VA.getValVT()));
1925      else if (VA.getLocInfo() == CCValAssign::BCvt)
1926        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1927
1928      if (VA.isExtInLoc()) {
1929        // Handle MMX values passed in XMM regs.
1930        if (RegVT.isVector()) {
1931          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1932                                 ArgValue);
1933        } else
1934          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1935      }
1936    } else {
1937      assert(VA.isMemLoc());
1938      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1939    }
1940
1941    // If value is passed via pointer - do a load.
1942    if (VA.getLocInfo() == CCValAssign::Indirect)
1943      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1944                             MachinePointerInfo(), false, false, false, 0);
1945
1946    InVals.push_back(ArgValue);
1947  }
1948
1949  // The x86-64 ABI for returning structs by value requires that we copy
1950  // the sret argument into %rax for the return. Save the argument into
1951  // a virtual register so that we can access it from the return points.
1952  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1953    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1954    unsigned Reg = FuncInfo->getSRetReturnReg();
1955    if (!Reg) {
1956      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1957      FuncInfo->setSRetReturnReg(Reg);
1958    }
1959    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1960    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1961  }
1962
1963  unsigned StackSize = CCInfo.getNextStackOffset();
1964  // Align stack specially for tail calls.
1965  if (FuncIsMadeTailCallSafe(CallConv,
1966                             MF.getTarget().Options.GuaranteedTailCallOpt))
1967    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1968
1969  // If the function takes variable number of arguments, make a frame index for
1970  // the start of the first vararg value... for expansion of llvm.va_start.
1971  if (isVarArg) {
1972    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1973                    CallConv != CallingConv::X86_ThisCall)) {
1974      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1975    }
1976    if (Is64Bit) {
1977      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1978
1979      // FIXME: We should really autogenerate these arrays
1980      static const uint16_t GPR64ArgRegsWin64[] = {
1981        X86::RCX, X86::RDX, X86::R8,  X86::R9
1982      };
1983      static const uint16_t GPR64ArgRegs64Bit[] = {
1984        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1985      };
1986      static const uint16_t XMMArgRegs64Bit[] = {
1987        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1988        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1989      };
1990      const uint16_t *GPR64ArgRegs;
1991      unsigned NumXMMRegs = 0;
1992
1993      if (IsWin64) {
1994        // The XMM registers which might contain var arg parameters are shadowed
1995        // in their paired GPR.  So we only need to save the GPR to their home
1996        // slots.
1997        TotalNumIntRegs = 4;
1998        GPR64ArgRegs = GPR64ArgRegsWin64;
1999      } else {
2000        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2001        GPR64ArgRegs = GPR64ArgRegs64Bit;
2002
2003        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2004                                                TotalNumXMMRegs);
2005      }
2006      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2007                                                       TotalNumIntRegs);
2008
2009      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
2010      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2011             "SSE register cannot be used when SSE is disabled!");
2012      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2013               NoImplicitFloatOps) &&
2014             "SSE register cannot be used when SSE is disabled!");
2015      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2016          !Subtarget->hasSSE1())
2017        // Kernel mode asks for SSE to be disabled, so don't push them
2018        // on the stack.
2019        TotalNumXMMRegs = 0;
2020
2021      if (IsWin64) {
2022        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2023        // Get to the caller-allocated home save location.  Add 8 to account
2024        // for the return address.
2025        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2026        FuncInfo->setRegSaveFrameIndex(
2027          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2028        // Fixup to set vararg frame on shadow area (4 x i64).
2029        if (NumIntRegs < 4)
2030          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2031      } else {
2032        // For X86-64, if there are vararg parameters that are passed via
2033        // registers, then we must store them to their spots on the stack so
2034        // they may be loaded by deferencing the result of va_next.
2035        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2036        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2037        FuncInfo->setRegSaveFrameIndex(
2038          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2039                               false));
2040      }
2041
2042      // Store the integer parameter registers.
2043      SmallVector<SDValue, 8> MemOps;
2044      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2045                                        getPointerTy());
2046      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2047      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2048        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2049                                  DAG.getIntPtrConstant(Offset));
2050        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2051                                     &X86::GR64RegClass);
2052        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2053        SDValue Store =
2054          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2055                       MachinePointerInfo::getFixedStack(
2056                         FuncInfo->getRegSaveFrameIndex(), Offset),
2057                       false, false, 0);
2058        MemOps.push_back(Store);
2059        Offset += 8;
2060      }
2061
2062      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2063        // Now store the XMM (fp + vector) parameter registers.
2064        SmallVector<SDValue, 11> SaveXMMOps;
2065        SaveXMMOps.push_back(Chain);
2066
2067        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2068        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2069        SaveXMMOps.push_back(ALVal);
2070
2071        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2072                               FuncInfo->getRegSaveFrameIndex()));
2073        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2074                               FuncInfo->getVarArgsFPOffset()));
2075
2076        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2077          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2078                                       &X86::VR128RegClass);
2079          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2080          SaveXMMOps.push_back(Val);
2081        }
2082        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2083                                     MVT::Other,
2084                                     &SaveXMMOps[0], SaveXMMOps.size()));
2085      }
2086
2087      if (!MemOps.empty())
2088        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2089                            &MemOps[0], MemOps.size());
2090    }
2091  }
2092
2093  // Some CCs need callee pop.
2094  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2095                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2096    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2097  } else {
2098    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2099    // If this is an sret function, the return should pop the hidden pointer.
2100    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2101        argsAreStructReturn(Ins) == StackStructReturn)
2102      FuncInfo->setBytesToPopOnReturn(4);
2103  }
2104
2105  if (!Is64Bit) {
2106    // RegSaveFrameIndex is X86-64 only.
2107    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2108    if (CallConv == CallingConv::X86_FastCall ||
2109        CallConv == CallingConv::X86_ThisCall)
2110      // fastcc functions can't have varargs.
2111      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2112  }
2113
2114  FuncInfo->setArgumentStackSize(StackSize);
2115
2116  return Chain;
2117}
2118
2119SDValue
2120X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2121                                    SDValue StackPtr, SDValue Arg,
2122                                    DebugLoc dl, SelectionDAG &DAG,
2123                                    const CCValAssign &VA,
2124                                    ISD::ArgFlagsTy Flags) const {
2125  unsigned LocMemOffset = VA.getLocMemOffset();
2126  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2127  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2128  if (Flags.isByVal())
2129    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2130
2131  return DAG.getStore(Chain, dl, Arg, PtrOff,
2132                      MachinePointerInfo::getStack(LocMemOffset),
2133                      false, false, 0);
2134}
2135
2136/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2137/// optimization is performed and it is required.
2138SDValue
2139X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2140                                           SDValue &OutRetAddr, SDValue Chain,
2141                                           bool IsTailCall, bool Is64Bit,
2142                                           int FPDiff, DebugLoc dl) const {
2143  // Adjust the Return address stack slot.
2144  EVT VT = getPointerTy();
2145  OutRetAddr = getReturnAddressFrameIndex(DAG);
2146
2147  // Load the "old" Return address.
2148  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2149                           false, false, false, 0);
2150  return SDValue(OutRetAddr.getNode(), 1);
2151}
2152
2153/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2154/// optimization is performed and it is required (FPDiff!=0).
2155static SDValue
2156EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2157                         SDValue Chain, SDValue RetAddrFrIdx,
2158                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2159  // Store the return address to the appropriate stack slot.
2160  if (!FPDiff) return Chain;
2161  // Calculate the new stack slot for the return address.
2162  int SlotSize = Is64Bit ? 8 : 4;
2163  int NewReturnAddrFI =
2164    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2165  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2166  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2167  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2168                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2169                       false, false, 0);
2170  return Chain;
2171}
2172
2173SDValue
2174X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2175                             SmallVectorImpl<SDValue> &InVals) const {
2176  SelectionDAG &DAG                     = CLI.DAG;
2177  DebugLoc &dl                          = CLI.DL;
2178  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2179  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2180  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2181  SDValue Chain                         = CLI.Chain;
2182  SDValue Callee                        = CLI.Callee;
2183  CallingConv::ID CallConv              = CLI.CallConv;
2184  bool &isTailCall                      = CLI.IsTailCall;
2185  bool isVarArg                         = CLI.IsVarArg;
2186
2187  MachineFunction &MF = DAG.getMachineFunction();
2188  bool Is64Bit        = Subtarget->is64Bit();
2189  bool IsWin64        = Subtarget->isTargetWin64();
2190  bool IsWindows      = Subtarget->isTargetWindows();
2191  StructReturnType SR = callIsStructReturn(Outs);
2192  bool IsSibcall      = false;
2193
2194  if (MF.getTarget().Options.DisableTailCalls)
2195    isTailCall = false;
2196
2197  if (isTailCall) {
2198    // Check if it's really possible to do a tail call.
2199    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2200                    isVarArg, SR != NotStructReturn,
2201                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2202                    Outs, OutVals, Ins, DAG);
2203
2204    // Sibcalls are automatically detected tailcalls which do not require
2205    // ABI changes.
2206    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2207      IsSibcall = true;
2208
2209    if (isTailCall)
2210      ++NumTailCalls;
2211  }
2212
2213  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2214         "Var args not supported with calling convention fastcc or ghc");
2215
2216  // Analyze operands of the call, assigning locations to each operand.
2217  SmallVector<CCValAssign, 16> ArgLocs;
2218  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2219                 ArgLocs, *DAG.getContext());
2220
2221  // Allocate shadow area for Win64
2222  if (IsWin64) {
2223    CCInfo.AllocateStack(32, 8);
2224  }
2225
2226  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2227
2228  // Get a count of how many bytes are to be pushed on the stack.
2229  unsigned NumBytes = CCInfo.getNextStackOffset();
2230  if (IsSibcall)
2231    // This is a sibcall. The memory operands are available in caller's
2232    // own caller's stack.
2233    NumBytes = 0;
2234  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2235           IsTailCallConvention(CallConv))
2236    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2237
2238  int FPDiff = 0;
2239  if (isTailCall && !IsSibcall) {
2240    // Lower arguments at fp - stackoffset + fpdiff.
2241    unsigned NumBytesCallerPushed =
2242      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2243    FPDiff = NumBytesCallerPushed - NumBytes;
2244
2245    // Set the delta of movement of the returnaddr stackslot.
2246    // But only set if delta is greater than previous delta.
2247    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2248      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2249  }
2250
2251  if (!IsSibcall)
2252    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2253
2254  SDValue RetAddrFrIdx;
2255  // Load return address for tail calls.
2256  if (isTailCall && FPDiff)
2257    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2258                                    Is64Bit, FPDiff, dl);
2259
2260  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2261  SmallVector<SDValue, 8> MemOpChains;
2262  SDValue StackPtr;
2263
2264  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2265  // of tail call optimization arguments are handle later.
2266  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2267    CCValAssign &VA = ArgLocs[i];
2268    EVT RegVT = VA.getLocVT();
2269    SDValue Arg = OutVals[i];
2270    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2271    bool isByVal = Flags.isByVal();
2272
2273    // Promote the value if needed.
2274    switch (VA.getLocInfo()) {
2275    default: llvm_unreachable("Unknown loc info!");
2276    case CCValAssign::Full: break;
2277    case CCValAssign::SExt:
2278      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2279      break;
2280    case CCValAssign::ZExt:
2281      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2282      break;
2283    case CCValAssign::AExt:
2284      if (RegVT.is128BitVector()) {
2285        // Special case: passing MMX values in XMM registers.
2286        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2287        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2288        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2289      } else
2290        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2291      break;
2292    case CCValAssign::BCvt:
2293      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2294      break;
2295    case CCValAssign::Indirect: {
2296      // Store the argument.
2297      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2298      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2299      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2300                           MachinePointerInfo::getFixedStack(FI),
2301                           false, false, 0);
2302      Arg = SpillSlot;
2303      break;
2304    }
2305    }
2306
2307    if (VA.isRegLoc()) {
2308      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2309      if (isVarArg && IsWin64) {
2310        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2311        // shadow reg if callee is a varargs function.
2312        unsigned ShadowReg = 0;
2313        switch (VA.getLocReg()) {
2314        case X86::XMM0: ShadowReg = X86::RCX; break;
2315        case X86::XMM1: ShadowReg = X86::RDX; break;
2316        case X86::XMM2: ShadowReg = X86::R8; break;
2317        case X86::XMM3: ShadowReg = X86::R9; break;
2318        }
2319        if (ShadowReg)
2320          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2321      }
2322    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2323      assert(VA.isMemLoc());
2324      if (StackPtr.getNode() == 0)
2325        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2326      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2327                                             dl, DAG, VA, Flags));
2328    }
2329  }
2330
2331  if (!MemOpChains.empty())
2332    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2333                        &MemOpChains[0], MemOpChains.size());
2334
2335  if (Subtarget->isPICStyleGOT()) {
2336    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2337    // GOT pointer.
2338    if (!isTailCall) {
2339      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2340               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2341    } else {
2342      // If we are tail calling and generating PIC/GOT style code load the
2343      // address of the callee into ECX. The value in ecx is used as target of
2344      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2345      // for tail calls on PIC/GOT architectures. Normally we would just put the
2346      // address of GOT into ebx and then call target@PLT. But for tail calls
2347      // ebx would be restored (since ebx is callee saved) before jumping to the
2348      // target@PLT.
2349
2350      // Note: The actual moving to ECX is done further down.
2351      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2352      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2353          !G->getGlobal()->hasProtectedVisibility())
2354        Callee = LowerGlobalAddress(Callee, DAG);
2355      else if (isa<ExternalSymbolSDNode>(Callee))
2356        Callee = LowerExternalSymbol(Callee, DAG);
2357    }
2358  }
2359
2360  if (Is64Bit && isVarArg && !IsWin64) {
2361    // From AMD64 ABI document:
2362    // For calls that may call functions that use varargs or stdargs
2363    // (prototype-less calls or calls to functions containing ellipsis (...) in
2364    // the declaration) %al is used as hidden argument to specify the number
2365    // of SSE registers used. The contents of %al do not need to match exactly
2366    // the number of registers, but must be an ubound on the number of SSE
2367    // registers used and is in the range 0 - 8 inclusive.
2368
2369    // Count the number of XMM registers allocated.
2370    static const uint16_t XMMArgRegs[] = {
2371      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2372      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2373    };
2374    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2375    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2376           && "SSE registers cannot be used when SSE is disabled");
2377
2378    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2379                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2380  }
2381
2382  // For tail calls lower the arguments to the 'real' stack slot.
2383  if (isTailCall) {
2384    // Force all the incoming stack arguments to be loaded from the stack
2385    // before any new outgoing arguments are stored to the stack, because the
2386    // outgoing stack slots may alias the incoming argument stack slots, and
2387    // the alias isn't otherwise explicit. This is slightly more conservative
2388    // than necessary, because it means that each store effectively depends
2389    // on every argument instead of just those arguments it would clobber.
2390    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2391
2392    SmallVector<SDValue, 8> MemOpChains2;
2393    SDValue FIN;
2394    int FI = 0;
2395    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2396      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2397        CCValAssign &VA = ArgLocs[i];
2398        if (VA.isRegLoc())
2399          continue;
2400        assert(VA.isMemLoc());
2401        SDValue Arg = OutVals[i];
2402        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2403        // Create frame index.
2404        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2405        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2406        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2407        FIN = DAG.getFrameIndex(FI, getPointerTy());
2408
2409        if (Flags.isByVal()) {
2410          // Copy relative to framepointer.
2411          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2412          if (StackPtr.getNode() == 0)
2413            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2414                                          getPointerTy());
2415          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2416
2417          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2418                                                           ArgChain,
2419                                                           Flags, DAG, dl));
2420        } else {
2421          // Store relative to framepointer.
2422          MemOpChains2.push_back(
2423            DAG.getStore(ArgChain, dl, Arg, FIN,
2424                         MachinePointerInfo::getFixedStack(FI),
2425                         false, false, 0));
2426        }
2427      }
2428    }
2429
2430    if (!MemOpChains2.empty())
2431      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2432                          &MemOpChains2[0], MemOpChains2.size());
2433
2434    // Store the return address to the appropriate stack slot.
2435    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2436                                     FPDiff, dl);
2437  }
2438
2439  // Build a sequence of copy-to-reg nodes chained together with token chain
2440  // and flag operands which copy the outgoing args into registers.
2441  SDValue InFlag;
2442  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2443    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2444                             RegsToPass[i].second, InFlag);
2445    InFlag = Chain.getValue(1);
2446  }
2447
2448  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2449    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2450    // In the 64-bit large code model, we have to make all calls
2451    // through a register, since the call instruction's 32-bit
2452    // pc-relative offset may not be large enough to hold the whole
2453    // address.
2454  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2455    // If the callee is a GlobalAddress node (quite common, every direct call
2456    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2457    // it.
2458
2459    // We should use extra load for direct calls to dllimported functions in
2460    // non-JIT mode.
2461    const GlobalValue *GV = G->getGlobal();
2462    if (!GV->hasDLLImportLinkage()) {
2463      unsigned char OpFlags = 0;
2464      bool ExtraLoad = false;
2465      unsigned WrapperKind = ISD::DELETED_NODE;
2466
2467      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2468      // external symbols most go through the PLT in PIC mode.  If the symbol
2469      // has hidden or protected visibility, or if it is static or local, then
2470      // we don't need to use the PLT - we can directly call it.
2471      if (Subtarget->isTargetELF() &&
2472          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2473          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2474        OpFlags = X86II::MO_PLT;
2475      } else if (Subtarget->isPICStyleStubAny() &&
2476                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2477                 (!Subtarget->getTargetTriple().isMacOSX() ||
2478                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2479        // PC-relative references to external symbols should go through $stub,
2480        // unless we're building with the leopard linker or later, which
2481        // automatically synthesizes these stubs.
2482        OpFlags = X86II::MO_DARWIN_STUB;
2483      } else if (Subtarget->isPICStyleRIPRel() &&
2484                 isa<Function>(GV) &&
2485                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2486        // If the function is marked as non-lazy, generate an indirect call
2487        // which loads from the GOT directly. This avoids runtime overhead
2488        // at the cost of eager binding (and one extra byte of encoding).
2489        OpFlags = X86II::MO_GOTPCREL;
2490        WrapperKind = X86ISD::WrapperRIP;
2491        ExtraLoad = true;
2492      }
2493
2494      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2495                                          G->getOffset(), OpFlags);
2496
2497      // Add a wrapper if needed.
2498      if (WrapperKind != ISD::DELETED_NODE)
2499        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2500      // Add extra indirection if needed.
2501      if (ExtraLoad)
2502        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2503                             MachinePointerInfo::getGOT(),
2504                             false, false, false, 0);
2505    }
2506  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2507    unsigned char OpFlags = 0;
2508
2509    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2510    // external symbols should go through the PLT.
2511    if (Subtarget->isTargetELF() &&
2512        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2513      OpFlags = X86II::MO_PLT;
2514    } else if (Subtarget->isPICStyleStubAny() &&
2515               (!Subtarget->getTargetTriple().isMacOSX() ||
2516                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2517      // PC-relative references to external symbols should go through $stub,
2518      // unless we're building with the leopard linker or later, which
2519      // automatically synthesizes these stubs.
2520      OpFlags = X86II::MO_DARWIN_STUB;
2521    }
2522
2523    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2524                                         OpFlags);
2525  }
2526
2527  // Returns a chain & a flag for retval copy to use.
2528  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2529  SmallVector<SDValue, 8> Ops;
2530
2531  if (!IsSibcall && isTailCall) {
2532    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2533                           DAG.getIntPtrConstant(0, true), InFlag);
2534    InFlag = Chain.getValue(1);
2535  }
2536
2537  Ops.push_back(Chain);
2538  Ops.push_back(Callee);
2539
2540  if (isTailCall)
2541    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2542
2543  // Add argument registers to the end of the list so that they are known live
2544  // into the call.
2545  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2546    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2547                                  RegsToPass[i].second.getValueType()));
2548
2549  // Add a register mask operand representing the call-preserved registers.
2550  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2551  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2552  assert(Mask && "Missing call preserved mask for calling convention");
2553  Ops.push_back(DAG.getRegisterMask(Mask));
2554
2555  if (InFlag.getNode())
2556    Ops.push_back(InFlag);
2557
2558  if (isTailCall) {
2559    // We used to do:
2560    //// If this is the first return lowered for this function, add the regs
2561    //// to the liveout set for the function.
2562    // This isn't right, although it's probably harmless on x86; liveouts
2563    // should be computed from returns not tail calls.  Consider a void
2564    // function making a tail call to a function returning int.
2565    return DAG.getNode(X86ISD::TC_RETURN, dl,
2566                       NodeTys, &Ops[0], Ops.size());
2567  }
2568
2569  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2570  InFlag = Chain.getValue(1);
2571
2572  // Create the CALLSEQ_END node.
2573  unsigned NumBytesForCalleeToPush;
2574  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2575                       getTargetMachine().Options.GuaranteedTailCallOpt))
2576    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2577  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2578           SR == StackStructReturn)
2579    // If this is a call to a struct-return function, the callee
2580    // pops the hidden struct pointer, so we have to push it back.
2581    // This is common for Darwin/X86, Linux & Mingw32 targets.
2582    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2583    NumBytesForCalleeToPush = 4;
2584  else
2585    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2586
2587  // Returns a flag for retval copy to use.
2588  if (!IsSibcall) {
2589    Chain = DAG.getCALLSEQ_END(Chain,
2590                               DAG.getIntPtrConstant(NumBytes, true),
2591                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2592                                                     true),
2593                               InFlag);
2594    InFlag = Chain.getValue(1);
2595  }
2596
2597  // Handle result values, copying them out of physregs into vregs that we
2598  // return.
2599  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2600                         Ins, dl, DAG, InVals);
2601}
2602
2603
2604//===----------------------------------------------------------------------===//
2605//                Fast Calling Convention (tail call) implementation
2606//===----------------------------------------------------------------------===//
2607
2608//  Like std call, callee cleans arguments, convention except that ECX is
2609//  reserved for storing the tail called function address. Only 2 registers are
2610//  free for argument passing (inreg). Tail call optimization is performed
2611//  provided:
2612//                * tailcallopt is enabled
2613//                * caller/callee are fastcc
2614//  On X86_64 architecture with GOT-style position independent code only local
2615//  (within module) calls are supported at the moment.
2616//  To keep the stack aligned according to platform abi the function
2617//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2618//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2619//  If a tail called function callee has more arguments than the caller the
2620//  caller needs to make sure that there is room to move the RETADDR to. This is
2621//  achieved by reserving an area the size of the argument delta right after the
2622//  original REtADDR, but before the saved framepointer or the spilled registers
2623//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2624//  stack layout:
2625//    arg1
2626//    arg2
2627//    RETADDR
2628//    [ new RETADDR
2629//      move area ]
2630//    (possible EBP)
2631//    ESI
2632//    EDI
2633//    local1 ..
2634
2635/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2636/// for a 16 byte align requirement.
2637unsigned
2638X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2639                                               SelectionDAG& DAG) const {
2640  MachineFunction &MF = DAG.getMachineFunction();
2641  const TargetMachine &TM = MF.getTarget();
2642  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2643  unsigned StackAlignment = TFI.getStackAlignment();
2644  uint64_t AlignMask = StackAlignment - 1;
2645  int64_t Offset = StackSize;
2646  uint64_t SlotSize = TD->getPointerSize();
2647  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2648    // Number smaller than 12 so just add the difference.
2649    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2650  } else {
2651    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2652    Offset = ((~AlignMask) & Offset) + StackAlignment +
2653      (StackAlignment-SlotSize);
2654  }
2655  return Offset;
2656}
2657
2658/// MatchingStackOffset - Return true if the given stack call argument is
2659/// already available in the same position (relatively) of the caller's
2660/// incoming argument stack.
2661static
2662bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2663                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2664                         const X86InstrInfo *TII) {
2665  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2666  int FI = INT_MAX;
2667  if (Arg.getOpcode() == ISD::CopyFromReg) {
2668    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2669    if (!TargetRegisterInfo::isVirtualRegister(VR))
2670      return false;
2671    MachineInstr *Def = MRI->getVRegDef(VR);
2672    if (!Def)
2673      return false;
2674    if (!Flags.isByVal()) {
2675      if (!TII->isLoadFromStackSlot(Def, FI))
2676        return false;
2677    } else {
2678      unsigned Opcode = Def->getOpcode();
2679      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2680          Def->getOperand(1).isFI()) {
2681        FI = Def->getOperand(1).getIndex();
2682        Bytes = Flags.getByValSize();
2683      } else
2684        return false;
2685    }
2686  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2687    if (Flags.isByVal())
2688      // ByVal argument is passed in as a pointer but it's now being
2689      // dereferenced. e.g.
2690      // define @foo(%struct.X* %A) {
2691      //   tail call @bar(%struct.X* byval %A)
2692      // }
2693      return false;
2694    SDValue Ptr = Ld->getBasePtr();
2695    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2696    if (!FINode)
2697      return false;
2698    FI = FINode->getIndex();
2699  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2700    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2701    FI = FINode->getIndex();
2702    Bytes = Flags.getByValSize();
2703  } else
2704    return false;
2705
2706  assert(FI != INT_MAX);
2707  if (!MFI->isFixedObjectIndex(FI))
2708    return false;
2709  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2710}
2711
2712/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2713/// for tail call optimization. Targets which want to do tail call
2714/// optimization should implement this function.
2715bool
2716X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2717                                                     CallingConv::ID CalleeCC,
2718                                                     bool isVarArg,
2719                                                     bool isCalleeStructRet,
2720                                                     bool isCallerStructRet,
2721                                                     Type *RetTy,
2722                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2723                                    const SmallVectorImpl<SDValue> &OutVals,
2724                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2725                                                     SelectionDAG& DAG) const {
2726  if (!IsTailCallConvention(CalleeCC) &&
2727      CalleeCC != CallingConv::C)
2728    return false;
2729
2730  // If -tailcallopt is specified, make fastcc functions tail-callable.
2731  const MachineFunction &MF = DAG.getMachineFunction();
2732  const Function *CallerF = DAG.getMachineFunction().getFunction();
2733
2734  // If the function return type is x86_fp80 and the callee return type is not,
2735  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2736  // perform a tailcall optimization here.
2737  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2738    return false;
2739
2740  CallingConv::ID CallerCC = CallerF->getCallingConv();
2741  bool CCMatch = CallerCC == CalleeCC;
2742
2743  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2744    if (IsTailCallConvention(CalleeCC) && CCMatch)
2745      return true;
2746    return false;
2747  }
2748
2749  // Look for obvious safe cases to perform tail call optimization that do not
2750  // require ABI changes. This is what gcc calls sibcall.
2751
2752  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2753  // emit a special epilogue.
2754  if (RegInfo->needsStackRealignment(MF))
2755    return false;
2756
2757  // Also avoid sibcall optimization if either caller or callee uses struct
2758  // return semantics.
2759  if (isCalleeStructRet || isCallerStructRet)
2760    return false;
2761
2762  // An stdcall caller is expected to clean up its arguments; the callee
2763  // isn't going to do that.
2764  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2765    return false;
2766
2767  // Do not sibcall optimize vararg calls unless all arguments are passed via
2768  // registers.
2769  if (isVarArg && !Outs.empty()) {
2770
2771    // Optimizing for varargs on Win64 is unlikely to be safe without
2772    // additional testing.
2773    if (Subtarget->isTargetWin64())
2774      return false;
2775
2776    SmallVector<CCValAssign, 16> ArgLocs;
2777    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2778                   getTargetMachine(), ArgLocs, *DAG.getContext());
2779
2780    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2781    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2782      if (!ArgLocs[i].isRegLoc())
2783        return false;
2784  }
2785
2786  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2787  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2788  // this into a sibcall.
2789  bool Unused = false;
2790  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2791    if (!Ins[i].Used) {
2792      Unused = true;
2793      break;
2794    }
2795  }
2796  if (Unused) {
2797    SmallVector<CCValAssign, 16> RVLocs;
2798    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2799                   getTargetMachine(), RVLocs, *DAG.getContext());
2800    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2801    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2802      CCValAssign &VA = RVLocs[i];
2803      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2804        return false;
2805    }
2806  }
2807
2808  // If the calling conventions do not match, then we'd better make sure the
2809  // results are returned in the same way as what the caller expects.
2810  if (!CCMatch) {
2811    SmallVector<CCValAssign, 16> RVLocs1;
2812    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2813                    getTargetMachine(), RVLocs1, *DAG.getContext());
2814    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2815
2816    SmallVector<CCValAssign, 16> RVLocs2;
2817    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2818                    getTargetMachine(), RVLocs2, *DAG.getContext());
2819    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2820
2821    if (RVLocs1.size() != RVLocs2.size())
2822      return false;
2823    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2824      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2825        return false;
2826      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2827        return false;
2828      if (RVLocs1[i].isRegLoc()) {
2829        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2830          return false;
2831      } else {
2832        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2833          return false;
2834      }
2835    }
2836  }
2837
2838  // If the callee takes no arguments then go on to check the results of the
2839  // call.
2840  if (!Outs.empty()) {
2841    // Check if stack adjustment is needed. For now, do not do this if any
2842    // argument is passed on the stack.
2843    SmallVector<CCValAssign, 16> ArgLocs;
2844    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2845                   getTargetMachine(), ArgLocs, *DAG.getContext());
2846
2847    // Allocate shadow area for Win64
2848    if (Subtarget->isTargetWin64()) {
2849      CCInfo.AllocateStack(32, 8);
2850    }
2851
2852    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2853    if (CCInfo.getNextStackOffset()) {
2854      MachineFunction &MF = DAG.getMachineFunction();
2855      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2856        return false;
2857
2858      // Check if the arguments are already laid out in the right way as
2859      // the caller's fixed stack objects.
2860      MachineFrameInfo *MFI = MF.getFrameInfo();
2861      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2862      const X86InstrInfo *TII =
2863        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2864      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2865        CCValAssign &VA = ArgLocs[i];
2866        SDValue Arg = OutVals[i];
2867        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2868        if (VA.getLocInfo() == CCValAssign::Indirect)
2869          return false;
2870        if (!VA.isRegLoc()) {
2871          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2872                                   MFI, MRI, TII))
2873            return false;
2874        }
2875      }
2876    }
2877
2878    // If the tailcall address may be in a register, then make sure it's
2879    // possible to register allocate for it. In 32-bit, the call address can
2880    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2881    // callee-saved registers are restored. These happen to be the same
2882    // registers used to pass 'inreg' arguments so watch out for those.
2883    if (!Subtarget->is64Bit() &&
2884        !isa<GlobalAddressSDNode>(Callee) &&
2885        !isa<ExternalSymbolSDNode>(Callee)) {
2886      unsigned NumInRegs = 0;
2887      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2888        CCValAssign &VA = ArgLocs[i];
2889        if (!VA.isRegLoc())
2890          continue;
2891        unsigned Reg = VA.getLocReg();
2892        switch (Reg) {
2893        default: break;
2894        case X86::EAX: case X86::EDX: case X86::ECX:
2895          if (++NumInRegs == 3)
2896            return false;
2897          break;
2898        }
2899      }
2900    }
2901  }
2902
2903  return true;
2904}
2905
2906FastISel *
2907X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2908                                  const TargetLibraryInfo *libInfo) const {
2909  return X86::createFastISel(funcInfo, libInfo);
2910}
2911
2912
2913//===----------------------------------------------------------------------===//
2914//                           Other Lowering Hooks
2915//===----------------------------------------------------------------------===//
2916
2917static bool MayFoldLoad(SDValue Op) {
2918  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2919}
2920
2921static bool MayFoldIntoStore(SDValue Op) {
2922  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2923}
2924
2925static bool isTargetShuffle(unsigned Opcode) {
2926  switch(Opcode) {
2927  default: return false;
2928  case X86ISD::PSHUFD:
2929  case X86ISD::PSHUFHW:
2930  case X86ISD::PSHUFLW:
2931  case X86ISD::SHUFP:
2932  case X86ISD::PALIGN:
2933  case X86ISD::MOVLHPS:
2934  case X86ISD::MOVLHPD:
2935  case X86ISD::MOVHLPS:
2936  case X86ISD::MOVLPS:
2937  case X86ISD::MOVLPD:
2938  case X86ISD::MOVSHDUP:
2939  case X86ISD::MOVSLDUP:
2940  case X86ISD::MOVDDUP:
2941  case X86ISD::MOVSS:
2942  case X86ISD::MOVSD:
2943  case X86ISD::UNPCKL:
2944  case X86ISD::UNPCKH:
2945  case X86ISD::VPERMILP:
2946  case X86ISD::VPERM2X128:
2947  case X86ISD::VPERMI:
2948    return true;
2949  }
2950}
2951
2952static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2953                                    SDValue V1, SelectionDAG &DAG) {
2954  switch(Opc) {
2955  default: llvm_unreachable("Unknown x86 shuffle node");
2956  case X86ISD::MOVSHDUP:
2957  case X86ISD::MOVSLDUP:
2958  case X86ISD::MOVDDUP:
2959    return DAG.getNode(Opc, dl, VT, V1);
2960  }
2961}
2962
2963static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2964                                    SDValue V1, unsigned TargetMask,
2965                                    SelectionDAG &DAG) {
2966  switch(Opc) {
2967  default: llvm_unreachable("Unknown x86 shuffle node");
2968  case X86ISD::PSHUFD:
2969  case X86ISD::PSHUFHW:
2970  case X86ISD::PSHUFLW:
2971  case X86ISD::VPERMILP:
2972  case X86ISD::VPERMI:
2973    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2974  }
2975}
2976
2977static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2978                                    SDValue V1, SDValue V2, unsigned TargetMask,
2979                                    SelectionDAG &DAG) {
2980  switch(Opc) {
2981  default: llvm_unreachable("Unknown x86 shuffle node");
2982  case X86ISD::PALIGN:
2983  case X86ISD::SHUFP:
2984  case X86ISD::VPERM2X128:
2985    return DAG.getNode(Opc, dl, VT, V1, V2,
2986                       DAG.getConstant(TargetMask, MVT::i8));
2987  }
2988}
2989
2990static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2991                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2992  switch(Opc) {
2993  default: llvm_unreachable("Unknown x86 shuffle node");
2994  case X86ISD::MOVLHPS:
2995  case X86ISD::MOVLHPD:
2996  case X86ISD::MOVHLPS:
2997  case X86ISD::MOVLPS:
2998  case X86ISD::MOVLPD:
2999  case X86ISD::MOVSS:
3000  case X86ISD::MOVSD:
3001  case X86ISD::UNPCKL:
3002  case X86ISD::UNPCKH:
3003    return DAG.getNode(Opc, dl, VT, V1, V2);
3004  }
3005}
3006
3007SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3008  MachineFunction &MF = DAG.getMachineFunction();
3009  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3010  int ReturnAddrIndex = FuncInfo->getRAIndex();
3011
3012  if (ReturnAddrIndex == 0) {
3013    // Set up a frame object for the return address.
3014    uint64_t SlotSize = TD->getPointerSize();
3015    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3016                                                           false);
3017    FuncInfo->setRAIndex(ReturnAddrIndex);
3018  }
3019
3020  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3021}
3022
3023
3024bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3025                                       bool hasSymbolicDisplacement) {
3026  // Offset should fit into 32 bit immediate field.
3027  if (!isInt<32>(Offset))
3028    return false;
3029
3030  // If we don't have a symbolic displacement - we don't have any extra
3031  // restrictions.
3032  if (!hasSymbolicDisplacement)
3033    return true;
3034
3035  // FIXME: Some tweaks might be needed for medium code model.
3036  if (M != CodeModel::Small && M != CodeModel::Kernel)
3037    return false;
3038
3039  // For small code model we assume that latest object is 16MB before end of 31
3040  // bits boundary. We may also accept pretty large negative constants knowing
3041  // that all objects are in the positive half of address space.
3042  if (M == CodeModel::Small && Offset < 16*1024*1024)
3043    return true;
3044
3045  // For kernel code model we know that all object resist in the negative half
3046  // of 32bits address space. We may not accept negative offsets, since they may
3047  // be just off and we may accept pretty large positive ones.
3048  if (M == CodeModel::Kernel && Offset > 0)
3049    return true;
3050
3051  return false;
3052}
3053
3054/// isCalleePop - Determines whether the callee is required to pop its
3055/// own arguments. Callee pop is necessary to support tail calls.
3056bool X86::isCalleePop(CallingConv::ID CallingConv,
3057                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3058  if (IsVarArg)
3059    return false;
3060
3061  switch (CallingConv) {
3062  default:
3063    return false;
3064  case CallingConv::X86_StdCall:
3065    return !is64Bit;
3066  case CallingConv::X86_FastCall:
3067    return !is64Bit;
3068  case CallingConv::X86_ThisCall:
3069    return !is64Bit;
3070  case CallingConv::Fast:
3071    return TailCallOpt;
3072  case CallingConv::GHC:
3073    return TailCallOpt;
3074  }
3075}
3076
3077/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3078/// specific condition code, returning the condition code and the LHS/RHS of the
3079/// comparison to make.
3080static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3081                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3082  if (!isFP) {
3083    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3084      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3085        // X > -1   -> X == 0, jump !sign.
3086        RHS = DAG.getConstant(0, RHS.getValueType());
3087        return X86::COND_NS;
3088      }
3089      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3090        // X < 0   -> X == 0, jump on sign.
3091        return X86::COND_S;
3092      }
3093      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3094        // X < 1   -> X <= 0
3095        RHS = DAG.getConstant(0, RHS.getValueType());
3096        return X86::COND_LE;
3097      }
3098    }
3099
3100    switch (SetCCOpcode) {
3101    default: llvm_unreachable("Invalid integer condition!");
3102    case ISD::SETEQ:  return X86::COND_E;
3103    case ISD::SETGT:  return X86::COND_G;
3104    case ISD::SETGE:  return X86::COND_GE;
3105    case ISD::SETLT:  return X86::COND_L;
3106    case ISD::SETLE:  return X86::COND_LE;
3107    case ISD::SETNE:  return X86::COND_NE;
3108    case ISD::SETULT: return X86::COND_B;
3109    case ISD::SETUGT: return X86::COND_A;
3110    case ISD::SETULE: return X86::COND_BE;
3111    case ISD::SETUGE: return X86::COND_AE;
3112    }
3113  }
3114
3115  // First determine if it is required or is profitable to flip the operands.
3116
3117  // If LHS is a foldable load, but RHS is not, flip the condition.
3118  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3119      !ISD::isNON_EXTLoad(RHS.getNode())) {
3120    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3121    std::swap(LHS, RHS);
3122  }
3123
3124  switch (SetCCOpcode) {
3125  default: break;
3126  case ISD::SETOLT:
3127  case ISD::SETOLE:
3128  case ISD::SETUGT:
3129  case ISD::SETUGE:
3130    std::swap(LHS, RHS);
3131    break;
3132  }
3133
3134  // On a floating point condition, the flags are set as follows:
3135  // ZF  PF  CF   op
3136  //  0 | 0 | 0 | X > Y
3137  //  0 | 0 | 1 | X < Y
3138  //  1 | 0 | 0 | X == Y
3139  //  1 | 1 | 1 | unordered
3140  switch (SetCCOpcode) {
3141  default: llvm_unreachable("Condcode should be pre-legalized away");
3142  case ISD::SETUEQ:
3143  case ISD::SETEQ:   return X86::COND_E;
3144  case ISD::SETOLT:              // flipped
3145  case ISD::SETOGT:
3146  case ISD::SETGT:   return X86::COND_A;
3147  case ISD::SETOLE:              // flipped
3148  case ISD::SETOGE:
3149  case ISD::SETGE:   return X86::COND_AE;
3150  case ISD::SETUGT:              // flipped
3151  case ISD::SETULT:
3152  case ISD::SETLT:   return X86::COND_B;
3153  case ISD::SETUGE:              // flipped
3154  case ISD::SETULE:
3155  case ISD::SETLE:   return X86::COND_BE;
3156  case ISD::SETONE:
3157  case ISD::SETNE:   return X86::COND_NE;
3158  case ISD::SETUO:   return X86::COND_P;
3159  case ISD::SETO:    return X86::COND_NP;
3160  case ISD::SETOEQ:
3161  case ISD::SETUNE:  return X86::COND_INVALID;
3162  }
3163}
3164
3165/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3166/// code. Current x86 isa includes the following FP cmov instructions:
3167/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3168static bool hasFPCMov(unsigned X86CC) {
3169  switch (X86CC) {
3170  default:
3171    return false;
3172  case X86::COND_B:
3173  case X86::COND_BE:
3174  case X86::COND_E:
3175  case X86::COND_P:
3176  case X86::COND_A:
3177  case X86::COND_AE:
3178  case X86::COND_NE:
3179  case X86::COND_NP:
3180    return true;
3181  }
3182}
3183
3184/// isFPImmLegal - Returns true if the target can instruction select the
3185/// specified FP immediate natively. If false, the legalizer will
3186/// materialize the FP immediate as a load from a constant pool.
3187bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3188  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3189    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3190      return true;
3191  }
3192  return false;
3193}
3194
3195/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3196/// the specified range (L, H].
3197static bool isUndefOrInRange(int Val, int Low, int Hi) {
3198  return (Val < 0) || (Val >= Low && Val < Hi);
3199}
3200
3201/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3202/// specified value.
3203static bool isUndefOrEqual(int Val, int CmpVal) {
3204  if (Val < 0 || Val == CmpVal)
3205    return true;
3206  return false;
3207}
3208
3209/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3210/// from position Pos and ending in Pos+Size, falls within the specified
3211/// sequential range (L, L+Pos]. or is undef.
3212static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3213                                       unsigned Pos, unsigned Size, int Low) {
3214  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3215    if (!isUndefOrEqual(Mask[i], Low))
3216      return false;
3217  return true;
3218}
3219
3220/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3221/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3222/// the second operand.
3223static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3224  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3225    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3226  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3227    return (Mask[0] < 2 && Mask[1] < 2);
3228  return false;
3229}
3230
3231/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3232/// is suitable for input to PSHUFHW.
3233static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3234  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3235    return false;
3236
3237  // Lower quadword copied in order or undef.
3238  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3239    return false;
3240
3241  // Upper quadword shuffled.
3242  for (unsigned i = 4; i != 8; ++i)
3243    if (!isUndefOrInRange(Mask[i], 4, 8))
3244      return false;
3245
3246  if (VT == MVT::v16i16) {
3247    // Lower quadword copied in order or undef.
3248    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3249      return false;
3250
3251    // Upper quadword shuffled.
3252    for (unsigned i = 12; i != 16; ++i)
3253      if (!isUndefOrInRange(Mask[i], 12, 16))
3254        return false;
3255  }
3256
3257  return true;
3258}
3259
3260/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3261/// is suitable for input to PSHUFLW.
3262static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3263  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3264    return false;
3265
3266  // Upper quadword copied in order.
3267  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3268    return false;
3269
3270  // Lower quadword shuffled.
3271  for (unsigned i = 0; i != 4; ++i)
3272    if (!isUndefOrInRange(Mask[i], 0, 4))
3273      return false;
3274
3275  if (VT == MVT::v16i16) {
3276    // Upper quadword copied in order.
3277    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3278      return false;
3279
3280    // Lower quadword shuffled.
3281    for (unsigned i = 8; i != 12; ++i)
3282      if (!isUndefOrInRange(Mask[i], 8, 12))
3283        return false;
3284  }
3285
3286  return true;
3287}
3288
3289/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3290/// is suitable for input to PALIGNR.
3291static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3292                          const X86Subtarget *Subtarget) {
3293  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3294      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3295    return false;
3296
3297  unsigned NumElts = VT.getVectorNumElements();
3298  unsigned NumLanes = VT.getSizeInBits()/128;
3299  unsigned NumLaneElts = NumElts/NumLanes;
3300
3301  // Do not handle 64-bit element shuffles with palignr.
3302  if (NumLaneElts == 2)
3303    return false;
3304
3305  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3306    unsigned i;
3307    for (i = 0; i != NumLaneElts; ++i) {
3308      if (Mask[i+l] >= 0)
3309        break;
3310    }
3311
3312    // Lane is all undef, go to next lane
3313    if (i == NumLaneElts)
3314      continue;
3315
3316    int Start = Mask[i+l];
3317
3318    // Make sure its in this lane in one of the sources
3319    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3320        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3321      return false;
3322
3323    // If not lane 0, then we must match lane 0
3324    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3325      return false;
3326
3327    // Correct second source to be contiguous with first source
3328    if (Start >= (int)NumElts)
3329      Start -= NumElts - NumLaneElts;
3330
3331    // Make sure we're shifting in the right direction.
3332    if (Start <= (int)(i+l))
3333      return false;
3334
3335    Start -= i;
3336
3337    // Check the rest of the elements to see if they are consecutive.
3338    for (++i; i != NumLaneElts; ++i) {
3339      int Idx = Mask[i+l];
3340
3341      // Make sure its in this lane
3342      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3343          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3344        return false;
3345
3346      // If not lane 0, then we must match lane 0
3347      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3348        return false;
3349
3350      if (Idx >= (int)NumElts)
3351        Idx -= NumElts - NumLaneElts;
3352
3353      if (!isUndefOrEqual(Idx, Start+i))
3354        return false;
3355
3356    }
3357  }
3358
3359  return true;
3360}
3361
3362/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3363/// the two vector operands have swapped position.
3364static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3365                                     unsigned NumElems) {
3366  for (unsigned i = 0; i != NumElems; ++i) {
3367    int idx = Mask[i];
3368    if (idx < 0)
3369      continue;
3370    else if (idx < (int)NumElems)
3371      Mask[i] = idx + NumElems;
3372    else
3373      Mask[i] = idx - NumElems;
3374  }
3375}
3376
3377/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3378/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3379/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3380/// reverse of what x86 shuffles want.
3381static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3382                        bool Commuted = false) {
3383  if (!HasAVX && VT.getSizeInBits() == 256)
3384    return false;
3385
3386  unsigned NumElems = VT.getVectorNumElements();
3387  unsigned NumLanes = VT.getSizeInBits()/128;
3388  unsigned NumLaneElems = NumElems/NumLanes;
3389
3390  if (NumLaneElems != 2 && NumLaneElems != 4)
3391    return false;
3392
3393  // VSHUFPSY divides the resulting vector into 4 chunks.
3394  // The sources are also splitted into 4 chunks, and each destination
3395  // chunk must come from a different source chunk.
3396  //
3397  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3398  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3399  //
3400  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3401  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3402  //
3403  // VSHUFPDY divides the resulting vector into 4 chunks.
3404  // The sources are also splitted into 4 chunks, and each destination
3405  // chunk must come from a different source chunk.
3406  //
3407  //  SRC1 =>      X3       X2       X1       X0
3408  //  SRC2 =>      Y3       Y2       Y1       Y0
3409  //
3410  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3411  //
3412  unsigned HalfLaneElems = NumLaneElems/2;
3413  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3414    for (unsigned i = 0; i != NumLaneElems; ++i) {
3415      int Idx = Mask[i+l];
3416      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3417      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3418        return false;
3419      // For VSHUFPSY, the mask of the second half must be the same as the
3420      // first but with the appropriate offsets. This works in the same way as
3421      // VPERMILPS works with masks.
3422      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3423        continue;
3424      if (!isUndefOrEqual(Idx, Mask[i]+l))
3425        return false;
3426    }
3427  }
3428
3429  return true;
3430}
3431
3432/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3433/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3434static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3435  if (!VT.is128BitVector())
3436    return false;
3437
3438  unsigned NumElems = VT.getVectorNumElements();
3439
3440  if (NumElems != 4)
3441    return false;
3442
3443  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3444  return isUndefOrEqual(Mask[0], 6) &&
3445         isUndefOrEqual(Mask[1], 7) &&
3446         isUndefOrEqual(Mask[2], 2) &&
3447         isUndefOrEqual(Mask[3], 3);
3448}
3449
3450/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3451/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3452/// <2, 3, 2, 3>
3453static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3454  if (!VT.is128BitVector())
3455    return false;
3456
3457  unsigned NumElems = VT.getVectorNumElements();
3458
3459  if (NumElems != 4)
3460    return false;
3461
3462  return isUndefOrEqual(Mask[0], 2) &&
3463         isUndefOrEqual(Mask[1], 3) &&
3464         isUndefOrEqual(Mask[2], 2) &&
3465         isUndefOrEqual(Mask[3], 3);
3466}
3467
3468/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3469/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3470static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3471  if (!VT.is128BitVector())
3472    return false;
3473
3474  unsigned NumElems = VT.getVectorNumElements();
3475
3476  if (NumElems != 2 && NumElems != 4)
3477    return false;
3478
3479  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3480    if (!isUndefOrEqual(Mask[i], i + NumElems))
3481      return false;
3482
3483  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3484    if (!isUndefOrEqual(Mask[i], i))
3485      return false;
3486
3487  return true;
3488}
3489
3490/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3491/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3492static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3493  if (!VT.is128BitVector())
3494    return false;
3495
3496  unsigned NumElems = VT.getVectorNumElements();
3497
3498  if (NumElems != 2 && NumElems != 4)
3499    return false;
3500
3501  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3502    if (!isUndefOrEqual(Mask[i], i))
3503      return false;
3504
3505  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3506    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3507      return false;
3508
3509  return true;
3510}
3511
3512//
3513// Some special combinations that can be optimized.
3514//
3515static
3516SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3517                               SelectionDAG &DAG) {
3518  EVT VT = SVOp->getValueType(0);
3519  DebugLoc dl = SVOp->getDebugLoc();
3520
3521  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3522    return SDValue();
3523
3524  ArrayRef<int> Mask = SVOp->getMask();
3525
3526  // These are the special masks that may be optimized.
3527  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3528  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3529  bool MatchEvenMask = true;
3530  bool MatchOddMask  = true;
3531  for (int i=0; i<8; ++i) {
3532    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3533      MatchEvenMask = false;
3534    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3535      MatchOddMask = false;
3536  }
3537
3538  if (!MatchEvenMask && !MatchOddMask)
3539    return SDValue();
3540
3541  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3542
3543  SDValue Op0 = SVOp->getOperand(0);
3544  SDValue Op1 = SVOp->getOperand(1);
3545
3546  if (MatchEvenMask) {
3547    // Shift the second operand right to 32 bits.
3548    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3549    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3550  } else {
3551    // Shift the first operand left to 32 bits.
3552    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3553    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3554  }
3555  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3556  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3557}
3558
3559/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3560/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3561static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3562                         bool HasAVX2, bool V2IsSplat = false) {
3563  unsigned NumElts = VT.getVectorNumElements();
3564
3565  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3566         "Unsupported vector type for unpckh");
3567
3568  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3569      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3570    return false;
3571
3572  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3573  // independently on 128-bit lanes.
3574  unsigned NumLanes = VT.getSizeInBits()/128;
3575  unsigned NumLaneElts = NumElts/NumLanes;
3576
3577  for (unsigned l = 0; l != NumLanes; ++l) {
3578    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3579         i != (l+1)*NumLaneElts;
3580         i += 2, ++j) {
3581      int BitI  = Mask[i];
3582      int BitI1 = Mask[i+1];
3583      if (!isUndefOrEqual(BitI, j))
3584        return false;
3585      if (V2IsSplat) {
3586        if (!isUndefOrEqual(BitI1, NumElts))
3587          return false;
3588      } else {
3589        if (!isUndefOrEqual(BitI1, j + NumElts))
3590          return false;
3591      }
3592    }
3593  }
3594
3595  return true;
3596}
3597
3598/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3599/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3600static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3601                         bool HasAVX2, bool V2IsSplat = false) {
3602  unsigned NumElts = VT.getVectorNumElements();
3603
3604  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3605         "Unsupported vector type for unpckh");
3606
3607  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3608      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3609    return false;
3610
3611  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3612  // independently on 128-bit lanes.
3613  unsigned NumLanes = VT.getSizeInBits()/128;
3614  unsigned NumLaneElts = NumElts/NumLanes;
3615
3616  for (unsigned l = 0; l != NumLanes; ++l) {
3617    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3618         i != (l+1)*NumLaneElts; i += 2, ++j) {
3619      int BitI  = Mask[i];
3620      int BitI1 = Mask[i+1];
3621      if (!isUndefOrEqual(BitI, j))
3622        return false;
3623      if (V2IsSplat) {
3624        if (isUndefOrEqual(BitI1, NumElts))
3625          return false;
3626      } else {
3627        if (!isUndefOrEqual(BitI1, j+NumElts))
3628          return false;
3629      }
3630    }
3631  }
3632  return true;
3633}
3634
3635/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3636/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3637/// <0, 0, 1, 1>
3638static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3639                                  bool HasAVX2) {
3640  unsigned NumElts = VT.getVectorNumElements();
3641
3642  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3643         "Unsupported vector type for unpckh");
3644
3645  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3646      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3647    return false;
3648
3649  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3650  // FIXME: Need a better way to get rid of this, there's no latency difference
3651  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3652  // the former later. We should also remove the "_undef" special mask.
3653  if (NumElts == 4 && VT.getSizeInBits() == 256)
3654    return false;
3655
3656  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3657  // independently on 128-bit lanes.
3658  unsigned NumLanes = VT.getSizeInBits()/128;
3659  unsigned NumLaneElts = NumElts/NumLanes;
3660
3661  for (unsigned l = 0; l != NumLanes; ++l) {
3662    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3663         i != (l+1)*NumLaneElts;
3664         i += 2, ++j) {
3665      int BitI  = Mask[i];
3666      int BitI1 = Mask[i+1];
3667
3668      if (!isUndefOrEqual(BitI, j))
3669        return false;
3670      if (!isUndefOrEqual(BitI1, j))
3671        return false;
3672    }
3673  }
3674
3675  return true;
3676}
3677
3678/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3679/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3680/// <2, 2, 3, 3>
3681static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3682  unsigned NumElts = VT.getVectorNumElements();
3683
3684  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3685         "Unsupported vector type for unpckh");
3686
3687  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3688      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3689    return false;
3690
3691  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3692  // independently on 128-bit lanes.
3693  unsigned NumLanes = VT.getSizeInBits()/128;
3694  unsigned NumLaneElts = NumElts/NumLanes;
3695
3696  for (unsigned l = 0; l != NumLanes; ++l) {
3697    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3698         i != (l+1)*NumLaneElts; i += 2, ++j) {
3699      int BitI  = Mask[i];
3700      int BitI1 = Mask[i+1];
3701      if (!isUndefOrEqual(BitI, j))
3702        return false;
3703      if (!isUndefOrEqual(BitI1, j))
3704        return false;
3705    }
3706  }
3707  return true;
3708}
3709
3710/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3711/// specifies a shuffle of elements that is suitable for input to MOVSS,
3712/// MOVSD, and MOVD, i.e. setting the lowest element.
3713static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3714  if (VT.getVectorElementType().getSizeInBits() < 32)
3715    return false;
3716  if (!VT.is128BitVector())
3717    return false;
3718
3719  unsigned NumElts = VT.getVectorNumElements();
3720
3721  if (!isUndefOrEqual(Mask[0], NumElts))
3722    return false;
3723
3724  for (unsigned i = 1; i != NumElts; ++i)
3725    if (!isUndefOrEqual(Mask[i], i))
3726      return false;
3727
3728  return true;
3729}
3730
3731/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3732/// as permutations between 128-bit chunks or halves. As an example: this
3733/// shuffle bellow:
3734///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3735/// The first half comes from the second half of V1 and the second half from the
3736/// the second half of V2.
3737static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3738  if (!HasAVX || !VT.is256BitVector())
3739    return false;
3740
3741  // The shuffle result is divided into half A and half B. In total the two
3742  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3743  // B must come from C, D, E or F.
3744  unsigned HalfSize = VT.getVectorNumElements()/2;
3745  bool MatchA = false, MatchB = false;
3746
3747  // Check if A comes from one of C, D, E, F.
3748  for (unsigned Half = 0; Half != 4; ++Half) {
3749    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3750      MatchA = true;
3751      break;
3752    }
3753  }
3754
3755  // Check if B comes from one of C, D, E, F.
3756  for (unsigned Half = 0; Half != 4; ++Half) {
3757    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3758      MatchB = true;
3759      break;
3760    }
3761  }
3762
3763  return MatchA && MatchB;
3764}
3765
3766/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3767/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3768static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3769  EVT VT = SVOp->getValueType(0);
3770
3771  unsigned HalfSize = VT.getVectorNumElements()/2;
3772
3773  unsigned FstHalf = 0, SndHalf = 0;
3774  for (unsigned i = 0; i < HalfSize; ++i) {
3775    if (SVOp->getMaskElt(i) > 0) {
3776      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3777      break;
3778    }
3779  }
3780  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3781    if (SVOp->getMaskElt(i) > 0) {
3782      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3783      break;
3784    }
3785  }
3786
3787  return (FstHalf | (SndHalf << 4));
3788}
3789
3790/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3791/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3792/// Note that VPERMIL mask matching is different depending whether theunderlying
3793/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3794/// to the same elements of the low, but to the higher half of the source.
3795/// In VPERMILPD the two lanes could be shuffled independently of each other
3796/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3797static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3798  if (!HasAVX)
3799    return false;
3800
3801  unsigned NumElts = VT.getVectorNumElements();
3802  // Only match 256-bit with 32/64-bit types
3803  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3804    return false;
3805
3806  unsigned NumLanes = VT.getSizeInBits()/128;
3807  unsigned LaneSize = NumElts/NumLanes;
3808  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3809    for (unsigned i = 0; i != LaneSize; ++i) {
3810      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3811        return false;
3812      if (NumElts != 8 || l == 0)
3813        continue;
3814      // VPERMILPS handling
3815      if (Mask[i] < 0)
3816        continue;
3817      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3818        return false;
3819    }
3820  }
3821
3822  return true;
3823}
3824
3825/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3826/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3827/// element of vector 2 and the other elements to come from vector 1 in order.
3828static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3829                               bool V2IsSplat = false, bool V2IsUndef = false) {
3830  if (!VT.is128BitVector())
3831    return false;
3832
3833  unsigned NumOps = VT.getVectorNumElements();
3834  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3835    return false;
3836
3837  if (!isUndefOrEqual(Mask[0], 0))
3838    return false;
3839
3840  for (unsigned i = 1; i != NumOps; ++i)
3841    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3842          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3843          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3844      return false;
3845
3846  return true;
3847}
3848
3849/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3850/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3851/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3852static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3853                           const X86Subtarget *Subtarget) {
3854  if (!Subtarget->hasSSE3())
3855    return false;
3856
3857  unsigned NumElems = VT.getVectorNumElements();
3858
3859  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3860      (VT.getSizeInBits() == 256 && NumElems != 8))
3861    return false;
3862
3863  // "i+1" is the value the indexed mask element must have
3864  for (unsigned i = 0; i != NumElems; i += 2)
3865    if (!isUndefOrEqual(Mask[i], i+1) ||
3866        !isUndefOrEqual(Mask[i+1], i+1))
3867      return false;
3868
3869  return true;
3870}
3871
3872/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3873/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3874/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3875static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3876                           const X86Subtarget *Subtarget) {
3877  if (!Subtarget->hasSSE3())
3878    return false;
3879
3880  unsigned NumElems = VT.getVectorNumElements();
3881
3882  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3883      (VT.getSizeInBits() == 256 && NumElems != 8))
3884    return false;
3885
3886  // "i" is the value the indexed mask element must have
3887  for (unsigned i = 0; i != NumElems; i += 2)
3888    if (!isUndefOrEqual(Mask[i], i) ||
3889        !isUndefOrEqual(Mask[i+1], i))
3890      return false;
3891
3892  return true;
3893}
3894
3895/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3896/// specifies a shuffle of elements that is suitable for input to 256-bit
3897/// version of MOVDDUP.
3898static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3899  if (!HasAVX || !VT.is256BitVector())
3900    return false;
3901
3902  unsigned NumElts = VT.getVectorNumElements();
3903  if (NumElts != 4)
3904    return false;
3905
3906  for (unsigned i = 0; i != NumElts/2; ++i)
3907    if (!isUndefOrEqual(Mask[i], 0))
3908      return false;
3909  for (unsigned i = NumElts/2; i != NumElts; ++i)
3910    if (!isUndefOrEqual(Mask[i], NumElts/2))
3911      return false;
3912  return true;
3913}
3914
3915/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3916/// specifies a shuffle of elements that is suitable for input to 128-bit
3917/// version of MOVDDUP.
3918static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3919  if (!VT.is128BitVector())
3920    return false;
3921
3922  unsigned e = VT.getVectorNumElements() / 2;
3923  for (unsigned i = 0; i != e; ++i)
3924    if (!isUndefOrEqual(Mask[i], i))
3925      return false;
3926  for (unsigned i = 0; i != e; ++i)
3927    if (!isUndefOrEqual(Mask[e+i], i))
3928      return false;
3929  return true;
3930}
3931
3932/// isVEXTRACTF128Index - Return true if the specified
3933/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3934/// suitable for input to VEXTRACTF128.
3935bool X86::isVEXTRACTF128Index(SDNode *N) {
3936  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3937    return false;
3938
3939  // The index should be aligned on a 128-bit boundary.
3940  uint64_t Index =
3941    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3942
3943  unsigned VL = N->getValueType(0).getVectorNumElements();
3944  unsigned VBits = N->getValueType(0).getSizeInBits();
3945  unsigned ElSize = VBits / VL;
3946  bool Result = (Index * ElSize) % 128 == 0;
3947
3948  return Result;
3949}
3950
3951/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3952/// operand specifies a subvector insert that is suitable for input to
3953/// VINSERTF128.
3954bool X86::isVINSERTF128Index(SDNode *N) {
3955  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3956    return false;
3957
3958  // The index should be aligned on a 128-bit boundary.
3959  uint64_t Index =
3960    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3961
3962  unsigned VL = N->getValueType(0).getVectorNumElements();
3963  unsigned VBits = N->getValueType(0).getSizeInBits();
3964  unsigned ElSize = VBits / VL;
3965  bool Result = (Index * ElSize) % 128 == 0;
3966
3967  return Result;
3968}
3969
3970/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3971/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3972/// Handles 128-bit and 256-bit.
3973static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3974  EVT VT = N->getValueType(0);
3975
3976  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3977         "Unsupported vector type for PSHUF/SHUFP");
3978
3979  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3980  // independently on 128-bit lanes.
3981  unsigned NumElts = VT.getVectorNumElements();
3982  unsigned NumLanes = VT.getSizeInBits()/128;
3983  unsigned NumLaneElts = NumElts/NumLanes;
3984
3985  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3986         "Only supports 2 or 4 elements per lane");
3987
3988  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3989  unsigned Mask = 0;
3990  for (unsigned i = 0; i != NumElts; ++i) {
3991    int Elt = N->getMaskElt(i);
3992    if (Elt < 0) continue;
3993    Elt &= NumLaneElts - 1;
3994    unsigned ShAmt = (i << Shift) % 8;
3995    Mask |= Elt << ShAmt;
3996  }
3997
3998  return Mask;
3999}
4000
4001/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4002/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4003static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4004  EVT VT = N->getValueType(0);
4005
4006  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4007         "Unsupported vector type for PSHUFHW");
4008
4009  unsigned NumElts = VT.getVectorNumElements();
4010
4011  unsigned Mask = 0;
4012  for (unsigned l = 0; l != NumElts; l += 8) {
4013    // 8 nodes per lane, but we only care about the last 4.
4014    for (unsigned i = 0; i < 4; ++i) {
4015      int Elt = N->getMaskElt(l+i+4);
4016      if (Elt < 0) continue;
4017      Elt &= 0x3; // only 2-bits.
4018      Mask |= Elt << (i * 2);
4019    }
4020  }
4021
4022  return Mask;
4023}
4024
4025/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4026/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4027static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4028  EVT VT = N->getValueType(0);
4029
4030  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4031         "Unsupported vector type for PSHUFHW");
4032
4033  unsigned NumElts = VT.getVectorNumElements();
4034
4035  unsigned Mask = 0;
4036  for (unsigned l = 0; l != NumElts; l += 8) {
4037    // 8 nodes per lane, but we only care about the first 4.
4038    for (unsigned i = 0; i < 4; ++i) {
4039      int Elt = N->getMaskElt(l+i);
4040      if (Elt < 0) continue;
4041      Elt &= 0x3; // only 2-bits
4042      Mask |= Elt << (i * 2);
4043    }
4044  }
4045
4046  return Mask;
4047}
4048
4049/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4050/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4051static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4052  EVT VT = SVOp->getValueType(0);
4053  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4054
4055  unsigned NumElts = VT.getVectorNumElements();
4056  unsigned NumLanes = VT.getSizeInBits()/128;
4057  unsigned NumLaneElts = NumElts/NumLanes;
4058
4059  int Val = 0;
4060  unsigned i;
4061  for (i = 0; i != NumElts; ++i) {
4062    Val = SVOp->getMaskElt(i);
4063    if (Val >= 0)
4064      break;
4065  }
4066  if (Val >= (int)NumElts)
4067    Val -= NumElts - NumLaneElts;
4068
4069  assert(Val - i > 0 && "PALIGNR imm should be positive");
4070  return (Val - i) * EltSize;
4071}
4072
4073/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4074/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4075/// instructions.
4076unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4077  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4078    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4079
4080  uint64_t Index =
4081    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4082
4083  EVT VecVT = N->getOperand(0).getValueType();
4084  EVT ElVT = VecVT.getVectorElementType();
4085
4086  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4087  return Index / NumElemsPerChunk;
4088}
4089
4090/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4091/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4092/// instructions.
4093unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4094  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4095    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4096
4097  uint64_t Index =
4098    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4099
4100  EVT VecVT = N->getValueType(0);
4101  EVT ElVT = VecVT.getVectorElementType();
4102
4103  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4104  return Index / NumElemsPerChunk;
4105}
4106
4107/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4108/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4109/// Handles 256-bit.
4110static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4111  EVT VT = N->getValueType(0);
4112
4113  unsigned NumElts = VT.getVectorNumElements();
4114
4115  assert((VT.is256BitVector() && NumElts == 4) &&
4116         "Unsupported vector type for VPERMQ/VPERMPD");
4117
4118  unsigned Mask = 0;
4119  for (unsigned i = 0; i != NumElts; ++i) {
4120    int Elt = N->getMaskElt(i);
4121    if (Elt < 0)
4122      continue;
4123    Mask |= Elt << (i*2);
4124  }
4125
4126  return Mask;
4127}
4128/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4129/// constant +0.0.
4130bool X86::isZeroNode(SDValue Elt) {
4131  return ((isa<ConstantSDNode>(Elt) &&
4132           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4133          (isa<ConstantFPSDNode>(Elt) &&
4134           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4135}
4136
4137/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4138/// their permute mask.
4139static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4140                                    SelectionDAG &DAG) {
4141  EVT VT = SVOp->getValueType(0);
4142  unsigned NumElems = VT.getVectorNumElements();
4143  SmallVector<int, 8> MaskVec;
4144
4145  for (unsigned i = 0; i != NumElems; ++i) {
4146    int Idx = SVOp->getMaskElt(i);
4147    if (Idx >= 0) {
4148      if (Idx < (int)NumElems)
4149        Idx += NumElems;
4150      else
4151        Idx -= NumElems;
4152    }
4153    MaskVec.push_back(Idx);
4154  }
4155  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4156                              SVOp->getOperand(0), &MaskVec[0]);
4157}
4158
4159/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4160/// match movhlps. The lower half elements should come from upper half of
4161/// V1 (and in order), and the upper half elements should come from the upper
4162/// half of V2 (and in order).
4163static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4164  if (!VT.is128BitVector())
4165    return false;
4166  if (VT.getVectorNumElements() != 4)
4167    return false;
4168  for (unsigned i = 0, e = 2; i != e; ++i)
4169    if (!isUndefOrEqual(Mask[i], i+2))
4170      return false;
4171  for (unsigned i = 2; i != 4; ++i)
4172    if (!isUndefOrEqual(Mask[i], i+4))
4173      return false;
4174  return true;
4175}
4176
4177/// isScalarLoadToVector - Returns true if the node is a scalar load that
4178/// is promoted to a vector. It also returns the LoadSDNode by reference if
4179/// required.
4180static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4181  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4182    return false;
4183  N = N->getOperand(0).getNode();
4184  if (!ISD::isNON_EXTLoad(N))
4185    return false;
4186  if (LD)
4187    *LD = cast<LoadSDNode>(N);
4188  return true;
4189}
4190
4191// Test whether the given value is a vector value which will be legalized
4192// into a load.
4193static bool WillBeConstantPoolLoad(SDNode *N) {
4194  if (N->getOpcode() != ISD::BUILD_VECTOR)
4195    return false;
4196
4197  // Check for any non-constant elements.
4198  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4199    switch (N->getOperand(i).getNode()->getOpcode()) {
4200    case ISD::UNDEF:
4201    case ISD::ConstantFP:
4202    case ISD::Constant:
4203      break;
4204    default:
4205      return false;
4206    }
4207
4208  // Vectors of all-zeros and all-ones are materialized with special
4209  // instructions rather than being loaded.
4210  return !ISD::isBuildVectorAllZeros(N) &&
4211         !ISD::isBuildVectorAllOnes(N);
4212}
4213
4214/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4215/// match movlp{s|d}. The lower half elements should come from lower half of
4216/// V1 (and in order), and the upper half elements should come from the upper
4217/// half of V2 (and in order). And since V1 will become the source of the
4218/// MOVLP, it must be either a vector load or a scalar load to vector.
4219static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4220                               ArrayRef<int> Mask, EVT VT) {
4221  if (!VT.is128BitVector())
4222    return false;
4223
4224  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4225    return false;
4226  // Is V2 is a vector load, don't do this transformation. We will try to use
4227  // load folding shufps op.
4228  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4229    return false;
4230
4231  unsigned NumElems = VT.getVectorNumElements();
4232
4233  if (NumElems != 2 && NumElems != 4)
4234    return false;
4235  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4236    if (!isUndefOrEqual(Mask[i], i))
4237      return false;
4238  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4239    if (!isUndefOrEqual(Mask[i], i+NumElems))
4240      return false;
4241  return true;
4242}
4243
4244/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4245/// all the same.
4246static bool isSplatVector(SDNode *N) {
4247  if (N->getOpcode() != ISD::BUILD_VECTOR)
4248    return false;
4249
4250  SDValue SplatValue = N->getOperand(0);
4251  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4252    if (N->getOperand(i) != SplatValue)
4253      return false;
4254  return true;
4255}
4256
4257/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4258/// to an zero vector.
4259/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4260static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4261  SDValue V1 = N->getOperand(0);
4262  SDValue V2 = N->getOperand(1);
4263  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4264  for (unsigned i = 0; i != NumElems; ++i) {
4265    int Idx = N->getMaskElt(i);
4266    if (Idx >= (int)NumElems) {
4267      unsigned Opc = V2.getOpcode();
4268      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4269        continue;
4270      if (Opc != ISD::BUILD_VECTOR ||
4271          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4272        return false;
4273    } else if (Idx >= 0) {
4274      unsigned Opc = V1.getOpcode();
4275      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4276        continue;
4277      if (Opc != ISD::BUILD_VECTOR ||
4278          !X86::isZeroNode(V1.getOperand(Idx)))
4279        return false;
4280    }
4281  }
4282  return true;
4283}
4284
4285/// getZeroVector - Returns a vector of specified type with all zero elements.
4286///
4287static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4288                             SelectionDAG &DAG, DebugLoc dl) {
4289  assert(VT.isVector() && "Expected a vector type");
4290  unsigned Size = VT.getSizeInBits();
4291
4292  // Always build SSE zero vectors as <4 x i32> bitcasted
4293  // to their dest type. This ensures they get CSE'd.
4294  SDValue Vec;
4295  if (Size == 128) {  // SSE
4296    if (Subtarget->hasSSE2()) {  // SSE2
4297      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4298      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4299    } else { // SSE1
4300      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4301      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4302    }
4303  } else if (Size == 256) { // AVX
4304    if (Subtarget->hasAVX2()) { // AVX2
4305      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4306      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4307      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4308    } else {
4309      // 256-bit logic and arithmetic instructions in AVX are all
4310      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4311      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4312      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4313      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4314    }
4315  } else
4316    llvm_unreachable("Unexpected vector type");
4317
4318  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4319}
4320
4321/// getOnesVector - Returns a vector of specified type with all bits set.
4322/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4323/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4324/// Then bitcast to their original type, ensuring they get CSE'd.
4325static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4326                             DebugLoc dl) {
4327  assert(VT.isVector() && "Expected a vector type");
4328  unsigned Size = VT.getSizeInBits();
4329
4330  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4331  SDValue Vec;
4332  if (Size == 256) {
4333    if (HasAVX2) { // AVX2
4334      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4335      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4336    } else { // AVX
4337      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4338      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4339    }
4340  } else if (Size == 128) {
4341    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4342  } else
4343    llvm_unreachable("Unexpected vector type");
4344
4345  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4346}
4347
4348/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4349/// that point to V2 points to its first element.
4350static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4351  for (unsigned i = 0; i != NumElems; ++i) {
4352    if (Mask[i] > (int)NumElems) {
4353      Mask[i] = NumElems;
4354    }
4355  }
4356}
4357
4358/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4359/// operation of specified width.
4360static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4361                       SDValue V2) {
4362  unsigned NumElems = VT.getVectorNumElements();
4363  SmallVector<int, 8> Mask;
4364  Mask.push_back(NumElems);
4365  for (unsigned i = 1; i != NumElems; ++i)
4366    Mask.push_back(i);
4367  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4368}
4369
4370/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4371static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4372                          SDValue V2) {
4373  unsigned NumElems = VT.getVectorNumElements();
4374  SmallVector<int, 8> Mask;
4375  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4376    Mask.push_back(i);
4377    Mask.push_back(i + NumElems);
4378  }
4379  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4380}
4381
4382/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4383static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4384                          SDValue V2) {
4385  unsigned NumElems = VT.getVectorNumElements();
4386  SmallVector<int, 8> Mask;
4387  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4388    Mask.push_back(i + Half);
4389    Mask.push_back(i + NumElems + Half);
4390  }
4391  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4392}
4393
4394// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4395// a generic shuffle instruction because the target has no such instructions.
4396// Generate shuffles which repeat i16 and i8 several times until they can be
4397// represented by v4f32 and then be manipulated by target suported shuffles.
4398static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4399  EVT VT = V.getValueType();
4400  int NumElems = VT.getVectorNumElements();
4401  DebugLoc dl = V.getDebugLoc();
4402
4403  while (NumElems > 4) {
4404    if (EltNo < NumElems/2) {
4405      V = getUnpackl(DAG, dl, VT, V, V);
4406    } else {
4407      V = getUnpackh(DAG, dl, VT, V, V);
4408      EltNo -= NumElems/2;
4409    }
4410    NumElems >>= 1;
4411  }
4412  return V;
4413}
4414
4415/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4416static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4417  EVT VT = V.getValueType();
4418  DebugLoc dl = V.getDebugLoc();
4419  unsigned Size = VT.getSizeInBits();
4420
4421  if (Size == 128) {
4422    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4423    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4424    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4425                             &SplatMask[0]);
4426  } else if (Size == 256) {
4427    // To use VPERMILPS to splat scalars, the second half of indicies must
4428    // refer to the higher part, which is a duplication of the lower one,
4429    // because VPERMILPS can only handle in-lane permutations.
4430    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4431                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4432
4433    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4434    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4435                             &SplatMask[0]);
4436  } else
4437    llvm_unreachable("Vector size not supported");
4438
4439  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4440}
4441
4442/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4443static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4444  EVT SrcVT = SV->getValueType(0);
4445  SDValue V1 = SV->getOperand(0);
4446  DebugLoc dl = SV->getDebugLoc();
4447
4448  int EltNo = SV->getSplatIndex();
4449  int NumElems = SrcVT.getVectorNumElements();
4450  unsigned Size = SrcVT.getSizeInBits();
4451
4452  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4453          "Unknown how to promote splat for type");
4454
4455  // Extract the 128-bit part containing the splat element and update
4456  // the splat element index when it refers to the higher register.
4457  if (Size == 256) {
4458    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4459    if (EltNo >= NumElems/2)
4460      EltNo -= NumElems/2;
4461  }
4462
4463  // All i16 and i8 vector types can't be used directly by a generic shuffle
4464  // instruction because the target has no such instruction. Generate shuffles
4465  // which repeat i16 and i8 several times until they fit in i32, and then can
4466  // be manipulated by target suported shuffles.
4467  EVT EltVT = SrcVT.getVectorElementType();
4468  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4469    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4470
4471  // Recreate the 256-bit vector and place the same 128-bit vector
4472  // into the low and high part. This is necessary because we want
4473  // to use VPERM* to shuffle the vectors
4474  if (Size == 256) {
4475    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4476  }
4477
4478  return getLegalSplat(DAG, V1, EltNo);
4479}
4480
4481/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4482/// vector of zero or undef vector.  This produces a shuffle where the low
4483/// element of V2 is swizzled into the zero/undef vector, landing at element
4484/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4485static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4486                                           bool IsZero,
4487                                           const X86Subtarget *Subtarget,
4488                                           SelectionDAG &DAG) {
4489  EVT VT = V2.getValueType();
4490  SDValue V1 = IsZero
4491    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4492  unsigned NumElems = VT.getVectorNumElements();
4493  SmallVector<int, 16> MaskVec;
4494  for (unsigned i = 0; i != NumElems; ++i)
4495    // If this is the insertion idx, put the low elt of V2 here.
4496    MaskVec.push_back(i == Idx ? NumElems : i);
4497  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4498}
4499
4500/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4501/// target specific opcode. Returns true if the Mask could be calculated.
4502/// Sets IsUnary to true if only uses one source.
4503static bool getTargetShuffleMask(SDNode *N, MVT VT,
4504                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4505  unsigned NumElems = VT.getVectorNumElements();
4506  SDValue ImmN;
4507
4508  IsUnary = false;
4509  switch(N->getOpcode()) {
4510  case X86ISD::SHUFP:
4511    ImmN = N->getOperand(N->getNumOperands()-1);
4512    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4513    break;
4514  case X86ISD::UNPCKH:
4515    DecodeUNPCKHMask(VT, Mask);
4516    break;
4517  case X86ISD::UNPCKL:
4518    DecodeUNPCKLMask(VT, Mask);
4519    break;
4520  case X86ISD::MOVHLPS:
4521    DecodeMOVHLPSMask(NumElems, Mask);
4522    break;
4523  case X86ISD::MOVLHPS:
4524    DecodeMOVLHPSMask(NumElems, Mask);
4525    break;
4526  case X86ISD::PSHUFD:
4527  case X86ISD::VPERMILP:
4528    ImmN = N->getOperand(N->getNumOperands()-1);
4529    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4530    IsUnary = true;
4531    break;
4532  case X86ISD::PSHUFHW:
4533    ImmN = N->getOperand(N->getNumOperands()-1);
4534    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4535    IsUnary = true;
4536    break;
4537  case X86ISD::PSHUFLW:
4538    ImmN = N->getOperand(N->getNumOperands()-1);
4539    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4540    IsUnary = true;
4541    break;
4542  case X86ISD::VPERMI:
4543    ImmN = N->getOperand(N->getNumOperands()-1);
4544    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4545    IsUnary = true;
4546    break;
4547  case X86ISD::MOVSS:
4548  case X86ISD::MOVSD: {
4549    // The index 0 always comes from the first element of the second source,
4550    // this is why MOVSS and MOVSD are used in the first place. The other
4551    // elements come from the other positions of the first source vector
4552    Mask.push_back(NumElems);
4553    for (unsigned i = 1; i != NumElems; ++i) {
4554      Mask.push_back(i);
4555    }
4556    break;
4557  }
4558  case X86ISD::VPERM2X128:
4559    ImmN = N->getOperand(N->getNumOperands()-1);
4560    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4561    if (Mask.empty()) return false;
4562    break;
4563  case X86ISD::MOVDDUP:
4564  case X86ISD::MOVLHPD:
4565  case X86ISD::MOVLPD:
4566  case X86ISD::MOVLPS:
4567  case X86ISD::MOVSHDUP:
4568  case X86ISD::MOVSLDUP:
4569  case X86ISD::PALIGN:
4570    // Not yet implemented
4571    return false;
4572  default: llvm_unreachable("unknown target shuffle node");
4573  }
4574
4575  return true;
4576}
4577
4578/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4579/// element of the result of the vector shuffle.
4580static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4581                                   unsigned Depth) {
4582  if (Depth == 6)
4583    return SDValue();  // Limit search depth.
4584
4585  SDValue V = SDValue(N, 0);
4586  EVT VT = V.getValueType();
4587  unsigned Opcode = V.getOpcode();
4588
4589  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4590  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4591    int Elt = SV->getMaskElt(Index);
4592
4593    if (Elt < 0)
4594      return DAG.getUNDEF(VT.getVectorElementType());
4595
4596    unsigned NumElems = VT.getVectorNumElements();
4597    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4598                                         : SV->getOperand(1);
4599    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4600  }
4601
4602  // Recurse into target specific vector shuffles to find scalars.
4603  if (isTargetShuffle(Opcode)) {
4604    MVT ShufVT = V.getValueType().getSimpleVT();
4605    unsigned NumElems = ShufVT.getVectorNumElements();
4606    SmallVector<int, 16> ShuffleMask;
4607    SDValue ImmN;
4608    bool IsUnary;
4609
4610    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4611      return SDValue();
4612
4613    int Elt = ShuffleMask[Index];
4614    if (Elt < 0)
4615      return DAG.getUNDEF(ShufVT.getVectorElementType());
4616
4617    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4618                                         : N->getOperand(1);
4619    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4620                               Depth+1);
4621  }
4622
4623  // Actual nodes that may contain scalar elements
4624  if (Opcode == ISD::BITCAST) {
4625    V = V.getOperand(0);
4626    EVT SrcVT = V.getValueType();
4627    unsigned NumElems = VT.getVectorNumElements();
4628
4629    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4630      return SDValue();
4631  }
4632
4633  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4634    return (Index == 0) ? V.getOperand(0)
4635                        : DAG.getUNDEF(VT.getVectorElementType());
4636
4637  if (V.getOpcode() == ISD::BUILD_VECTOR)
4638    return V.getOperand(Index);
4639
4640  return SDValue();
4641}
4642
4643/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4644/// shuffle operation which come from a consecutively from a zero. The
4645/// search can start in two different directions, from left or right.
4646static
4647unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4648                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4649  unsigned i;
4650  for (i = 0; i != NumElems; ++i) {
4651    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4652    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4653    if (!(Elt.getNode() &&
4654         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4655      break;
4656  }
4657
4658  return i;
4659}
4660
4661/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4662/// correspond consecutively to elements from one of the vector operands,
4663/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4664static
4665bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4666                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4667                              unsigned NumElems, unsigned &OpNum) {
4668  bool SeenV1 = false;
4669  bool SeenV2 = false;
4670
4671  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4672    int Idx = SVOp->getMaskElt(i);
4673    // Ignore undef indicies
4674    if (Idx < 0)
4675      continue;
4676
4677    if (Idx < (int)NumElems)
4678      SeenV1 = true;
4679    else
4680      SeenV2 = true;
4681
4682    // Only accept consecutive elements from the same vector
4683    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4684      return false;
4685  }
4686
4687  OpNum = SeenV1 ? 0 : 1;
4688  return true;
4689}
4690
4691/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4692/// logical left shift of a vector.
4693static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4694                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4695  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4696  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4697              false /* check zeros from right */, DAG);
4698  unsigned OpSrc;
4699
4700  if (!NumZeros)
4701    return false;
4702
4703  // Considering the elements in the mask that are not consecutive zeros,
4704  // check if they consecutively come from only one of the source vectors.
4705  //
4706  //               V1 = {X, A, B, C}     0
4707  //                         \  \  \    /
4708  //   vector_shuffle V1, V2 <1, 2, 3, X>
4709  //
4710  if (!isShuffleMaskConsecutive(SVOp,
4711            0,                   // Mask Start Index
4712            NumElems-NumZeros,   // Mask End Index(exclusive)
4713            NumZeros,            // Where to start looking in the src vector
4714            NumElems,            // Number of elements in vector
4715            OpSrc))              // Which source operand ?
4716    return false;
4717
4718  isLeft = false;
4719  ShAmt = NumZeros;
4720  ShVal = SVOp->getOperand(OpSrc);
4721  return true;
4722}
4723
4724/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4725/// logical left shift of a vector.
4726static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4727                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4728  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4729  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4730              true /* check zeros from left */, DAG);
4731  unsigned OpSrc;
4732
4733  if (!NumZeros)
4734    return false;
4735
4736  // Considering the elements in the mask that are not consecutive zeros,
4737  // check if they consecutively come from only one of the source vectors.
4738  //
4739  //                           0    { A, B, X, X } = V2
4740  //                          / \    /  /
4741  //   vector_shuffle V1, V2 <X, X, 4, 5>
4742  //
4743  if (!isShuffleMaskConsecutive(SVOp,
4744            NumZeros,     // Mask Start Index
4745            NumElems,     // Mask End Index(exclusive)
4746            0,            // Where to start looking in the src vector
4747            NumElems,     // Number of elements in vector
4748            OpSrc))       // Which source operand ?
4749    return false;
4750
4751  isLeft = true;
4752  ShAmt = NumZeros;
4753  ShVal = SVOp->getOperand(OpSrc);
4754  return true;
4755}
4756
4757/// isVectorShift - Returns true if the shuffle can be implemented as a
4758/// logical left or right shift of a vector.
4759static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4760                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4761  // Although the logic below support any bitwidth size, there are no
4762  // shift instructions which handle more than 128-bit vectors.
4763  if (!SVOp->getValueType(0).is128BitVector())
4764    return false;
4765
4766  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4767      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4768    return true;
4769
4770  return false;
4771}
4772
4773/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4774///
4775static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4776                                       unsigned NumNonZero, unsigned NumZero,
4777                                       SelectionDAG &DAG,
4778                                       const X86Subtarget* Subtarget,
4779                                       const TargetLowering &TLI) {
4780  if (NumNonZero > 8)
4781    return SDValue();
4782
4783  DebugLoc dl = Op.getDebugLoc();
4784  SDValue V(0, 0);
4785  bool First = true;
4786  for (unsigned i = 0; i < 16; ++i) {
4787    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4788    if (ThisIsNonZero && First) {
4789      if (NumZero)
4790        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4791      else
4792        V = DAG.getUNDEF(MVT::v8i16);
4793      First = false;
4794    }
4795
4796    if ((i & 1) != 0) {
4797      SDValue ThisElt(0, 0), LastElt(0, 0);
4798      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4799      if (LastIsNonZero) {
4800        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4801                              MVT::i16, Op.getOperand(i-1));
4802      }
4803      if (ThisIsNonZero) {
4804        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4805        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4806                              ThisElt, DAG.getConstant(8, MVT::i8));
4807        if (LastIsNonZero)
4808          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4809      } else
4810        ThisElt = LastElt;
4811
4812      if (ThisElt.getNode())
4813        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4814                        DAG.getIntPtrConstant(i/2));
4815    }
4816  }
4817
4818  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4819}
4820
4821/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4822///
4823static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4824                                     unsigned NumNonZero, unsigned NumZero,
4825                                     SelectionDAG &DAG,
4826                                     const X86Subtarget* Subtarget,
4827                                     const TargetLowering &TLI) {
4828  if (NumNonZero > 4)
4829    return SDValue();
4830
4831  DebugLoc dl = Op.getDebugLoc();
4832  SDValue V(0, 0);
4833  bool First = true;
4834  for (unsigned i = 0; i < 8; ++i) {
4835    bool isNonZero = (NonZeros & (1 << i)) != 0;
4836    if (isNonZero) {
4837      if (First) {
4838        if (NumZero)
4839          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4840        else
4841          V = DAG.getUNDEF(MVT::v8i16);
4842        First = false;
4843      }
4844      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4845                      MVT::v8i16, V, Op.getOperand(i),
4846                      DAG.getIntPtrConstant(i));
4847    }
4848  }
4849
4850  return V;
4851}
4852
4853/// getVShift - Return a vector logical shift node.
4854///
4855static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4856                         unsigned NumBits, SelectionDAG &DAG,
4857                         const TargetLowering &TLI, DebugLoc dl) {
4858  assert(VT.is128BitVector() && "Unknown type for VShift");
4859  EVT ShVT = MVT::v2i64;
4860  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4861  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4862  return DAG.getNode(ISD::BITCAST, dl, VT,
4863                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4864                             DAG.getConstant(NumBits,
4865                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4866}
4867
4868SDValue
4869X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4870                                          SelectionDAG &DAG) const {
4871
4872  // Check if the scalar load can be widened into a vector load. And if
4873  // the address is "base + cst" see if the cst can be "absorbed" into
4874  // the shuffle mask.
4875  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4876    SDValue Ptr = LD->getBasePtr();
4877    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4878      return SDValue();
4879    EVT PVT = LD->getValueType(0);
4880    if (PVT != MVT::i32 && PVT != MVT::f32)
4881      return SDValue();
4882
4883    int FI = -1;
4884    int64_t Offset = 0;
4885    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4886      FI = FINode->getIndex();
4887      Offset = 0;
4888    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4889               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4890      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4891      Offset = Ptr.getConstantOperandVal(1);
4892      Ptr = Ptr.getOperand(0);
4893    } else {
4894      return SDValue();
4895    }
4896
4897    // FIXME: 256-bit vector instructions don't require a strict alignment,
4898    // improve this code to support it better.
4899    unsigned RequiredAlign = VT.getSizeInBits()/8;
4900    SDValue Chain = LD->getChain();
4901    // Make sure the stack object alignment is at least 16 or 32.
4902    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4903    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4904      if (MFI->isFixedObjectIndex(FI)) {
4905        // Can't change the alignment. FIXME: It's possible to compute
4906        // the exact stack offset and reference FI + adjust offset instead.
4907        // If someone *really* cares about this. That's the way to implement it.
4908        return SDValue();
4909      } else {
4910        MFI->setObjectAlignment(FI, RequiredAlign);
4911      }
4912    }
4913
4914    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4915    // Ptr + (Offset & ~15).
4916    if (Offset < 0)
4917      return SDValue();
4918    if ((Offset % RequiredAlign) & 3)
4919      return SDValue();
4920    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4921    if (StartOffset)
4922      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4923                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4924
4925    int EltNo = (Offset - StartOffset) >> 2;
4926    unsigned NumElems = VT.getVectorNumElements();
4927
4928    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4929    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4930                             LD->getPointerInfo().getWithOffset(StartOffset),
4931                             false, false, false, 0);
4932
4933    SmallVector<int, 8> Mask;
4934    for (unsigned i = 0; i != NumElems; ++i)
4935      Mask.push_back(EltNo);
4936
4937    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4938  }
4939
4940  return SDValue();
4941}
4942
4943/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4944/// vector of type 'VT', see if the elements can be replaced by a single large
4945/// load which has the same value as a build_vector whose operands are 'elts'.
4946///
4947/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4948///
4949/// FIXME: we'd also like to handle the case where the last elements are zero
4950/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4951/// There's even a handy isZeroNode for that purpose.
4952static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4953                                        DebugLoc &DL, SelectionDAG &DAG) {
4954  EVT EltVT = VT.getVectorElementType();
4955  unsigned NumElems = Elts.size();
4956
4957  LoadSDNode *LDBase = NULL;
4958  unsigned LastLoadedElt = -1U;
4959
4960  // For each element in the initializer, see if we've found a load or an undef.
4961  // If we don't find an initial load element, or later load elements are
4962  // non-consecutive, bail out.
4963  for (unsigned i = 0; i < NumElems; ++i) {
4964    SDValue Elt = Elts[i];
4965
4966    if (!Elt.getNode() ||
4967        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4968      return SDValue();
4969    if (!LDBase) {
4970      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4971        return SDValue();
4972      LDBase = cast<LoadSDNode>(Elt.getNode());
4973      LastLoadedElt = i;
4974      continue;
4975    }
4976    if (Elt.getOpcode() == ISD::UNDEF)
4977      continue;
4978
4979    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4980    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4981      return SDValue();
4982    LastLoadedElt = i;
4983  }
4984
4985  // If we have found an entire vector of loads and undefs, then return a large
4986  // load of the entire vector width starting at the base pointer.  If we found
4987  // consecutive loads for the low half, generate a vzext_load node.
4988  if (LastLoadedElt == NumElems - 1) {
4989    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4990      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4991                         LDBase->getPointerInfo(),
4992                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4993                         LDBase->isInvariant(), 0);
4994    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4995                       LDBase->getPointerInfo(),
4996                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4997                       LDBase->isInvariant(), LDBase->getAlignment());
4998  }
4999  if (NumElems == 4 && LastLoadedElt == 1 &&
5000      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5001    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5002    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5003    SDValue ResNode =
5004        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5005                                LDBase->getPointerInfo(),
5006                                LDBase->getAlignment(),
5007                                false/*isVolatile*/, true/*ReadMem*/,
5008                                false/*WriteMem*/);
5009
5010    // Make sure the newly-created LOAD is in the same position as LDBase in
5011    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5012    // update uses of LDBase's output chain to use the TokenFactor.
5013    if (LDBase->hasAnyUseOfValue(1)) {
5014      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5015                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5016      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5017      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5018                             SDValue(ResNode.getNode(), 1));
5019    }
5020
5021    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5022  }
5023  return SDValue();
5024}
5025
5026/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5027/// to generate a splat value for the following cases:
5028/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5029/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5030/// a scalar load, or a constant.
5031/// The VBROADCAST node is returned when a pattern is found,
5032/// or SDValue() otherwise.
5033SDValue
5034X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5035  if (!Subtarget->hasAVX())
5036    return SDValue();
5037
5038  EVT VT = Op.getValueType();
5039  DebugLoc dl = Op.getDebugLoc();
5040
5041  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5042         "Unsupported vector type for broadcast.");
5043
5044  SDValue Ld;
5045  bool ConstSplatVal;
5046
5047  switch (Op.getOpcode()) {
5048    default:
5049      // Unknown pattern found.
5050      return SDValue();
5051
5052    case ISD::BUILD_VECTOR: {
5053      // The BUILD_VECTOR node must be a splat.
5054      if (!isSplatVector(Op.getNode()))
5055        return SDValue();
5056
5057      Ld = Op.getOperand(0);
5058      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5059                     Ld.getOpcode() == ISD::ConstantFP);
5060
5061      // The suspected load node has several users. Make sure that all
5062      // of its users are from the BUILD_VECTOR node.
5063      // Constants may have multiple users.
5064      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5065        return SDValue();
5066      break;
5067    }
5068
5069    case ISD::VECTOR_SHUFFLE: {
5070      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5071
5072      // Shuffles must have a splat mask where the first element is
5073      // broadcasted.
5074      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5075        return SDValue();
5076
5077      SDValue Sc = Op.getOperand(0);
5078      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5079          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5080
5081        if (!Subtarget->hasAVX2())
5082          return SDValue();
5083
5084        // Use the register form of the broadcast instruction available on AVX2.
5085        if (VT.is256BitVector())
5086          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5087        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5088      }
5089
5090      Ld = Sc.getOperand(0);
5091      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5092                       Ld.getOpcode() == ISD::ConstantFP);
5093
5094      // The scalar_to_vector node and the suspected
5095      // load node must have exactly one user.
5096      // Constants may have multiple users.
5097      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5098        return SDValue();
5099      break;
5100    }
5101  }
5102
5103  bool Is256 = VT.is256BitVector();
5104
5105  // Handle the broadcasting a single constant scalar from the constant pool
5106  // into a vector. On Sandybridge it is still better to load a constant vector
5107  // from the constant pool and not to broadcast it from a scalar.
5108  if (ConstSplatVal && Subtarget->hasAVX2()) {
5109    EVT CVT = Ld.getValueType();
5110    assert(!CVT.isVector() && "Must not broadcast a vector type");
5111    unsigned ScalarSize = CVT.getSizeInBits();
5112
5113    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5114      const Constant *C = 0;
5115      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5116        C = CI->getConstantIntValue();
5117      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5118        C = CF->getConstantFPValue();
5119
5120      assert(C && "Invalid constant type");
5121
5122      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5123      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5124      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5125                       MachinePointerInfo::getConstantPool(),
5126                       false, false, false, Alignment);
5127
5128      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5129    }
5130  }
5131
5132  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5133  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5134
5135  // Handle AVX2 in-register broadcasts.
5136  if (!IsLoad && Subtarget->hasAVX2() &&
5137      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5138    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5139
5140  // The scalar source must be a normal load.
5141  if (!IsLoad)
5142    return SDValue();
5143
5144  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5145    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5146
5147  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5148  // double since there is no vbroadcastsd xmm
5149  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5150    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5151      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5152  }
5153
5154  // Unsupported broadcast.
5155  return SDValue();
5156}
5157
5158// LowerVectorFpExtend - Recognize the scalarized FP_EXTEND from v2f32 to v2f64
5159// and convert it into X86ISD::VFPEXT due to the current ISD::FP_EXTEND has the
5160// constraint of matching input/output vector elements.
5161SDValue
5162X86TargetLowering::LowerVectorFpExtend(SDValue &Op, SelectionDAG &DAG) const {
5163  DebugLoc DL = Op.getDebugLoc();
5164  SDNode *N = Op.getNode();
5165  EVT VT = Op.getValueType();
5166  unsigned NumElts = Op.getNumOperands();
5167
5168  // Check supported types and sub-targets.
5169  //
5170  // Only v2f32 -> v2f64 needs special handling.
5171  if (VT != MVT::v2f64 || !Subtarget->hasSSE2())
5172    return SDValue();
5173
5174  SDValue VecIn;
5175  EVT VecInVT;
5176  SmallVector<int, 8> Mask;
5177  EVT SrcVT = MVT::Other;
5178
5179  // Check the patterns could be translated into X86vfpext.
5180  for (unsigned i = 0; i < NumElts; ++i) {
5181    SDValue In = N->getOperand(i);
5182    unsigned Opcode = In.getOpcode();
5183
5184    // Skip if the element is undefined.
5185    if (Opcode == ISD::UNDEF) {
5186      Mask.push_back(-1);
5187      continue;
5188    }
5189
5190    // Quit if one of the elements is not defined from 'fpext'.
5191    if (Opcode != ISD::FP_EXTEND)
5192      return SDValue();
5193
5194    // Check how the source of 'fpext' is defined.
5195    SDValue L2In = In.getOperand(0);
5196    EVT L2InVT = L2In.getValueType();
5197
5198    // Check the original type
5199    if (SrcVT == MVT::Other)
5200      SrcVT = L2InVT;
5201    else if (SrcVT != L2InVT) // Quit if non-homogenous typed.
5202      return SDValue();
5203
5204    // Check whether the value being 'fpext'ed is extracted from the same
5205    // source.
5206    Opcode = L2In.getOpcode();
5207
5208    // Quit if it's not extracted with a constant index.
5209    if (Opcode != ISD::EXTRACT_VECTOR_ELT ||
5210        !isa<ConstantSDNode>(L2In.getOperand(1)))
5211      return SDValue();
5212
5213    SDValue ExtractedFromVec = L2In.getOperand(0);
5214
5215    if (VecIn.getNode() == 0) {
5216      VecIn = ExtractedFromVec;
5217      VecInVT = ExtractedFromVec.getValueType();
5218    } else if (VecIn != ExtractedFromVec) // Quit if built from more than 1 vec.
5219      return SDValue();
5220
5221    Mask.push_back(cast<ConstantSDNode>(L2In.getOperand(1))->getZExtValue());
5222  }
5223
5224  // Quit if all operands of BUILD_VECTOR are undefined.
5225  if (!VecIn.getNode())
5226    return SDValue();
5227
5228  // Fill the remaining mask as undef.
5229  for (unsigned i = NumElts; i < VecInVT.getVectorNumElements(); ++i)
5230    Mask.push_back(-1);
5231
5232  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
5233                     DAG.getVectorShuffle(VecInVT, DL,
5234                                          VecIn, DAG.getUNDEF(VecInVT),
5235                                          &Mask[0]));
5236}
5237
5238SDValue
5239X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5240  DebugLoc dl = Op.getDebugLoc();
5241
5242  EVT VT = Op.getValueType();
5243  EVT ExtVT = VT.getVectorElementType();
5244  unsigned NumElems = Op.getNumOperands();
5245
5246  // Vectors containing all zeros can be matched by pxor and xorps later
5247  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5248    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5249    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5250    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5251      return Op;
5252
5253    return getZeroVector(VT, Subtarget, DAG, dl);
5254  }
5255
5256  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5257  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5258  // vpcmpeqd on 256-bit vectors.
5259  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5260    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5261      return Op;
5262
5263    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5264  }
5265
5266  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5267  if (Broadcast.getNode())
5268    return Broadcast;
5269
5270  SDValue FpExt = LowerVectorFpExtend(Op, DAG);
5271  if (FpExt.getNode())
5272    return FpExt;
5273
5274  unsigned EVTBits = ExtVT.getSizeInBits();
5275
5276  unsigned NumZero  = 0;
5277  unsigned NumNonZero = 0;
5278  unsigned NonZeros = 0;
5279  bool IsAllConstants = true;
5280  SmallSet<SDValue, 8> Values;
5281  for (unsigned i = 0; i < NumElems; ++i) {
5282    SDValue Elt = Op.getOperand(i);
5283    if (Elt.getOpcode() == ISD::UNDEF)
5284      continue;
5285    Values.insert(Elt);
5286    if (Elt.getOpcode() != ISD::Constant &&
5287        Elt.getOpcode() != ISD::ConstantFP)
5288      IsAllConstants = false;
5289    if (X86::isZeroNode(Elt))
5290      NumZero++;
5291    else {
5292      NonZeros |= (1 << i);
5293      NumNonZero++;
5294    }
5295  }
5296
5297  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5298  if (NumNonZero == 0)
5299    return DAG.getUNDEF(VT);
5300
5301  // Special case for single non-zero, non-undef, element.
5302  if (NumNonZero == 1) {
5303    unsigned Idx = CountTrailingZeros_32(NonZeros);
5304    SDValue Item = Op.getOperand(Idx);
5305
5306    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5307    // the value are obviously zero, truncate the value to i32 and do the
5308    // insertion that way.  Only do this if the value is non-constant or if the
5309    // value is a constant being inserted into element 0.  It is cheaper to do
5310    // a constant pool load than it is to do a movd + shuffle.
5311    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5312        (!IsAllConstants || Idx == 0)) {
5313      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5314        // Handle SSE only.
5315        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5316        EVT VecVT = MVT::v4i32;
5317        unsigned VecElts = 4;
5318
5319        // Truncate the value (which may itself be a constant) to i32, and
5320        // convert it to a vector with movd (S2V+shuffle to zero extend).
5321        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5322        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5323        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5324
5325        // Now we have our 32-bit value zero extended in the low element of
5326        // a vector.  If Idx != 0, swizzle it into place.
5327        if (Idx != 0) {
5328          SmallVector<int, 4> Mask;
5329          Mask.push_back(Idx);
5330          for (unsigned i = 1; i != VecElts; ++i)
5331            Mask.push_back(i);
5332          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5333                                      &Mask[0]);
5334        }
5335        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5336      }
5337    }
5338
5339    // If we have a constant or non-constant insertion into the low element of
5340    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5341    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5342    // depending on what the source datatype is.
5343    if (Idx == 0) {
5344      if (NumZero == 0)
5345        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5346
5347      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5348          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5349        if (VT.is256BitVector()) {
5350          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5351          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5352                             Item, DAG.getIntPtrConstant(0));
5353        }
5354        assert(VT.is128BitVector() && "Expected an SSE value type!");
5355        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5356        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5357        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5358      }
5359
5360      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5361        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5362        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5363        if (VT.is256BitVector()) {
5364          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5365          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5366        } else {
5367          assert(VT.is128BitVector() && "Expected an SSE value type!");
5368          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5369        }
5370        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5371      }
5372    }
5373
5374    // Is it a vector logical left shift?
5375    if (NumElems == 2 && Idx == 1 &&
5376        X86::isZeroNode(Op.getOperand(0)) &&
5377        !X86::isZeroNode(Op.getOperand(1))) {
5378      unsigned NumBits = VT.getSizeInBits();
5379      return getVShift(true, VT,
5380                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5381                                   VT, Op.getOperand(1)),
5382                       NumBits/2, DAG, *this, dl);
5383    }
5384
5385    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5386      return SDValue();
5387
5388    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5389    // is a non-constant being inserted into an element other than the low one,
5390    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5391    // movd/movss) to move this into the low element, then shuffle it into
5392    // place.
5393    if (EVTBits == 32) {
5394      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5395
5396      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5397      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5398      SmallVector<int, 8> MaskVec;
5399      for (unsigned i = 0; i != NumElems; ++i)
5400        MaskVec.push_back(i == Idx ? 0 : 1);
5401      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5402    }
5403  }
5404
5405  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5406  if (Values.size() == 1) {
5407    if (EVTBits == 32) {
5408      // Instead of a shuffle like this:
5409      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5410      // Check if it's possible to issue this instead.
5411      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5412      unsigned Idx = CountTrailingZeros_32(NonZeros);
5413      SDValue Item = Op.getOperand(Idx);
5414      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5415        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5416    }
5417    return SDValue();
5418  }
5419
5420  // A vector full of immediates; various special cases are already
5421  // handled, so this is best done with a single constant-pool load.
5422  if (IsAllConstants)
5423    return SDValue();
5424
5425  // For AVX-length vectors, build the individual 128-bit pieces and use
5426  // shuffles to put them in place.
5427  if (VT.is256BitVector()) {
5428    SmallVector<SDValue, 32> V;
5429    for (unsigned i = 0; i != NumElems; ++i)
5430      V.push_back(Op.getOperand(i));
5431
5432    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5433
5434    // Build both the lower and upper subvector.
5435    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5436    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5437                                NumElems/2);
5438
5439    // Recreate the wider vector with the lower and upper part.
5440    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5441  }
5442
5443  // Let legalizer expand 2-wide build_vectors.
5444  if (EVTBits == 64) {
5445    if (NumNonZero == 1) {
5446      // One half is zero or undef.
5447      unsigned Idx = CountTrailingZeros_32(NonZeros);
5448      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5449                                 Op.getOperand(Idx));
5450      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5451    }
5452    return SDValue();
5453  }
5454
5455  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5456  if (EVTBits == 8 && NumElems == 16) {
5457    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5458                                        Subtarget, *this);
5459    if (V.getNode()) return V;
5460  }
5461
5462  if (EVTBits == 16 && NumElems == 8) {
5463    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5464                                      Subtarget, *this);
5465    if (V.getNode()) return V;
5466  }
5467
5468  // If element VT is == 32 bits, turn it into a number of shuffles.
5469  SmallVector<SDValue, 8> V(NumElems);
5470  if (NumElems == 4 && NumZero > 0) {
5471    for (unsigned i = 0; i < 4; ++i) {
5472      bool isZero = !(NonZeros & (1 << i));
5473      if (isZero)
5474        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5475      else
5476        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5477    }
5478
5479    for (unsigned i = 0; i < 2; ++i) {
5480      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5481        default: break;
5482        case 0:
5483          V[i] = V[i*2];  // Must be a zero vector.
5484          break;
5485        case 1:
5486          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5487          break;
5488        case 2:
5489          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5490          break;
5491        case 3:
5492          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5493          break;
5494      }
5495    }
5496
5497    bool Reverse1 = (NonZeros & 0x3) == 2;
5498    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5499    int MaskVec[] = {
5500      Reverse1 ? 1 : 0,
5501      Reverse1 ? 0 : 1,
5502      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5503      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5504    };
5505    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5506  }
5507
5508  if (Values.size() > 1 && VT.is128BitVector()) {
5509    // Check for a build vector of consecutive loads.
5510    for (unsigned i = 0; i < NumElems; ++i)
5511      V[i] = Op.getOperand(i);
5512
5513    // Check for elements which are consecutive loads.
5514    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5515    if (LD.getNode())
5516      return LD;
5517
5518    // For SSE 4.1, use insertps to put the high elements into the low element.
5519    if (getSubtarget()->hasSSE41()) {
5520      SDValue Result;
5521      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5522        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5523      else
5524        Result = DAG.getUNDEF(VT);
5525
5526      for (unsigned i = 1; i < NumElems; ++i) {
5527        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5528        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5529                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5530      }
5531      return Result;
5532    }
5533
5534    // Otherwise, expand into a number of unpckl*, start by extending each of
5535    // our (non-undef) elements to the full vector width with the element in the
5536    // bottom slot of the vector (which generates no code for SSE).
5537    for (unsigned i = 0; i < NumElems; ++i) {
5538      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5539        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5540      else
5541        V[i] = DAG.getUNDEF(VT);
5542    }
5543
5544    // Next, we iteratively mix elements, e.g. for v4f32:
5545    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5546    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5547    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5548    unsigned EltStride = NumElems >> 1;
5549    while (EltStride != 0) {
5550      for (unsigned i = 0; i < EltStride; ++i) {
5551        // If V[i+EltStride] is undef and this is the first round of mixing,
5552        // then it is safe to just drop this shuffle: V[i] is already in the
5553        // right place, the one element (since it's the first round) being
5554        // inserted as undef can be dropped.  This isn't safe for successive
5555        // rounds because they will permute elements within both vectors.
5556        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5557            EltStride == NumElems/2)
5558          continue;
5559
5560        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5561      }
5562      EltStride >>= 1;
5563    }
5564    return V[0];
5565  }
5566  return SDValue();
5567}
5568
5569// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5570// to create 256-bit vectors from two other 128-bit ones.
5571static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5572  DebugLoc dl = Op.getDebugLoc();
5573  EVT ResVT = Op.getValueType();
5574
5575  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5576
5577  SDValue V1 = Op.getOperand(0);
5578  SDValue V2 = Op.getOperand(1);
5579  unsigned NumElems = ResVT.getVectorNumElements();
5580
5581  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5582}
5583
5584static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5585  assert(Op.getNumOperands() == 2);
5586
5587  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5588  // from two other 128-bit ones.
5589  return LowerAVXCONCAT_VECTORS(Op, DAG);
5590}
5591
5592// Try to lower a shuffle node into a simple blend instruction.
5593static SDValue
5594LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5595                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5596  SDValue V1 = SVOp->getOperand(0);
5597  SDValue V2 = SVOp->getOperand(1);
5598  DebugLoc dl = SVOp->getDebugLoc();
5599  MVT VT = SVOp->getValueType(0).getSimpleVT();
5600  unsigned NumElems = VT.getVectorNumElements();
5601
5602  if (!Subtarget->hasSSE41())
5603    return SDValue();
5604
5605  unsigned ISDNo = 0;
5606  MVT OpTy;
5607
5608  switch (VT.SimpleTy) {
5609  default: return SDValue();
5610  case MVT::v8i16:
5611    ISDNo = X86ISD::BLENDPW;
5612    OpTy = MVT::v8i16;
5613    break;
5614  case MVT::v4i32:
5615  case MVT::v4f32:
5616    ISDNo = X86ISD::BLENDPS;
5617    OpTy = MVT::v4f32;
5618    break;
5619  case MVT::v2i64:
5620  case MVT::v2f64:
5621    ISDNo = X86ISD::BLENDPD;
5622    OpTy = MVT::v2f64;
5623    break;
5624  case MVT::v8i32:
5625  case MVT::v8f32:
5626    if (!Subtarget->hasAVX())
5627      return SDValue();
5628    ISDNo = X86ISD::BLENDPS;
5629    OpTy = MVT::v8f32;
5630    break;
5631  case MVT::v4i64:
5632  case MVT::v4f64:
5633    if (!Subtarget->hasAVX())
5634      return SDValue();
5635    ISDNo = X86ISD::BLENDPD;
5636    OpTy = MVT::v4f64;
5637    break;
5638  }
5639  assert(ISDNo && "Invalid Op Number");
5640
5641  unsigned MaskVals = 0;
5642
5643  for (unsigned i = 0; i != NumElems; ++i) {
5644    int EltIdx = SVOp->getMaskElt(i);
5645    if (EltIdx == (int)i || EltIdx < 0)
5646      MaskVals |= (1<<i);
5647    else if (EltIdx == (int)(i + NumElems))
5648      continue; // Bit is set to zero;
5649    else
5650      return SDValue();
5651  }
5652
5653  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5654  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5655  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5656                             DAG.getConstant(MaskVals, MVT::i32));
5657  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5658}
5659
5660// v8i16 shuffles - Prefer shuffles in the following order:
5661// 1. [all]   pshuflw, pshufhw, optional move
5662// 2. [ssse3] 1 x pshufb
5663// 3. [ssse3] 2 x pshufb + 1 x por
5664// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5665static SDValue
5666LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5667                         SelectionDAG &DAG) {
5668  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5669  SDValue V1 = SVOp->getOperand(0);
5670  SDValue V2 = SVOp->getOperand(1);
5671  DebugLoc dl = SVOp->getDebugLoc();
5672  SmallVector<int, 8> MaskVals;
5673
5674  // Determine if more than 1 of the words in each of the low and high quadwords
5675  // of the result come from the same quadword of one of the two inputs.  Undef
5676  // mask values count as coming from any quadword, for better codegen.
5677  unsigned LoQuad[] = { 0, 0, 0, 0 };
5678  unsigned HiQuad[] = { 0, 0, 0, 0 };
5679  std::bitset<4> InputQuads;
5680  for (unsigned i = 0; i < 8; ++i) {
5681    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5682    int EltIdx = SVOp->getMaskElt(i);
5683    MaskVals.push_back(EltIdx);
5684    if (EltIdx < 0) {
5685      ++Quad[0];
5686      ++Quad[1];
5687      ++Quad[2];
5688      ++Quad[3];
5689      continue;
5690    }
5691    ++Quad[EltIdx / 4];
5692    InputQuads.set(EltIdx / 4);
5693  }
5694
5695  int BestLoQuad = -1;
5696  unsigned MaxQuad = 1;
5697  for (unsigned i = 0; i < 4; ++i) {
5698    if (LoQuad[i] > MaxQuad) {
5699      BestLoQuad = i;
5700      MaxQuad = LoQuad[i];
5701    }
5702  }
5703
5704  int BestHiQuad = -1;
5705  MaxQuad = 1;
5706  for (unsigned i = 0; i < 4; ++i) {
5707    if (HiQuad[i] > MaxQuad) {
5708      BestHiQuad = i;
5709      MaxQuad = HiQuad[i];
5710    }
5711  }
5712
5713  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5714  // of the two input vectors, shuffle them into one input vector so only a
5715  // single pshufb instruction is necessary. If There are more than 2 input
5716  // quads, disable the next transformation since it does not help SSSE3.
5717  bool V1Used = InputQuads[0] || InputQuads[1];
5718  bool V2Used = InputQuads[2] || InputQuads[3];
5719  if (Subtarget->hasSSSE3()) {
5720    if (InputQuads.count() == 2 && V1Used && V2Used) {
5721      BestLoQuad = InputQuads[0] ? 0 : 1;
5722      BestHiQuad = InputQuads[2] ? 2 : 3;
5723    }
5724    if (InputQuads.count() > 2) {
5725      BestLoQuad = -1;
5726      BestHiQuad = -1;
5727    }
5728  }
5729
5730  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5731  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5732  // words from all 4 input quadwords.
5733  SDValue NewV;
5734  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5735    int MaskV[] = {
5736      BestLoQuad < 0 ? 0 : BestLoQuad,
5737      BestHiQuad < 0 ? 1 : BestHiQuad
5738    };
5739    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5740                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5741                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5742    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5743
5744    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5745    // source words for the shuffle, to aid later transformations.
5746    bool AllWordsInNewV = true;
5747    bool InOrder[2] = { true, true };
5748    for (unsigned i = 0; i != 8; ++i) {
5749      int idx = MaskVals[i];
5750      if (idx != (int)i)
5751        InOrder[i/4] = false;
5752      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5753        continue;
5754      AllWordsInNewV = false;
5755      break;
5756    }
5757
5758    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5759    if (AllWordsInNewV) {
5760      for (int i = 0; i != 8; ++i) {
5761        int idx = MaskVals[i];
5762        if (idx < 0)
5763          continue;
5764        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5765        if ((idx != i) && idx < 4)
5766          pshufhw = false;
5767        if ((idx != i) && idx > 3)
5768          pshuflw = false;
5769      }
5770      V1 = NewV;
5771      V2Used = false;
5772      BestLoQuad = 0;
5773      BestHiQuad = 1;
5774    }
5775
5776    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5777    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5778    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5779      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5780      unsigned TargetMask = 0;
5781      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5782                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5783      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5784      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5785                             getShufflePSHUFLWImmediate(SVOp);
5786      V1 = NewV.getOperand(0);
5787      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5788    }
5789  }
5790
5791  // If we have SSSE3, and all words of the result are from 1 input vector,
5792  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5793  // is present, fall back to case 4.
5794  if (Subtarget->hasSSSE3()) {
5795    SmallVector<SDValue,16> pshufbMask;
5796
5797    // If we have elements from both input vectors, set the high bit of the
5798    // shuffle mask element to zero out elements that come from V2 in the V1
5799    // mask, and elements that come from V1 in the V2 mask, so that the two
5800    // results can be OR'd together.
5801    bool TwoInputs = V1Used && V2Used;
5802    for (unsigned i = 0; i != 8; ++i) {
5803      int EltIdx = MaskVals[i] * 2;
5804      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5805      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5806      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5807      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5808    }
5809    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5810    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5811                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5812                                 MVT::v16i8, &pshufbMask[0], 16));
5813    if (!TwoInputs)
5814      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5815
5816    // Calculate the shuffle mask for the second input, shuffle it, and
5817    // OR it with the first shuffled input.
5818    pshufbMask.clear();
5819    for (unsigned i = 0; i != 8; ++i) {
5820      int EltIdx = MaskVals[i] * 2;
5821      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5822      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5823      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5824      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5825    }
5826    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5827    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5828                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5829                                 MVT::v16i8, &pshufbMask[0], 16));
5830    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5831    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5832  }
5833
5834  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5835  // and update MaskVals with new element order.
5836  std::bitset<8> InOrder;
5837  if (BestLoQuad >= 0) {
5838    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5839    for (int i = 0; i != 4; ++i) {
5840      int idx = MaskVals[i];
5841      if (idx < 0) {
5842        InOrder.set(i);
5843      } else if ((idx / 4) == BestLoQuad) {
5844        MaskV[i] = idx & 3;
5845        InOrder.set(i);
5846      }
5847    }
5848    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5849                                &MaskV[0]);
5850
5851    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5852      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5853      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5854                                  NewV.getOperand(0),
5855                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5856    }
5857  }
5858
5859  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5860  // and update MaskVals with the new element order.
5861  if (BestHiQuad >= 0) {
5862    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5863    for (unsigned i = 4; i != 8; ++i) {
5864      int idx = MaskVals[i];
5865      if (idx < 0) {
5866        InOrder.set(i);
5867      } else if ((idx / 4) == BestHiQuad) {
5868        MaskV[i] = (idx & 3) + 4;
5869        InOrder.set(i);
5870      }
5871    }
5872    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5873                                &MaskV[0]);
5874
5875    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5876      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5877      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5878                                  NewV.getOperand(0),
5879                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5880    }
5881  }
5882
5883  // In case BestHi & BestLo were both -1, which means each quadword has a word
5884  // from each of the four input quadwords, calculate the InOrder bitvector now
5885  // before falling through to the insert/extract cleanup.
5886  if (BestLoQuad == -1 && BestHiQuad == -1) {
5887    NewV = V1;
5888    for (int i = 0; i != 8; ++i)
5889      if (MaskVals[i] < 0 || MaskVals[i] == i)
5890        InOrder.set(i);
5891  }
5892
5893  // The other elements are put in the right place using pextrw and pinsrw.
5894  for (unsigned i = 0; i != 8; ++i) {
5895    if (InOrder[i])
5896      continue;
5897    int EltIdx = MaskVals[i];
5898    if (EltIdx < 0)
5899      continue;
5900    SDValue ExtOp = (EltIdx < 8) ?
5901      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5902                  DAG.getIntPtrConstant(EltIdx)) :
5903      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5904                  DAG.getIntPtrConstant(EltIdx - 8));
5905    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5906                       DAG.getIntPtrConstant(i));
5907  }
5908  return NewV;
5909}
5910
5911// v16i8 shuffles - Prefer shuffles in the following order:
5912// 1. [ssse3] 1 x pshufb
5913// 2. [ssse3] 2 x pshufb + 1 x por
5914// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5915static
5916SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5917                                 SelectionDAG &DAG,
5918                                 const X86TargetLowering &TLI) {
5919  SDValue V1 = SVOp->getOperand(0);
5920  SDValue V2 = SVOp->getOperand(1);
5921  DebugLoc dl = SVOp->getDebugLoc();
5922  ArrayRef<int> MaskVals = SVOp->getMask();
5923
5924  // If we have SSSE3, case 1 is generated when all result bytes come from
5925  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5926  // present, fall back to case 3.
5927
5928  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5929  if (TLI.getSubtarget()->hasSSSE3()) {
5930    SmallVector<SDValue,16> pshufbMask;
5931
5932    // If all result elements are from one input vector, then only translate
5933    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5934    //
5935    // Otherwise, we have elements from both input vectors, and must zero out
5936    // elements that come from V2 in the first mask, and V1 in the second mask
5937    // so that we can OR them together.
5938    for (unsigned i = 0; i != 16; ++i) {
5939      int EltIdx = MaskVals[i];
5940      if (EltIdx < 0 || EltIdx >= 16)
5941        EltIdx = 0x80;
5942      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5943    }
5944    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5945                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5946                                 MVT::v16i8, &pshufbMask[0], 16));
5947
5948    // As PSHUFB will zero elements with negative indices, it's safe to ignore
5949    // the 2nd operand if it's undefined or zero.
5950    if (V2.getOpcode() == ISD::UNDEF ||
5951        ISD::isBuildVectorAllZeros(V2.getNode()))
5952      return V1;
5953
5954    // Calculate the shuffle mask for the second input, shuffle it, and
5955    // OR it with the first shuffled input.
5956    pshufbMask.clear();
5957    for (unsigned i = 0; i != 16; ++i) {
5958      int EltIdx = MaskVals[i];
5959      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5960      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5961    }
5962    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5963                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5964                                 MVT::v16i8, &pshufbMask[0], 16));
5965    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5966  }
5967
5968  // No SSSE3 - Calculate in place words and then fix all out of place words
5969  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5970  // the 16 different words that comprise the two doublequadword input vectors.
5971  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5972  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5973  SDValue NewV = V1;
5974  for (int i = 0; i != 8; ++i) {
5975    int Elt0 = MaskVals[i*2];
5976    int Elt1 = MaskVals[i*2+1];
5977
5978    // This word of the result is all undef, skip it.
5979    if (Elt0 < 0 && Elt1 < 0)
5980      continue;
5981
5982    // This word of the result is already in the correct place, skip it.
5983    if ((Elt0 == i*2) && (Elt1 == i*2+1))
5984      continue;
5985
5986    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5987    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5988    SDValue InsElt;
5989
5990    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5991    // using a single extract together, load it and store it.
5992    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5993      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5994                           DAG.getIntPtrConstant(Elt1 / 2));
5995      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5996                        DAG.getIntPtrConstant(i));
5997      continue;
5998    }
5999
6000    // If Elt1 is defined, extract it from the appropriate source.  If the
6001    // source byte is not also odd, shift the extracted word left 8 bits
6002    // otherwise clear the bottom 8 bits if we need to do an or.
6003    if (Elt1 >= 0) {
6004      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6005                           DAG.getIntPtrConstant(Elt1 / 2));
6006      if ((Elt1 & 1) == 0)
6007        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6008                             DAG.getConstant(8,
6009                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6010      else if (Elt0 >= 0)
6011        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6012                             DAG.getConstant(0xFF00, MVT::i16));
6013    }
6014    // If Elt0 is defined, extract it from the appropriate source.  If the
6015    // source byte is not also even, shift the extracted word right 8 bits. If
6016    // Elt1 was also defined, OR the extracted values together before
6017    // inserting them in the result.
6018    if (Elt0 >= 0) {
6019      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6020                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6021      if ((Elt0 & 1) != 0)
6022        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6023                              DAG.getConstant(8,
6024                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6025      else if (Elt1 >= 0)
6026        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6027                             DAG.getConstant(0x00FF, MVT::i16));
6028      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6029                         : InsElt0;
6030    }
6031    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6032                       DAG.getIntPtrConstant(i));
6033  }
6034  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6035}
6036
6037// v32i8 shuffles - Translate to VPSHUFB if possible.
6038static
6039SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6040                                 const X86Subtarget *Subtarget,
6041                                 SelectionDAG &DAG) {
6042  EVT VT = SVOp->getValueType(0);
6043  SDValue V1 = SVOp->getOperand(0);
6044  SDValue V2 = SVOp->getOperand(1);
6045  DebugLoc dl = SVOp->getDebugLoc();
6046  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6047
6048  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6049  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6050  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6051
6052  // VPSHUFB may be generated if
6053  // (1) one of input vector is undefined or zeroinitializer.
6054  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6055  // And (2) the mask indexes don't cross the 128-bit lane.
6056  if (VT != MVT::v32i8 || !Subtarget->hasAVX2() ||
6057      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6058    return SDValue();
6059
6060  if (V1IsAllZero && !V2IsAllZero) {
6061    CommuteVectorShuffleMask(MaskVals, 32);
6062    V1 = V2;
6063  }
6064  SmallVector<SDValue, 32> pshufbMask;
6065  for (unsigned i = 0; i != 32; i++) {
6066    int EltIdx = MaskVals[i];
6067    if (EltIdx < 0 || EltIdx >= 32)
6068      EltIdx = 0x80;
6069    else {
6070      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6071        // Cross lane is not allowed.
6072        return SDValue();
6073      EltIdx &= 0xf;
6074    }
6075    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6076  }
6077  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6078                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6079                                  MVT::v32i8, &pshufbMask[0], 32));
6080}
6081
6082/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6083/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6084/// done when every pair / quad of shuffle mask elements point to elements in
6085/// the right sequence. e.g.
6086/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6087static
6088SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6089                                 SelectionDAG &DAG, DebugLoc dl) {
6090  MVT VT = SVOp->getValueType(0).getSimpleVT();
6091  unsigned NumElems = VT.getVectorNumElements();
6092  MVT NewVT;
6093  unsigned Scale;
6094  switch (VT.SimpleTy) {
6095  default: llvm_unreachable("Unexpected!");
6096  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6097  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6098  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6099  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6100  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6101  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6102  }
6103
6104  SmallVector<int, 8> MaskVec;
6105  for (unsigned i = 0; i != NumElems; i += Scale) {
6106    int StartIdx = -1;
6107    for (unsigned j = 0; j != Scale; ++j) {
6108      int EltIdx = SVOp->getMaskElt(i+j);
6109      if (EltIdx < 0)
6110        continue;
6111      if (StartIdx < 0)
6112        StartIdx = (EltIdx / Scale);
6113      if (EltIdx != (int)(StartIdx*Scale + j))
6114        return SDValue();
6115    }
6116    MaskVec.push_back(StartIdx);
6117  }
6118
6119  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6120  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6121  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6122}
6123
6124/// getVZextMovL - Return a zero-extending vector move low node.
6125///
6126static SDValue getVZextMovL(EVT VT, EVT OpVT,
6127                            SDValue SrcOp, SelectionDAG &DAG,
6128                            const X86Subtarget *Subtarget, DebugLoc dl) {
6129  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6130    LoadSDNode *LD = NULL;
6131    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6132      LD = dyn_cast<LoadSDNode>(SrcOp);
6133    if (!LD) {
6134      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6135      // instead.
6136      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6137      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6138          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6139          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6140          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6141        // PR2108
6142        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6143        return DAG.getNode(ISD::BITCAST, dl, VT,
6144                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6145                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6146                                                   OpVT,
6147                                                   SrcOp.getOperand(0)
6148                                                          .getOperand(0))));
6149      }
6150    }
6151  }
6152
6153  return DAG.getNode(ISD::BITCAST, dl, VT,
6154                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6155                                 DAG.getNode(ISD::BITCAST, dl,
6156                                             OpVT, SrcOp)));
6157}
6158
6159/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6160/// which could not be matched by any known target speficic shuffle
6161static SDValue
6162LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6163
6164  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6165  if (NewOp.getNode())
6166    return NewOp;
6167
6168  EVT VT = SVOp->getValueType(0);
6169
6170  unsigned NumElems = VT.getVectorNumElements();
6171  unsigned NumLaneElems = NumElems / 2;
6172
6173  DebugLoc dl = SVOp->getDebugLoc();
6174  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6175  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6176  SDValue Output[2];
6177
6178  SmallVector<int, 16> Mask;
6179  for (unsigned l = 0; l < 2; ++l) {
6180    // Build a shuffle mask for the output, discovering on the fly which
6181    // input vectors to use as shuffle operands (recorded in InputUsed).
6182    // If building a suitable shuffle vector proves too hard, then bail
6183    // out with UseBuildVector set.
6184    bool UseBuildVector = false;
6185    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6186    unsigned LaneStart = l * NumLaneElems;
6187    for (unsigned i = 0; i != NumLaneElems; ++i) {
6188      // The mask element.  This indexes into the input.
6189      int Idx = SVOp->getMaskElt(i+LaneStart);
6190      if (Idx < 0) {
6191        // the mask element does not index into any input vector.
6192        Mask.push_back(-1);
6193        continue;
6194      }
6195
6196      // The input vector this mask element indexes into.
6197      int Input = Idx / NumLaneElems;
6198
6199      // Turn the index into an offset from the start of the input vector.
6200      Idx -= Input * NumLaneElems;
6201
6202      // Find or create a shuffle vector operand to hold this input.
6203      unsigned OpNo;
6204      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6205        if (InputUsed[OpNo] == Input)
6206          // This input vector is already an operand.
6207          break;
6208        if (InputUsed[OpNo] < 0) {
6209          // Create a new operand for this input vector.
6210          InputUsed[OpNo] = Input;
6211          break;
6212        }
6213      }
6214
6215      if (OpNo >= array_lengthof(InputUsed)) {
6216        // More than two input vectors used!  Give up on trying to create a
6217        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6218        UseBuildVector = true;
6219        break;
6220      }
6221
6222      // Add the mask index for the new shuffle vector.
6223      Mask.push_back(Idx + OpNo * NumLaneElems);
6224    }
6225
6226    if (UseBuildVector) {
6227      SmallVector<SDValue, 16> SVOps;
6228      for (unsigned i = 0; i != NumLaneElems; ++i) {
6229        // The mask element.  This indexes into the input.
6230        int Idx = SVOp->getMaskElt(i+LaneStart);
6231        if (Idx < 0) {
6232          SVOps.push_back(DAG.getUNDEF(EltVT));
6233          continue;
6234        }
6235
6236        // The input vector this mask element indexes into.
6237        int Input = Idx / NumElems;
6238
6239        // Turn the index into an offset from the start of the input vector.
6240        Idx -= Input * NumElems;
6241
6242        // Extract the vector element by hand.
6243        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6244                                    SVOp->getOperand(Input),
6245                                    DAG.getIntPtrConstant(Idx)));
6246      }
6247
6248      // Construct the output using a BUILD_VECTOR.
6249      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6250                              SVOps.size());
6251    } else if (InputUsed[0] < 0) {
6252      // No input vectors were used! The result is undefined.
6253      Output[l] = DAG.getUNDEF(NVT);
6254    } else {
6255      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6256                                        (InputUsed[0] % 2) * NumLaneElems,
6257                                        DAG, dl);
6258      // If only one input was used, use an undefined vector for the other.
6259      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6260        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6261                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6262      // At least one input vector was used. Create a new shuffle vector.
6263      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6264    }
6265
6266    Mask.clear();
6267  }
6268
6269  // Concatenate the result back
6270  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6271}
6272
6273/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6274/// 4 elements, and match them with several different shuffle types.
6275static SDValue
6276LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6277  SDValue V1 = SVOp->getOperand(0);
6278  SDValue V2 = SVOp->getOperand(1);
6279  DebugLoc dl = SVOp->getDebugLoc();
6280  EVT VT = SVOp->getValueType(0);
6281
6282  assert(VT.is128BitVector() && "Unsupported vector size");
6283
6284  std::pair<int, int> Locs[4];
6285  int Mask1[] = { -1, -1, -1, -1 };
6286  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6287
6288  unsigned NumHi = 0;
6289  unsigned NumLo = 0;
6290  for (unsigned i = 0; i != 4; ++i) {
6291    int Idx = PermMask[i];
6292    if (Idx < 0) {
6293      Locs[i] = std::make_pair(-1, -1);
6294    } else {
6295      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6296      if (Idx < 4) {
6297        Locs[i] = std::make_pair(0, NumLo);
6298        Mask1[NumLo] = Idx;
6299        NumLo++;
6300      } else {
6301        Locs[i] = std::make_pair(1, NumHi);
6302        if (2+NumHi < 4)
6303          Mask1[2+NumHi] = Idx;
6304        NumHi++;
6305      }
6306    }
6307  }
6308
6309  if (NumLo <= 2 && NumHi <= 2) {
6310    // If no more than two elements come from either vector. This can be
6311    // implemented with two shuffles. First shuffle gather the elements.
6312    // The second shuffle, which takes the first shuffle as both of its
6313    // vector operands, put the elements into the right order.
6314    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6315
6316    int Mask2[] = { -1, -1, -1, -1 };
6317
6318    for (unsigned i = 0; i != 4; ++i)
6319      if (Locs[i].first != -1) {
6320        unsigned Idx = (i < 2) ? 0 : 4;
6321        Idx += Locs[i].first * 2 + Locs[i].second;
6322        Mask2[i] = Idx;
6323      }
6324
6325    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6326  }
6327
6328  if (NumLo == 3 || NumHi == 3) {
6329    // Otherwise, we must have three elements from one vector, call it X, and
6330    // one element from the other, call it Y.  First, use a shufps to build an
6331    // intermediate vector with the one element from Y and the element from X
6332    // that will be in the same half in the final destination (the indexes don't
6333    // matter). Then, use a shufps to build the final vector, taking the half
6334    // containing the element from Y from the intermediate, and the other half
6335    // from X.
6336    if (NumHi == 3) {
6337      // Normalize it so the 3 elements come from V1.
6338      CommuteVectorShuffleMask(PermMask, 4);
6339      std::swap(V1, V2);
6340    }
6341
6342    // Find the element from V2.
6343    unsigned HiIndex;
6344    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6345      int Val = PermMask[HiIndex];
6346      if (Val < 0)
6347        continue;
6348      if (Val >= 4)
6349        break;
6350    }
6351
6352    Mask1[0] = PermMask[HiIndex];
6353    Mask1[1] = -1;
6354    Mask1[2] = PermMask[HiIndex^1];
6355    Mask1[3] = -1;
6356    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6357
6358    if (HiIndex >= 2) {
6359      Mask1[0] = PermMask[0];
6360      Mask1[1] = PermMask[1];
6361      Mask1[2] = HiIndex & 1 ? 6 : 4;
6362      Mask1[3] = HiIndex & 1 ? 4 : 6;
6363      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6364    }
6365
6366    Mask1[0] = HiIndex & 1 ? 2 : 0;
6367    Mask1[1] = HiIndex & 1 ? 0 : 2;
6368    Mask1[2] = PermMask[2];
6369    Mask1[3] = PermMask[3];
6370    if (Mask1[2] >= 0)
6371      Mask1[2] += 4;
6372    if (Mask1[3] >= 0)
6373      Mask1[3] += 4;
6374    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6375  }
6376
6377  // Break it into (shuffle shuffle_hi, shuffle_lo).
6378  int LoMask[] = { -1, -1, -1, -1 };
6379  int HiMask[] = { -1, -1, -1, -1 };
6380
6381  int *MaskPtr = LoMask;
6382  unsigned MaskIdx = 0;
6383  unsigned LoIdx = 0;
6384  unsigned HiIdx = 2;
6385  for (unsigned i = 0; i != 4; ++i) {
6386    if (i == 2) {
6387      MaskPtr = HiMask;
6388      MaskIdx = 1;
6389      LoIdx = 0;
6390      HiIdx = 2;
6391    }
6392    int Idx = PermMask[i];
6393    if (Idx < 0) {
6394      Locs[i] = std::make_pair(-1, -1);
6395    } else if (Idx < 4) {
6396      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6397      MaskPtr[LoIdx] = Idx;
6398      LoIdx++;
6399    } else {
6400      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6401      MaskPtr[HiIdx] = Idx;
6402      HiIdx++;
6403    }
6404  }
6405
6406  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6407  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6408  int MaskOps[] = { -1, -1, -1, -1 };
6409  for (unsigned i = 0; i != 4; ++i)
6410    if (Locs[i].first != -1)
6411      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6412  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6413}
6414
6415static bool MayFoldVectorLoad(SDValue V) {
6416  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6417    V = V.getOperand(0);
6418  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6419    V = V.getOperand(0);
6420  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6421      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6422    // BUILD_VECTOR (load), undef
6423    V = V.getOperand(0);
6424  if (MayFoldLoad(V))
6425    return true;
6426  return false;
6427}
6428
6429// FIXME: the version above should always be used. Since there's
6430// a bug where several vector shuffles can't be folded because the
6431// DAG is not updated during lowering and a node claims to have two
6432// uses while it only has one, use this version, and let isel match
6433// another instruction if the load really happens to have more than
6434// one use. Remove this version after this bug get fixed.
6435// rdar://8434668, PR8156
6436static bool RelaxedMayFoldVectorLoad(SDValue V) {
6437  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6438    V = V.getOperand(0);
6439  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6440    V = V.getOperand(0);
6441  if (ISD::isNormalLoad(V.getNode()))
6442    return true;
6443  return false;
6444}
6445
6446static
6447SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6448  EVT VT = Op.getValueType();
6449
6450  // Canonizalize to v2f64.
6451  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6452  return DAG.getNode(ISD::BITCAST, dl, VT,
6453                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6454                                          V1, DAG));
6455}
6456
6457static
6458SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6459                        bool HasSSE2) {
6460  SDValue V1 = Op.getOperand(0);
6461  SDValue V2 = Op.getOperand(1);
6462  EVT VT = Op.getValueType();
6463
6464  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6465
6466  if (HasSSE2 && VT == MVT::v2f64)
6467    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6468
6469  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6470  return DAG.getNode(ISD::BITCAST, dl, VT,
6471                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6472                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6473                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6474}
6475
6476static
6477SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6478  SDValue V1 = Op.getOperand(0);
6479  SDValue V2 = Op.getOperand(1);
6480  EVT VT = Op.getValueType();
6481
6482  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6483         "unsupported shuffle type");
6484
6485  if (V2.getOpcode() == ISD::UNDEF)
6486    V2 = V1;
6487
6488  // v4i32 or v4f32
6489  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6490}
6491
6492static
6493SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6494  SDValue V1 = Op.getOperand(0);
6495  SDValue V2 = Op.getOperand(1);
6496  EVT VT = Op.getValueType();
6497  unsigned NumElems = VT.getVectorNumElements();
6498
6499  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6500  // operand of these instructions is only memory, so check if there's a
6501  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6502  // same masks.
6503  bool CanFoldLoad = false;
6504
6505  // Trivial case, when V2 comes from a load.
6506  if (MayFoldVectorLoad(V2))
6507    CanFoldLoad = true;
6508
6509  // When V1 is a load, it can be folded later into a store in isel, example:
6510  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6511  //    turns into:
6512  //  (MOVLPSmr addr:$src1, VR128:$src2)
6513  // So, recognize this potential and also use MOVLPS or MOVLPD
6514  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6515    CanFoldLoad = true;
6516
6517  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6518  if (CanFoldLoad) {
6519    if (HasSSE2 && NumElems == 2)
6520      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6521
6522    if (NumElems == 4)
6523      // If we don't care about the second element, proceed to use movss.
6524      if (SVOp->getMaskElt(1) != -1)
6525        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6526  }
6527
6528  // movl and movlp will both match v2i64, but v2i64 is never matched by
6529  // movl earlier because we make it strict to avoid messing with the movlp load
6530  // folding logic (see the code above getMOVLP call). Match it here then,
6531  // this is horrible, but will stay like this until we move all shuffle
6532  // matching to x86 specific nodes. Note that for the 1st condition all
6533  // types are matched with movsd.
6534  if (HasSSE2) {
6535    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6536    // as to remove this logic from here, as much as possible
6537    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6538      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6539    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6540  }
6541
6542  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6543
6544  // Invert the operand order and use SHUFPS to match it.
6545  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6546                              getShuffleSHUFImmediate(SVOp), DAG);
6547}
6548
6549SDValue
6550X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6551  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6552  EVT VT = Op.getValueType();
6553  DebugLoc dl = Op.getDebugLoc();
6554  SDValue V1 = Op.getOperand(0);
6555  SDValue V2 = Op.getOperand(1);
6556
6557  if (isZeroShuffle(SVOp))
6558    return getZeroVector(VT, Subtarget, DAG, dl);
6559
6560  // Handle splat operations
6561  if (SVOp->isSplat()) {
6562    unsigned NumElem = VT.getVectorNumElements();
6563    int Size = VT.getSizeInBits();
6564
6565    // Use vbroadcast whenever the splat comes from a foldable load
6566    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6567    if (Broadcast.getNode())
6568      return Broadcast;
6569
6570    // Handle splats by matching through known shuffle masks
6571    if ((Size == 128 && NumElem <= 4) ||
6572        (Size == 256 && NumElem < 8))
6573      return SDValue();
6574
6575    // All remaning splats are promoted to target supported vector shuffles.
6576    return PromoteSplat(SVOp, DAG);
6577  }
6578
6579  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6580  // do it!
6581  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6582      VT == MVT::v16i16 || VT == MVT::v32i8) {
6583    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6584    if (NewOp.getNode())
6585      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6586  } else if ((VT == MVT::v4i32 ||
6587             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6588    // FIXME: Figure out a cleaner way to do this.
6589    // Try to make use of movq to zero out the top part.
6590    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6591      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6592      if (NewOp.getNode()) {
6593        EVT NewVT = NewOp.getValueType();
6594        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6595                               NewVT, true, false))
6596          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6597                              DAG, Subtarget, dl);
6598      }
6599    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6600      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6601      if (NewOp.getNode()) {
6602        EVT NewVT = NewOp.getValueType();
6603        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6604          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6605                              DAG, Subtarget, dl);
6606      }
6607    }
6608  }
6609  return SDValue();
6610}
6611
6612SDValue
6613X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6614  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6615  SDValue V1 = Op.getOperand(0);
6616  SDValue V2 = Op.getOperand(1);
6617  EVT VT = Op.getValueType();
6618  DebugLoc dl = Op.getDebugLoc();
6619  unsigned NumElems = VT.getVectorNumElements();
6620  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6621  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6622  bool V1IsSplat = false;
6623  bool V2IsSplat = false;
6624  bool HasSSE2 = Subtarget->hasSSE2();
6625  bool HasAVX    = Subtarget->hasAVX();
6626  bool HasAVX2   = Subtarget->hasAVX2();
6627  MachineFunction &MF = DAG.getMachineFunction();
6628  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6629
6630  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6631
6632  if (V1IsUndef && V2IsUndef)
6633    return DAG.getUNDEF(VT);
6634
6635  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6636
6637  // Vector shuffle lowering takes 3 steps:
6638  //
6639  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6640  //    narrowing and commutation of operands should be handled.
6641  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6642  //    shuffle nodes.
6643  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6644  //    so the shuffle can be broken into other shuffles and the legalizer can
6645  //    try the lowering again.
6646  //
6647  // The general idea is that no vector_shuffle operation should be left to
6648  // be matched during isel, all of them must be converted to a target specific
6649  // node here.
6650
6651  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6652  // narrowing and commutation of operands should be handled. The actual code
6653  // doesn't include all of those, work in progress...
6654  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6655  if (NewOp.getNode())
6656    return NewOp;
6657
6658  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6659
6660  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6661  // unpckh_undef). Only use pshufd if speed is more important than size.
6662  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6663    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6664  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6665    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6666
6667  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6668      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6669    return getMOVDDup(Op, dl, V1, DAG);
6670
6671  if (isMOVHLPS_v_undef_Mask(M, VT))
6672    return getMOVHighToLow(Op, dl, DAG);
6673
6674  // Use to match splats
6675  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6676      (VT == MVT::v2f64 || VT == MVT::v2i64))
6677    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6678
6679  if (isPSHUFDMask(M, VT)) {
6680    // The actual implementation will match the mask in the if above and then
6681    // during isel it can match several different instructions, not only pshufd
6682    // as its name says, sad but true, emulate the behavior for now...
6683    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6684      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6685
6686    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6687
6688    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6689      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6690
6691    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6692      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6693
6694    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6695                                TargetMask, DAG);
6696  }
6697
6698  // Check if this can be converted into a logical shift.
6699  bool isLeft = false;
6700  unsigned ShAmt = 0;
6701  SDValue ShVal;
6702  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6703  if (isShift && ShVal.hasOneUse()) {
6704    // If the shifted value has multiple uses, it may be cheaper to use
6705    // v_set0 + movlhps or movhlps, etc.
6706    EVT EltVT = VT.getVectorElementType();
6707    ShAmt *= EltVT.getSizeInBits();
6708    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6709  }
6710
6711  if (isMOVLMask(M, VT)) {
6712    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6713      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6714    if (!isMOVLPMask(M, VT)) {
6715      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6716        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6717
6718      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6719        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6720    }
6721  }
6722
6723  // FIXME: fold these into legal mask.
6724  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6725    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6726
6727  if (isMOVHLPSMask(M, VT))
6728    return getMOVHighToLow(Op, dl, DAG);
6729
6730  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6731    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6732
6733  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6734    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6735
6736  if (isMOVLPMask(M, VT))
6737    return getMOVLP(Op, dl, DAG, HasSSE2);
6738
6739  if (ShouldXformToMOVHLPS(M, VT) ||
6740      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6741    return CommuteVectorShuffle(SVOp, DAG);
6742
6743  if (isShift) {
6744    // No better options. Use a vshldq / vsrldq.
6745    EVT EltVT = VT.getVectorElementType();
6746    ShAmt *= EltVT.getSizeInBits();
6747    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6748  }
6749
6750  bool Commuted = false;
6751  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6752  // 1,1,1,1 -> v8i16 though.
6753  V1IsSplat = isSplatVector(V1.getNode());
6754  V2IsSplat = isSplatVector(V2.getNode());
6755
6756  // Canonicalize the splat or undef, if present, to be on the RHS.
6757  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6758    CommuteVectorShuffleMask(M, NumElems);
6759    std::swap(V1, V2);
6760    std::swap(V1IsSplat, V2IsSplat);
6761    Commuted = true;
6762  }
6763
6764  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6765    // Shuffling low element of v1 into undef, just return v1.
6766    if (V2IsUndef)
6767      return V1;
6768    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6769    // the instruction selector will not match, so get a canonical MOVL with
6770    // swapped operands to undo the commute.
6771    return getMOVL(DAG, dl, VT, V2, V1);
6772  }
6773
6774  if (isUNPCKLMask(M, VT, HasAVX2))
6775    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6776
6777  if (isUNPCKHMask(M, VT, HasAVX2))
6778    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6779
6780  if (V2IsSplat) {
6781    // Normalize mask so all entries that point to V2 points to its first
6782    // element then try to match unpck{h|l} again. If match, return a
6783    // new vector_shuffle with the corrected mask.p
6784    SmallVector<int, 8> NewMask(M.begin(), M.end());
6785    NormalizeMask(NewMask, NumElems);
6786    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6787      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6788    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6789      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6790  }
6791
6792  if (Commuted) {
6793    // Commute is back and try unpck* again.
6794    // FIXME: this seems wrong.
6795    CommuteVectorShuffleMask(M, NumElems);
6796    std::swap(V1, V2);
6797    std::swap(V1IsSplat, V2IsSplat);
6798    Commuted = false;
6799
6800    if (isUNPCKLMask(M, VT, HasAVX2))
6801      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6802
6803    if (isUNPCKHMask(M, VT, HasAVX2))
6804      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6805  }
6806
6807  // Normalize the node to match x86 shuffle ops if needed
6808  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6809    return CommuteVectorShuffle(SVOp, DAG);
6810
6811  // The checks below are all present in isShuffleMaskLegal, but they are
6812  // inlined here right now to enable us to directly emit target specific
6813  // nodes, and remove one by one until they don't return Op anymore.
6814
6815  if (isPALIGNRMask(M, VT, Subtarget))
6816    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6817                                getShufflePALIGNRImmediate(SVOp),
6818                                DAG);
6819
6820  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6821      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6822    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6823      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6824  }
6825
6826  if (isPSHUFHWMask(M, VT, HasAVX2))
6827    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6828                                getShufflePSHUFHWImmediate(SVOp),
6829                                DAG);
6830
6831  if (isPSHUFLWMask(M, VT, HasAVX2))
6832    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6833                                getShufflePSHUFLWImmediate(SVOp),
6834                                DAG);
6835
6836  if (isSHUFPMask(M, VT, HasAVX))
6837    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6838                                getShuffleSHUFImmediate(SVOp), DAG);
6839
6840  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6841    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6842  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6843    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6844
6845  //===--------------------------------------------------------------------===//
6846  // Generate target specific nodes for 128 or 256-bit shuffles only
6847  // supported in the AVX instruction set.
6848  //
6849
6850  // Handle VMOVDDUPY permutations
6851  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6852    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6853
6854  // Handle VPERMILPS/D* permutations
6855  if (isVPERMILPMask(M, VT, HasAVX)) {
6856    if (HasAVX2 && VT == MVT::v8i32)
6857      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6858                                  getShuffleSHUFImmediate(SVOp), DAG);
6859    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6860                                getShuffleSHUFImmediate(SVOp), DAG);
6861  }
6862
6863  // Handle VPERM2F128/VPERM2I128 permutations
6864  if (isVPERM2X128Mask(M, VT, HasAVX))
6865    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6866                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6867
6868  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6869  if (BlendOp.getNode())
6870    return BlendOp;
6871
6872  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6873    SmallVector<SDValue, 8> permclMask;
6874    for (unsigned i = 0; i != 8; ++i) {
6875      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6876    }
6877    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6878                               &permclMask[0], 8);
6879    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6880    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6881                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6882  }
6883
6884  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6885    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6886                                getShuffleCLImmediate(SVOp), DAG);
6887
6888
6889  //===--------------------------------------------------------------------===//
6890  // Since no target specific shuffle was selected for this generic one,
6891  // lower it into other known shuffles. FIXME: this isn't true yet, but
6892  // this is the plan.
6893  //
6894
6895  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6896  if (VT == MVT::v8i16) {
6897    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
6898    if (NewOp.getNode())
6899      return NewOp;
6900  }
6901
6902  if (VT == MVT::v16i8) {
6903    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6904    if (NewOp.getNode())
6905      return NewOp;
6906  }
6907
6908  if (VT == MVT::v32i8) {
6909    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
6910    if (NewOp.getNode())
6911      return NewOp;
6912  }
6913
6914  // Handle all 128-bit wide vectors with 4 elements, and match them with
6915  // several different shuffle types.
6916  if (NumElems == 4 && VT.is128BitVector())
6917    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6918
6919  // Handle general 256-bit shuffles
6920  if (VT.is256BitVector())
6921    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6922
6923  return SDValue();
6924}
6925
6926SDValue
6927X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6928                                                SelectionDAG &DAG) const {
6929  EVT VT = Op.getValueType();
6930  DebugLoc dl = Op.getDebugLoc();
6931
6932  if (!Op.getOperand(0).getValueType().is128BitVector())
6933    return SDValue();
6934
6935  if (VT.getSizeInBits() == 8) {
6936    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6937                                  Op.getOperand(0), Op.getOperand(1));
6938    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6939                                  DAG.getValueType(VT));
6940    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6941  }
6942
6943  if (VT.getSizeInBits() == 16) {
6944    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6945    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6946    if (Idx == 0)
6947      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6948                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6949                                     DAG.getNode(ISD::BITCAST, dl,
6950                                                 MVT::v4i32,
6951                                                 Op.getOperand(0)),
6952                                     Op.getOperand(1)));
6953    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6954                                  Op.getOperand(0), Op.getOperand(1));
6955    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6956                                  DAG.getValueType(VT));
6957    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6958  }
6959
6960  if (VT == MVT::f32) {
6961    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6962    // the result back to FR32 register. It's only worth matching if the
6963    // result has a single use which is a store or a bitcast to i32.  And in
6964    // the case of a store, it's not worth it if the index is a constant 0,
6965    // because a MOVSSmr can be used instead, which is smaller and faster.
6966    if (!Op.hasOneUse())
6967      return SDValue();
6968    SDNode *User = *Op.getNode()->use_begin();
6969    if ((User->getOpcode() != ISD::STORE ||
6970         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6971          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6972        (User->getOpcode() != ISD::BITCAST ||
6973         User->getValueType(0) != MVT::i32))
6974      return SDValue();
6975    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6976                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6977                                              Op.getOperand(0)),
6978                                              Op.getOperand(1));
6979    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6980  }
6981
6982  if (VT == MVT::i32 || VT == MVT::i64) {
6983    // ExtractPS/pextrq works with constant index.
6984    if (isa<ConstantSDNode>(Op.getOperand(1)))
6985      return Op;
6986  }
6987  return SDValue();
6988}
6989
6990
6991SDValue
6992X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6993                                           SelectionDAG &DAG) const {
6994  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6995    return SDValue();
6996
6997  SDValue Vec = Op.getOperand(0);
6998  EVT VecVT = Vec.getValueType();
6999
7000  // If this is a 256-bit vector result, first extract the 128-bit vector and
7001  // then extract the element from the 128-bit vector.
7002  if (VecVT.is256BitVector()) {
7003    DebugLoc dl = Op.getNode()->getDebugLoc();
7004    unsigned NumElems = VecVT.getVectorNumElements();
7005    SDValue Idx = Op.getOperand(1);
7006    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7007
7008    // Get the 128-bit vector.
7009    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7010
7011    if (IdxVal >= NumElems/2)
7012      IdxVal -= NumElems/2;
7013    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7014                       DAG.getConstant(IdxVal, MVT::i32));
7015  }
7016
7017  assert(VecVT.is128BitVector() && "Unexpected vector length");
7018
7019  if (Subtarget->hasSSE41()) {
7020    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7021    if (Res.getNode())
7022      return Res;
7023  }
7024
7025  EVT VT = Op.getValueType();
7026  DebugLoc dl = Op.getDebugLoc();
7027  // TODO: handle v16i8.
7028  if (VT.getSizeInBits() == 16) {
7029    SDValue Vec = Op.getOperand(0);
7030    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7031    if (Idx == 0)
7032      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7033                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7034                                     DAG.getNode(ISD::BITCAST, dl,
7035                                                 MVT::v4i32, Vec),
7036                                     Op.getOperand(1)));
7037    // Transform it so it match pextrw which produces a 32-bit result.
7038    EVT EltVT = MVT::i32;
7039    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7040                                  Op.getOperand(0), Op.getOperand(1));
7041    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7042                                  DAG.getValueType(VT));
7043    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7044  }
7045
7046  if (VT.getSizeInBits() == 32) {
7047    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7048    if (Idx == 0)
7049      return Op;
7050
7051    // SHUFPS the element to the lowest double word, then movss.
7052    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7053    EVT VVT = Op.getOperand(0).getValueType();
7054    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7055                                       DAG.getUNDEF(VVT), Mask);
7056    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7057                       DAG.getIntPtrConstant(0));
7058  }
7059
7060  if (VT.getSizeInBits() == 64) {
7061    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7062    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7063    //        to match extract_elt for f64.
7064    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7065    if (Idx == 0)
7066      return Op;
7067
7068    // UNPCKHPD the element to the lowest double word, then movsd.
7069    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7070    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7071    int Mask[2] = { 1, -1 };
7072    EVT VVT = Op.getOperand(0).getValueType();
7073    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7074                                       DAG.getUNDEF(VVT), Mask);
7075    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7076                       DAG.getIntPtrConstant(0));
7077  }
7078
7079  return SDValue();
7080}
7081
7082SDValue
7083X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7084                                               SelectionDAG &DAG) const {
7085  EVT VT = Op.getValueType();
7086  EVT EltVT = VT.getVectorElementType();
7087  DebugLoc dl = Op.getDebugLoc();
7088
7089  SDValue N0 = Op.getOperand(0);
7090  SDValue N1 = Op.getOperand(1);
7091  SDValue N2 = Op.getOperand(2);
7092
7093  if (!VT.is128BitVector())
7094    return SDValue();
7095
7096  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7097      isa<ConstantSDNode>(N2)) {
7098    unsigned Opc;
7099    if (VT == MVT::v8i16)
7100      Opc = X86ISD::PINSRW;
7101    else if (VT == MVT::v16i8)
7102      Opc = X86ISD::PINSRB;
7103    else
7104      Opc = X86ISD::PINSRB;
7105
7106    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7107    // argument.
7108    if (N1.getValueType() != MVT::i32)
7109      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7110    if (N2.getValueType() != MVT::i32)
7111      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7112    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7113  }
7114
7115  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7116    // Bits [7:6] of the constant are the source select.  This will always be
7117    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7118    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7119    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7120    // Bits [5:4] of the constant are the destination select.  This is the
7121    //  value of the incoming immediate.
7122    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7123    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7124    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7125    // Create this as a scalar to vector..
7126    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7127    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7128  }
7129
7130  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7131    // PINSR* works with constant index.
7132    return Op;
7133  }
7134  return SDValue();
7135}
7136
7137SDValue
7138X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7139  EVT VT = Op.getValueType();
7140  EVT EltVT = VT.getVectorElementType();
7141
7142  DebugLoc dl = Op.getDebugLoc();
7143  SDValue N0 = Op.getOperand(0);
7144  SDValue N1 = Op.getOperand(1);
7145  SDValue N2 = Op.getOperand(2);
7146
7147  // If this is a 256-bit vector result, first extract the 128-bit vector,
7148  // insert the element into the extracted half and then place it back.
7149  if (VT.is256BitVector()) {
7150    if (!isa<ConstantSDNode>(N2))
7151      return SDValue();
7152
7153    // Get the desired 128-bit vector half.
7154    unsigned NumElems = VT.getVectorNumElements();
7155    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7156    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7157
7158    // Insert the element into the desired half.
7159    bool Upper = IdxVal >= NumElems/2;
7160    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7161                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7162
7163    // Insert the changed part back to the 256-bit vector
7164    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7165  }
7166
7167  if (Subtarget->hasSSE41())
7168    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7169
7170  if (EltVT == MVT::i8)
7171    return SDValue();
7172
7173  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7174    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7175    // as its second argument.
7176    if (N1.getValueType() != MVT::i32)
7177      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7178    if (N2.getValueType() != MVT::i32)
7179      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7180    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7181  }
7182  return SDValue();
7183}
7184
7185static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7186  LLVMContext *Context = DAG.getContext();
7187  DebugLoc dl = Op.getDebugLoc();
7188  EVT OpVT = Op.getValueType();
7189
7190  // If this is a 256-bit vector result, first insert into a 128-bit
7191  // vector and then insert into the 256-bit vector.
7192  if (!OpVT.is128BitVector()) {
7193    // Insert into a 128-bit vector.
7194    EVT VT128 = EVT::getVectorVT(*Context,
7195                                 OpVT.getVectorElementType(),
7196                                 OpVT.getVectorNumElements() / 2);
7197
7198    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7199
7200    // Insert the 128-bit vector.
7201    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7202  }
7203
7204  if (OpVT == MVT::v1i64 &&
7205      Op.getOperand(0).getValueType() == MVT::i64)
7206    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7207
7208  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7209  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7210  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7211                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7212}
7213
7214// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7215// a simple subregister reference or explicit instructions to grab
7216// upper bits of a vector.
7217static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7218                                      SelectionDAG &DAG) {
7219  if (Subtarget->hasAVX()) {
7220    DebugLoc dl = Op.getNode()->getDebugLoc();
7221    SDValue Vec = Op.getNode()->getOperand(0);
7222    SDValue Idx = Op.getNode()->getOperand(1);
7223
7224    if (Op.getNode()->getValueType(0).is128BitVector() &&
7225        Vec.getNode()->getValueType(0).is256BitVector() &&
7226        isa<ConstantSDNode>(Idx)) {
7227      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7228      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7229    }
7230  }
7231  return SDValue();
7232}
7233
7234// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7235// simple superregister reference or explicit instructions to insert
7236// the upper bits of a vector.
7237static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7238                                     SelectionDAG &DAG) {
7239  if (Subtarget->hasAVX()) {
7240    DebugLoc dl = Op.getNode()->getDebugLoc();
7241    SDValue Vec = Op.getNode()->getOperand(0);
7242    SDValue SubVec = Op.getNode()->getOperand(1);
7243    SDValue Idx = Op.getNode()->getOperand(2);
7244
7245    if (Op.getNode()->getValueType(0).is256BitVector() &&
7246        SubVec.getNode()->getValueType(0).is128BitVector() &&
7247        isa<ConstantSDNode>(Idx)) {
7248      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7249      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7250    }
7251  }
7252  return SDValue();
7253}
7254
7255// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7256// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7257// one of the above mentioned nodes. It has to be wrapped because otherwise
7258// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7259// be used to form addressing mode. These wrapped nodes will be selected
7260// into MOV32ri.
7261SDValue
7262X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7263  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7264
7265  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7266  // global base reg.
7267  unsigned char OpFlag = 0;
7268  unsigned WrapperKind = X86ISD::Wrapper;
7269  CodeModel::Model M = getTargetMachine().getCodeModel();
7270
7271  if (Subtarget->isPICStyleRIPRel() &&
7272      (M == CodeModel::Small || M == CodeModel::Kernel))
7273    WrapperKind = X86ISD::WrapperRIP;
7274  else if (Subtarget->isPICStyleGOT())
7275    OpFlag = X86II::MO_GOTOFF;
7276  else if (Subtarget->isPICStyleStubPIC())
7277    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7278
7279  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7280                                             CP->getAlignment(),
7281                                             CP->getOffset(), OpFlag);
7282  DebugLoc DL = CP->getDebugLoc();
7283  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7284  // With PIC, the address is actually $g + Offset.
7285  if (OpFlag) {
7286    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7287                         DAG.getNode(X86ISD::GlobalBaseReg,
7288                                     DebugLoc(), getPointerTy()),
7289                         Result);
7290  }
7291
7292  return Result;
7293}
7294
7295SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7296  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7297
7298  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7299  // global base reg.
7300  unsigned char OpFlag = 0;
7301  unsigned WrapperKind = X86ISD::Wrapper;
7302  CodeModel::Model M = getTargetMachine().getCodeModel();
7303
7304  if (Subtarget->isPICStyleRIPRel() &&
7305      (M == CodeModel::Small || M == CodeModel::Kernel))
7306    WrapperKind = X86ISD::WrapperRIP;
7307  else if (Subtarget->isPICStyleGOT())
7308    OpFlag = X86II::MO_GOTOFF;
7309  else if (Subtarget->isPICStyleStubPIC())
7310    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7311
7312  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7313                                          OpFlag);
7314  DebugLoc DL = JT->getDebugLoc();
7315  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7316
7317  // With PIC, the address is actually $g + Offset.
7318  if (OpFlag)
7319    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7320                         DAG.getNode(X86ISD::GlobalBaseReg,
7321                                     DebugLoc(), getPointerTy()),
7322                         Result);
7323
7324  return Result;
7325}
7326
7327SDValue
7328X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7329  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7330
7331  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7332  // global base reg.
7333  unsigned char OpFlag = 0;
7334  unsigned WrapperKind = X86ISD::Wrapper;
7335  CodeModel::Model M = getTargetMachine().getCodeModel();
7336
7337  if (Subtarget->isPICStyleRIPRel() &&
7338      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7339    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7340      OpFlag = X86II::MO_GOTPCREL;
7341    WrapperKind = X86ISD::WrapperRIP;
7342  } else if (Subtarget->isPICStyleGOT()) {
7343    OpFlag = X86II::MO_GOT;
7344  } else if (Subtarget->isPICStyleStubPIC()) {
7345    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7346  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7347    OpFlag = X86II::MO_DARWIN_NONLAZY;
7348  }
7349
7350  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7351
7352  DebugLoc DL = Op.getDebugLoc();
7353  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7354
7355
7356  // With PIC, the address is actually $g + Offset.
7357  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7358      !Subtarget->is64Bit()) {
7359    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7360                         DAG.getNode(X86ISD::GlobalBaseReg,
7361                                     DebugLoc(), getPointerTy()),
7362                         Result);
7363  }
7364
7365  // For symbols that require a load from a stub to get the address, emit the
7366  // load.
7367  if (isGlobalStubReference(OpFlag))
7368    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7369                         MachinePointerInfo::getGOT(), false, false, false, 0);
7370
7371  return Result;
7372}
7373
7374SDValue
7375X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7376  // Create the TargetBlockAddressAddress node.
7377  unsigned char OpFlags =
7378    Subtarget->ClassifyBlockAddressReference();
7379  CodeModel::Model M = getTargetMachine().getCodeModel();
7380  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7381  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7382  DebugLoc dl = Op.getDebugLoc();
7383  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7384                                             OpFlags);
7385
7386  if (Subtarget->isPICStyleRIPRel() &&
7387      (M == CodeModel::Small || M == CodeModel::Kernel))
7388    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7389  else
7390    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7391
7392  // With PIC, the address is actually $g + Offset.
7393  if (isGlobalRelativeToPICBase(OpFlags)) {
7394    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7395                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7396                         Result);
7397  }
7398
7399  return Result;
7400}
7401
7402SDValue
7403X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7404                                      int64_t Offset,
7405                                      SelectionDAG &DAG) const {
7406  // Create the TargetGlobalAddress node, folding in the constant
7407  // offset if it is legal.
7408  unsigned char OpFlags =
7409    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7410  CodeModel::Model M = getTargetMachine().getCodeModel();
7411  SDValue Result;
7412  if (OpFlags == X86II::MO_NO_FLAG &&
7413      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7414    // A direct static reference to a global.
7415    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7416    Offset = 0;
7417  } else {
7418    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7419  }
7420
7421  if (Subtarget->isPICStyleRIPRel() &&
7422      (M == CodeModel::Small || M == CodeModel::Kernel))
7423    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7424  else
7425    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7426
7427  // With PIC, the address is actually $g + Offset.
7428  if (isGlobalRelativeToPICBase(OpFlags)) {
7429    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7430                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7431                         Result);
7432  }
7433
7434  // For globals that require a load from a stub to get the address, emit the
7435  // load.
7436  if (isGlobalStubReference(OpFlags))
7437    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7438                         MachinePointerInfo::getGOT(), false, false, false, 0);
7439
7440  // If there was a non-zero offset that we didn't fold, create an explicit
7441  // addition for it.
7442  if (Offset != 0)
7443    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7444                         DAG.getConstant(Offset, getPointerTy()));
7445
7446  return Result;
7447}
7448
7449SDValue
7450X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7451  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7452  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7453  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7454}
7455
7456static SDValue
7457GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7458           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7459           unsigned char OperandFlags, bool LocalDynamic = false) {
7460  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7461  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7462  DebugLoc dl = GA->getDebugLoc();
7463  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7464                                           GA->getValueType(0),
7465                                           GA->getOffset(),
7466                                           OperandFlags);
7467
7468  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7469                                           : X86ISD::TLSADDR;
7470
7471  if (InFlag) {
7472    SDValue Ops[] = { Chain,  TGA, *InFlag };
7473    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7474  } else {
7475    SDValue Ops[]  = { Chain, TGA };
7476    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7477  }
7478
7479  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7480  MFI->setAdjustsStack(true);
7481
7482  SDValue Flag = Chain.getValue(1);
7483  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7484}
7485
7486// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7487static SDValue
7488LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7489                                const EVT PtrVT) {
7490  SDValue InFlag;
7491  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7492  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7493                                   DAG.getNode(X86ISD::GlobalBaseReg,
7494                                               DebugLoc(), PtrVT), InFlag);
7495  InFlag = Chain.getValue(1);
7496
7497  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7498}
7499
7500// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7501static SDValue
7502LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7503                                const EVT PtrVT) {
7504  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7505                    X86::RAX, X86II::MO_TLSGD);
7506}
7507
7508static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7509                                           SelectionDAG &DAG,
7510                                           const EVT PtrVT,
7511                                           bool is64Bit) {
7512  DebugLoc dl = GA->getDebugLoc();
7513
7514  // Get the start address of the TLS block for this module.
7515  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7516      .getInfo<X86MachineFunctionInfo>();
7517  MFI->incNumLocalDynamicTLSAccesses();
7518
7519  SDValue Base;
7520  if (is64Bit) {
7521    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7522                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7523  } else {
7524    SDValue InFlag;
7525    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7526        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7527    InFlag = Chain.getValue(1);
7528    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7529                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7530  }
7531
7532  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7533  // of Base.
7534
7535  // Build x@dtpoff.
7536  unsigned char OperandFlags = X86II::MO_DTPOFF;
7537  unsigned WrapperKind = X86ISD::Wrapper;
7538  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7539                                           GA->getValueType(0),
7540                                           GA->getOffset(), OperandFlags);
7541  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7542
7543  // Add x@dtpoff with the base.
7544  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7545}
7546
7547// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7548static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7549                                   const EVT PtrVT, TLSModel::Model model,
7550                                   bool is64Bit, bool isPIC) {
7551  DebugLoc dl = GA->getDebugLoc();
7552
7553  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7554  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7555                                                         is64Bit ? 257 : 256));
7556
7557  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7558                                      DAG.getIntPtrConstant(0),
7559                                      MachinePointerInfo(Ptr),
7560                                      false, false, false, 0);
7561
7562  unsigned char OperandFlags = 0;
7563  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7564  // initialexec.
7565  unsigned WrapperKind = X86ISD::Wrapper;
7566  if (model == TLSModel::LocalExec) {
7567    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7568  } else if (model == TLSModel::InitialExec) {
7569    if (is64Bit) {
7570      OperandFlags = X86II::MO_GOTTPOFF;
7571      WrapperKind = X86ISD::WrapperRIP;
7572    } else {
7573      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7574    }
7575  } else {
7576    llvm_unreachable("Unexpected model");
7577  }
7578
7579  // emit "addl x@ntpoff,%eax" (local exec)
7580  // or "addl x@indntpoff,%eax" (initial exec)
7581  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7582  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7583                                           GA->getValueType(0),
7584                                           GA->getOffset(), OperandFlags);
7585  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7586
7587  if (model == TLSModel::InitialExec) {
7588    if (isPIC && !is64Bit) {
7589      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7590                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7591                           Offset);
7592    }
7593
7594    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7595                         MachinePointerInfo::getGOT(), false, false, false,
7596                         0);
7597  }
7598
7599  // The address of the thread local variable is the add of the thread
7600  // pointer with the offset of the variable.
7601  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7602}
7603
7604SDValue
7605X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7606
7607  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7608  const GlobalValue *GV = GA->getGlobal();
7609
7610  if (Subtarget->isTargetELF()) {
7611    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7612
7613    switch (model) {
7614      case TLSModel::GeneralDynamic:
7615        if (Subtarget->is64Bit())
7616          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7617        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7618      case TLSModel::LocalDynamic:
7619        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7620                                           Subtarget->is64Bit());
7621      case TLSModel::InitialExec:
7622      case TLSModel::LocalExec:
7623        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7624                                   Subtarget->is64Bit(),
7625                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7626    }
7627    llvm_unreachable("Unknown TLS model.");
7628  }
7629
7630  if (Subtarget->isTargetDarwin()) {
7631    // Darwin only has one model of TLS.  Lower to that.
7632    unsigned char OpFlag = 0;
7633    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7634                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7635
7636    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7637    // global base reg.
7638    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7639                  !Subtarget->is64Bit();
7640    if (PIC32)
7641      OpFlag = X86II::MO_TLVP_PIC_BASE;
7642    else
7643      OpFlag = X86II::MO_TLVP;
7644    DebugLoc DL = Op.getDebugLoc();
7645    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7646                                                GA->getValueType(0),
7647                                                GA->getOffset(), OpFlag);
7648    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7649
7650    // With PIC32, the address is actually $g + Offset.
7651    if (PIC32)
7652      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7653                           DAG.getNode(X86ISD::GlobalBaseReg,
7654                                       DebugLoc(), getPointerTy()),
7655                           Offset);
7656
7657    // Lowering the machine isd will make sure everything is in the right
7658    // location.
7659    SDValue Chain = DAG.getEntryNode();
7660    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7661    SDValue Args[] = { Chain, Offset };
7662    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7663
7664    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7665    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7666    MFI->setAdjustsStack(true);
7667
7668    // And our return value (tls address) is in the standard call return value
7669    // location.
7670    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7671    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7672                              Chain.getValue(1));
7673  }
7674
7675  if (Subtarget->isTargetWindows()) {
7676    // Just use the implicit TLS architecture
7677    // Need to generate someting similar to:
7678    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7679    //                                  ; from TEB
7680    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7681    //   mov     rcx, qword [rdx+rcx*8]
7682    //   mov     eax, .tls$:tlsvar
7683    //   [rax+rcx] contains the address
7684    // Windows 64bit: gs:0x58
7685    // Windows 32bit: fs:__tls_array
7686
7687    // If GV is an alias then use the aliasee for determining
7688    // thread-localness.
7689    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7690      GV = GA->resolveAliasedGlobal(false);
7691    DebugLoc dl = GA->getDebugLoc();
7692    SDValue Chain = DAG.getEntryNode();
7693
7694    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7695    // %gs:0x58 (64-bit).
7696    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7697                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7698                                                             256)
7699                                        : Type::getInt32PtrTy(*DAG.getContext(),
7700                                                              257));
7701
7702    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7703                                        Subtarget->is64Bit()
7704                                        ? DAG.getIntPtrConstant(0x58)
7705                                        : DAG.getExternalSymbol("_tls_array",
7706                                                                getPointerTy()),
7707                                        MachinePointerInfo(Ptr),
7708                                        false, false, false, 0);
7709
7710    // Load the _tls_index variable
7711    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7712    if (Subtarget->is64Bit())
7713      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7714                           IDX, MachinePointerInfo(), MVT::i32,
7715                           false, false, 0);
7716    else
7717      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7718                        false, false, false, 0);
7719
7720    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7721                                    getPointerTy());
7722    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7723
7724    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7725    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7726                      false, false, false, 0);
7727
7728    // Get the offset of start of .tls section
7729    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7730                                             GA->getValueType(0),
7731                                             GA->getOffset(), X86II::MO_SECREL);
7732    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7733
7734    // The address of the thread local variable is the add of the thread
7735    // pointer with the offset of the variable.
7736    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7737  }
7738
7739  llvm_unreachable("TLS not implemented for this target.");
7740}
7741
7742
7743/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7744/// and take a 2 x i32 value to shift plus a shift amount.
7745SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7746  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7747  EVT VT = Op.getValueType();
7748  unsigned VTBits = VT.getSizeInBits();
7749  DebugLoc dl = Op.getDebugLoc();
7750  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7751  SDValue ShOpLo = Op.getOperand(0);
7752  SDValue ShOpHi = Op.getOperand(1);
7753  SDValue ShAmt  = Op.getOperand(2);
7754  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7755                                     DAG.getConstant(VTBits - 1, MVT::i8))
7756                       : DAG.getConstant(0, VT);
7757
7758  SDValue Tmp2, Tmp3;
7759  if (Op.getOpcode() == ISD::SHL_PARTS) {
7760    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7761    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7762  } else {
7763    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7764    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7765  }
7766
7767  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7768                                DAG.getConstant(VTBits, MVT::i8));
7769  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7770                             AndNode, DAG.getConstant(0, MVT::i8));
7771
7772  SDValue Hi, Lo;
7773  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7774  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7775  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7776
7777  if (Op.getOpcode() == ISD::SHL_PARTS) {
7778    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7779    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7780  } else {
7781    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7782    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7783  }
7784
7785  SDValue Ops[2] = { Lo, Hi };
7786  return DAG.getMergeValues(Ops, 2, dl);
7787}
7788
7789SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7790                                           SelectionDAG &DAG) const {
7791  EVT SrcVT = Op.getOperand(0).getValueType();
7792
7793  if (SrcVT.isVector())
7794    return SDValue();
7795
7796  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7797         "Unknown SINT_TO_FP to lower!");
7798
7799  // These are really Legal; return the operand so the caller accepts it as
7800  // Legal.
7801  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7802    return Op;
7803  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7804      Subtarget->is64Bit()) {
7805    return Op;
7806  }
7807
7808  DebugLoc dl = Op.getDebugLoc();
7809  unsigned Size = SrcVT.getSizeInBits()/8;
7810  MachineFunction &MF = DAG.getMachineFunction();
7811  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7812  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7813  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7814                               StackSlot,
7815                               MachinePointerInfo::getFixedStack(SSFI),
7816                               false, false, 0);
7817  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7818}
7819
7820SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7821                                     SDValue StackSlot,
7822                                     SelectionDAG &DAG) const {
7823  // Build the FILD
7824  DebugLoc DL = Op.getDebugLoc();
7825  SDVTList Tys;
7826  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7827  if (useSSE)
7828    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7829  else
7830    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7831
7832  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7833
7834  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7835  MachineMemOperand *MMO;
7836  if (FI) {
7837    int SSFI = FI->getIndex();
7838    MMO =
7839      DAG.getMachineFunction()
7840      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7841                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7842  } else {
7843    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7844    StackSlot = StackSlot.getOperand(1);
7845  }
7846  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7847  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7848                                           X86ISD::FILD, DL,
7849                                           Tys, Ops, array_lengthof(Ops),
7850                                           SrcVT, MMO);
7851
7852  if (useSSE) {
7853    Chain = Result.getValue(1);
7854    SDValue InFlag = Result.getValue(2);
7855
7856    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7857    // shouldn't be necessary except that RFP cannot be live across
7858    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7859    MachineFunction &MF = DAG.getMachineFunction();
7860    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7861    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7862    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7863    Tys = DAG.getVTList(MVT::Other);
7864    SDValue Ops[] = {
7865      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7866    };
7867    MachineMemOperand *MMO =
7868      DAG.getMachineFunction()
7869      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7870                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7871
7872    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7873                                    Ops, array_lengthof(Ops),
7874                                    Op.getValueType(), MMO);
7875    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7876                         MachinePointerInfo::getFixedStack(SSFI),
7877                         false, false, false, 0);
7878  }
7879
7880  return Result;
7881}
7882
7883// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7884SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7885                                               SelectionDAG &DAG) const {
7886  // This algorithm is not obvious. Here it is what we're trying to output:
7887  /*
7888     movq       %rax,  %xmm0
7889     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7890     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7891     #ifdef __SSE3__
7892       haddpd   %xmm0, %xmm0
7893     #else
7894       pshufd   $0x4e, %xmm0, %xmm1
7895       addpd    %xmm1, %xmm0
7896     #endif
7897  */
7898
7899  DebugLoc dl = Op.getDebugLoc();
7900  LLVMContext *Context = DAG.getContext();
7901
7902  // Build some magic constants.
7903  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7904  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7905  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7906
7907  SmallVector<Constant*,2> CV1;
7908  CV1.push_back(
7909        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7910  CV1.push_back(
7911        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7912  Constant *C1 = ConstantVector::get(CV1);
7913  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7914
7915  // Load the 64-bit value into an XMM register.
7916  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7917                            Op.getOperand(0));
7918  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7919                              MachinePointerInfo::getConstantPool(),
7920                              false, false, false, 16);
7921  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7922                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7923                              CLod0);
7924
7925  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7926                              MachinePointerInfo::getConstantPool(),
7927                              false, false, false, 16);
7928  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7929  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7930  SDValue Result;
7931
7932  if (Subtarget->hasSSE3()) {
7933    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7934    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7935  } else {
7936    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7937    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7938                                           S2F, 0x4E, DAG);
7939    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7940                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7941                         Sub);
7942  }
7943
7944  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7945                     DAG.getIntPtrConstant(0));
7946}
7947
7948// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7949SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7950                                               SelectionDAG &DAG) const {
7951  DebugLoc dl = Op.getDebugLoc();
7952  // FP constant to bias correct the final result.
7953  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7954                                   MVT::f64);
7955
7956  // Load the 32-bit value into an XMM register.
7957  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7958                             Op.getOperand(0));
7959
7960  // Zero out the upper parts of the register.
7961  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7962
7963  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7964                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7965                     DAG.getIntPtrConstant(0));
7966
7967  // Or the load with the bias.
7968  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7969                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7970                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7971                                                   MVT::v2f64, Load)),
7972                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7973                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7974                                                   MVT::v2f64, Bias)));
7975  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7976                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7977                   DAG.getIntPtrConstant(0));
7978
7979  // Subtract the bias.
7980  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7981
7982  // Handle final rounding.
7983  EVT DestVT = Op.getValueType();
7984
7985  if (DestVT.bitsLT(MVT::f64))
7986    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7987                       DAG.getIntPtrConstant(0));
7988  if (DestVT.bitsGT(MVT::f64))
7989    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7990
7991  // Handle final rounding.
7992  return Sub;
7993}
7994
7995SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7996                                           SelectionDAG &DAG) const {
7997  SDValue N0 = Op.getOperand(0);
7998  DebugLoc dl = Op.getDebugLoc();
7999
8000  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8001  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8002  // the optimization here.
8003  if (DAG.SignBitIsZero(N0))
8004    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8005
8006  EVT SrcVT = N0.getValueType();
8007  EVT DstVT = Op.getValueType();
8008  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8009    return LowerUINT_TO_FP_i64(Op, DAG);
8010  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8011    return LowerUINT_TO_FP_i32(Op, DAG);
8012  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8013    return SDValue();
8014
8015  // Make a 64-bit buffer, and use it to build an FILD.
8016  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8017  if (SrcVT == MVT::i32) {
8018    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8019    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8020                                     getPointerTy(), StackSlot, WordOff);
8021    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8022                                  StackSlot, MachinePointerInfo(),
8023                                  false, false, 0);
8024    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8025                                  OffsetSlot, MachinePointerInfo(),
8026                                  false, false, 0);
8027    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8028    return Fild;
8029  }
8030
8031  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8032  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8033                               StackSlot, MachinePointerInfo(),
8034                               false, false, 0);
8035  // For i64 source, we need to add the appropriate power of 2 if the input
8036  // was negative.  This is the same as the optimization in
8037  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8038  // we must be careful to do the computation in x87 extended precision, not
8039  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8040  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8041  MachineMemOperand *MMO =
8042    DAG.getMachineFunction()
8043    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8044                          MachineMemOperand::MOLoad, 8, 8);
8045
8046  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8047  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8048  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
8049                                         MVT::i64, MMO);
8050
8051  APInt FF(32, 0x5F800000ULL);
8052
8053  // Check whether the sign bit is set.
8054  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
8055                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8056                                 ISD::SETLT);
8057
8058  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8059  SDValue FudgePtr = DAG.getConstantPool(
8060                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8061                                         getPointerTy());
8062
8063  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8064  SDValue Zero = DAG.getIntPtrConstant(0);
8065  SDValue Four = DAG.getIntPtrConstant(4);
8066  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8067                               Zero, Four);
8068  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8069
8070  // Load the value out, extending it from f32 to f80.
8071  // FIXME: Avoid the extend by constructing the right constant pool?
8072  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8073                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8074                                 MVT::f32, false, false, 4);
8075  // Extend everything to 80 bits to force it to be done on x87.
8076  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8077  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8078}
8079
8080std::pair<SDValue,SDValue> X86TargetLowering::
8081FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
8082  DebugLoc DL = Op.getDebugLoc();
8083
8084  EVT DstTy = Op.getValueType();
8085
8086  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8087    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8088    DstTy = MVT::i64;
8089  }
8090
8091  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8092         DstTy.getSimpleVT() >= MVT::i16 &&
8093         "Unknown FP_TO_INT to lower!");
8094
8095  // These are really Legal.
8096  if (DstTy == MVT::i32 &&
8097      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8098    return std::make_pair(SDValue(), SDValue());
8099  if (Subtarget->is64Bit() &&
8100      DstTy == MVT::i64 &&
8101      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8102    return std::make_pair(SDValue(), SDValue());
8103
8104  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8105  // stack slot, or into the FTOL runtime function.
8106  MachineFunction &MF = DAG.getMachineFunction();
8107  unsigned MemSize = DstTy.getSizeInBits()/8;
8108  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8109  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8110
8111  unsigned Opc;
8112  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8113    Opc = X86ISD::WIN_FTOL;
8114  else
8115    switch (DstTy.getSimpleVT().SimpleTy) {
8116    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8117    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8118    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8119    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8120    }
8121
8122  SDValue Chain = DAG.getEntryNode();
8123  SDValue Value = Op.getOperand(0);
8124  EVT TheVT = Op.getOperand(0).getValueType();
8125  // FIXME This causes a redundant load/store if the SSE-class value is already
8126  // in memory, such as if it is on the callstack.
8127  if (isScalarFPTypeInSSEReg(TheVT)) {
8128    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8129    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8130                         MachinePointerInfo::getFixedStack(SSFI),
8131                         false, false, 0);
8132    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8133    SDValue Ops[] = {
8134      Chain, StackSlot, DAG.getValueType(TheVT)
8135    };
8136
8137    MachineMemOperand *MMO =
8138      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8139                              MachineMemOperand::MOLoad, MemSize, MemSize);
8140    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8141                                    DstTy, MMO);
8142    Chain = Value.getValue(1);
8143    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8144    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8145  }
8146
8147  MachineMemOperand *MMO =
8148    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8149                            MachineMemOperand::MOStore, MemSize, MemSize);
8150
8151  if (Opc != X86ISD::WIN_FTOL) {
8152    // Build the FP_TO_INT*_IN_MEM
8153    SDValue Ops[] = { Chain, Value, StackSlot };
8154    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8155                                           Ops, 3, DstTy, MMO);
8156    return std::make_pair(FIST, StackSlot);
8157  } else {
8158    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8159      DAG.getVTList(MVT::Other, MVT::Glue),
8160      Chain, Value);
8161    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8162      MVT::i32, ftol.getValue(1));
8163    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8164      MVT::i32, eax.getValue(2));
8165    SDValue Ops[] = { eax, edx };
8166    SDValue pair = IsReplace
8167      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8168      : DAG.getMergeValues(Ops, 2, DL);
8169    return std::make_pair(pair, SDValue());
8170  }
8171}
8172
8173SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8174                                           SelectionDAG &DAG) const {
8175  if (Op.getValueType().isVector())
8176    return SDValue();
8177
8178  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8179    /*IsSigned=*/ true, /*IsReplace=*/ false);
8180  SDValue FIST = Vals.first, StackSlot = Vals.second;
8181  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8182  if (FIST.getNode() == 0) return Op;
8183
8184  if (StackSlot.getNode())
8185    // Load the result.
8186    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8187                       FIST, StackSlot, MachinePointerInfo(),
8188                       false, false, false, 0);
8189
8190  // The node is the result.
8191  return FIST;
8192}
8193
8194SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8195                                           SelectionDAG &DAG) const {
8196  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8197    /*IsSigned=*/ false, /*IsReplace=*/ false);
8198  SDValue FIST = Vals.first, StackSlot = Vals.second;
8199  assert(FIST.getNode() && "Unexpected failure");
8200
8201  if (StackSlot.getNode())
8202    // Load the result.
8203    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8204                       FIST, StackSlot, MachinePointerInfo(),
8205                       false, false, false, 0);
8206
8207  // The node is the result.
8208  return FIST;
8209}
8210
8211SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8212  LLVMContext *Context = DAG.getContext();
8213  DebugLoc dl = Op.getDebugLoc();
8214  EVT VT = Op.getValueType();
8215  EVT EltVT = VT;
8216  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8217  if (VT.isVector()) {
8218    EltVT = VT.getVectorElementType();
8219    NumElts = VT.getVectorNumElements();
8220  }
8221  Constant *C;
8222  if (EltVT == MVT::f64)
8223    C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8224  else
8225    C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8226  C = ConstantVector::getSplat(NumElts, C);
8227  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8228  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8229  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8230                             MachinePointerInfo::getConstantPool(),
8231                             false, false, false, Alignment);
8232  if (VT.isVector()) {
8233    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8234    return DAG.getNode(ISD::BITCAST, dl, VT,
8235                       DAG.getNode(ISD::AND, dl, ANDVT,
8236                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8237                                               Op.getOperand(0)),
8238                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8239  }
8240  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8241}
8242
8243SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8244  LLVMContext *Context = DAG.getContext();
8245  DebugLoc dl = Op.getDebugLoc();
8246  EVT VT = Op.getValueType();
8247  EVT EltVT = VT;
8248  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8249  if (VT.isVector()) {
8250    EltVT = VT.getVectorElementType();
8251    NumElts = VT.getVectorNumElements();
8252  }
8253  Constant *C;
8254  if (EltVT == MVT::f64)
8255    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8256  else
8257    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8258  C = ConstantVector::getSplat(NumElts, C);
8259  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8260  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8261  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8262                             MachinePointerInfo::getConstantPool(),
8263                             false, false, false, Alignment);
8264  if (VT.isVector()) {
8265    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8266    return DAG.getNode(ISD::BITCAST, dl, VT,
8267                       DAG.getNode(ISD::XOR, dl, XORVT,
8268                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8269                                               Op.getOperand(0)),
8270                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8271  }
8272
8273  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8274}
8275
8276SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8277  LLVMContext *Context = DAG.getContext();
8278  SDValue Op0 = Op.getOperand(0);
8279  SDValue Op1 = Op.getOperand(1);
8280  DebugLoc dl = Op.getDebugLoc();
8281  EVT VT = Op.getValueType();
8282  EVT SrcVT = Op1.getValueType();
8283
8284  // If second operand is smaller, extend it first.
8285  if (SrcVT.bitsLT(VT)) {
8286    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8287    SrcVT = VT;
8288  }
8289  // And if it is bigger, shrink it first.
8290  if (SrcVT.bitsGT(VT)) {
8291    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8292    SrcVT = VT;
8293  }
8294
8295  // At this point the operands and the result should have the same
8296  // type, and that won't be f80 since that is not custom lowered.
8297
8298  // First get the sign bit of second operand.
8299  SmallVector<Constant*,4> CV;
8300  if (SrcVT == MVT::f64) {
8301    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8302    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8303  } else {
8304    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8305    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8306    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8307    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8308  }
8309  Constant *C = ConstantVector::get(CV);
8310  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8311  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8312                              MachinePointerInfo::getConstantPool(),
8313                              false, false, false, 16);
8314  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8315
8316  // Shift sign bit right or left if the two operands have different types.
8317  if (SrcVT.bitsGT(VT)) {
8318    // Op0 is MVT::f32, Op1 is MVT::f64.
8319    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8320    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8321                          DAG.getConstant(32, MVT::i32));
8322    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8323    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8324                          DAG.getIntPtrConstant(0));
8325  }
8326
8327  // Clear first operand sign bit.
8328  CV.clear();
8329  if (VT == MVT::f64) {
8330    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8331    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8332  } else {
8333    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8334    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8335    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8336    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8337  }
8338  C = ConstantVector::get(CV);
8339  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8340  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8341                              MachinePointerInfo::getConstantPool(),
8342                              false, false, false, 16);
8343  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8344
8345  // Or the value with the sign bit.
8346  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8347}
8348
8349static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8350  SDValue N0 = Op.getOperand(0);
8351  DebugLoc dl = Op.getDebugLoc();
8352  EVT VT = Op.getValueType();
8353
8354  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8355  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8356                                  DAG.getConstant(1, VT));
8357  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8358}
8359
8360// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8361//
8362SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const {
8363  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8364
8365  if (!Subtarget->hasSSE41())
8366    return SDValue();
8367
8368  if (!Op->hasOneUse())
8369    return SDValue();
8370
8371  SDNode *N = Op.getNode();
8372  DebugLoc DL = N->getDebugLoc();
8373
8374  SmallVector<SDValue, 8> Opnds;
8375  DenseMap<SDValue, unsigned> VecInMap;
8376  EVT VT = MVT::Other;
8377
8378  // Recognize a special case where a vector is casted into wide integer to
8379  // test all 0s.
8380  Opnds.push_back(N->getOperand(0));
8381  Opnds.push_back(N->getOperand(1));
8382
8383  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8384    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8385    // BFS traverse all OR'd operands.
8386    if (I->getOpcode() == ISD::OR) {
8387      Opnds.push_back(I->getOperand(0));
8388      Opnds.push_back(I->getOperand(1));
8389      // Re-evaluate the number of nodes to be traversed.
8390      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8391      continue;
8392    }
8393
8394    // Quit if a non-EXTRACT_VECTOR_ELT
8395    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8396      return SDValue();
8397
8398    // Quit if without a constant index.
8399    SDValue Idx = I->getOperand(1);
8400    if (!isa<ConstantSDNode>(Idx))
8401      return SDValue();
8402
8403    SDValue ExtractedFromVec = I->getOperand(0);
8404    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8405    if (M == VecInMap.end()) {
8406      VT = ExtractedFromVec.getValueType();
8407      // Quit if not 128/256-bit vector.
8408      if (!VT.is128BitVector() && !VT.is256BitVector())
8409        return SDValue();
8410      // Quit if not the same type.
8411      if (VecInMap.begin() != VecInMap.end() &&
8412          VT != VecInMap.begin()->first.getValueType())
8413        return SDValue();
8414      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8415    }
8416    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8417  }
8418
8419  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8420         "Not extracted from 128-/256-bit vector.");
8421
8422  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8423  SmallVector<SDValue, 8> VecIns;
8424
8425  for (DenseMap<SDValue, unsigned>::const_iterator
8426        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8427    // Quit if not all elements are used.
8428    if (I->second != FullMask)
8429      return SDValue();
8430    VecIns.push_back(I->first);
8431  }
8432
8433  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8434
8435  // Cast all vectors into TestVT for PTEST.
8436  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8437    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8438
8439  // If more than one full vectors are evaluated, OR them first before PTEST.
8440  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8441    // Each iteration will OR 2 nodes and append the result until there is only
8442    // 1 node left, i.e. the final OR'd value of all vectors.
8443    SDValue LHS = VecIns[Slot];
8444    SDValue RHS = VecIns[Slot + 1];
8445    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8446  }
8447
8448  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8449                     VecIns.back(), VecIns.back());
8450}
8451
8452/// Emit nodes that will be selected as "test Op0,Op0", or something
8453/// equivalent.
8454SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8455                                    SelectionDAG &DAG) const {
8456  DebugLoc dl = Op.getDebugLoc();
8457
8458  // CF and OF aren't always set the way we want. Determine which
8459  // of these we need.
8460  bool NeedCF = false;
8461  bool NeedOF = false;
8462  switch (X86CC) {
8463  default: break;
8464  case X86::COND_A: case X86::COND_AE:
8465  case X86::COND_B: case X86::COND_BE:
8466    NeedCF = true;
8467    break;
8468  case X86::COND_G: case X86::COND_GE:
8469  case X86::COND_L: case X86::COND_LE:
8470  case X86::COND_O: case X86::COND_NO:
8471    NeedOF = true;
8472    break;
8473  }
8474
8475  // See if we can use the EFLAGS value from the operand instead of
8476  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8477  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8478  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8479    // Emit a CMP with 0, which is the TEST pattern.
8480    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8481                       DAG.getConstant(0, Op.getValueType()));
8482
8483  unsigned Opcode = 0;
8484  unsigned NumOperands = 0;
8485
8486  // Truncate operations may prevent the merge of the SETCC instruction
8487  // and the arithmetic intruction before it. Attempt to truncate the operands
8488  // of the arithmetic instruction and use a reduced bit-width instruction.
8489  bool NeedTruncation = false;
8490  SDValue ArithOp = Op;
8491  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8492    SDValue Arith = Op->getOperand(0);
8493    // Both the trunc and the arithmetic op need to have one user each.
8494    if (Arith->hasOneUse())
8495      switch (Arith.getOpcode()) {
8496        default: break;
8497        case ISD::ADD:
8498        case ISD::SUB:
8499        case ISD::AND:
8500        case ISD::OR:
8501        case ISD::XOR: {
8502          NeedTruncation = true;
8503          ArithOp = Arith;
8504        }
8505      }
8506  }
8507
8508  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8509  // which may be the result of a CAST.  We use the variable 'Op', which is the
8510  // non-casted variable when we check for possible users.
8511  switch (ArithOp.getOpcode()) {
8512  case ISD::ADD:
8513    // Due to an isel shortcoming, be conservative if this add is likely to be
8514    // selected as part of a load-modify-store instruction. When the root node
8515    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8516    // uses of other nodes in the match, such as the ADD in this case. This
8517    // leads to the ADD being left around and reselected, with the result being
8518    // two adds in the output.  Alas, even if none our users are stores, that
8519    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8520    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8521    // climbing the DAG back to the root, and it doesn't seem to be worth the
8522    // effort.
8523    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8524         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8525      if (UI->getOpcode() != ISD::CopyToReg &&
8526          UI->getOpcode() != ISD::SETCC &&
8527          UI->getOpcode() != ISD::STORE)
8528        goto default_case;
8529
8530    if (ConstantSDNode *C =
8531        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8532      // An add of one will be selected as an INC.
8533      if (C->getAPIntValue() == 1) {
8534        Opcode = X86ISD::INC;
8535        NumOperands = 1;
8536        break;
8537      }
8538
8539      // An add of negative one (subtract of one) will be selected as a DEC.
8540      if (C->getAPIntValue().isAllOnesValue()) {
8541        Opcode = X86ISD::DEC;
8542        NumOperands = 1;
8543        break;
8544      }
8545    }
8546
8547    // Otherwise use a regular EFLAGS-setting add.
8548    Opcode = X86ISD::ADD;
8549    NumOperands = 2;
8550    break;
8551  case ISD::AND: {
8552    // If the primary and result isn't used, don't bother using X86ISD::AND,
8553    // because a TEST instruction will be better.
8554    bool NonFlagUse = false;
8555    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8556           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8557      SDNode *User = *UI;
8558      unsigned UOpNo = UI.getOperandNo();
8559      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8560        // Look pass truncate.
8561        UOpNo = User->use_begin().getOperandNo();
8562        User = *User->use_begin();
8563      }
8564
8565      if (User->getOpcode() != ISD::BRCOND &&
8566          User->getOpcode() != ISD::SETCC &&
8567          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8568        NonFlagUse = true;
8569        break;
8570      }
8571    }
8572
8573    if (!NonFlagUse)
8574      break;
8575  }
8576    // FALL THROUGH
8577  case ISD::SUB:
8578  case ISD::OR:
8579  case ISD::XOR:
8580    // Due to the ISEL shortcoming noted above, be conservative if this op is
8581    // likely to be selected as part of a load-modify-store instruction.
8582    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8583           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8584      if (UI->getOpcode() == ISD::STORE)
8585        goto default_case;
8586
8587    // Otherwise use a regular EFLAGS-setting instruction.
8588    switch (ArithOp.getOpcode()) {
8589    default: llvm_unreachable("unexpected operator!");
8590    case ISD::SUB: Opcode = X86ISD::SUB; break;
8591    case ISD::XOR: Opcode = X86ISD::XOR; break;
8592    case ISD::AND: Opcode = X86ISD::AND; break;
8593    case ISD::OR: {
8594      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8595        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8596        if (EFLAGS.getNode())
8597          return EFLAGS;
8598      }
8599      Opcode = X86ISD::OR;
8600      break;
8601    }
8602    }
8603
8604    NumOperands = 2;
8605    break;
8606  case X86ISD::ADD:
8607  case X86ISD::SUB:
8608  case X86ISD::INC:
8609  case X86ISD::DEC:
8610  case X86ISD::OR:
8611  case X86ISD::XOR:
8612  case X86ISD::AND:
8613    return SDValue(Op.getNode(), 1);
8614  default:
8615  default_case:
8616    break;
8617  }
8618
8619  // If we found that truncation is beneficial, perform the truncation and
8620  // update 'Op'.
8621  if (NeedTruncation) {
8622    EVT VT = Op.getValueType();
8623    SDValue WideVal = Op->getOperand(0);
8624    EVT WideVT = WideVal.getValueType();
8625    unsigned ConvertedOp = 0;
8626    // Use a target machine opcode to prevent further DAGCombine
8627    // optimizations that may separate the arithmetic operations
8628    // from the setcc node.
8629    switch (WideVal.getOpcode()) {
8630      default: break;
8631      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8632      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8633      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8634      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8635      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8636    }
8637
8638    if (ConvertedOp) {
8639      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8640      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8641        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8642        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8643        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8644      }
8645    }
8646  }
8647
8648  if (Opcode == 0)
8649    // Emit a CMP with 0, which is the TEST pattern.
8650    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8651                       DAG.getConstant(0, Op.getValueType()));
8652
8653  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8654  SmallVector<SDValue, 4> Ops;
8655  for (unsigned i = 0; i != NumOperands; ++i)
8656    Ops.push_back(Op.getOperand(i));
8657
8658  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8659  DAG.ReplaceAllUsesWith(Op, New);
8660  return SDValue(New.getNode(), 1);
8661}
8662
8663/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8664/// equivalent.
8665SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8666                                   SelectionDAG &DAG) const {
8667  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8668    if (C->getAPIntValue() == 0)
8669      return EmitTest(Op0, X86CC, DAG);
8670
8671  DebugLoc dl = Op0.getDebugLoc();
8672  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
8673       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
8674    // Use SUB instead of CMP to enable CSE between SUB and CMP.
8675    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
8676    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
8677                              Op0, Op1);
8678    return SDValue(Sub.getNode(), 1);
8679  }
8680  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8681}
8682
8683/// Convert a comparison if required by the subtarget.
8684SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8685                                                 SelectionDAG &DAG) const {
8686  // If the subtarget does not support the FUCOMI instruction, floating-point
8687  // comparisons have to be converted.
8688  if (Subtarget->hasCMov() ||
8689      Cmp.getOpcode() != X86ISD::CMP ||
8690      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8691      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8692    return Cmp;
8693
8694  // The instruction selector will select an FUCOM instruction instead of
8695  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8696  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8697  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8698  DebugLoc dl = Cmp.getDebugLoc();
8699  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8700  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8701  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8702                            DAG.getConstant(8, MVT::i8));
8703  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8704  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8705}
8706
8707/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8708/// if it's possible.
8709SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8710                                     DebugLoc dl, SelectionDAG &DAG) const {
8711  SDValue Op0 = And.getOperand(0);
8712  SDValue Op1 = And.getOperand(1);
8713  if (Op0.getOpcode() == ISD::TRUNCATE)
8714    Op0 = Op0.getOperand(0);
8715  if (Op1.getOpcode() == ISD::TRUNCATE)
8716    Op1 = Op1.getOperand(0);
8717
8718  SDValue LHS, RHS;
8719  if (Op1.getOpcode() == ISD::SHL)
8720    std::swap(Op0, Op1);
8721  if (Op0.getOpcode() == ISD::SHL) {
8722    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8723      if (And00C->getZExtValue() == 1) {
8724        // If we looked past a truncate, check that it's only truncating away
8725        // known zeros.
8726        unsigned BitWidth = Op0.getValueSizeInBits();
8727        unsigned AndBitWidth = And.getValueSizeInBits();
8728        if (BitWidth > AndBitWidth) {
8729          APInt Zeros, Ones;
8730          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8731          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8732            return SDValue();
8733        }
8734        LHS = Op1;
8735        RHS = Op0.getOperand(1);
8736      }
8737  } else if (Op1.getOpcode() == ISD::Constant) {
8738    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8739    uint64_t AndRHSVal = AndRHS->getZExtValue();
8740    SDValue AndLHS = Op0;
8741
8742    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8743      LHS = AndLHS.getOperand(0);
8744      RHS = AndLHS.getOperand(1);
8745    }
8746
8747    // Use BT if the immediate can't be encoded in a TEST instruction.
8748    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8749      LHS = AndLHS;
8750      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8751    }
8752  }
8753
8754  if (LHS.getNode()) {
8755    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8756    // instruction.  Since the shift amount is in-range-or-undefined, we know
8757    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8758    // the encoding for the i16 version is larger than the i32 version.
8759    // Also promote i16 to i32 for performance / code size reason.
8760    if (LHS.getValueType() == MVT::i8 ||
8761        LHS.getValueType() == MVT::i16)
8762      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8763
8764    // If the operand types disagree, extend the shift amount to match.  Since
8765    // BT ignores high bits (like shifts) we can use anyextend.
8766    if (LHS.getValueType() != RHS.getValueType())
8767      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8768
8769    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8770    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8771    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8772                       DAG.getConstant(Cond, MVT::i8), BT);
8773  }
8774
8775  return SDValue();
8776}
8777
8778SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8779
8780  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8781
8782  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8783  SDValue Op0 = Op.getOperand(0);
8784  SDValue Op1 = Op.getOperand(1);
8785  DebugLoc dl = Op.getDebugLoc();
8786  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8787
8788  // Optimize to BT if possible.
8789  // Lower (X & (1 << N)) == 0 to BT(X, N).
8790  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8791  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8792  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8793      Op1.getOpcode() == ISD::Constant &&
8794      cast<ConstantSDNode>(Op1)->isNullValue() &&
8795      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8796    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8797    if (NewSetCC.getNode())
8798      return NewSetCC;
8799  }
8800
8801  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8802  // these.
8803  if (Op1.getOpcode() == ISD::Constant &&
8804      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8805       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8806      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8807
8808    // If the input is a setcc, then reuse the input setcc or use a new one with
8809    // the inverted condition.
8810    if (Op0.getOpcode() == X86ISD::SETCC) {
8811      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8812      bool Invert = (CC == ISD::SETNE) ^
8813        cast<ConstantSDNode>(Op1)->isNullValue();
8814      if (!Invert) return Op0;
8815
8816      CCode = X86::GetOppositeBranchCondition(CCode);
8817      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8818                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8819    }
8820  }
8821
8822  bool isFP = Op1.getValueType().isFloatingPoint();
8823  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8824  if (X86CC == X86::COND_INVALID)
8825    return SDValue();
8826
8827  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8828  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8829  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8830                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8831}
8832
8833// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8834// ones, and then concatenate the result back.
8835static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8836  EVT VT = Op.getValueType();
8837
8838  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
8839         "Unsupported value type for operation");
8840
8841  unsigned NumElems = VT.getVectorNumElements();
8842  DebugLoc dl = Op.getDebugLoc();
8843  SDValue CC = Op.getOperand(2);
8844
8845  // Extract the LHS vectors
8846  SDValue LHS = Op.getOperand(0);
8847  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8848  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8849
8850  // Extract the RHS vectors
8851  SDValue RHS = Op.getOperand(1);
8852  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8853  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8854
8855  // Issue the operation on the smaller types and concatenate the result back
8856  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8857  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8858  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8859                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8860                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8861}
8862
8863
8864SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8865  SDValue Cond;
8866  SDValue Op0 = Op.getOperand(0);
8867  SDValue Op1 = Op.getOperand(1);
8868  SDValue CC = Op.getOperand(2);
8869  EVT VT = Op.getValueType();
8870  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8871  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8872  DebugLoc dl = Op.getDebugLoc();
8873
8874  if (isFP) {
8875#ifndef NDEBUG
8876    EVT EltVT = Op0.getValueType().getVectorElementType();
8877    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8878#endif
8879
8880    unsigned SSECC;
8881    bool Swap = false;
8882
8883    // SSE Condition code mapping:
8884    //  0 - EQ
8885    //  1 - LT
8886    //  2 - LE
8887    //  3 - UNORD
8888    //  4 - NEQ
8889    //  5 - NLT
8890    //  6 - NLE
8891    //  7 - ORD
8892    switch (SetCCOpcode) {
8893    default: llvm_unreachable("Unexpected SETCC condition");
8894    case ISD::SETOEQ:
8895    case ISD::SETEQ:  SSECC = 0; break;
8896    case ISD::SETOGT:
8897    case ISD::SETGT: Swap = true; // Fallthrough
8898    case ISD::SETLT:
8899    case ISD::SETOLT: SSECC = 1; break;
8900    case ISD::SETOGE:
8901    case ISD::SETGE: Swap = true; // Fallthrough
8902    case ISD::SETLE:
8903    case ISD::SETOLE: SSECC = 2; break;
8904    case ISD::SETUO:  SSECC = 3; break;
8905    case ISD::SETUNE:
8906    case ISD::SETNE:  SSECC = 4; break;
8907    case ISD::SETULE: Swap = true; // Fallthrough
8908    case ISD::SETUGE: SSECC = 5; break;
8909    case ISD::SETULT: Swap = true; // Fallthrough
8910    case ISD::SETUGT: SSECC = 6; break;
8911    case ISD::SETO:   SSECC = 7; break;
8912    case ISD::SETUEQ:
8913    case ISD::SETONE: SSECC = 8; break;
8914    }
8915    if (Swap)
8916      std::swap(Op0, Op1);
8917
8918    // In the two special cases we can't handle, emit two comparisons.
8919    if (SSECC == 8) {
8920      unsigned CC0, CC1;
8921      unsigned CombineOpc;
8922      if (SetCCOpcode == ISD::SETUEQ) {
8923        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
8924      } else {
8925        assert(SetCCOpcode == ISD::SETONE);
8926        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
8927      }
8928
8929      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8930                                 DAG.getConstant(CC0, MVT::i8));
8931      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8932                                 DAG.getConstant(CC1, MVT::i8));
8933      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
8934    }
8935    // Handle all other FP comparisons here.
8936    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8937                       DAG.getConstant(SSECC, MVT::i8));
8938  }
8939
8940  // Break 256-bit integer vector compare into smaller ones.
8941  if (VT.is256BitVector() && !Subtarget->hasAVX2())
8942    return Lower256IntVSETCC(Op, DAG);
8943
8944  // We are handling one of the integer comparisons here.  Since SSE only has
8945  // GT and EQ comparisons for integer, swapping operands and multiple
8946  // operations may be required for some comparisons.
8947  unsigned Opc;
8948  bool Swap = false, Invert = false, FlipSigns = false;
8949
8950  switch (SetCCOpcode) {
8951  default: llvm_unreachable("Unexpected SETCC condition");
8952  case ISD::SETNE:  Invert = true;
8953  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8954  case ISD::SETLT:  Swap = true;
8955  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8956  case ISD::SETGE:  Swap = true;
8957  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8958  case ISD::SETULT: Swap = true;
8959  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8960  case ISD::SETUGE: Swap = true;
8961  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8962  }
8963  if (Swap)
8964    std::swap(Op0, Op1);
8965
8966  // Check that the operation in question is available (most are plain SSE2,
8967  // but PCMPGTQ and PCMPEQQ have different requirements).
8968  if (VT == MVT::v2i64) {
8969    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
8970      return SDValue();
8971    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41())
8972      return SDValue();
8973  }
8974
8975  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8976  // bits of the inputs before performing those operations.
8977  if (FlipSigns) {
8978    EVT EltVT = VT.getVectorElementType();
8979    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8980                                      EltVT);
8981    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8982    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8983                                    SignBits.size());
8984    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8985    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8986  }
8987
8988  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8989
8990  // If the logical-not of the result is required, perform that now.
8991  if (Invert)
8992    Result = DAG.getNOT(dl, Result, VT);
8993
8994  return Result;
8995}
8996
8997// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8998static bool isX86LogicalCmp(SDValue Op) {
8999  unsigned Opc = Op.getNode()->getOpcode();
9000  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
9001      Opc == X86ISD::SAHF)
9002    return true;
9003  if (Op.getResNo() == 1 &&
9004      (Opc == X86ISD::ADD ||
9005       Opc == X86ISD::SUB ||
9006       Opc == X86ISD::ADC ||
9007       Opc == X86ISD::SBB ||
9008       Opc == X86ISD::SMUL ||
9009       Opc == X86ISD::UMUL ||
9010       Opc == X86ISD::INC ||
9011       Opc == X86ISD::DEC ||
9012       Opc == X86ISD::OR ||
9013       Opc == X86ISD::XOR ||
9014       Opc == X86ISD::AND))
9015    return true;
9016
9017  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9018    return true;
9019
9020  return false;
9021}
9022
9023static bool isZero(SDValue V) {
9024  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9025  return C && C->isNullValue();
9026}
9027
9028static bool isAllOnes(SDValue V) {
9029  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9030  return C && C->isAllOnesValue();
9031}
9032
9033static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9034  if (V.getOpcode() != ISD::TRUNCATE)
9035    return false;
9036
9037  SDValue VOp0 = V.getOperand(0);
9038  unsigned InBits = VOp0.getValueSizeInBits();
9039  unsigned Bits = V.getValueSizeInBits();
9040  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9041}
9042
9043SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9044  bool addTest = true;
9045  SDValue Cond  = Op.getOperand(0);
9046  SDValue Op1 = Op.getOperand(1);
9047  SDValue Op2 = Op.getOperand(2);
9048  DebugLoc DL = Op.getDebugLoc();
9049  SDValue CC;
9050
9051  if (Cond.getOpcode() == ISD::SETCC) {
9052    SDValue NewCond = LowerSETCC(Cond, DAG);
9053    if (NewCond.getNode())
9054      Cond = NewCond;
9055  }
9056
9057  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9058  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9059  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9060  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9061  if (Cond.getOpcode() == X86ISD::SETCC &&
9062      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9063      isZero(Cond.getOperand(1).getOperand(1))) {
9064    SDValue Cmp = Cond.getOperand(1);
9065
9066    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9067
9068    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9069        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9070      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9071
9072      SDValue CmpOp0 = Cmp.getOperand(0);
9073      // Apply further optimizations for special cases
9074      // (select (x != 0), -1, 0) -> neg & sbb
9075      // (select (x == 0), 0, -1) -> neg & sbb
9076      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9077        if (YC->isNullValue() &&
9078            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9079          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9080          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9081                                    DAG.getConstant(0, CmpOp0.getValueType()),
9082                                    CmpOp0);
9083          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9084                                    DAG.getConstant(X86::COND_B, MVT::i8),
9085                                    SDValue(Neg.getNode(), 1));
9086          return Res;
9087        }
9088
9089      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9090                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9091      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9092
9093      SDValue Res =   // Res = 0 or -1.
9094        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9095                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9096
9097      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9098        Res = DAG.getNOT(DL, Res, Res.getValueType());
9099
9100      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9101      if (N2C == 0 || !N2C->isNullValue())
9102        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9103      return Res;
9104    }
9105  }
9106
9107  // Look past (and (setcc_carry (cmp ...)), 1).
9108  if (Cond.getOpcode() == ISD::AND &&
9109      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9110    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9111    if (C && C->getAPIntValue() == 1)
9112      Cond = Cond.getOperand(0);
9113  }
9114
9115  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9116  // setting operand in place of the X86ISD::SETCC.
9117  unsigned CondOpcode = Cond.getOpcode();
9118  if (CondOpcode == X86ISD::SETCC ||
9119      CondOpcode == X86ISD::SETCC_CARRY) {
9120    CC = Cond.getOperand(0);
9121
9122    SDValue Cmp = Cond.getOperand(1);
9123    unsigned Opc = Cmp.getOpcode();
9124    EVT VT = Op.getValueType();
9125
9126    bool IllegalFPCMov = false;
9127    if (VT.isFloatingPoint() && !VT.isVector() &&
9128        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9129      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9130
9131    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9132        Opc == X86ISD::BT) { // FIXME
9133      Cond = Cmp;
9134      addTest = false;
9135    }
9136  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9137             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9138             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9139              Cond.getOperand(0).getValueType() != MVT::i8)) {
9140    SDValue LHS = Cond.getOperand(0);
9141    SDValue RHS = Cond.getOperand(1);
9142    unsigned X86Opcode;
9143    unsigned X86Cond;
9144    SDVTList VTs;
9145    switch (CondOpcode) {
9146    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9147    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9148    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9149    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9150    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9151    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9152    default: llvm_unreachable("unexpected overflowing operator");
9153    }
9154    if (CondOpcode == ISD::UMULO)
9155      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9156                          MVT::i32);
9157    else
9158      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9159
9160    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9161
9162    if (CondOpcode == ISD::UMULO)
9163      Cond = X86Op.getValue(2);
9164    else
9165      Cond = X86Op.getValue(1);
9166
9167    CC = DAG.getConstant(X86Cond, MVT::i8);
9168    addTest = false;
9169  }
9170
9171  if (addTest) {
9172    // Look pass the truncate if the high bits are known zero.
9173    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9174        Cond = Cond.getOperand(0);
9175
9176    // We know the result of AND is compared against zero. Try to match
9177    // it to BT.
9178    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9179      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9180      if (NewSetCC.getNode()) {
9181        CC = NewSetCC.getOperand(0);
9182        Cond = NewSetCC.getOperand(1);
9183        addTest = false;
9184      }
9185    }
9186  }
9187
9188  if (addTest) {
9189    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9190    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9191  }
9192
9193  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9194  // a <  b ?  0 : -1 -> RES = setcc_carry
9195  // a >= b ? -1 :  0 -> RES = setcc_carry
9196  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9197  if (Cond.getOpcode() == X86ISD::SUB) {
9198    Cond = ConvertCmpIfNecessary(Cond, DAG);
9199    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9200
9201    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9202        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9203      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9204                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9205      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9206        return DAG.getNOT(DL, Res, Res.getValueType());
9207      return Res;
9208    }
9209  }
9210
9211  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9212  // condition is true.
9213  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9214  SDValue Ops[] = { Op2, Op1, CC, Cond };
9215  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9216}
9217
9218// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9219// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9220// from the AND / OR.
9221static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9222  Opc = Op.getOpcode();
9223  if (Opc != ISD::OR && Opc != ISD::AND)
9224    return false;
9225  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9226          Op.getOperand(0).hasOneUse() &&
9227          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9228          Op.getOperand(1).hasOneUse());
9229}
9230
9231// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9232// 1 and that the SETCC node has a single use.
9233static bool isXor1OfSetCC(SDValue Op) {
9234  if (Op.getOpcode() != ISD::XOR)
9235    return false;
9236  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9237  if (N1C && N1C->getAPIntValue() == 1) {
9238    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9239      Op.getOperand(0).hasOneUse();
9240  }
9241  return false;
9242}
9243
9244SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9245  bool addTest = true;
9246  SDValue Chain = Op.getOperand(0);
9247  SDValue Cond  = Op.getOperand(1);
9248  SDValue Dest  = Op.getOperand(2);
9249  DebugLoc dl = Op.getDebugLoc();
9250  SDValue CC;
9251  bool Inverted = false;
9252
9253  if (Cond.getOpcode() == ISD::SETCC) {
9254    // Check for setcc([su]{add,sub,mul}o == 0).
9255    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9256        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9257        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9258        Cond.getOperand(0).getResNo() == 1 &&
9259        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9260         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9261         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9262         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9263         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9264         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9265      Inverted = true;
9266      Cond = Cond.getOperand(0);
9267    } else {
9268      SDValue NewCond = LowerSETCC(Cond, DAG);
9269      if (NewCond.getNode())
9270        Cond = NewCond;
9271    }
9272  }
9273#if 0
9274  // FIXME: LowerXALUO doesn't handle these!!
9275  else if (Cond.getOpcode() == X86ISD::ADD  ||
9276           Cond.getOpcode() == X86ISD::SUB  ||
9277           Cond.getOpcode() == X86ISD::SMUL ||
9278           Cond.getOpcode() == X86ISD::UMUL)
9279    Cond = LowerXALUO(Cond, DAG);
9280#endif
9281
9282  // Look pass (and (setcc_carry (cmp ...)), 1).
9283  if (Cond.getOpcode() == ISD::AND &&
9284      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9285    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9286    if (C && C->getAPIntValue() == 1)
9287      Cond = Cond.getOperand(0);
9288  }
9289
9290  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9291  // setting operand in place of the X86ISD::SETCC.
9292  unsigned CondOpcode = Cond.getOpcode();
9293  if (CondOpcode == X86ISD::SETCC ||
9294      CondOpcode == X86ISD::SETCC_CARRY) {
9295    CC = Cond.getOperand(0);
9296
9297    SDValue Cmp = Cond.getOperand(1);
9298    unsigned Opc = Cmp.getOpcode();
9299    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9300    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9301      Cond = Cmp;
9302      addTest = false;
9303    } else {
9304      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9305      default: break;
9306      case X86::COND_O:
9307      case X86::COND_B:
9308        // These can only come from an arithmetic instruction with overflow,
9309        // e.g. SADDO, UADDO.
9310        Cond = Cond.getNode()->getOperand(1);
9311        addTest = false;
9312        break;
9313      }
9314    }
9315  }
9316  CondOpcode = Cond.getOpcode();
9317  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9318      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9319      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9320       Cond.getOperand(0).getValueType() != MVT::i8)) {
9321    SDValue LHS = Cond.getOperand(0);
9322    SDValue RHS = Cond.getOperand(1);
9323    unsigned X86Opcode;
9324    unsigned X86Cond;
9325    SDVTList VTs;
9326    switch (CondOpcode) {
9327    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9328    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9329    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9330    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9331    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9332    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9333    default: llvm_unreachable("unexpected overflowing operator");
9334    }
9335    if (Inverted)
9336      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9337    if (CondOpcode == ISD::UMULO)
9338      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9339                          MVT::i32);
9340    else
9341      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9342
9343    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9344
9345    if (CondOpcode == ISD::UMULO)
9346      Cond = X86Op.getValue(2);
9347    else
9348      Cond = X86Op.getValue(1);
9349
9350    CC = DAG.getConstant(X86Cond, MVT::i8);
9351    addTest = false;
9352  } else {
9353    unsigned CondOpc;
9354    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9355      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9356      if (CondOpc == ISD::OR) {
9357        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9358        // two branches instead of an explicit OR instruction with a
9359        // separate test.
9360        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9361            isX86LogicalCmp(Cmp)) {
9362          CC = Cond.getOperand(0).getOperand(0);
9363          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9364                              Chain, Dest, CC, Cmp);
9365          CC = Cond.getOperand(1).getOperand(0);
9366          Cond = Cmp;
9367          addTest = false;
9368        }
9369      } else { // ISD::AND
9370        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9371        // two branches instead of an explicit AND instruction with a
9372        // separate test. However, we only do this if this block doesn't
9373        // have a fall-through edge, because this requires an explicit
9374        // jmp when the condition is false.
9375        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9376            isX86LogicalCmp(Cmp) &&
9377            Op.getNode()->hasOneUse()) {
9378          X86::CondCode CCode =
9379            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9380          CCode = X86::GetOppositeBranchCondition(CCode);
9381          CC = DAG.getConstant(CCode, MVT::i8);
9382          SDNode *User = *Op.getNode()->use_begin();
9383          // Look for an unconditional branch following this conditional branch.
9384          // We need this because we need to reverse the successors in order
9385          // to implement FCMP_OEQ.
9386          if (User->getOpcode() == ISD::BR) {
9387            SDValue FalseBB = User->getOperand(1);
9388            SDNode *NewBR =
9389              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9390            assert(NewBR == User);
9391            (void)NewBR;
9392            Dest = FalseBB;
9393
9394            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9395                                Chain, Dest, CC, Cmp);
9396            X86::CondCode CCode =
9397              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9398            CCode = X86::GetOppositeBranchCondition(CCode);
9399            CC = DAG.getConstant(CCode, MVT::i8);
9400            Cond = Cmp;
9401            addTest = false;
9402          }
9403        }
9404      }
9405    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9406      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9407      // It should be transformed during dag combiner except when the condition
9408      // is set by a arithmetics with overflow node.
9409      X86::CondCode CCode =
9410        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9411      CCode = X86::GetOppositeBranchCondition(CCode);
9412      CC = DAG.getConstant(CCode, MVT::i8);
9413      Cond = Cond.getOperand(0).getOperand(1);
9414      addTest = false;
9415    } else if (Cond.getOpcode() == ISD::SETCC &&
9416               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9417      // For FCMP_OEQ, we can emit
9418      // two branches instead of an explicit AND instruction with a
9419      // separate test. However, we only do this if this block doesn't
9420      // have a fall-through edge, because this requires an explicit
9421      // jmp when the condition is false.
9422      if (Op.getNode()->hasOneUse()) {
9423        SDNode *User = *Op.getNode()->use_begin();
9424        // Look for an unconditional branch following this conditional branch.
9425        // We need this because we need to reverse the successors in order
9426        // to implement FCMP_OEQ.
9427        if (User->getOpcode() == ISD::BR) {
9428          SDValue FalseBB = User->getOperand(1);
9429          SDNode *NewBR =
9430            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9431          assert(NewBR == User);
9432          (void)NewBR;
9433          Dest = FalseBB;
9434
9435          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9436                                    Cond.getOperand(0), Cond.getOperand(1));
9437          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9438          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9439          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9440                              Chain, Dest, CC, Cmp);
9441          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9442          Cond = Cmp;
9443          addTest = false;
9444        }
9445      }
9446    } else if (Cond.getOpcode() == ISD::SETCC &&
9447               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9448      // For FCMP_UNE, we can emit
9449      // two branches instead of an explicit AND instruction with a
9450      // separate test. However, we only do this if this block doesn't
9451      // have a fall-through edge, because this requires an explicit
9452      // jmp when the condition is false.
9453      if (Op.getNode()->hasOneUse()) {
9454        SDNode *User = *Op.getNode()->use_begin();
9455        // Look for an unconditional branch following this conditional branch.
9456        // We need this because we need to reverse the successors in order
9457        // to implement FCMP_UNE.
9458        if (User->getOpcode() == ISD::BR) {
9459          SDValue FalseBB = User->getOperand(1);
9460          SDNode *NewBR =
9461            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9462          assert(NewBR == User);
9463          (void)NewBR;
9464
9465          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9466                                    Cond.getOperand(0), Cond.getOperand(1));
9467          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9468          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9469          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9470                              Chain, Dest, CC, Cmp);
9471          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9472          Cond = Cmp;
9473          addTest = false;
9474          Dest = FalseBB;
9475        }
9476      }
9477    }
9478  }
9479
9480  if (addTest) {
9481    // Look pass the truncate if the high bits are known zero.
9482    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9483        Cond = Cond.getOperand(0);
9484
9485    // We know the result of AND is compared against zero. Try to match
9486    // it to BT.
9487    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9488      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9489      if (NewSetCC.getNode()) {
9490        CC = NewSetCC.getOperand(0);
9491        Cond = NewSetCC.getOperand(1);
9492        addTest = false;
9493      }
9494    }
9495  }
9496
9497  if (addTest) {
9498    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9499    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9500  }
9501  Cond = ConvertCmpIfNecessary(Cond, DAG);
9502  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9503                     Chain, Dest, CC, Cond);
9504}
9505
9506
9507// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9508// Calls to _alloca is needed to probe the stack when allocating more than 4k
9509// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9510// that the guard pages used by the OS virtual memory manager are allocated in
9511// correct sequence.
9512SDValue
9513X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9514                                           SelectionDAG &DAG) const {
9515  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9516          getTargetMachine().Options.EnableSegmentedStacks) &&
9517         "This should be used only on Windows targets or when segmented stacks "
9518         "are being used");
9519  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9520  DebugLoc dl = Op.getDebugLoc();
9521
9522  // Get the inputs.
9523  SDValue Chain = Op.getOperand(0);
9524  SDValue Size  = Op.getOperand(1);
9525  // FIXME: Ensure alignment here
9526
9527  bool Is64Bit = Subtarget->is64Bit();
9528  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9529
9530  if (getTargetMachine().Options.EnableSegmentedStacks) {
9531    MachineFunction &MF = DAG.getMachineFunction();
9532    MachineRegisterInfo &MRI = MF.getRegInfo();
9533
9534    if (Is64Bit) {
9535      // The 64 bit implementation of segmented stacks needs to clobber both r10
9536      // r11. This makes it impossible to use it along with nested parameters.
9537      const Function *F = MF.getFunction();
9538
9539      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9540           I != E; ++I)
9541        if (I->hasNestAttr())
9542          report_fatal_error("Cannot use segmented stacks with functions that "
9543                             "have nested arguments.");
9544    }
9545
9546    const TargetRegisterClass *AddrRegClass =
9547      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9548    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9549    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9550    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9551                                DAG.getRegister(Vreg, SPTy));
9552    SDValue Ops1[2] = { Value, Chain };
9553    return DAG.getMergeValues(Ops1, 2, dl);
9554  } else {
9555    SDValue Flag;
9556    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9557
9558    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9559    Flag = Chain.getValue(1);
9560    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9561
9562    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9563    Flag = Chain.getValue(1);
9564
9565    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9566
9567    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9568    return DAG.getMergeValues(Ops1, 2, dl);
9569  }
9570}
9571
9572SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9573  MachineFunction &MF = DAG.getMachineFunction();
9574  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9575
9576  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9577  DebugLoc DL = Op.getDebugLoc();
9578
9579  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9580    // vastart just stores the address of the VarArgsFrameIndex slot into the
9581    // memory location argument.
9582    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9583                                   getPointerTy());
9584    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9585                        MachinePointerInfo(SV), false, false, 0);
9586  }
9587
9588  // __va_list_tag:
9589  //   gp_offset         (0 - 6 * 8)
9590  //   fp_offset         (48 - 48 + 8 * 16)
9591  //   overflow_arg_area (point to parameters coming in memory).
9592  //   reg_save_area
9593  SmallVector<SDValue, 8> MemOps;
9594  SDValue FIN = Op.getOperand(1);
9595  // Store gp_offset
9596  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9597                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9598                                               MVT::i32),
9599                               FIN, MachinePointerInfo(SV), false, false, 0);
9600  MemOps.push_back(Store);
9601
9602  // Store fp_offset
9603  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9604                    FIN, DAG.getIntPtrConstant(4));
9605  Store = DAG.getStore(Op.getOperand(0), DL,
9606                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9607                                       MVT::i32),
9608                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9609  MemOps.push_back(Store);
9610
9611  // Store ptr to overflow_arg_area
9612  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9613                    FIN, DAG.getIntPtrConstant(4));
9614  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9615                                    getPointerTy());
9616  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9617                       MachinePointerInfo(SV, 8),
9618                       false, false, 0);
9619  MemOps.push_back(Store);
9620
9621  // Store ptr to reg_save_area.
9622  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9623                    FIN, DAG.getIntPtrConstant(8));
9624  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9625                                    getPointerTy());
9626  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9627                       MachinePointerInfo(SV, 16), false, false, 0);
9628  MemOps.push_back(Store);
9629  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9630                     &MemOps[0], MemOps.size());
9631}
9632
9633SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9634  assert(Subtarget->is64Bit() &&
9635         "LowerVAARG only handles 64-bit va_arg!");
9636  assert((Subtarget->isTargetLinux() ||
9637          Subtarget->isTargetDarwin()) &&
9638          "Unhandled target in LowerVAARG");
9639  assert(Op.getNode()->getNumOperands() == 4);
9640  SDValue Chain = Op.getOperand(0);
9641  SDValue SrcPtr = Op.getOperand(1);
9642  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9643  unsigned Align = Op.getConstantOperandVal(3);
9644  DebugLoc dl = Op.getDebugLoc();
9645
9646  EVT ArgVT = Op.getNode()->getValueType(0);
9647  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9648  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9649  uint8_t ArgMode;
9650
9651  // Decide which area this value should be read from.
9652  // TODO: Implement the AMD64 ABI in its entirety. This simple
9653  // selection mechanism works only for the basic types.
9654  if (ArgVT == MVT::f80) {
9655    llvm_unreachable("va_arg for f80 not yet implemented");
9656  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9657    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9658  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9659    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9660  } else {
9661    llvm_unreachable("Unhandled argument type in LowerVAARG");
9662  }
9663
9664  if (ArgMode == 2) {
9665    // Sanity Check: Make sure using fp_offset makes sense.
9666    assert(!getTargetMachine().Options.UseSoftFloat &&
9667           !(DAG.getMachineFunction()
9668                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9669           Subtarget->hasSSE1());
9670  }
9671
9672  // Insert VAARG_64 node into the DAG
9673  // VAARG_64 returns two values: Variable Argument Address, Chain
9674  SmallVector<SDValue, 11> InstOps;
9675  InstOps.push_back(Chain);
9676  InstOps.push_back(SrcPtr);
9677  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9678  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9679  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9680  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9681  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9682                                          VTs, &InstOps[0], InstOps.size(),
9683                                          MVT::i64,
9684                                          MachinePointerInfo(SV),
9685                                          /*Align=*/0,
9686                                          /*Volatile=*/false,
9687                                          /*ReadMem=*/true,
9688                                          /*WriteMem=*/true);
9689  Chain = VAARG.getValue(1);
9690
9691  // Load the next argument and return it
9692  return DAG.getLoad(ArgVT, dl,
9693                     Chain,
9694                     VAARG,
9695                     MachinePointerInfo(),
9696                     false, false, false, 0);
9697}
9698
9699static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
9700                           SelectionDAG &DAG) {
9701  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9702  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9703  SDValue Chain = Op.getOperand(0);
9704  SDValue DstPtr = Op.getOperand(1);
9705  SDValue SrcPtr = Op.getOperand(2);
9706  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9707  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9708  DebugLoc DL = Op.getDebugLoc();
9709
9710  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9711                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9712                       false,
9713                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9714}
9715
9716// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9717// may or may not be a constant. Takes immediate version of shift as input.
9718static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9719                                   SDValue SrcOp, SDValue ShAmt,
9720                                   SelectionDAG &DAG) {
9721  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9722
9723  if (isa<ConstantSDNode>(ShAmt)) {
9724    // Constant may be a TargetConstant. Use a regular constant.
9725    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9726    switch (Opc) {
9727      default: llvm_unreachable("Unknown target vector shift node");
9728      case X86ISD::VSHLI:
9729      case X86ISD::VSRLI:
9730      case X86ISD::VSRAI:
9731        return DAG.getNode(Opc, dl, VT, SrcOp,
9732                           DAG.getConstant(ShiftAmt, MVT::i32));
9733    }
9734  }
9735
9736  // Change opcode to non-immediate version
9737  switch (Opc) {
9738    default: llvm_unreachable("Unknown target vector shift node");
9739    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9740    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9741    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9742  }
9743
9744  // Need to build a vector containing shift amount
9745  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9746  SDValue ShOps[4];
9747  ShOps[0] = ShAmt;
9748  ShOps[1] = DAG.getConstant(0, MVT::i32);
9749  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
9750  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9751
9752  // The return type has to be a 128-bit type with the same element
9753  // type as the input type.
9754  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9755  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9756
9757  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9758  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9759}
9760
9761static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
9762  DebugLoc dl = Op.getDebugLoc();
9763  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9764  switch (IntNo) {
9765  default: return SDValue();    // Don't custom lower most intrinsics.
9766  // Comparison intrinsics.
9767  case Intrinsic::x86_sse_comieq_ss:
9768  case Intrinsic::x86_sse_comilt_ss:
9769  case Intrinsic::x86_sse_comile_ss:
9770  case Intrinsic::x86_sse_comigt_ss:
9771  case Intrinsic::x86_sse_comige_ss:
9772  case Intrinsic::x86_sse_comineq_ss:
9773  case Intrinsic::x86_sse_ucomieq_ss:
9774  case Intrinsic::x86_sse_ucomilt_ss:
9775  case Intrinsic::x86_sse_ucomile_ss:
9776  case Intrinsic::x86_sse_ucomigt_ss:
9777  case Intrinsic::x86_sse_ucomige_ss:
9778  case Intrinsic::x86_sse_ucomineq_ss:
9779  case Intrinsic::x86_sse2_comieq_sd:
9780  case Intrinsic::x86_sse2_comilt_sd:
9781  case Intrinsic::x86_sse2_comile_sd:
9782  case Intrinsic::x86_sse2_comigt_sd:
9783  case Intrinsic::x86_sse2_comige_sd:
9784  case Intrinsic::x86_sse2_comineq_sd:
9785  case Intrinsic::x86_sse2_ucomieq_sd:
9786  case Intrinsic::x86_sse2_ucomilt_sd:
9787  case Intrinsic::x86_sse2_ucomile_sd:
9788  case Intrinsic::x86_sse2_ucomigt_sd:
9789  case Intrinsic::x86_sse2_ucomige_sd:
9790  case Intrinsic::x86_sse2_ucomineq_sd: {
9791    unsigned Opc;
9792    ISD::CondCode CC;
9793    switch (IntNo) {
9794    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9795    case Intrinsic::x86_sse_comieq_ss:
9796    case Intrinsic::x86_sse2_comieq_sd:
9797      Opc = X86ISD::COMI;
9798      CC = ISD::SETEQ;
9799      break;
9800    case Intrinsic::x86_sse_comilt_ss:
9801    case Intrinsic::x86_sse2_comilt_sd:
9802      Opc = X86ISD::COMI;
9803      CC = ISD::SETLT;
9804      break;
9805    case Intrinsic::x86_sse_comile_ss:
9806    case Intrinsic::x86_sse2_comile_sd:
9807      Opc = X86ISD::COMI;
9808      CC = ISD::SETLE;
9809      break;
9810    case Intrinsic::x86_sse_comigt_ss:
9811    case Intrinsic::x86_sse2_comigt_sd:
9812      Opc = X86ISD::COMI;
9813      CC = ISD::SETGT;
9814      break;
9815    case Intrinsic::x86_sse_comige_ss:
9816    case Intrinsic::x86_sse2_comige_sd:
9817      Opc = X86ISD::COMI;
9818      CC = ISD::SETGE;
9819      break;
9820    case Intrinsic::x86_sse_comineq_ss:
9821    case Intrinsic::x86_sse2_comineq_sd:
9822      Opc = X86ISD::COMI;
9823      CC = ISD::SETNE;
9824      break;
9825    case Intrinsic::x86_sse_ucomieq_ss:
9826    case Intrinsic::x86_sse2_ucomieq_sd:
9827      Opc = X86ISD::UCOMI;
9828      CC = ISD::SETEQ;
9829      break;
9830    case Intrinsic::x86_sse_ucomilt_ss:
9831    case Intrinsic::x86_sse2_ucomilt_sd:
9832      Opc = X86ISD::UCOMI;
9833      CC = ISD::SETLT;
9834      break;
9835    case Intrinsic::x86_sse_ucomile_ss:
9836    case Intrinsic::x86_sse2_ucomile_sd:
9837      Opc = X86ISD::UCOMI;
9838      CC = ISD::SETLE;
9839      break;
9840    case Intrinsic::x86_sse_ucomigt_ss:
9841    case Intrinsic::x86_sse2_ucomigt_sd:
9842      Opc = X86ISD::UCOMI;
9843      CC = ISD::SETGT;
9844      break;
9845    case Intrinsic::x86_sse_ucomige_ss:
9846    case Intrinsic::x86_sse2_ucomige_sd:
9847      Opc = X86ISD::UCOMI;
9848      CC = ISD::SETGE;
9849      break;
9850    case Intrinsic::x86_sse_ucomineq_ss:
9851    case Intrinsic::x86_sse2_ucomineq_sd:
9852      Opc = X86ISD::UCOMI;
9853      CC = ISD::SETNE;
9854      break;
9855    }
9856
9857    SDValue LHS = Op.getOperand(1);
9858    SDValue RHS = Op.getOperand(2);
9859    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9860    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9861    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9862    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9863                                DAG.getConstant(X86CC, MVT::i8), Cond);
9864    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9865  }
9866
9867  // Arithmetic intrinsics.
9868  case Intrinsic::x86_sse2_pmulu_dq:
9869  case Intrinsic::x86_avx2_pmulu_dq:
9870    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9871                       Op.getOperand(1), Op.getOperand(2));
9872
9873  // SSE3/AVX horizontal add/sub intrinsics
9874  case Intrinsic::x86_sse3_hadd_ps:
9875  case Intrinsic::x86_sse3_hadd_pd:
9876  case Intrinsic::x86_avx_hadd_ps_256:
9877  case Intrinsic::x86_avx_hadd_pd_256:
9878  case Intrinsic::x86_sse3_hsub_ps:
9879  case Intrinsic::x86_sse3_hsub_pd:
9880  case Intrinsic::x86_avx_hsub_ps_256:
9881  case Intrinsic::x86_avx_hsub_pd_256:
9882  case Intrinsic::x86_ssse3_phadd_w_128:
9883  case Intrinsic::x86_ssse3_phadd_d_128:
9884  case Intrinsic::x86_avx2_phadd_w:
9885  case Intrinsic::x86_avx2_phadd_d:
9886  case Intrinsic::x86_ssse3_phsub_w_128:
9887  case Intrinsic::x86_ssse3_phsub_d_128:
9888  case Intrinsic::x86_avx2_phsub_w:
9889  case Intrinsic::x86_avx2_phsub_d: {
9890    unsigned Opcode;
9891    switch (IntNo) {
9892    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9893    case Intrinsic::x86_sse3_hadd_ps:
9894    case Intrinsic::x86_sse3_hadd_pd:
9895    case Intrinsic::x86_avx_hadd_ps_256:
9896    case Intrinsic::x86_avx_hadd_pd_256:
9897      Opcode = X86ISD::FHADD;
9898      break;
9899    case Intrinsic::x86_sse3_hsub_ps:
9900    case Intrinsic::x86_sse3_hsub_pd:
9901    case Intrinsic::x86_avx_hsub_ps_256:
9902    case Intrinsic::x86_avx_hsub_pd_256:
9903      Opcode = X86ISD::FHSUB;
9904      break;
9905    case Intrinsic::x86_ssse3_phadd_w_128:
9906    case Intrinsic::x86_ssse3_phadd_d_128:
9907    case Intrinsic::x86_avx2_phadd_w:
9908    case Intrinsic::x86_avx2_phadd_d:
9909      Opcode = X86ISD::HADD;
9910      break;
9911    case Intrinsic::x86_ssse3_phsub_w_128:
9912    case Intrinsic::x86_ssse3_phsub_d_128:
9913    case Intrinsic::x86_avx2_phsub_w:
9914    case Intrinsic::x86_avx2_phsub_d:
9915      Opcode = X86ISD::HSUB;
9916      break;
9917    }
9918    return DAG.getNode(Opcode, dl, Op.getValueType(),
9919                       Op.getOperand(1), Op.getOperand(2));
9920  }
9921
9922  // AVX2 variable shift intrinsics
9923  case Intrinsic::x86_avx2_psllv_d:
9924  case Intrinsic::x86_avx2_psllv_q:
9925  case Intrinsic::x86_avx2_psllv_d_256:
9926  case Intrinsic::x86_avx2_psllv_q_256:
9927  case Intrinsic::x86_avx2_psrlv_d:
9928  case Intrinsic::x86_avx2_psrlv_q:
9929  case Intrinsic::x86_avx2_psrlv_d_256:
9930  case Intrinsic::x86_avx2_psrlv_q_256:
9931  case Intrinsic::x86_avx2_psrav_d:
9932  case Intrinsic::x86_avx2_psrav_d_256: {
9933    unsigned Opcode;
9934    switch (IntNo) {
9935    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9936    case Intrinsic::x86_avx2_psllv_d:
9937    case Intrinsic::x86_avx2_psllv_q:
9938    case Intrinsic::x86_avx2_psllv_d_256:
9939    case Intrinsic::x86_avx2_psllv_q_256:
9940      Opcode = ISD::SHL;
9941      break;
9942    case Intrinsic::x86_avx2_psrlv_d:
9943    case Intrinsic::x86_avx2_psrlv_q:
9944    case Intrinsic::x86_avx2_psrlv_d_256:
9945    case Intrinsic::x86_avx2_psrlv_q_256:
9946      Opcode = ISD::SRL;
9947      break;
9948    case Intrinsic::x86_avx2_psrav_d:
9949    case Intrinsic::x86_avx2_psrav_d_256:
9950      Opcode = ISD::SRA;
9951      break;
9952    }
9953    return DAG.getNode(Opcode, dl, Op.getValueType(),
9954                       Op.getOperand(1), Op.getOperand(2));
9955  }
9956
9957  case Intrinsic::x86_ssse3_pshuf_b_128:
9958  case Intrinsic::x86_avx2_pshuf_b:
9959    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9960                       Op.getOperand(1), Op.getOperand(2));
9961
9962  case Intrinsic::x86_ssse3_psign_b_128:
9963  case Intrinsic::x86_ssse3_psign_w_128:
9964  case Intrinsic::x86_ssse3_psign_d_128:
9965  case Intrinsic::x86_avx2_psign_b:
9966  case Intrinsic::x86_avx2_psign_w:
9967  case Intrinsic::x86_avx2_psign_d:
9968    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9969                       Op.getOperand(1), Op.getOperand(2));
9970
9971  case Intrinsic::x86_sse41_insertps:
9972    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9973                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9974
9975  case Intrinsic::x86_avx_vperm2f128_ps_256:
9976  case Intrinsic::x86_avx_vperm2f128_pd_256:
9977  case Intrinsic::x86_avx_vperm2f128_si_256:
9978  case Intrinsic::x86_avx2_vperm2i128:
9979    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9980                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9981
9982  case Intrinsic::x86_avx2_permd:
9983  case Intrinsic::x86_avx2_permps:
9984    // Operands intentionally swapped. Mask is last operand to intrinsic,
9985    // but second operand for node/intruction.
9986    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9987                       Op.getOperand(2), Op.getOperand(1));
9988
9989  // ptest and testp intrinsics. The intrinsic these come from are designed to
9990  // return an integer value, not just an instruction so lower it to the ptest
9991  // or testp pattern and a setcc for the result.
9992  case Intrinsic::x86_sse41_ptestz:
9993  case Intrinsic::x86_sse41_ptestc:
9994  case Intrinsic::x86_sse41_ptestnzc:
9995  case Intrinsic::x86_avx_ptestz_256:
9996  case Intrinsic::x86_avx_ptestc_256:
9997  case Intrinsic::x86_avx_ptestnzc_256:
9998  case Intrinsic::x86_avx_vtestz_ps:
9999  case Intrinsic::x86_avx_vtestc_ps:
10000  case Intrinsic::x86_avx_vtestnzc_ps:
10001  case Intrinsic::x86_avx_vtestz_pd:
10002  case Intrinsic::x86_avx_vtestc_pd:
10003  case Intrinsic::x86_avx_vtestnzc_pd:
10004  case Intrinsic::x86_avx_vtestz_ps_256:
10005  case Intrinsic::x86_avx_vtestc_ps_256:
10006  case Intrinsic::x86_avx_vtestnzc_ps_256:
10007  case Intrinsic::x86_avx_vtestz_pd_256:
10008  case Intrinsic::x86_avx_vtestc_pd_256:
10009  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10010    bool IsTestPacked = false;
10011    unsigned X86CC;
10012    switch (IntNo) {
10013    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10014    case Intrinsic::x86_avx_vtestz_ps:
10015    case Intrinsic::x86_avx_vtestz_pd:
10016    case Intrinsic::x86_avx_vtestz_ps_256:
10017    case Intrinsic::x86_avx_vtestz_pd_256:
10018      IsTestPacked = true; // Fallthrough
10019    case Intrinsic::x86_sse41_ptestz:
10020    case Intrinsic::x86_avx_ptestz_256:
10021      // ZF = 1
10022      X86CC = X86::COND_E;
10023      break;
10024    case Intrinsic::x86_avx_vtestc_ps:
10025    case Intrinsic::x86_avx_vtestc_pd:
10026    case Intrinsic::x86_avx_vtestc_ps_256:
10027    case Intrinsic::x86_avx_vtestc_pd_256:
10028      IsTestPacked = true; // Fallthrough
10029    case Intrinsic::x86_sse41_ptestc:
10030    case Intrinsic::x86_avx_ptestc_256:
10031      // CF = 1
10032      X86CC = X86::COND_B;
10033      break;
10034    case Intrinsic::x86_avx_vtestnzc_ps:
10035    case Intrinsic::x86_avx_vtestnzc_pd:
10036    case Intrinsic::x86_avx_vtestnzc_ps_256:
10037    case Intrinsic::x86_avx_vtestnzc_pd_256:
10038      IsTestPacked = true; // Fallthrough
10039    case Intrinsic::x86_sse41_ptestnzc:
10040    case Intrinsic::x86_avx_ptestnzc_256:
10041      // ZF and CF = 0
10042      X86CC = X86::COND_A;
10043      break;
10044    }
10045
10046    SDValue LHS = Op.getOperand(1);
10047    SDValue RHS = Op.getOperand(2);
10048    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10049    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10050    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10051    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10052    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10053  }
10054
10055  // SSE/AVX shift intrinsics
10056  case Intrinsic::x86_sse2_psll_w:
10057  case Intrinsic::x86_sse2_psll_d:
10058  case Intrinsic::x86_sse2_psll_q:
10059  case Intrinsic::x86_avx2_psll_w:
10060  case Intrinsic::x86_avx2_psll_d:
10061  case Intrinsic::x86_avx2_psll_q:
10062  case Intrinsic::x86_sse2_psrl_w:
10063  case Intrinsic::x86_sse2_psrl_d:
10064  case Intrinsic::x86_sse2_psrl_q:
10065  case Intrinsic::x86_avx2_psrl_w:
10066  case Intrinsic::x86_avx2_psrl_d:
10067  case Intrinsic::x86_avx2_psrl_q:
10068  case Intrinsic::x86_sse2_psra_w:
10069  case Intrinsic::x86_sse2_psra_d:
10070  case Intrinsic::x86_avx2_psra_w:
10071  case Intrinsic::x86_avx2_psra_d: {
10072    unsigned Opcode;
10073    switch (IntNo) {
10074    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10075    case Intrinsic::x86_sse2_psll_w:
10076    case Intrinsic::x86_sse2_psll_d:
10077    case Intrinsic::x86_sse2_psll_q:
10078    case Intrinsic::x86_avx2_psll_w:
10079    case Intrinsic::x86_avx2_psll_d:
10080    case Intrinsic::x86_avx2_psll_q:
10081      Opcode = X86ISD::VSHL;
10082      break;
10083    case Intrinsic::x86_sse2_psrl_w:
10084    case Intrinsic::x86_sse2_psrl_d:
10085    case Intrinsic::x86_sse2_psrl_q:
10086    case Intrinsic::x86_avx2_psrl_w:
10087    case Intrinsic::x86_avx2_psrl_d:
10088    case Intrinsic::x86_avx2_psrl_q:
10089      Opcode = X86ISD::VSRL;
10090      break;
10091    case Intrinsic::x86_sse2_psra_w:
10092    case Intrinsic::x86_sse2_psra_d:
10093    case Intrinsic::x86_avx2_psra_w:
10094    case Intrinsic::x86_avx2_psra_d:
10095      Opcode = X86ISD::VSRA;
10096      break;
10097    }
10098    return DAG.getNode(Opcode, dl, Op.getValueType(),
10099                       Op.getOperand(1), Op.getOperand(2));
10100  }
10101
10102  // SSE/AVX immediate shift intrinsics
10103  case Intrinsic::x86_sse2_pslli_w:
10104  case Intrinsic::x86_sse2_pslli_d:
10105  case Intrinsic::x86_sse2_pslli_q:
10106  case Intrinsic::x86_avx2_pslli_w:
10107  case Intrinsic::x86_avx2_pslli_d:
10108  case Intrinsic::x86_avx2_pslli_q:
10109  case Intrinsic::x86_sse2_psrli_w:
10110  case Intrinsic::x86_sse2_psrli_d:
10111  case Intrinsic::x86_sse2_psrli_q:
10112  case Intrinsic::x86_avx2_psrli_w:
10113  case Intrinsic::x86_avx2_psrli_d:
10114  case Intrinsic::x86_avx2_psrli_q:
10115  case Intrinsic::x86_sse2_psrai_w:
10116  case Intrinsic::x86_sse2_psrai_d:
10117  case Intrinsic::x86_avx2_psrai_w:
10118  case Intrinsic::x86_avx2_psrai_d: {
10119    unsigned Opcode;
10120    switch (IntNo) {
10121    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10122    case Intrinsic::x86_sse2_pslli_w:
10123    case Intrinsic::x86_sse2_pslli_d:
10124    case Intrinsic::x86_sse2_pslli_q:
10125    case Intrinsic::x86_avx2_pslli_w:
10126    case Intrinsic::x86_avx2_pslli_d:
10127    case Intrinsic::x86_avx2_pslli_q:
10128      Opcode = X86ISD::VSHLI;
10129      break;
10130    case Intrinsic::x86_sse2_psrli_w:
10131    case Intrinsic::x86_sse2_psrli_d:
10132    case Intrinsic::x86_sse2_psrli_q:
10133    case Intrinsic::x86_avx2_psrli_w:
10134    case Intrinsic::x86_avx2_psrli_d:
10135    case Intrinsic::x86_avx2_psrli_q:
10136      Opcode = X86ISD::VSRLI;
10137      break;
10138    case Intrinsic::x86_sse2_psrai_w:
10139    case Intrinsic::x86_sse2_psrai_d:
10140    case Intrinsic::x86_avx2_psrai_w:
10141    case Intrinsic::x86_avx2_psrai_d:
10142      Opcode = X86ISD::VSRAI;
10143      break;
10144    }
10145    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10146                               Op.getOperand(1), Op.getOperand(2), DAG);
10147  }
10148
10149  case Intrinsic::x86_sse42_pcmpistria128:
10150  case Intrinsic::x86_sse42_pcmpestria128:
10151  case Intrinsic::x86_sse42_pcmpistric128:
10152  case Intrinsic::x86_sse42_pcmpestric128:
10153  case Intrinsic::x86_sse42_pcmpistrio128:
10154  case Intrinsic::x86_sse42_pcmpestrio128:
10155  case Intrinsic::x86_sse42_pcmpistris128:
10156  case Intrinsic::x86_sse42_pcmpestris128:
10157  case Intrinsic::x86_sse42_pcmpistriz128:
10158  case Intrinsic::x86_sse42_pcmpestriz128: {
10159    unsigned Opcode;
10160    unsigned X86CC;
10161    switch (IntNo) {
10162    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10163    case Intrinsic::x86_sse42_pcmpistria128:
10164      Opcode = X86ISD::PCMPISTRI;
10165      X86CC = X86::COND_A;
10166      break;
10167    case Intrinsic::x86_sse42_pcmpestria128:
10168      Opcode = X86ISD::PCMPESTRI;
10169      X86CC = X86::COND_A;
10170      break;
10171    case Intrinsic::x86_sse42_pcmpistric128:
10172      Opcode = X86ISD::PCMPISTRI;
10173      X86CC = X86::COND_B;
10174      break;
10175    case Intrinsic::x86_sse42_pcmpestric128:
10176      Opcode = X86ISD::PCMPESTRI;
10177      X86CC = X86::COND_B;
10178      break;
10179    case Intrinsic::x86_sse42_pcmpistrio128:
10180      Opcode = X86ISD::PCMPISTRI;
10181      X86CC = X86::COND_O;
10182      break;
10183    case Intrinsic::x86_sse42_pcmpestrio128:
10184      Opcode = X86ISD::PCMPESTRI;
10185      X86CC = X86::COND_O;
10186      break;
10187    case Intrinsic::x86_sse42_pcmpistris128:
10188      Opcode = X86ISD::PCMPISTRI;
10189      X86CC = X86::COND_S;
10190      break;
10191    case Intrinsic::x86_sse42_pcmpestris128:
10192      Opcode = X86ISD::PCMPESTRI;
10193      X86CC = X86::COND_S;
10194      break;
10195    case Intrinsic::x86_sse42_pcmpistriz128:
10196      Opcode = X86ISD::PCMPISTRI;
10197      X86CC = X86::COND_E;
10198      break;
10199    case Intrinsic::x86_sse42_pcmpestriz128:
10200      Opcode = X86ISD::PCMPESTRI;
10201      X86CC = X86::COND_E;
10202      break;
10203    }
10204    SmallVector<SDValue, 5> NewOps;
10205    NewOps.append(Op->op_begin()+1, Op->op_end());
10206    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10207    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10208    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10209                                DAG.getConstant(X86CC, MVT::i8),
10210                                SDValue(PCMP.getNode(), 1));
10211    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10212  }
10213
10214  case Intrinsic::x86_sse42_pcmpistri128:
10215  case Intrinsic::x86_sse42_pcmpestri128: {
10216    unsigned Opcode;
10217    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10218      Opcode = X86ISD::PCMPISTRI;
10219    else
10220      Opcode = X86ISD::PCMPESTRI;
10221
10222    SmallVector<SDValue, 5> NewOps;
10223    NewOps.append(Op->op_begin()+1, Op->op_end());
10224    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10225    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10226  }
10227  case Intrinsic::x86_fma_vfmadd_ps:
10228  case Intrinsic::x86_fma_vfmadd_pd:
10229  case Intrinsic::x86_fma_vfmsub_ps:
10230  case Intrinsic::x86_fma_vfmsub_pd:
10231  case Intrinsic::x86_fma_vfnmadd_ps:
10232  case Intrinsic::x86_fma_vfnmadd_pd:
10233  case Intrinsic::x86_fma_vfnmsub_ps:
10234  case Intrinsic::x86_fma_vfnmsub_pd:
10235  case Intrinsic::x86_fma_vfmaddsub_ps:
10236  case Intrinsic::x86_fma_vfmaddsub_pd:
10237  case Intrinsic::x86_fma_vfmsubadd_ps:
10238  case Intrinsic::x86_fma_vfmsubadd_pd:
10239  case Intrinsic::x86_fma_vfmadd_ps_256:
10240  case Intrinsic::x86_fma_vfmadd_pd_256:
10241  case Intrinsic::x86_fma_vfmsub_ps_256:
10242  case Intrinsic::x86_fma_vfmsub_pd_256:
10243  case Intrinsic::x86_fma_vfnmadd_ps_256:
10244  case Intrinsic::x86_fma_vfnmadd_pd_256:
10245  case Intrinsic::x86_fma_vfnmsub_ps_256:
10246  case Intrinsic::x86_fma_vfnmsub_pd_256:
10247  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10248  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10249  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10250  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10251    unsigned Opc;
10252    switch (IntNo) {
10253    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10254    case Intrinsic::x86_fma_vfmadd_ps:
10255    case Intrinsic::x86_fma_vfmadd_pd:
10256    case Intrinsic::x86_fma_vfmadd_ps_256:
10257    case Intrinsic::x86_fma_vfmadd_pd_256:
10258      Opc = X86ISD::FMADD;
10259      break;
10260    case Intrinsic::x86_fma_vfmsub_ps:
10261    case Intrinsic::x86_fma_vfmsub_pd:
10262    case Intrinsic::x86_fma_vfmsub_ps_256:
10263    case Intrinsic::x86_fma_vfmsub_pd_256:
10264      Opc = X86ISD::FMSUB;
10265      break;
10266    case Intrinsic::x86_fma_vfnmadd_ps:
10267    case Intrinsic::x86_fma_vfnmadd_pd:
10268    case Intrinsic::x86_fma_vfnmadd_ps_256:
10269    case Intrinsic::x86_fma_vfnmadd_pd_256:
10270      Opc = X86ISD::FNMADD;
10271      break;
10272    case Intrinsic::x86_fma_vfnmsub_ps:
10273    case Intrinsic::x86_fma_vfnmsub_pd:
10274    case Intrinsic::x86_fma_vfnmsub_ps_256:
10275    case Intrinsic::x86_fma_vfnmsub_pd_256:
10276      Opc = X86ISD::FNMSUB;
10277      break;
10278    case Intrinsic::x86_fma_vfmaddsub_ps:
10279    case Intrinsic::x86_fma_vfmaddsub_pd:
10280    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10281    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10282      Opc = X86ISD::FMADDSUB;
10283      break;
10284    case Intrinsic::x86_fma_vfmsubadd_ps:
10285    case Intrinsic::x86_fma_vfmsubadd_pd:
10286    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10287    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10288      Opc = X86ISD::FMSUBADD;
10289      break;
10290    }
10291
10292    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10293                       Op.getOperand(2), Op.getOperand(3));
10294  }
10295  }
10296}
10297
10298static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10299  DebugLoc dl = Op.getDebugLoc();
10300  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10301  switch (IntNo) {
10302  default: return SDValue();    // Don't custom lower most intrinsics.
10303
10304  // RDRAND intrinsics.
10305  case Intrinsic::x86_rdrand_16:
10306  case Intrinsic::x86_rdrand_32:
10307  case Intrinsic::x86_rdrand_64: {
10308    // Emit the node with the right value type.
10309    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10310    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10311
10312    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10313    // return the value from Rand, which is always 0, casted to i32.
10314    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10315                      DAG.getConstant(1, Op->getValueType(1)),
10316                      DAG.getConstant(X86::COND_B, MVT::i32),
10317                      SDValue(Result.getNode(), 1) };
10318    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10319                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10320                                  Ops, 4);
10321
10322    // Return { result, isValid, chain }.
10323    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10324                       SDValue(Result.getNode(), 2));
10325  }
10326  }
10327}
10328
10329SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10330                                           SelectionDAG &DAG) const {
10331  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10332  MFI->setReturnAddressIsTaken(true);
10333
10334  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10335  DebugLoc dl = Op.getDebugLoc();
10336
10337  if (Depth > 0) {
10338    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10339    SDValue Offset =
10340      DAG.getConstant(TD->getPointerSize(),
10341                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
10342    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10343                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
10344                                   FrameAddr, Offset),
10345                       MachinePointerInfo(), false, false, false, 0);
10346  }
10347
10348  // Just load the return address.
10349  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10350  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10351                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10352}
10353
10354SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10355  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10356  MFI->setFrameAddressIsTaken(true);
10357
10358  EVT VT = Op.getValueType();
10359  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10360  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10361  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10362  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10363  while (Depth--)
10364    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10365                            MachinePointerInfo(),
10366                            false, false, false, 0);
10367  return FrameAddr;
10368}
10369
10370SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10371                                                     SelectionDAG &DAG) const {
10372  return DAG.getIntPtrConstant(2*TD->getPointerSize());
10373}
10374
10375SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10376  SDValue Chain     = Op.getOperand(0);
10377  SDValue Offset    = Op.getOperand(1);
10378  SDValue Handler   = Op.getOperand(2);
10379  DebugLoc dl       = Op.getDebugLoc();
10380
10381  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10382                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10383                                     getPointerTy());
10384  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10385
10386  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10387                                  DAG.getIntPtrConstant(TD->getPointerSize()));
10388  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10389  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10390                       false, false, 0);
10391  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10392
10393  return DAG.getNode(X86ISD::EH_RETURN, dl,
10394                     MVT::Other,
10395                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10396}
10397
10398static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
10399  return Op.getOperand(0);
10400}
10401
10402SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10403                                                SelectionDAG &DAG) const {
10404  SDValue Root = Op.getOperand(0);
10405  SDValue Trmp = Op.getOperand(1); // trampoline
10406  SDValue FPtr = Op.getOperand(2); // nested function
10407  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10408  DebugLoc dl  = Op.getDebugLoc();
10409
10410  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10411
10412  if (Subtarget->is64Bit()) {
10413    SDValue OutChains[6];
10414
10415    // Large code-model.
10416    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10417    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10418
10419    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
10420    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
10421
10422    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10423
10424    // Load the pointer to the nested function into R11.
10425    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10426    SDValue Addr = Trmp;
10427    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10428                                Addr, MachinePointerInfo(TrmpAddr),
10429                                false, false, 0);
10430
10431    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10432                       DAG.getConstant(2, MVT::i64));
10433    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10434                                MachinePointerInfo(TrmpAddr, 2),
10435                                false, false, 2);
10436
10437    // Load the 'nest' parameter value into R10.
10438    // R10 is specified in X86CallingConv.td
10439    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10440    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10441                       DAG.getConstant(10, MVT::i64));
10442    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10443                                Addr, MachinePointerInfo(TrmpAddr, 10),
10444                                false, false, 0);
10445
10446    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10447                       DAG.getConstant(12, MVT::i64));
10448    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10449                                MachinePointerInfo(TrmpAddr, 12),
10450                                false, false, 2);
10451
10452    // Jump to the nested function.
10453    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10454    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10455                       DAG.getConstant(20, MVT::i64));
10456    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10457                                Addr, MachinePointerInfo(TrmpAddr, 20),
10458                                false, false, 0);
10459
10460    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10461    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10462                       DAG.getConstant(22, MVT::i64));
10463    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10464                                MachinePointerInfo(TrmpAddr, 22),
10465                                false, false, 0);
10466
10467    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10468  } else {
10469    const Function *Func =
10470      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10471    CallingConv::ID CC = Func->getCallingConv();
10472    unsigned NestReg;
10473
10474    switch (CC) {
10475    default:
10476      llvm_unreachable("Unsupported calling convention");
10477    case CallingConv::C:
10478    case CallingConv::X86_StdCall: {
10479      // Pass 'nest' parameter in ECX.
10480      // Must be kept in sync with X86CallingConv.td
10481      NestReg = X86::ECX;
10482
10483      // Check that ECX wasn't needed by an 'inreg' parameter.
10484      FunctionType *FTy = Func->getFunctionType();
10485      const AttrListPtr &Attrs = Func->getAttributes();
10486
10487      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10488        unsigned InRegCount = 0;
10489        unsigned Idx = 1;
10490
10491        for (FunctionType::param_iterator I = FTy->param_begin(),
10492             E = FTy->param_end(); I != E; ++I, ++Idx)
10493          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
10494            // FIXME: should only count parameters that are lowered to integers.
10495            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10496
10497        if (InRegCount > 2) {
10498          report_fatal_error("Nest register in use - reduce number of inreg"
10499                             " parameters!");
10500        }
10501      }
10502      break;
10503    }
10504    case CallingConv::X86_FastCall:
10505    case CallingConv::X86_ThisCall:
10506    case CallingConv::Fast:
10507      // Pass 'nest' parameter in EAX.
10508      // Must be kept in sync with X86CallingConv.td
10509      NestReg = X86::EAX;
10510      break;
10511    }
10512
10513    SDValue OutChains[4];
10514    SDValue Addr, Disp;
10515
10516    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10517                       DAG.getConstant(10, MVT::i32));
10518    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10519
10520    // This is storing the opcode for MOV32ri.
10521    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10522    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10523    OutChains[0] = DAG.getStore(Root, dl,
10524                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10525                                Trmp, MachinePointerInfo(TrmpAddr),
10526                                false, false, 0);
10527
10528    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10529                       DAG.getConstant(1, MVT::i32));
10530    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10531                                MachinePointerInfo(TrmpAddr, 1),
10532                                false, false, 1);
10533
10534    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10535    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10536                       DAG.getConstant(5, MVT::i32));
10537    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10538                                MachinePointerInfo(TrmpAddr, 5),
10539                                false, false, 1);
10540
10541    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10542                       DAG.getConstant(6, MVT::i32));
10543    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10544                                MachinePointerInfo(TrmpAddr, 6),
10545                                false, false, 1);
10546
10547    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10548  }
10549}
10550
10551SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10552                                            SelectionDAG &DAG) const {
10553  /*
10554   The rounding mode is in bits 11:10 of FPSR, and has the following
10555   settings:
10556     00 Round to nearest
10557     01 Round to -inf
10558     10 Round to +inf
10559     11 Round to 0
10560
10561  FLT_ROUNDS, on the other hand, expects the following:
10562    -1 Undefined
10563     0 Round to 0
10564     1 Round to nearest
10565     2 Round to +inf
10566     3 Round to -inf
10567
10568  To perform the conversion, we do:
10569    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10570  */
10571
10572  MachineFunction &MF = DAG.getMachineFunction();
10573  const TargetMachine &TM = MF.getTarget();
10574  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10575  unsigned StackAlignment = TFI.getStackAlignment();
10576  EVT VT = Op.getValueType();
10577  DebugLoc DL = Op.getDebugLoc();
10578
10579  // Save FP Control Word to stack slot
10580  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10581  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10582
10583
10584  MachineMemOperand *MMO =
10585   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10586                           MachineMemOperand::MOStore, 2, 2);
10587
10588  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10589  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10590                                          DAG.getVTList(MVT::Other),
10591                                          Ops, 2, MVT::i16, MMO);
10592
10593  // Load FP Control Word from stack slot
10594  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10595                            MachinePointerInfo(), false, false, false, 0);
10596
10597  // Transform as necessary
10598  SDValue CWD1 =
10599    DAG.getNode(ISD::SRL, DL, MVT::i16,
10600                DAG.getNode(ISD::AND, DL, MVT::i16,
10601                            CWD, DAG.getConstant(0x800, MVT::i16)),
10602                DAG.getConstant(11, MVT::i8));
10603  SDValue CWD2 =
10604    DAG.getNode(ISD::SRL, DL, MVT::i16,
10605                DAG.getNode(ISD::AND, DL, MVT::i16,
10606                            CWD, DAG.getConstant(0x400, MVT::i16)),
10607                DAG.getConstant(9, MVT::i8));
10608
10609  SDValue RetVal =
10610    DAG.getNode(ISD::AND, DL, MVT::i16,
10611                DAG.getNode(ISD::ADD, DL, MVT::i16,
10612                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10613                            DAG.getConstant(1, MVT::i16)),
10614                DAG.getConstant(3, MVT::i16));
10615
10616
10617  return DAG.getNode((VT.getSizeInBits() < 16 ?
10618                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10619}
10620
10621static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
10622  EVT VT = Op.getValueType();
10623  EVT OpVT = VT;
10624  unsigned NumBits = VT.getSizeInBits();
10625  DebugLoc dl = Op.getDebugLoc();
10626
10627  Op = Op.getOperand(0);
10628  if (VT == MVT::i8) {
10629    // Zero extend to i32 since there is not an i8 bsr.
10630    OpVT = MVT::i32;
10631    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10632  }
10633
10634  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10635  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10636  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10637
10638  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10639  SDValue Ops[] = {
10640    Op,
10641    DAG.getConstant(NumBits+NumBits-1, OpVT),
10642    DAG.getConstant(X86::COND_E, MVT::i8),
10643    Op.getValue(1)
10644  };
10645  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10646
10647  // Finally xor with NumBits-1.
10648  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10649
10650  if (VT == MVT::i8)
10651    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10652  return Op;
10653}
10654
10655static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
10656  EVT VT = Op.getValueType();
10657  EVT OpVT = VT;
10658  unsigned NumBits = VT.getSizeInBits();
10659  DebugLoc dl = Op.getDebugLoc();
10660
10661  Op = Op.getOperand(0);
10662  if (VT == MVT::i8) {
10663    // Zero extend to i32 since there is not an i8 bsr.
10664    OpVT = MVT::i32;
10665    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10666  }
10667
10668  // Issue a bsr (scan bits in reverse).
10669  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10670  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10671
10672  // And xor with NumBits-1.
10673  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10674
10675  if (VT == MVT::i8)
10676    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10677  return Op;
10678}
10679
10680static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
10681  EVT VT = Op.getValueType();
10682  unsigned NumBits = VT.getSizeInBits();
10683  DebugLoc dl = Op.getDebugLoc();
10684  Op = Op.getOperand(0);
10685
10686  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10687  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10688  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10689
10690  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10691  SDValue Ops[] = {
10692    Op,
10693    DAG.getConstant(NumBits, VT),
10694    DAG.getConstant(X86::COND_E, MVT::i8),
10695    Op.getValue(1)
10696  };
10697  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10698}
10699
10700// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10701// ones, and then concatenate the result back.
10702static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10703  EVT VT = Op.getValueType();
10704
10705  assert(VT.is256BitVector() && VT.isInteger() &&
10706         "Unsupported value type for operation");
10707
10708  unsigned NumElems = VT.getVectorNumElements();
10709  DebugLoc dl = Op.getDebugLoc();
10710
10711  // Extract the LHS vectors
10712  SDValue LHS = Op.getOperand(0);
10713  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10714  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10715
10716  // Extract the RHS vectors
10717  SDValue RHS = Op.getOperand(1);
10718  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10719  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10720
10721  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10722  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10723
10724  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10725                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10726                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10727}
10728
10729static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
10730  assert(Op.getValueType().is256BitVector() &&
10731         Op.getValueType().isInteger() &&
10732         "Only handle AVX 256-bit vector integer operation");
10733  return Lower256IntArith(Op, DAG);
10734}
10735
10736static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
10737  assert(Op.getValueType().is256BitVector() &&
10738         Op.getValueType().isInteger() &&
10739         "Only handle AVX 256-bit vector integer operation");
10740  return Lower256IntArith(Op, DAG);
10741}
10742
10743static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
10744                        SelectionDAG &DAG) {
10745  EVT VT = Op.getValueType();
10746
10747  // Decompose 256-bit ops into smaller 128-bit ops.
10748  if (VT.is256BitVector() && !Subtarget->hasAVX2())
10749    return Lower256IntArith(Op, DAG);
10750
10751  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10752         "Only know how to lower V2I64/V4I64 multiply");
10753
10754  DebugLoc dl = Op.getDebugLoc();
10755
10756  //  Ahi = psrlqi(a, 32);
10757  //  Bhi = psrlqi(b, 32);
10758  //
10759  //  AloBlo = pmuludq(a, b);
10760  //  AloBhi = pmuludq(a, Bhi);
10761  //  AhiBlo = pmuludq(Ahi, b);
10762
10763  //  AloBhi = psllqi(AloBhi, 32);
10764  //  AhiBlo = psllqi(AhiBlo, 32);
10765  //  return AloBlo + AloBhi + AhiBlo;
10766
10767  SDValue A = Op.getOperand(0);
10768  SDValue B = Op.getOperand(1);
10769
10770  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10771
10772  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10773  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10774
10775  // Bit cast to 32-bit vectors for MULUDQ
10776  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10777  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10778  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10779  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10780  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10781
10782  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10783  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10784  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10785
10786  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10787  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10788
10789  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10790  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10791}
10792
10793SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10794
10795  EVT VT = Op.getValueType();
10796  DebugLoc dl = Op.getDebugLoc();
10797  SDValue R = Op.getOperand(0);
10798  SDValue Amt = Op.getOperand(1);
10799  LLVMContext *Context = DAG.getContext();
10800
10801  if (!Subtarget->hasSSE2())
10802    return SDValue();
10803
10804  // Optimize shl/srl/sra with constant shift amount.
10805  if (isSplatVector(Amt.getNode())) {
10806    SDValue SclrAmt = Amt->getOperand(0);
10807    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10808      uint64_t ShiftAmt = C->getZExtValue();
10809
10810      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10811          (Subtarget->hasAVX2() &&
10812           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10813        if (Op.getOpcode() == ISD::SHL)
10814          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10815                             DAG.getConstant(ShiftAmt, MVT::i32));
10816        if (Op.getOpcode() == ISD::SRL)
10817          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10818                             DAG.getConstant(ShiftAmt, MVT::i32));
10819        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10820          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10821                             DAG.getConstant(ShiftAmt, MVT::i32));
10822      }
10823
10824      if (VT == MVT::v16i8) {
10825        if (Op.getOpcode() == ISD::SHL) {
10826          // Make a large shift.
10827          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10828                                    DAG.getConstant(ShiftAmt, MVT::i32));
10829          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10830          // Zero out the rightmost bits.
10831          SmallVector<SDValue, 16> V(16,
10832                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10833                                                     MVT::i8));
10834          return DAG.getNode(ISD::AND, dl, VT, SHL,
10835                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10836        }
10837        if (Op.getOpcode() == ISD::SRL) {
10838          // Make a large shift.
10839          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10840                                    DAG.getConstant(ShiftAmt, MVT::i32));
10841          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10842          // Zero out the leftmost bits.
10843          SmallVector<SDValue, 16> V(16,
10844                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10845                                                     MVT::i8));
10846          return DAG.getNode(ISD::AND, dl, VT, SRL,
10847                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10848        }
10849        if (Op.getOpcode() == ISD::SRA) {
10850          if (ShiftAmt == 7) {
10851            // R s>> 7  ===  R s< 0
10852            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10853            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10854          }
10855
10856          // R s>> a === ((R u>> a) ^ m) - m
10857          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10858          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10859                                                         MVT::i8));
10860          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10861          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10862          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10863          return Res;
10864        }
10865        llvm_unreachable("Unknown shift opcode.");
10866      }
10867
10868      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10869        if (Op.getOpcode() == ISD::SHL) {
10870          // Make a large shift.
10871          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10872                                    DAG.getConstant(ShiftAmt, MVT::i32));
10873          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10874          // Zero out the rightmost bits.
10875          SmallVector<SDValue, 32> V(32,
10876                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10877                                                     MVT::i8));
10878          return DAG.getNode(ISD::AND, dl, VT, SHL,
10879                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10880        }
10881        if (Op.getOpcode() == ISD::SRL) {
10882          // Make a large shift.
10883          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10884                                    DAG.getConstant(ShiftAmt, MVT::i32));
10885          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10886          // Zero out the leftmost bits.
10887          SmallVector<SDValue, 32> V(32,
10888                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10889                                                     MVT::i8));
10890          return DAG.getNode(ISD::AND, dl, VT, SRL,
10891                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10892        }
10893        if (Op.getOpcode() == ISD::SRA) {
10894          if (ShiftAmt == 7) {
10895            // R s>> 7  ===  R s< 0
10896            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10897            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10898          }
10899
10900          // R s>> a === ((R u>> a) ^ m) - m
10901          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10902          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10903                                                         MVT::i8));
10904          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10905          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10906          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10907          return Res;
10908        }
10909        llvm_unreachable("Unknown shift opcode.");
10910      }
10911    }
10912  }
10913
10914  // Lower SHL with variable shift amount.
10915  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10916    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10917                     DAG.getConstant(23, MVT::i32));
10918
10919    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10920    Constant *C = ConstantDataVector::get(*Context, CV);
10921    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10922    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10923                                 MachinePointerInfo::getConstantPool(),
10924                                 false, false, false, 16);
10925
10926    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10927    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10928    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10929    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10930  }
10931  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10932    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10933
10934    // a = a << 5;
10935    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10936                     DAG.getConstant(5, MVT::i32));
10937    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10938
10939    // Turn 'a' into a mask suitable for VSELECT
10940    SDValue VSelM = DAG.getConstant(0x80, VT);
10941    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10942    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10943
10944    SDValue CM1 = DAG.getConstant(0x0f, VT);
10945    SDValue CM2 = DAG.getConstant(0x3f, VT);
10946
10947    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10948    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10949    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10950                            DAG.getConstant(4, MVT::i32), DAG);
10951    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10952    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10953
10954    // a += a
10955    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10956    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10957    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10958
10959    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10960    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10961    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10962                            DAG.getConstant(2, MVT::i32), DAG);
10963    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10964    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10965
10966    // a += a
10967    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10968    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10969    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10970
10971    // return VSELECT(r, r+r, a);
10972    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10973                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10974    return R;
10975  }
10976
10977  // Decompose 256-bit shifts into smaller 128-bit shifts.
10978  if (VT.is256BitVector()) {
10979    unsigned NumElems = VT.getVectorNumElements();
10980    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10981    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10982
10983    // Extract the two vectors
10984    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10985    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10986
10987    // Recreate the shift amount vectors
10988    SDValue Amt1, Amt2;
10989    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10990      // Constant shift amount
10991      SmallVector<SDValue, 4> Amt1Csts;
10992      SmallVector<SDValue, 4> Amt2Csts;
10993      for (unsigned i = 0; i != NumElems/2; ++i)
10994        Amt1Csts.push_back(Amt->getOperand(i));
10995      for (unsigned i = NumElems/2; i != NumElems; ++i)
10996        Amt2Csts.push_back(Amt->getOperand(i));
10997
10998      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10999                                 &Amt1Csts[0], NumElems/2);
11000      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11001                                 &Amt2Csts[0], NumElems/2);
11002    } else {
11003      // Variable shift amount
11004      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11005      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11006    }
11007
11008    // Issue new vector shifts for the smaller types
11009    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11010    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11011
11012    // Concatenate the result back
11013    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11014  }
11015
11016  return SDValue();
11017}
11018
11019static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11020  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11021  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11022  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11023  // has only one use.
11024  SDNode *N = Op.getNode();
11025  SDValue LHS = N->getOperand(0);
11026  SDValue RHS = N->getOperand(1);
11027  unsigned BaseOp = 0;
11028  unsigned Cond = 0;
11029  DebugLoc DL = Op.getDebugLoc();
11030  switch (Op.getOpcode()) {
11031  default: llvm_unreachable("Unknown ovf instruction!");
11032  case ISD::SADDO:
11033    // A subtract of one will be selected as a INC. Note that INC doesn't
11034    // set CF, so we can't do this for UADDO.
11035    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11036      if (C->isOne()) {
11037        BaseOp = X86ISD::INC;
11038        Cond = X86::COND_O;
11039        break;
11040      }
11041    BaseOp = X86ISD::ADD;
11042    Cond = X86::COND_O;
11043    break;
11044  case ISD::UADDO:
11045    BaseOp = X86ISD::ADD;
11046    Cond = X86::COND_B;
11047    break;
11048  case ISD::SSUBO:
11049    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11050    // set CF, so we can't do this for USUBO.
11051    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11052      if (C->isOne()) {
11053        BaseOp = X86ISD::DEC;
11054        Cond = X86::COND_O;
11055        break;
11056      }
11057    BaseOp = X86ISD::SUB;
11058    Cond = X86::COND_O;
11059    break;
11060  case ISD::USUBO:
11061    BaseOp = X86ISD::SUB;
11062    Cond = X86::COND_B;
11063    break;
11064  case ISD::SMULO:
11065    BaseOp = X86ISD::SMUL;
11066    Cond = X86::COND_O;
11067    break;
11068  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11069    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11070                                 MVT::i32);
11071    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11072
11073    SDValue SetCC =
11074      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11075                  DAG.getConstant(X86::COND_O, MVT::i32),
11076                  SDValue(Sum.getNode(), 2));
11077
11078    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11079  }
11080  }
11081
11082  // Also sets EFLAGS.
11083  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11084  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11085
11086  SDValue SetCC =
11087    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11088                DAG.getConstant(Cond, MVT::i32),
11089                SDValue(Sum.getNode(), 1));
11090
11091  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11092}
11093
11094SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11095                                                  SelectionDAG &DAG) const {
11096  DebugLoc dl = Op.getDebugLoc();
11097  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11098  EVT VT = Op.getValueType();
11099
11100  if (!Subtarget->hasSSE2() || !VT.isVector())
11101    return SDValue();
11102
11103  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11104                      ExtraVT.getScalarType().getSizeInBits();
11105  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11106
11107  switch (VT.getSimpleVT().SimpleTy) {
11108    default: return SDValue();
11109    case MVT::v8i32:
11110    case MVT::v16i16:
11111      if (!Subtarget->hasAVX())
11112        return SDValue();
11113      if (!Subtarget->hasAVX2()) {
11114        // needs to be split
11115        unsigned NumElems = VT.getVectorNumElements();
11116
11117        // Extract the LHS vectors
11118        SDValue LHS = Op.getOperand(0);
11119        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11120        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11121
11122        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11123        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11124
11125        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11126        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11127        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11128                                   ExtraNumElems/2);
11129        SDValue Extra = DAG.getValueType(ExtraVT);
11130
11131        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11132        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11133
11134        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11135      }
11136      // fall through
11137    case MVT::v4i32:
11138    case MVT::v8i16: {
11139      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11140                                         Op.getOperand(0), ShAmt, DAG);
11141      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11142    }
11143  }
11144}
11145
11146
11147static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11148                              SelectionDAG &DAG) {
11149  DebugLoc dl = Op.getDebugLoc();
11150
11151  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11152  // There isn't any reason to disable it if the target processor supports it.
11153  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11154    SDValue Chain = Op.getOperand(0);
11155    SDValue Zero = DAG.getConstant(0, MVT::i32);
11156    SDValue Ops[] = {
11157      DAG.getRegister(X86::ESP, MVT::i32), // Base
11158      DAG.getTargetConstant(1, MVT::i8),   // Scale
11159      DAG.getRegister(0, MVT::i32),        // Index
11160      DAG.getTargetConstant(0, MVT::i32),  // Disp
11161      DAG.getRegister(0, MVT::i32),        // Segment.
11162      Zero,
11163      Chain
11164    };
11165    SDNode *Res =
11166      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11167                          array_lengthof(Ops));
11168    return SDValue(Res, 0);
11169  }
11170
11171  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11172  if (!isDev)
11173    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11174
11175  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11176  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11177  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11178  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11179
11180  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11181  if (!Op1 && !Op2 && !Op3 && Op4)
11182    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11183
11184  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11185  if (Op1 && !Op2 && !Op3 && !Op4)
11186    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11187
11188  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11189  //           (MFENCE)>;
11190  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11191}
11192
11193static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11194                                 SelectionDAG &DAG) {
11195  DebugLoc dl = Op.getDebugLoc();
11196  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11197    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11198  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11199    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11200
11201  // The only fence that needs an instruction is a sequentially-consistent
11202  // cross-thread fence.
11203  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11204    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11205    // no-sse2). There isn't any reason to disable it if the target processor
11206    // supports it.
11207    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11208      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11209
11210    SDValue Chain = Op.getOperand(0);
11211    SDValue Zero = DAG.getConstant(0, MVT::i32);
11212    SDValue Ops[] = {
11213      DAG.getRegister(X86::ESP, MVT::i32), // Base
11214      DAG.getTargetConstant(1, MVT::i8),   // Scale
11215      DAG.getRegister(0, MVT::i32),        // Index
11216      DAG.getTargetConstant(0, MVT::i32),  // Disp
11217      DAG.getRegister(0, MVT::i32),        // Segment.
11218      Zero,
11219      Chain
11220    };
11221    SDNode *Res =
11222      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11223                         array_lengthof(Ops));
11224    return SDValue(Res, 0);
11225  }
11226
11227  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11228  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11229}
11230
11231
11232static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11233                             SelectionDAG &DAG) {
11234  EVT T = Op.getValueType();
11235  DebugLoc DL = Op.getDebugLoc();
11236  unsigned Reg = 0;
11237  unsigned size = 0;
11238  switch(T.getSimpleVT().SimpleTy) {
11239  default: llvm_unreachable("Invalid value type!");
11240  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11241  case MVT::i16: Reg = X86::AX;  size = 2; break;
11242  case MVT::i32: Reg = X86::EAX; size = 4; break;
11243  case MVT::i64:
11244    assert(Subtarget->is64Bit() && "Node not type legal!");
11245    Reg = X86::RAX; size = 8;
11246    break;
11247  }
11248  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11249                                    Op.getOperand(2), SDValue());
11250  SDValue Ops[] = { cpIn.getValue(0),
11251                    Op.getOperand(1),
11252                    Op.getOperand(3),
11253                    DAG.getTargetConstant(size, MVT::i8),
11254                    cpIn.getValue(1) };
11255  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11256  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11257  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11258                                           Ops, 5, T, MMO);
11259  SDValue cpOut =
11260    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11261  return cpOut;
11262}
11263
11264static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11265                                     SelectionDAG &DAG) {
11266  assert(Subtarget->is64Bit() && "Result not type legalized?");
11267  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11268  SDValue TheChain = Op.getOperand(0);
11269  DebugLoc dl = Op.getDebugLoc();
11270  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11271  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11272  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11273                                   rax.getValue(2));
11274  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11275                            DAG.getConstant(32, MVT::i8));
11276  SDValue Ops[] = {
11277    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11278    rdx.getValue(1)
11279  };
11280  return DAG.getMergeValues(Ops, 2, dl);
11281}
11282
11283SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11284  EVT SrcVT = Op.getOperand(0).getValueType();
11285  EVT DstVT = Op.getValueType();
11286  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11287         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11288  assert((DstVT == MVT::i64 ||
11289          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11290         "Unexpected custom BITCAST");
11291  // i64 <=> MMX conversions are Legal.
11292  if (SrcVT==MVT::i64 && DstVT.isVector())
11293    return Op;
11294  if (DstVT==MVT::i64 && SrcVT.isVector())
11295    return Op;
11296  // MMX <=> MMX conversions are Legal.
11297  if (SrcVT.isVector() && DstVT.isVector())
11298    return Op;
11299  // All other conversions need to be expanded.
11300  return SDValue();
11301}
11302
11303static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11304  SDNode *Node = Op.getNode();
11305  DebugLoc dl = Node->getDebugLoc();
11306  EVT T = Node->getValueType(0);
11307  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11308                              DAG.getConstant(0, T), Node->getOperand(2));
11309  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11310                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11311                       Node->getOperand(0),
11312                       Node->getOperand(1), negOp,
11313                       cast<AtomicSDNode>(Node)->getSrcValue(),
11314                       cast<AtomicSDNode>(Node)->getAlignment(),
11315                       cast<AtomicSDNode>(Node)->getOrdering(),
11316                       cast<AtomicSDNode>(Node)->getSynchScope());
11317}
11318
11319static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11320  SDNode *Node = Op.getNode();
11321  DebugLoc dl = Node->getDebugLoc();
11322  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11323
11324  // Convert seq_cst store -> xchg
11325  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11326  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11327  //        (The only way to get a 16-byte store is cmpxchg16b)
11328  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11329  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11330      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11331    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11332                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11333                                 Node->getOperand(0),
11334                                 Node->getOperand(1), Node->getOperand(2),
11335                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11336                                 cast<AtomicSDNode>(Node)->getOrdering(),
11337                                 cast<AtomicSDNode>(Node)->getSynchScope());
11338    return Swap.getValue(1);
11339  }
11340  // Other atomic stores have a simple pattern.
11341  return Op;
11342}
11343
11344static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11345  EVT VT = Op.getNode()->getValueType(0);
11346
11347  // Let legalize expand this if it isn't a legal type yet.
11348  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11349    return SDValue();
11350
11351  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11352
11353  unsigned Opc;
11354  bool ExtraOp = false;
11355  switch (Op.getOpcode()) {
11356  default: llvm_unreachable("Invalid code");
11357  case ISD::ADDC: Opc = X86ISD::ADD; break;
11358  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11359  case ISD::SUBC: Opc = X86ISD::SUB; break;
11360  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11361  }
11362
11363  if (!ExtraOp)
11364    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11365                       Op.getOperand(1));
11366  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11367                     Op.getOperand(1), Op.getOperand(2));
11368}
11369
11370/// LowerOperation - Provide custom lowering hooks for some operations.
11371///
11372SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11373  switch (Op.getOpcode()) {
11374  default: llvm_unreachable("Should not custom lower this!");
11375  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
11376  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
11377  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
11378  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
11379  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
11380  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
11381  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11382  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
11383  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11384  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11385  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11386  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
11387  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
11388  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11389  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11390  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11391  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11392  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
11393  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11394  case ISD::SHL_PARTS:
11395  case ISD::SRA_PARTS:
11396  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
11397  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
11398  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
11399  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
11400  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
11401  case ISD::FABS:               return LowerFABS(Op, DAG);
11402  case ISD::FNEG:               return LowerFNEG(Op, DAG);
11403  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
11404  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
11405  case ISD::SETCC:              return LowerSETCC(Op, DAG);
11406  case ISD::SELECT:             return LowerSELECT(Op, DAG);
11407  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
11408  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11409  case ISD::VASTART:            return LowerVASTART(Op, DAG);
11410  case ISD::VAARG:              return LowerVAARG(Op, DAG);
11411  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
11412  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11413  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
11414  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11415  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11416  case ISD::FRAME_TO_ARGS_OFFSET:
11417                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
11418  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11419  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
11420  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11421  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11422  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11423  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
11424  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
11425  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
11426  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
11427  case ISD::SRA:
11428  case ISD::SRL:
11429  case ISD::SHL:                return LowerShift(Op, DAG);
11430  case ISD::SADDO:
11431  case ISD::UADDO:
11432  case ISD::SSUBO:
11433  case ISD::USUBO:
11434  case ISD::SMULO:
11435  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11436  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
11437  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11438  case ISD::ADDC:
11439  case ISD::ADDE:
11440  case ISD::SUBC:
11441  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11442  case ISD::ADD:                return LowerADD(Op, DAG);
11443  case ISD::SUB:                return LowerSUB(Op, DAG);
11444  }
11445}
11446
11447static void ReplaceATOMIC_LOAD(SDNode *Node,
11448                                  SmallVectorImpl<SDValue> &Results,
11449                                  SelectionDAG &DAG) {
11450  DebugLoc dl = Node->getDebugLoc();
11451  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11452
11453  // Convert wide load -> cmpxchg8b/cmpxchg16b
11454  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11455  //        (The only way to get a 16-byte load is cmpxchg16b)
11456  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11457  SDValue Zero = DAG.getConstant(0, VT);
11458  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11459                               Node->getOperand(0),
11460                               Node->getOperand(1), Zero, Zero,
11461                               cast<AtomicSDNode>(Node)->getMemOperand(),
11462                               cast<AtomicSDNode>(Node)->getOrdering(),
11463                               cast<AtomicSDNode>(Node)->getSynchScope());
11464  Results.push_back(Swap.getValue(0));
11465  Results.push_back(Swap.getValue(1));
11466}
11467
11468static void
11469ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11470                        SelectionDAG &DAG, unsigned NewOp) {
11471  DebugLoc dl = Node->getDebugLoc();
11472  assert (Node->getValueType(0) == MVT::i64 &&
11473          "Only know how to expand i64 atomics");
11474
11475  SDValue Chain = Node->getOperand(0);
11476  SDValue In1 = Node->getOperand(1);
11477  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11478                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11479  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11480                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11481  SDValue Ops[] = { Chain, In1, In2L, In2H };
11482  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11483  SDValue Result =
11484    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11485                            cast<MemSDNode>(Node)->getMemOperand());
11486  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11487  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11488  Results.push_back(Result.getValue(2));
11489}
11490
11491/// ReplaceNodeResults - Replace a node with an illegal result type
11492/// with a new node built out of custom code.
11493void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11494                                           SmallVectorImpl<SDValue>&Results,
11495                                           SelectionDAG &DAG) const {
11496  DebugLoc dl = N->getDebugLoc();
11497  switch (N->getOpcode()) {
11498  default:
11499    llvm_unreachable("Do not know how to custom type legalize this operation!");
11500  case ISD::SIGN_EXTEND_INREG:
11501  case ISD::ADDC:
11502  case ISD::ADDE:
11503  case ISD::SUBC:
11504  case ISD::SUBE:
11505    // We don't want to expand or promote these.
11506    return;
11507  case ISD::FP_TO_SINT:
11508  case ISD::FP_TO_UINT: {
11509    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11510
11511    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11512      return;
11513
11514    std::pair<SDValue,SDValue> Vals =
11515        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11516    SDValue FIST = Vals.first, StackSlot = Vals.second;
11517    if (FIST.getNode() != 0) {
11518      EVT VT = N->getValueType(0);
11519      // Return a load from the stack slot.
11520      if (StackSlot.getNode() != 0)
11521        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11522                                      MachinePointerInfo(),
11523                                      false, false, false, 0));
11524      else
11525        Results.push_back(FIST);
11526    }
11527    return;
11528  }
11529  case ISD::READCYCLECOUNTER: {
11530    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11531    SDValue TheChain = N->getOperand(0);
11532    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11533    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11534                                     rd.getValue(1));
11535    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11536                                     eax.getValue(2));
11537    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11538    SDValue Ops[] = { eax, edx };
11539    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11540    Results.push_back(edx.getValue(1));
11541    return;
11542  }
11543  case ISD::ATOMIC_CMP_SWAP: {
11544    EVT T = N->getValueType(0);
11545    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11546    bool Regs64bit = T == MVT::i128;
11547    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11548    SDValue cpInL, cpInH;
11549    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11550                        DAG.getConstant(0, HalfT));
11551    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11552                        DAG.getConstant(1, HalfT));
11553    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11554                             Regs64bit ? X86::RAX : X86::EAX,
11555                             cpInL, SDValue());
11556    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11557                             Regs64bit ? X86::RDX : X86::EDX,
11558                             cpInH, cpInL.getValue(1));
11559    SDValue swapInL, swapInH;
11560    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11561                          DAG.getConstant(0, HalfT));
11562    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11563                          DAG.getConstant(1, HalfT));
11564    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11565                               Regs64bit ? X86::RBX : X86::EBX,
11566                               swapInL, cpInH.getValue(1));
11567    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11568                               Regs64bit ? X86::RCX : X86::ECX,
11569                               swapInH, swapInL.getValue(1));
11570    SDValue Ops[] = { swapInH.getValue(0),
11571                      N->getOperand(1),
11572                      swapInH.getValue(1) };
11573    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11574    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11575    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11576                                  X86ISD::LCMPXCHG8_DAG;
11577    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11578                                             Ops, 3, T, MMO);
11579    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11580                                        Regs64bit ? X86::RAX : X86::EAX,
11581                                        HalfT, Result.getValue(1));
11582    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11583                                        Regs64bit ? X86::RDX : X86::EDX,
11584                                        HalfT, cpOutL.getValue(2));
11585    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11586    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11587    Results.push_back(cpOutH.getValue(1));
11588    return;
11589  }
11590  case ISD::ATOMIC_LOAD_ADD:
11591  case ISD::ATOMIC_LOAD_AND:
11592  case ISD::ATOMIC_LOAD_NAND:
11593  case ISD::ATOMIC_LOAD_OR:
11594  case ISD::ATOMIC_LOAD_SUB:
11595  case ISD::ATOMIC_LOAD_XOR:
11596  case ISD::ATOMIC_SWAP: {
11597    unsigned Opc;
11598    switch (N->getOpcode()) {
11599    default: llvm_unreachable("Unexpected opcode");
11600    case ISD::ATOMIC_LOAD_ADD:
11601      Opc = X86ISD::ATOMADD64_DAG;
11602      break;
11603    case ISD::ATOMIC_LOAD_AND:
11604      Opc = X86ISD::ATOMAND64_DAG;
11605      break;
11606    case ISD::ATOMIC_LOAD_NAND:
11607      Opc = X86ISD::ATOMNAND64_DAG;
11608      break;
11609    case ISD::ATOMIC_LOAD_OR:
11610      Opc = X86ISD::ATOMOR64_DAG;
11611      break;
11612    case ISD::ATOMIC_LOAD_SUB:
11613      Opc = X86ISD::ATOMSUB64_DAG;
11614      break;
11615    case ISD::ATOMIC_LOAD_XOR:
11616      Opc = X86ISD::ATOMXOR64_DAG;
11617      break;
11618    case ISD::ATOMIC_SWAP:
11619      Opc = X86ISD::ATOMSWAP64_DAG;
11620      break;
11621    }
11622    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
11623    return;
11624  }
11625  case ISD::ATOMIC_LOAD:
11626    ReplaceATOMIC_LOAD(N, Results, DAG);
11627  }
11628}
11629
11630const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11631  switch (Opcode) {
11632  default: return NULL;
11633  case X86ISD::BSF:                return "X86ISD::BSF";
11634  case X86ISD::BSR:                return "X86ISD::BSR";
11635  case X86ISD::SHLD:               return "X86ISD::SHLD";
11636  case X86ISD::SHRD:               return "X86ISD::SHRD";
11637  case X86ISD::FAND:               return "X86ISD::FAND";
11638  case X86ISD::FOR:                return "X86ISD::FOR";
11639  case X86ISD::FXOR:               return "X86ISD::FXOR";
11640  case X86ISD::FSRL:               return "X86ISD::FSRL";
11641  case X86ISD::FILD:               return "X86ISD::FILD";
11642  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11643  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11644  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11645  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11646  case X86ISD::FLD:                return "X86ISD::FLD";
11647  case X86ISD::FST:                return "X86ISD::FST";
11648  case X86ISD::CALL:               return "X86ISD::CALL";
11649  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11650  case X86ISD::BT:                 return "X86ISD::BT";
11651  case X86ISD::CMP:                return "X86ISD::CMP";
11652  case X86ISD::COMI:               return "X86ISD::COMI";
11653  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11654  case X86ISD::SETCC:              return "X86ISD::SETCC";
11655  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11656  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11657  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11658  case X86ISD::CMOV:               return "X86ISD::CMOV";
11659  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11660  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11661  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11662  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11663  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11664  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11665  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11666  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11667  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11668  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11669  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11670  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11671  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11672  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11673  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11674  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11675  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11676  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11677  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11678  case X86ISD::HADD:               return "X86ISD::HADD";
11679  case X86ISD::HSUB:               return "X86ISD::HSUB";
11680  case X86ISD::FHADD:              return "X86ISD::FHADD";
11681  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11682  case X86ISD::FMAX:               return "X86ISD::FMAX";
11683  case X86ISD::FMIN:               return "X86ISD::FMIN";
11684  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
11685  case X86ISD::FMINC:              return "X86ISD::FMINC";
11686  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11687  case X86ISD::FRCP:               return "X86ISD::FRCP";
11688  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11689  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11690  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11691  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11692  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11693  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11694  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11695  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11696  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11697  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11698  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11699  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11700  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11701  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11702  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11703  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11704  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
11705  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11706  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
11707  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11708  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11709  case X86ISD::VSHL:               return "X86ISD::VSHL";
11710  case X86ISD::VSRL:               return "X86ISD::VSRL";
11711  case X86ISD::VSRA:               return "X86ISD::VSRA";
11712  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11713  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11714  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11715  case X86ISD::CMPP:               return "X86ISD::CMPP";
11716  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11717  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11718  case X86ISD::ADD:                return "X86ISD::ADD";
11719  case X86ISD::SUB:                return "X86ISD::SUB";
11720  case X86ISD::ADC:                return "X86ISD::ADC";
11721  case X86ISD::SBB:                return "X86ISD::SBB";
11722  case X86ISD::SMUL:               return "X86ISD::SMUL";
11723  case X86ISD::UMUL:               return "X86ISD::UMUL";
11724  case X86ISD::INC:                return "X86ISD::INC";
11725  case X86ISD::DEC:                return "X86ISD::DEC";
11726  case X86ISD::OR:                 return "X86ISD::OR";
11727  case X86ISD::XOR:                return "X86ISD::XOR";
11728  case X86ISD::AND:                return "X86ISD::AND";
11729  case X86ISD::ANDN:               return "X86ISD::ANDN";
11730  case X86ISD::BLSI:               return "X86ISD::BLSI";
11731  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11732  case X86ISD::BLSR:               return "X86ISD::BLSR";
11733  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11734  case X86ISD::PTEST:              return "X86ISD::PTEST";
11735  case X86ISD::TESTP:              return "X86ISD::TESTP";
11736  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11737  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11738  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11739  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11740  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11741  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11742  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11743  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11744  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11745  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11746  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11747  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11748  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11749  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11750  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11751  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11752  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11753  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11754  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11755  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11756  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11757  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11758  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11759  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11760  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11761  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11762  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11763  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11764  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11765  case X86ISD::SAHF:               return "X86ISD::SAHF";
11766  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
11767  case X86ISD::FMADD:              return "X86ISD::FMADD";
11768  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
11769  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
11770  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
11771  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
11772  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
11773  }
11774}
11775
11776// isLegalAddressingMode - Return true if the addressing mode represented
11777// by AM is legal for this target, for a load/store of the specified type.
11778bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11779                                              Type *Ty) const {
11780  // X86 supports extremely general addressing modes.
11781  CodeModel::Model M = getTargetMachine().getCodeModel();
11782  Reloc::Model R = getTargetMachine().getRelocationModel();
11783
11784  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11785  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11786    return false;
11787
11788  if (AM.BaseGV) {
11789    unsigned GVFlags =
11790      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11791
11792    // If a reference to this global requires an extra load, we can't fold it.
11793    if (isGlobalStubReference(GVFlags))
11794      return false;
11795
11796    // If BaseGV requires a register for the PIC base, we cannot also have a
11797    // BaseReg specified.
11798    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11799      return false;
11800
11801    // If lower 4G is not available, then we must use rip-relative addressing.
11802    if ((M != CodeModel::Small || R != Reloc::Static) &&
11803        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11804      return false;
11805  }
11806
11807  switch (AM.Scale) {
11808  case 0:
11809  case 1:
11810  case 2:
11811  case 4:
11812  case 8:
11813    // These scales always work.
11814    break;
11815  case 3:
11816  case 5:
11817  case 9:
11818    // These scales are formed with basereg+scalereg.  Only accept if there is
11819    // no basereg yet.
11820    if (AM.HasBaseReg)
11821      return false;
11822    break;
11823  default:  // Other stuff never works.
11824    return false;
11825  }
11826
11827  return true;
11828}
11829
11830
11831bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11832  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11833    return false;
11834  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11835  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11836  if (NumBits1 <= NumBits2)
11837    return false;
11838  return true;
11839}
11840
11841bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11842  return Imm == (int32_t)Imm;
11843}
11844
11845bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
11846  // Can also use sub to handle negated immediates.
11847  return Imm == (int32_t)Imm;
11848}
11849
11850bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11851  if (!VT1.isInteger() || !VT2.isInteger())
11852    return false;
11853  unsigned NumBits1 = VT1.getSizeInBits();
11854  unsigned NumBits2 = VT2.getSizeInBits();
11855  if (NumBits1 <= NumBits2)
11856    return false;
11857  return true;
11858}
11859
11860bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11861  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11862  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11863}
11864
11865bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11866  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11867  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11868}
11869
11870bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11871  // i16 instructions are longer (0x66 prefix) and potentially slower.
11872  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11873}
11874
11875/// isShuffleMaskLegal - Targets can use this to indicate that they only
11876/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11877/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11878/// are assumed to be legal.
11879bool
11880X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11881                                      EVT VT) const {
11882  // Very little shuffling can be done for 64-bit vectors right now.
11883  if (VT.getSizeInBits() == 64)
11884    return false;
11885
11886  // FIXME: pshufb, blends, shifts.
11887  return (VT.getVectorNumElements() == 2 ||
11888          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11889          isMOVLMask(M, VT) ||
11890          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11891          isPSHUFDMask(M, VT) ||
11892          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11893          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11894          isPALIGNRMask(M, VT, Subtarget) ||
11895          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11896          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11897          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11898          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11899}
11900
11901bool
11902X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11903                                          EVT VT) const {
11904  unsigned NumElts = VT.getVectorNumElements();
11905  // FIXME: This collection of masks seems suspect.
11906  if (NumElts == 2)
11907    return true;
11908  if (NumElts == 4 && VT.is128BitVector()) {
11909    return (isMOVLMask(Mask, VT)  ||
11910            isCommutedMOVLMask(Mask, VT, true) ||
11911            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11912            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11913  }
11914  return false;
11915}
11916
11917//===----------------------------------------------------------------------===//
11918//                           X86 Scheduler Hooks
11919//===----------------------------------------------------------------------===//
11920
11921// private utility function
11922
11923// Get CMPXCHG opcode for the specified data type.
11924static unsigned getCmpXChgOpcode(EVT VT) {
11925  switch (VT.getSimpleVT().SimpleTy) {
11926  case MVT::i8:  return X86::LCMPXCHG8;
11927  case MVT::i16: return X86::LCMPXCHG16;
11928  case MVT::i32: return X86::LCMPXCHG32;
11929  case MVT::i64: return X86::LCMPXCHG64;
11930  default:
11931    break;
11932  }
11933  llvm_unreachable("Invalid operand size!");
11934}
11935
11936// Get LOAD opcode for the specified data type.
11937static unsigned getLoadOpcode(EVT VT) {
11938  switch (VT.getSimpleVT().SimpleTy) {
11939  case MVT::i8:  return X86::MOV8rm;
11940  case MVT::i16: return X86::MOV16rm;
11941  case MVT::i32: return X86::MOV32rm;
11942  case MVT::i64: return X86::MOV64rm;
11943  default:
11944    break;
11945  }
11946  llvm_unreachable("Invalid operand size!");
11947}
11948
11949// Get opcode of the non-atomic one from the specified atomic instruction.
11950static unsigned getNonAtomicOpcode(unsigned Opc) {
11951  switch (Opc) {
11952  case X86::ATOMAND8:  return X86::AND8rr;
11953  case X86::ATOMAND16: return X86::AND16rr;
11954  case X86::ATOMAND32: return X86::AND32rr;
11955  case X86::ATOMAND64: return X86::AND64rr;
11956  case X86::ATOMOR8:   return X86::OR8rr;
11957  case X86::ATOMOR16:  return X86::OR16rr;
11958  case X86::ATOMOR32:  return X86::OR32rr;
11959  case X86::ATOMOR64:  return X86::OR64rr;
11960  case X86::ATOMXOR8:  return X86::XOR8rr;
11961  case X86::ATOMXOR16: return X86::XOR16rr;
11962  case X86::ATOMXOR32: return X86::XOR32rr;
11963  case X86::ATOMXOR64: return X86::XOR64rr;
11964  }
11965  llvm_unreachable("Unhandled atomic-load-op opcode!");
11966}
11967
11968// Get opcode of the non-atomic one from the specified atomic instruction with
11969// extra opcode.
11970static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
11971                                               unsigned &ExtraOpc) {
11972  switch (Opc) {
11973  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
11974  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
11975  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
11976  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
11977  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
11978  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
11979  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
11980  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
11981  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
11982  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
11983  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
11984  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
11985  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
11986  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
11987  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
11988  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
11989  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
11990  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
11991  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
11992  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
11993  }
11994  llvm_unreachable("Unhandled atomic-load-op opcode!");
11995}
11996
11997// Get opcode of the non-atomic one from the specified atomic instruction for
11998// 64-bit data type on 32-bit target.
11999static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
12000  switch (Opc) {
12001  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
12002  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
12003  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
12004  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
12005  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
12006  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
12007  }
12008  llvm_unreachable("Unhandled atomic-load-op opcode!");
12009}
12010
12011// Get opcode of the non-atomic one from the specified atomic instruction for
12012// 64-bit data type on 32-bit target with extra opcode.
12013static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
12014                                                   unsigned &HiOpc,
12015                                                   unsigned &ExtraOpc) {
12016  switch (Opc) {
12017  case X86::ATOMNAND6432:
12018    ExtraOpc = X86::NOT32r;
12019    HiOpc = X86::AND32rr;
12020    return X86::AND32rr;
12021  }
12022  llvm_unreachable("Unhandled atomic-load-op opcode!");
12023}
12024
12025// Get pseudo CMOV opcode from the specified data type.
12026static unsigned getPseudoCMOVOpc(EVT VT) {
12027  switch (VT.getSimpleVT().SimpleTy) {
12028  case MVT::i8:  return X86::CMOV_GR8;
12029  case MVT::i16: return X86::CMOV_GR16;
12030  case MVT::i32: return X86::CMOV_GR32;
12031  default:
12032    break;
12033  }
12034  llvm_unreachable("Unknown CMOV opcode!");
12035}
12036
12037// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12038// They will be translated into a spin-loop or compare-exchange loop from
12039//
12040//    ...
12041//    dst = atomic-fetch-op MI.addr, MI.val
12042//    ...
12043//
12044// to
12045//
12046//    ...
12047//    EAX = LOAD MI.addr
12048// loop:
12049//    t1 = OP MI.val, EAX
12050//    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12051//    JNE loop
12052// sink:
12053//    dst = EAX
12054//    ...
12055MachineBasicBlock *
12056X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12057                                       MachineBasicBlock *MBB) const {
12058  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12059  DebugLoc DL = MI->getDebugLoc();
12060
12061  MachineFunction *MF = MBB->getParent();
12062  MachineRegisterInfo &MRI = MF->getRegInfo();
12063
12064  const BasicBlock *BB = MBB->getBasicBlock();
12065  MachineFunction::iterator I = MBB;
12066  ++I;
12067
12068  assert(MI->getNumOperands() <= X86::AddrNumOperands + 2 &&
12069         "Unexpected number of operands");
12070
12071  assert(MI->hasOneMemOperand() &&
12072         "Expected atomic-load-op to have one memoperand");
12073
12074  // Memory Reference
12075  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12076  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12077
12078  unsigned DstReg, SrcReg;
12079  unsigned MemOpndSlot;
12080
12081  unsigned CurOp = 0;
12082
12083  DstReg = MI->getOperand(CurOp++).getReg();
12084  MemOpndSlot = CurOp;
12085  CurOp += X86::AddrNumOperands;
12086  SrcReg = MI->getOperand(CurOp++).getReg();
12087
12088  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12089  EVT VT = *RC->vt_begin();
12090  unsigned AccPhyReg = getX86SubSuperRegister(X86::EAX, VT);
12091
12092  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12093  unsigned LOADOpc = getLoadOpcode(VT);
12094
12095  // For the atomic load-arith operator, we generate
12096  //
12097  //  thisMBB:
12098  //    EAX = LOAD [MI.addr]
12099  //  mainMBB:
12100  //    t1 = OP MI.val, EAX
12101  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12102  //    JNE mainMBB
12103  //  sinkMBB:
12104
12105  MachineBasicBlock *thisMBB = MBB;
12106  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12107  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12108  MF->insert(I, mainMBB);
12109  MF->insert(I, sinkMBB);
12110
12111  MachineInstrBuilder MIB;
12112
12113  // Transfer the remainder of BB and its successor edges to sinkMBB.
12114  sinkMBB->splice(sinkMBB->begin(), MBB,
12115                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12116  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12117
12118  // thisMBB:
12119  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), AccPhyReg);
12120  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12121    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12122  MIB.setMemRefs(MMOBegin, MMOEnd);
12123
12124  thisMBB->addSuccessor(mainMBB);
12125
12126  // mainMBB:
12127  MachineBasicBlock *origMainMBB = mainMBB;
12128  mainMBB->addLiveIn(AccPhyReg);
12129
12130  // Copy AccPhyReg as it is used more than once.
12131  unsigned AccReg = MRI.createVirtualRegister(RC);
12132  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccReg)
12133    .addReg(AccPhyReg);
12134
12135  unsigned t1 = MRI.createVirtualRegister(RC);
12136  unsigned Opc = MI->getOpcode();
12137  switch (Opc) {
12138  default:
12139    llvm_unreachable("Unhandled atomic-load-op opcode!");
12140  case X86::ATOMAND8:
12141  case X86::ATOMAND16:
12142  case X86::ATOMAND32:
12143  case X86::ATOMAND64:
12144  case X86::ATOMOR8:
12145  case X86::ATOMOR16:
12146  case X86::ATOMOR32:
12147  case X86::ATOMOR64:
12148  case X86::ATOMXOR8:
12149  case X86::ATOMXOR16:
12150  case X86::ATOMXOR32:
12151  case X86::ATOMXOR64: {
12152    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
12153    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t1).addReg(SrcReg)
12154      .addReg(AccReg);
12155    break;
12156  }
12157  case X86::ATOMNAND8:
12158  case X86::ATOMNAND16:
12159  case X86::ATOMNAND32:
12160  case X86::ATOMNAND64: {
12161    unsigned t2 = MRI.createVirtualRegister(RC);
12162    unsigned NOTOpc;
12163    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
12164    BuildMI(mainMBB, DL, TII->get(ANDOpc), t2).addReg(SrcReg)
12165      .addReg(AccReg);
12166    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1).addReg(t2);
12167    break;
12168  }
12169  case X86::ATOMMAX8:
12170  case X86::ATOMMAX16:
12171  case X86::ATOMMAX32:
12172  case X86::ATOMMAX64:
12173  case X86::ATOMMIN8:
12174  case X86::ATOMMIN16:
12175  case X86::ATOMMIN32:
12176  case X86::ATOMMIN64:
12177  case X86::ATOMUMAX8:
12178  case X86::ATOMUMAX16:
12179  case X86::ATOMUMAX32:
12180  case X86::ATOMUMAX64:
12181  case X86::ATOMUMIN8:
12182  case X86::ATOMUMIN16:
12183  case X86::ATOMUMIN32:
12184  case X86::ATOMUMIN64: {
12185    unsigned CMPOpc;
12186    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
12187
12188    BuildMI(mainMBB, DL, TII->get(CMPOpc))
12189      .addReg(SrcReg)
12190      .addReg(AccReg);
12191
12192    if (Subtarget->hasCMov()) {
12193      if (VT != MVT::i8) {
12194        // Native support
12195        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t1)
12196          .addReg(SrcReg)
12197          .addReg(AccReg);
12198      } else {
12199        // Promote i8 to i32 to use CMOV32
12200        const TargetRegisterClass *RC32 = getRegClassFor(MVT::i32);
12201        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
12202        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
12203        unsigned t2 = MRI.createVirtualRegister(RC32);
12204
12205        unsigned Undef = MRI.createVirtualRegister(RC32);
12206        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
12207
12208        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
12209          .addReg(Undef)
12210          .addReg(SrcReg)
12211          .addImm(X86::sub_8bit);
12212        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
12213          .addReg(Undef)
12214          .addReg(AccReg)
12215          .addImm(X86::sub_8bit);
12216
12217        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
12218          .addReg(SrcReg32)
12219          .addReg(AccReg32);
12220
12221        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t1)
12222          .addReg(t2, 0, X86::sub_8bit);
12223      }
12224    } else {
12225      // Use pseudo select and lower them.
12226      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
12227             "Invalid atomic-load-op transformation!");
12228      unsigned SelOpc = getPseudoCMOVOpc(VT);
12229      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
12230      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
12231      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t1)
12232              .addReg(SrcReg).addReg(AccReg)
12233              .addImm(CC);
12234      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12235    }
12236    break;
12237  }
12238  }
12239
12240  // Copy AccPhyReg back from virtual register.
12241  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccPhyReg)
12242    .addReg(AccReg);
12243
12244  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12245  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12246    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12247  MIB.addReg(t1);
12248  MIB.setMemRefs(MMOBegin, MMOEnd);
12249
12250  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12251
12252  mainMBB->addSuccessor(origMainMBB);
12253  mainMBB->addSuccessor(sinkMBB);
12254
12255  // sinkMBB:
12256  sinkMBB->addLiveIn(AccPhyReg);
12257
12258  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12259          TII->get(TargetOpcode::COPY), DstReg)
12260    .addReg(AccPhyReg);
12261
12262  MI->eraseFromParent();
12263  return sinkMBB;
12264}
12265
12266// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
12267// instructions. They will be translated into a spin-loop or compare-exchange
12268// loop from
12269//
12270//    ...
12271//    dst = atomic-fetch-op MI.addr, MI.val
12272//    ...
12273//
12274// to
12275//
12276//    ...
12277//    EAX = LOAD [MI.addr + 0]
12278//    EDX = LOAD [MI.addr + 4]
12279// loop:
12280//    EBX = OP MI.val.lo, EAX
12281//    ECX = OP MI.val.hi, EDX
12282//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12283//    JNE loop
12284// sink:
12285//    dst = EDX:EAX
12286//    ...
12287MachineBasicBlock *
12288X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
12289                                           MachineBasicBlock *MBB) const {
12290  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12291  DebugLoc DL = MI->getDebugLoc();
12292
12293  MachineFunction *MF = MBB->getParent();
12294  MachineRegisterInfo &MRI = MF->getRegInfo();
12295
12296  const BasicBlock *BB = MBB->getBasicBlock();
12297  MachineFunction::iterator I = MBB;
12298  ++I;
12299
12300  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
12301         "Unexpected number of operands");
12302
12303  assert(MI->hasOneMemOperand() &&
12304         "Expected atomic-load-op32 to have one memoperand");
12305
12306  // Memory Reference
12307  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12308  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12309
12310  unsigned DstLoReg, DstHiReg;
12311  unsigned SrcLoReg, SrcHiReg;
12312  unsigned MemOpndSlot;
12313
12314  unsigned CurOp = 0;
12315
12316  DstLoReg = MI->getOperand(CurOp++).getReg();
12317  DstHiReg = MI->getOperand(CurOp++).getReg();
12318  MemOpndSlot = CurOp;
12319  CurOp += X86::AddrNumOperands;
12320  SrcLoReg = MI->getOperand(CurOp++).getReg();
12321  SrcHiReg = MI->getOperand(CurOp++).getReg();
12322
12323  const TargetRegisterClass *RC = &X86::GR32RegClass;
12324
12325  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
12326  unsigned LOADOpc = X86::MOV32rm;
12327
12328  // For the atomic load-arith operator, we generate
12329  //
12330  //  thisMBB:
12331  //    EAX = LOAD [MI.addr + 0]
12332  //    EDX = LOAD [MI.addr + 4]
12333  //  mainMBB:
12334  //    EBX = OP MI.vallo, EAX
12335  //    ECX = OP MI.valhi, EDX
12336  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12337  //    JNE mainMBB
12338  //  sinkMBB:
12339
12340  MachineBasicBlock *thisMBB = MBB;
12341  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12342  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12343  MF->insert(I, mainMBB);
12344  MF->insert(I, sinkMBB);
12345
12346  MachineInstrBuilder MIB;
12347
12348  // Transfer the remainder of BB and its successor edges to sinkMBB.
12349  sinkMBB->splice(sinkMBB->begin(), MBB,
12350                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12351  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12352
12353  // thisMBB:
12354  // Lo
12355  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EAX);
12356  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12357    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12358  MIB.setMemRefs(MMOBegin, MMOEnd);
12359  // Hi
12360  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EDX);
12361  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
12362    if (i == X86::AddrDisp)
12363      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
12364    else
12365      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12366  }
12367  MIB.setMemRefs(MMOBegin, MMOEnd);
12368
12369  thisMBB->addSuccessor(mainMBB);
12370
12371  // mainMBB:
12372  MachineBasicBlock *origMainMBB = mainMBB;
12373  mainMBB->addLiveIn(X86::EAX);
12374  mainMBB->addLiveIn(X86::EDX);
12375
12376  // Copy EDX:EAX as they are used more than once.
12377  unsigned LoReg = MRI.createVirtualRegister(RC);
12378  unsigned HiReg = MRI.createVirtualRegister(RC);
12379  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), LoReg).addReg(X86::EAX);
12380  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), HiReg).addReg(X86::EDX);
12381
12382  unsigned t1L = MRI.createVirtualRegister(RC);
12383  unsigned t1H = MRI.createVirtualRegister(RC);
12384
12385  unsigned Opc = MI->getOpcode();
12386  switch (Opc) {
12387  default:
12388    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
12389  case X86::ATOMAND6432:
12390  case X86::ATOMOR6432:
12391  case X86::ATOMXOR6432:
12392  case X86::ATOMADD6432:
12393  case X86::ATOMSUB6432: {
12394    unsigned HiOpc;
12395    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12396    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg).addReg(LoReg);
12397    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg).addReg(HiReg);
12398    break;
12399  }
12400  case X86::ATOMNAND6432: {
12401    unsigned HiOpc, NOTOpc;
12402    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
12403    unsigned t2L = MRI.createVirtualRegister(RC);
12404    unsigned t2H = MRI.createVirtualRegister(RC);
12405    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg).addReg(LoReg);
12406    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg).addReg(HiReg);
12407    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1L).addReg(t2L);
12408    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1H).addReg(t2H);
12409    break;
12410  }
12411  case X86::ATOMSWAP6432: {
12412    unsigned HiOpc;
12413    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12414    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg);
12415    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg);
12416    break;
12417  }
12418  }
12419
12420  // Copy EDX:EAX back from HiReg:LoReg
12421  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(LoReg);
12422  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(HiReg);
12423  // Copy ECX:EBX from t1H:t1L
12424  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t1L);
12425  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t1H);
12426
12427  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12428  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12429    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12430  MIB.setMemRefs(MMOBegin, MMOEnd);
12431
12432  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12433
12434  mainMBB->addSuccessor(origMainMBB);
12435  mainMBB->addSuccessor(sinkMBB);
12436
12437  // sinkMBB:
12438  sinkMBB->addLiveIn(X86::EAX);
12439  sinkMBB->addLiveIn(X86::EDX);
12440
12441  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12442          TII->get(TargetOpcode::COPY), DstLoReg)
12443    .addReg(X86::EAX);
12444  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12445          TII->get(TargetOpcode::COPY), DstHiReg)
12446    .addReg(X86::EDX);
12447
12448  MI->eraseFromParent();
12449  return sinkMBB;
12450}
12451
12452// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
12453// or XMM0_V32I8 in AVX all of this code can be replaced with that
12454// in the .td file.
12455MachineBasicBlock *
12456X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
12457                            unsigned numArgs, bool memArg) const {
12458  assert(Subtarget->hasSSE42() &&
12459         "Target must have SSE4.2 or AVX features enabled");
12460
12461  DebugLoc dl = MI->getDebugLoc();
12462  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12463  unsigned Opc;
12464  if (!Subtarget->hasAVX()) {
12465    if (memArg)
12466      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
12467    else
12468      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
12469  } else {
12470    if (memArg)
12471      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
12472    else
12473      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
12474  }
12475
12476  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
12477  for (unsigned i = 0; i < numArgs; ++i) {
12478    MachineOperand &Op = MI->getOperand(i+1);
12479    if (!(Op.isReg() && Op.isImplicit()))
12480      MIB.addOperand(Op);
12481  }
12482  BuildMI(*BB, MI, dl,
12483    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12484    .addReg(X86::XMM0);
12485
12486  MI->eraseFromParent();
12487  return BB;
12488}
12489
12490MachineBasicBlock *
12491X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
12492  DebugLoc dl = MI->getDebugLoc();
12493  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12494
12495  // Address into RAX/EAX, other two args into ECX, EDX.
12496  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
12497  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
12498  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
12499  for (int i = 0; i < X86::AddrNumOperands; ++i)
12500    MIB.addOperand(MI->getOperand(i));
12501
12502  unsigned ValOps = X86::AddrNumOperands;
12503  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
12504    .addReg(MI->getOperand(ValOps).getReg());
12505  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
12506    .addReg(MI->getOperand(ValOps+1).getReg());
12507
12508  // The instruction doesn't actually take any operands though.
12509  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
12510
12511  MI->eraseFromParent(); // The pseudo is gone now.
12512  return BB;
12513}
12514
12515MachineBasicBlock *
12516X86TargetLowering::EmitVAARG64WithCustomInserter(
12517                   MachineInstr *MI,
12518                   MachineBasicBlock *MBB) const {
12519  // Emit va_arg instruction on X86-64.
12520
12521  // Operands to this pseudo-instruction:
12522  // 0  ) Output        : destination address (reg)
12523  // 1-5) Input         : va_list address (addr, i64mem)
12524  // 6  ) ArgSize       : Size (in bytes) of vararg type
12525  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
12526  // 8  ) Align         : Alignment of type
12527  // 9  ) EFLAGS (implicit-def)
12528
12529  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
12530  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
12531
12532  unsigned DestReg = MI->getOperand(0).getReg();
12533  MachineOperand &Base = MI->getOperand(1);
12534  MachineOperand &Scale = MI->getOperand(2);
12535  MachineOperand &Index = MI->getOperand(3);
12536  MachineOperand &Disp = MI->getOperand(4);
12537  MachineOperand &Segment = MI->getOperand(5);
12538  unsigned ArgSize = MI->getOperand(6).getImm();
12539  unsigned ArgMode = MI->getOperand(7).getImm();
12540  unsigned Align = MI->getOperand(8).getImm();
12541
12542  // Memory Reference
12543  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
12544  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12545  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12546
12547  // Machine Information
12548  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12549  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
12550  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
12551  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
12552  DebugLoc DL = MI->getDebugLoc();
12553
12554  // struct va_list {
12555  //   i32   gp_offset
12556  //   i32   fp_offset
12557  //   i64   overflow_area (address)
12558  //   i64   reg_save_area (address)
12559  // }
12560  // sizeof(va_list) = 24
12561  // alignment(va_list) = 8
12562
12563  unsigned TotalNumIntRegs = 6;
12564  unsigned TotalNumXMMRegs = 8;
12565  bool UseGPOffset = (ArgMode == 1);
12566  bool UseFPOffset = (ArgMode == 2);
12567  unsigned MaxOffset = TotalNumIntRegs * 8 +
12568                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
12569
12570  /* Align ArgSize to a multiple of 8 */
12571  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
12572  bool NeedsAlign = (Align > 8);
12573
12574  MachineBasicBlock *thisMBB = MBB;
12575  MachineBasicBlock *overflowMBB;
12576  MachineBasicBlock *offsetMBB;
12577  MachineBasicBlock *endMBB;
12578
12579  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
12580  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
12581  unsigned OffsetReg = 0;
12582
12583  if (!UseGPOffset && !UseFPOffset) {
12584    // If we only pull from the overflow region, we don't create a branch.
12585    // We don't need to alter control flow.
12586    OffsetDestReg = 0; // unused
12587    OverflowDestReg = DestReg;
12588
12589    offsetMBB = NULL;
12590    overflowMBB = thisMBB;
12591    endMBB = thisMBB;
12592  } else {
12593    // First emit code to check if gp_offset (or fp_offset) is below the bound.
12594    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12595    // If not, pull from overflow_area. (branch to overflowMBB)
12596    //
12597    //       thisMBB
12598    //         |     .
12599    //         |        .
12600    //     offsetMBB   overflowMBB
12601    //         |        .
12602    //         |     .
12603    //        endMBB
12604
12605    // Registers for the PHI in endMBB
12606    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12607    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12608
12609    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12610    MachineFunction *MF = MBB->getParent();
12611    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12612    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12613    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12614
12615    MachineFunction::iterator MBBIter = MBB;
12616    ++MBBIter;
12617
12618    // Insert the new basic blocks
12619    MF->insert(MBBIter, offsetMBB);
12620    MF->insert(MBBIter, overflowMBB);
12621    MF->insert(MBBIter, endMBB);
12622
12623    // Transfer the remainder of MBB and its successor edges to endMBB.
12624    endMBB->splice(endMBB->begin(), thisMBB,
12625                    llvm::next(MachineBasicBlock::iterator(MI)),
12626                    thisMBB->end());
12627    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12628
12629    // Make offsetMBB and overflowMBB successors of thisMBB
12630    thisMBB->addSuccessor(offsetMBB);
12631    thisMBB->addSuccessor(overflowMBB);
12632
12633    // endMBB is a successor of both offsetMBB and overflowMBB
12634    offsetMBB->addSuccessor(endMBB);
12635    overflowMBB->addSuccessor(endMBB);
12636
12637    // Load the offset value into a register
12638    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12639    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12640      .addOperand(Base)
12641      .addOperand(Scale)
12642      .addOperand(Index)
12643      .addDisp(Disp, UseFPOffset ? 4 : 0)
12644      .addOperand(Segment)
12645      .setMemRefs(MMOBegin, MMOEnd);
12646
12647    // Check if there is enough room left to pull this argument.
12648    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12649      .addReg(OffsetReg)
12650      .addImm(MaxOffset + 8 - ArgSizeA8);
12651
12652    // Branch to "overflowMBB" if offset >= max
12653    // Fall through to "offsetMBB" otherwise
12654    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12655      .addMBB(overflowMBB);
12656  }
12657
12658  // In offsetMBB, emit code to use the reg_save_area.
12659  if (offsetMBB) {
12660    assert(OffsetReg != 0);
12661
12662    // Read the reg_save_area address.
12663    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12664    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12665      .addOperand(Base)
12666      .addOperand(Scale)
12667      .addOperand(Index)
12668      .addDisp(Disp, 16)
12669      .addOperand(Segment)
12670      .setMemRefs(MMOBegin, MMOEnd);
12671
12672    // Zero-extend the offset
12673    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12674      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12675        .addImm(0)
12676        .addReg(OffsetReg)
12677        .addImm(X86::sub_32bit);
12678
12679    // Add the offset to the reg_save_area to get the final address.
12680    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12681      .addReg(OffsetReg64)
12682      .addReg(RegSaveReg);
12683
12684    // Compute the offset for the next argument
12685    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12686    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12687      .addReg(OffsetReg)
12688      .addImm(UseFPOffset ? 16 : 8);
12689
12690    // Store it back into the va_list.
12691    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12692      .addOperand(Base)
12693      .addOperand(Scale)
12694      .addOperand(Index)
12695      .addDisp(Disp, UseFPOffset ? 4 : 0)
12696      .addOperand(Segment)
12697      .addReg(NextOffsetReg)
12698      .setMemRefs(MMOBegin, MMOEnd);
12699
12700    // Jump to endMBB
12701    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12702      .addMBB(endMBB);
12703  }
12704
12705  //
12706  // Emit code to use overflow area
12707  //
12708
12709  // Load the overflow_area address into a register.
12710  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12711  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12712    .addOperand(Base)
12713    .addOperand(Scale)
12714    .addOperand(Index)
12715    .addDisp(Disp, 8)
12716    .addOperand(Segment)
12717    .setMemRefs(MMOBegin, MMOEnd);
12718
12719  // If we need to align it, do so. Otherwise, just copy the address
12720  // to OverflowDestReg.
12721  if (NeedsAlign) {
12722    // Align the overflow address
12723    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12724    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12725
12726    // aligned_addr = (addr + (align-1)) & ~(align-1)
12727    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12728      .addReg(OverflowAddrReg)
12729      .addImm(Align-1);
12730
12731    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12732      .addReg(TmpReg)
12733      .addImm(~(uint64_t)(Align-1));
12734  } else {
12735    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12736      .addReg(OverflowAddrReg);
12737  }
12738
12739  // Compute the next overflow address after this argument.
12740  // (the overflow address should be kept 8-byte aligned)
12741  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12742  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12743    .addReg(OverflowDestReg)
12744    .addImm(ArgSizeA8);
12745
12746  // Store the new overflow address.
12747  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12748    .addOperand(Base)
12749    .addOperand(Scale)
12750    .addOperand(Index)
12751    .addDisp(Disp, 8)
12752    .addOperand(Segment)
12753    .addReg(NextAddrReg)
12754    .setMemRefs(MMOBegin, MMOEnd);
12755
12756  // If we branched, emit the PHI to the front of endMBB.
12757  if (offsetMBB) {
12758    BuildMI(*endMBB, endMBB->begin(), DL,
12759            TII->get(X86::PHI), DestReg)
12760      .addReg(OffsetDestReg).addMBB(offsetMBB)
12761      .addReg(OverflowDestReg).addMBB(overflowMBB);
12762  }
12763
12764  // Erase the pseudo instruction
12765  MI->eraseFromParent();
12766
12767  return endMBB;
12768}
12769
12770MachineBasicBlock *
12771X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12772                                                 MachineInstr *MI,
12773                                                 MachineBasicBlock *MBB) const {
12774  // Emit code to save XMM registers to the stack. The ABI says that the
12775  // number of registers to save is given in %al, so it's theoretically
12776  // possible to do an indirect jump trick to avoid saving all of them,
12777  // however this code takes a simpler approach and just executes all
12778  // of the stores if %al is non-zero. It's less code, and it's probably
12779  // easier on the hardware branch predictor, and stores aren't all that
12780  // expensive anyway.
12781
12782  // Create the new basic blocks. One block contains all the XMM stores,
12783  // and one block is the final destination regardless of whether any
12784  // stores were performed.
12785  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12786  MachineFunction *F = MBB->getParent();
12787  MachineFunction::iterator MBBIter = MBB;
12788  ++MBBIter;
12789  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12790  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12791  F->insert(MBBIter, XMMSaveMBB);
12792  F->insert(MBBIter, EndMBB);
12793
12794  // Transfer the remainder of MBB and its successor edges to EndMBB.
12795  EndMBB->splice(EndMBB->begin(), MBB,
12796                 llvm::next(MachineBasicBlock::iterator(MI)),
12797                 MBB->end());
12798  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12799
12800  // The original block will now fall through to the XMM save block.
12801  MBB->addSuccessor(XMMSaveMBB);
12802  // The XMMSaveMBB will fall through to the end block.
12803  XMMSaveMBB->addSuccessor(EndMBB);
12804
12805  // Now add the instructions.
12806  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12807  DebugLoc DL = MI->getDebugLoc();
12808
12809  unsigned CountReg = MI->getOperand(0).getReg();
12810  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12811  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12812
12813  if (!Subtarget->isTargetWin64()) {
12814    // If %al is 0, branch around the XMM save block.
12815    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12816    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12817    MBB->addSuccessor(EndMBB);
12818  }
12819
12820  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12821  // In the XMM save block, save all the XMM argument registers.
12822  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12823    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12824    MachineMemOperand *MMO =
12825      F->getMachineMemOperand(
12826          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12827        MachineMemOperand::MOStore,
12828        /*Size=*/16, /*Align=*/16);
12829    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12830      .addFrameIndex(RegSaveFrameIndex)
12831      .addImm(/*Scale=*/1)
12832      .addReg(/*IndexReg=*/0)
12833      .addImm(/*Disp=*/Offset)
12834      .addReg(/*Segment=*/0)
12835      .addReg(MI->getOperand(i).getReg())
12836      .addMemOperand(MMO);
12837  }
12838
12839  MI->eraseFromParent();   // The pseudo instruction is gone now.
12840
12841  return EndMBB;
12842}
12843
12844// The EFLAGS operand of SelectItr might be missing a kill marker
12845// because there were multiple uses of EFLAGS, and ISel didn't know
12846// which to mark. Figure out whether SelectItr should have had a
12847// kill marker, and set it if it should. Returns the correct kill
12848// marker value.
12849static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12850                                     MachineBasicBlock* BB,
12851                                     const TargetRegisterInfo* TRI) {
12852  // Scan forward through BB for a use/def of EFLAGS.
12853  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12854  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12855    const MachineInstr& mi = *miI;
12856    if (mi.readsRegister(X86::EFLAGS))
12857      return false;
12858    if (mi.definesRegister(X86::EFLAGS))
12859      break; // Should have kill-flag - update below.
12860  }
12861
12862  // If we hit the end of the block, check whether EFLAGS is live into a
12863  // successor.
12864  if (miI == BB->end()) {
12865    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12866                                          sEnd = BB->succ_end();
12867         sItr != sEnd; ++sItr) {
12868      MachineBasicBlock* succ = *sItr;
12869      if (succ->isLiveIn(X86::EFLAGS))
12870        return false;
12871    }
12872  }
12873
12874  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12875  // out. SelectMI should have a kill flag on EFLAGS.
12876  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12877  return true;
12878}
12879
12880MachineBasicBlock *
12881X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12882                                     MachineBasicBlock *BB) const {
12883  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12884  DebugLoc DL = MI->getDebugLoc();
12885
12886  // To "insert" a SELECT_CC instruction, we actually have to insert the
12887  // diamond control-flow pattern.  The incoming instruction knows the
12888  // destination vreg to set, the condition code register to branch on, the
12889  // true/false values to select between, and a branch opcode to use.
12890  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12891  MachineFunction::iterator It = BB;
12892  ++It;
12893
12894  //  thisMBB:
12895  //  ...
12896  //   TrueVal = ...
12897  //   cmpTY ccX, r1, r2
12898  //   bCC copy1MBB
12899  //   fallthrough --> copy0MBB
12900  MachineBasicBlock *thisMBB = BB;
12901  MachineFunction *F = BB->getParent();
12902  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12903  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12904  F->insert(It, copy0MBB);
12905  F->insert(It, sinkMBB);
12906
12907  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12908  // live into the sink and copy blocks.
12909  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12910  if (!MI->killsRegister(X86::EFLAGS) &&
12911      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12912    copy0MBB->addLiveIn(X86::EFLAGS);
12913    sinkMBB->addLiveIn(X86::EFLAGS);
12914  }
12915
12916  // Transfer the remainder of BB and its successor edges to sinkMBB.
12917  sinkMBB->splice(sinkMBB->begin(), BB,
12918                  llvm::next(MachineBasicBlock::iterator(MI)),
12919                  BB->end());
12920  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12921
12922  // Add the true and fallthrough blocks as its successors.
12923  BB->addSuccessor(copy0MBB);
12924  BB->addSuccessor(sinkMBB);
12925
12926  // Create the conditional branch instruction.
12927  unsigned Opc =
12928    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12929  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12930
12931  //  copy0MBB:
12932  //   %FalseValue = ...
12933  //   # fallthrough to sinkMBB
12934  copy0MBB->addSuccessor(sinkMBB);
12935
12936  //  sinkMBB:
12937  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12938  //  ...
12939  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12940          TII->get(X86::PHI), MI->getOperand(0).getReg())
12941    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12942    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12943
12944  MI->eraseFromParent();   // The pseudo instruction is gone now.
12945  return sinkMBB;
12946}
12947
12948MachineBasicBlock *
12949X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12950                                        bool Is64Bit) const {
12951  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12952  DebugLoc DL = MI->getDebugLoc();
12953  MachineFunction *MF = BB->getParent();
12954  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12955
12956  assert(getTargetMachine().Options.EnableSegmentedStacks);
12957
12958  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12959  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12960
12961  // BB:
12962  //  ... [Till the alloca]
12963  // If stacklet is not large enough, jump to mallocMBB
12964  //
12965  // bumpMBB:
12966  //  Allocate by subtracting from RSP
12967  //  Jump to continueMBB
12968  //
12969  // mallocMBB:
12970  //  Allocate by call to runtime
12971  //
12972  // continueMBB:
12973  //  ...
12974  //  [rest of original BB]
12975  //
12976
12977  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12978  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12979  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12980
12981  MachineRegisterInfo &MRI = MF->getRegInfo();
12982  const TargetRegisterClass *AddrRegClass =
12983    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12984
12985  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12986    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12987    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12988    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12989    sizeVReg = MI->getOperand(1).getReg(),
12990    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12991
12992  MachineFunction::iterator MBBIter = BB;
12993  ++MBBIter;
12994
12995  MF->insert(MBBIter, bumpMBB);
12996  MF->insert(MBBIter, mallocMBB);
12997  MF->insert(MBBIter, continueMBB);
12998
12999  continueMBB->splice(continueMBB->begin(), BB, llvm::next
13000                      (MachineBasicBlock::iterator(MI)), BB->end());
13001  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
13002
13003  // Add code to the main basic block to check if the stack limit has been hit,
13004  // and if so, jump to mallocMBB otherwise to bumpMBB.
13005  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
13006  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
13007    .addReg(tmpSPVReg).addReg(sizeVReg);
13008  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
13009    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
13010    .addReg(SPLimitVReg);
13011  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
13012
13013  // bumpMBB simply decreases the stack pointer, since we know the current
13014  // stacklet has enough space.
13015  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
13016    .addReg(SPLimitVReg);
13017  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
13018    .addReg(SPLimitVReg);
13019  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13020
13021  // Calls into a routine in libgcc to allocate more space from the heap.
13022  const uint32_t *RegMask =
13023    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13024  if (Is64Bit) {
13025    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
13026      .addReg(sizeVReg);
13027    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
13028      .addExternalSymbol("__morestack_allocate_stack_space")
13029      .addRegMask(RegMask)
13030      .addReg(X86::RDI, RegState::Implicit)
13031      .addReg(X86::RAX, RegState::ImplicitDefine);
13032  } else {
13033    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
13034      .addImm(12);
13035    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
13036    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
13037      .addExternalSymbol("__morestack_allocate_stack_space")
13038      .addRegMask(RegMask)
13039      .addReg(X86::EAX, RegState::ImplicitDefine);
13040  }
13041
13042  if (!Is64Bit)
13043    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
13044      .addImm(16);
13045
13046  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
13047    .addReg(Is64Bit ? X86::RAX : X86::EAX);
13048  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13049
13050  // Set up the CFG correctly.
13051  BB->addSuccessor(bumpMBB);
13052  BB->addSuccessor(mallocMBB);
13053  mallocMBB->addSuccessor(continueMBB);
13054  bumpMBB->addSuccessor(continueMBB);
13055
13056  // Take care of the PHI nodes.
13057  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
13058          MI->getOperand(0).getReg())
13059    .addReg(mallocPtrVReg).addMBB(mallocMBB)
13060    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
13061
13062  // Delete the original pseudo instruction.
13063  MI->eraseFromParent();
13064
13065  // And we're done.
13066  return continueMBB;
13067}
13068
13069MachineBasicBlock *
13070X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
13071                                          MachineBasicBlock *BB) const {
13072  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13073  DebugLoc DL = MI->getDebugLoc();
13074
13075  assert(!Subtarget->isTargetEnvMacho());
13076
13077  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
13078  // non-trivial part is impdef of ESP.
13079
13080  if (Subtarget->isTargetWin64()) {
13081    if (Subtarget->isTargetCygMing()) {
13082      // ___chkstk(Mingw64):
13083      // Clobbers R10, R11, RAX and EFLAGS.
13084      // Updates RSP.
13085      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13086        .addExternalSymbol("___chkstk")
13087        .addReg(X86::RAX, RegState::Implicit)
13088        .addReg(X86::RSP, RegState::Implicit)
13089        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
13090        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
13091        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13092    } else {
13093      // __chkstk(MSVCRT): does not update stack pointer.
13094      // Clobbers R10, R11 and EFLAGS.
13095      // FIXME: RAX(allocated size) might be reused and not killed.
13096      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13097        .addExternalSymbol("__chkstk")
13098        .addReg(X86::RAX, RegState::Implicit)
13099        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13100      // RAX has the offset to subtracted from RSP.
13101      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
13102        .addReg(X86::RSP)
13103        .addReg(X86::RAX);
13104    }
13105  } else {
13106    const char *StackProbeSymbol =
13107      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
13108
13109    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
13110      .addExternalSymbol(StackProbeSymbol)
13111      .addReg(X86::EAX, RegState::Implicit)
13112      .addReg(X86::ESP, RegState::Implicit)
13113      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
13114      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
13115      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13116  }
13117
13118  MI->eraseFromParent();   // The pseudo instruction is gone now.
13119  return BB;
13120}
13121
13122MachineBasicBlock *
13123X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
13124                                      MachineBasicBlock *BB) const {
13125  // This is pretty easy.  We're taking the value that we received from
13126  // our load from the relocation, sticking it in either RDI (x86-64)
13127  // or EAX and doing an indirect call.  The return value will then
13128  // be in the normal return register.
13129  const X86InstrInfo *TII
13130    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
13131  DebugLoc DL = MI->getDebugLoc();
13132  MachineFunction *F = BB->getParent();
13133
13134  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
13135  assert(MI->getOperand(3).isGlobal() && "This should be a global");
13136
13137  // Get a register mask for the lowered call.
13138  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
13139  // proper register mask.
13140  const uint32_t *RegMask =
13141    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13142  if (Subtarget->is64Bit()) {
13143    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13144                                      TII->get(X86::MOV64rm), X86::RDI)
13145    .addReg(X86::RIP)
13146    .addImm(0).addReg(0)
13147    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13148                      MI->getOperand(3).getTargetFlags())
13149    .addReg(0);
13150    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
13151    addDirectMem(MIB, X86::RDI);
13152    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
13153  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
13154    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13155                                      TII->get(X86::MOV32rm), X86::EAX)
13156    .addReg(0)
13157    .addImm(0).addReg(0)
13158    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13159                      MI->getOperand(3).getTargetFlags())
13160    .addReg(0);
13161    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13162    addDirectMem(MIB, X86::EAX);
13163    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13164  } else {
13165    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13166                                      TII->get(X86::MOV32rm), X86::EAX)
13167    .addReg(TII->getGlobalBaseReg(F))
13168    .addImm(0).addReg(0)
13169    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13170                      MI->getOperand(3).getTargetFlags())
13171    .addReg(0);
13172    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13173    addDirectMem(MIB, X86::EAX);
13174    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13175  }
13176
13177  MI->eraseFromParent(); // The pseudo instruction is gone now.
13178  return BB;
13179}
13180
13181MachineBasicBlock *
13182X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
13183                                               MachineBasicBlock *BB) const {
13184  switch (MI->getOpcode()) {
13185  default: llvm_unreachable("Unexpected instr type to insert");
13186  case X86::TAILJMPd64:
13187  case X86::TAILJMPr64:
13188  case X86::TAILJMPm64:
13189    llvm_unreachable("TAILJMP64 would not be touched here.");
13190  case X86::TCRETURNdi64:
13191  case X86::TCRETURNri64:
13192  case X86::TCRETURNmi64:
13193    return BB;
13194  case X86::WIN_ALLOCA:
13195    return EmitLoweredWinAlloca(MI, BB);
13196  case X86::SEG_ALLOCA_32:
13197    return EmitLoweredSegAlloca(MI, BB, false);
13198  case X86::SEG_ALLOCA_64:
13199    return EmitLoweredSegAlloca(MI, BB, true);
13200  case X86::TLSCall_32:
13201  case X86::TLSCall_64:
13202    return EmitLoweredTLSCall(MI, BB);
13203  case X86::CMOV_GR8:
13204  case X86::CMOV_FR32:
13205  case X86::CMOV_FR64:
13206  case X86::CMOV_V4F32:
13207  case X86::CMOV_V2F64:
13208  case X86::CMOV_V2I64:
13209  case X86::CMOV_V8F32:
13210  case X86::CMOV_V4F64:
13211  case X86::CMOV_V4I64:
13212  case X86::CMOV_GR16:
13213  case X86::CMOV_GR32:
13214  case X86::CMOV_RFP32:
13215  case X86::CMOV_RFP64:
13216  case X86::CMOV_RFP80:
13217    return EmitLoweredSelect(MI, BB);
13218
13219  case X86::FP32_TO_INT16_IN_MEM:
13220  case X86::FP32_TO_INT32_IN_MEM:
13221  case X86::FP32_TO_INT64_IN_MEM:
13222  case X86::FP64_TO_INT16_IN_MEM:
13223  case X86::FP64_TO_INT32_IN_MEM:
13224  case X86::FP64_TO_INT64_IN_MEM:
13225  case X86::FP80_TO_INT16_IN_MEM:
13226  case X86::FP80_TO_INT32_IN_MEM:
13227  case X86::FP80_TO_INT64_IN_MEM: {
13228    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13229    DebugLoc DL = MI->getDebugLoc();
13230
13231    // Change the floating point control register to use "round towards zero"
13232    // mode when truncating to an integer value.
13233    MachineFunction *F = BB->getParent();
13234    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
13235    addFrameReference(BuildMI(*BB, MI, DL,
13236                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
13237
13238    // Load the old value of the high byte of the control word...
13239    unsigned OldCW =
13240      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
13241    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
13242                      CWFrameIdx);
13243
13244    // Set the high part to be round to zero...
13245    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
13246      .addImm(0xC7F);
13247
13248    // Reload the modified control word now...
13249    addFrameReference(BuildMI(*BB, MI, DL,
13250                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13251
13252    // Restore the memory image of control word to original value
13253    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
13254      .addReg(OldCW);
13255
13256    // Get the X86 opcode to use.
13257    unsigned Opc;
13258    switch (MI->getOpcode()) {
13259    default: llvm_unreachable("illegal opcode!");
13260    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
13261    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
13262    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
13263    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
13264    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
13265    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
13266    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
13267    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
13268    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
13269    }
13270
13271    X86AddressMode AM;
13272    MachineOperand &Op = MI->getOperand(0);
13273    if (Op.isReg()) {
13274      AM.BaseType = X86AddressMode::RegBase;
13275      AM.Base.Reg = Op.getReg();
13276    } else {
13277      AM.BaseType = X86AddressMode::FrameIndexBase;
13278      AM.Base.FrameIndex = Op.getIndex();
13279    }
13280    Op = MI->getOperand(1);
13281    if (Op.isImm())
13282      AM.Scale = Op.getImm();
13283    Op = MI->getOperand(2);
13284    if (Op.isImm())
13285      AM.IndexReg = Op.getImm();
13286    Op = MI->getOperand(3);
13287    if (Op.isGlobal()) {
13288      AM.GV = Op.getGlobal();
13289    } else {
13290      AM.Disp = Op.getImm();
13291    }
13292    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
13293                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
13294
13295    // Reload the original control word now.
13296    addFrameReference(BuildMI(*BB, MI, DL,
13297                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13298
13299    MI->eraseFromParent();   // The pseudo instruction is gone now.
13300    return BB;
13301  }
13302    // String/text processing lowering.
13303  case X86::PCMPISTRM128REG:
13304  case X86::VPCMPISTRM128REG:
13305  case X86::PCMPISTRM128MEM:
13306  case X86::VPCMPISTRM128MEM:
13307  case X86::PCMPESTRM128REG:
13308  case X86::VPCMPESTRM128REG:
13309  case X86::PCMPESTRM128MEM:
13310  case X86::VPCMPESTRM128MEM: {
13311    unsigned NumArgs;
13312    bool MemArg;
13313    switch (MI->getOpcode()) {
13314    default: llvm_unreachable("illegal opcode!");
13315    case X86::PCMPISTRM128REG:
13316    case X86::VPCMPISTRM128REG:
13317      NumArgs = 3; MemArg = false; break;
13318    case X86::PCMPISTRM128MEM:
13319    case X86::VPCMPISTRM128MEM:
13320      NumArgs = 3; MemArg = true; break;
13321    case X86::PCMPESTRM128REG:
13322    case X86::VPCMPESTRM128REG:
13323      NumArgs = 5; MemArg = false; break;
13324    case X86::PCMPESTRM128MEM:
13325    case X86::VPCMPESTRM128MEM:
13326      NumArgs = 5; MemArg = true; break;
13327    }
13328    return EmitPCMP(MI, BB, NumArgs, MemArg);
13329  }
13330
13331    // Thread synchronization.
13332  case X86::MONITOR:
13333    return EmitMonitor(MI, BB);
13334
13335    // Atomic Lowering.
13336  case X86::ATOMAND8:
13337  case X86::ATOMAND16:
13338  case X86::ATOMAND32:
13339  case X86::ATOMAND64:
13340    // Fall through
13341  case X86::ATOMOR8:
13342  case X86::ATOMOR16:
13343  case X86::ATOMOR32:
13344  case X86::ATOMOR64:
13345    // Fall through
13346  case X86::ATOMXOR16:
13347  case X86::ATOMXOR8:
13348  case X86::ATOMXOR32:
13349  case X86::ATOMXOR64:
13350    // Fall through
13351  case X86::ATOMNAND8:
13352  case X86::ATOMNAND16:
13353  case X86::ATOMNAND32:
13354  case X86::ATOMNAND64:
13355    // Fall through
13356  case X86::ATOMMAX8:
13357  case X86::ATOMMAX16:
13358  case X86::ATOMMAX32:
13359  case X86::ATOMMAX64:
13360    // Fall through
13361  case X86::ATOMMIN8:
13362  case X86::ATOMMIN16:
13363  case X86::ATOMMIN32:
13364  case X86::ATOMMIN64:
13365    // Fall through
13366  case X86::ATOMUMAX8:
13367  case X86::ATOMUMAX16:
13368  case X86::ATOMUMAX32:
13369  case X86::ATOMUMAX64:
13370    // Fall through
13371  case X86::ATOMUMIN8:
13372  case X86::ATOMUMIN16:
13373  case X86::ATOMUMIN32:
13374  case X86::ATOMUMIN64:
13375    return EmitAtomicLoadArith(MI, BB);
13376
13377  // This group does 64-bit operations on a 32-bit host.
13378  case X86::ATOMAND6432:
13379  case X86::ATOMOR6432:
13380  case X86::ATOMXOR6432:
13381  case X86::ATOMNAND6432:
13382  case X86::ATOMADD6432:
13383  case X86::ATOMSUB6432:
13384  case X86::ATOMSWAP6432:
13385    return EmitAtomicLoadArith6432(MI, BB);
13386
13387  case X86::VASTART_SAVE_XMM_REGS:
13388    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
13389
13390  case X86::VAARG_64:
13391    return EmitVAARG64WithCustomInserter(MI, BB);
13392  }
13393}
13394
13395//===----------------------------------------------------------------------===//
13396//                           X86 Optimization Hooks
13397//===----------------------------------------------------------------------===//
13398
13399void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
13400                                                       APInt &KnownZero,
13401                                                       APInt &KnownOne,
13402                                                       const SelectionDAG &DAG,
13403                                                       unsigned Depth) const {
13404  unsigned BitWidth = KnownZero.getBitWidth();
13405  unsigned Opc = Op.getOpcode();
13406  assert((Opc >= ISD::BUILTIN_OP_END ||
13407          Opc == ISD::INTRINSIC_WO_CHAIN ||
13408          Opc == ISD::INTRINSIC_W_CHAIN ||
13409          Opc == ISD::INTRINSIC_VOID) &&
13410         "Should use MaskedValueIsZero if you don't know whether Op"
13411         " is a target node!");
13412
13413  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
13414  switch (Opc) {
13415  default: break;
13416  case X86ISD::ADD:
13417  case X86ISD::SUB:
13418  case X86ISD::ADC:
13419  case X86ISD::SBB:
13420  case X86ISD::SMUL:
13421  case X86ISD::UMUL:
13422  case X86ISD::INC:
13423  case X86ISD::DEC:
13424  case X86ISD::OR:
13425  case X86ISD::XOR:
13426  case X86ISD::AND:
13427    // These nodes' second result is a boolean.
13428    if (Op.getResNo() == 0)
13429      break;
13430    // Fallthrough
13431  case X86ISD::SETCC:
13432    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13433    break;
13434  case ISD::INTRINSIC_WO_CHAIN: {
13435    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13436    unsigned NumLoBits = 0;
13437    switch (IntId) {
13438    default: break;
13439    case Intrinsic::x86_sse_movmsk_ps:
13440    case Intrinsic::x86_avx_movmsk_ps_256:
13441    case Intrinsic::x86_sse2_movmsk_pd:
13442    case Intrinsic::x86_avx_movmsk_pd_256:
13443    case Intrinsic::x86_mmx_pmovmskb:
13444    case Intrinsic::x86_sse2_pmovmskb_128:
13445    case Intrinsic::x86_avx2_pmovmskb: {
13446      // High bits of movmskp{s|d}, pmovmskb are known zero.
13447      switch (IntId) {
13448        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13449        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
13450        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
13451        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
13452        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
13453        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
13454        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
13455        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
13456      }
13457      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
13458      break;
13459    }
13460    }
13461    break;
13462  }
13463  }
13464}
13465
13466unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
13467                                                         unsigned Depth) const {
13468  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
13469  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
13470    return Op.getValueType().getScalarType().getSizeInBits();
13471
13472  // Fallback case.
13473  return 1;
13474}
13475
13476/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
13477/// node is a GlobalAddress + offset.
13478bool X86TargetLowering::isGAPlusOffset(SDNode *N,
13479                                       const GlobalValue* &GA,
13480                                       int64_t &Offset) const {
13481  if (N->getOpcode() == X86ISD::Wrapper) {
13482    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
13483      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
13484      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
13485      return true;
13486    }
13487  }
13488  return TargetLowering::isGAPlusOffset(N, GA, Offset);
13489}
13490
13491/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
13492/// same as extracting the high 128-bit part of 256-bit vector and then
13493/// inserting the result into the low part of a new 256-bit vector
13494static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
13495  EVT VT = SVOp->getValueType(0);
13496  unsigned NumElems = VT.getVectorNumElements();
13497
13498  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13499  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
13500    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13501        SVOp->getMaskElt(j) >= 0)
13502      return false;
13503
13504  return true;
13505}
13506
13507/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
13508/// same as extracting the low 128-bit part of 256-bit vector and then
13509/// inserting the result into the high part of a new 256-bit vector
13510static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
13511  EVT VT = SVOp->getValueType(0);
13512  unsigned NumElems = VT.getVectorNumElements();
13513
13514  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13515  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
13516    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13517        SVOp->getMaskElt(j) >= 0)
13518      return false;
13519
13520  return true;
13521}
13522
13523/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
13524static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13525                                        TargetLowering::DAGCombinerInfo &DCI,
13526                                        const X86Subtarget* Subtarget) {
13527  DebugLoc dl = N->getDebugLoc();
13528  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13529  SDValue V1 = SVOp->getOperand(0);
13530  SDValue V2 = SVOp->getOperand(1);
13531  EVT VT = SVOp->getValueType(0);
13532  unsigned NumElems = VT.getVectorNumElements();
13533
13534  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13535      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13536    //
13537    //                   0,0,0,...
13538    //                      |
13539    //    V      UNDEF    BUILD_VECTOR    UNDEF
13540    //     \      /           \           /
13541    //  CONCAT_VECTOR         CONCAT_VECTOR
13542    //         \                  /
13543    //          \                /
13544    //          RESULT: V + zero extended
13545    //
13546    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13547        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13548        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13549      return SDValue();
13550
13551    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13552      return SDValue();
13553
13554    // To match the shuffle mask, the first half of the mask should
13555    // be exactly the first vector, and all the rest a splat with the
13556    // first element of the second one.
13557    for (unsigned i = 0; i != NumElems/2; ++i)
13558      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13559          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13560        return SDValue();
13561
13562    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13563    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13564      if (Ld->hasNUsesOfValue(1, 0)) {
13565        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13566        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13567        SDValue ResNode =
13568          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13569                                  Ld->getMemoryVT(),
13570                                  Ld->getPointerInfo(),
13571                                  Ld->getAlignment(),
13572                                  false/*isVolatile*/, true/*ReadMem*/,
13573                                  false/*WriteMem*/);
13574        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13575      }
13576    }
13577
13578    // Emit a zeroed vector and insert the desired subvector on its
13579    // first half.
13580    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13581    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13582    return DCI.CombineTo(N, InsV);
13583  }
13584
13585  //===--------------------------------------------------------------------===//
13586  // Combine some shuffles into subvector extracts and inserts:
13587  //
13588
13589  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13590  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13591    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13592    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13593    return DCI.CombineTo(N, InsV);
13594  }
13595
13596  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13597  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13598    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13599    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13600    return DCI.CombineTo(N, InsV);
13601  }
13602
13603  return SDValue();
13604}
13605
13606/// PerformShuffleCombine - Performs several different shuffle combines.
13607static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13608                                     TargetLowering::DAGCombinerInfo &DCI,
13609                                     const X86Subtarget *Subtarget) {
13610  DebugLoc dl = N->getDebugLoc();
13611  EVT VT = N->getValueType(0);
13612
13613  // Don't create instructions with illegal types after legalize types has run.
13614  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13615  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13616    return SDValue();
13617
13618  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13619  if (Subtarget->hasAVX() && VT.is256BitVector() &&
13620      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13621    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13622
13623  // Only handle 128 wide vector from here on.
13624  if (!VT.is128BitVector())
13625    return SDValue();
13626
13627  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13628  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13629  // consecutive, non-overlapping, and in the right order.
13630  SmallVector<SDValue, 16> Elts;
13631  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13632    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13633
13634  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13635}
13636
13637
13638/// PerformTruncateCombine - Converts truncate operation to
13639/// a sequence of vector shuffle operations.
13640/// It is possible when we truncate 256-bit vector to 128-bit vector
13641static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13642                                      TargetLowering::DAGCombinerInfo &DCI,
13643                                      const X86Subtarget *Subtarget)  {
13644  if (!DCI.isBeforeLegalizeOps())
13645    return SDValue();
13646
13647  if (!Subtarget->hasAVX())
13648    return SDValue();
13649
13650  EVT VT = N->getValueType(0);
13651  SDValue Op = N->getOperand(0);
13652  EVT OpVT = Op.getValueType();
13653  DebugLoc dl = N->getDebugLoc();
13654
13655  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13656
13657    if (Subtarget->hasAVX2()) {
13658      // AVX2: v4i64 -> v4i32
13659
13660      // VPERMD
13661      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13662
13663      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13664      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13665                                ShufMask);
13666
13667      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13668                         DAG.getIntPtrConstant(0));
13669    }
13670
13671    // AVX: v4i64 -> v4i32
13672    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13673                               DAG.getIntPtrConstant(0));
13674
13675    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13676                               DAG.getIntPtrConstant(2));
13677
13678    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13679    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13680
13681    // PSHUFD
13682    static const int ShufMask1[] = {0, 2, 0, 0};
13683
13684    SDValue Undef = DAG.getUNDEF(VT);
13685    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1);
13686    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1);
13687
13688    // MOVLHPS
13689    static const int ShufMask2[] = {0, 1, 4, 5};
13690
13691    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13692  }
13693
13694  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13695
13696    if (Subtarget->hasAVX2()) {
13697      // AVX2: v8i32 -> v8i16
13698
13699      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13700
13701      // PSHUFB
13702      SmallVector<SDValue,32> pshufbMask;
13703      for (unsigned i = 0; i < 2; ++i) {
13704        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13705        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13706        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13707        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13708        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13709        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13710        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13711        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13712        for (unsigned j = 0; j < 8; ++j)
13713          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13714      }
13715      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13716                               &pshufbMask[0], 32);
13717      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13718
13719      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13720
13721      static const int ShufMask[] = {0,  2,  -1,  -1};
13722      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13723                                &ShufMask[0]);
13724
13725      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13726                       DAG.getIntPtrConstant(0));
13727
13728      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13729    }
13730
13731    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13732                               DAG.getIntPtrConstant(0));
13733
13734    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13735                               DAG.getIntPtrConstant(4));
13736
13737    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13738    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13739
13740    // PSHUFB
13741    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13742                                   -1, -1, -1, -1, -1, -1, -1, -1};
13743
13744    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
13745    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1);
13746    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1);
13747
13748    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13749    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13750
13751    // MOVLHPS
13752    static const int ShufMask2[] = {0, 1, 4, 5};
13753
13754    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13755    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13756  }
13757
13758  return SDValue();
13759}
13760
13761/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13762/// specific shuffle of a load can be folded into a single element load.
13763/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13764/// shuffles have been customed lowered so we need to handle those here.
13765static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13766                                         TargetLowering::DAGCombinerInfo &DCI) {
13767  if (DCI.isBeforeLegalizeOps())
13768    return SDValue();
13769
13770  SDValue InVec = N->getOperand(0);
13771  SDValue EltNo = N->getOperand(1);
13772
13773  if (!isa<ConstantSDNode>(EltNo))
13774    return SDValue();
13775
13776  EVT VT = InVec.getValueType();
13777
13778  bool HasShuffleIntoBitcast = false;
13779  if (InVec.getOpcode() == ISD::BITCAST) {
13780    // Don't duplicate a load with other uses.
13781    if (!InVec.hasOneUse())
13782      return SDValue();
13783    EVT BCVT = InVec.getOperand(0).getValueType();
13784    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13785      return SDValue();
13786    InVec = InVec.getOperand(0);
13787    HasShuffleIntoBitcast = true;
13788  }
13789
13790  if (!isTargetShuffle(InVec.getOpcode()))
13791    return SDValue();
13792
13793  // Don't duplicate a load with other uses.
13794  if (!InVec.hasOneUse())
13795    return SDValue();
13796
13797  SmallVector<int, 16> ShuffleMask;
13798  bool UnaryShuffle;
13799  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
13800                            UnaryShuffle))
13801    return SDValue();
13802
13803  // Select the input vector, guarding against out of range extract vector.
13804  unsigned NumElems = VT.getVectorNumElements();
13805  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13806  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13807  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13808                                         : InVec.getOperand(1);
13809
13810  // If inputs to shuffle are the same for both ops, then allow 2 uses
13811  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13812
13813  if (LdNode.getOpcode() == ISD::BITCAST) {
13814    // Don't duplicate a load with other uses.
13815    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13816      return SDValue();
13817
13818    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13819    LdNode = LdNode.getOperand(0);
13820  }
13821
13822  if (!ISD::isNormalLoad(LdNode.getNode()))
13823    return SDValue();
13824
13825  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13826
13827  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13828    return SDValue();
13829
13830  if (HasShuffleIntoBitcast) {
13831    // If there's a bitcast before the shuffle, check if the load type and
13832    // alignment is valid.
13833    unsigned Align = LN0->getAlignment();
13834    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13835    unsigned NewAlign = TLI.getTargetData()->
13836      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13837
13838    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13839      return SDValue();
13840  }
13841
13842  // All checks match so transform back to vector_shuffle so that DAG combiner
13843  // can finish the job
13844  DebugLoc dl = N->getDebugLoc();
13845
13846  // Create shuffle node taking into account the case that its a unary shuffle
13847  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13848  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13849                                 InVec.getOperand(0), Shuffle,
13850                                 &ShuffleMask[0]);
13851  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13852  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13853                     EltNo);
13854}
13855
13856/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13857/// generation and convert it from being a bunch of shuffles and extracts
13858/// to a simple store and scalar loads to extract the elements.
13859static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13860                                         TargetLowering::DAGCombinerInfo &DCI) {
13861  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13862  if (NewOp.getNode())
13863    return NewOp;
13864
13865  SDValue InputVector = N->getOperand(0);
13866
13867  // Only operate on vectors of 4 elements, where the alternative shuffling
13868  // gets to be more expensive.
13869  if (InputVector.getValueType() != MVT::v4i32)
13870    return SDValue();
13871
13872  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13873  // single use which is a sign-extend or zero-extend, and all elements are
13874  // used.
13875  SmallVector<SDNode *, 4> Uses;
13876  unsigned ExtractedElements = 0;
13877  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13878       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13879    if (UI.getUse().getResNo() != InputVector.getResNo())
13880      return SDValue();
13881
13882    SDNode *Extract = *UI;
13883    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13884      return SDValue();
13885
13886    if (Extract->getValueType(0) != MVT::i32)
13887      return SDValue();
13888    if (!Extract->hasOneUse())
13889      return SDValue();
13890    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13891        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13892      return SDValue();
13893    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13894      return SDValue();
13895
13896    // Record which element was extracted.
13897    ExtractedElements |=
13898      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13899
13900    Uses.push_back(Extract);
13901  }
13902
13903  // If not all the elements were used, this may not be worthwhile.
13904  if (ExtractedElements != 15)
13905    return SDValue();
13906
13907  // Ok, we've now decided to do the transformation.
13908  DebugLoc dl = InputVector.getDebugLoc();
13909
13910  // Store the value to a temporary stack slot.
13911  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13912  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13913                            MachinePointerInfo(), false, false, 0);
13914
13915  // Replace each use (extract) with a load of the appropriate element.
13916  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13917       UE = Uses.end(); UI != UE; ++UI) {
13918    SDNode *Extract = *UI;
13919
13920    // cOMpute the element's address.
13921    SDValue Idx = Extract->getOperand(1);
13922    unsigned EltSize =
13923        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13924    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13925    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13926    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13927
13928    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13929                                     StackPtr, OffsetVal);
13930
13931    // Load the scalar.
13932    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13933                                     ScalarAddr, MachinePointerInfo(),
13934                                     false, false, false, 0);
13935
13936    // Replace the exact with the load.
13937    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13938  }
13939
13940  // The replacement was made in place; don't return anything.
13941  return SDValue();
13942}
13943
13944/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13945/// nodes.
13946static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13947                                    TargetLowering::DAGCombinerInfo &DCI,
13948                                    const X86Subtarget *Subtarget) {
13949  DebugLoc DL = N->getDebugLoc();
13950  SDValue Cond = N->getOperand(0);
13951  // Get the LHS/RHS of the select.
13952  SDValue LHS = N->getOperand(1);
13953  SDValue RHS = N->getOperand(2);
13954  EVT VT = LHS.getValueType();
13955
13956  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13957  // instructions match the semantics of the common C idiom x<y?x:y but not
13958  // x<=y?x:y, because of how they handle negative zero (which can be
13959  // ignored in unsafe-math mode).
13960  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13961      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13962      (Subtarget->hasSSE2() ||
13963       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13964    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13965
13966    unsigned Opcode = 0;
13967    // Check for x CC y ? x : y.
13968    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13969        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13970      switch (CC) {
13971      default: break;
13972      case ISD::SETULT:
13973        // Converting this to a min would handle NaNs incorrectly, and swapping
13974        // the operands would cause it to handle comparisons between positive
13975        // and negative zero incorrectly.
13976        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13977          if (!DAG.getTarget().Options.UnsafeFPMath &&
13978              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13979            break;
13980          std::swap(LHS, RHS);
13981        }
13982        Opcode = X86ISD::FMIN;
13983        break;
13984      case ISD::SETOLE:
13985        // Converting this to a min would handle comparisons between positive
13986        // and negative zero incorrectly.
13987        if (!DAG.getTarget().Options.UnsafeFPMath &&
13988            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13989          break;
13990        Opcode = X86ISD::FMIN;
13991        break;
13992      case ISD::SETULE:
13993        // Converting this to a min would handle both negative zeros and NaNs
13994        // incorrectly, but we can swap the operands to fix both.
13995        std::swap(LHS, RHS);
13996      case ISD::SETOLT:
13997      case ISD::SETLT:
13998      case ISD::SETLE:
13999        Opcode = X86ISD::FMIN;
14000        break;
14001
14002      case ISD::SETOGE:
14003        // Converting this to a max would handle comparisons between positive
14004        // and negative zero incorrectly.
14005        if (!DAG.getTarget().Options.UnsafeFPMath &&
14006            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14007          break;
14008        Opcode = X86ISD::FMAX;
14009        break;
14010      case ISD::SETUGT:
14011        // Converting this to a max would handle NaNs incorrectly, and swapping
14012        // the operands would cause it to handle comparisons between positive
14013        // and negative zero incorrectly.
14014        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14015          if (!DAG.getTarget().Options.UnsafeFPMath &&
14016              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14017            break;
14018          std::swap(LHS, RHS);
14019        }
14020        Opcode = X86ISD::FMAX;
14021        break;
14022      case ISD::SETUGE:
14023        // Converting this to a max would handle both negative zeros and NaNs
14024        // incorrectly, but we can swap the operands to fix both.
14025        std::swap(LHS, RHS);
14026      case ISD::SETOGT:
14027      case ISD::SETGT:
14028      case ISD::SETGE:
14029        Opcode = X86ISD::FMAX;
14030        break;
14031      }
14032    // Check for x CC y ? y : x -- a min/max with reversed arms.
14033    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
14034               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
14035      switch (CC) {
14036      default: break;
14037      case ISD::SETOGE:
14038        // Converting this to a min would handle comparisons between positive
14039        // and negative zero incorrectly, and swapping the operands would
14040        // cause it to handle NaNs incorrectly.
14041        if (!DAG.getTarget().Options.UnsafeFPMath &&
14042            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
14043          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14044            break;
14045          std::swap(LHS, RHS);
14046        }
14047        Opcode = X86ISD::FMIN;
14048        break;
14049      case ISD::SETUGT:
14050        // Converting this to a min would handle NaNs incorrectly.
14051        if (!DAG.getTarget().Options.UnsafeFPMath &&
14052            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
14053          break;
14054        Opcode = X86ISD::FMIN;
14055        break;
14056      case ISD::SETUGE:
14057        // Converting this to a min would handle both negative zeros and NaNs
14058        // incorrectly, but we can swap the operands to fix both.
14059        std::swap(LHS, RHS);
14060      case ISD::SETOGT:
14061      case ISD::SETGT:
14062      case ISD::SETGE:
14063        Opcode = X86ISD::FMIN;
14064        break;
14065
14066      case ISD::SETULT:
14067        // Converting this to a max would handle NaNs incorrectly.
14068        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14069          break;
14070        Opcode = X86ISD::FMAX;
14071        break;
14072      case ISD::SETOLE:
14073        // Converting this to a max would handle comparisons between positive
14074        // and negative zero incorrectly, and swapping the operands would
14075        // cause it to handle NaNs incorrectly.
14076        if (!DAG.getTarget().Options.UnsafeFPMath &&
14077            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
14078          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14079            break;
14080          std::swap(LHS, RHS);
14081        }
14082        Opcode = X86ISD::FMAX;
14083        break;
14084      case ISD::SETULE:
14085        // Converting this to a max would handle both negative zeros and NaNs
14086        // incorrectly, but we can swap the operands to fix both.
14087        std::swap(LHS, RHS);
14088      case ISD::SETOLT:
14089      case ISD::SETLT:
14090      case ISD::SETLE:
14091        Opcode = X86ISD::FMAX;
14092        break;
14093      }
14094    }
14095
14096    if (Opcode)
14097      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
14098  }
14099
14100  // If this is a select between two integer constants, try to do some
14101  // optimizations.
14102  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
14103    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
14104      // Don't do this for crazy integer types.
14105      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
14106        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
14107        // so that TrueC (the true value) is larger than FalseC.
14108        bool NeedsCondInvert = false;
14109
14110        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
14111            // Efficiently invertible.
14112            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
14113             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
14114              isa<ConstantSDNode>(Cond.getOperand(1))))) {
14115          NeedsCondInvert = true;
14116          std::swap(TrueC, FalseC);
14117        }
14118
14119        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
14120        if (FalseC->getAPIntValue() == 0 &&
14121            TrueC->getAPIntValue().isPowerOf2()) {
14122          if (NeedsCondInvert) // Invert the condition if needed.
14123            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14124                               DAG.getConstant(1, Cond.getValueType()));
14125
14126          // Zero extend the condition if needed.
14127          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
14128
14129          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14130          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
14131                             DAG.getConstant(ShAmt, MVT::i8));
14132        }
14133
14134        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
14135        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14136          if (NeedsCondInvert) // Invert the condition if needed.
14137            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14138                               DAG.getConstant(1, Cond.getValueType()));
14139
14140          // Zero extend the condition if needed.
14141          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14142                             FalseC->getValueType(0), Cond);
14143          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14144                             SDValue(FalseC, 0));
14145        }
14146
14147        // Optimize cases that will turn into an LEA instruction.  This requires
14148        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14149        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14150          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14151          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14152
14153          bool isFastMultiplier = false;
14154          if (Diff < 10) {
14155            switch ((unsigned char)Diff) {
14156              default: break;
14157              case 1:  // result = add base, cond
14158              case 2:  // result = lea base(    , cond*2)
14159              case 3:  // result = lea base(cond, cond*2)
14160              case 4:  // result = lea base(    , cond*4)
14161              case 5:  // result = lea base(cond, cond*4)
14162              case 8:  // result = lea base(    , cond*8)
14163              case 9:  // result = lea base(cond, cond*8)
14164                isFastMultiplier = true;
14165                break;
14166            }
14167          }
14168
14169          if (isFastMultiplier) {
14170            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14171            if (NeedsCondInvert) // Invert the condition if needed.
14172              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14173                                 DAG.getConstant(1, Cond.getValueType()));
14174
14175            // Zero extend the condition if needed.
14176            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14177                               Cond);
14178            // Scale the condition by the difference.
14179            if (Diff != 1)
14180              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14181                                 DAG.getConstant(Diff, Cond.getValueType()));
14182
14183            // Add the base if non-zero.
14184            if (FalseC->getAPIntValue() != 0)
14185              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14186                                 SDValue(FalseC, 0));
14187            return Cond;
14188          }
14189        }
14190      }
14191  }
14192
14193  // Canonicalize max and min:
14194  // (x > y) ? x : y -> (x >= y) ? x : y
14195  // (x < y) ? x : y -> (x <= y) ? x : y
14196  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
14197  // the need for an extra compare
14198  // against zero. e.g.
14199  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
14200  // subl   %esi, %edi
14201  // testl  %edi, %edi
14202  // movl   $0, %eax
14203  // cmovgl %edi, %eax
14204  // =>
14205  // xorl   %eax, %eax
14206  // subl   %esi, $edi
14207  // cmovsl %eax, %edi
14208  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
14209      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14210      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14211    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14212    switch (CC) {
14213    default: break;
14214    case ISD::SETLT:
14215    case ISD::SETGT: {
14216      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
14217      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
14218                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
14219      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
14220    }
14221    }
14222  }
14223
14224  // If we know that this node is legal then we know that it is going to be
14225  // matched by one of the SSE/AVX BLEND instructions. These instructions only
14226  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
14227  // to simplify previous instructions.
14228  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14229  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
14230      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
14231    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
14232
14233    // Don't optimize vector selects that map to mask-registers.
14234    if (BitWidth == 1)
14235      return SDValue();
14236
14237    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
14238    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
14239
14240    APInt KnownZero, KnownOne;
14241    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
14242                                          DCI.isBeforeLegalizeOps());
14243    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
14244        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
14245      DCI.CommitTargetLoweringOpt(TLO);
14246  }
14247
14248  return SDValue();
14249}
14250
14251// Check whether a boolean test is testing a boolean value generated by
14252// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
14253// code.
14254//
14255// Simplify the following patterns:
14256// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
14257// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
14258// to (Op EFLAGS Cond)
14259//
14260// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
14261// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
14262// to (Op EFLAGS !Cond)
14263//
14264// where Op could be BRCOND or CMOV.
14265//
14266static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
14267  // Quit if not CMP and SUB with its value result used.
14268  if (Cmp.getOpcode() != X86ISD::CMP &&
14269      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
14270      return SDValue();
14271
14272  // Quit if not used as a boolean value.
14273  if (CC != X86::COND_E && CC != X86::COND_NE)
14274    return SDValue();
14275
14276  // Check CMP operands. One of them should be 0 or 1 and the other should be
14277  // an SetCC or extended from it.
14278  SDValue Op1 = Cmp.getOperand(0);
14279  SDValue Op2 = Cmp.getOperand(1);
14280
14281  SDValue SetCC;
14282  const ConstantSDNode* C = 0;
14283  bool needOppositeCond = (CC == X86::COND_E);
14284
14285  if ((C = dyn_cast<ConstantSDNode>(Op1)))
14286    SetCC = Op2;
14287  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
14288    SetCC = Op1;
14289  else // Quit if all operands are not constants.
14290    return SDValue();
14291
14292  if (C->getZExtValue() == 1)
14293    needOppositeCond = !needOppositeCond;
14294  else if (C->getZExtValue() != 0)
14295    // Quit if the constant is neither 0 or 1.
14296    return SDValue();
14297
14298  // Skip 'zext' node.
14299  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
14300    SetCC = SetCC.getOperand(0);
14301
14302  switch (SetCC.getOpcode()) {
14303  case X86ISD::SETCC:
14304    // Set the condition code or opposite one if necessary.
14305    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
14306    if (needOppositeCond)
14307      CC = X86::GetOppositeBranchCondition(CC);
14308    return SetCC.getOperand(1);
14309  case X86ISD::CMOV: {
14310    // Check whether false/true value has canonical one, i.e. 0 or 1.
14311    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
14312    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
14313    // Quit if true value is not a constant.
14314    if (!TVal)
14315      return SDValue();
14316    // Quit if false value is not a constant.
14317    if (!FVal) {
14318      // A special case for rdrand, where 0 is set if false cond is found.
14319      SDValue Op = SetCC.getOperand(0);
14320      if (Op.getOpcode() != X86ISD::RDRAND)
14321        return SDValue();
14322    }
14323    // Quit if false value is not the constant 0 or 1.
14324    bool FValIsFalse = true;
14325    if (FVal && FVal->getZExtValue() != 0) {
14326      if (FVal->getZExtValue() != 1)
14327        return SDValue();
14328      // If FVal is 1, opposite cond is needed.
14329      needOppositeCond = !needOppositeCond;
14330      FValIsFalse = false;
14331    }
14332    // Quit if TVal is not the constant opposite of FVal.
14333    if (FValIsFalse && TVal->getZExtValue() != 1)
14334      return SDValue();
14335    if (!FValIsFalse && TVal->getZExtValue() != 0)
14336      return SDValue();
14337    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
14338    if (needOppositeCond)
14339      CC = X86::GetOppositeBranchCondition(CC);
14340    return SetCC.getOperand(3);
14341  }
14342  }
14343
14344  return SDValue();
14345}
14346
14347/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
14348static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
14349                                  TargetLowering::DAGCombinerInfo &DCI,
14350                                  const X86Subtarget *Subtarget) {
14351  DebugLoc DL = N->getDebugLoc();
14352
14353  // If the flag operand isn't dead, don't touch this CMOV.
14354  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
14355    return SDValue();
14356
14357  SDValue FalseOp = N->getOperand(0);
14358  SDValue TrueOp = N->getOperand(1);
14359  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
14360  SDValue Cond = N->getOperand(3);
14361
14362  if (CC == X86::COND_E || CC == X86::COND_NE) {
14363    switch (Cond.getOpcode()) {
14364    default: break;
14365    case X86ISD::BSR:
14366    case X86ISD::BSF:
14367      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
14368      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
14369        return (CC == X86::COND_E) ? FalseOp : TrueOp;
14370    }
14371  }
14372
14373  SDValue Flags;
14374
14375  Flags = checkBoolTestSetCCCombine(Cond, CC);
14376  if (Flags.getNode() &&
14377      // Extra check as FCMOV only supports a subset of X86 cond.
14378      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
14379    SDValue Ops[] = { FalseOp, TrueOp,
14380                      DAG.getConstant(CC, MVT::i8), Flags };
14381    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
14382                       Ops, array_lengthof(Ops));
14383  }
14384
14385  // If this is a select between two integer constants, try to do some
14386  // optimizations.  Note that the operands are ordered the opposite of SELECT
14387  // operands.
14388  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
14389    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
14390      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
14391      // larger than FalseC (the false value).
14392      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
14393        CC = X86::GetOppositeBranchCondition(CC);
14394        std::swap(TrueC, FalseC);
14395      }
14396
14397      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
14398      // This is efficient for any integer data type (including i8/i16) and
14399      // shift amount.
14400      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
14401        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14402                           DAG.getConstant(CC, MVT::i8), Cond);
14403
14404        // Zero extend the condition if needed.
14405        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
14406
14407        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14408        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
14409                           DAG.getConstant(ShAmt, MVT::i8));
14410        if (N->getNumValues() == 2)  // Dead flag value?
14411          return DCI.CombineTo(N, Cond, SDValue());
14412        return Cond;
14413      }
14414
14415      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
14416      // for any integer data type, including i8/i16.
14417      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14418        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14419                           DAG.getConstant(CC, MVT::i8), Cond);
14420
14421        // Zero extend the condition if needed.
14422        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14423                           FalseC->getValueType(0), Cond);
14424        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14425                           SDValue(FalseC, 0));
14426
14427        if (N->getNumValues() == 2)  // Dead flag value?
14428          return DCI.CombineTo(N, Cond, SDValue());
14429        return Cond;
14430      }
14431
14432      // Optimize cases that will turn into an LEA instruction.  This requires
14433      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14434      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14435        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14436        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14437
14438        bool isFastMultiplier = false;
14439        if (Diff < 10) {
14440          switch ((unsigned char)Diff) {
14441          default: break;
14442          case 1:  // result = add base, cond
14443          case 2:  // result = lea base(    , cond*2)
14444          case 3:  // result = lea base(cond, cond*2)
14445          case 4:  // result = lea base(    , cond*4)
14446          case 5:  // result = lea base(cond, cond*4)
14447          case 8:  // result = lea base(    , cond*8)
14448          case 9:  // result = lea base(cond, cond*8)
14449            isFastMultiplier = true;
14450            break;
14451          }
14452        }
14453
14454        if (isFastMultiplier) {
14455          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14456          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14457                             DAG.getConstant(CC, MVT::i8), Cond);
14458          // Zero extend the condition if needed.
14459          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14460                             Cond);
14461          // Scale the condition by the difference.
14462          if (Diff != 1)
14463            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14464                               DAG.getConstant(Diff, Cond.getValueType()));
14465
14466          // Add the base if non-zero.
14467          if (FalseC->getAPIntValue() != 0)
14468            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14469                               SDValue(FalseC, 0));
14470          if (N->getNumValues() == 2)  // Dead flag value?
14471            return DCI.CombineTo(N, Cond, SDValue());
14472          return Cond;
14473        }
14474      }
14475    }
14476  }
14477  return SDValue();
14478}
14479
14480
14481/// PerformMulCombine - Optimize a single multiply with constant into two
14482/// in order to implement it with two cheaper instructions, e.g.
14483/// LEA + SHL, LEA + LEA.
14484static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
14485                                 TargetLowering::DAGCombinerInfo &DCI) {
14486  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14487    return SDValue();
14488
14489  EVT VT = N->getValueType(0);
14490  if (VT != MVT::i64)
14491    return SDValue();
14492
14493  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14494  if (!C)
14495    return SDValue();
14496  uint64_t MulAmt = C->getZExtValue();
14497  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
14498    return SDValue();
14499
14500  uint64_t MulAmt1 = 0;
14501  uint64_t MulAmt2 = 0;
14502  if ((MulAmt % 9) == 0) {
14503    MulAmt1 = 9;
14504    MulAmt2 = MulAmt / 9;
14505  } else if ((MulAmt % 5) == 0) {
14506    MulAmt1 = 5;
14507    MulAmt2 = MulAmt / 5;
14508  } else if ((MulAmt % 3) == 0) {
14509    MulAmt1 = 3;
14510    MulAmt2 = MulAmt / 3;
14511  }
14512  if (MulAmt2 &&
14513      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
14514    DebugLoc DL = N->getDebugLoc();
14515
14516    if (isPowerOf2_64(MulAmt2) &&
14517        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
14518      // If second multiplifer is pow2, issue it first. We want the multiply by
14519      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
14520      // is an add.
14521      std::swap(MulAmt1, MulAmt2);
14522
14523    SDValue NewMul;
14524    if (isPowerOf2_64(MulAmt1))
14525      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14526                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
14527    else
14528      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
14529                           DAG.getConstant(MulAmt1, VT));
14530
14531    if (isPowerOf2_64(MulAmt2))
14532      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
14533                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
14534    else
14535      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
14536                           DAG.getConstant(MulAmt2, VT));
14537
14538    // Do not add new nodes to DAG combiner worklist.
14539    DCI.CombineTo(N, NewMul, false);
14540  }
14541  return SDValue();
14542}
14543
14544static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
14545  SDValue N0 = N->getOperand(0);
14546  SDValue N1 = N->getOperand(1);
14547  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14548  EVT VT = N0.getValueType();
14549
14550  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
14551  // since the result of setcc_c is all zero's or all ones.
14552  if (VT.isInteger() && !VT.isVector() &&
14553      N1C && N0.getOpcode() == ISD::AND &&
14554      N0.getOperand(1).getOpcode() == ISD::Constant) {
14555    SDValue N00 = N0.getOperand(0);
14556    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
14557        ((N00.getOpcode() == ISD::ANY_EXTEND ||
14558          N00.getOpcode() == ISD::ZERO_EXTEND) &&
14559         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
14560      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
14561      APInt ShAmt = N1C->getAPIntValue();
14562      Mask = Mask.shl(ShAmt);
14563      if (Mask != 0)
14564        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
14565                           N00, DAG.getConstant(Mask, VT));
14566    }
14567  }
14568
14569
14570  // Hardware support for vector shifts is sparse which makes us scalarize the
14571  // vector operations in many cases. Also, on sandybridge ADD is faster than
14572  // shl.
14573  // (shl V, 1) -> add V,V
14574  if (isSplatVector(N1.getNode())) {
14575    assert(N0.getValueType().isVector() && "Invalid vector shift type");
14576    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
14577    // We shift all of the values by one. In many cases we do not have
14578    // hardware support for this operation. This is better expressed as an ADD
14579    // of two values.
14580    if (N1C && (1 == N1C->getZExtValue())) {
14581      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
14582    }
14583  }
14584
14585  return SDValue();
14586}
14587
14588/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
14589///                       when possible.
14590static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
14591                                   TargetLowering::DAGCombinerInfo &DCI,
14592                                   const X86Subtarget *Subtarget) {
14593  EVT VT = N->getValueType(0);
14594  if (N->getOpcode() == ISD::SHL) {
14595    SDValue V = PerformSHLCombine(N, DAG);
14596    if (V.getNode()) return V;
14597  }
14598
14599  // On X86 with SSE2 support, we can transform this to a vector shift if
14600  // all elements are shifted by the same amount.  We can't do this in legalize
14601  // because the a constant vector is typically transformed to a constant pool
14602  // so we have no knowledge of the shift amount.
14603  if (!Subtarget->hasSSE2())
14604    return SDValue();
14605
14606  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
14607      (!Subtarget->hasAVX2() ||
14608       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
14609    return SDValue();
14610
14611  SDValue ShAmtOp = N->getOperand(1);
14612  EVT EltVT = VT.getVectorElementType();
14613  DebugLoc DL = N->getDebugLoc();
14614  SDValue BaseShAmt = SDValue();
14615  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
14616    unsigned NumElts = VT.getVectorNumElements();
14617    unsigned i = 0;
14618    for (; i != NumElts; ++i) {
14619      SDValue Arg = ShAmtOp.getOperand(i);
14620      if (Arg.getOpcode() == ISD::UNDEF) continue;
14621      BaseShAmt = Arg;
14622      break;
14623    }
14624    // Handle the case where the build_vector is all undef
14625    // FIXME: Should DAG allow this?
14626    if (i == NumElts)
14627      return SDValue();
14628
14629    for (; i != NumElts; ++i) {
14630      SDValue Arg = ShAmtOp.getOperand(i);
14631      if (Arg.getOpcode() == ISD::UNDEF) continue;
14632      if (Arg != BaseShAmt) {
14633        return SDValue();
14634      }
14635    }
14636  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
14637             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
14638    SDValue InVec = ShAmtOp.getOperand(0);
14639    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
14640      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14641      unsigned i = 0;
14642      for (; i != NumElts; ++i) {
14643        SDValue Arg = InVec.getOperand(i);
14644        if (Arg.getOpcode() == ISD::UNDEF) continue;
14645        BaseShAmt = Arg;
14646        break;
14647      }
14648    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14649       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14650         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14651         if (C->getZExtValue() == SplatIdx)
14652           BaseShAmt = InVec.getOperand(1);
14653       }
14654    }
14655    if (BaseShAmt.getNode() == 0) {
14656      // Don't create instructions with illegal types after legalize
14657      // types has run.
14658      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14659          !DCI.isBeforeLegalize())
14660        return SDValue();
14661
14662      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14663                              DAG.getIntPtrConstant(0));
14664    }
14665  } else
14666    return SDValue();
14667
14668  // The shift amount is an i32.
14669  if (EltVT.bitsGT(MVT::i32))
14670    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14671  else if (EltVT.bitsLT(MVT::i32))
14672    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14673
14674  // The shift amount is identical so we can do a vector shift.
14675  SDValue  ValOp = N->getOperand(0);
14676  switch (N->getOpcode()) {
14677  default:
14678    llvm_unreachable("Unknown shift opcode!");
14679  case ISD::SHL:
14680    switch (VT.getSimpleVT().SimpleTy) {
14681    default: return SDValue();
14682    case MVT::v2i64:
14683    case MVT::v4i32:
14684    case MVT::v8i16:
14685    case MVT::v4i64:
14686    case MVT::v8i32:
14687    case MVT::v16i16:
14688      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14689    }
14690  case ISD::SRA:
14691    switch (VT.getSimpleVT().SimpleTy) {
14692    default: return SDValue();
14693    case MVT::v4i32:
14694    case MVT::v8i16:
14695    case MVT::v8i32:
14696    case MVT::v16i16:
14697      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14698    }
14699  case ISD::SRL:
14700    switch (VT.getSimpleVT().SimpleTy) {
14701    default: return SDValue();
14702    case MVT::v2i64:
14703    case MVT::v4i32:
14704    case MVT::v8i16:
14705    case MVT::v4i64:
14706    case MVT::v8i32:
14707    case MVT::v16i16:
14708      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14709    }
14710  }
14711}
14712
14713
14714// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14715// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14716// and friends.  Likewise for OR -> CMPNEQSS.
14717static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14718                            TargetLowering::DAGCombinerInfo &DCI,
14719                            const X86Subtarget *Subtarget) {
14720  unsigned opcode;
14721
14722  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14723  // we're requiring SSE2 for both.
14724  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14725    SDValue N0 = N->getOperand(0);
14726    SDValue N1 = N->getOperand(1);
14727    SDValue CMP0 = N0->getOperand(1);
14728    SDValue CMP1 = N1->getOperand(1);
14729    DebugLoc DL = N->getDebugLoc();
14730
14731    // The SETCCs should both refer to the same CMP.
14732    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14733      return SDValue();
14734
14735    SDValue CMP00 = CMP0->getOperand(0);
14736    SDValue CMP01 = CMP0->getOperand(1);
14737    EVT     VT    = CMP00.getValueType();
14738
14739    if (VT == MVT::f32 || VT == MVT::f64) {
14740      bool ExpectingFlags = false;
14741      // Check for any users that want flags:
14742      for (SDNode::use_iterator UI = N->use_begin(),
14743             UE = N->use_end();
14744           !ExpectingFlags && UI != UE; ++UI)
14745        switch (UI->getOpcode()) {
14746        default:
14747        case ISD::BR_CC:
14748        case ISD::BRCOND:
14749        case ISD::SELECT:
14750          ExpectingFlags = true;
14751          break;
14752        case ISD::CopyToReg:
14753        case ISD::SIGN_EXTEND:
14754        case ISD::ZERO_EXTEND:
14755        case ISD::ANY_EXTEND:
14756          break;
14757        }
14758
14759      if (!ExpectingFlags) {
14760        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14761        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14762
14763        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14764          X86::CondCode tmp = cc0;
14765          cc0 = cc1;
14766          cc1 = tmp;
14767        }
14768
14769        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14770            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14771          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14772          X86ISD::NodeType NTOperator = is64BitFP ?
14773            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14774          // FIXME: need symbolic constants for these magic numbers.
14775          // See X86ATTInstPrinter.cpp:printSSECC().
14776          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14777          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14778                                              DAG.getConstant(x86cc, MVT::i8));
14779          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14780                                              OnesOrZeroesF);
14781          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14782                                      DAG.getConstant(1, MVT::i32));
14783          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14784          return OneBitOfTruth;
14785        }
14786      }
14787    }
14788  }
14789  return SDValue();
14790}
14791
14792/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14793/// so it can be folded inside ANDNP.
14794static bool CanFoldXORWithAllOnes(const SDNode *N) {
14795  EVT VT = N->getValueType(0);
14796
14797  // Match direct AllOnes for 128 and 256-bit vectors
14798  if (ISD::isBuildVectorAllOnes(N))
14799    return true;
14800
14801  // Look through a bit convert.
14802  if (N->getOpcode() == ISD::BITCAST)
14803    N = N->getOperand(0).getNode();
14804
14805  // Sometimes the operand may come from a insert_subvector building a 256-bit
14806  // allones vector
14807  if (VT.is256BitVector() &&
14808      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14809    SDValue V1 = N->getOperand(0);
14810    SDValue V2 = N->getOperand(1);
14811
14812    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14813        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14814        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14815        ISD::isBuildVectorAllOnes(V2.getNode()))
14816      return true;
14817  }
14818
14819  return false;
14820}
14821
14822static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14823                                 TargetLowering::DAGCombinerInfo &DCI,
14824                                 const X86Subtarget *Subtarget) {
14825  if (DCI.isBeforeLegalizeOps())
14826    return SDValue();
14827
14828  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14829  if (R.getNode())
14830    return R;
14831
14832  EVT VT = N->getValueType(0);
14833
14834  // Create ANDN, BLSI, and BLSR instructions
14835  // BLSI is X & (-X)
14836  // BLSR is X & (X-1)
14837  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14838    SDValue N0 = N->getOperand(0);
14839    SDValue N1 = N->getOperand(1);
14840    DebugLoc DL = N->getDebugLoc();
14841
14842    // Check LHS for not
14843    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14844      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14845    // Check RHS for not
14846    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14847      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14848
14849    // Check LHS for neg
14850    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14851        isZero(N0.getOperand(0)))
14852      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14853
14854    // Check RHS for neg
14855    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14856        isZero(N1.getOperand(0)))
14857      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14858
14859    // Check LHS for X-1
14860    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14861        isAllOnes(N0.getOperand(1)))
14862      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14863
14864    // Check RHS for X-1
14865    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14866        isAllOnes(N1.getOperand(1)))
14867      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14868
14869    return SDValue();
14870  }
14871
14872  // Want to form ANDNP nodes:
14873  // 1) In the hopes of then easily combining them with OR and AND nodes
14874  //    to form PBLEND/PSIGN.
14875  // 2) To match ANDN packed intrinsics
14876  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14877    return SDValue();
14878
14879  SDValue N0 = N->getOperand(0);
14880  SDValue N1 = N->getOperand(1);
14881  DebugLoc DL = N->getDebugLoc();
14882
14883  // Check LHS for vnot
14884  if (N0.getOpcode() == ISD::XOR &&
14885      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14886      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14887    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14888
14889  // Check RHS for vnot
14890  if (N1.getOpcode() == ISD::XOR &&
14891      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14892      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14893    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14894
14895  return SDValue();
14896}
14897
14898static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14899                                TargetLowering::DAGCombinerInfo &DCI,
14900                                const X86Subtarget *Subtarget) {
14901  if (DCI.isBeforeLegalizeOps())
14902    return SDValue();
14903
14904  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14905  if (R.getNode())
14906    return R;
14907
14908  EVT VT = N->getValueType(0);
14909
14910  SDValue N0 = N->getOperand(0);
14911  SDValue N1 = N->getOperand(1);
14912
14913  // look for psign/blend
14914  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14915    if (!Subtarget->hasSSSE3() ||
14916        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14917      return SDValue();
14918
14919    // Canonicalize pandn to RHS
14920    if (N0.getOpcode() == X86ISD::ANDNP)
14921      std::swap(N0, N1);
14922    // or (and (m, y), (pandn m, x))
14923    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14924      SDValue Mask = N1.getOperand(0);
14925      SDValue X    = N1.getOperand(1);
14926      SDValue Y;
14927      if (N0.getOperand(0) == Mask)
14928        Y = N0.getOperand(1);
14929      if (N0.getOperand(1) == Mask)
14930        Y = N0.getOperand(0);
14931
14932      // Check to see if the mask appeared in both the AND and ANDNP and
14933      if (!Y.getNode())
14934        return SDValue();
14935
14936      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14937      // Look through mask bitcast.
14938      if (Mask.getOpcode() == ISD::BITCAST)
14939        Mask = Mask.getOperand(0);
14940      if (X.getOpcode() == ISD::BITCAST)
14941        X = X.getOperand(0);
14942      if (Y.getOpcode() == ISD::BITCAST)
14943        Y = Y.getOperand(0);
14944
14945      EVT MaskVT = Mask.getValueType();
14946
14947      // Validate that the Mask operand is a vector sra node.
14948      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14949      // there is no psrai.b
14950      if (Mask.getOpcode() != X86ISD::VSRAI)
14951        return SDValue();
14952
14953      // Check that the SRA is all signbits.
14954      SDValue SraC = Mask.getOperand(1);
14955      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14956      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14957      if ((SraAmt + 1) != EltBits)
14958        return SDValue();
14959
14960      DebugLoc DL = N->getDebugLoc();
14961
14962      // Now we know we at least have a plendvb with the mask val.  See if
14963      // we can form a psignb/w/d.
14964      // psign = x.type == y.type == mask.type && y = sub(0, x);
14965      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14966          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14967          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14968        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14969               "Unsupported VT for PSIGN");
14970        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14971        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14972      }
14973      // PBLENDVB only available on SSE 4.1
14974      if (!Subtarget->hasSSE41())
14975        return SDValue();
14976
14977      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14978
14979      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14980      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14981      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14982      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14983      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14984    }
14985  }
14986
14987  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14988    return SDValue();
14989
14990  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14991  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14992    std::swap(N0, N1);
14993  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14994    return SDValue();
14995  if (!N0.hasOneUse() || !N1.hasOneUse())
14996    return SDValue();
14997
14998  SDValue ShAmt0 = N0.getOperand(1);
14999  if (ShAmt0.getValueType() != MVT::i8)
15000    return SDValue();
15001  SDValue ShAmt1 = N1.getOperand(1);
15002  if (ShAmt1.getValueType() != MVT::i8)
15003    return SDValue();
15004  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
15005    ShAmt0 = ShAmt0.getOperand(0);
15006  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
15007    ShAmt1 = ShAmt1.getOperand(0);
15008
15009  DebugLoc DL = N->getDebugLoc();
15010  unsigned Opc = X86ISD::SHLD;
15011  SDValue Op0 = N0.getOperand(0);
15012  SDValue Op1 = N1.getOperand(0);
15013  if (ShAmt0.getOpcode() == ISD::SUB) {
15014    Opc = X86ISD::SHRD;
15015    std::swap(Op0, Op1);
15016    std::swap(ShAmt0, ShAmt1);
15017  }
15018
15019  unsigned Bits = VT.getSizeInBits();
15020  if (ShAmt1.getOpcode() == ISD::SUB) {
15021    SDValue Sum = ShAmt1.getOperand(0);
15022    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
15023      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
15024      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
15025        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
15026      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
15027        return DAG.getNode(Opc, DL, VT,
15028                           Op0, Op1,
15029                           DAG.getNode(ISD::TRUNCATE, DL,
15030                                       MVT::i8, ShAmt0));
15031    }
15032  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
15033    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
15034    if (ShAmt0C &&
15035        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
15036      return DAG.getNode(Opc, DL, VT,
15037                         N0.getOperand(0), N1.getOperand(0),
15038                         DAG.getNode(ISD::TRUNCATE, DL,
15039                                       MVT::i8, ShAmt0));
15040  }
15041
15042  return SDValue();
15043}
15044
15045// Generate NEG and CMOV for integer abs.
15046static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
15047  EVT VT = N->getValueType(0);
15048
15049  // Since X86 does not have CMOV for 8-bit integer, we don't convert
15050  // 8-bit integer abs to NEG and CMOV.
15051  if (VT.isInteger() && VT.getSizeInBits() == 8)
15052    return SDValue();
15053
15054  SDValue N0 = N->getOperand(0);
15055  SDValue N1 = N->getOperand(1);
15056  DebugLoc DL = N->getDebugLoc();
15057
15058  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
15059  // and change it to SUB and CMOV.
15060  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
15061      N0.getOpcode() == ISD::ADD &&
15062      N0.getOperand(1) == N1 &&
15063      N1.getOpcode() == ISD::SRA &&
15064      N1.getOperand(0) == N0.getOperand(0))
15065    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
15066      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
15067        // Generate SUB & CMOV.
15068        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
15069                                  DAG.getConstant(0, VT), N0.getOperand(0));
15070
15071        SDValue Ops[] = { N0.getOperand(0), Neg,
15072                          DAG.getConstant(X86::COND_GE, MVT::i8),
15073                          SDValue(Neg.getNode(), 1) };
15074        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
15075                           Ops, array_lengthof(Ops));
15076      }
15077  return SDValue();
15078}
15079
15080// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
15081static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
15082                                 TargetLowering::DAGCombinerInfo &DCI,
15083                                 const X86Subtarget *Subtarget) {
15084  if (DCI.isBeforeLegalizeOps())
15085    return SDValue();
15086
15087  if (Subtarget->hasCMov()) {
15088    SDValue RV = performIntegerAbsCombine(N, DAG);
15089    if (RV.getNode())
15090      return RV;
15091  }
15092
15093  // Try forming BMI if it is available.
15094  if (!Subtarget->hasBMI())
15095    return SDValue();
15096
15097  EVT VT = N->getValueType(0);
15098
15099  if (VT != MVT::i32 && VT != MVT::i64)
15100    return SDValue();
15101
15102  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
15103
15104  // Create BLSMSK instructions by finding X ^ (X-1)
15105  SDValue N0 = N->getOperand(0);
15106  SDValue N1 = N->getOperand(1);
15107  DebugLoc DL = N->getDebugLoc();
15108
15109  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15110      isAllOnes(N0.getOperand(1)))
15111    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
15112
15113  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15114      isAllOnes(N1.getOperand(1)))
15115    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
15116
15117  return SDValue();
15118}
15119
15120/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
15121static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
15122                                  TargetLowering::DAGCombinerInfo &DCI,
15123                                  const X86Subtarget *Subtarget) {
15124  LoadSDNode *Ld = cast<LoadSDNode>(N);
15125  EVT RegVT = Ld->getValueType(0);
15126  EVT MemVT = Ld->getMemoryVT();
15127  DebugLoc dl = Ld->getDebugLoc();
15128  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15129
15130  ISD::LoadExtType Ext = Ld->getExtensionType();
15131
15132  // If this is a vector EXT Load then attempt to optimize it using a
15133  // shuffle. We need SSE4 for the shuffles.
15134  // TODO: It is possible to support ZExt by zeroing the undef values
15135  // during the shuffle phase or after the shuffle.
15136  if (RegVT.isVector() && RegVT.isInteger() &&
15137      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
15138    assert(MemVT != RegVT && "Cannot extend to the same type");
15139    assert(MemVT.isVector() && "Must load a vector from memory");
15140
15141    unsigned NumElems = RegVT.getVectorNumElements();
15142    unsigned RegSz = RegVT.getSizeInBits();
15143    unsigned MemSz = MemVT.getSizeInBits();
15144    assert(RegSz > MemSz && "Register size must be greater than the mem size");
15145
15146    // All sizes must be a power of two.
15147    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
15148      return SDValue();
15149
15150    // Attempt to load the original value using scalar loads.
15151    // Find the largest scalar type that divides the total loaded size.
15152    MVT SclrLoadTy = MVT::i8;
15153    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15154         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15155      MVT Tp = (MVT::SimpleValueType)tp;
15156      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
15157        SclrLoadTy = Tp;
15158      }
15159    }
15160
15161    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15162    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
15163        (64 <= MemSz))
15164      SclrLoadTy = MVT::f64;
15165
15166    // Calculate the number of scalar loads that we need to perform
15167    // in order to load our vector from memory.
15168    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
15169
15170    // Represent our vector as a sequence of elements which are the
15171    // largest scalar that we can load.
15172    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
15173      RegSz/SclrLoadTy.getSizeInBits());
15174
15175    // Represent the data using the same element type that is stored in
15176    // memory. In practice, we ''widen'' MemVT.
15177    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
15178                                  RegSz/MemVT.getScalarType().getSizeInBits());
15179
15180    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
15181      "Invalid vector type");
15182
15183    // We can't shuffle using an illegal type.
15184    if (!TLI.isTypeLegal(WideVecVT))
15185      return SDValue();
15186
15187    SmallVector<SDValue, 8> Chains;
15188    SDValue Ptr = Ld->getBasePtr();
15189    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
15190                                        TLI.getPointerTy());
15191    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
15192
15193    for (unsigned i = 0; i < NumLoads; ++i) {
15194      // Perform a single load.
15195      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
15196                                       Ptr, Ld->getPointerInfo(),
15197                                       Ld->isVolatile(), Ld->isNonTemporal(),
15198                                       Ld->isInvariant(), Ld->getAlignment());
15199      Chains.push_back(ScalarLoad.getValue(1));
15200      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
15201      // another round of DAGCombining.
15202      if (i == 0)
15203        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
15204      else
15205        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
15206                          ScalarLoad, DAG.getIntPtrConstant(i));
15207
15208      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15209    }
15210
15211    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15212                               Chains.size());
15213
15214    // Bitcast the loaded value to a vector of the original element type, in
15215    // the size of the target vector type.
15216    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
15217    unsigned SizeRatio = RegSz/MemSz;
15218
15219    // Redistribute the loaded elements into the different locations.
15220    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15221    for (unsigned i = 0; i != NumElems; ++i)
15222      ShuffleVec[i*SizeRatio] = i;
15223
15224    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
15225                                         DAG.getUNDEF(WideVecVT),
15226                                         &ShuffleVec[0]);
15227
15228    // Bitcast to the requested type.
15229    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
15230    // Replace the original load with the new sequence
15231    // and return the new chain.
15232    return DCI.CombineTo(N, Shuff, TF, true);
15233  }
15234
15235  return SDValue();
15236}
15237
15238/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
15239static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
15240                                   const X86Subtarget *Subtarget) {
15241  StoreSDNode *St = cast<StoreSDNode>(N);
15242  EVT VT = St->getValue().getValueType();
15243  EVT StVT = St->getMemoryVT();
15244  DebugLoc dl = St->getDebugLoc();
15245  SDValue StoredVal = St->getOperand(1);
15246  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15247
15248  // If we are saving a concatenation of two XMM registers, perform two stores.
15249  // On Sandy Bridge, 256-bit memory operations are executed by two
15250  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
15251  // memory  operation.
15252  if (VT.is256BitVector() && !Subtarget->hasAVX2() &&
15253      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
15254      StoredVal.getNumOperands() == 2) {
15255    SDValue Value0 = StoredVal.getOperand(0);
15256    SDValue Value1 = StoredVal.getOperand(1);
15257
15258    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
15259    SDValue Ptr0 = St->getBasePtr();
15260    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
15261
15262    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
15263                                St->getPointerInfo(), St->isVolatile(),
15264                                St->isNonTemporal(), St->getAlignment());
15265    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
15266                                St->getPointerInfo(), St->isVolatile(),
15267                                St->isNonTemporal(), St->getAlignment());
15268    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
15269  }
15270
15271  // Optimize trunc store (of multiple scalars) to shuffle and store.
15272  // First, pack all of the elements in one place. Next, store to memory
15273  // in fewer chunks.
15274  if (St->isTruncatingStore() && VT.isVector()) {
15275    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15276    unsigned NumElems = VT.getVectorNumElements();
15277    assert(StVT != VT && "Cannot truncate to the same type");
15278    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
15279    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
15280
15281    // From, To sizes and ElemCount must be pow of two
15282    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
15283    // We are going to use the original vector elt for storing.
15284    // Accumulated smaller vector elements must be a multiple of the store size.
15285    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
15286
15287    unsigned SizeRatio  = FromSz / ToSz;
15288
15289    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
15290
15291    // Create a type on which we perform the shuffle
15292    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
15293            StVT.getScalarType(), NumElems*SizeRatio);
15294
15295    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
15296
15297    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
15298    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15299    for (unsigned i = 0; i != NumElems; ++i)
15300      ShuffleVec[i] = i * SizeRatio;
15301
15302    // Can't shuffle using an illegal type.
15303    if (!TLI.isTypeLegal(WideVecVT))
15304      return SDValue();
15305
15306    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
15307                                         DAG.getUNDEF(WideVecVT),
15308                                         &ShuffleVec[0]);
15309    // At this point all of the data is stored at the bottom of the
15310    // register. We now need to save it to mem.
15311
15312    // Find the largest store unit
15313    MVT StoreType = MVT::i8;
15314    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15315         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15316      MVT Tp = (MVT::SimpleValueType)tp;
15317      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
15318        StoreType = Tp;
15319    }
15320
15321    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15322    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
15323        (64 <= NumElems * ToSz))
15324      StoreType = MVT::f64;
15325
15326    // Bitcast the original vector into a vector of store-size units
15327    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
15328            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
15329    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
15330    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
15331    SmallVector<SDValue, 8> Chains;
15332    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
15333                                        TLI.getPointerTy());
15334    SDValue Ptr = St->getBasePtr();
15335
15336    // Perform one or more big stores into memory.
15337    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
15338      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
15339                                   StoreType, ShuffWide,
15340                                   DAG.getIntPtrConstant(i));
15341      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
15342                                St->getPointerInfo(), St->isVolatile(),
15343                                St->isNonTemporal(), St->getAlignment());
15344      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15345      Chains.push_back(Ch);
15346    }
15347
15348    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15349                               Chains.size());
15350  }
15351
15352
15353  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
15354  // the FP state in cases where an emms may be missing.
15355  // A preferable solution to the general problem is to figure out the right
15356  // places to insert EMMS.  This qualifies as a quick hack.
15357
15358  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
15359  if (VT.getSizeInBits() != 64)
15360    return SDValue();
15361
15362  const Function *F = DAG.getMachineFunction().getFunction();
15363  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
15364  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
15365                     && Subtarget->hasSSE2();
15366  if ((VT.isVector() ||
15367       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
15368      isa<LoadSDNode>(St->getValue()) &&
15369      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
15370      St->getChain().hasOneUse() && !St->isVolatile()) {
15371    SDNode* LdVal = St->getValue().getNode();
15372    LoadSDNode *Ld = 0;
15373    int TokenFactorIndex = -1;
15374    SmallVector<SDValue, 8> Ops;
15375    SDNode* ChainVal = St->getChain().getNode();
15376    // Must be a store of a load.  We currently handle two cases:  the load
15377    // is a direct child, and it's under an intervening TokenFactor.  It is
15378    // possible to dig deeper under nested TokenFactors.
15379    if (ChainVal == LdVal)
15380      Ld = cast<LoadSDNode>(St->getChain());
15381    else if (St->getValue().hasOneUse() &&
15382             ChainVal->getOpcode() == ISD::TokenFactor) {
15383      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
15384        if (ChainVal->getOperand(i).getNode() == LdVal) {
15385          TokenFactorIndex = i;
15386          Ld = cast<LoadSDNode>(St->getValue());
15387        } else
15388          Ops.push_back(ChainVal->getOperand(i));
15389      }
15390    }
15391
15392    if (!Ld || !ISD::isNormalLoad(Ld))
15393      return SDValue();
15394
15395    // If this is not the MMX case, i.e. we are just turning i64 load/store
15396    // into f64 load/store, avoid the transformation if there are multiple
15397    // uses of the loaded value.
15398    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
15399      return SDValue();
15400
15401    DebugLoc LdDL = Ld->getDebugLoc();
15402    DebugLoc StDL = N->getDebugLoc();
15403    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
15404    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
15405    // pair instead.
15406    if (Subtarget->is64Bit() || F64IsLegal) {
15407      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
15408      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
15409                                  Ld->getPointerInfo(), Ld->isVolatile(),
15410                                  Ld->isNonTemporal(), Ld->isInvariant(),
15411                                  Ld->getAlignment());
15412      SDValue NewChain = NewLd.getValue(1);
15413      if (TokenFactorIndex != -1) {
15414        Ops.push_back(NewChain);
15415        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15416                               Ops.size());
15417      }
15418      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
15419                          St->getPointerInfo(),
15420                          St->isVolatile(), St->isNonTemporal(),
15421                          St->getAlignment());
15422    }
15423
15424    // Otherwise, lower to two pairs of 32-bit loads / stores.
15425    SDValue LoAddr = Ld->getBasePtr();
15426    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
15427                                 DAG.getConstant(4, MVT::i32));
15428
15429    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
15430                               Ld->getPointerInfo(),
15431                               Ld->isVolatile(), Ld->isNonTemporal(),
15432                               Ld->isInvariant(), Ld->getAlignment());
15433    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
15434                               Ld->getPointerInfo().getWithOffset(4),
15435                               Ld->isVolatile(), Ld->isNonTemporal(),
15436                               Ld->isInvariant(),
15437                               MinAlign(Ld->getAlignment(), 4));
15438
15439    SDValue NewChain = LoLd.getValue(1);
15440    if (TokenFactorIndex != -1) {
15441      Ops.push_back(LoLd);
15442      Ops.push_back(HiLd);
15443      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15444                             Ops.size());
15445    }
15446
15447    LoAddr = St->getBasePtr();
15448    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
15449                         DAG.getConstant(4, MVT::i32));
15450
15451    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
15452                                St->getPointerInfo(),
15453                                St->isVolatile(), St->isNonTemporal(),
15454                                St->getAlignment());
15455    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
15456                                St->getPointerInfo().getWithOffset(4),
15457                                St->isVolatile(),
15458                                St->isNonTemporal(),
15459                                MinAlign(St->getAlignment(), 4));
15460    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
15461  }
15462  return SDValue();
15463}
15464
15465/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
15466/// and return the operands for the horizontal operation in LHS and RHS.  A
15467/// horizontal operation performs the binary operation on successive elements
15468/// of its first operand, then on successive elements of its second operand,
15469/// returning the resulting values in a vector.  For example, if
15470///   A = < float a0, float a1, float a2, float a3 >
15471/// and
15472///   B = < float b0, float b1, float b2, float b3 >
15473/// then the result of doing a horizontal operation on A and B is
15474///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
15475/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
15476/// A horizontal-op B, for some already available A and B, and if so then LHS is
15477/// set to A, RHS to B, and the routine returns 'true'.
15478/// Note that the binary operation should have the property that if one of the
15479/// operands is UNDEF then the result is UNDEF.
15480static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
15481  // Look for the following pattern: if
15482  //   A = < float a0, float a1, float a2, float a3 >
15483  //   B = < float b0, float b1, float b2, float b3 >
15484  // and
15485  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
15486  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
15487  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
15488  // which is A horizontal-op B.
15489
15490  // At least one of the operands should be a vector shuffle.
15491  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
15492      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
15493    return false;
15494
15495  EVT VT = LHS.getValueType();
15496
15497  assert((VT.is128BitVector() || VT.is256BitVector()) &&
15498         "Unsupported vector type for horizontal add/sub");
15499
15500  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
15501  // operate independently on 128-bit lanes.
15502  unsigned NumElts = VT.getVectorNumElements();
15503  unsigned NumLanes = VT.getSizeInBits()/128;
15504  unsigned NumLaneElts = NumElts / NumLanes;
15505  assert((NumLaneElts % 2 == 0) &&
15506         "Vector type should have an even number of elements in each lane");
15507  unsigned HalfLaneElts = NumLaneElts/2;
15508
15509  // View LHS in the form
15510  //   LHS = VECTOR_SHUFFLE A, B, LMask
15511  // If LHS is not a shuffle then pretend it is the shuffle
15512  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
15513  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
15514  // type VT.
15515  SDValue A, B;
15516  SmallVector<int, 16> LMask(NumElts);
15517  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15518    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
15519      A = LHS.getOperand(0);
15520    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
15521      B = LHS.getOperand(1);
15522    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
15523    std::copy(Mask.begin(), Mask.end(), LMask.begin());
15524  } else {
15525    if (LHS.getOpcode() != ISD::UNDEF)
15526      A = LHS;
15527    for (unsigned i = 0; i != NumElts; ++i)
15528      LMask[i] = i;
15529  }
15530
15531  // Likewise, view RHS in the form
15532  //   RHS = VECTOR_SHUFFLE C, D, RMask
15533  SDValue C, D;
15534  SmallVector<int, 16> RMask(NumElts);
15535  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15536    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
15537      C = RHS.getOperand(0);
15538    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
15539      D = RHS.getOperand(1);
15540    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
15541    std::copy(Mask.begin(), Mask.end(), RMask.begin());
15542  } else {
15543    if (RHS.getOpcode() != ISD::UNDEF)
15544      C = RHS;
15545    for (unsigned i = 0; i != NumElts; ++i)
15546      RMask[i] = i;
15547  }
15548
15549  // Check that the shuffles are both shuffling the same vectors.
15550  if (!(A == C && B == D) && !(A == D && B == C))
15551    return false;
15552
15553  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
15554  if (!A.getNode() && !B.getNode())
15555    return false;
15556
15557  // If A and B occur in reverse order in RHS, then "swap" them (which means
15558  // rewriting the mask).
15559  if (A != C)
15560    CommuteVectorShuffleMask(RMask, NumElts);
15561
15562  // At this point LHS and RHS are equivalent to
15563  //   LHS = VECTOR_SHUFFLE A, B, LMask
15564  //   RHS = VECTOR_SHUFFLE A, B, RMask
15565  // Check that the masks correspond to performing a horizontal operation.
15566  for (unsigned i = 0; i != NumElts; ++i) {
15567    int LIdx = LMask[i], RIdx = RMask[i];
15568
15569    // Ignore any UNDEF components.
15570    if (LIdx < 0 || RIdx < 0 ||
15571        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
15572        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
15573      continue;
15574
15575    // Check that successive elements are being operated on.  If not, this is
15576    // not a horizontal operation.
15577    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
15578    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
15579    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
15580    if (!(LIdx == Index && RIdx == Index + 1) &&
15581        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
15582      return false;
15583  }
15584
15585  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
15586  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
15587  return true;
15588}
15589
15590/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
15591static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
15592                                  const X86Subtarget *Subtarget) {
15593  EVT VT = N->getValueType(0);
15594  SDValue LHS = N->getOperand(0);
15595  SDValue RHS = N->getOperand(1);
15596
15597  // Try to synthesize horizontal adds from adds of shuffles.
15598  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15599       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15600      isHorizontalBinOp(LHS, RHS, true))
15601    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
15602  return SDValue();
15603}
15604
15605/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
15606static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
15607                                  const X86Subtarget *Subtarget) {
15608  EVT VT = N->getValueType(0);
15609  SDValue LHS = N->getOperand(0);
15610  SDValue RHS = N->getOperand(1);
15611
15612  // Try to synthesize horizontal subs from subs of shuffles.
15613  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15614       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15615      isHorizontalBinOp(LHS, RHS, false))
15616    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
15617  return SDValue();
15618}
15619
15620/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
15621/// X86ISD::FXOR nodes.
15622static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
15623  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
15624  // F[X]OR(0.0, x) -> x
15625  // F[X]OR(x, 0.0) -> x
15626  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15627    if (C->getValueAPF().isPosZero())
15628      return N->getOperand(1);
15629  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15630    if (C->getValueAPF().isPosZero())
15631      return N->getOperand(0);
15632  return SDValue();
15633}
15634
15635/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
15636/// X86ISD::FMAX nodes.
15637static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
15638  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
15639
15640  // Only perform optimizations if UnsafeMath is used.
15641  if (!DAG.getTarget().Options.UnsafeFPMath)
15642    return SDValue();
15643
15644  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
15645  // into FMINC and FMAXC, which are Commutative operations.
15646  unsigned NewOp = 0;
15647  switch (N->getOpcode()) {
15648    default: llvm_unreachable("unknown opcode");
15649    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
15650    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
15651  }
15652
15653  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
15654                     N->getOperand(0), N->getOperand(1));
15655}
15656
15657
15658/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
15659static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
15660  // FAND(0.0, x) -> 0.0
15661  // FAND(x, 0.0) -> 0.0
15662  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15663    if (C->getValueAPF().isPosZero())
15664      return N->getOperand(0);
15665  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15666    if (C->getValueAPF().isPosZero())
15667      return N->getOperand(1);
15668  return SDValue();
15669}
15670
15671static SDValue PerformBTCombine(SDNode *N,
15672                                SelectionDAG &DAG,
15673                                TargetLowering::DAGCombinerInfo &DCI) {
15674  // BT ignores high bits in the bit index operand.
15675  SDValue Op1 = N->getOperand(1);
15676  if (Op1.hasOneUse()) {
15677    unsigned BitWidth = Op1.getValueSizeInBits();
15678    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
15679    APInt KnownZero, KnownOne;
15680    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
15681                                          !DCI.isBeforeLegalizeOps());
15682    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15683    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
15684        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
15685      DCI.CommitTargetLoweringOpt(TLO);
15686  }
15687  return SDValue();
15688}
15689
15690static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
15691  SDValue Op = N->getOperand(0);
15692  if (Op.getOpcode() == ISD::BITCAST)
15693    Op = Op.getOperand(0);
15694  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
15695  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
15696      VT.getVectorElementType().getSizeInBits() ==
15697      OpVT.getVectorElementType().getSizeInBits()) {
15698    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
15699  }
15700  return SDValue();
15701}
15702
15703static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
15704                                  TargetLowering::DAGCombinerInfo &DCI,
15705                                  const X86Subtarget *Subtarget) {
15706  if (!DCI.isBeforeLegalizeOps())
15707    return SDValue();
15708
15709  if (!Subtarget->hasAVX())
15710    return SDValue();
15711
15712  EVT VT = N->getValueType(0);
15713  SDValue Op = N->getOperand(0);
15714  EVT OpVT = Op.getValueType();
15715  DebugLoc dl = N->getDebugLoc();
15716
15717  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
15718      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
15719
15720    if (Subtarget->hasAVX2())
15721      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
15722
15723    // Optimize vectors in AVX mode
15724    // Sign extend  v8i16 to v8i32 and
15725    //              v4i32 to v4i64
15726    //
15727    // Divide input vector into two parts
15728    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
15729    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
15730    // concat the vectors to original VT
15731
15732    unsigned NumElems = OpVT.getVectorNumElements();
15733    SDValue Undef = DAG.getUNDEF(OpVT);
15734
15735    SmallVector<int,8> ShufMask1(NumElems, -1);
15736    for (unsigned i = 0; i != NumElems/2; ++i)
15737      ShufMask1[i] = i;
15738
15739    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]);
15740
15741    SmallVector<int,8> ShufMask2(NumElems, -1);
15742    for (unsigned i = 0; i != NumElems/2; ++i)
15743      ShufMask2[i] = i + NumElems/2;
15744
15745    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]);
15746
15747    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15748                                  VT.getVectorNumElements()/2);
15749
15750    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15751    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15752
15753    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15754  }
15755  return SDValue();
15756}
15757
15758static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
15759                                 const X86Subtarget* Subtarget) {
15760  DebugLoc dl = N->getDebugLoc();
15761  EVT VT = N->getValueType(0);
15762
15763  // Let legalize expand this if it isn't a legal type yet.
15764  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
15765    return SDValue();
15766
15767  EVT ScalarVT = VT.getScalarType();
15768  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
15769      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
15770    return SDValue();
15771
15772  SDValue A = N->getOperand(0);
15773  SDValue B = N->getOperand(1);
15774  SDValue C = N->getOperand(2);
15775
15776  bool NegA = (A.getOpcode() == ISD::FNEG);
15777  bool NegB = (B.getOpcode() == ISD::FNEG);
15778  bool NegC = (C.getOpcode() == ISD::FNEG);
15779
15780  // Negative multiplication when NegA xor NegB
15781  bool NegMul = (NegA != NegB);
15782  if (NegA)
15783    A = A.getOperand(0);
15784  if (NegB)
15785    B = B.getOperand(0);
15786  if (NegC)
15787    C = C.getOperand(0);
15788
15789  unsigned Opcode;
15790  if (!NegMul)
15791    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
15792  else
15793    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
15794
15795  return DAG.getNode(Opcode, dl, VT, A, B, C);
15796}
15797
15798static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15799                                  TargetLowering::DAGCombinerInfo &DCI,
15800                                  const X86Subtarget *Subtarget) {
15801  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15802  //           (and (i32 x86isd::setcc_carry), 1)
15803  // This eliminates the zext. This transformation is necessary because
15804  // ISD::SETCC is always legalized to i8.
15805  DebugLoc dl = N->getDebugLoc();
15806  SDValue N0 = N->getOperand(0);
15807  EVT VT = N->getValueType(0);
15808  EVT OpVT = N0.getValueType();
15809
15810  if (N0.getOpcode() == ISD::AND &&
15811      N0.hasOneUse() &&
15812      N0.getOperand(0).hasOneUse()) {
15813    SDValue N00 = N0.getOperand(0);
15814    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15815      return SDValue();
15816    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15817    if (!C || C->getZExtValue() != 1)
15818      return SDValue();
15819    return DAG.getNode(ISD::AND, dl, VT,
15820                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15821                                   N00.getOperand(0), N00.getOperand(1)),
15822                       DAG.getConstant(1, VT));
15823  }
15824
15825  // Optimize vectors in AVX mode:
15826  //
15827  //   v8i16 -> v8i32
15828  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15829  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15830  //   Concat upper and lower parts.
15831  //
15832  //   v4i32 -> v4i64
15833  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15834  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15835  //   Concat upper and lower parts.
15836  //
15837  if (!DCI.isBeforeLegalizeOps())
15838    return SDValue();
15839
15840  if (!Subtarget->hasAVX())
15841    return SDValue();
15842
15843  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15844      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15845
15846    if (Subtarget->hasAVX2())
15847      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15848
15849    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15850    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15851    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15852
15853    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15854                               VT.getVectorNumElements()/2);
15855
15856    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15857    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15858
15859    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15860  }
15861
15862  return SDValue();
15863}
15864
15865// Optimize x == -y --> x+y == 0
15866//          x != -y --> x+y != 0
15867static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15868  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15869  SDValue LHS = N->getOperand(0);
15870  SDValue RHS = N->getOperand(1);
15871
15872  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15873    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15874      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15875        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15876                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15877        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15878                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15879      }
15880  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15881    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15882      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15883        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15884                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15885        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15886                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15887      }
15888  return SDValue();
15889}
15890
15891// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15892static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
15893                                   TargetLowering::DAGCombinerInfo &DCI,
15894                                   const X86Subtarget *Subtarget) {
15895  DebugLoc DL = N->getDebugLoc();
15896  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
15897  SDValue EFLAGS = N->getOperand(1);
15898
15899  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15900  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15901  // cases.
15902  if (CC == X86::COND_B)
15903    return DAG.getNode(ISD::AND, DL, MVT::i8,
15904                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15905                                   DAG.getConstant(CC, MVT::i8), EFLAGS),
15906                       DAG.getConstant(1, MVT::i8));
15907
15908  SDValue Flags;
15909
15910  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
15911  if (Flags.getNode()) {
15912    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15913    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
15914  }
15915
15916  return SDValue();
15917}
15918
15919// Optimize branch condition evaluation.
15920//
15921static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
15922                                    TargetLowering::DAGCombinerInfo &DCI,
15923                                    const X86Subtarget *Subtarget) {
15924  DebugLoc DL = N->getDebugLoc();
15925  SDValue Chain = N->getOperand(0);
15926  SDValue Dest = N->getOperand(1);
15927  SDValue EFLAGS = N->getOperand(3);
15928  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
15929
15930  SDValue Flags;
15931
15932  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
15933  if (Flags.getNode()) {
15934    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15935    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
15936                       Flags);
15937  }
15938
15939  return SDValue();
15940}
15941
15942static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
15943  SDValue Op0 = N->getOperand(0);
15944  EVT InVT = Op0->getValueType(0);
15945
15946  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
15947  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15948    DebugLoc dl = N->getDebugLoc();
15949    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15950    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
15951    // Notice that we use SINT_TO_FP because we know that the high bits
15952    // are zero and SINT_TO_FP is better supported by the hardware.
15953    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15954  }
15955
15956  return SDValue();
15957}
15958
15959static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
15960                                        const X86TargetLowering *XTLI) {
15961  SDValue Op0 = N->getOperand(0);
15962  EVT InVT = Op0->getValueType(0);
15963
15964  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
15965  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15966    DebugLoc dl = N->getDebugLoc();
15967    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15968    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
15969    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15970  }
15971
15972  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
15973  // a 32-bit target where SSE doesn't support i64->FP operations.
15974  if (Op0.getOpcode() == ISD::LOAD) {
15975    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
15976    EVT VT = Ld->getValueType(0);
15977    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
15978        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
15979        !XTLI->getSubtarget()->is64Bit() &&
15980        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
15981      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
15982                                          Ld->getChain(), Op0, DAG);
15983      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
15984      return FILDChain;
15985    }
15986  }
15987  return SDValue();
15988}
15989
15990static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
15991  EVT VT = N->getValueType(0);
15992
15993  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
15994  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
15995    DebugLoc dl = N->getDebugLoc();
15996    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15997    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
15998    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
15999  }
16000
16001  return SDValue();
16002}
16003
16004// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
16005static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
16006                                 X86TargetLowering::DAGCombinerInfo &DCI) {
16007  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
16008  // the result is either zero or one (depending on the input carry bit).
16009  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
16010  if (X86::isZeroNode(N->getOperand(0)) &&
16011      X86::isZeroNode(N->getOperand(1)) &&
16012      // We don't have a good way to replace an EFLAGS use, so only do this when
16013      // dead right now.
16014      SDValue(N, 1).use_empty()) {
16015    DebugLoc DL = N->getDebugLoc();
16016    EVT VT = N->getValueType(0);
16017    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
16018    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
16019                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
16020                                           DAG.getConstant(X86::COND_B,MVT::i8),
16021                                           N->getOperand(2)),
16022                               DAG.getConstant(1, VT));
16023    return DCI.CombineTo(N, Res1, CarryOut);
16024  }
16025
16026  return SDValue();
16027}
16028
16029// fold (add Y, (sete  X, 0)) -> adc  0, Y
16030//      (add Y, (setne X, 0)) -> sbb -1, Y
16031//      (sub (sete  X, 0), Y) -> sbb  0, Y
16032//      (sub (setne X, 0), Y) -> adc -1, Y
16033static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
16034  DebugLoc DL = N->getDebugLoc();
16035
16036  // Look through ZExts.
16037  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
16038  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
16039    return SDValue();
16040
16041  SDValue SetCC = Ext.getOperand(0);
16042  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
16043    return SDValue();
16044
16045  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
16046  if (CC != X86::COND_E && CC != X86::COND_NE)
16047    return SDValue();
16048
16049  SDValue Cmp = SetCC.getOperand(1);
16050  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
16051      !X86::isZeroNode(Cmp.getOperand(1)) ||
16052      !Cmp.getOperand(0).getValueType().isInteger())
16053    return SDValue();
16054
16055  SDValue CmpOp0 = Cmp.getOperand(0);
16056  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
16057                               DAG.getConstant(1, CmpOp0.getValueType()));
16058
16059  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
16060  if (CC == X86::COND_NE)
16061    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
16062                       DL, OtherVal.getValueType(), OtherVal,
16063                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
16064  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
16065                     DL, OtherVal.getValueType(), OtherVal,
16066                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
16067}
16068
16069/// PerformADDCombine - Do target-specific dag combines on integer adds.
16070static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
16071                                 const X86Subtarget *Subtarget) {
16072  EVT VT = N->getValueType(0);
16073  SDValue Op0 = N->getOperand(0);
16074  SDValue Op1 = N->getOperand(1);
16075
16076  // Try to synthesize horizontal adds from adds of shuffles.
16077  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16078       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16079      isHorizontalBinOp(Op0, Op1, true))
16080    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
16081
16082  return OptimizeConditionalInDecrement(N, DAG);
16083}
16084
16085static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
16086                                 const X86Subtarget *Subtarget) {
16087  SDValue Op0 = N->getOperand(0);
16088  SDValue Op1 = N->getOperand(1);
16089
16090  // X86 can't encode an immediate LHS of a sub. See if we can push the
16091  // negation into a preceding instruction.
16092  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
16093    // If the RHS of the sub is a XOR with one use and a constant, invert the
16094    // immediate. Then add one to the LHS of the sub so we can turn
16095    // X-Y -> X+~Y+1, saving one register.
16096    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
16097        isa<ConstantSDNode>(Op1.getOperand(1))) {
16098      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
16099      EVT VT = Op0.getValueType();
16100      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
16101                                   Op1.getOperand(0),
16102                                   DAG.getConstant(~XorC, VT));
16103      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
16104                         DAG.getConstant(C->getAPIntValue()+1, VT));
16105    }
16106  }
16107
16108  // Try to synthesize horizontal adds from adds of shuffles.
16109  EVT VT = N->getValueType(0);
16110  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16111       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16112      isHorizontalBinOp(Op0, Op1, true))
16113    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
16114
16115  return OptimizeConditionalInDecrement(N, DAG);
16116}
16117
16118SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
16119                                             DAGCombinerInfo &DCI) const {
16120  SelectionDAG &DAG = DCI.DAG;
16121  switch (N->getOpcode()) {
16122  default: break;
16123  case ISD::EXTRACT_VECTOR_ELT:
16124    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
16125  case ISD::VSELECT:
16126  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
16127  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
16128  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
16129  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
16130  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
16131  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
16132  case ISD::SHL:
16133  case ISD::SRA:
16134  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
16135  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
16136  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
16137  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
16138  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
16139  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
16140  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
16141  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
16142  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
16143  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
16144  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
16145  case X86ISD::FXOR:
16146  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
16147  case X86ISD::FMIN:
16148  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
16149  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
16150  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
16151  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
16152  case ISD::ANY_EXTEND:
16153  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
16154  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
16155  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
16156  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
16157  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
16158  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
16159  case X86ISD::SHUFP:       // Handle all target specific shuffles
16160  case X86ISD::PALIGN:
16161  case X86ISD::UNPCKH:
16162  case X86ISD::UNPCKL:
16163  case X86ISD::MOVHLPS:
16164  case X86ISD::MOVLHPS:
16165  case X86ISD::PSHUFD:
16166  case X86ISD::PSHUFHW:
16167  case X86ISD::PSHUFLW:
16168  case X86ISD::MOVSS:
16169  case X86ISD::MOVSD:
16170  case X86ISD::VPERMILP:
16171  case X86ISD::VPERM2X128:
16172  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
16173  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
16174  }
16175
16176  return SDValue();
16177}
16178
16179/// isTypeDesirableForOp - Return true if the target has native support for
16180/// the specified value type and it is 'desirable' to use the type for the
16181/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
16182/// instruction encodings are longer and some i16 instructions are slow.
16183bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
16184  if (!isTypeLegal(VT))
16185    return false;
16186  if (VT != MVT::i16)
16187    return true;
16188
16189  switch (Opc) {
16190  default:
16191    return true;
16192  case ISD::LOAD:
16193  case ISD::SIGN_EXTEND:
16194  case ISD::ZERO_EXTEND:
16195  case ISD::ANY_EXTEND:
16196  case ISD::SHL:
16197  case ISD::SRL:
16198  case ISD::SUB:
16199  case ISD::ADD:
16200  case ISD::MUL:
16201  case ISD::AND:
16202  case ISD::OR:
16203  case ISD::XOR:
16204    return false;
16205  }
16206}
16207
16208/// IsDesirableToPromoteOp - This method query the target whether it is
16209/// beneficial for dag combiner to promote the specified node. If true, it
16210/// should return the desired promotion type by reference.
16211bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
16212  EVT VT = Op.getValueType();
16213  if (VT != MVT::i16)
16214    return false;
16215
16216  bool Promote = false;
16217  bool Commute = false;
16218  switch (Op.getOpcode()) {
16219  default: break;
16220  case ISD::LOAD: {
16221    LoadSDNode *LD = cast<LoadSDNode>(Op);
16222    // If the non-extending load has a single use and it's not live out, then it
16223    // might be folded.
16224    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
16225                                                     Op.hasOneUse()*/) {
16226      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
16227             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
16228        // The only case where we'd want to promote LOAD (rather then it being
16229        // promoted as an operand is when it's only use is liveout.
16230        if (UI->getOpcode() != ISD::CopyToReg)
16231          return false;
16232      }
16233    }
16234    Promote = true;
16235    break;
16236  }
16237  case ISD::SIGN_EXTEND:
16238  case ISD::ZERO_EXTEND:
16239  case ISD::ANY_EXTEND:
16240    Promote = true;
16241    break;
16242  case ISD::SHL:
16243  case ISD::SRL: {
16244    SDValue N0 = Op.getOperand(0);
16245    // Look out for (store (shl (load), x)).
16246    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
16247      return false;
16248    Promote = true;
16249    break;
16250  }
16251  case ISD::ADD:
16252  case ISD::MUL:
16253  case ISD::AND:
16254  case ISD::OR:
16255  case ISD::XOR:
16256    Commute = true;
16257    // fallthrough
16258  case ISD::SUB: {
16259    SDValue N0 = Op.getOperand(0);
16260    SDValue N1 = Op.getOperand(1);
16261    if (!Commute && MayFoldLoad(N1))
16262      return false;
16263    // Avoid disabling potential load folding opportunities.
16264    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
16265      return false;
16266    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
16267      return false;
16268    Promote = true;
16269  }
16270  }
16271
16272  PVT = MVT::i32;
16273  return Promote;
16274}
16275
16276//===----------------------------------------------------------------------===//
16277//                           X86 Inline Assembly Support
16278//===----------------------------------------------------------------------===//
16279
16280namespace {
16281  // Helper to match a string separated by whitespace.
16282  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
16283    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
16284
16285    for (unsigned i = 0, e = args.size(); i != e; ++i) {
16286      StringRef piece(*args[i]);
16287      if (!s.startswith(piece)) // Check if the piece matches.
16288        return false;
16289
16290      s = s.substr(piece.size());
16291      StringRef::size_type pos = s.find_first_not_of(" \t");
16292      if (pos == 0) // We matched a prefix.
16293        return false;
16294
16295      s = s.substr(pos);
16296    }
16297
16298    return s.empty();
16299  }
16300  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
16301}
16302
16303bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
16304  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
16305
16306  std::string AsmStr = IA->getAsmString();
16307
16308  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
16309  if (!Ty || Ty->getBitWidth() % 16 != 0)
16310    return false;
16311
16312  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
16313  SmallVector<StringRef, 4> AsmPieces;
16314  SplitString(AsmStr, AsmPieces, ";\n");
16315
16316  switch (AsmPieces.size()) {
16317  default: return false;
16318  case 1:
16319    // FIXME: this should verify that we are targeting a 486 or better.  If not,
16320    // we will turn this bswap into something that will be lowered to logical
16321    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
16322    // lower so don't worry about this.
16323    // bswap $0
16324    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
16325        matchAsm(AsmPieces[0], "bswapl", "$0") ||
16326        matchAsm(AsmPieces[0], "bswapq", "$0") ||
16327        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
16328        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
16329        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
16330      // No need to check constraints, nothing other than the equivalent of
16331      // "=r,0" would be valid here.
16332      return IntrinsicLowering::LowerToByteSwap(CI);
16333    }
16334
16335    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
16336    if (CI->getType()->isIntegerTy(16) &&
16337        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16338        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
16339         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
16340      AsmPieces.clear();
16341      const std::string &ConstraintsStr = IA->getConstraintString();
16342      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16343      std::sort(AsmPieces.begin(), AsmPieces.end());
16344      if (AsmPieces.size() == 4 &&
16345          AsmPieces[0] == "~{cc}" &&
16346          AsmPieces[1] == "~{dirflag}" &&
16347          AsmPieces[2] == "~{flags}" &&
16348          AsmPieces[3] == "~{fpsr}")
16349      return IntrinsicLowering::LowerToByteSwap(CI);
16350    }
16351    break;
16352  case 3:
16353    if (CI->getType()->isIntegerTy(32) &&
16354        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16355        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
16356        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
16357        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
16358      AsmPieces.clear();
16359      const std::string &ConstraintsStr = IA->getConstraintString();
16360      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16361      std::sort(AsmPieces.begin(), AsmPieces.end());
16362      if (AsmPieces.size() == 4 &&
16363          AsmPieces[0] == "~{cc}" &&
16364          AsmPieces[1] == "~{dirflag}" &&
16365          AsmPieces[2] == "~{flags}" &&
16366          AsmPieces[3] == "~{fpsr}")
16367        return IntrinsicLowering::LowerToByteSwap(CI);
16368    }
16369
16370    if (CI->getType()->isIntegerTy(64)) {
16371      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
16372      if (Constraints.size() >= 2 &&
16373          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
16374          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
16375        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
16376        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
16377            matchAsm(AsmPieces[1], "bswap", "%edx") &&
16378            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
16379          return IntrinsicLowering::LowerToByteSwap(CI);
16380      }
16381    }
16382    break;
16383  }
16384  return false;
16385}
16386
16387
16388
16389/// getConstraintType - Given a constraint letter, return the type of
16390/// constraint it is for this target.
16391X86TargetLowering::ConstraintType
16392X86TargetLowering::getConstraintType(const std::string &Constraint) const {
16393  if (Constraint.size() == 1) {
16394    switch (Constraint[0]) {
16395    case 'R':
16396    case 'q':
16397    case 'Q':
16398    case 'f':
16399    case 't':
16400    case 'u':
16401    case 'y':
16402    case 'x':
16403    case 'Y':
16404    case 'l':
16405      return C_RegisterClass;
16406    case 'a':
16407    case 'b':
16408    case 'c':
16409    case 'd':
16410    case 'S':
16411    case 'D':
16412    case 'A':
16413      return C_Register;
16414    case 'I':
16415    case 'J':
16416    case 'K':
16417    case 'L':
16418    case 'M':
16419    case 'N':
16420    case 'G':
16421    case 'C':
16422    case 'e':
16423    case 'Z':
16424      return C_Other;
16425    default:
16426      break;
16427    }
16428  }
16429  return TargetLowering::getConstraintType(Constraint);
16430}
16431
16432/// Examine constraint type and operand type and determine a weight value.
16433/// This object must already have been set up with the operand type
16434/// and the current alternative constraint selected.
16435TargetLowering::ConstraintWeight
16436  X86TargetLowering::getSingleConstraintMatchWeight(
16437    AsmOperandInfo &info, const char *constraint) const {
16438  ConstraintWeight weight = CW_Invalid;
16439  Value *CallOperandVal = info.CallOperandVal;
16440    // If we don't have a value, we can't do a match,
16441    // but allow it at the lowest weight.
16442  if (CallOperandVal == NULL)
16443    return CW_Default;
16444  Type *type = CallOperandVal->getType();
16445  // Look at the constraint type.
16446  switch (*constraint) {
16447  default:
16448    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
16449  case 'R':
16450  case 'q':
16451  case 'Q':
16452  case 'a':
16453  case 'b':
16454  case 'c':
16455  case 'd':
16456  case 'S':
16457  case 'D':
16458  case 'A':
16459    if (CallOperandVal->getType()->isIntegerTy())
16460      weight = CW_SpecificReg;
16461    break;
16462  case 'f':
16463  case 't':
16464  case 'u':
16465      if (type->isFloatingPointTy())
16466        weight = CW_SpecificReg;
16467      break;
16468  case 'y':
16469      if (type->isX86_MMXTy() && Subtarget->hasMMX())
16470        weight = CW_SpecificReg;
16471      break;
16472  case 'x':
16473  case 'Y':
16474    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
16475        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
16476      weight = CW_Register;
16477    break;
16478  case 'I':
16479    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
16480      if (C->getZExtValue() <= 31)
16481        weight = CW_Constant;
16482    }
16483    break;
16484  case 'J':
16485    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16486      if (C->getZExtValue() <= 63)
16487        weight = CW_Constant;
16488    }
16489    break;
16490  case 'K':
16491    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16492      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
16493        weight = CW_Constant;
16494    }
16495    break;
16496  case 'L':
16497    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16498      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
16499        weight = CW_Constant;
16500    }
16501    break;
16502  case 'M':
16503    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16504      if (C->getZExtValue() <= 3)
16505        weight = CW_Constant;
16506    }
16507    break;
16508  case 'N':
16509    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16510      if (C->getZExtValue() <= 0xff)
16511        weight = CW_Constant;
16512    }
16513    break;
16514  case 'G':
16515  case 'C':
16516    if (dyn_cast<ConstantFP>(CallOperandVal)) {
16517      weight = CW_Constant;
16518    }
16519    break;
16520  case 'e':
16521    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16522      if ((C->getSExtValue() >= -0x80000000LL) &&
16523          (C->getSExtValue() <= 0x7fffffffLL))
16524        weight = CW_Constant;
16525    }
16526    break;
16527  case 'Z':
16528    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16529      if (C->getZExtValue() <= 0xffffffff)
16530        weight = CW_Constant;
16531    }
16532    break;
16533  }
16534  return weight;
16535}
16536
16537/// LowerXConstraint - try to replace an X constraint, which matches anything,
16538/// with another that has more specific requirements based on the type of the
16539/// corresponding operand.
16540const char *X86TargetLowering::
16541LowerXConstraint(EVT ConstraintVT) const {
16542  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
16543  // 'f' like normal targets.
16544  if (ConstraintVT.isFloatingPoint()) {
16545    if (Subtarget->hasSSE2())
16546      return "Y";
16547    if (Subtarget->hasSSE1())
16548      return "x";
16549  }
16550
16551  return TargetLowering::LowerXConstraint(ConstraintVT);
16552}
16553
16554/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16555/// vector.  If it is invalid, don't add anything to Ops.
16556void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16557                                                     std::string &Constraint,
16558                                                     std::vector<SDValue>&Ops,
16559                                                     SelectionDAG &DAG) const {
16560  SDValue Result(0, 0);
16561
16562  // Only support length 1 constraints for now.
16563  if (Constraint.length() > 1) return;
16564
16565  char ConstraintLetter = Constraint[0];
16566  switch (ConstraintLetter) {
16567  default: break;
16568  case 'I':
16569    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16570      if (C->getZExtValue() <= 31) {
16571        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16572        break;
16573      }
16574    }
16575    return;
16576  case 'J':
16577    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16578      if (C->getZExtValue() <= 63) {
16579        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16580        break;
16581      }
16582    }
16583    return;
16584  case 'K':
16585    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16586      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
16587        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16588        break;
16589      }
16590    }
16591    return;
16592  case 'N':
16593    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16594      if (C->getZExtValue() <= 255) {
16595        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16596        break;
16597      }
16598    }
16599    return;
16600  case 'e': {
16601    // 32-bit signed value
16602    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16603      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16604                                           C->getSExtValue())) {
16605        // Widen to 64 bits here to get it sign extended.
16606        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
16607        break;
16608      }
16609    // FIXME gcc accepts some relocatable values here too, but only in certain
16610    // memory models; it's complicated.
16611    }
16612    return;
16613  }
16614  case 'Z': {
16615    // 32-bit unsigned value
16616    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16617      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16618                                           C->getZExtValue())) {
16619        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16620        break;
16621      }
16622    }
16623    // FIXME gcc accepts some relocatable values here too, but only in certain
16624    // memory models; it's complicated.
16625    return;
16626  }
16627  case 'i': {
16628    // Literal immediates are always ok.
16629    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
16630      // Widen to 64 bits here to get it sign extended.
16631      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
16632      break;
16633    }
16634
16635    // In any sort of PIC mode addresses need to be computed at runtime by
16636    // adding in a register or some sort of table lookup.  These can't
16637    // be used as immediates.
16638    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
16639      return;
16640
16641    // If we are in non-pic codegen mode, we allow the address of a global (with
16642    // an optional displacement) to be used with 'i'.
16643    GlobalAddressSDNode *GA = 0;
16644    int64_t Offset = 0;
16645
16646    // Match either (GA), (GA+C), (GA+C1+C2), etc.
16647    while (1) {
16648      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
16649        Offset += GA->getOffset();
16650        break;
16651      } else if (Op.getOpcode() == ISD::ADD) {
16652        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16653          Offset += C->getZExtValue();
16654          Op = Op.getOperand(0);
16655          continue;
16656        }
16657      } else if (Op.getOpcode() == ISD::SUB) {
16658        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16659          Offset += -C->getZExtValue();
16660          Op = Op.getOperand(0);
16661          continue;
16662        }
16663      }
16664
16665      // Otherwise, this isn't something we can handle, reject it.
16666      return;
16667    }
16668
16669    const GlobalValue *GV = GA->getGlobal();
16670    // If we require an extra load to get this address, as in PIC mode, we
16671    // can't accept it.
16672    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
16673                                                        getTargetMachine())))
16674      return;
16675
16676    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
16677                                        GA->getValueType(0), Offset);
16678    break;
16679  }
16680  }
16681
16682  if (Result.getNode()) {
16683    Ops.push_back(Result);
16684    return;
16685  }
16686  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16687}
16688
16689std::pair<unsigned, const TargetRegisterClass*>
16690X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
16691                                                EVT VT) const {
16692  // First, see if this is a constraint that directly corresponds to an LLVM
16693  // register class.
16694  if (Constraint.size() == 1) {
16695    // GCC Constraint Letters
16696    switch (Constraint[0]) {
16697    default: break;
16698      // TODO: Slight differences here in allocation order and leaving
16699      // RIP in the class. Do they matter any more here than they do
16700      // in the normal allocation?
16701    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
16702      if (Subtarget->is64Bit()) {
16703        if (VT == MVT::i32 || VT == MVT::f32)
16704          return std::make_pair(0U, &X86::GR32RegClass);
16705        if (VT == MVT::i16)
16706          return std::make_pair(0U, &X86::GR16RegClass);
16707        if (VT == MVT::i8 || VT == MVT::i1)
16708          return std::make_pair(0U, &X86::GR8RegClass);
16709        if (VT == MVT::i64 || VT == MVT::f64)
16710          return std::make_pair(0U, &X86::GR64RegClass);
16711        break;
16712      }
16713      // 32-bit fallthrough
16714    case 'Q':   // Q_REGS
16715      if (VT == MVT::i32 || VT == MVT::f32)
16716        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
16717      if (VT == MVT::i16)
16718        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
16719      if (VT == MVT::i8 || VT == MVT::i1)
16720        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
16721      if (VT == MVT::i64)
16722        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
16723      break;
16724    case 'r':   // GENERAL_REGS
16725    case 'l':   // INDEX_REGS
16726      if (VT == MVT::i8 || VT == MVT::i1)
16727        return std::make_pair(0U, &X86::GR8RegClass);
16728      if (VT == MVT::i16)
16729        return std::make_pair(0U, &X86::GR16RegClass);
16730      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
16731        return std::make_pair(0U, &X86::GR32RegClass);
16732      return std::make_pair(0U, &X86::GR64RegClass);
16733    case 'R':   // LEGACY_REGS
16734      if (VT == MVT::i8 || VT == MVT::i1)
16735        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
16736      if (VT == MVT::i16)
16737        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
16738      if (VT == MVT::i32 || !Subtarget->is64Bit())
16739        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
16740      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
16741    case 'f':  // FP Stack registers.
16742      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
16743      // value to the correct fpstack register class.
16744      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
16745        return std::make_pair(0U, &X86::RFP32RegClass);
16746      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
16747        return std::make_pair(0U, &X86::RFP64RegClass);
16748      return std::make_pair(0U, &X86::RFP80RegClass);
16749    case 'y':   // MMX_REGS if MMX allowed.
16750      if (!Subtarget->hasMMX()) break;
16751      return std::make_pair(0U, &X86::VR64RegClass);
16752    case 'Y':   // SSE_REGS if SSE2 allowed
16753      if (!Subtarget->hasSSE2()) break;
16754      // FALL THROUGH.
16755    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
16756      if (!Subtarget->hasSSE1()) break;
16757
16758      switch (VT.getSimpleVT().SimpleTy) {
16759      default: break;
16760      // Scalar SSE types.
16761      case MVT::f32:
16762      case MVT::i32:
16763        return std::make_pair(0U, &X86::FR32RegClass);
16764      case MVT::f64:
16765      case MVT::i64:
16766        return std::make_pair(0U, &X86::FR64RegClass);
16767      // Vector types.
16768      case MVT::v16i8:
16769      case MVT::v8i16:
16770      case MVT::v4i32:
16771      case MVT::v2i64:
16772      case MVT::v4f32:
16773      case MVT::v2f64:
16774        return std::make_pair(0U, &X86::VR128RegClass);
16775      // AVX types.
16776      case MVT::v32i8:
16777      case MVT::v16i16:
16778      case MVT::v8i32:
16779      case MVT::v4i64:
16780      case MVT::v8f32:
16781      case MVT::v4f64:
16782        return std::make_pair(0U, &X86::VR256RegClass);
16783      }
16784      break;
16785    }
16786  }
16787
16788  // Use the default implementation in TargetLowering to convert the register
16789  // constraint into a member of a register class.
16790  std::pair<unsigned, const TargetRegisterClass*> Res;
16791  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
16792
16793  // Not found as a standard register?
16794  if (Res.second == 0) {
16795    // Map st(0) -> st(7) -> ST0
16796    if (Constraint.size() == 7 && Constraint[0] == '{' &&
16797        tolower(Constraint[1]) == 's' &&
16798        tolower(Constraint[2]) == 't' &&
16799        Constraint[3] == '(' &&
16800        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
16801        Constraint[5] == ')' &&
16802        Constraint[6] == '}') {
16803
16804      Res.first = X86::ST0+Constraint[4]-'0';
16805      Res.second = &X86::RFP80RegClass;
16806      return Res;
16807    }
16808
16809    // GCC allows "st(0)" to be called just plain "st".
16810    if (StringRef("{st}").equals_lower(Constraint)) {
16811      Res.first = X86::ST0;
16812      Res.second = &X86::RFP80RegClass;
16813      return Res;
16814    }
16815
16816    // flags -> EFLAGS
16817    if (StringRef("{flags}").equals_lower(Constraint)) {
16818      Res.first = X86::EFLAGS;
16819      Res.second = &X86::CCRRegClass;
16820      return Res;
16821    }
16822
16823    // 'A' means EAX + EDX.
16824    if (Constraint == "A") {
16825      Res.first = X86::EAX;
16826      Res.second = &X86::GR32_ADRegClass;
16827      return Res;
16828    }
16829    return Res;
16830  }
16831
16832  // Otherwise, check to see if this is a register class of the wrong value
16833  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16834  // turn into {ax},{dx}.
16835  if (Res.second->hasType(VT))
16836    return Res;   // Correct type already, nothing to do.
16837
16838  // All of the single-register GCC register classes map their values onto
16839  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16840  // really want an 8-bit or 32-bit register, map to the appropriate register
16841  // class and return the appropriate register.
16842  if (Res.second == &X86::GR16RegClass) {
16843    if (VT == MVT::i8) {
16844      unsigned DestReg = 0;
16845      switch (Res.first) {
16846      default: break;
16847      case X86::AX: DestReg = X86::AL; break;
16848      case X86::DX: DestReg = X86::DL; break;
16849      case X86::CX: DestReg = X86::CL; break;
16850      case X86::BX: DestReg = X86::BL; break;
16851      }
16852      if (DestReg) {
16853        Res.first = DestReg;
16854        Res.second = &X86::GR8RegClass;
16855      }
16856    } else if (VT == MVT::i32) {
16857      unsigned DestReg = 0;
16858      switch (Res.first) {
16859      default: break;
16860      case X86::AX: DestReg = X86::EAX; break;
16861      case X86::DX: DestReg = X86::EDX; break;
16862      case X86::CX: DestReg = X86::ECX; break;
16863      case X86::BX: DestReg = X86::EBX; break;
16864      case X86::SI: DestReg = X86::ESI; break;
16865      case X86::DI: DestReg = X86::EDI; break;
16866      case X86::BP: DestReg = X86::EBP; break;
16867      case X86::SP: DestReg = X86::ESP; break;
16868      }
16869      if (DestReg) {
16870        Res.first = DestReg;
16871        Res.second = &X86::GR32RegClass;
16872      }
16873    } else if (VT == MVT::i64) {
16874      unsigned DestReg = 0;
16875      switch (Res.first) {
16876      default: break;
16877      case X86::AX: DestReg = X86::RAX; break;
16878      case X86::DX: DestReg = X86::RDX; break;
16879      case X86::CX: DestReg = X86::RCX; break;
16880      case X86::BX: DestReg = X86::RBX; break;
16881      case X86::SI: DestReg = X86::RSI; break;
16882      case X86::DI: DestReg = X86::RDI; break;
16883      case X86::BP: DestReg = X86::RBP; break;
16884      case X86::SP: DestReg = X86::RSP; break;
16885      }
16886      if (DestReg) {
16887        Res.first = DestReg;
16888        Res.second = &X86::GR64RegClass;
16889      }
16890    }
16891  } else if (Res.second == &X86::FR32RegClass ||
16892             Res.second == &X86::FR64RegClass ||
16893             Res.second == &X86::VR128RegClass) {
16894    // Handle references to XMM physical registers that got mapped into the
16895    // wrong class.  This can happen with constraints like {xmm0} where the
16896    // target independent register mapper will just pick the first match it can
16897    // find, ignoring the required type.
16898
16899    if (VT == MVT::f32 || VT == MVT::i32)
16900      Res.second = &X86::FR32RegClass;
16901    else if (VT == MVT::f64 || VT == MVT::i64)
16902      Res.second = &X86::FR64RegClass;
16903    else if (X86::VR128RegClass.hasType(VT))
16904      Res.second = &X86::VR128RegClass;
16905    else if (X86::VR256RegClass.hasType(VT))
16906      Res.second = &X86::VR256RegClass;
16907  }
16908
16909  return Res;
16910}
16911