X86ISelLowering.cpp revision b2f1b5028c03cd16c2452e81544d2da51fb373f2
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VariadicFunction.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetOptions.h"
55#include <bitset>
56using namespace llvm;
57using namespace dwarf;
58
59STATISTIC(NumTailCalls, "Number of tail calls");
60
61static cl::opt<bool> UseRegMask("x86-use-regmask",
62                                cl::desc("Use register masks for x86 calls"));
63
64// Forward declarations.
65static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
66                       SDValue V2);
67
68/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
69/// sets things up to match to an AVX VEXTRACTF128 instruction or a
70/// simple subregister reference.  Idx is an index in the 128 bits we
71/// want.  It need not be aligned to a 128-bit bounday.  That makes
72/// lowering EXTRACT_VECTOR_ELT operations easier.
73static SDValue Extract128BitVector(SDValue Vec,
74                                   SDValue Idx,
75                                   SelectionDAG &DAG,
76                                   DebugLoc dl) {
77  EVT VT = Vec.getValueType();
78  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
79  EVT ElVT = VT.getVectorElementType();
80  int Factor = VT.getSizeInBits()/128;
81  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
82                                  VT.getVectorNumElements()/Factor);
83
84  // Extract from UNDEF is UNDEF.
85  if (Vec.getOpcode() == ISD::UNDEF)
86    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
87
88  if (isa<ConstantSDNode>(Idx)) {
89    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
90
91    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
92    // we can match to VEXTRACTF128.
93    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
94
95    // This is the index of the first element of the 128-bit chunk
96    // we want.
97    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
98                                 * ElemsPerChunk);
99
100    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
101    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
102                                 VecIdx);
103
104    return Result;
105  }
106
107  return SDValue();
108}
109
110/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
111/// sets things up to match to an AVX VINSERTF128 instruction or a
112/// simple superregister reference.  Idx is an index in the 128 bits
113/// we want.  It need not be aligned to a 128-bit bounday.  That makes
114/// lowering INSERT_VECTOR_ELT operations easier.
115static SDValue Insert128BitVector(SDValue Result,
116                                  SDValue Vec,
117                                  SDValue Idx,
118                                  SelectionDAG &DAG,
119                                  DebugLoc dl) {
120  if (isa<ConstantSDNode>(Idx)) {
121    EVT VT = Vec.getValueType();
122    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
123
124    EVT ElVT = VT.getVectorElementType();
125    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
126    EVT ResultVT = Result.getValueType();
127
128    // Insert the relevant 128 bits.
129    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
130
131    // This is the index of the first element of the 128-bit chunk
132    // we want.
133    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
134                                 * ElemsPerChunk);
135
136    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
137    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
138                         VecIdx);
139    return Result;
140  }
141
142  return SDValue();
143}
144
145static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
146  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
147  bool is64Bit = Subtarget->is64Bit();
148
149  if (Subtarget->isTargetEnvMacho()) {
150    if (is64Bit)
151      return new X8664_MachoTargetObjectFile();
152    return new TargetLoweringObjectFileMachO();
153  }
154
155  if (Subtarget->isTargetELF())
156    return new TargetLoweringObjectFileELF();
157  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
158    return new TargetLoweringObjectFileCOFF();
159  llvm_unreachable("unknown subtarget type");
160}
161
162X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
163  : TargetLowering(TM, createTLOF(TM)) {
164  Subtarget = &TM.getSubtarget<X86Subtarget>();
165  X86ScalarSSEf64 = Subtarget->hasSSE2();
166  X86ScalarSSEf32 = Subtarget->hasSSE1();
167  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
168
169  RegInfo = TM.getRegisterInfo();
170  TD = getTargetData();
171
172  // Set up the TargetLowering object.
173  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
174
175  // X86 is weird, it always uses i8 for shift amounts and setcc results.
176  setBooleanContents(ZeroOrOneBooleanContent);
177  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
178  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
179
180  // For 64-bit since we have so many registers use the ILP scheduler, for
181  // 32-bit code use the register pressure specific scheduling.
182  if (Subtarget->is64Bit())
183    setSchedulingPreference(Sched::ILP);
184  else
185    setSchedulingPreference(Sched::RegPressure);
186  setStackPointerRegisterToSaveRestore(X86StackPtr);
187
188  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
189    // Setup Windows compiler runtime calls.
190    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
191    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
192    setLibcallName(RTLIB::SREM_I64, "_allrem");
193    setLibcallName(RTLIB::UREM_I64, "_aullrem");
194    setLibcallName(RTLIB::MUL_I64, "_allmul");
195    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
196    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
197    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
200    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
201    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
202    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
203    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
204  }
205
206  if (Subtarget->isTargetDarwin()) {
207    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
208    setUseUnderscoreSetJmp(false);
209    setUseUnderscoreLongJmp(false);
210  } else if (Subtarget->isTargetMingw()) {
211    // MS runtime is weird: it exports _setjmp, but longjmp!
212    setUseUnderscoreSetJmp(true);
213    setUseUnderscoreLongJmp(false);
214  } else {
215    setUseUnderscoreSetJmp(true);
216    setUseUnderscoreLongJmp(true);
217  }
218
219  // Set up the register classes.
220  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
221  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
222  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
223  if (Subtarget->is64Bit())
224    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
225
226  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
227
228  // We don't accept any truncstore of integer registers.
229  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
230  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
233  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
234  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
235
236  // SETOEQ and SETUNE require checking two conditions.
237  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
238  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
239  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
243
244  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
245  // operation.
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
247  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
248  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
249
250  if (Subtarget->is64Bit()) {
251    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
252    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
253  } else if (!TM.Options.UseSoftFloat) {
254    // We have an algorithm for SSE2->double, and we turn this into a
255    // 64-bit FILD followed by conditional FADD for other targets.
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
257    // We have an algorithm for SSE2, and we turn this into a 64-bit
258    // FILD for other targets.
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
260  }
261
262  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
263  // this operation.
264  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
265  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
266
267  if (!TM.Options.UseSoftFloat) {
268    // SSE has no i16 to fp conversion, only i32
269    if (X86ScalarSSEf32) {
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
271      // f32 and f64 cases are Legal, f80 case is not
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
273    } else {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
275      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
276    }
277  } else {
278    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
279    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
280  }
281
282  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
283  // are Legal, f80 is custom lowered.
284  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
285  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
286
287  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
288  // this operation.
289  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
290  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
291
292  if (X86ScalarSSEf32) {
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
294    // f32 and f64 cases are Legal, f80 case is not
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
296  } else {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
298    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
299  }
300
301  // Handle FP_TO_UINT by promoting the destination to a larger signed
302  // conversion.
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
304  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
305  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
306
307  if (Subtarget->is64Bit()) {
308    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
309    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
310  } else if (!TM.Options.UseSoftFloat) {
311    // Since AVX is a superset of SSE3, only check for SSE here.
312    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
313      // Expand FP_TO_UINT into a select.
314      // FIXME: We would like to use a Custom expander here eventually to do
315      // the optimal thing for SSE vs. the default expansion in the legalizer.
316      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
317    else
318      // With SSE3 we can use fisttpll to convert to a signed i64; without
319      // SSE, we're stuck with a fistpll.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
321  }
322
323  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
324  if (!X86ScalarSSEf64) {
325    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
326    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
327    if (Subtarget->is64Bit()) {
328      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
329      // Without SSE, i64->f64 goes through memory.
330      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
331    }
332  }
333
334  // Scalar integer divide and remainder are lowered to use operations that
335  // produce two results, to match the available instructions. This exposes
336  // the two-result form to trivial CSE, which is able to combine x/y and x%y
337  // into a single instruction.
338  //
339  // Scalar integer multiply-high is also lowered to use two-result
340  // operations, to match the available instructions. However, plain multiply
341  // (low) operations are left as Legal, as there are single-result
342  // instructions for this in x86. Using the two-result multiply instructions
343  // when both high and low results are needed must be arranged by dagcombine.
344  for (unsigned i = 0, e = 4; i != e; ++i) {
345    MVT VT = IntVTs[i];
346    setOperationAction(ISD::MULHS, VT, Expand);
347    setOperationAction(ISD::MULHU, VT, Expand);
348    setOperationAction(ISD::SDIV, VT, Expand);
349    setOperationAction(ISD::UDIV, VT, Expand);
350    setOperationAction(ISD::SREM, VT, Expand);
351    setOperationAction(ISD::UREM, VT, Expand);
352
353    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
354    setOperationAction(ISD::ADDC, VT, Custom);
355    setOperationAction(ISD::ADDE, VT, Custom);
356    setOperationAction(ISD::SUBC, VT, Custom);
357    setOperationAction(ISD::SUBE, VT, Custom);
358  }
359
360  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
361  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
362  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
363  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
364  if (Subtarget->is64Bit())
365    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
366  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
367  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
368  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
369  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
370  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
371  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
372  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
373  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
374
375  // Promote the i8 variants and force them on up to i32 which has a shorter
376  // encoding.
377  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
378  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
379  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
380  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
381  if (Subtarget->hasBMI()) {
382    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
383    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
384    if (Subtarget->is64Bit())
385      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
386  } else {
387    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
388    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
389    if (Subtarget->is64Bit())
390      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
391  }
392
393  if (Subtarget->hasLZCNT()) {
394    // When promoting the i8 variants, force them to i32 for a shorter
395    // encoding.
396    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
397    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
398    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
399    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
400    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
401    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
402    if (Subtarget->is64Bit())
403      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
404  } else {
405    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
406    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
407    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
409    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
411    if (Subtarget->is64Bit()) {
412      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
414    }
415  }
416
417  if (Subtarget->hasPOPCNT()) {
418    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
419  } else {
420    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
421    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
422    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
423    if (Subtarget->is64Bit())
424      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
425  }
426
427  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
428  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
429
430  // These should be promoted to a larger select which is supported.
431  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
432  // X86 wants to expand cmov itself.
433  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
434  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
435  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
436  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
437  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
438  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
439  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
440  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
441  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
442  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
445  if (Subtarget->is64Bit()) {
446    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
447    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
448  }
449  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
450
451  // Darwin ABI issue.
452  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
453  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
454  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
455  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
456  if (Subtarget->is64Bit())
457    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
458  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
459  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
460  if (Subtarget->is64Bit()) {
461    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
462    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
463    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
464    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
465    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
466  }
467  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
468  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
469  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
470  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
471  if (Subtarget->is64Bit()) {
472    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
473    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
474    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
475  }
476
477  if (Subtarget->hasSSE1())
478    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
479
480  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
481  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
482
483  // On X86 and X86-64, atomic operations are lowered to locked instructions.
484  // Locked instructions, in turn, have implicit fence semantics (all memory
485  // operations are flushed before issuing the locked instruction, and they
486  // are not buffered), so we can fold away the common pattern of
487  // fence-atomic-fence.
488  setShouldFoldAtomicFences(true);
489
490  // Expand certain atomics
491  for (unsigned i = 0, e = 4; i != e; ++i) {
492    MVT VT = IntVTs[i];
493    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
494    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
495    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
496  }
497
498  if (!Subtarget->is64Bit()) {
499    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
503    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
507  }
508
509  if (Subtarget->hasCmpxchg16b()) {
510    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
511  }
512
513  // FIXME - use subtarget debug flags
514  if (!Subtarget->isTargetDarwin() &&
515      !Subtarget->isTargetELF() &&
516      !Subtarget->isTargetCygMing()) {
517    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
518  }
519
520  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
521  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
522  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
523  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
524  if (Subtarget->is64Bit()) {
525    setExceptionPointerRegister(X86::RAX);
526    setExceptionSelectorRegister(X86::RDX);
527  } else {
528    setExceptionPointerRegister(X86::EAX);
529    setExceptionSelectorRegister(X86::EDX);
530  }
531  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
532  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
533
534  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
535  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
536
537  setOperationAction(ISD::TRAP, MVT::Other, Legal);
538
539  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
540  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
541  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
542  if (Subtarget->is64Bit()) {
543    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
544    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
545  } else {
546    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
547    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
548  }
549
550  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
551  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
552
553  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
554    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
555                       MVT::i64 : MVT::i32, Custom);
556  else if (TM.Options.EnableSegmentedStacks)
557    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
558                       MVT::i64 : MVT::i32, Custom);
559  else
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Expand);
562
563  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
564    // f32 and f64 use SSE.
565    // Set up the FP register classes.
566    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
567    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
568
569    // Use ANDPD to simulate FABS.
570    setOperationAction(ISD::FABS , MVT::f64, Custom);
571    setOperationAction(ISD::FABS , MVT::f32, Custom);
572
573    // Use XORP to simulate FNEG.
574    setOperationAction(ISD::FNEG , MVT::f64, Custom);
575    setOperationAction(ISD::FNEG , MVT::f32, Custom);
576
577    // Use ANDPD and ORPD to simulate FCOPYSIGN.
578    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
579    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
580
581    // Lower this to FGETSIGNx86 plus an AND.
582    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
583    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
584
585    // We don't support sin/cos/fmod
586    setOperationAction(ISD::FSIN , MVT::f64, Expand);
587    setOperationAction(ISD::FCOS , MVT::f64, Expand);
588    setOperationAction(ISD::FSIN , MVT::f32, Expand);
589    setOperationAction(ISD::FCOS , MVT::f32, Expand);
590
591    // Expand FP immediates into loads from the stack, except for the special
592    // cases we handle.
593    addLegalFPImmediate(APFloat(+0.0)); // xorpd
594    addLegalFPImmediate(APFloat(+0.0f)); // xorps
595  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
596    // Use SSE for f32, x87 for f64.
597    // Set up the FP register classes.
598    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
599    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
600
601    // Use ANDPS to simulate FABS.
602    setOperationAction(ISD::FABS , MVT::f32, Custom);
603
604    // Use XORP to simulate FNEG.
605    setOperationAction(ISD::FNEG , MVT::f32, Custom);
606
607    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
608
609    // Use ANDPS and ORPS to simulate FCOPYSIGN.
610    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
611    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
612
613    // We don't support sin/cos/fmod
614    setOperationAction(ISD::FSIN , MVT::f32, Expand);
615    setOperationAction(ISD::FCOS , MVT::f32, Expand);
616
617    // Special cases we handle for FP constants.
618    addLegalFPImmediate(APFloat(+0.0f)); // xorps
619    addLegalFPImmediate(APFloat(+0.0)); // FLD0
620    addLegalFPImmediate(APFloat(+1.0)); // FLD1
621    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
622    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
623
624    if (!TM.Options.UnsafeFPMath) {
625      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
626      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
627    }
628  } else if (!TM.Options.UseSoftFloat) {
629    // f32 and f64 in x87.
630    // Set up the FP register classes.
631    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
632    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
633
634    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
635    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
636    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
637    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
638
639    if (!TM.Options.UnsafeFPMath) {
640      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
641      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
642    }
643    addLegalFPImmediate(APFloat(+0.0)); // FLD0
644    addLegalFPImmediate(APFloat(+1.0)); // FLD1
645    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
646    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
647    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
651  }
652
653  // We don't support FMA.
654  setOperationAction(ISD::FMA, MVT::f64, Expand);
655  setOperationAction(ISD::FMA, MVT::f32, Expand);
656
657  // Long double always uses X87.
658  if (!TM.Options.UseSoftFloat) {
659    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
660    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
661    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
662    {
663      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
664      addLegalFPImmediate(TmpFlt);  // FLD0
665      TmpFlt.changeSign();
666      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
667
668      bool ignored;
669      APFloat TmpFlt2(+1.0);
670      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
671                      &ignored);
672      addLegalFPImmediate(TmpFlt2);  // FLD1
673      TmpFlt2.changeSign();
674      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
675    }
676
677    if (!TM.Options.UnsafeFPMath) {
678      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
679      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
680    }
681
682    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
683    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
684    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
685    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
686    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
687    setOperationAction(ISD::FMA, MVT::f80, Expand);
688  }
689
690  // Always use a library call for pow.
691  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
692  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
693  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
694
695  setOperationAction(ISD::FLOG, MVT::f80, Expand);
696  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
697  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
698  setOperationAction(ISD::FEXP, MVT::f80, Expand);
699  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
700
701  // First set operation action for all vector types to either promote
702  // (for widening) or expand (for scalarization). Then we will selectively
703  // turn on ones that can be effectively codegen'd.
704  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
705       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
706    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
721    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
723    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
724    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
758    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
763    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
764         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
765      setTruncStoreAction((MVT::SimpleValueType)VT,
766                          (MVT::SimpleValueType)InnerVT, Expand);
767    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
768    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
769    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
770  }
771
772  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
773  // with -msoft-float, disable use of MMX as well.
774  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
775    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
776    // No operations on x86mmx supported, everything uses intrinsics.
777  }
778
779  // MMX-sized vectors (other than x86mmx) are expected to be expanded
780  // into smaller operations.
781  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
782  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
783  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
784  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
785  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
786  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
787  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
788  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
789  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
790  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
791  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
792  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
793  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
794  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
795  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
796  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
797  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
798  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
799  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
800  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
801  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
802  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
803  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
804  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
805  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
806  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
807  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
808  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
809  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
810
811  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
812    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
813
814    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
815    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
816    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
817    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
818    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
819    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
820    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
821    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
822    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
823    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
824    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
825    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
826  }
827
828  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
829    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
830
831    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
832    // registers cannot be used even for integer operations.
833    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
834    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
835    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
836    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
837
838    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
839    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
840    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
841    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
842    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
843    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
844    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
845    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
846    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
847    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
848    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
849    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
850    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
851    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
852    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
853    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
854
855    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
856    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
857    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
858    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
859
860    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
861    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
862    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
863    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
864    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
865
866    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
867    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
868    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
869    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
871
872    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
873    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
874      EVT VT = (MVT::SimpleValueType)i;
875      // Do not attempt to custom lower non-power-of-2 vectors
876      if (!isPowerOf2_32(VT.getVectorNumElements()))
877        continue;
878      // Do not attempt to custom lower non-128-bit vectors
879      if (!VT.is128BitVector())
880        continue;
881      setOperationAction(ISD::BUILD_VECTOR,
882                         VT.getSimpleVT().SimpleTy, Custom);
883      setOperationAction(ISD::VECTOR_SHUFFLE,
884                         VT.getSimpleVT().SimpleTy, Custom);
885      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
886                         VT.getSimpleVT().SimpleTy, Custom);
887    }
888
889    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
890    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
891    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
892    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
893    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
894    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
895
896    if (Subtarget->is64Bit()) {
897      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
898      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
899    }
900
901    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
902    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
903      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
904      EVT VT = SVT;
905
906      // Do not attempt to promote non-128-bit vectors
907      if (!VT.is128BitVector())
908        continue;
909
910      setOperationAction(ISD::AND,    SVT, Promote);
911      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
912      setOperationAction(ISD::OR,     SVT, Promote);
913      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
914      setOperationAction(ISD::XOR,    SVT, Promote);
915      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
916      setOperationAction(ISD::LOAD,   SVT, Promote);
917      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
918      setOperationAction(ISD::SELECT, SVT, Promote);
919      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
920    }
921
922    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
923
924    // Custom lower v2i64 and v2f64 selects.
925    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
926    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
927    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
928    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
929
930    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
931    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
932  }
933
934  if (Subtarget->hasSSE41()) {
935    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
936    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
937    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
938    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
939    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
940    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
941    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
942    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
943    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
944    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
945
946    // FIXME: Do we need to handle scalar-to-vector here?
947    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
948
949    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
950    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
951    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
952    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
953    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
954
955    // i8 and i16 vectors are custom , because the source register and source
956    // source memory operand types are not the same width.  f32 vectors are
957    // custom since the immediate controlling the insert encodes additional
958    // information.
959    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
960    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
961    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
962    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
963
964    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
965    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
966    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
967    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
968
969    // FIXME: these should be Legal but thats only for the case where
970    // the index is constant.  For now custom expand to deal with that.
971    if (Subtarget->is64Bit()) {
972      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
973      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
974    }
975  }
976
977  if (Subtarget->hasSSE2()) {
978    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
979    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
980
981    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
982    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
983
984    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
985    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
986
987    if (Subtarget->hasAVX2()) {
988      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
989      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
990
991      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
992      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
993
994      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
995    } else {
996      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
997      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
998
999      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1000      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1001
1002      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1003    }
1004  }
1005
1006  if (Subtarget->hasSSE42())
1007    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1008
1009  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1010    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1011    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1012    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1013    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1014    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1015    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1016
1017    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1018    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1019    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1020
1021    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1023    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1024    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1025    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1026    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1027
1028    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1029    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1030    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1031    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1032    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1033    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1034
1035    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1036    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1037    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1038
1039    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1040    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1041    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1042    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1045
1046    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1047    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1048
1049    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1050    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1051
1052    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1053    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1054
1055    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1056    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1057    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1058    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1059
1060    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1061    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1062    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1063
1064    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1065    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1066    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1067    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1068
1069    if (Subtarget->hasAVX2()) {
1070      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1071      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1072      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1073      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1074
1075      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1076      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1077      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1078      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1079
1080      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1081      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1082      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1083      // Don't lower v32i8 because there is no 128-bit byte mul
1084
1085      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1086
1087      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1088      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1089
1090      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1091      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1092
1093      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1094    } else {
1095      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1096      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1097      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1098      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1099
1100      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1101      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1102      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1103      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1104
1105      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1107      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1108      // Don't lower v32i8 because there is no 128-bit byte mul
1109
1110      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1111      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1112
1113      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1114      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1115
1116      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1117    }
1118
1119    // Custom lower several nodes for 256-bit types.
1120    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1121                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1122      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1123      EVT VT = SVT;
1124
1125      // Extract subvector is special because the value type
1126      // (result) is 128-bit but the source is 256-bit wide.
1127      if (VT.is128BitVector())
1128        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1129
1130      // Do not attempt to custom lower other non-256-bit vectors
1131      if (!VT.is256BitVector())
1132        continue;
1133
1134      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1135      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1136      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1137      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1138      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1139      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1140    }
1141
1142    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1143    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1144      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1145      EVT VT = SVT;
1146
1147      // Do not attempt to promote non-256-bit vectors
1148      if (!VT.is256BitVector())
1149        continue;
1150
1151      setOperationAction(ISD::AND,    SVT, Promote);
1152      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1153      setOperationAction(ISD::OR,     SVT, Promote);
1154      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1155      setOperationAction(ISD::XOR,    SVT, Promote);
1156      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::LOAD,   SVT, Promote);
1158      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1159      setOperationAction(ISD::SELECT, SVT, Promote);
1160      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1161    }
1162  }
1163
1164  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1165  // of this type with custom code.
1166  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1167         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1168    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1169                       Custom);
1170  }
1171
1172  // We want to custom lower some of our intrinsics.
1173  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1174
1175
1176  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1177  // handle type legalization for these operations here.
1178  //
1179  // FIXME: We really should do custom legalization for addition and
1180  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1181  // than generic legalization for 64-bit multiplication-with-overflow, though.
1182  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1183    // Add/Sub/Mul with overflow operations are custom lowered.
1184    MVT VT = IntVTs[i];
1185    setOperationAction(ISD::SADDO, VT, Custom);
1186    setOperationAction(ISD::UADDO, VT, Custom);
1187    setOperationAction(ISD::SSUBO, VT, Custom);
1188    setOperationAction(ISD::USUBO, VT, Custom);
1189    setOperationAction(ISD::SMULO, VT, Custom);
1190    setOperationAction(ISD::UMULO, VT, Custom);
1191  }
1192
1193  // There are no 8-bit 3-address imul/mul instructions
1194  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1195  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1196
1197  if (!Subtarget->is64Bit()) {
1198    // These libcalls are not available in 32-bit.
1199    setLibcallName(RTLIB::SHL_I128, 0);
1200    setLibcallName(RTLIB::SRL_I128, 0);
1201    setLibcallName(RTLIB::SRA_I128, 0);
1202  }
1203
1204  // We have target-specific dag combine patterns for the following nodes:
1205  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1206  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1207  setTargetDAGCombine(ISD::VSELECT);
1208  setTargetDAGCombine(ISD::SELECT);
1209  setTargetDAGCombine(ISD::SHL);
1210  setTargetDAGCombine(ISD::SRA);
1211  setTargetDAGCombine(ISD::SRL);
1212  setTargetDAGCombine(ISD::OR);
1213  setTargetDAGCombine(ISD::AND);
1214  setTargetDAGCombine(ISD::ADD);
1215  setTargetDAGCombine(ISD::FADD);
1216  setTargetDAGCombine(ISD::FSUB);
1217  setTargetDAGCombine(ISD::SUB);
1218  setTargetDAGCombine(ISD::LOAD);
1219  setTargetDAGCombine(ISD::STORE);
1220  setTargetDAGCombine(ISD::ZERO_EXTEND);
1221  setTargetDAGCombine(ISD::SINT_TO_FP);
1222  if (Subtarget->is64Bit())
1223    setTargetDAGCombine(ISD::MUL);
1224  if (Subtarget->hasBMI())
1225    setTargetDAGCombine(ISD::XOR);
1226
1227  computeRegisterProperties();
1228
1229  // On Darwin, -Os means optimize for size without hurting performance,
1230  // do not reduce the limit.
1231  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1232  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1233  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1234  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1235  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1236  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1237  setPrefLoopAlignment(4); // 2^4 bytes.
1238  benefitFromCodePlacementOpt = true;
1239
1240  setPrefFunctionAlignment(4); // 2^4 bytes.
1241}
1242
1243
1244EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1245  if (!VT.isVector()) return MVT::i8;
1246  return VT.changeVectorElementTypeToInteger();
1247}
1248
1249
1250/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1251/// the desired ByVal argument alignment.
1252static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1253  if (MaxAlign == 16)
1254    return;
1255  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1256    if (VTy->getBitWidth() == 128)
1257      MaxAlign = 16;
1258  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1259    unsigned EltAlign = 0;
1260    getMaxByValAlign(ATy->getElementType(), EltAlign);
1261    if (EltAlign > MaxAlign)
1262      MaxAlign = EltAlign;
1263  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1264    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1265      unsigned EltAlign = 0;
1266      getMaxByValAlign(STy->getElementType(i), EltAlign);
1267      if (EltAlign > MaxAlign)
1268        MaxAlign = EltAlign;
1269      if (MaxAlign == 16)
1270        break;
1271    }
1272  }
1273  return;
1274}
1275
1276/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1277/// function arguments in the caller parameter area. For X86, aggregates
1278/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1279/// are at 4-byte boundaries.
1280unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1281  if (Subtarget->is64Bit()) {
1282    // Max of 8 and alignment of type.
1283    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1284    if (TyAlign > 8)
1285      return TyAlign;
1286    return 8;
1287  }
1288
1289  unsigned Align = 4;
1290  if (Subtarget->hasSSE1())
1291    getMaxByValAlign(Ty, Align);
1292  return Align;
1293}
1294
1295/// getOptimalMemOpType - Returns the target specific optimal type for load
1296/// and store operations as a result of memset, memcpy, and memmove
1297/// lowering. If DstAlign is zero that means it's safe to destination
1298/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1299/// means there isn't a need to check it against alignment requirement,
1300/// probably because the source does not need to be loaded. If
1301/// 'IsZeroVal' is true, that means it's safe to return a
1302/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1303/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1304/// constant so it does not need to be loaded.
1305/// It returns EVT::Other if the type should be determined using generic
1306/// target-independent logic.
1307EVT
1308X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1309                                       unsigned DstAlign, unsigned SrcAlign,
1310                                       bool IsZeroVal,
1311                                       bool MemcpyStrSrc,
1312                                       MachineFunction &MF) const {
1313  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1314  // linux.  This is because the stack realignment code can't handle certain
1315  // cases like PR2962.  This should be removed when PR2962 is fixed.
1316  const Function *F = MF.getFunction();
1317  if (IsZeroVal &&
1318      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1319    if (Size >= 16 &&
1320        (Subtarget->isUnalignedMemAccessFast() ||
1321         ((DstAlign == 0 || DstAlign >= 16) &&
1322          (SrcAlign == 0 || SrcAlign >= 16))) &&
1323        Subtarget->getStackAlignment() >= 16) {
1324      if (Subtarget->getStackAlignment() >= 32) {
1325        if (Subtarget->hasAVX2())
1326          return MVT::v8i32;
1327        if (Subtarget->hasAVX())
1328          return MVT::v8f32;
1329      }
1330      if (Subtarget->hasSSE2())
1331        return MVT::v4i32;
1332      if (Subtarget->hasSSE1())
1333        return MVT::v4f32;
1334    } else if (!MemcpyStrSrc && Size >= 8 &&
1335               !Subtarget->is64Bit() &&
1336               Subtarget->getStackAlignment() >= 8 &&
1337               Subtarget->hasSSE2()) {
1338      // Do not use f64 to lower memcpy if source is string constant. It's
1339      // better to use i32 to avoid the loads.
1340      return MVT::f64;
1341    }
1342  }
1343  if (Subtarget->is64Bit() && Size >= 8)
1344    return MVT::i64;
1345  return MVT::i32;
1346}
1347
1348/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1349/// current function.  The returned value is a member of the
1350/// MachineJumpTableInfo::JTEntryKind enum.
1351unsigned X86TargetLowering::getJumpTableEncoding() const {
1352  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1353  // symbol.
1354  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1355      Subtarget->isPICStyleGOT())
1356    return MachineJumpTableInfo::EK_Custom32;
1357
1358  // Otherwise, use the normal jump table encoding heuristics.
1359  return TargetLowering::getJumpTableEncoding();
1360}
1361
1362const MCExpr *
1363X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1364                                             const MachineBasicBlock *MBB,
1365                                             unsigned uid,MCContext &Ctx) const{
1366  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1367         Subtarget->isPICStyleGOT());
1368  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1369  // entries.
1370  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1371                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1372}
1373
1374/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1375/// jumptable.
1376SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1377                                                    SelectionDAG &DAG) const {
1378  if (!Subtarget->is64Bit())
1379    // This doesn't have DebugLoc associated with it, but is not really the
1380    // same as a Register.
1381    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1382  return Table;
1383}
1384
1385/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1386/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1387/// MCExpr.
1388const MCExpr *X86TargetLowering::
1389getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1390                             MCContext &Ctx) const {
1391  // X86-64 uses RIP relative addressing based on the jump table label.
1392  if (Subtarget->isPICStyleRIPRel())
1393    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1394
1395  // Otherwise, the reference is relative to the PIC base.
1396  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1397}
1398
1399// FIXME: Why this routine is here? Move to RegInfo!
1400std::pair<const TargetRegisterClass*, uint8_t>
1401X86TargetLowering::findRepresentativeClass(EVT VT) const{
1402  const TargetRegisterClass *RRC = 0;
1403  uint8_t Cost = 1;
1404  switch (VT.getSimpleVT().SimpleTy) {
1405  default:
1406    return TargetLowering::findRepresentativeClass(VT);
1407  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1408    RRC = (Subtarget->is64Bit()
1409           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1410    break;
1411  case MVT::x86mmx:
1412    RRC = X86::VR64RegisterClass;
1413    break;
1414  case MVT::f32: case MVT::f64:
1415  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1416  case MVT::v4f32: case MVT::v2f64:
1417  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1418  case MVT::v4f64:
1419    RRC = X86::VR128RegisterClass;
1420    break;
1421  }
1422  return std::make_pair(RRC, Cost);
1423}
1424
1425bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1426                                               unsigned &Offset) const {
1427  if (!Subtarget->isTargetLinux())
1428    return false;
1429
1430  if (Subtarget->is64Bit()) {
1431    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1432    Offset = 0x28;
1433    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1434      AddressSpace = 256;
1435    else
1436      AddressSpace = 257;
1437  } else {
1438    // %gs:0x14 on i386
1439    Offset = 0x14;
1440    AddressSpace = 256;
1441  }
1442  return true;
1443}
1444
1445
1446//===----------------------------------------------------------------------===//
1447//               Return Value Calling Convention Implementation
1448//===----------------------------------------------------------------------===//
1449
1450#include "X86GenCallingConv.inc"
1451
1452bool
1453X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1454				  MachineFunction &MF, bool isVarArg,
1455                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1456                        LLVMContext &Context) const {
1457  SmallVector<CCValAssign, 16> RVLocs;
1458  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1459                 RVLocs, Context);
1460  return CCInfo.CheckReturn(Outs, RetCC_X86);
1461}
1462
1463SDValue
1464X86TargetLowering::LowerReturn(SDValue Chain,
1465                               CallingConv::ID CallConv, bool isVarArg,
1466                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1467                               const SmallVectorImpl<SDValue> &OutVals,
1468                               DebugLoc dl, SelectionDAG &DAG) const {
1469  MachineFunction &MF = DAG.getMachineFunction();
1470  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1471
1472  SmallVector<CCValAssign, 16> RVLocs;
1473  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1474                 RVLocs, *DAG.getContext());
1475  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1476
1477  // Add the regs to the liveout set for the function.
1478  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1479  for (unsigned i = 0; i != RVLocs.size(); ++i)
1480    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1481      MRI.addLiveOut(RVLocs[i].getLocReg());
1482
1483  SDValue Flag;
1484
1485  SmallVector<SDValue, 6> RetOps;
1486  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1487  // Operand #1 = Bytes To Pop
1488  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1489                   MVT::i16));
1490
1491  // Copy the result values into the output registers.
1492  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1493    CCValAssign &VA = RVLocs[i];
1494    assert(VA.isRegLoc() && "Can only return in registers!");
1495    SDValue ValToCopy = OutVals[i];
1496    EVT ValVT = ValToCopy.getValueType();
1497
1498    // If this is x86-64, and we disabled SSE, we can't return FP values,
1499    // or SSE or MMX vectors.
1500    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1501         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1502          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1503      report_fatal_error("SSE register return with SSE disabled");
1504    }
1505    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1506    // llvm-gcc has never done it right and no one has noticed, so this
1507    // should be OK for now.
1508    if (ValVT == MVT::f64 &&
1509        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1510      report_fatal_error("SSE2 register return with SSE2 disabled");
1511
1512    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1513    // the RET instruction and handled by the FP Stackifier.
1514    if (VA.getLocReg() == X86::ST0 ||
1515        VA.getLocReg() == X86::ST1) {
1516      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1517      // change the value to the FP stack register class.
1518      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1519        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1520      RetOps.push_back(ValToCopy);
1521      // Don't emit a copytoreg.
1522      continue;
1523    }
1524
1525    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1526    // which is returned in RAX / RDX.
1527    if (Subtarget->is64Bit()) {
1528      if (ValVT == MVT::x86mmx) {
1529        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1530          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1531          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1532                                  ValToCopy);
1533          // If we don't have SSE2 available, convert to v4f32 so the generated
1534          // register is legal.
1535          if (!Subtarget->hasSSE2())
1536            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1537        }
1538      }
1539    }
1540
1541    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1542    Flag = Chain.getValue(1);
1543  }
1544
1545  // The x86-64 ABI for returning structs by value requires that we copy
1546  // the sret argument into %rax for the return. We saved the argument into
1547  // a virtual register in the entry block, so now we copy the value out
1548  // and into %rax.
1549  if (Subtarget->is64Bit() &&
1550      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1551    MachineFunction &MF = DAG.getMachineFunction();
1552    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1553    unsigned Reg = FuncInfo->getSRetReturnReg();
1554    assert(Reg &&
1555           "SRetReturnReg should have been set in LowerFormalArguments().");
1556    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1557
1558    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1559    Flag = Chain.getValue(1);
1560
1561    // RAX now acts like a return value.
1562    MRI.addLiveOut(X86::RAX);
1563  }
1564
1565  RetOps[0] = Chain;  // Update chain.
1566
1567  // Add the flag if we have it.
1568  if (Flag.getNode())
1569    RetOps.push_back(Flag);
1570
1571  return DAG.getNode(X86ISD::RET_FLAG, dl,
1572                     MVT::Other, &RetOps[0], RetOps.size());
1573}
1574
1575bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1576  if (N->getNumValues() != 1)
1577    return false;
1578  if (!N->hasNUsesOfValue(1, 0))
1579    return false;
1580
1581  SDNode *Copy = *N->use_begin();
1582  if (Copy->getOpcode() != ISD::CopyToReg &&
1583      Copy->getOpcode() != ISD::FP_EXTEND)
1584    return false;
1585
1586  bool HasRet = false;
1587  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1588       UI != UE; ++UI) {
1589    if (UI->getOpcode() != X86ISD::RET_FLAG)
1590      return false;
1591    HasRet = true;
1592  }
1593
1594  return HasRet;
1595}
1596
1597EVT
1598X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1599                                            ISD::NodeType ExtendKind) const {
1600  MVT ReturnMVT;
1601  // TODO: Is this also valid on 32-bit?
1602  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1603    ReturnMVT = MVT::i8;
1604  else
1605    ReturnMVT = MVT::i32;
1606
1607  EVT MinVT = getRegisterType(Context, ReturnMVT);
1608  return VT.bitsLT(MinVT) ? MinVT : VT;
1609}
1610
1611/// LowerCallResult - Lower the result values of a call into the
1612/// appropriate copies out of appropriate physical registers.
1613///
1614SDValue
1615X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1616                                   CallingConv::ID CallConv, bool isVarArg,
1617                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1618                                   DebugLoc dl, SelectionDAG &DAG,
1619                                   SmallVectorImpl<SDValue> &InVals) const {
1620
1621  // Assign locations to each value returned by this call.
1622  SmallVector<CCValAssign, 16> RVLocs;
1623  bool Is64Bit = Subtarget->is64Bit();
1624  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1625		 getTargetMachine(), RVLocs, *DAG.getContext());
1626  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1627
1628  // Copy all of the result registers out of their specified physreg.
1629  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1630    CCValAssign &VA = RVLocs[i];
1631    EVT CopyVT = VA.getValVT();
1632
1633    // If this is x86-64, and we disabled SSE, we can't return FP values
1634    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1635        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1636      report_fatal_error("SSE register return with SSE disabled");
1637    }
1638
1639    SDValue Val;
1640
1641    // If this is a call to a function that returns an fp value on the floating
1642    // point stack, we must guarantee the the value is popped from the stack, so
1643    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1644    // if the return value is not used. We use the FpPOP_RETVAL instruction
1645    // instead.
1646    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1647      // If we prefer to use the value in xmm registers, copy it out as f80 and
1648      // use a truncate to move it from fp stack reg to xmm reg.
1649      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1650      SDValue Ops[] = { Chain, InFlag };
1651      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1652                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1653      Val = Chain.getValue(0);
1654
1655      // Round the f80 to the right size, which also moves it to the appropriate
1656      // xmm register.
1657      if (CopyVT != VA.getValVT())
1658        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1659                          // This truncation won't change the value.
1660                          DAG.getIntPtrConstant(1));
1661    } else {
1662      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1663                                 CopyVT, InFlag).getValue(1);
1664      Val = Chain.getValue(0);
1665    }
1666    InFlag = Chain.getValue(2);
1667    InVals.push_back(Val);
1668  }
1669
1670  return Chain;
1671}
1672
1673
1674//===----------------------------------------------------------------------===//
1675//                C & StdCall & Fast Calling Convention implementation
1676//===----------------------------------------------------------------------===//
1677//  StdCall calling convention seems to be standard for many Windows' API
1678//  routines and around. It differs from C calling convention just a little:
1679//  callee should clean up the stack, not caller. Symbols should be also
1680//  decorated in some fancy way :) It doesn't support any vector arguments.
1681//  For info on fast calling convention see Fast Calling Convention (tail call)
1682//  implementation LowerX86_32FastCCCallTo.
1683
1684/// CallIsStructReturn - Determines whether a call uses struct return
1685/// semantics.
1686static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1687  if (Outs.empty())
1688    return false;
1689
1690  return Outs[0].Flags.isSRet();
1691}
1692
1693/// ArgsAreStructReturn - Determines whether a function uses struct
1694/// return semantics.
1695static bool
1696ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1697  if (Ins.empty())
1698    return false;
1699
1700  return Ins[0].Flags.isSRet();
1701}
1702
1703/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1704/// by "Src" to address "Dst" with size and alignment information specified by
1705/// the specific parameter attribute. The copy will be passed as a byval
1706/// function parameter.
1707static SDValue
1708CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1709                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1710                          DebugLoc dl) {
1711  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1712
1713  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1714                       /*isVolatile*/false, /*AlwaysInline=*/true,
1715                       MachinePointerInfo(), MachinePointerInfo());
1716}
1717
1718/// IsTailCallConvention - Return true if the calling convention is one that
1719/// supports tail call optimization.
1720static bool IsTailCallConvention(CallingConv::ID CC) {
1721  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1722}
1723
1724bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1725  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1726    return false;
1727
1728  CallSite CS(CI);
1729  CallingConv::ID CalleeCC = CS.getCallingConv();
1730  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1731    return false;
1732
1733  return true;
1734}
1735
1736/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1737/// a tailcall target by changing its ABI.
1738static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1739                                   bool GuaranteedTailCallOpt) {
1740  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1741}
1742
1743SDValue
1744X86TargetLowering::LowerMemArgument(SDValue Chain,
1745                                    CallingConv::ID CallConv,
1746                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1747                                    DebugLoc dl, SelectionDAG &DAG,
1748                                    const CCValAssign &VA,
1749                                    MachineFrameInfo *MFI,
1750                                    unsigned i) const {
1751  // Create the nodes corresponding to a load from this parameter slot.
1752  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1753  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1754                              getTargetMachine().Options.GuaranteedTailCallOpt);
1755  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1756  EVT ValVT;
1757
1758  // If value is passed by pointer we have address passed instead of the value
1759  // itself.
1760  if (VA.getLocInfo() == CCValAssign::Indirect)
1761    ValVT = VA.getLocVT();
1762  else
1763    ValVT = VA.getValVT();
1764
1765  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1766  // changed with more analysis.
1767  // In case of tail call optimization mark all arguments mutable. Since they
1768  // could be overwritten by lowering of arguments in case of a tail call.
1769  if (Flags.isByVal()) {
1770    unsigned Bytes = Flags.getByValSize();
1771    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1772    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1773    return DAG.getFrameIndex(FI, getPointerTy());
1774  } else {
1775    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1776                                    VA.getLocMemOffset(), isImmutable);
1777    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1778    return DAG.getLoad(ValVT, dl, Chain, FIN,
1779                       MachinePointerInfo::getFixedStack(FI),
1780                       false, false, false, 0);
1781  }
1782}
1783
1784SDValue
1785X86TargetLowering::LowerFormalArguments(SDValue Chain,
1786                                        CallingConv::ID CallConv,
1787                                        bool isVarArg,
1788                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1789                                        DebugLoc dl,
1790                                        SelectionDAG &DAG,
1791                                        SmallVectorImpl<SDValue> &InVals)
1792                                          const {
1793  MachineFunction &MF = DAG.getMachineFunction();
1794  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1795
1796  const Function* Fn = MF.getFunction();
1797  if (Fn->hasExternalLinkage() &&
1798      Subtarget->isTargetCygMing() &&
1799      Fn->getName() == "main")
1800    FuncInfo->setForceFramePointer(true);
1801
1802  MachineFrameInfo *MFI = MF.getFrameInfo();
1803  bool Is64Bit = Subtarget->is64Bit();
1804  bool IsWindows = Subtarget->isTargetWindows();
1805  bool IsWin64 = Subtarget->isTargetWin64();
1806
1807  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1808         "Var args not supported with calling convention fastcc or ghc");
1809
1810  // Assign locations to all of the incoming arguments.
1811  SmallVector<CCValAssign, 16> ArgLocs;
1812  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1813                 ArgLocs, *DAG.getContext());
1814
1815  // Allocate shadow area for Win64
1816  if (IsWin64) {
1817    CCInfo.AllocateStack(32, 8);
1818  }
1819
1820  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1821
1822  unsigned LastVal = ~0U;
1823  SDValue ArgValue;
1824  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1825    CCValAssign &VA = ArgLocs[i];
1826    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1827    // places.
1828    assert(VA.getValNo() != LastVal &&
1829           "Don't support value assigned to multiple locs yet");
1830    (void)LastVal;
1831    LastVal = VA.getValNo();
1832
1833    if (VA.isRegLoc()) {
1834      EVT RegVT = VA.getLocVT();
1835      TargetRegisterClass *RC = NULL;
1836      if (RegVT == MVT::i32)
1837        RC = X86::GR32RegisterClass;
1838      else if (Is64Bit && RegVT == MVT::i64)
1839        RC = X86::GR64RegisterClass;
1840      else if (RegVT == MVT::f32)
1841        RC = X86::FR32RegisterClass;
1842      else if (RegVT == MVT::f64)
1843        RC = X86::FR64RegisterClass;
1844      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1845        RC = X86::VR256RegisterClass;
1846      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1847        RC = X86::VR128RegisterClass;
1848      else if (RegVT == MVT::x86mmx)
1849        RC = X86::VR64RegisterClass;
1850      else
1851        llvm_unreachable("Unknown argument type!");
1852
1853      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1854      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1855
1856      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1857      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1858      // right size.
1859      if (VA.getLocInfo() == CCValAssign::SExt)
1860        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1861                               DAG.getValueType(VA.getValVT()));
1862      else if (VA.getLocInfo() == CCValAssign::ZExt)
1863        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1864                               DAG.getValueType(VA.getValVT()));
1865      else if (VA.getLocInfo() == CCValAssign::BCvt)
1866        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1867
1868      if (VA.isExtInLoc()) {
1869        // Handle MMX values passed in XMM regs.
1870        if (RegVT.isVector()) {
1871          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1872                                 ArgValue);
1873        } else
1874          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1875      }
1876    } else {
1877      assert(VA.isMemLoc());
1878      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1879    }
1880
1881    // If value is passed via pointer - do a load.
1882    if (VA.getLocInfo() == CCValAssign::Indirect)
1883      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1884                             MachinePointerInfo(), false, false, false, 0);
1885
1886    InVals.push_back(ArgValue);
1887  }
1888
1889  // The x86-64 ABI for returning structs by value requires that we copy
1890  // the sret argument into %rax for the return. Save the argument into
1891  // a virtual register so that we can access it from the return points.
1892  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1893    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1894    unsigned Reg = FuncInfo->getSRetReturnReg();
1895    if (!Reg) {
1896      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1897      FuncInfo->setSRetReturnReg(Reg);
1898    }
1899    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1900    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1901  }
1902
1903  unsigned StackSize = CCInfo.getNextStackOffset();
1904  // Align stack specially for tail calls.
1905  if (FuncIsMadeTailCallSafe(CallConv,
1906                             MF.getTarget().Options.GuaranteedTailCallOpt))
1907    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1908
1909  // If the function takes variable number of arguments, make a frame index for
1910  // the start of the first vararg value... for expansion of llvm.va_start.
1911  if (isVarArg) {
1912    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1913                    CallConv != CallingConv::X86_ThisCall)) {
1914      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1915    }
1916    if (Is64Bit) {
1917      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1918
1919      // FIXME: We should really autogenerate these arrays
1920      static const unsigned GPR64ArgRegsWin64[] = {
1921        X86::RCX, X86::RDX, X86::R8,  X86::R9
1922      };
1923      static const unsigned GPR64ArgRegs64Bit[] = {
1924        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1925      };
1926      static const unsigned XMMArgRegs64Bit[] = {
1927        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1928        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1929      };
1930      const unsigned *GPR64ArgRegs;
1931      unsigned NumXMMRegs = 0;
1932
1933      if (IsWin64) {
1934        // The XMM registers which might contain var arg parameters are shadowed
1935        // in their paired GPR.  So we only need to save the GPR to their home
1936        // slots.
1937        TotalNumIntRegs = 4;
1938        GPR64ArgRegs = GPR64ArgRegsWin64;
1939      } else {
1940        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1941        GPR64ArgRegs = GPR64ArgRegs64Bit;
1942
1943        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1944                                                TotalNumXMMRegs);
1945      }
1946      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1947                                                       TotalNumIntRegs);
1948
1949      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1950      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1951             "SSE register cannot be used when SSE is disabled!");
1952      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1953               NoImplicitFloatOps) &&
1954             "SSE register cannot be used when SSE is disabled!");
1955      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1956          !Subtarget->hasSSE1())
1957        // Kernel mode asks for SSE to be disabled, so don't push them
1958        // on the stack.
1959        TotalNumXMMRegs = 0;
1960
1961      if (IsWin64) {
1962        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1963        // Get to the caller-allocated home save location.  Add 8 to account
1964        // for the return address.
1965        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1966        FuncInfo->setRegSaveFrameIndex(
1967          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1968        // Fixup to set vararg frame on shadow area (4 x i64).
1969        if (NumIntRegs < 4)
1970          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1971      } else {
1972        // For X86-64, if there are vararg parameters that are passed via
1973        // registers, then we must store them to their spots on the stack so
1974        // they may be loaded by deferencing the result of va_next.
1975        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1976        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1977        FuncInfo->setRegSaveFrameIndex(
1978          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1979                               false));
1980      }
1981
1982      // Store the integer parameter registers.
1983      SmallVector<SDValue, 8> MemOps;
1984      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1985                                        getPointerTy());
1986      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1987      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1988        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1989                                  DAG.getIntPtrConstant(Offset));
1990        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1991                                     X86::GR64RegisterClass);
1992        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1993        SDValue Store =
1994          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1995                       MachinePointerInfo::getFixedStack(
1996                         FuncInfo->getRegSaveFrameIndex(), Offset),
1997                       false, false, 0);
1998        MemOps.push_back(Store);
1999        Offset += 8;
2000      }
2001
2002      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2003        // Now store the XMM (fp + vector) parameter registers.
2004        SmallVector<SDValue, 11> SaveXMMOps;
2005        SaveXMMOps.push_back(Chain);
2006
2007        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2008        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2009        SaveXMMOps.push_back(ALVal);
2010
2011        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2012                               FuncInfo->getRegSaveFrameIndex()));
2013        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2014                               FuncInfo->getVarArgsFPOffset()));
2015
2016        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2017          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2018                                       X86::VR128RegisterClass);
2019          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2020          SaveXMMOps.push_back(Val);
2021        }
2022        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2023                                     MVT::Other,
2024                                     &SaveXMMOps[0], SaveXMMOps.size()));
2025      }
2026
2027      if (!MemOps.empty())
2028        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2029                            &MemOps[0], MemOps.size());
2030    }
2031  }
2032
2033  // Some CCs need callee pop.
2034  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2035                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2036    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2037  } else {
2038    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2039    // If this is an sret function, the return should pop the hidden pointer.
2040    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2041        ArgsAreStructReturn(Ins))
2042      FuncInfo->setBytesToPopOnReturn(4);
2043  }
2044
2045  if (!Is64Bit) {
2046    // RegSaveFrameIndex is X86-64 only.
2047    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2048    if (CallConv == CallingConv::X86_FastCall ||
2049        CallConv == CallingConv::X86_ThisCall)
2050      // fastcc functions can't have varargs.
2051      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2052  }
2053
2054  FuncInfo->setArgumentStackSize(StackSize);
2055
2056  return Chain;
2057}
2058
2059SDValue
2060X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2061                                    SDValue StackPtr, SDValue Arg,
2062                                    DebugLoc dl, SelectionDAG &DAG,
2063                                    const CCValAssign &VA,
2064                                    ISD::ArgFlagsTy Flags) const {
2065  unsigned LocMemOffset = VA.getLocMemOffset();
2066  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2067  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2068  if (Flags.isByVal())
2069    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2070
2071  return DAG.getStore(Chain, dl, Arg, PtrOff,
2072                      MachinePointerInfo::getStack(LocMemOffset),
2073                      false, false, 0);
2074}
2075
2076/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2077/// optimization is performed and it is required.
2078SDValue
2079X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2080                                           SDValue &OutRetAddr, SDValue Chain,
2081                                           bool IsTailCall, bool Is64Bit,
2082                                           int FPDiff, DebugLoc dl) const {
2083  // Adjust the Return address stack slot.
2084  EVT VT = getPointerTy();
2085  OutRetAddr = getReturnAddressFrameIndex(DAG);
2086
2087  // Load the "old" Return address.
2088  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2089                           false, false, false, 0);
2090  return SDValue(OutRetAddr.getNode(), 1);
2091}
2092
2093/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2094/// optimization is performed and it is required (FPDiff!=0).
2095static SDValue
2096EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2097                         SDValue Chain, SDValue RetAddrFrIdx,
2098                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2099  // Store the return address to the appropriate stack slot.
2100  if (!FPDiff) return Chain;
2101  // Calculate the new stack slot for the return address.
2102  int SlotSize = Is64Bit ? 8 : 4;
2103  int NewReturnAddrFI =
2104    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2105  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2106  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2107  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2108                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2109                       false, false, 0);
2110  return Chain;
2111}
2112
2113SDValue
2114X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2115                             CallingConv::ID CallConv, bool isVarArg,
2116                             bool &isTailCall,
2117                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2118                             const SmallVectorImpl<SDValue> &OutVals,
2119                             const SmallVectorImpl<ISD::InputArg> &Ins,
2120                             DebugLoc dl, SelectionDAG &DAG,
2121                             SmallVectorImpl<SDValue> &InVals) const {
2122  MachineFunction &MF = DAG.getMachineFunction();
2123  bool Is64Bit        = Subtarget->is64Bit();
2124  bool IsWin64        = Subtarget->isTargetWin64();
2125  bool IsWindows      = Subtarget->isTargetWindows();
2126  bool IsStructRet    = CallIsStructReturn(Outs);
2127  bool IsSibcall      = false;
2128
2129  if (MF.getTarget().Options.DisableTailCalls)
2130    isTailCall = false;
2131
2132  if (isTailCall) {
2133    // Check if it's really possible to do a tail call.
2134    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2135                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2136                                                   Outs, OutVals, Ins, DAG);
2137
2138    // Sibcalls are automatically detected tailcalls which do not require
2139    // ABI changes.
2140    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2141      IsSibcall = true;
2142
2143    if (isTailCall)
2144      ++NumTailCalls;
2145  }
2146
2147  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2148         "Var args not supported with calling convention fastcc or ghc");
2149
2150  // Analyze operands of the call, assigning locations to each operand.
2151  SmallVector<CCValAssign, 16> ArgLocs;
2152  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2153                 ArgLocs, *DAG.getContext());
2154
2155  // Allocate shadow area for Win64
2156  if (IsWin64) {
2157    CCInfo.AllocateStack(32, 8);
2158  }
2159
2160  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2161
2162  // Get a count of how many bytes are to be pushed on the stack.
2163  unsigned NumBytes = CCInfo.getNextStackOffset();
2164  if (IsSibcall)
2165    // This is a sibcall. The memory operands are available in caller's
2166    // own caller's stack.
2167    NumBytes = 0;
2168  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2169           IsTailCallConvention(CallConv))
2170    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2171
2172  int FPDiff = 0;
2173  if (isTailCall && !IsSibcall) {
2174    // Lower arguments at fp - stackoffset + fpdiff.
2175    unsigned NumBytesCallerPushed =
2176      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2177    FPDiff = NumBytesCallerPushed - NumBytes;
2178
2179    // Set the delta of movement of the returnaddr stackslot.
2180    // But only set if delta is greater than previous delta.
2181    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2182      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2183  }
2184
2185  if (!IsSibcall)
2186    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2187
2188  SDValue RetAddrFrIdx;
2189  // Load return address for tail calls.
2190  if (isTailCall && FPDiff)
2191    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2192                                    Is64Bit, FPDiff, dl);
2193
2194  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2195  SmallVector<SDValue, 8> MemOpChains;
2196  SDValue StackPtr;
2197
2198  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2199  // of tail call optimization arguments are handle later.
2200  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2201    CCValAssign &VA = ArgLocs[i];
2202    EVT RegVT = VA.getLocVT();
2203    SDValue Arg = OutVals[i];
2204    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2205    bool isByVal = Flags.isByVal();
2206
2207    // Promote the value if needed.
2208    switch (VA.getLocInfo()) {
2209    default: llvm_unreachable("Unknown loc info!");
2210    case CCValAssign::Full: break;
2211    case CCValAssign::SExt:
2212      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2213      break;
2214    case CCValAssign::ZExt:
2215      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2216      break;
2217    case CCValAssign::AExt:
2218      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2219        // Special case: passing MMX values in XMM registers.
2220        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2221        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2222        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2223      } else
2224        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2225      break;
2226    case CCValAssign::BCvt:
2227      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2228      break;
2229    case CCValAssign::Indirect: {
2230      // Store the argument.
2231      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2232      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2233      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2234                           MachinePointerInfo::getFixedStack(FI),
2235                           false, false, 0);
2236      Arg = SpillSlot;
2237      break;
2238    }
2239    }
2240
2241    if (VA.isRegLoc()) {
2242      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2243      if (isVarArg && IsWin64) {
2244        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2245        // shadow reg if callee is a varargs function.
2246        unsigned ShadowReg = 0;
2247        switch (VA.getLocReg()) {
2248        case X86::XMM0: ShadowReg = X86::RCX; break;
2249        case X86::XMM1: ShadowReg = X86::RDX; break;
2250        case X86::XMM2: ShadowReg = X86::R8; break;
2251        case X86::XMM3: ShadowReg = X86::R9; break;
2252        }
2253        if (ShadowReg)
2254          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2255      }
2256    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2257      assert(VA.isMemLoc());
2258      if (StackPtr.getNode() == 0)
2259        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2260      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2261                                             dl, DAG, VA, Flags));
2262    }
2263  }
2264
2265  if (!MemOpChains.empty())
2266    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2267                        &MemOpChains[0], MemOpChains.size());
2268
2269  // Build a sequence of copy-to-reg nodes chained together with token chain
2270  // and flag operands which copy the outgoing args into registers.
2271  SDValue InFlag;
2272  // Tail call byval lowering might overwrite argument registers so in case of
2273  // tail call optimization the copies to registers are lowered later.
2274  if (!isTailCall)
2275    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2276      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2277                               RegsToPass[i].second, InFlag);
2278      InFlag = Chain.getValue(1);
2279    }
2280
2281  if (Subtarget->isPICStyleGOT()) {
2282    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2283    // GOT pointer.
2284    if (!isTailCall) {
2285      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2286                               DAG.getNode(X86ISD::GlobalBaseReg,
2287                                           DebugLoc(), getPointerTy()),
2288                               InFlag);
2289      InFlag = Chain.getValue(1);
2290    } else {
2291      // If we are tail calling and generating PIC/GOT style code load the
2292      // address of the callee into ECX. The value in ecx is used as target of
2293      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2294      // for tail calls on PIC/GOT architectures. Normally we would just put the
2295      // address of GOT into ebx and then call target@PLT. But for tail calls
2296      // ebx would be restored (since ebx is callee saved) before jumping to the
2297      // target@PLT.
2298
2299      // Note: The actual moving to ECX is done further down.
2300      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2301      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2302          !G->getGlobal()->hasProtectedVisibility())
2303        Callee = LowerGlobalAddress(Callee, DAG);
2304      else if (isa<ExternalSymbolSDNode>(Callee))
2305        Callee = LowerExternalSymbol(Callee, DAG);
2306    }
2307  }
2308
2309  if (Is64Bit && isVarArg && !IsWin64) {
2310    // From AMD64 ABI document:
2311    // For calls that may call functions that use varargs or stdargs
2312    // (prototype-less calls or calls to functions containing ellipsis (...) in
2313    // the declaration) %al is used as hidden argument to specify the number
2314    // of SSE registers used. The contents of %al do not need to match exactly
2315    // the number of registers, but must be an ubound on the number of SSE
2316    // registers used and is in the range 0 - 8 inclusive.
2317
2318    // Count the number of XMM registers allocated.
2319    static const unsigned XMMArgRegs[] = {
2320      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2321      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2322    };
2323    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2324    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2325           && "SSE registers cannot be used when SSE is disabled");
2326
2327    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2328                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2329    InFlag = Chain.getValue(1);
2330  }
2331
2332
2333  // For tail calls lower the arguments to the 'real' stack slot.
2334  if (isTailCall) {
2335    // Force all the incoming stack arguments to be loaded from the stack
2336    // before any new outgoing arguments are stored to the stack, because the
2337    // outgoing stack slots may alias the incoming argument stack slots, and
2338    // the alias isn't otherwise explicit. This is slightly more conservative
2339    // than necessary, because it means that each store effectively depends
2340    // on every argument instead of just those arguments it would clobber.
2341    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2342
2343    SmallVector<SDValue, 8> MemOpChains2;
2344    SDValue FIN;
2345    int FI = 0;
2346    // Do not flag preceding copytoreg stuff together with the following stuff.
2347    InFlag = SDValue();
2348    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2349      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2350        CCValAssign &VA = ArgLocs[i];
2351        if (VA.isRegLoc())
2352          continue;
2353        assert(VA.isMemLoc());
2354        SDValue Arg = OutVals[i];
2355        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2356        // Create frame index.
2357        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2358        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2359        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2360        FIN = DAG.getFrameIndex(FI, getPointerTy());
2361
2362        if (Flags.isByVal()) {
2363          // Copy relative to framepointer.
2364          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2365          if (StackPtr.getNode() == 0)
2366            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2367                                          getPointerTy());
2368          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2369
2370          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2371                                                           ArgChain,
2372                                                           Flags, DAG, dl));
2373        } else {
2374          // Store relative to framepointer.
2375          MemOpChains2.push_back(
2376            DAG.getStore(ArgChain, dl, Arg, FIN,
2377                         MachinePointerInfo::getFixedStack(FI),
2378                         false, false, 0));
2379        }
2380      }
2381    }
2382
2383    if (!MemOpChains2.empty())
2384      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2385                          &MemOpChains2[0], MemOpChains2.size());
2386
2387    // Copy arguments to their registers.
2388    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2389      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2390                               RegsToPass[i].second, InFlag);
2391      InFlag = Chain.getValue(1);
2392    }
2393    InFlag =SDValue();
2394
2395    // Store the return address to the appropriate stack slot.
2396    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2397                                     FPDiff, dl);
2398  }
2399
2400  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2401    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2402    // In the 64-bit large code model, we have to make all calls
2403    // through a register, since the call instruction's 32-bit
2404    // pc-relative offset may not be large enough to hold the whole
2405    // address.
2406  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2407    // If the callee is a GlobalAddress node (quite common, every direct call
2408    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2409    // it.
2410
2411    // We should use extra load for direct calls to dllimported functions in
2412    // non-JIT mode.
2413    const GlobalValue *GV = G->getGlobal();
2414    if (!GV->hasDLLImportLinkage()) {
2415      unsigned char OpFlags = 0;
2416      bool ExtraLoad = false;
2417      unsigned WrapperKind = ISD::DELETED_NODE;
2418
2419      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2420      // external symbols most go through the PLT in PIC mode.  If the symbol
2421      // has hidden or protected visibility, or if it is static or local, then
2422      // we don't need to use the PLT - we can directly call it.
2423      if (Subtarget->isTargetELF() &&
2424          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2425          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2426        OpFlags = X86II::MO_PLT;
2427      } else if (Subtarget->isPICStyleStubAny() &&
2428                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2429                 (!Subtarget->getTargetTriple().isMacOSX() ||
2430                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2431        // PC-relative references to external symbols should go through $stub,
2432        // unless we're building with the leopard linker or later, which
2433        // automatically synthesizes these stubs.
2434        OpFlags = X86II::MO_DARWIN_STUB;
2435      } else if (Subtarget->isPICStyleRIPRel() &&
2436                 isa<Function>(GV) &&
2437                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2438        // If the function is marked as non-lazy, generate an indirect call
2439        // which loads from the GOT directly. This avoids runtime overhead
2440        // at the cost of eager binding (and one extra byte of encoding).
2441        OpFlags = X86II::MO_GOTPCREL;
2442        WrapperKind = X86ISD::WrapperRIP;
2443        ExtraLoad = true;
2444      }
2445
2446      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2447                                          G->getOffset(), OpFlags);
2448
2449      // Add a wrapper if needed.
2450      if (WrapperKind != ISD::DELETED_NODE)
2451        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2452      // Add extra indirection if needed.
2453      if (ExtraLoad)
2454        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2455                             MachinePointerInfo::getGOT(),
2456                             false, false, false, 0);
2457    }
2458  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2459    unsigned char OpFlags = 0;
2460
2461    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2462    // external symbols should go through the PLT.
2463    if (Subtarget->isTargetELF() &&
2464        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2465      OpFlags = X86II::MO_PLT;
2466    } else if (Subtarget->isPICStyleStubAny() &&
2467               (!Subtarget->getTargetTriple().isMacOSX() ||
2468                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2469      // PC-relative references to external symbols should go through $stub,
2470      // unless we're building with the leopard linker or later, which
2471      // automatically synthesizes these stubs.
2472      OpFlags = X86II::MO_DARWIN_STUB;
2473    }
2474
2475    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2476                                         OpFlags);
2477  }
2478
2479  // Returns a chain & a flag for retval copy to use.
2480  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2481  SmallVector<SDValue, 8> Ops;
2482
2483  if (!IsSibcall && isTailCall) {
2484    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2485                           DAG.getIntPtrConstant(0, true), InFlag);
2486    InFlag = Chain.getValue(1);
2487  }
2488
2489  Ops.push_back(Chain);
2490  Ops.push_back(Callee);
2491
2492  if (isTailCall)
2493    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2494
2495  // Add argument registers to the end of the list so that they are known live
2496  // into the call.
2497  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2498    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2499                                  RegsToPass[i].second.getValueType()));
2500
2501  // Add an implicit use GOT pointer in EBX.
2502  if (!isTailCall && Subtarget->isPICStyleGOT())
2503    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2504
2505  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2506  if (Is64Bit && isVarArg && !IsWin64)
2507    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2508
2509  // Experimental: Add a register mask operand representing the call-preserved
2510  // registers.
2511  if (UseRegMask) {
2512    const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2513    const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2514    Ops.push_back(DAG.getRegisterMask(Mask));
2515  }
2516
2517  if (InFlag.getNode())
2518    Ops.push_back(InFlag);
2519
2520  if (isTailCall) {
2521    // We used to do:
2522    //// If this is the first return lowered for this function, add the regs
2523    //// to the liveout set for the function.
2524    // This isn't right, although it's probably harmless on x86; liveouts
2525    // should be computed from returns not tail calls.  Consider a void
2526    // function making a tail call to a function returning int.
2527    return DAG.getNode(X86ISD::TC_RETURN, dl,
2528                       NodeTys, &Ops[0], Ops.size());
2529  }
2530
2531  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2532  InFlag = Chain.getValue(1);
2533
2534  // Create the CALLSEQ_END node.
2535  unsigned NumBytesForCalleeToPush;
2536  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2537                       getTargetMachine().Options.GuaranteedTailCallOpt))
2538    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2539  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2540           IsStructRet)
2541    // If this is a call to a struct-return function, the callee
2542    // pops the hidden struct pointer, so we have to push it back.
2543    // This is common for Darwin/X86, Linux & Mingw32 targets.
2544    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2545    NumBytesForCalleeToPush = 4;
2546  else
2547    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2548
2549  // Returns a flag for retval copy to use.
2550  if (!IsSibcall) {
2551    Chain = DAG.getCALLSEQ_END(Chain,
2552                               DAG.getIntPtrConstant(NumBytes, true),
2553                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2554                                                     true),
2555                               InFlag);
2556    InFlag = Chain.getValue(1);
2557  }
2558
2559  // Handle result values, copying them out of physregs into vregs that we
2560  // return.
2561  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2562                         Ins, dl, DAG, InVals);
2563}
2564
2565
2566//===----------------------------------------------------------------------===//
2567//                Fast Calling Convention (tail call) implementation
2568//===----------------------------------------------------------------------===//
2569
2570//  Like std call, callee cleans arguments, convention except that ECX is
2571//  reserved for storing the tail called function address. Only 2 registers are
2572//  free for argument passing (inreg). Tail call optimization is performed
2573//  provided:
2574//                * tailcallopt is enabled
2575//                * caller/callee are fastcc
2576//  On X86_64 architecture with GOT-style position independent code only local
2577//  (within module) calls are supported at the moment.
2578//  To keep the stack aligned according to platform abi the function
2579//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2580//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2581//  If a tail called function callee has more arguments than the caller the
2582//  caller needs to make sure that there is room to move the RETADDR to. This is
2583//  achieved by reserving an area the size of the argument delta right after the
2584//  original REtADDR, but before the saved framepointer or the spilled registers
2585//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2586//  stack layout:
2587//    arg1
2588//    arg2
2589//    RETADDR
2590//    [ new RETADDR
2591//      move area ]
2592//    (possible EBP)
2593//    ESI
2594//    EDI
2595//    local1 ..
2596
2597/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2598/// for a 16 byte align requirement.
2599unsigned
2600X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2601                                               SelectionDAG& DAG) const {
2602  MachineFunction &MF = DAG.getMachineFunction();
2603  const TargetMachine &TM = MF.getTarget();
2604  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2605  unsigned StackAlignment = TFI.getStackAlignment();
2606  uint64_t AlignMask = StackAlignment - 1;
2607  int64_t Offset = StackSize;
2608  uint64_t SlotSize = TD->getPointerSize();
2609  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2610    // Number smaller than 12 so just add the difference.
2611    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2612  } else {
2613    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2614    Offset = ((~AlignMask) & Offset) + StackAlignment +
2615      (StackAlignment-SlotSize);
2616  }
2617  return Offset;
2618}
2619
2620/// MatchingStackOffset - Return true if the given stack call argument is
2621/// already available in the same position (relatively) of the caller's
2622/// incoming argument stack.
2623static
2624bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2625                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2626                         const X86InstrInfo *TII) {
2627  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2628  int FI = INT_MAX;
2629  if (Arg.getOpcode() == ISD::CopyFromReg) {
2630    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2631    if (!TargetRegisterInfo::isVirtualRegister(VR))
2632      return false;
2633    MachineInstr *Def = MRI->getVRegDef(VR);
2634    if (!Def)
2635      return false;
2636    if (!Flags.isByVal()) {
2637      if (!TII->isLoadFromStackSlot(Def, FI))
2638        return false;
2639    } else {
2640      unsigned Opcode = Def->getOpcode();
2641      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2642          Def->getOperand(1).isFI()) {
2643        FI = Def->getOperand(1).getIndex();
2644        Bytes = Flags.getByValSize();
2645      } else
2646        return false;
2647    }
2648  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2649    if (Flags.isByVal())
2650      // ByVal argument is passed in as a pointer but it's now being
2651      // dereferenced. e.g.
2652      // define @foo(%struct.X* %A) {
2653      //   tail call @bar(%struct.X* byval %A)
2654      // }
2655      return false;
2656    SDValue Ptr = Ld->getBasePtr();
2657    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2658    if (!FINode)
2659      return false;
2660    FI = FINode->getIndex();
2661  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2662    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2663    FI = FINode->getIndex();
2664    Bytes = Flags.getByValSize();
2665  } else
2666    return false;
2667
2668  assert(FI != INT_MAX);
2669  if (!MFI->isFixedObjectIndex(FI))
2670    return false;
2671  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2672}
2673
2674/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2675/// for tail call optimization. Targets which want to do tail call
2676/// optimization should implement this function.
2677bool
2678X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2679                                                     CallingConv::ID CalleeCC,
2680                                                     bool isVarArg,
2681                                                     bool isCalleeStructRet,
2682                                                     bool isCallerStructRet,
2683                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2684                                    const SmallVectorImpl<SDValue> &OutVals,
2685                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2686                                                     SelectionDAG& DAG) const {
2687  if (!IsTailCallConvention(CalleeCC) &&
2688      CalleeCC != CallingConv::C)
2689    return false;
2690
2691  // If -tailcallopt is specified, make fastcc functions tail-callable.
2692  const MachineFunction &MF = DAG.getMachineFunction();
2693  const Function *CallerF = DAG.getMachineFunction().getFunction();
2694  CallingConv::ID CallerCC = CallerF->getCallingConv();
2695  bool CCMatch = CallerCC == CalleeCC;
2696
2697  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2698    if (IsTailCallConvention(CalleeCC) && CCMatch)
2699      return true;
2700    return false;
2701  }
2702
2703  // Look for obvious safe cases to perform tail call optimization that do not
2704  // require ABI changes. This is what gcc calls sibcall.
2705
2706  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2707  // emit a special epilogue.
2708  if (RegInfo->needsStackRealignment(MF))
2709    return false;
2710
2711  // Also avoid sibcall optimization if either caller or callee uses struct
2712  // return semantics.
2713  if (isCalleeStructRet || isCallerStructRet)
2714    return false;
2715
2716  // An stdcall caller is expected to clean up its arguments; the callee
2717  // isn't going to do that.
2718  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2719    return false;
2720
2721  // Do not sibcall optimize vararg calls unless all arguments are passed via
2722  // registers.
2723  if (isVarArg && !Outs.empty()) {
2724
2725    // Optimizing for varargs on Win64 is unlikely to be safe without
2726    // additional testing.
2727    if (Subtarget->isTargetWin64())
2728      return false;
2729
2730    SmallVector<CCValAssign, 16> ArgLocs;
2731    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2732		   getTargetMachine(), ArgLocs, *DAG.getContext());
2733
2734    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2735    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2736      if (!ArgLocs[i].isRegLoc())
2737        return false;
2738  }
2739
2740  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2741  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2742  // this into a sibcall.
2743  bool Unused = false;
2744  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2745    if (!Ins[i].Used) {
2746      Unused = true;
2747      break;
2748    }
2749  }
2750  if (Unused) {
2751    SmallVector<CCValAssign, 16> RVLocs;
2752    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2753		   getTargetMachine(), RVLocs, *DAG.getContext());
2754    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2755    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2756      CCValAssign &VA = RVLocs[i];
2757      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2758        return false;
2759    }
2760  }
2761
2762  // If the calling conventions do not match, then we'd better make sure the
2763  // results are returned in the same way as what the caller expects.
2764  if (!CCMatch) {
2765    SmallVector<CCValAssign, 16> RVLocs1;
2766    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2767		    getTargetMachine(), RVLocs1, *DAG.getContext());
2768    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2769
2770    SmallVector<CCValAssign, 16> RVLocs2;
2771    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2772		    getTargetMachine(), RVLocs2, *DAG.getContext());
2773    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2774
2775    if (RVLocs1.size() != RVLocs2.size())
2776      return false;
2777    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2778      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2779        return false;
2780      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2781        return false;
2782      if (RVLocs1[i].isRegLoc()) {
2783        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2784          return false;
2785      } else {
2786        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2787          return false;
2788      }
2789    }
2790  }
2791
2792  // If the callee takes no arguments then go on to check the results of the
2793  // call.
2794  if (!Outs.empty()) {
2795    // Check if stack adjustment is needed. For now, do not do this if any
2796    // argument is passed on the stack.
2797    SmallVector<CCValAssign, 16> ArgLocs;
2798    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2799		   getTargetMachine(), ArgLocs, *DAG.getContext());
2800
2801    // Allocate shadow area for Win64
2802    if (Subtarget->isTargetWin64()) {
2803      CCInfo.AllocateStack(32, 8);
2804    }
2805
2806    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2807    if (CCInfo.getNextStackOffset()) {
2808      MachineFunction &MF = DAG.getMachineFunction();
2809      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2810        return false;
2811
2812      // Check if the arguments are already laid out in the right way as
2813      // the caller's fixed stack objects.
2814      MachineFrameInfo *MFI = MF.getFrameInfo();
2815      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2816      const X86InstrInfo *TII =
2817        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2818      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2819        CCValAssign &VA = ArgLocs[i];
2820        SDValue Arg = OutVals[i];
2821        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2822        if (VA.getLocInfo() == CCValAssign::Indirect)
2823          return false;
2824        if (!VA.isRegLoc()) {
2825          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2826                                   MFI, MRI, TII))
2827            return false;
2828        }
2829      }
2830    }
2831
2832    // If the tailcall address may be in a register, then make sure it's
2833    // possible to register allocate for it. In 32-bit, the call address can
2834    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2835    // callee-saved registers are restored. These happen to be the same
2836    // registers used to pass 'inreg' arguments so watch out for those.
2837    if (!Subtarget->is64Bit() &&
2838        !isa<GlobalAddressSDNode>(Callee) &&
2839        !isa<ExternalSymbolSDNode>(Callee)) {
2840      unsigned NumInRegs = 0;
2841      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2842        CCValAssign &VA = ArgLocs[i];
2843        if (!VA.isRegLoc())
2844          continue;
2845        unsigned Reg = VA.getLocReg();
2846        switch (Reg) {
2847        default: break;
2848        case X86::EAX: case X86::EDX: case X86::ECX:
2849          if (++NumInRegs == 3)
2850            return false;
2851          break;
2852        }
2853      }
2854    }
2855  }
2856
2857  return true;
2858}
2859
2860FastISel *
2861X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2862  return X86::createFastISel(funcInfo);
2863}
2864
2865
2866//===----------------------------------------------------------------------===//
2867//                           Other Lowering Hooks
2868//===----------------------------------------------------------------------===//
2869
2870static bool MayFoldLoad(SDValue Op) {
2871  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2872}
2873
2874static bool MayFoldIntoStore(SDValue Op) {
2875  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2876}
2877
2878static bool isTargetShuffle(unsigned Opcode) {
2879  switch(Opcode) {
2880  default: return false;
2881  case X86ISD::PSHUFD:
2882  case X86ISD::PSHUFHW:
2883  case X86ISD::PSHUFLW:
2884  case X86ISD::SHUFP:
2885  case X86ISD::PALIGN:
2886  case X86ISD::MOVLHPS:
2887  case X86ISD::MOVLHPD:
2888  case X86ISD::MOVHLPS:
2889  case X86ISD::MOVLPS:
2890  case X86ISD::MOVLPD:
2891  case X86ISD::MOVSHDUP:
2892  case X86ISD::MOVSLDUP:
2893  case X86ISD::MOVDDUP:
2894  case X86ISD::MOVSS:
2895  case X86ISD::MOVSD:
2896  case X86ISD::UNPCKL:
2897  case X86ISD::UNPCKH:
2898  case X86ISD::VPERMILP:
2899  case X86ISD::VPERM2X128:
2900    return true;
2901  }
2902}
2903
2904static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2905                                               SDValue V1, SelectionDAG &DAG) {
2906  switch(Opc) {
2907  default: llvm_unreachable("Unknown x86 shuffle node");
2908  case X86ISD::MOVSHDUP:
2909  case X86ISD::MOVSLDUP:
2910  case X86ISD::MOVDDUP:
2911    return DAG.getNode(Opc, dl, VT, V1);
2912  }
2913}
2914
2915static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2916                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2917  switch(Opc) {
2918  default: llvm_unreachable("Unknown x86 shuffle node");
2919  case X86ISD::PSHUFD:
2920  case X86ISD::PSHUFHW:
2921  case X86ISD::PSHUFLW:
2922  case X86ISD::VPERMILP:
2923    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2924  }
2925}
2926
2927static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2928               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2929  switch(Opc) {
2930  default: llvm_unreachable("Unknown x86 shuffle node");
2931  case X86ISD::PALIGN:
2932  case X86ISD::SHUFP:
2933  case X86ISD::VPERM2X128:
2934    return DAG.getNode(Opc, dl, VT, V1, V2,
2935                       DAG.getConstant(TargetMask, MVT::i8));
2936  }
2937}
2938
2939static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2940                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2941  switch(Opc) {
2942  default: llvm_unreachable("Unknown x86 shuffle node");
2943  case X86ISD::MOVLHPS:
2944  case X86ISD::MOVLHPD:
2945  case X86ISD::MOVHLPS:
2946  case X86ISD::MOVLPS:
2947  case X86ISD::MOVLPD:
2948  case X86ISD::MOVSS:
2949  case X86ISD::MOVSD:
2950  case X86ISD::UNPCKL:
2951  case X86ISD::UNPCKH:
2952    return DAG.getNode(Opc, dl, VT, V1, V2);
2953  }
2954}
2955
2956SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2957  MachineFunction &MF = DAG.getMachineFunction();
2958  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2959  int ReturnAddrIndex = FuncInfo->getRAIndex();
2960
2961  if (ReturnAddrIndex == 0) {
2962    // Set up a frame object for the return address.
2963    uint64_t SlotSize = TD->getPointerSize();
2964    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2965                                                           false);
2966    FuncInfo->setRAIndex(ReturnAddrIndex);
2967  }
2968
2969  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2970}
2971
2972
2973bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2974                                       bool hasSymbolicDisplacement) {
2975  // Offset should fit into 32 bit immediate field.
2976  if (!isInt<32>(Offset))
2977    return false;
2978
2979  // If we don't have a symbolic displacement - we don't have any extra
2980  // restrictions.
2981  if (!hasSymbolicDisplacement)
2982    return true;
2983
2984  // FIXME: Some tweaks might be needed for medium code model.
2985  if (M != CodeModel::Small && M != CodeModel::Kernel)
2986    return false;
2987
2988  // For small code model we assume that latest object is 16MB before end of 31
2989  // bits boundary. We may also accept pretty large negative constants knowing
2990  // that all objects are in the positive half of address space.
2991  if (M == CodeModel::Small && Offset < 16*1024*1024)
2992    return true;
2993
2994  // For kernel code model we know that all object resist in the negative half
2995  // of 32bits address space. We may not accept negative offsets, since they may
2996  // be just off and we may accept pretty large positive ones.
2997  if (M == CodeModel::Kernel && Offset > 0)
2998    return true;
2999
3000  return false;
3001}
3002
3003/// isCalleePop - Determines whether the callee is required to pop its
3004/// own arguments. Callee pop is necessary to support tail calls.
3005bool X86::isCalleePop(CallingConv::ID CallingConv,
3006                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3007  if (IsVarArg)
3008    return false;
3009
3010  switch (CallingConv) {
3011  default:
3012    return false;
3013  case CallingConv::X86_StdCall:
3014    return !is64Bit;
3015  case CallingConv::X86_FastCall:
3016    return !is64Bit;
3017  case CallingConv::X86_ThisCall:
3018    return !is64Bit;
3019  case CallingConv::Fast:
3020    return TailCallOpt;
3021  case CallingConv::GHC:
3022    return TailCallOpt;
3023  }
3024}
3025
3026/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3027/// specific condition code, returning the condition code and the LHS/RHS of the
3028/// comparison to make.
3029static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3030                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3031  if (!isFP) {
3032    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3033      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3034        // X > -1   -> X == 0, jump !sign.
3035        RHS = DAG.getConstant(0, RHS.getValueType());
3036        return X86::COND_NS;
3037      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3038        // X < 0   -> X == 0, jump on sign.
3039        return X86::COND_S;
3040      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3041        // X < 1   -> X <= 0
3042        RHS = DAG.getConstant(0, RHS.getValueType());
3043        return X86::COND_LE;
3044      }
3045    }
3046
3047    switch (SetCCOpcode) {
3048    default: llvm_unreachable("Invalid integer condition!");
3049    case ISD::SETEQ:  return X86::COND_E;
3050    case ISD::SETGT:  return X86::COND_G;
3051    case ISD::SETGE:  return X86::COND_GE;
3052    case ISD::SETLT:  return X86::COND_L;
3053    case ISD::SETLE:  return X86::COND_LE;
3054    case ISD::SETNE:  return X86::COND_NE;
3055    case ISD::SETULT: return X86::COND_B;
3056    case ISD::SETUGT: return X86::COND_A;
3057    case ISD::SETULE: return X86::COND_BE;
3058    case ISD::SETUGE: return X86::COND_AE;
3059    }
3060  }
3061
3062  // First determine if it is required or is profitable to flip the operands.
3063
3064  // If LHS is a foldable load, but RHS is not, flip the condition.
3065  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3066      !ISD::isNON_EXTLoad(RHS.getNode())) {
3067    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3068    std::swap(LHS, RHS);
3069  }
3070
3071  switch (SetCCOpcode) {
3072  default: break;
3073  case ISD::SETOLT:
3074  case ISD::SETOLE:
3075  case ISD::SETUGT:
3076  case ISD::SETUGE:
3077    std::swap(LHS, RHS);
3078    break;
3079  }
3080
3081  // On a floating point condition, the flags are set as follows:
3082  // ZF  PF  CF   op
3083  //  0 | 0 | 0 | X > Y
3084  //  0 | 0 | 1 | X < Y
3085  //  1 | 0 | 0 | X == Y
3086  //  1 | 1 | 1 | unordered
3087  switch (SetCCOpcode) {
3088  default: llvm_unreachable("Condcode should be pre-legalized away");
3089  case ISD::SETUEQ:
3090  case ISD::SETEQ:   return X86::COND_E;
3091  case ISD::SETOLT:              // flipped
3092  case ISD::SETOGT:
3093  case ISD::SETGT:   return X86::COND_A;
3094  case ISD::SETOLE:              // flipped
3095  case ISD::SETOGE:
3096  case ISD::SETGE:   return X86::COND_AE;
3097  case ISD::SETUGT:              // flipped
3098  case ISD::SETULT:
3099  case ISD::SETLT:   return X86::COND_B;
3100  case ISD::SETUGE:              // flipped
3101  case ISD::SETULE:
3102  case ISD::SETLE:   return X86::COND_BE;
3103  case ISD::SETONE:
3104  case ISD::SETNE:   return X86::COND_NE;
3105  case ISD::SETUO:   return X86::COND_P;
3106  case ISD::SETO:    return X86::COND_NP;
3107  case ISD::SETOEQ:
3108  case ISD::SETUNE:  return X86::COND_INVALID;
3109  }
3110}
3111
3112/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3113/// code. Current x86 isa includes the following FP cmov instructions:
3114/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3115static bool hasFPCMov(unsigned X86CC) {
3116  switch (X86CC) {
3117  default:
3118    return false;
3119  case X86::COND_B:
3120  case X86::COND_BE:
3121  case X86::COND_E:
3122  case X86::COND_P:
3123  case X86::COND_A:
3124  case X86::COND_AE:
3125  case X86::COND_NE:
3126  case X86::COND_NP:
3127    return true;
3128  }
3129}
3130
3131/// isFPImmLegal - Returns true if the target can instruction select the
3132/// specified FP immediate natively. If false, the legalizer will
3133/// materialize the FP immediate as a load from a constant pool.
3134bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3135  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3136    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3137      return true;
3138  }
3139  return false;
3140}
3141
3142/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3143/// the specified range (L, H].
3144static bool isUndefOrInRange(int Val, int Low, int Hi) {
3145  return (Val < 0) || (Val >= Low && Val < Hi);
3146}
3147
3148/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3149/// specified value.
3150static bool isUndefOrEqual(int Val, int CmpVal) {
3151  if (Val < 0 || Val == CmpVal)
3152    return true;
3153  return false;
3154}
3155
3156/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3157/// from position Pos and ending in Pos+Size, falls within the specified
3158/// sequential range (L, L+Pos]. or is undef.
3159static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3160                                       int Pos, int Size, int Low) {
3161  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3162    if (!isUndefOrEqual(Mask[i], Low))
3163      return false;
3164  return true;
3165}
3166
3167/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3168/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3169/// the second operand.
3170static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3171  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3172    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3173  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3174    return (Mask[0] < 2 && Mask[1] < 2);
3175  return false;
3176}
3177
3178bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3179  return ::isPSHUFDMask(N->getMask(), N->getValueType(0));
3180}
3181
3182/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3183/// is suitable for input to PSHUFHW.
3184static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3185  if (VT != MVT::v8i16)
3186    return false;
3187
3188  // Lower quadword copied in order or undef.
3189  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3190    return false;
3191
3192  // Upper quadword shuffled.
3193  for (unsigned i = 4; i != 8; ++i)
3194    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3195      return false;
3196
3197  return true;
3198}
3199
3200bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3201  return ::isPSHUFHWMask(N->getMask(), N->getValueType(0));
3202}
3203
3204/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3205/// is suitable for input to PSHUFLW.
3206static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3207  if (VT != MVT::v8i16)
3208    return false;
3209
3210  // Upper quadword copied in order.
3211  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3212    return false;
3213
3214  // Lower quadword shuffled.
3215  for (unsigned i = 0; i != 4; ++i)
3216    if (Mask[i] >= 4)
3217      return false;
3218
3219  return true;
3220}
3221
3222bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3223  return ::isPSHUFLWMask(N->getMask(), N->getValueType(0));
3224}
3225
3226/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3227/// is suitable for input to PALIGNR.
3228static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3229                          const X86Subtarget *Subtarget) {
3230  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3231      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3232    return false;
3233
3234  unsigned NumElts = VT.getVectorNumElements();
3235  unsigned NumLanes = VT.getSizeInBits()/128;
3236  unsigned NumLaneElts = NumElts/NumLanes;
3237
3238  // Do not handle 64-bit element shuffles with palignr.
3239  if (NumLaneElts == 2)
3240    return false;
3241
3242  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3243    unsigned i;
3244    for (i = 0; i != NumLaneElts; ++i) {
3245      if (Mask[i+l] >= 0)
3246        break;
3247    }
3248
3249    // Lane is all undef, go to next lane
3250    if (i == NumLaneElts)
3251      continue;
3252
3253    int Start = Mask[i+l];
3254
3255    // Make sure its in this lane in one of the sources
3256    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3257        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3258      return false;
3259
3260    // If not lane 0, then we must match lane 0
3261    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3262      return false;
3263
3264    // Correct second source to be contiguous with first source
3265    if (Start >= (int)NumElts)
3266      Start -= NumElts - NumLaneElts;
3267
3268    // Make sure we're shifting in the right direction.
3269    if (Start <= (int)(i+l))
3270      return false;
3271
3272    Start -= i;
3273
3274    // Check the rest of the elements to see if they are consecutive.
3275    for (++i; i != NumLaneElts; ++i) {
3276      int Idx = Mask[i+l];
3277
3278      // Make sure its in this lane
3279      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3280          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3281        return false;
3282
3283      // If not lane 0, then we must match lane 0
3284      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3285        return false;
3286
3287      if (Idx >= (int)NumElts)
3288        Idx -= NumElts - NumLaneElts;
3289
3290      if (!isUndefOrEqual(Idx, Start+i))
3291        return false;
3292
3293    }
3294  }
3295
3296  return true;
3297}
3298
3299/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3300/// the two vector operands have swapped position.
3301static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3302                                     unsigned NumElems) {
3303  for (unsigned i = 0; i != NumElems; ++i) {
3304    int idx = Mask[i];
3305    if (idx < 0)
3306      continue;
3307    else if (idx < (int)NumElems)
3308      Mask[i] = idx + NumElems;
3309    else
3310      Mask[i] = idx - NumElems;
3311  }
3312}
3313
3314/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3315/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3316/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3317/// reverse of what x86 shuffles want.
3318static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3319                        bool Commuted = false) {
3320  if (!HasAVX && VT.getSizeInBits() == 256)
3321    return false;
3322
3323  unsigned NumElems = VT.getVectorNumElements();
3324  unsigned NumLanes = VT.getSizeInBits()/128;
3325  unsigned NumLaneElems = NumElems/NumLanes;
3326
3327  if (NumLaneElems != 2 && NumLaneElems != 4)
3328    return false;
3329
3330  // VSHUFPSY divides the resulting vector into 4 chunks.
3331  // The sources are also splitted into 4 chunks, and each destination
3332  // chunk must come from a different source chunk.
3333  //
3334  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3335  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3336  //
3337  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3338  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3339  //
3340  // VSHUFPDY divides the resulting vector into 4 chunks.
3341  // The sources are also splitted into 4 chunks, and each destination
3342  // chunk must come from a different source chunk.
3343  //
3344  //  SRC1 =>      X3       X2       X1       X0
3345  //  SRC2 =>      Y3       Y2       Y1       Y0
3346  //
3347  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3348  //
3349  unsigned HalfLaneElems = NumLaneElems/2;
3350  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3351    for (unsigned i = 0; i != NumLaneElems; ++i) {
3352      int Idx = Mask[i+l];
3353      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3354      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3355        return false;
3356      // For VSHUFPSY, the mask of the second half must be the same as the
3357      // first but with the appropriate offsets. This works in the same way as
3358      // VPERMILPS works with masks.
3359      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3360        continue;
3361      if (!isUndefOrEqual(Idx, Mask[i]+l))
3362        return false;
3363    }
3364  }
3365
3366  return true;
3367}
3368
3369bool X86::isSHUFPMask(ShuffleVectorSDNode *N, bool HasAVX) {
3370  return ::isSHUFPMask(N->getMask(), N->getValueType(0), HasAVX);
3371}
3372
3373/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3374/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3375bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3376  EVT VT = N->getValueType(0);
3377  unsigned NumElems = VT.getVectorNumElements();
3378
3379  if (VT.getSizeInBits() != 128)
3380    return false;
3381
3382  if (NumElems != 4)
3383    return false;
3384
3385  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3386  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3387         isUndefOrEqual(N->getMaskElt(1), 7) &&
3388         isUndefOrEqual(N->getMaskElt(2), 2) &&
3389         isUndefOrEqual(N->getMaskElt(3), 3);
3390}
3391
3392/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3393/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3394/// <2, 3, 2, 3>
3395bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3396  EVT VT = N->getValueType(0);
3397  unsigned NumElems = VT.getVectorNumElements();
3398
3399  if (VT.getSizeInBits() != 128)
3400    return false;
3401
3402  if (NumElems != 4)
3403    return false;
3404
3405  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3406         isUndefOrEqual(N->getMaskElt(1), 3) &&
3407         isUndefOrEqual(N->getMaskElt(2), 2) &&
3408         isUndefOrEqual(N->getMaskElt(3), 3);
3409}
3410
3411/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3412/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3413bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3414  EVT VT = N->getValueType(0);
3415
3416  if (VT.getSizeInBits() != 128)
3417    return false;
3418
3419  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3420
3421  if (NumElems != 2 && NumElems != 4)
3422    return false;
3423
3424  for (unsigned i = 0; i < NumElems/2; ++i)
3425    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3426      return false;
3427
3428  for (unsigned i = NumElems/2; i < NumElems; ++i)
3429    if (!isUndefOrEqual(N->getMaskElt(i), i))
3430      return false;
3431
3432  return true;
3433}
3434
3435/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3436/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3437bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3438  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3439
3440  if ((NumElems != 2 && NumElems != 4)
3441      || N->getValueType(0).getSizeInBits() > 128)
3442    return false;
3443
3444  for (unsigned i = 0; i < NumElems/2; ++i)
3445    if (!isUndefOrEqual(N->getMaskElt(i), i))
3446      return false;
3447
3448  for (unsigned i = 0; i < NumElems/2; ++i)
3449    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3450      return false;
3451
3452  return true;
3453}
3454
3455/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3456/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3457static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3458                         bool HasAVX2, bool V2IsSplat = false) {
3459  unsigned NumElts = VT.getVectorNumElements();
3460
3461  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3462         "Unsupported vector type for unpckh");
3463
3464  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3465      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3466    return false;
3467
3468  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3469  // independently on 128-bit lanes.
3470  unsigned NumLanes = VT.getSizeInBits()/128;
3471  unsigned NumLaneElts = NumElts/NumLanes;
3472
3473  for (unsigned l = 0; l != NumLanes; ++l) {
3474    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3475         i != (l+1)*NumLaneElts;
3476         i += 2, ++j) {
3477      int BitI  = Mask[i];
3478      int BitI1 = Mask[i+1];
3479      if (!isUndefOrEqual(BitI, j))
3480        return false;
3481      if (V2IsSplat) {
3482        if (!isUndefOrEqual(BitI1, NumElts))
3483          return false;
3484      } else {
3485        if (!isUndefOrEqual(BitI1, j + NumElts))
3486          return false;
3487      }
3488    }
3489  }
3490
3491  return true;
3492}
3493
3494bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3495  return ::isUNPCKLMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3496}
3497
3498/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3499/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3500static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3501                         bool HasAVX2, bool V2IsSplat = false) {
3502  unsigned NumElts = VT.getVectorNumElements();
3503
3504  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3505         "Unsupported vector type for unpckh");
3506
3507  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3508      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3509    return false;
3510
3511  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3512  // independently on 128-bit lanes.
3513  unsigned NumLanes = VT.getSizeInBits()/128;
3514  unsigned NumLaneElts = NumElts/NumLanes;
3515
3516  for (unsigned l = 0; l != NumLanes; ++l) {
3517    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3518         i != (l+1)*NumLaneElts; i += 2, ++j) {
3519      int BitI  = Mask[i];
3520      int BitI1 = Mask[i+1];
3521      if (!isUndefOrEqual(BitI, j))
3522        return false;
3523      if (V2IsSplat) {
3524        if (isUndefOrEqual(BitI1, NumElts))
3525          return false;
3526      } else {
3527        if (!isUndefOrEqual(BitI1, j+NumElts))
3528          return false;
3529      }
3530    }
3531  }
3532  return true;
3533}
3534
3535bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool HasAVX2, bool V2IsSplat) {
3536  return ::isUNPCKHMask(N->getMask(), N->getValueType(0), HasAVX2, V2IsSplat);
3537}
3538
3539/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3540/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3541/// <0, 0, 1, 1>
3542static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3543                                  bool HasAVX2) {
3544  unsigned NumElts = VT.getVectorNumElements();
3545
3546  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3547         "Unsupported vector type for unpckh");
3548
3549  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3550      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3551    return false;
3552
3553  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3554  // FIXME: Need a better way to get rid of this, there's no latency difference
3555  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3556  // the former later. We should also remove the "_undef" special mask.
3557  if (NumElts == 4 && VT.getSizeInBits() == 256)
3558    return false;
3559
3560  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3561  // independently on 128-bit lanes.
3562  unsigned NumLanes = VT.getSizeInBits()/128;
3563  unsigned NumLaneElts = NumElts/NumLanes;
3564
3565  for (unsigned l = 0; l != NumLanes; ++l) {
3566    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3567         i != (l+1)*NumLaneElts;
3568         i += 2, ++j) {
3569      int BitI  = Mask[i];
3570      int BitI1 = Mask[i+1];
3571
3572      if (!isUndefOrEqual(BitI, j))
3573        return false;
3574      if (!isUndefOrEqual(BitI1, j))
3575        return false;
3576    }
3577  }
3578
3579  return true;
3580}
3581
3582bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3583  return ::isUNPCKL_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3584}
3585
3586/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3587/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3588/// <2, 2, 3, 3>
3589static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3590  unsigned NumElts = VT.getVectorNumElements();
3591
3592  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3593         "Unsupported vector type for unpckh");
3594
3595  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3596      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3597    return false;
3598
3599  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3600  // independently on 128-bit lanes.
3601  unsigned NumLanes = VT.getSizeInBits()/128;
3602  unsigned NumLaneElts = NumElts/NumLanes;
3603
3604  for (unsigned l = 0; l != NumLanes; ++l) {
3605    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3606         i != (l+1)*NumLaneElts; i += 2, ++j) {
3607      int BitI  = Mask[i];
3608      int BitI1 = Mask[i+1];
3609      if (!isUndefOrEqual(BitI, j))
3610        return false;
3611      if (!isUndefOrEqual(BitI1, j))
3612        return false;
3613    }
3614  }
3615  return true;
3616}
3617
3618bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N, bool HasAVX2) {
3619  return ::isUNPCKH_v_undef_Mask(N->getMask(), N->getValueType(0), HasAVX2);
3620}
3621
3622/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3623/// specifies a shuffle of elements that is suitable for input to MOVSS,
3624/// MOVSD, and MOVD, i.e. setting the lowest element.
3625static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3626  if (VT.getVectorElementType().getSizeInBits() < 32)
3627    return false;
3628  if (VT.getSizeInBits() == 256)
3629    return false;
3630
3631  unsigned NumElts = VT.getVectorNumElements();
3632
3633  if (!isUndefOrEqual(Mask[0], NumElts))
3634    return false;
3635
3636  for (unsigned i = 1; i != NumElts; ++i)
3637    if (!isUndefOrEqual(Mask[i], i))
3638      return false;
3639
3640  return true;
3641}
3642
3643bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3644  return ::isMOVLMask(N->getMask(), N->getValueType(0));
3645}
3646
3647/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3648/// as permutations between 128-bit chunks or halves. As an example: this
3649/// shuffle bellow:
3650///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3651/// The first half comes from the second half of V1 and the second half from the
3652/// the second half of V2.
3653static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3654  if (!HasAVX || VT.getSizeInBits() != 256)
3655    return false;
3656
3657  // The shuffle result is divided into half A and half B. In total the two
3658  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3659  // B must come from C, D, E or F.
3660  unsigned HalfSize = VT.getVectorNumElements()/2;
3661  bool MatchA = false, MatchB = false;
3662
3663  // Check if A comes from one of C, D, E, F.
3664  for (unsigned Half = 0; Half != 4; ++Half) {
3665    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3666      MatchA = true;
3667      break;
3668    }
3669  }
3670
3671  // Check if B comes from one of C, D, E, F.
3672  for (unsigned Half = 0; Half != 4; ++Half) {
3673    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3674      MatchB = true;
3675      break;
3676    }
3677  }
3678
3679  return MatchA && MatchB;
3680}
3681
3682/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3683/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3684static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3685  EVT VT = SVOp->getValueType(0);
3686
3687  unsigned HalfSize = VT.getVectorNumElements()/2;
3688
3689  unsigned FstHalf = 0, SndHalf = 0;
3690  for (unsigned i = 0; i < HalfSize; ++i) {
3691    if (SVOp->getMaskElt(i) > 0) {
3692      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3693      break;
3694    }
3695  }
3696  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3697    if (SVOp->getMaskElt(i) > 0) {
3698      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3699      break;
3700    }
3701  }
3702
3703  return (FstHalf | (SndHalf << 4));
3704}
3705
3706/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3707/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3708/// Note that VPERMIL mask matching is different depending whether theunderlying
3709/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3710/// to the same elements of the low, but to the higher half of the source.
3711/// In VPERMILPD the two lanes could be shuffled independently of each other
3712/// with the same restriction that lanes can't be crossed.
3713static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3714  if (!HasAVX)
3715    return false;
3716
3717  unsigned NumElts = VT.getVectorNumElements();
3718  // Only match 256-bit with 32/64-bit types
3719  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3720    return false;
3721
3722  unsigned NumLanes = VT.getSizeInBits()/128;
3723  unsigned LaneSize = NumElts/NumLanes;
3724  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3725    for (unsigned i = 0; i != LaneSize; ++i) {
3726      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3727        return false;
3728      if (NumElts != 8 || l == 0)
3729        continue;
3730      // VPERMILPS handling
3731      if (Mask[i] < 0)
3732        continue;
3733      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3734        return false;
3735    }
3736  }
3737
3738  return true;
3739}
3740
3741/// getShuffleVPERMILPImmediate - Return the appropriate immediate to shuffle
3742/// the specified VECTOR_MASK mask with VPERMILPS/D* instructions.
3743static unsigned getShuffleVPERMILPImmediate(ShuffleVectorSDNode *SVOp) {
3744  EVT VT = SVOp->getValueType(0);
3745
3746  unsigned NumElts = VT.getVectorNumElements();
3747  unsigned NumLanes = VT.getSizeInBits()/128;
3748  unsigned LaneSize = NumElts/NumLanes;
3749
3750  // Although the mask is equal for both lanes do it twice to get the cases
3751  // where a mask will match because the same mask element is undef on the
3752  // first half but valid on the second. This would get pathological cases
3753  // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3754  unsigned Shift = (LaneSize == 4) ? 2 : 1;
3755  unsigned Mask = 0;
3756  for (unsigned i = 0; i != NumElts; ++i) {
3757    int MaskElt = SVOp->getMaskElt(i);
3758    if (MaskElt < 0)
3759      continue;
3760    MaskElt %= LaneSize;
3761    unsigned Shamt = i;
3762    // VPERMILPSY, the mask of the first half must be equal to the second one
3763    if (NumElts == 8) Shamt %= LaneSize;
3764    Mask |= MaskElt << (Shamt*Shift);
3765  }
3766
3767  return Mask;
3768}
3769
3770/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3771/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3772/// element of vector 2 and the other elements to come from vector 1 in order.
3773static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3774                               bool V2IsSplat = false, bool V2IsUndef = false) {
3775  unsigned NumOps = VT.getVectorNumElements();
3776  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3777    return false;
3778
3779  if (!isUndefOrEqual(Mask[0], 0))
3780    return false;
3781
3782  for (unsigned i = 1; i != NumOps; ++i)
3783    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3784          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3785          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3786      return false;
3787
3788  return true;
3789}
3790
3791static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3792                           bool V2IsUndef = false) {
3793  return isCommutedMOVLMask(N->getMask(), N->getValueType(0),
3794                            V2IsSplat, V2IsUndef);
3795}
3796
3797/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3798/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3799/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3800bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3801                         const X86Subtarget *Subtarget) {
3802  if (!Subtarget->hasSSE3())
3803    return false;
3804
3805  // The second vector must be undef
3806  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3807    return false;
3808
3809  EVT VT = N->getValueType(0);
3810  unsigned NumElems = VT.getVectorNumElements();
3811
3812  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3813      (VT.getSizeInBits() == 256 && NumElems != 8))
3814    return false;
3815
3816  // "i+1" is the value the indexed mask element must have
3817  for (unsigned i = 0; i < NumElems; i += 2)
3818    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3819        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3820      return false;
3821
3822  return true;
3823}
3824
3825/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3826/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3827/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3828bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3829                         const X86Subtarget *Subtarget) {
3830  if (!Subtarget->hasSSE3())
3831    return false;
3832
3833  // The second vector must be undef
3834  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3835    return false;
3836
3837  EVT VT = N->getValueType(0);
3838  unsigned NumElems = VT.getVectorNumElements();
3839
3840  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3841      (VT.getSizeInBits() == 256 && NumElems != 8))
3842    return false;
3843
3844  // "i" is the value the indexed mask element must have
3845  for (unsigned i = 0; i != NumElems; i += 2)
3846    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3847        !isUndefOrEqual(N->getMaskElt(i+1), i))
3848      return false;
3849
3850  return true;
3851}
3852
3853/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3854/// specifies a shuffle of elements that is suitable for input to 256-bit
3855/// version of MOVDDUP.
3856static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3857  unsigned NumElts = VT.getVectorNumElements();
3858
3859  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3860    return false;
3861
3862  for (unsigned i = 0; i != NumElts/2; ++i)
3863    if (!isUndefOrEqual(Mask[i], 0))
3864      return false;
3865  for (unsigned i = NumElts/2; i != NumElts; ++i)
3866    if (!isUndefOrEqual(Mask[i], NumElts/2))
3867      return false;
3868  return true;
3869}
3870
3871/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3872/// specifies a shuffle of elements that is suitable for input to 128-bit
3873/// version of MOVDDUP.
3874bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3875  EVT VT = N->getValueType(0);
3876
3877  if (VT.getSizeInBits() != 128)
3878    return false;
3879
3880  unsigned e = VT.getVectorNumElements() / 2;
3881  for (unsigned i = 0; i != e; ++i)
3882    if (!isUndefOrEqual(N->getMaskElt(i), i))
3883      return false;
3884  for (unsigned i = 0; i != e; ++i)
3885    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3886      return false;
3887  return true;
3888}
3889
3890/// isVEXTRACTF128Index - Return true if the specified
3891/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3892/// suitable for input to VEXTRACTF128.
3893bool X86::isVEXTRACTF128Index(SDNode *N) {
3894  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3895    return false;
3896
3897  // The index should be aligned on a 128-bit boundary.
3898  uint64_t Index =
3899    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3900
3901  unsigned VL = N->getValueType(0).getVectorNumElements();
3902  unsigned VBits = N->getValueType(0).getSizeInBits();
3903  unsigned ElSize = VBits / VL;
3904  bool Result = (Index * ElSize) % 128 == 0;
3905
3906  return Result;
3907}
3908
3909/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3910/// operand specifies a subvector insert that is suitable for input to
3911/// VINSERTF128.
3912bool X86::isVINSERTF128Index(SDNode *N) {
3913  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3914    return false;
3915
3916  // The index should be aligned on a 128-bit boundary.
3917  uint64_t Index =
3918    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3919
3920  unsigned VL = N->getValueType(0).getVectorNumElements();
3921  unsigned VBits = N->getValueType(0).getSizeInBits();
3922  unsigned ElSize = VBits / VL;
3923  bool Result = (Index * ElSize) % 128 == 0;
3924
3925  return Result;
3926}
3927
3928/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3929/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3930/// Handles 128-bit and 256-bit.
3931unsigned X86::getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3932  EVT VT = N->getValueType(0);
3933
3934  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3935         "Unsupported vector type for PSHUF/SHUFP");
3936
3937  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3938  // independently on 128-bit lanes.
3939  unsigned NumElts = VT.getVectorNumElements();
3940  unsigned NumLanes = VT.getSizeInBits()/128;
3941  unsigned NumLaneElts = NumElts/NumLanes;
3942
3943  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3944         "Only supports 2 or 4 elements per lane");
3945
3946  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3947  unsigned Mask = 0;
3948  for (unsigned i = 0; i != NumElts; ++i) {
3949    int Elt = N->getMaskElt(i);
3950    if (Elt < 0) continue;
3951    Elt %= NumLaneElts;
3952    unsigned ShAmt = i << Shift;
3953    if (ShAmt >= 8) ShAmt -= 8;
3954    Mask |= Elt << ShAmt;
3955  }
3956
3957  return Mask;
3958}
3959
3960/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3961/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3962unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3963  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3964  unsigned Mask = 0;
3965  // 8 nodes, but we only care about the last 4.
3966  for (unsigned i = 7; i >= 4; --i) {
3967    int Val = SVOp->getMaskElt(i);
3968    if (Val >= 0)
3969      Mask |= (Val - 4);
3970    if (i != 4)
3971      Mask <<= 2;
3972  }
3973  return Mask;
3974}
3975
3976/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3977/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3978unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3979  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3980  unsigned Mask = 0;
3981  // 8 nodes, but we only care about the first 4.
3982  for (int i = 3; i >= 0; --i) {
3983    int Val = SVOp->getMaskElt(i);
3984    if (Val >= 0)
3985      Mask |= Val;
3986    if (i != 0)
3987      Mask <<= 2;
3988  }
3989  return Mask;
3990}
3991
3992/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3993/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3994static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3995  EVT VT = SVOp->getValueType(0);
3996  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3997
3998  unsigned NumElts = VT.getVectorNumElements();
3999  unsigned NumLanes = VT.getSizeInBits()/128;
4000  unsigned NumLaneElts = NumElts/NumLanes;
4001
4002  int Val = 0;
4003  unsigned i;
4004  for (i = 0; i != NumElts; ++i) {
4005    Val = SVOp->getMaskElt(i);
4006    if (Val >= 0)
4007      break;
4008  }
4009  if (Val >= (int)NumElts)
4010    Val -= NumElts - NumLaneElts;
4011
4012  assert(Val - i > 0 && "PALIGNR imm should be positive");
4013  return (Val - i) * EltSize;
4014}
4015
4016/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4017/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4018/// instructions.
4019unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4020  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4021    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4022
4023  uint64_t Index =
4024    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4025
4026  EVT VecVT = N->getOperand(0).getValueType();
4027  EVT ElVT = VecVT.getVectorElementType();
4028
4029  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4030  return Index / NumElemsPerChunk;
4031}
4032
4033/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4034/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4035/// instructions.
4036unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4037  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4038    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4039
4040  uint64_t Index =
4041    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4042
4043  EVT VecVT = N->getValueType(0);
4044  EVT ElVT = VecVT.getVectorElementType();
4045
4046  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4047  return Index / NumElemsPerChunk;
4048}
4049
4050/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4051/// constant +0.0.
4052bool X86::isZeroNode(SDValue Elt) {
4053  return ((isa<ConstantSDNode>(Elt) &&
4054           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4055          (isa<ConstantFPSDNode>(Elt) &&
4056           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4057}
4058
4059/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4060/// their permute mask.
4061static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4062                                    SelectionDAG &DAG) {
4063  EVT VT = SVOp->getValueType(0);
4064  unsigned NumElems = VT.getVectorNumElements();
4065  SmallVector<int, 8> MaskVec;
4066
4067  for (unsigned i = 0; i != NumElems; ++i) {
4068    int idx = SVOp->getMaskElt(i);
4069    if (idx < 0)
4070      MaskVec.push_back(idx);
4071    else if (idx < (int)NumElems)
4072      MaskVec.push_back(idx + NumElems);
4073    else
4074      MaskVec.push_back(idx - NumElems);
4075  }
4076  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4077                              SVOp->getOperand(0), &MaskVec[0]);
4078}
4079
4080/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4081/// match movhlps. The lower half elements should come from upper half of
4082/// V1 (and in order), and the upper half elements should come from the upper
4083/// half of V2 (and in order).
4084static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4085  EVT VT = Op->getValueType(0);
4086  if (VT.getSizeInBits() != 128)
4087    return false;
4088  if (VT.getVectorNumElements() != 4)
4089    return false;
4090  for (unsigned i = 0, e = 2; i != e; ++i)
4091    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4092      return false;
4093  for (unsigned i = 2; i != 4; ++i)
4094    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4095      return false;
4096  return true;
4097}
4098
4099/// isScalarLoadToVector - Returns true if the node is a scalar load that
4100/// is promoted to a vector. It also returns the LoadSDNode by reference if
4101/// required.
4102static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4103  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4104    return false;
4105  N = N->getOperand(0).getNode();
4106  if (!ISD::isNON_EXTLoad(N))
4107    return false;
4108  if (LD)
4109    *LD = cast<LoadSDNode>(N);
4110  return true;
4111}
4112
4113// Test whether the given value is a vector value which will be legalized
4114// into a load.
4115static bool WillBeConstantPoolLoad(SDNode *N) {
4116  if (N->getOpcode() != ISD::BUILD_VECTOR)
4117    return false;
4118
4119  // Check for any non-constant elements.
4120  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4121    switch (N->getOperand(i).getNode()->getOpcode()) {
4122    case ISD::UNDEF:
4123    case ISD::ConstantFP:
4124    case ISD::Constant:
4125      break;
4126    default:
4127      return false;
4128    }
4129
4130  // Vectors of all-zeros and all-ones are materialized with special
4131  // instructions rather than being loaded.
4132  return !ISD::isBuildVectorAllZeros(N) &&
4133         !ISD::isBuildVectorAllOnes(N);
4134}
4135
4136/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4137/// match movlp{s|d}. The lower half elements should come from lower half of
4138/// V1 (and in order), and the upper half elements should come from the upper
4139/// half of V2 (and in order). And since V1 will become the source of the
4140/// MOVLP, it must be either a vector load or a scalar load to vector.
4141static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4142                               ShuffleVectorSDNode *Op) {
4143  EVT VT = Op->getValueType(0);
4144  if (VT.getSizeInBits() != 128)
4145    return false;
4146
4147  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4148    return false;
4149  // Is V2 is a vector load, don't do this transformation. We will try to use
4150  // load folding shufps op.
4151  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4152    return false;
4153
4154  unsigned NumElems = VT.getVectorNumElements();
4155
4156  if (NumElems != 2 && NumElems != 4)
4157    return false;
4158  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4159    if (!isUndefOrEqual(Op->getMaskElt(i), i))
4160      return false;
4161  for (unsigned i = NumElems/2; i != NumElems; ++i)
4162    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4163      return false;
4164  return true;
4165}
4166
4167/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4168/// all the same.
4169static bool isSplatVector(SDNode *N) {
4170  if (N->getOpcode() != ISD::BUILD_VECTOR)
4171    return false;
4172
4173  SDValue SplatValue = N->getOperand(0);
4174  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4175    if (N->getOperand(i) != SplatValue)
4176      return false;
4177  return true;
4178}
4179
4180/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4181/// to an zero vector.
4182/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4183static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4184  SDValue V1 = N->getOperand(0);
4185  SDValue V2 = N->getOperand(1);
4186  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4187  for (unsigned i = 0; i != NumElems; ++i) {
4188    int Idx = N->getMaskElt(i);
4189    if (Idx >= (int)NumElems) {
4190      unsigned Opc = V2.getOpcode();
4191      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4192        continue;
4193      if (Opc != ISD::BUILD_VECTOR ||
4194          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4195        return false;
4196    } else if (Idx >= 0) {
4197      unsigned Opc = V1.getOpcode();
4198      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4199        continue;
4200      if (Opc != ISD::BUILD_VECTOR ||
4201          !X86::isZeroNode(V1.getOperand(Idx)))
4202        return false;
4203    }
4204  }
4205  return true;
4206}
4207
4208/// getZeroVector - Returns a vector of specified type with all zero elements.
4209///
4210static SDValue getZeroVector(EVT VT, bool HasSSE2, bool HasAVX2,
4211                             SelectionDAG &DAG, DebugLoc dl) {
4212  assert(VT.isVector() && "Expected a vector type");
4213
4214  // Always build SSE zero vectors as <4 x i32> bitcasted
4215  // to their dest type. This ensures they get CSE'd.
4216  SDValue Vec;
4217  if (VT.getSizeInBits() == 128) {  // SSE
4218    if (HasSSE2) {  // SSE2
4219      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4220      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4221    } else { // SSE1
4222      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4223      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4224    }
4225  } else if (VT.getSizeInBits() == 256) { // AVX
4226    if (HasAVX2) { // AVX2
4227      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4228      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4229      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4230    } else {
4231      // 256-bit logic and arithmetic instructions in AVX are all
4232      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4233      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4234      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4235      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4236    }
4237  }
4238  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4239}
4240
4241/// getOnesVector - Returns a vector of specified type with all bits set.
4242/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4243/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4244/// Then bitcast to their original type, ensuring they get CSE'd.
4245static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4246                             DebugLoc dl) {
4247  assert(VT.isVector() && "Expected a vector type");
4248  assert((VT.is128BitVector() || VT.is256BitVector())
4249         && "Expected a 128-bit or 256-bit vector type");
4250
4251  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4252  SDValue Vec;
4253  if (VT.getSizeInBits() == 256) {
4254    if (HasAVX2) { // AVX2
4255      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4256      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4257    } else { // AVX
4258      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4259      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4260                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4261      Vec = Insert128BitVector(InsV, Vec,
4262                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4263    }
4264  } else {
4265    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4266  }
4267
4268  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4269}
4270
4271/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4272/// that point to V2 points to its first element.
4273static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4274  EVT VT = SVOp->getValueType(0);
4275  unsigned NumElems = VT.getVectorNumElements();
4276
4277  bool Changed = false;
4278  SmallVector<int, 8> MaskVec(SVOp->getMask().begin(), SVOp->getMask().end());
4279
4280  for (unsigned i = 0; i != NumElems; ++i) {
4281    if (MaskVec[i] > (int)NumElems) {
4282      MaskVec[i] = NumElems;
4283      Changed = true;
4284    }
4285  }
4286  if (Changed)
4287    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4288                                SVOp->getOperand(1), &MaskVec[0]);
4289  return SDValue(SVOp, 0);
4290}
4291
4292/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4293/// operation of specified width.
4294static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4295                       SDValue V2) {
4296  unsigned NumElems = VT.getVectorNumElements();
4297  SmallVector<int, 8> Mask;
4298  Mask.push_back(NumElems);
4299  for (unsigned i = 1; i != NumElems; ++i)
4300    Mask.push_back(i);
4301  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4302}
4303
4304/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4305static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4306                          SDValue V2) {
4307  unsigned NumElems = VT.getVectorNumElements();
4308  SmallVector<int, 8> Mask;
4309  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4310    Mask.push_back(i);
4311    Mask.push_back(i + NumElems);
4312  }
4313  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4314}
4315
4316/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4317static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4318                          SDValue V2) {
4319  unsigned NumElems = VT.getVectorNumElements();
4320  unsigned Half = NumElems/2;
4321  SmallVector<int, 8> Mask;
4322  for (unsigned i = 0; i != Half; ++i) {
4323    Mask.push_back(i + Half);
4324    Mask.push_back(i + NumElems + Half);
4325  }
4326  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4327}
4328
4329// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4330// a generic shuffle instruction because the target has no such instructions.
4331// Generate shuffles which repeat i16 and i8 several times until they can be
4332// represented by v4f32 and then be manipulated by target suported shuffles.
4333static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4334  EVT VT = V.getValueType();
4335  int NumElems = VT.getVectorNumElements();
4336  DebugLoc dl = V.getDebugLoc();
4337
4338  while (NumElems > 4) {
4339    if (EltNo < NumElems/2) {
4340      V = getUnpackl(DAG, dl, VT, V, V);
4341    } else {
4342      V = getUnpackh(DAG, dl, VT, V, V);
4343      EltNo -= NumElems/2;
4344    }
4345    NumElems >>= 1;
4346  }
4347  return V;
4348}
4349
4350/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4351static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4352  EVT VT = V.getValueType();
4353  DebugLoc dl = V.getDebugLoc();
4354  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4355         && "Vector size not supported");
4356
4357  if (VT.getSizeInBits() == 128) {
4358    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4359    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4360    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4361                             &SplatMask[0]);
4362  } else {
4363    // To use VPERMILPS to splat scalars, the second half of indicies must
4364    // refer to the higher part, which is a duplication of the lower one,
4365    // because VPERMILPS can only handle in-lane permutations.
4366    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4367                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4368
4369    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4370    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4371                             &SplatMask[0]);
4372  }
4373
4374  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4375}
4376
4377/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4378static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4379  EVT SrcVT = SV->getValueType(0);
4380  SDValue V1 = SV->getOperand(0);
4381  DebugLoc dl = SV->getDebugLoc();
4382
4383  int EltNo = SV->getSplatIndex();
4384  int NumElems = SrcVT.getVectorNumElements();
4385  unsigned Size = SrcVT.getSizeInBits();
4386
4387  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4388          "Unknown how to promote splat for type");
4389
4390  // Extract the 128-bit part containing the splat element and update
4391  // the splat element index when it refers to the higher register.
4392  if (Size == 256) {
4393    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4394    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4395    if (Idx > 0)
4396      EltNo -= NumElems/2;
4397  }
4398
4399  // All i16 and i8 vector types can't be used directly by a generic shuffle
4400  // instruction because the target has no such instruction. Generate shuffles
4401  // which repeat i16 and i8 several times until they fit in i32, and then can
4402  // be manipulated by target suported shuffles.
4403  EVT EltVT = SrcVT.getVectorElementType();
4404  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4405    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4406
4407  // Recreate the 256-bit vector and place the same 128-bit vector
4408  // into the low and high part. This is necessary because we want
4409  // to use VPERM* to shuffle the vectors
4410  if (Size == 256) {
4411    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4412                         DAG.getConstant(0, MVT::i32), DAG, dl);
4413    V1 = Insert128BitVector(InsV, V1,
4414               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4415  }
4416
4417  return getLegalSplat(DAG, V1, EltNo);
4418}
4419
4420/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4421/// vector of zero or undef vector.  This produces a shuffle where the low
4422/// element of V2 is swizzled into the zero/undef vector, landing at element
4423/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4424static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4425                                           bool IsZero,
4426                                           const X86Subtarget *Subtarget,
4427                                           SelectionDAG &DAG) {
4428  EVT VT = V2.getValueType();
4429  SDValue V1 = IsZero
4430    ? getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(), DAG,
4431                    V2.getDebugLoc()) : DAG.getUNDEF(VT);
4432  unsigned NumElems = VT.getVectorNumElements();
4433  SmallVector<int, 16> MaskVec;
4434  for (unsigned i = 0; i != NumElems; ++i)
4435    // If this is the insertion idx, put the low elt of V2 here.
4436    MaskVec.push_back(i == Idx ? NumElems : i);
4437  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4438}
4439
4440/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4441/// element of the result of the vector shuffle.
4442static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4443                                   unsigned Depth) {
4444  if (Depth == 6)
4445    return SDValue();  // Limit search depth.
4446
4447  SDValue V = SDValue(N, 0);
4448  EVT VT = V.getValueType();
4449  unsigned Opcode = V.getOpcode();
4450
4451  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4452  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4453    Index = SV->getMaskElt(Index);
4454
4455    if (Index < 0)
4456      return DAG.getUNDEF(VT.getVectorElementType());
4457
4458    int NumElems = VT.getVectorNumElements();
4459    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4460    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4461  }
4462
4463  // Recurse into target specific vector shuffles to find scalars.
4464  if (isTargetShuffle(Opcode)) {
4465    int NumElems = VT.getVectorNumElements();
4466    SmallVector<unsigned, 16> ShuffleMask;
4467    SDValue ImmN;
4468
4469    switch(Opcode) {
4470    case X86ISD::SHUFP:
4471      ImmN = N->getOperand(N->getNumOperands()-1);
4472      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4473                      ShuffleMask);
4474      break;
4475    case X86ISD::UNPCKH:
4476      DecodeUNPCKHMask(VT, ShuffleMask);
4477      break;
4478    case X86ISD::UNPCKL:
4479      DecodeUNPCKLMask(VT, ShuffleMask);
4480      break;
4481    case X86ISD::MOVHLPS:
4482      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4483      break;
4484    case X86ISD::MOVLHPS:
4485      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4486      break;
4487    case X86ISD::PSHUFD:
4488      ImmN = N->getOperand(N->getNumOperands()-1);
4489      DecodePSHUFMask(NumElems,
4490                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4491                      ShuffleMask);
4492      break;
4493    case X86ISD::PSHUFHW:
4494      ImmN = N->getOperand(N->getNumOperands()-1);
4495      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4496                        ShuffleMask);
4497      break;
4498    case X86ISD::PSHUFLW:
4499      ImmN = N->getOperand(N->getNumOperands()-1);
4500      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4501                        ShuffleMask);
4502      break;
4503    case X86ISD::MOVSS:
4504    case X86ISD::MOVSD: {
4505      // The index 0 always comes from the first element of the second source,
4506      // this is why MOVSS and MOVSD are used in the first place. The other
4507      // elements come from the other positions of the first source vector.
4508      unsigned OpNum = (Index == 0) ? 1 : 0;
4509      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4510                                 Depth+1);
4511    }
4512    case X86ISD::VPERMILP:
4513      ImmN = N->getOperand(N->getNumOperands()-1);
4514      DecodeVPERMILPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4515                        ShuffleMask);
4516      break;
4517    case X86ISD::VPERM2X128:
4518      ImmN = N->getOperand(N->getNumOperands()-1);
4519      DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4520                           ShuffleMask);
4521      break;
4522    case X86ISD::MOVDDUP:
4523    case X86ISD::MOVLHPD:
4524    case X86ISD::MOVLPD:
4525    case X86ISD::MOVLPS:
4526    case X86ISD::MOVSHDUP:
4527    case X86ISD::MOVSLDUP:
4528    case X86ISD::PALIGN:
4529      return SDValue(); // Not yet implemented.
4530    default:
4531      assert(0 && "unknown target shuffle node");
4532      return SDValue();
4533    }
4534
4535    Index = ShuffleMask[Index];
4536    if (Index < 0)
4537      return DAG.getUNDEF(VT.getVectorElementType());
4538
4539    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4540    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4541                               Depth+1);
4542  }
4543
4544  // Actual nodes that may contain scalar elements
4545  if (Opcode == ISD::BITCAST) {
4546    V = V.getOperand(0);
4547    EVT SrcVT = V.getValueType();
4548    unsigned NumElems = VT.getVectorNumElements();
4549
4550    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4551      return SDValue();
4552  }
4553
4554  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4555    return (Index == 0) ? V.getOperand(0)
4556                          : DAG.getUNDEF(VT.getVectorElementType());
4557
4558  if (V.getOpcode() == ISD::BUILD_VECTOR)
4559    return V.getOperand(Index);
4560
4561  return SDValue();
4562}
4563
4564/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4565/// shuffle operation which come from a consecutively from a zero. The
4566/// search can start in two different directions, from left or right.
4567static
4568unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4569                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4570  int i = 0;
4571
4572  while (i < NumElems) {
4573    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4574    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4575    if (!(Elt.getNode() &&
4576         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4577      break;
4578    ++i;
4579  }
4580
4581  return i;
4582}
4583
4584/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4585/// MaskE correspond consecutively to elements from one of the vector operands,
4586/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4587static
4588bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4589                              int OpIdx, int NumElems, unsigned &OpNum) {
4590  bool SeenV1 = false;
4591  bool SeenV2 = false;
4592
4593  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4594    int Idx = SVOp->getMaskElt(i);
4595    // Ignore undef indicies
4596    if (Idx < 0)
4597      continue;
4598
4599    if (Idx < NumElems)
4600      SeenV1 = true;
4601    else
4602      SeenV2 = true;
4603
4604    // Only accept consecutive elements from the same vector
4605    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4606      return false;
4607  }
4608
4609  OpNum = SeenV1 ? 0 : 1;
4610  return true;
4611}
4612
4613/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4614/// logical left shift of a vector.
4615static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4616                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4617  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4618  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4619              false /* check zeros from right */, DAG);
4620  unsigned OpSrc;
4621
4622  if (!NumZeros)
4623    return false;
4624
4625  // Considering the elements in the mask that are not consecutive zeros,
4626  // check if they consecutively come from only one of the source vectors.
4627  //
4628  //               V1 = {X, A, B, C}     0
4629  //                         \  \  \    /
4630  //   vector_shuffle V1, V2 <1, 2, 3, X>
4631  //
4632  if (!isShuffleMaskConsecutive(SVOp,
4633            0,                   // Mask Start Index
4634            NumElems-NumZeros-1, // Mask End Index
4635            NumZeros,            // Where to start looking in the src vector
4636            NumElems,            // Number of elements in vector
4637            OpSrc))              // Which source operand ?
4638    return false;
4639
4640  isLeft = false;
4641  ShAmt = NumZeros;
4642  ShVal = SVOp->getOperand(OpSrc);
4643  return true;
4644}
4645
4646/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4647/// logical left shift of a vector.
4648static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4649                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4650  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4651  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4652              true /* check zeros from left */, DAG);
4653  unsigned OpSrc;
4654
4655  if (!NumZeros)
4656    return false;
4657
4658  // Considering the elements in the mask that are not consecutive zeros,
4659  // check if they consecutively come from only one of the source vectors.
4660  //
4661  //                           0    { A, B, X, X } = V2
4662  //                          / \    /  /
4663  //   vector_shuffle V1, V2 <X, X, 4, 5>
4664  //
4665  if (!isShuffleMaskConsecutive(SVOp,
4666            NumZeros,     // Mask Start Index
4667            NumElems-1,   // Mask End Index
4668            0,            // Where to start looking in the src vector
4669            NumElems,     // Number of elements in vector
4670            OpSrc))       // Which source operand ?
4671    return false;
4672
4673  isLeft = true;
4674  ShAmt = NumZeros;
4675  ShVal = SVOp->getOperand(OpSrc);
4676  return true;
4677}
4678
4679/// isVectorShift - Returns true if the shuffle can be implemented as a
4680/// logical left or right shift of a vector.
4681static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4682                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4683  // Although the logic below support any bitwidth size, there are no
4684  // shift instructions which handle more than 128-bit vectors.
4685  if (SVOp->getValueType(0).getSizeInBits() > 128)
4686    return false;
4687
4688  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4689      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4690    return true;
4691
4692  return false;
4693}
4694
4695/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4696///
4697static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4698                                       unsigned NumNonZero, unsigned NumZero,
4699                                       SelectionDAG &DAG,
4700                                       const TargetLowering &TLI) {
4701  if (NumNonZero > 8)
4702    return SDValue();
4703
4704  DebugLoc dl = Op.getDebugLoc();
4705  SDValue V(0, 0);
4706  bool First = true;
4707  for (unsigned i = 0; i < 16; ++i) {
4708    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4709    if (ThisIsNonZero && First) {
4710      if (NumZero)
4711        V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4712                          DAG, dl);
4713      else
4714        V = DAG.getUNDEF(MVT::v8i16);
4715      First = false;
4716    }
4717
4718    if ((i & 1) != 0) {
4719      SDValue ThisElt(0, 0), LastElt(0, 0);
4720      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4721      if (LastIsNonZero) {
4722        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4723                              MVT::i16, Op.getOperand(i-1));
4724      }
4725      if (ThisIsNonZero) {
4726        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4727        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4728                              ThisElt, DAG.getConstant(8, MVT::i8));
4729        if (LastIsNonZero)
4730          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4731      } else
4732        ThisElt = LastElt;
4733
4734      if (ThisElt.getNode())
4735        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4736                        DAG.getIntPtrConstant(i/2));
4737    }
4738  }
4739
4740  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4741}
4742
4743/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4744///
4745static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4746                                     unsigned NumNonZero, unsigned NumZero,
4747                                     SelectionDAG &DAG,
4748                                     const TargetLowering &TLI) {
4749  if (NumNonZero > 4)
4750    return SDValue();
4751
4752  DebugLoc dl = Op.getDebugLoc();
4753  SDValue V(0, 0);
4754  bool First = true;
4755  for (unsigned i = 0; i < 8; ++i) {
4756    bool isNonZero = (NonZeros & (1 << i)) != 0;
4757    if (isNonZero) {
4758      if (First) {
4759        if (NumZero)
4760          V = getZeroVector(MVT::v8i16, /*HasSSE2*/ true, /*HasAVX2*/ false,
4761                            DAG, dl);
4762        else
4763          V = DAG.getUNDEF(MVT::v8i16);
4764        First = false;
4765      }
4766      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4767                      MVT::v8i16, V, Op.getOperand(i),
4768                      DAG.getIntPtrConstant(i));
4769    }
4770  }
4771
4772  return V;
4773}
4774
4775/// getVShift - Return a vector logical shift node.
4776///
4777static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4778                         unsigned NumBits, SelectionDAG &DAG,
4779                         const TargetLowering &TLI, DebugLoc dl) {
4780  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4781  EVT ShVT = MVT::v2i64;
4782  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4783  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4784  return DAG.getNode(ISD::BITCAST, dl, VT,
4785                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4786                             DAG.getConstant(NumBits,
4787                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4788}
4789
4790SDValue
4791X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4792                                          SelectionDAG &DAG) const {
4793
4794  // Check if the scalar load can be widened into a vector load. And if
4795  // the address is "base + cst" see if the cst can be "absorbed" into
4796  // the shuffle mask.
4797  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4798    SDValue Ptr = LD->getBasePtr();
4799    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4800      return SDValue();
4801    EVT PVT = LD->getValueType(0);
4802    if (PVT != MVT::i32 && PVT != MVT::f32)
4803      return SDValue();
4804
4805    int FI = -1;
4806    int64_t Offset = 0;
4807    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4808      FI = FINode->getIndex();
4809      Offset = 0;
4810    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4811               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4812      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4813      Offset = Ptr.getConstantOperandVal(1);
4814      Ptr = Ptr.getOperand(0);
4815    } else {
4816      return SDValue();
4817    }
4818
4819    // FIXME: 256-bit vector instructions don't require a strict alignment,
4820    // improve this code to support it better.
4821    unsigned RequiredAlign = VT.getSizeInBits()/8;
4822    SDValue Chain = LD->getChain();
4823    // Make sure the stack object alignment is at least 16 or 32.
4824    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4825    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4826      if (MFI->isFixedObjectIndex(FI)) {
4827        // Can't change the alignment. FIXME: It's possible to compute
4828        // the exact stack offset and reference FI + adjust offset instead.
4829        // If someone *really* cares about this. That's the way to implement it.
4830        return SDValue();
4831      } else {
4832        MFI->setObjectAlignment(FI, RequiredAlign);
4833      }
4834    }
4835
4836    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4837    // Ptr + (Offset & ~15).
4838    if (Offset < 0)
4839      return SDValue();
4840    if ((Offset % RequiredAlign) & 3)
4841      return SDValue();
4842    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4843    if (StartOffset)
4844      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4845                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4846
4847    int EltNo = (Offset - StartOffset) >> 2;
4848    int NumElems = VT.getVectorNumElements();
4849
4850    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4851    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4852                             LD->getPointerInfo().getWithOffset(StartOffset),
4853                             false, false, false, 0);
4854
4855    SmallVector<int, 8> Mask;
4856    for (int i = 0; i < NumElems; ++i)
4857      Mask.push_back(EltNo);
4858
4859    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4860  }
4861
4862  return SDValue();
4863}
4864
4865/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4866/// vector of type 'VT', see if the elements can be replaced by a single large
4867/// load which has the same value as a build_vector whose operands are 'elts'.
4868///
4869/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4870///
4871/// FIXME: we'd also like to handle the case where the last elements are zero
4872/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4873/// There's even a handy isZeroNode for that purpose.
4874static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4875                                        DebugLoc &DL, SelectionDAG &DAG) {
4876  EVT EltVT = VT.getVectorElementType();
4877  unsigned NumElems = Elts.size();
4878
4879  LoadSDNode *LDBase = NULL;
4880  unsigned LastLoadedElt = -1U;
4881
4882  // For each element in the initializer, see if we've found a load or an undef.
4883  // If we don't find an initial load element, or later load elements are
4884  // non-consecutive, bail out.
4885  for (unsigned i = 0; i < NumElems; ++i) {
4886    SDValue Elt = Elts[i];
4887
4888    if (!Elt.getNode() ||
4889        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4890      return SDValue();
4891    if (!LDBase) {
4892      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4893        return SDValue();
4894      LDBase = cast<LoadSDNode>(Elt.getNode());
4895      LastLoadedElt = i;
4896      continue;
4897    }
4898    if (Elt.getOpcode() == ISD::UNDEF)
4899      continue;
4900
4901    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4902    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4903      return SDValue();
4904    LastLoadedElt = i;
4905  }
4906
4907  // If we have found an entire vector of loads and undefs, then return a large
4908  // load of the entire vector width starting at the base pointer.  If we found
4909  // consecutive loads for the low half, generate a vzext_load node.
4910  if (LastLoadedElt == NumElems - 1) {
4911    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4912      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4913                         LDBase->getPointerInfo(),
4914                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4915                         LDBase->isInvariant(), 0);
4916    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4917                       LDBase->getPointerInfo(),
4918                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4919                       LDBase->isInvariant(), LDBase->getAlignment());
4920  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4921             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4922    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4923    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4924    SDValue ResNode =
4925        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4926                                LDBase->getPointerInfo(),
4927                                LDBase->getAlignment(),
4928                                false/*isVolatile*/, true/*ReadMem*/,
4929                                false/*WriteMem*/);
4930    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4931  }
4932  return SDValue();
4933}
4934
4935/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4936/// a vbroadcast node. We support two patterns:
4937/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4938/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4939/// a scalar load.
4940/// The scalar load node is returned when a pattern is found,
4941/// or SDValue() otherwise.
4942static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4943  if (!Subtarget->hasAVX())
4944    return SDValue();
4945
4946  EVT VT = Op.getValueType();
4947  SDValue V = Op;
4948
4949  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4950    V = V.getOperand(0);
4951
4952  //A suspected load to be broadcasted.
4953  SDValue Ld;
4954
4955  switch (V.getOpcode()) {
4956    default:
4957      // Unknown pattern found.
4958      return SDValue();
4959
4960    case ISD::BUILD_VECTOR: {
4961      // The BUILD_VECTOR node must be a splat.
4962      if (!isSplatVector(V.getNode()))
4963        return SDValue();
4964
4965      Ld = V.getOperand(0);
4966
4967      // The suspected load node has several users. Make sure that all
4968      // of its users are from the BUILD_VECTOR node.
4969      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4970        return SDValue();
4971      break;
4972    }
4973
4974    case ISD::VECTOR_SHUFFLE: {
4975      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4976
4977      // Shuffles must have a splat mask where the first element is
4978      // broadcasted.
4979      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4980        return SDValue();
4981
4982      SDValue Sc = Op.getOperand(0);
4983      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4984        return SDValue();
4985
4986      Ld = Sc.getOperand(0);
4987
4988      // The scalar_to_vector node and the suspected
4989      // load node must have exactly one user.
4990      if (!Sc.hasOneUse() || !Ld.hasOneUse())
4991        return SDValue();
4992      break;
4993    }
4994  }
4995
4996  // The scalar source must be a normal load.
4997  if (!ISD::isNormalLoad(Ld.getNode()))
4998    return SDValue();
4999
5000  bool Is256 = VT.getSizeInBits() == 256;
5001  bool Is128 = VT.getSizeInBits() == 128;
5002  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5003
5004  // VBroadcast to YMM
5005  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
5006    return Ld;
5007
5008  // VBroadcast to XMM
5009  if (Is128 && (ScalarSize == 32))
5010    return Ld;
5011
5012  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5013  // double since there is vbroadcastsd xmm
5014  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5015    // VBroadcast to YMM
5016    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
5017      return Ld;
5018
5019    // VBroadcast to XMM
5020    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
5021      return Ld;
5022  }
5023
5024  // Unsupported broadcast.
5025  return SDValue();
5026}
5027
5028SDValue
5029X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5030  DebugLoc dl = Op.getDebugLoc();
5031
5032  EVT VT = Op.getValueType();
5033  EVT ExtVT = VT.getVectorElementType();
5034  unsigned NumElems = Op.getNumOperands();
5035
5036  // Vectors containing all zeros can be matched by pxor and xorps later
5037  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5038    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5039    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5040    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5041      return Op;
5042
5043    return getZeroVector(VT, Subtarget->hasSSE2(),
5044                         Subtarget->hasAVX2(), DAG, dl);
5045  }
5046
5047  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5048  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5049  // vpcmpeqd on 256-bit vectors.
5050  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5051    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5052      return Op;
5053
5054    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5055  }
5056
5057  SDValue LD = isVectorBroadcast(Op, Subtarget);
5058  if (LD.getNode())
5059    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
5060
5061  unsigned EVTBits = ExtVT.getSizeInBits();
5062
5063  unsigned NumZero  = 0;
5064  unsigned NumNonZero = 0;
5065  unsigned NonZeros = 0;
5066  bool IsAllConstants = true;
5067  SmallSet<SDValue, 8> Values;
5068  for (unsigned i = 0; i < NumElems; ++i) {
5069    SDValue Elt = Op.getOperand(i);
5070    if (Elt.getOpcode() == ISD::UNDEF)
5071      continue;
5072    Values.insert(Elt);
5073    if (Elt.getOpcode() != ISD::Constant &&
5074        Elt.getOpcode() != ISD::ConstantFP)
5075      IsAllConstants = false;
5076    if (X86::isZeroNode(Elt))
5077      NumZero++;
5078    else {
5079      NonZeros |= (1 << i);
5080      NumNonZero++;
5081    }
5082  }
5083
5084  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5085  if (NumNonZero == 0)
5086    return DAG.getUNDEF(VT);
5087
5088  // Special case for single non-zero, non-undef, element.
5089  if (NumNonZero == 1) {
5090    unsigned Idx = CountTrailingZeros_32(NonZeros);
5091    SDValue Item = Op.getOperand(Idx);
5092
5093    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5094    // the value are obviously zero, truncate the value to i32 and do the
5095    // insertion that way.  Only do this if the value is non-constant or if the
5096    // value is a constant being inserted into element 0.  It is cheaper to do
5097    // a constant pool load than it is to do a movd + shuffle.
5098    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5099        (!IsAllConstants || Idx == 0)) {
5100      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5101        // Handle SSE only.
5102        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5103        EVT VecVT = MVT::v4i32;
5104        unsigned VecElts = 4;
5105
5106        // Truncate the value (which may itself be a constant) to i32, and
5107        // convert it to a vector with movd (S2V+shuffle to zero extend).
5108        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5109        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5110        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5111
5112        // Now we have our 32-bit value zero extended in the low element of
5113        // a vector.  If Idx != 0, swizzle it into place.
5114        if (Idx != 0) {
5115          SmallVector<int, 4> Mask;
5116          Mask.push_back(Idx);
5117          for (unsigned i = 1; i != VecElts; ++i)
5118            Mask.push_back(i);
5119          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5120                                      DAG.getUNDEF(Item.getValueType()),
5121                                      &Mask[0]);
5122        }
5123        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5124      }
5125    }
5126
5127    // If we have a constant or non-constant insertion into the low element of
5128    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5129    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5130    // depending on what the source datatype is.
5131    if (Idx == 0) {
5132      if (NumZero == 0)
5133        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5134
5135      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5136          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5137        if (VT.getSizeInBits() == 256) {
5138          SDValue ZeroVec = getZeroVector(VT, Subtarget->hasSSE2(),
5139                                          Subtarget->hasAVX2(), DAG, dl);
5140          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5141                             Item, DAG.getIntPtrConstant(0));
5142        }
5143        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5144        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5145        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5146        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5147      }
5148
5149      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5150        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5151        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5152        if (VT.getSizeInBits() == 256) {
5153          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget->hasSSE2(),
5154                                          Subtarget->hasAVX2(), DAG, dl);
5155          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5156                                    DAG, dl);
5157        } else {
5158          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5159          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5160        }
5161        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5162      }
5163    }
5164
5165    // Is it a vector logical left shift?
5166    if (NumElems == 2 && Idx == 1 &&
5167        X86::isZeroNode(Op.getOperand(0)) &&
5168        !X86::isZeroNode(Op.getOperand(1))) {
5169      unsigned NumBits = VT.getSizeInBits();
5170      return getVShift(true, VT,
5171                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5172                                   VT, Op.getOperand(1)),
5173                       NumBits/2, DAG, *this, dl);
5174    }
5175
5176    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5177      return SDValue();
5178
5179    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5180    // is a non-constant being inserted into an element other than the low one,
5181    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5182    // movd/movss) to move this into the low element, then shuffle it into
5183    // place.
5184    if (EVTBits == 32) {
5185      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5186
5187      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5188      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5189      SmallVector<int, 8> MaskVec;
5190      for (unsigned i = 0; i < NumElems; i++)
5191        MaskVec.push_back(i == Idx ? 0 : 1);
5192      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5193    }
5194  }
5195
5196  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5197  if (Values.size() == 1) {
5198    if (EVTBits == 32) {
5199      // Instead of a shuffle like this:
5200      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5201      // Check if it's possible to issue this instead.
5202      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5203      unsigned Idx = CountTrailingZeros_32(NonZeros);
5204      SDValue Item = Op.getOperand(Idx);
5205      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5206        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5207    }
5208    return SDValue();
5209  }
5210
5211  // A vector full of immediates; various special cases are already
5212  // handled, so this is best done with a single constant-pool load.
5213  if (IsAllConstants)
5214    return SDValue();
5215
5216  // For AVX-length vectors, build the individual 128-bit pieces and use
5217  // shuffles to put them in place.
5218  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5219    SmallVector<SDValue, 32> V;
5220    for (unsigned i = 0; i < NumElems; ++i)
5221      V.push_back(Op.getOperand(i));
5222
5223    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5224
5225    // Build both the lower and upper subvector.
5226    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5227    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5228                                NumElems/2);
5229
5230    // Recreate the wider vector with the lower and upper part.
5231    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5232                                DAG.getConstant(0, MVT::i32), DAG, dl);
5233    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5234                              DAG, dl);
5235  }
5236
5237  // Let legalizer expand 2-wide build_vectors.
5238  if (EVTBits == 64) {
5239    if (NumNonZero == 1) {
5240      // One half is zero or undef.
5241      unsigned Idx = CountTrailingZeros_32(NonZeros);
5242      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5243                                 Op.getOperand(Idx));
5244      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5245    }
5246    return SDValue();
5247  }
5248
5249  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5250  if (EVTBits == 8 && NumElems == 16) {
5251    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5252                                        *this);
5253    if (V.getNode()) return V;
5254  }
5255
5256  if (EVTBits == 16 && NumElems == 8) {
5257    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5258                                      *this);
5259    if (V.getNode()) return V;
5260  }
5261
5262  // If element VT is == 32 bits, turn it into a number of shuffles.
5263  SmallVector<SDValue, 8> V(NumElems);
5264  if (NumElems == 4 && NumZero > 0) {
5265    for (unsigned i = 0; i < 4; ++i) {
5266      bool isZero = !(NonZeros & (1 << i));
5267      if (isZero)
5268        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
5269                             DAG, dl);
5270      else
5271        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5272    }
5273
5274    for (unsigned i = 0; i < 2; ++i) {
5275      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5276        default: break;
5277        case 0:
5278          V[i] = V[i*2];  // Must be a zero vector.
5279          break;
5280        case 1:
5281          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5282          break;
5283        case 2:
5284          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5285          break;
5286        case 3:
5287          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5288          break;
5289      }
5290    }
5291
5292    bool Reverse1 = (NonZeros & 0x3) == 2;
5293    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5294    int MaskVec[] = {
5295      Reverse1 ? 1 : 0,
5296      Reverse1 ? 0 : 1,
5297      static_cast<int>(Reverse2 ? 1-NumElems :   NumElems),
5298      static_cast<int>(Reverse2 ?   NumElems : 1+NumElems)
5299    };
5300    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5301  }
5302
5303  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5304    // Check for a build vector of consecutive loads.
5305    for (unsigned i = 0; i < NumElems; ++i)
5306      V[i] = Op.getOperand(i);
5307
5308    // Check for elements which are consecutive loads.
5309    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5310    if (LD.getNode())
5311      return LD;
5312
5313    // For SSE 4.1, use insertps to put the high elements into the low element.
5314    if (getSubtarget()->hasSSE41()) {
5315      SDValue Result;
5316      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5317        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5318      else
5319        Result = DAG.getUNDEF(VT);
5320
5321      for (unsigned i = 1; i < NumElems; ++i) {
5322        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5323        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5324                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5325      }
5326      return Result;
5327    }
5328
5329    // Otherwise, expand into a number of unpckl*, start by extending each of
5330    // our (non-undef) elements to the full vector width with the element in the
5331    // bottom slot of the vector (which generates no code for SSE).
5332    for (unsigned i = 0; i < NumElems; ++i) {
5333      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5334        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5335      else
5336        V[i] = DAG.getUNDEF(VT);
5337    }
5338
5339    // Next, we iteratively mix elements, e.g. for v4f32:
5340    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5341    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5342    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5343    unsigned EltStride = NumElems >> 1;
5344    while (EltStride != 0) {
5345      for (unsigned i = 0; i < EltStride; ++i) {
5346        // If V[i+EltStride] is undef and this is the first round of mixing,
5347        // then it is safe to just drop this shuffle: V[i] is already in the
5348        // right place, the one element (since it's the first round) being
5349        // inserted as undef can be dropped.  This isn't safe for successive
5350        // rounds because they will permute elements within both vectors.
5351        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5352            EltStride == NumElems/2)
5353          continue;
5354
5355        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5356      }
5357      EltStride >>= 1;
5358    }
5359    return V[0];
5360  }
5361  return SDValue();
5362}
5363
5364// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5365// them in a MMX register.  This is better than doing a stack convert.
5366static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5367  DebugLoc dl = Op.getDebugLoc();
5368  EVT ResVT = Op.getValueType();
5369
5370  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5371         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5372  int Mask[2];
5373  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5374  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5375  InVec = Op.getOperand(1);
5376  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5377    unsigned NumElts = ResVT.getVectorNumElements();
5378    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5379    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5380                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5381  } else {
5382    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5383    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5384    Mask[0] = 0; Mask[1] = 2;
5385    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5386  }
5387  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5388}
5389
5390// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5391// to create 256-bit vectors from two other 128-bit ones.
5392static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5393  DebugLoc dl = Op.getDebugLoc();
5394  EVT ResVT = Op.getValueType();
5395
5396  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5397
5398  SDValue V1 = Op.getOperand(0);
5399  SDValue V2 = Op.getOperand(1);
5400  unsigned NumElems = ResVT.getVectorNumElements();
5401
5402  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5403                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5404  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5405                            DAG, dl);
5406}
5407
5408SDValue
5409X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5410  EVT ResVT = Op.getValueType();
5411
5412  assert(Op.getNumOperands() == 2);
5413  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5414         "Unsupported CONCAT_VECTORS for value type");
5415
5416  // We support concatenate two MMX registers and place them in a MMX register.
5417  // This is better than doing a stack convert.
5418  if (ResVT.is128BitVector())
5419    return LowerMMXCONCAT_VECTORS(Op, DAG);
5420
5421  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5422  // from two other 128-bit ones.
5423  return LowerAVXCONCAT_VECTORS(Op, DAG);
5424}
5425
5426// v8i16 shuffles - Prefer shuffles in the following order:
5427// 1. [all]   pshuflw, pshufhw, optional move
5428// 2. [ssse3] 1 x pshufb
5429// 3. [ssse3] 2 x pshufb + 1 x por
5430// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5431SDValue
5432X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5433                                            SelectionDAG &DAG) const {
5434  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5435  SDValue V1 = SVOp->getOperand(0);
5436  SDValue V2 = SVOp->getOperand(1);
5437  DebugLoc dl = SVOp->getDebugLoc();
5438  SmallVector<int, 8> MaskVals;
5439
5440  // Determine if more than 1 of the words in each of the low and high quadwords
5441  // of the result come from the same quadword of one of the two inputs.  Undef
5442  // mask values count as coming from any quadword, for better codegen.
5443  unsigned LoQuad[] = { 0, 0, 0, 0 };
5444  unsigned HiQuad[] = { 0, 0, 0, 0 };
5445  BitVector InputQuads(4);
5446  for (unsigned i = 0; i < 8; ++i) {
5447    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5448    int EltIdx = SVOp->getMaskElt(i);
5449    MaskVals.push_back(EltIdx);
5450    if (EltIdx < 0) {
5451      ++Quad[0];
5452      ++Quad[1];
5453      ++Quad[2];
5454      ++Quad[3];
5455      continue;
5456    }
5457    ++Quad[EltIdx / 4];
5458    InputQuads.set(EltIdx / 4);
5459  }
5460
5461  int BestLoQuad = -1;
5462  unsigned MaxQuad = 1;
5463  for (unsigned i = 0; i < 4; ++i) {
5464    if (LoQuad[i] > MaxQuad) {
5465      BestLoQuad = i;
5466      MaxQuad = LoQuad[i];
5467    }
5468  }
5469
5470  int BestHiQuad = -1;
5471  MaxQuad = 1;
5472  for (unsigned i = 0; i < 4; ++i) {
5473    if (HiQuad[i] > MaxQuad) {
5474      BestHiQuad = i;
5475      MaxQuad = HiQuad[i];
5476    }
5477  }
5478
5479  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5480  // of the two input vectors, shuffle them into one input vector so only a
5481  // single pshufb instruction is necessary. If There are more than 2 input
5482  // quads, disable the next transformation since it does not help SSSE3.
5483  bool V1Used = InputQuads[0] || InputQuads[1];
5484  bool V2Used = InputQuads[2] || InputQuads[3];
5485  if (Subtarget->hasSSSE3()) {
5486    if (InputQuads.count() == 2 && V1Used && V2Used) {
5487      BestLoQuad = InputQuads.find_first();
5488      BestHiQuad = InputQuads.find_next(BestLoQuad);
5489    }
5490    if (InputQuads.count() > 2) {
5491      BestLoQuad = -1;
5492      BestHiQuad = -1;
5493    }
5494  }
5495
5496  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5497  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5498  // words from all 4 input quadwords.
5499  SDValue NewV;
5500  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5501    int MaskV[] = {
5502      BestLoQuad < 0 ? 0 : BestLoQuad,
5503      BestHiQuad < 0 ? 1 : BestHiQuad
5504    };
5505    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5506                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5507                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5508    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5509
5510    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5511    // source words for the shuffle, to aid later transformations.
5512    bool AllWordsInNewV = true;
5513    bool InOrder[2] = { true, true };
5514    for (unsigned i = 0; i != 8; ++i) {
5515      int idx = MaskVals[i];
5516      if (idx != (int)i)
5517        InOrder[i/4] = false;
5518      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5519        continue;
5520      AllWordsInNewV = false;
5521      break;
5522    }
5523
5524    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5525    if (AllWordsInNewV) {
5526      for (int i = 0; i != 8; ++i) {
5527        int idx = MaskVals[i];
5528        if (idx < 0)
5529          continue;
5530        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5531        if ((idx != i) && idx < 4)
5532          pshufhw = false;
5533        if ((idx != i) && idx > 3)
5534          pshuflw = false;
5535      }
5536      V1 = NewV;
5537      V2Used = false;
5538      BestLoQuad = 0;
5539      BestHiQuad = 1;
5540    }
5541
5542    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5543    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5544    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5545      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5546      unsigned TargetMask = 0;
5547      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5548                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5549      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5550                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5551      V1 = NewV.getOperand(0);
5552      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5553    }
5554  }
5555
5556  // If we have SSSE3, and all words of the result are from 1 input vector,
5557  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5558  // is present, fall back to case 4.
5559  if (Subtarget->hasSSSE3()) {
5560    SmallVector<SDValue,16> pshufbMask;
5561
5562    // If we have elements from both input vectors, set the high bit of the
5563    // shuffle mask element to zero out elements that come from V2 in the V1
5564    // mask, and elements that come from V1 in the V2 mask, so that the two
5565    // results can be OR'd together.
5566    bool TwoInputs = V1Used && V2Used;
5567    for (unsigned i = 0; i != 8; ++i) {
5568      int EltIdx = MaskVals[i] * 2;
5569      if (TwoInputs && (EltIdx >= 16)) {
5570        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5571        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5572        continue;
5573      }
5574      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5575      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5576    }
5577    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5578    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5579                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5580                                 MVT::v16i8, &pshufbMask[0], 16));
5581    if (!TwoInputs)
5582      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5583
5584    // Calculate the shuffle mask for the second input, shuffle it, and
5585    // OR it with the first shuffled input.
5586    pshufbMask.clear();
5587    for (unsigned i = 0; i != 8; ++i) {
5588      int EltIdx = MaskVals[i] * 2;
5589      if (EltIdx < 16) {
5590        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5591        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5592        continue;
5593      }
5594      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5595      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5596    }
5597    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5598    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5599                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5600                                 MVT::v16i8, &pshufbMask[0], 16));
5601    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5602    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5603  }
5604
5605  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5606  // and update MaskVals with new element order.
5607  std::bitset<8> InOrder;
5608  if (BestLoQuad >= 0) {
5609    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5610    for (int i = 0; i != 4; ++i) {
5611      int idx = MaskVals[i];
5612      if (idx < 0) {
5613        InOrder.set(i);
5614      } else if ((idx / 4) == BestLoQuad) {
5615        MaskV[i] = idx & 3;
5616        InOrder.set(i);
5617      }
5618    }
5619    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5620                                &MaskV[0]);
5621
5622    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5623      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5624                               NewV.getOperand(0),
5625                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5626                               DAG);
5627  }
5628
5629  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5630  // and update MaskVals with the new element order.
5631  if (BestHiQuad >= 0) {
5632    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5633    for (unsigned i = 4; i != 8; ++i) {
5634      int idx = MaskVals[i];
5635      if (idx < 0) {
5636        InOrder.set(i);
5637      } else if ((idx / 4) == BestHiQuad) {
5638        MaskV[i] = (idx & 3) + 4;
5639        InOrder.set(i);
5640      }
5641    }
5642    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5643                                &MaskV[0]);
5644
5645    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5646      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5647                              NewV.getOperand(0),
5648                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5649                              DAG);
5650  }
5651
5652  // In case BestHi & BestLo were both -1, which means each quadword has a word
5653  // from each of the four input quadwords, calculate the InOrder bitvector now
5654  // before falling through to the insert/extract cleanup.
5655  if (BestLoQuad == -1 && BestHiQuad == -1) {
5656    NewV = V1;
5657    for (int i = 0; i != 8; ++i)
5658      if (MaskVals[i] < 0 || MaskVals[i] == i)
5659        InOrder.set(i);
5660  }
5661
5662  // The other elements are put in the right place using pextrw and pinsrw.
5663  for (unsigned i = 0; i != 8; ++i) {
5664    if (InOrder[i])
5665      continue;
5666    int EltIdx = MaskVals[i];
5667    if (EltIdx < 0)
5668      continue;
5669    SDValue ExtOp = (EltIdx < 8)
5670    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5671                  DAG.getIntPtrConstant(EltIdx))
5672    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5673                  DAG.getIntPtrConstant(EltIdx - 8));
5674    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5675                       DAG.getIntPtrConstant(i));
5676  }
5677  return NewV;
5678}
5679
5680// v16i8 shuffles - Prefer shuffles in the following order:
5681// 1. [ssse3] 1 x pshufb
5682// 2. [ssse3] 2 x pshufb + 1 x por
5683// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5684static
5685SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5686                                 SelectionDAG &DAG,
5687                                 const X86TargetLowering &TLI) {
5688  SDValue V1 = SVOp->getOperand(0);
5689  SDValue V2 = SVOp->getOperand(1);
5690  DebugLoc dl = SVOp->getDebugLoc();
5691  ArrayRef<int> MaskVals = SVOp->getMask();
5692
5693  // If we have SSSE3, case 1 is generated when all result bytes come from
5694  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5695  // present, fall back to case 3.
5696  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5697  bool V1Only = true;
5698  bool V2Only = true;
5699  for (unsigned i = 0; i < 16; ++i) {
5700    int EltIdx = MaskVals[i];
5701    if (EltIdx < 0)
5702      continue;
5703    if (EltIdx < 16)
5704      V2Only = false;
5705    else
5706      V1Only = false;
5707  }
5708
5709  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5710  if (TLI.getSubtarget()->hasSSSE3()) {
5711    SmallVector<SDValue,16> pshufbMask;
5712
5713    // If all result elements are from one input vector, then only translate
5714    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5715    //
5716    // Otherwise, we have elements from both input vectors, and must zero out
5717    // elements that come from V2 in the first mask, and V1 in the second mask
5718    // so that we can OR them together.
5719    bool TwoInputs = !(V1Only || V2Only);
5720    for (unsigned i = 0; i != 16; ++i) {
5721      int EltIdx = MaskVals[i];
5722      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5723        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5724        continue;
5725      }
5726      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5727    }
5728    // If all the elements are from V2, assign it to V1 and return after
5729    // building the first pshufb.
5730    if (V2Only)
5731      V1 = V2;
5732    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5733                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5734                                 MVT::v16i8, &pshufbMask[0], 16));
5735    if (!TwoInputs)
5736      return V1;
5737
5738    // Calculate the shuffle mask for the second input, shuffle it, and
5739    // OR it with the first shuffled input.
5740    pshufbMask.clear();
5741    for (unsigned i = 0; i != 16; ++i) {
5742      int EltIdx = MaskVals[i];
5743      if (EltIdx < 16) {
5744        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5745        continue;
5746      }
5747      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5748    }
5749    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5750                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5751                                 MVT::v16i8, &pshufbMask[0], 16));
5752    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5753  }
5754
5755  // No SSSE3 - Calculate in place words and then fix all out of place words
5756  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5757  // the 16 different words that comprise the two doublequadword input vectors.
5758  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5759  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5760  SDValue NewV = V2Only ? V2 : V1;
5761  for (int i = 0; i != 8; ++i) {
5762    int Elt0 = MaskVals[i*2];
5763    int Elt1 = MaskVals[i*2+1];
5764
5765    // This word of the result is all undef, skip it.
5766    if (Elt0 < 0 && Elt1 < 0)
5767      continue;
5768
5769    // This word of the result is already in the correct place, skip it.
5770    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5771      continue;
5772    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5773      continue;
5774
5775    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5776    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5777    SDValue InsElt;
5778
5779    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5780    // using a single extract together, load it and store it.
5781    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5782      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5783                           DAG.getIntPtrConstant(Elt1 / 2));
5784      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5785                        DAG.getIntPtrConstant(i));
5786      continue;
5787    }
5788
5789    // If Elt1 is defined, extract it from the appropriate source.  If the
5790    // source byte is not also odd, shift the extracted word left 8 bits
5791    // otherwise clear the bottom 8 bits if we need to do an or.
5792    if (Elt1 >= 0) {
5793      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5794                           DAG.getIntPtrConstant(Elt1 / 2));
5795      if ((Elt1 & 1) == 0)
5796        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5797                             DAG.getConstant(8,
5798                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5799      else if (Elt0 >= 0)
5800        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5801                             DAG.getConstant(0xFF00, MVT::i16));
5802    }
5803    // If Elt0 is defined, extract it from the appropriate source.  If the
5804    // source byte is not also even, shift the extracted word right 8 bits. If
5805    // Elt1 was also defined, OR the extracted values together before
5806    // inserting them in the result.
5807    if (Elt0 >= 0) {
5808      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5809                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5810      if ((Elt0 & 1) != 0)
5811        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5812                              DAG.getConstant(8,
5813                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5814      else if (Elt1 >= 0)
5815        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5816                             DAG.getConstant(0x00FF, MVT::i16));
5817      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5818                         : InsElt0;
5819    }
5820    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5821                       DAG.getIntPtrConstant(i));
5822  }
5823  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5824}
5825
5826/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5827/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5828/// done when every pair / quad of shuffle mask elements point to elements in
5829/// the right sequence. e.g.
5830/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5831static
5832SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5833                                 SelectionDAG &DAG, DebugLoc dl) {
5834  EVT VT = SVOp->getValueType(0);
5835  SDValue V1 = SVOp->getOperand(0);
5836  SDValue V2 = SVOp->getOperand(1);
5837  unsigned NumElems = VT.getVectorNumElements();
5838  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5839  EVT NewVT;
5840  switch (VT.getSimpleVT().SimpleTy) {
5841  default: assert(false && "Unexpected!");
5842  case MVT::v4f32: NewVT = MVT::v2f64; break;
5843  case MVT::v4i32: NewVT = MVT::v2i64; break;
5844  case MVT::v8i16: NewVT = MVT::v4i32; break;
5845  case MVT::v16i8: NewVT = MVT::v4i32; break;
5846  }
5847
5848  int Scale = NumElems / NewWidth;
5849  SmallVector<int, 8> MaskVec;
5850  for (unsigned i = 0; i < NumElems; i += Scale) {
5851    int StartIdx = -1;
5852    for (int j = 0; j < Scale; ++j) {
5853      int EltIdx = SVOp->getMaskElt(i+j);
5854      if (EltIdx < 0)
5855        continue;
5856      if (StartIdx == -1)
5857        StartIdx = EltIdx - (EltIdx % Scale);
5858      if (EltIdx != StartIdx + j)
5859        return SDValue();
5860    }
5861    if (StartIdx == -1)
5862      MaskVec.push_back(-1);
5863    else
5864      MaskVec.push_back(StartIdx / Scale);
5865  }
5866
5867  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5868  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5869  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5870}
5871
5872/// getVZextMovL - Return a zero-extending vector move low node.
5873///
5874static SDValue getVZextMovL(EVT VT, EVT OpVT,
5875                            SDValue SrcOp, SelectionDAG &DAG,
5876                            const X86Subtarget *Subtarget, DebugLoc dl) {
5877  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5878    LoadSDNode *LD = NULL;
5879    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5880      LD = dyn_cast<LoadSDNode>(SrcOp);
5881    if (!LD) {
5882      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5883      // instead.
5884      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5885      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5886          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5887          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5888          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5889        // PR2108
5890        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5891        return DAG.getNode(ISD::BITCAST, dl, VT,
5892                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5893                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5894                                                   OpVT,
5895                                                   SrcOp.getOperand(0)
5896                                                          .getOperand(0))));
5897      }
5898    }
5899  }
5900
5901  return DAG.getNode(ISD::BITCAST, dl, VT,
5902                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5903                                 DAG.getNode(ISD::BITCAST, dl,
5904                                             OpVT, SrcOp)));
5905}
5906
5907/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5908/// which could not be matched by any known target speficic shuffle
5909static SDValue
5910LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5911  EVT VT = SVOp->getValueType(0);
5912
5913  unsigned NumElems = VT.getVectorNumElements();
5914  unsigned NumLaneElems = NumElems / 2;
5915
5916  int MinRange[2][2] = { { static_cast<int>(NumElems),
5917                           static_cast<int>(NumElems) },
5918                         { static_cast<int>(NumElems),
5919                           static_cast<int>(NumElems) } };
5920  int MaxRange[2][2] = { { -1, -1 }, { -1, -1 } };
5921
5922  // Collect used ranges for each source in each lane
5923  for (unsigned l = 0; l < 2; ++l) {
5924    unsigned LaneStart = l*NumLaneElems;
5925    for (unsigned i = 0; i != NumLaneElems; ++i) {
5926      int Idx = SVOp->getMaskElt(i+LaneStart);
5927      if (Idx < 0)
5928        continue;
5929
5930      int Input = 0;
5931      if (Idx >= (int)NumElems) {
5932        Idx -= NumElems;
5933        Input = 1;
5934      }
5935
5936      if (Idx > MaxRange[l][Input])
5937        MaxRange[l][Input] = Idx;
5938      if (Idx < MinRange[l][Input])
5939        MinRange[l][Input] = Idx;
5940    }
5941  }
5942
5943  // Make sure each range is 128-bits
5944  int ExtractIdx[2][2] = { { -1, -1 }, { -1, -1 } };
5945  for (unsigned l = 0; l < 2; ++l) {
5946    for (unsigned Input = 0; Input < 2; ++Input) {
5947      if (MinRange[l][Input] == (int)NumElems && MaxRange[l][Input] < 0)
5948        continue;
5949
5950      if (MinRange[l][Input] >= 0 && MaxRange[l][Input] < (int)NumLaneElems)
5951        ExtractIdx[l][Input] = 0;
5952      else if (MinRange[l][Input] >= (int)NumLaneElems &&
5953               MaxRange[l][Input] < (int)NumElems)
5954        ExtractIdx[l][Input] = NumLaneElems;
5955      else
5956        return SDValue();
5957    }
5958  }
5959
5960  DebugLoc dl = SVOp->getDebugLoc();
5961  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5962  EVT NVT = MVT::getVectorVT(EltVT, NumElems/2);
5963
5964  SDValue Ops[2][2];
5965  for (unsigned l = 0; l < 2; ++l) {
5966    for (unsigned Input = 0; Input < 2; ++Input) {
5967      if (ExtractIdx[l][Input] >= 0)
5968        Ops[l][Input] = Extract128BitVector(SVOp->getOperand(Input),
5969                                DAG.getConstant(ExtractIdx[l][Input], MVT::i32),
5970                                                DAG, dl);
5971      else
5972        Ops[l][Input] = DAG.getUNDEF(NVT);
5973    }
5974  }
5975
5976  // Generate 128-bit shuffles
5977  SmallVector<int, 16> Mask1, Mask2;
5978  for (unsigned i = 0; i != NumLaneElems; ++i) {
5979    int Elt = SVOp->getMaskElt(i);
5980    if (Elt >= (int)NumElems) {
5981      Elt %= NumLaneElems;
5982      Elt += NumLaneElems;
5983    } else if (Elt >= 0) {
5984      Elt %= NumLaneElems;
5985    }
5986    Mask1.push_back(Elt);
5987  }
5988  for (unsigned i = NumLaneElems; i != NumElems; ++i) {
5989    int Elt = SVOp->getMaskElt(i);
5990    if (Elt >= (int)NumElems) {
5991      Elt %= NumLaneElems;
5992      Elt += NumLaneElems;
5993    } else if (Elt >= 0) {
5994      Elt %= NumLaneElems;
5995    }
5996    Mask2.push_back(Elt);
5997  }
5998
5999  SDValue Shuf1 = DAG.getVectorShuffle(NVT, dl, Ops[0][0], Ops[0][1], &Mask1[0]);
6000  SDValue Shuf2 = DAG.getVectorShuffle(NVT, dl, Ops[1][0], Ops[1][1], &Mask2[0]);
6001
6002  // Concatenate the result back
6003  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shuf1,
6004                                 DAG.getConstant(0, MVT::i32), DAG, dl);
6005  return Insert128BitVector(V, Shuf2, DAG.getConstant(NumElems/2, MVT::i32),
6006                            DAG, dl);
6007}
6008
6009/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6010/// 4 elements, and match them with several different shuffle types.
6011static SDValue
6012LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6013  SDValue V1 = SVOp->getOperand(0);
6014  SDValue V2 = SVOp->getOperand(1);
6015  DebugLoc dl = SVOp->getDebugLoc();
6016  EVT VT = SVOp->getValueType(0);
6017
6018  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6019
6020  std::pair<int, int> Locs[4];
6021  int Mask1[] = { -1, -1, -1, -1 };
6022  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6023
6024  unsigned NumHi = 0;
6025  unsigned NumLo = 0;
6026  for (unsigned i = 0; i != 4; ++i) {
6027    int Idx = PermMask[i];
6028    if (Idx < 0) {
6029      Locs[i] = std::make_pair(-1, -1);
6030    } else {
6031      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6032      if (Idx < 4) {
6033        Locs[i] = std::make_pair(0, NumLo);
6034        Mask1[NumLo] = Idx;
6035        NumLo++;
6036      } else {
6037        Locs[i] = std::make_pair(1, NumHi);
6038        if (2+NumHi < 4)
6039          Mask1[2+NumHi] = Idx;
6040        NumHi++;
6041      }
6042    }
6043  }
6044
6045  if (NumLo <= 2 && NumHi <= 2) {
6046    // If no more than two elements come from either vector. This can be
6047    // implemented with two shuffles. First shuffle gather the elements.
6048    // The second shuffle, which takes the first shuffle as both of its
6049    // vector operands, put the elements into the right order.
6050    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6051
6052    int Mask2[] = { -1, -1, -1, -1 };
6053
6054    for (unsigned i = 0; i != 4; ++i)
6055      if (Locs[i].first != -1) {
6056        unsigned Idx = (i < 2) ? 0 : 4;
6057        Idx += Locs[i].first * 2 + Locs[i].second;
6058        Mask2[i] = Idx;
6059      }
6060
6061    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6062  } else if (NumLo == 3 || NumHi == 3) {
6063    // Otherwise, we must have three elements from one vector, call it X, and
6064    // one element from the other, call it Y.  First, use a shufps to build an
6065    // intermediate vector with the one element from Y and the element from X
6066    // that will be in the same half in the final destination (the indexes don't
6067    // matter). Then, use a shufps to build the final vector, taking the half
6068    // containing the element from Y from the intermediate, and the other half
6069    // from X.
6070    if (NumHi == 3) {
6071      // Normalize it so the 3 elements come from V1.
6072      CommuteVectorShuffleMask(PermMask, 4);
6073      std::swap(V1, V2);
6074    }
6075
6076    // Find the element from V2.
6077    unsigned HiIndex;
6078    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6079      int Val = PermMask[HiIndex];
6080      if (Val < 0)
6081        continue;
6082      if (Val >= 4)
6083        break;
6084    }
6085
6086    Mask1[0] = PermMask[HiIndex];
6087    Mask1[1] = -1;
6088    Mask1[2] = PermMask[HiIndex^1];
6089    Mask1[3] = -1;
6090    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6091
6092    if (HiIndex >= 2) {
6093      Mask1[0] = PermMask[0];
6094      Mask1[1] = PermMask[1];
6095      Mask1[2] = HiIndex & 1 ? 6 : 4;
6096      Mask1[3] = HiIndex & 1 ? 4 : 6;
6097      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6098    } else {
6099      Mask1[0] = HiIndex & 1 ? 2 : 0;
6100      Mask1[1] = HiIndex & 1 ? 0 : 2;
6101      Mask1[2] = PermMask[2];
6102      Mask1[3] = PermMask[3];
6103      if (Mask1[2] >= 0)
6104        Mask1[2] += 4;
6105      if (Mask1[3] >= 0)
6106        Mask1[3] += 4;
6107      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6108    }
6109  }
6110
6111  // Break it into (shuffle shuffle_hi, shuffle_lo).
6112  int LoMask[] = { -1, -1, -1, -1 };
6113  int HiMask[] = { -1, -1, -1, -1 };
6114
6115  int *MaskPtr = LoMask;
6116  unsigned MaskIdx = 0;
6117  unsigned LoIdx = 0;
6118  unsigned HiIdx = 2;
6119  for (unsigned i = 0; i != 4; ++i) {
6120    if (i == 2) {
6121      MaskPtr = HiMask;
6122      MaskIdx = 1;
6123      LoIdx = 0;
6124      HiIdx = 2;
6125    }
6126    int Idx = PermMask[i];
6127    if (Idx < 0) {
6128      Locs[i] = std::make_pair(-1, -1);
6129    } else if (Idx < 4) {
6130      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6131      MaskPtr[LoIdx] = Idx;
6132      LoIdx++;
6133    } else {
6134      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6135      MaskPtr[HiIdx] = Idx;
6136      HiIdx++;
6137    }
6138  }
6139
6140  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6141  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6142  int MaskOps[] = { -1, -1, -1, -1 };
6143  for (unsigned i = 0; i != 4; ++i)
6144    if (Locs[i].first != -1)
6145      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6146  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6147}
6148
6149static bool MayFoldVectorLoad(SDValue V) {
6150  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6151    V = V.getOperand(0);
6152  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6153    V = V.getOperand(0);
6154  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6155      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6156    // BUILD_VECTOR (load), undef
6157    V = V.getOperand(0);
6158  if (MayFoldLoad(V))
6159    return true;
6160  return false;
6161}
6162
6163// FIXME: the version above should always be used. Since there's
6164// a bug where several vector shuffles can't be folded because the
6165// DAG is not updated during lowering and a node claims to have two
6166// uses while it only has one, use this version, and let isel match
6167// another instruction if the load really happens to have more than
6168// one use. Remove this version after this bug get fixed.
6169// rdar://8434668, PR8156
6170static bool RelaxedMayFoldVectorLoad(SDValue V) {
6171  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6172    V = V.getOperand(0);
6173  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6174    V = V.getOperand(0);
6175  if (ISD::isNormalLoad(V.getNode()))
6176    return true;
6177  return false;
6178}
6179
6180/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6181/// a vector extract, and if both can be later optimized into a single load.
6182/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6183/// here because otherwise a target specific shuffle node is going to be
6184/// emitted for this shuffle, and the optimization not done.
6185/// FIXME: This is probably not the best approach, but fix the problem
6186/// until the right path is decided.
6187static
6188bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6189                                         const TargetLowering &TLI) {
6190  EVT VT = V.getValueType();
6191  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6192
6193  // Be sure that the vector shuffle is present in a pattern like this:
6194  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6195  if (!V.hasOneUse())
6196    return false;
6197
6198  SDNode *N = *V.getNode()->use_begin();
6199  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6200    return false;
6201
6202  SDValue EltNo = N->getOperand(1);
6203  if (!isa<ConstantSDNode>(EltNo))
6204    return false;
6205
6206  // If the bit convert changed the number of elements, it is unsafe
6207  // to examine the mask.
6208  bool HasShuffleIntoBitcast = false;
6209  if (V.getOpcode() == ISD::BITCAST) {
6210    EVT SrcVT = V.getOperand(0).getValueType();
6211    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6212      return false;
6213    V = V.getOperand(0);
6214    HasShuffleIntoBitcast = true;
6215  }
6216
6217  // Select the input vector, guarding against out of range extract vector.
6218  unsigned NumElems = VT.getVectorNumElements();
6219  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6220  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6221  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6222
6223  // If we are accessing the upper part of a YMM register
6224  // then the EXTRACT_VECTOR_ELT is likely to be legalized to a sequence of
6225  // EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which are not detected at this point
6226  // because the legalization of N did not happen yet.
6227  if (Idx >= (int)NumElems/2 && VT.getSizeInBits() == 256)
6228    return false;
6229
6230  // Skip one more bit_convert if necessary
6231  if (V.getOpcode() == ISD::BITCAST)
6232    V = V.getOperand(0);
6233
6234  if (!ISD::isNormalLoad(V.getNode()))
6235    return false;
6236
6237  // Is the original load suitable?
6238  LoadSDNode *LN0 = cast<LoadSDNode>(V);
6239
6240  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6241    return false;
6242
6243  if (!HasShuffleIntoBitcast)
6244    return true;
6245
6246  // If there's a bitcast before the shuffle, check if the load type and
6247  // alignment is valid.
6248  unsigned Align = LN0->getAlignment();
6249  unsigned NewAlign =
6250    TLI.getTargetData()->getABITypeAlignment(
6251                                  VT.getTypeForEVT(*DAG.getContext()));
6252
6253  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6254    return false;
6255
6256  return true;
6257}
6258
6259static
6260SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6261  EVT VT = Op.getValueType();
6262
6263  // Canonizalize to v2f64.
6264  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6265  return DAG.getNode(ISD::BITCAST, dl, VT,
6266                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6267                                          V1, DAG));
6268}
6269
6270static
6271SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6272                        bool HasSSE2) {
6273  SDValue V1 = Op.getOperand(0);
6274  SDValue V2 = Op.getOperand(1);
6275  EVT VT = Op.getValueType();
6276
6277  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6278
6279  if (HasSSE2 && VT == MVT::v2f64)
6280    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6281
6282  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6283  return DAG.getNode(ISD::BITCAST, dl, VT,
6284                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6285                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6286                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6287}
6288
6289static
6290SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6291  SDValue V1 = Op.getOperand(0);
6292  SDValue V2 = Op.getOperand(1);
6293  EVT VT = Op.getValueType();
6294
6295  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6296         "unsupported shuffle type");
6297
6298  if (V2.getOpcode() == ISD::UNDEF)
6299    V2 = V1;
6300
6301  // v4i32 or v4f32
6302  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6303}
6304
6305static
6306SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6307  SDValue V1 = Op.getOperand(0);
6308  SDValue V2 = Op.getOperand(1);
6309  EVT VT = Op.getValueType();
6310  unsigned NumElems = VT.getVectorNumElements();
6311
6312  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6313  // operand of these instructions is only memory, so check if there's a
6314  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6315  // same masks.
6316  bool CanFoldLoad = false;
6317
6318  // Trivial case, when V2 comes from a load.
6319  if (MayFoldVectorLoad(V2))
6320    CanFoldLoad = true;
6321
6322  // When V1 is a load, it can be folded later into a store in isel, example:
6323  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6324  //    turns into:
6325  //  (MOVLPSmr addr:$src1, VR128:$src2)
6326  // So, recognize this potential and also use MOVLPS or MOVLPD
6327  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6328    CanFoldLoad = true;
6329
6330  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6331  if (CanFoldLoad) {
6332    if (HasSSE2 && NumElems == 2)
6333      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6334
6335    if (NumElems == 4)
6336      // If we don't care about the second element, procede to use movss.
6337      if (SVOp->getMaskElt(1) != -1)
6338        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6339  }
6340
6341  // movl and movlp will both match v2i64, but v2i64 is never matched by
6342  // movl earlier because we make it strict to avoid messing with the movlp load
6343  // folding logic (see the code above getMOVLP call). Match it here then,
6344  // this is horrible, but will stay like this until we move all shuffle
6345  // matching to x86 specific nodes. Note that for the 1st condition all
6346  // types are matched with movsd.
6347  if (HasSSE2) {
6348    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6349    // as to remove this logic from here, as much as possible
6350    if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6351      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6352    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6353  }
6354
6355  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6356
6357  // Invert the operand order and use SHUFPS to match it.
6358  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6359                              X86::getShuffleSHUFImmediate(SVOp), DAG);
6360}
6361
6362static
6363SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6364                               const TargetLowering &TLI,
6365                               const X86Subtarget *Subtarget) {
6366  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6367  EVT VT = Op.getValueType();
6368  DebugLoc dl = Op.getDebugLoc();
6369  SDValue V1 = Op.getOperand(0);
6370  SDValue V2 = Op.getOperand(1);
6371
6372  if (isZeroShuffle(SVOp))
6373    return getZeroVector(VT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
6374                         DAG, dl);
6375
6376  // Handle splat operations
6377  if (SVOp->isSplat()) {
6378    unsigned NumElem = VT.getVectorNumElements();
6379    int Size = VT.getSizeInBits();
6380    // Special case, this is the only place now where it's allowed to return
6381    // a vector_shuffle operation without using a target specific node, because
6382    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6383    // this be moved to DAGCombine instead?
6384    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6385      return Op;
6386
6387    // Use vbroadcast whenever the splat comes from a foldable load
6388    SDValue LD = isVectorBroadcast(Op, Subtarget);
6389    if (LD.getNode())
6390      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6391
6392    // Handle splats by matching through known shuffle masks
6393    if ((Size == 128 && NumElem <= 4) ||
6394        (Size == 256 && NumElem < 8))
6395      return SDValue();
6396
6397    // All remaning splats are promoted to target supported vector shuffles.
6398    return PromoteSplat(SVOp, DAG);
6399  }
6400
6401  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6402  // do it!
6403  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6404    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6405    if (NewOp.getNode())
6406      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6407  } else if ((VT == MVT::v4i32 ||
6408             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6409    // FIXME: Figure out a cleaner way to do this.
6410    // Try to make use of movq to zero out the top part.
6411    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6412      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6413      if (NewOp.getNode()) {
6414        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6415          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6416                              DAG, Subtarget, dl);
6417      }
6418    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6419      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6420      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6421        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6422                            DAG, Subtarget, dl);
6423    }
6424  }
6425  return SDValue();
6426}
6427
6428SDValue
6429X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6430  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6431  SDValue V1 = Op.getOperand(0);
6432  SDValue V2 = Op.getOperand(1);
6433  EVT VT = Op.getValueType();
6434  DebugLoc dl = Op.getDebugLoc();
6435  unsigned NumElems = VT.getVectorNumElements();
6436  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6437  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6438  bool V1IsSplat = false;
6439  bool V2IsSplat = false;
6440  bool HasSSE2 = Subtarget->hasSSE2();
6441  bool HasAVX    = Subtarget->hasAVX();
6442  bool HasAVX2   = Subtarget->hasAVX2();
6443  MachineFunction &MF = DAG.getMachineFunction();
6444  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6445
6446  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6447
6448  if (V1IsUndef && V2IsUndef)
6449    return DAG.getUNDEF(VT);
6450
6451  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6452
6453  // Vector shuffle lowering takes 3 steps:
6454  //
6455  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6456  //    narrowing and commutation of operands should be handled.
6457  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6458  //    shuffle nodes.
6459  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6460  //    so the shuffle can be broken into other shuffles and the legalizer can
6461  //    try the lowering again.
6462  //
6463  // The general idea is that no vector_shuffle operation should be left to
6464  // be matched during isel, all of them must be converted to a target specific
6465  // node here.
6466
6467  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6468  // narrowing and commutation of operands should be handled. The actual code
6469  // doesn't include all of those, work in progress...
6470  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6471  if (NewOp.getNode())
6472    return NewOp;
6473
6474  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6475  // unpckh_undef). Only use pshufd if speed is more important than size.
6476  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp, HasAVX2))
6477    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6478  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp, HasAVX2))
6479    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6480
6481  if (X86::isMOVDDUPMask(SVOp) && Subtarget->hasSSE3() &&
6482      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6483    return getMOVDDup(Op, dl, V1, DAG);
6484
6485  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6486    return getMOVHighToLow(Op, dl, DAG);
6487
6488  // Use to match splats
6489  if (HasSSE2 && X86::isUNPCKHMask(SVOp, HasAVX2) && V2IsUndef &&
6490      (VT == MVT::v2f64 || VT == MVT::v2i64))
6491    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6492
6493  if (X86::isPSHUFDMask(SVOp)) {
6494    // The actual implementation will match the mask in the if above and then
6495    // during isel it can match several different instructions, not only pshufd
6496    // as its name says, sad but true, emulate the behavior for now...
6497    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6498        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6499
6500    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6501
6502    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6503      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6504
6505    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6506                                TargetMask, DAG);
6507  }
6508
6509  // Check if this can be converted into a logical shift.
6510  bool isLeft = false;
6511  unsigned ShAmt = 0;
6512  SDValue ShVal;
6513  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6514  if (isShift && ShVal.hasOneUse()) {
6515    // If the shifted value has multiple uses, it may be cheaper to use
6516    // v_set0 + movlhps or movhlps, etc.
6517    EVT EltVT = VT.getVectorElementType();
6518    ShAmt *= EltVT.getSizeInBits();
6519    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6520  }
6521
6522  if (X86::isMOVLMask(SVOp)) {
6523    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6524      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6525    if (!X86::isMOVLPMask(SVOp)) {
6526      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6527        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6528
6529      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6530        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6531    }
6532  }
6533
6534  // FIXME: fold these into legal mask.
6535  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp, HasAVX2))
6536    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6537
6538  if (X86::isMOVHLPSMask(SVOp))
6539    return getMOVHighToLow(Op, dl, DAG);
6540
6541  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6542    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6543
6544  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6545    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6546
6547  if (X86::isMOVLPMask(SVOp))
6548    return getMOVLP(Op, dl, DAG, HasSSE2);
6549
6550  if (ShouldXformToMOVHLPS(SVOp) ||
6551      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6552    return CommuteVectorShuffle(SVOp, DAG);
6553
6554  if (isShift) {
6555    // No better options. Use a vshldq / vsrldq.
6556    EVT EltVT = VT.getVectorElementType();
6557    ShAmt *= EltVT.getSizeInBits();
6558    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6559  }
6560
6561  bool Commuted = false;
6562  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6563  // 1,1,1,1 -> v8i16 though.
6564  V1IsSplat = isSplatVector(V1.getNode());
6565  V2IsSplat = isSplatVector(V2.getNode());
6566
6567  // Canonicalize the splat or undef, if present, to be on the RHS.
6568  if (V1IsSplat && !V2IsSplat) {
6569    Op = CommuteVectorShuffle(SVOp, DAG);
6570    SVOp = cast<ShuffleVectorSDNode>(Op);
6571    V1 = SVOp->getOperand(0);
6572    V2 = SVOp->getOperand(1);
6573    std::swap(V1IsSplat, V2IsSplat);
6574    Commuted = true;
6575  }
6576
6577  ArrayRef<int> M = SVOp->getMask();
6578
6579  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6580    // Shuffling low element of v1 into undef, just return v1.
6581    if (V2IsUndef)
6582      return V1;
6583    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6584    // the instruction selector will not match, so get a canonical MOVL with
6585    // swapped operands to undo the commute.
6586    return getMOVL(DAG, dl, VT, V2, V1);
6587  }
6588
6589  if (isUNPCKLMask(M, VT, HasAVX2))
6590    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6591
6592  if (isUNPCKHMask(M, VT, HasAVX2))
6593    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6594
6595  if (V2IsSplat) {
6596    // Normalize mask so all entries that point to V2 points to its first
6597    // element then try to match unpck{h|l} again. If match, return a
6598    // new vector_shuffle with the corrected mask.
6599    SDValue NewMask = NormalizeMask(SVOp, DAG);
6600    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6601    if (NSVOp != SVOp) {
6602      if (X86::isUNPCKLMask(NSVOp, HasAVX2, true)) {
6603        return NewMask;
6604      } else if (X86::isUNPCKHMask(NSVOp, HasAVX2, true)) {
6605        return NewMask;
6606      }
6607    }
6608  }
6609
6610  if (Commuted) {
6611    // Commute is back and try unpck* again.
6612    // FIXME: this seems wrong.
6613    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6614    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6615
6616    if (X86::isUNPCKLMask(NewSVOp, HasAVX2))
6617      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V2, V1, DAG);
6618
6619    if (X86::isUNPCKHMask(NewSVOp, HasAVX2))
6620      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V2, V1, DAG);
6621  }
6622
6623  // Normalize the node to match x86 shuffle ops if needed
6624  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6625    return CommuteVectorShuffle(SVOp, DAG);
6626
6627  // The checks below are all present in isShuffleMaskLegal, but they are
6628  // inlined here right now to enable us to directly emit target specific
6629  // nodes, and remove one by one until they don't return Op anymore.
6630
6631  if (isPALIGNRMask(M, VT, Subtarget))
6632    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6633                                getShufflePALIGNRImmediate(SVOp),
6634                                DAG);
6635
6636  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6637      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6638    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6639      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6640  }
6641
6642  if (isPSHUFHWMask(M, VT))
6643    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6644                                X86::getShufflePSHUFHWImmediate(SVOp),
6645                                DAG);
6646
6647  if (isPSHUFLWMask(M, VT))
6648    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6649                                X86::getShufflePSHUFLWImmediate(SVOp),
6650                                DAG);
6651
6652  if (isSHUFPMask(M, VT, HasAVX))
6653    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6654                                X86::getShuffleSHUFImmediate(SVOp), DAG);
6655
6656  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6657    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6658  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6659    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6660
6661  //===--------------------------------------------------------------------===//
6662  // Generate target specific nodes for 128 or 256-bit shuffles only
6663  // supported in the AVX instruction set.
6664  //
6665
6666  // Handle VMOVDDUPY permutations
6667  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6668    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6669
6670  // Handle VPERMILPS/D* permutations
6671  if (isVPERMILPMask(M, VT, HasAVX))
6672    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6673                                getShuffleVPERMILPImmediate(SVOp), DAG);
6674
6675  // Handle VPERM2F128/VPERM2I128 permutations
6676  if (isVPERM2X128Mask(M, VT, HasAVX))
6677    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6678                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6679
6680  //===--------------------------------------------------------------------===//
6681  // Since no target specific shuffle was selected for this generic one,
6682  // lower it into other known shuffles. FIXME: this isn't true yet, but
6683  // this is the plan.
6684  //
6685
6686  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6687  if (VT == MVT::v8i16) {
6688    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6689    if (NewOp.getNode())
6690      return NewOp;
6691  }
6692
6693  if (VT == MVT::v16i8) {
6694    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6695    if (NewOp.getNode())
6696      return NewOp;
6697  }
6698
6699  // Handle all 128-bit wide vectors with 4 elements, and match them with
6700  // several different shuffle types.
6701  if (NumElems == 4 && VT.getSizeInBits() == 128)
6702    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6703
6704  // Handle general 256-bit shuffles
6705  if (VT.is256BitVector())
6706    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6707
6708  return SDValue();
6709}
6710
6711SDValue
6712X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6713                                                SelectionDAG &DAG) const {
6714  EVT VT = Op.getValueType();
6715  DebugLoc dl = Op.getDebugLoc();
6716
6717  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6718    return SDValue();
6719
6720  if (VT.getSizeInBits() == 8) {
6721    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6722                                    Op.getOperand(0), Op.getOperand(1));
6723    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6724                                    DAG.getValueType(VT));
6725    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6726  } else if (VT.getSizeInBits() == 16) {
6727    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6728    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6729    if (Idx == 0)
6730      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6731                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6732                                     DAG.getNode(ISD::BITCAST, dl,
6733                                                 MVT::v4i32,
6734                                                 Op.getOperand(0)),
6735                                     Op.getOperand(1)));
6736    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6737                                    Op.getOperand(0), Op.getOperand(1));
6738    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6739                                    DAG.getValueType(VT));
6740    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6741  } else if (VT == MVT::f32) {
6742    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6743    // the result back to FR32 register. It's only worth matching if the
6744    // result has a single use which is a store or a bitcast to i32.  And in
6745    // the case of a store, it's not worth it if the index is a constant 0,
6746    // because a MOVSSmr can be used instead, which is smaller and faster.
6747    if (!Op.hasOneUse())
6748      return SDValue();
6749    SDNode *User = *Op.getNode()->use_begin();
6750    if ((User->getOpcode() != ISD::STORE ||
6751         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6752          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6753        (User->getOpcode() != ISD::BITCAST ||
6754         User->getValueType(0) != MVT::i32))
6755      return SDValue();
6756    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6757                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6758                                              Op.getOperand(0)),
6759                                              Op.getOperand(1));
6760    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6761  } else if (VT == MVT::i32 || VT == MVT::i64) {
6762    // ExtractPS/pextrq works with constant index.
6763    if (isa<ConstantSDNode>(Op.getOperand(1)))
6764      return Op;
6765  }
6766  return SDValue();
6767}
6768
6769
6770SDValue
6771X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6772                                           SelectionDAG &DAG) const {
6773  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6774    return SDValue();
6775
6776  SDValue Vec = Op.getOperand(0);
6777  EVT VecVT = Vec.getValueType();
6778
6779  // If this is a 256-bit vector result, first extract the 128-bit vector and
6780  // then extract the element from the 128-bit vector.
6781  if (VecVT.getSizeInBits() == 256) {
6782    DebugLoc dl = Op.getNode()->getDebugLoc();
6783    unsigned NumElems = VecVT.getVectorNumElements();
6784    SDValue Idx = Op.getOperand(1);
6785    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6786
6787    // Get the 128-bit vector.
6788    bool Upper = IdxVal >= NumElems/2;
6789    Vec = Extract128BitVector(Vec,
6790                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6791
6792    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6793                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6794  }
6795
6796  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6797
6798  if (Subtarget->hasSSE41()) {
6799    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6800    if (Res.getNode())
6801      return Res;
6802  }
6803
6804  EVT VT = Op.getValueType();
6805  DebugLoc dl = Op.getDebugLoc();
6806  // TODO: handle v16i8.
6807  if (VT.getSizeInBits() == 16) {
6808    SDValue Vec = Op.getOperand(0);
6809    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6810    if (Idx == 0)
6811      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6812                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6813                                     DAG.getNode(ISD::BITCAST, dl,
6814                                                 MVT::v4i32, Vec),
6815                                     Op.getOperand(1)));
6816    // Transform it so it match pextrw which produces a 32-bit result.
6817    EVT EltVT = MVT::i32;
6818    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6819                                    Op.getOperand(0), Op.getOperand(1));
6820    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6821                                    DAG.getValueType(VT));
6822    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6823  } else if (VT.getSizeInBits() == 32) {
6824    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6825    if (Idx == 0)
6826      return Op;
6827
6828    // SHUFPS the element to the lowest double word, then movss.
6829    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6830    EVT VVT = Op.getOperand(0).getValueType();
6831    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6832                                       DAG.getUNDEF(VVT), Mask);
6833    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6834                       DAG.getIntPtrConstant(0));
6835  } else if (VT.getSizeInBits() == 64) {
6836    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6837    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6838    //        to match extract_elt for f64.
6839    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6840    if (Idx == 0)
6841      return Op;
6842
6843    // UNPCKHPD the element to the lowest double word, then movsd.
6844    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6845    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6846    int Mask[2] = { 1, -1 };
6847    EVT VVT = Op.getOperand(0).getValueType();
6848    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6849                                       DAG.getUNDEF(VVT), Mask);
6850    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6851                       DAG.getIntPtrConstant(0));
6852  }
6853
6854  return SDValue();
6855}
6856
6857SDValue
6858X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6859                                               SelectionDAG &DAG) const {
6860  EVT VT = Op.getValueType();
6861  EVT EltVT = VT.getVectorElementType();
6862  DebugLoc dl = Op.getDebugLoc();
6863
6864  SDValue N0 = Op.getOperand(0);
6865  SDValue N1 = Op.getOperand(1);
6866  SDValue N2 = Op.getOperand(2);
6867
6868  if (VT.getSizeInBits() == 256)
6869    return SDValue();
6870
6871  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6872      isa<ConstantSDNode>(N2)) {
6873    unsigned Opc;
6874    if (VT == MVT::v8i16)
6875      Opc = X86ISD::PINSRW;
6876    else if (VT == MVT::v16i8)
6877      Opc = X86ISD::PINSRB;
6878    else
6879      Opc = X86ISD::PINSRB;
6880
6881    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6882    // argument.
6883    if (N1.getValueType() != MVT::i32)
6884      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6885    if (N2.getValueType() != MVT::i32)
6886      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6887    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6888  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6889    // Bits [7:6] of the constant are the source select.  This will always be
6890    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6891    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6892    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6893    // Bits [5:4] of the constant are the destination select.  This is the
6894    //  value of the incoming immediate.
6895    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6896    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6897    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6898    // Create this as a scalar to vector..
6899    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6900    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6901  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6902             isa<ConstantSDNode>(N2)) {
6903    // PINSR* works with constant index.
6904    return Op;
6905  }
6906  return SDValue();
6907}
6908
6909SDValue
6910X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6911  EVT VT = Op.getValueType();
6912  EVT EltVT = VT.getVectorElementType();
6913
6914  DebugLoc dl = Op.getDebugLoc();
6915  SDValue N0 = Op.getOperand(0);
6916  SDValue N1 = Op.getOperand(1);
6917  SDValue N2 = Op.getOperand(2);
6918
6919  // If this is a 256-bit vector result, first extract the 128-bit vector,
6920  // insert the element into the extracted half and then place it back.
6921  if (VT.getSizeInBits() == 256) {
6922    if (!isa<ConstantSDNode>(N2))
6923      return SDValue();
6924
6925    // Get the desired 128-bit vector half.
6926    unsigned NumElems = VT.getVectorNumElements();
6927    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6928    bool Upper = IdxVal >= NumElems/2;
6929    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6930    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6931
6932    // Insert the element into the desired half.
6933    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6934                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6935
6936    // Insert the changed part back to the 256-bit vector
6937    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6938  }
6939
6940  if (Subtarget->hasSSE41())
6941    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6942
6943  if (EltVT == MVT::i8)
6944    return SDValue();
6945
6946  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6947    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6948    // as its second argument.
6949    if (N1.getValueType() != MVT::i32)
6950      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6951    if (N2.getValueType() != MVT::i32)
6952      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6953    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6954  }
6955  return SDValue();
6956}
6957
6958SDValue
6959X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6960  LLVMContext *Context = DAG.getContext();
6961  DebugLoc dl = Op.getDebugLoc();
6962  EVT OpVT = Op.getValueType();
6963
6964  // If this is a 256-bit vector result, first insert into a 128-bit
6965  // vector and then insert into the 256-bit vector.
6966  if (OpVT.getSizeInBits() > 128) {
6967    // Insert into a 128-bit vector.
6968    EVT VT128 = EVT::getVectorVT(*Context,
6969                                 OpVT.getVectorElementType(),
6970                                 OpVT.getVectorNumElements() / 2);
6971
6972    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6973
6974    // Insert the 128-bit vector.
6975    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6976                              DAG.getConstant(0, MVT::i32),
6977                              DAG, dl);
6978  }
6979
6980  if (Op.getValueType() == MVT::v1i64 &&
6981      Op.getOperand(0).getValueType() == MVT::i64)
6982    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6983
6984  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6985  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6986         "Expected an SSE type!");
6987  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6988                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6989}
6990
6991// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6992// a simple subregister reference or explicit instructions to grab
6993// upper bits of a vector.
6994SDValue
6995X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6996  if (Subtarget->hasAVX()) {
6997    DebugLoc dl = Op.getNode()->getDebugLoc();
6998    SDValue Vec = Op.getNode()->getOperand(0);
6999    SDValue Idx = Op.getNode()->getOperand(1);
7000
7001    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7002        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7003        return Extract128BitVector(Vec, Idx, DAG, dl);
7004    }
7005  }
7006  return SDValue();
7007}
7008
7009// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7010// simple superregister reference or explicit instructions to insert
7011// the upper bits of a vector.
7012SDValue
7013X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7014  if (Subtarget->hasAVX()) {
7015    DebugLoc dl = Op.getNode()->getDebugLoc();
7016    SDValue Vec = Op.getNode()->getOperand(0);
7017    SDValue SubVec = Op.getNode()->getOperand(1);
7018    SDValue Idx = Op.getNode()->getOperand(2);
7019
7020    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7021        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7022      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7023    }
7024  }
7025  return SDValue();
7026}
7027
7028// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7029// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7030// one of the above mentioned nodes. It has to be wrapped because otherwise
7031// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7032// be used to form addressing mode. These wrapped nodes will be selected
7033// into MOV32ri.
7034SDValue
7035X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7036  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7037
7038  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7039  // global base reg.
7040  unsigned char OpFlag = 0;
7041  unsigned WrapperKind = X86ISD::Wrapper;
7042  CodeModel::Model M = getTargetMachine().getCodeModel();
7043
7044  if (Subtarget->isPICStyleRIPRel() &&
7045      (M == CodeModel::Small || M == CodeModel::Kernel))
7046    WrapperKind = X86ISD::WrapperRIP;
7047  else if (Subtarget->isPICStyleGOT())
7048    OpFlag = X86II::MO_GOTOFF;
7049  else if (Subtarget->isPICStyleStubPIC())
7050    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7051
7052  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7053                                             CP->getAlignment(),
7054                                             CP->getOffset(), OpFlag);
7055  DebugLoc DL = CP->getDebugLoc();
7056  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7057  // With PIC, the address is actually $g + Offset.
7058  if (OpFlag) {
7059    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7060                         DAG.getNode(X86ISD::GlobalBaseReg,
7061                                     DebugLoc(), getPointerTy()),
7062                         Result);
7063  }
7064
7065  return Result;
7066}
7067
7068SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7069  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7070
7071  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7072  // global base reg.
7073  unsigned char OpFlag = 0;
7074  unsigned WrapperKind = X86ISD::Wrapper;
7075  CodeModel::Model M = getTargetMachine().getCodeModel();
7076
7077  if (Subtarget->isPICStyleRIPRel() &&
7078      (M == CodeModel::Small || M == CodeModel::Kernel))
7079    WrapperKind = X86ISD::WrapperRIP;
7080  else if (Subtarget->isPICStyleGOT())
7081    OpFlag = X86II::MO_GOTOFF;
7082  else if (Subtarget->isPICStyleStubPIC())
7083    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7084
7085  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7086                                          OpFlag);
7087  DebugLoc DL = JT->getDebugLoc();
7088  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7089
7090  // With PIC, the address is actually $g + Offset.
7091  if (OpFlag)
7092    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7093                         DAG.getNode(X86ISD::GlobalBaseReg,
7094                                     DebugLoc(), getPointerTy()),
7095                         Result);
7096
7097  return Result;
7098}
7099
7100SDValue
7101X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7102  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7103
7104  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7105  // global base reg.
7106  unsigned char OpFlag = 0;
7107  unsigned WrapperKind = X86ISD::Wrapper;
7108  CodeModel::Model M = getTargetMachine().getCodeModel();
7109
7110  if (Subtarget->isPICStyleRIPRel() &&
7111      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7112    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7113      OpFlag = X86II::MO_GOTPCREL;
7114    WrapperKind = X86ISD::WrapperRIP;
7115  } else if (Subtarget->isPICStyleGOT()) {
7116    OpFlag = X86II::MO_GOT;
7117  } else if (Subtarget->isPICStyleStubPIC()) {
7118    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7119  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7120    OpFlag = X86II::MO_DARWIN_NONLAZY;
7121  }
7122
7123  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7124
7125  DebugLoc DL = Op.getDebugLoc();
7126  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7127
7128
7129  // With PIC, the address is actually $g + Offset.
7130  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7131      !Subtarget->is64Bit()) {
7132    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7133                         DAG.getNode(X86ISD::GlobalBaseReg,
7134                                     DebugLoc(), getPointerTy()),
7135                         Result);
7136  }
7137
7138  // For symbols that require a load from a stub to get the address, emit the
7139  // load.
7140  if (isGlobalStubReference(OpFlag))
7141    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7142                         MachinePointerInfo::getGOT(), false, false, false, 0);
7143
7144  return Result;
7145}
7146
7147SDValue
7148X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7149  // Create the TargetBlockAddressAddress node.
7150  unsigned char OpFlags =
7151    Subtarget->ClassifyBlockAddressReference();
7152  CodeModel::Model M = getTargetMachine().getCodeModel();
7153  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7154  DebugLoc dl = Op.getDebugLoc();
7155  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7156                                       /*isTarget=*/true, OpFlags);
7157
7158  if (Subtarget->isPICStyleRIPRel() &&
7159      (M == CodeModel::Small || M == CodeModel::Kernel))
7160    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7161  else
7162    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7163
7164  // With PIC, the address is actually $g + Offset.
7165  if (isGlobalRelativeToPICBase(OpFlags)) {
7166    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7167                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7168                         Result);
7169  }
7170
7171  return Result;
7172}
7173
7174SDValue
7175X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7176                                      int64_t Offset,
7177                                      SelectionDAG &DAG) const {
7178  // Create the TargetGlobalAddress node, folding in the constant
7179  // offset if it is legal.
7180  unsigned char OpFlags =
7181    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7182  CodeModel::Model M = getTargetMachine().getCodeModel();
7183  SDValue Result;
7184  if (OpFlags == X86II::MO_NO_FLAG &&
7185      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7186    // A direct static reference to a global.
7187    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7188    Offset = 0;
7189  } else {
7190    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7191  }
7192
7193  if (Subtarget->isPICStyleRIPRel() &&
7194      (M == CodeModel::Small || M == CodeModel::Kernel))
7195    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7196  else
7197    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7198
7199  // With PIC, the address is actually $g + Offset.
7200  if (isGlobalRelativeToPICBase(OpFlags)) {
7201    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7202                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7203                         Result);
7204  }
7205
7206  // For globals that require a load from a stub to get the address, emit the
7207  // load.
7208  if (isGlobalStubReference(OpFlags))
7209    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7210                         MachinePointerInfo::getGOT(), false, false, false, 0);
7211
7212  // If there was a non-zero offset that we didn't fold, create an explicit
7213  // addition for it.
7214  if (Offset != 0)
7215    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7216                         DAG.getConstant(Offset, getPointerTy()));
7217
7218  return Result;
7219}
7220
7221SDValue
7222X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7223  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7224  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7225  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7226}
7227
7228static SDValue
7229GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7230           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7231           unsigned char OperandFlags) {
7232  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7233  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7234  DebugLoc dl = GA->getDebugLoc();
7235  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7236                                           GA->getValueType(0),
7237                                           GA->getOffset(),
7238                                           OperandFlags);
7239  if (InFlag) {
7240    SDValue Ops[] = { Chain,  TGA, *InFlag };
7241    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7242  } else {
7243    SDValue Ops[]  = { Chain, TGA };
7244    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7245  }
7246
7247  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7248  MFI->setAdjustsStack(true);
7249
7250  SDValue Flag = Chain.getValue(1);
7251  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7252}
7253
7254// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7255static SDValue
7256LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7257                                const EVT PtrVT) {
7258  SDValue InFlag;
7259  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7260  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7261                                     DAG.getNode(X86ISD::GlobalBaseReg,
7262                                                 DebugLoc(), PtrVT), InFlag);
7263  InFlag = Chain.getValue(1);
7264
7265  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7266}
7267
7268// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7269static SDValue
7270LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7271                                const EVT PtrVT) {
7272  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7273                    X86::RAX, X86II::MO_TLSGD);
7274}
7275
7276// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7277// "local exec" model.
7278static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7279                                   const EVT PtrVT, TLSModel::Model model,
7280                                   bool is64Bit) {
7281  DebugLoc dl = GA->getDebugLoc();
7282
7283  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7284  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7285                                                         is64Bit ? 257 : 256));
7286
7287  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7288                                      DAG.getIntPtrConstant(0),
7289                                      MachinePointerInfo(Ptr),
7290                                      false, false, false, 0);
7291
7292  unsigned char OperandFlags = 0;
7293  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7294  // initialexec.
7295  unsigned WrapperKind = X86ISD::Wrapper;
7296  if (model == TLSModel::LocalExec) {
7297    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7298  } else if (is64Bit) {
7299    assert(model == TLSModel::InitialExec);
7300    OperandFlags = X86II::MO_GOTTPOFF;
7301    WrapperKind = X86ISD::WrapperRIP;
7302  } else {
7303    assert(model == TLSModel::InitialExec);
7304    OperandFlags = X86II::MO_INDNTPOFF;
7305  }
7306
7307  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7308  // exec)
7309  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7310                                           GA->getValueType(0),
7311                                           GA->getOffset(), OperandFlags);
7312  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7313
7314  if (model == TLSModel::InitialExec)
7315    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7316                         MachinePointerInfo::getGOT(), false, false, false, 0);
7317
7318  // The address of the thread local variable is the add of the thread
7319  // pointer with the offset of the variable.
7320  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7321}
7322
7323SDValue
7324X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7325
7326  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7327  const GlobalValue *GV = GA->getGlobal();
7328
7329  if (Subtarget->isTargetELF()) {
7330    // TODO: implement the "local dynamic" model
7331    // TODO: implement the "initial exec"model for pic executables
7332
7333    // If GV is an alias then use the aliasee for determining
7334    // thread-localness.
7335    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7336      GV = GA->resolveAliasedGlobal(false);
7337
7338    TLSModel::Model model
7339      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7340
7341    switch (model) {
7342      case TLSModel::GeneralDynamic:
7343      case TLSModel::LocalDynamic: // not implemented
7344        if (Subtarget->is64Bit())
7345          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7346        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7347
7348      case TLSModel::InitialExec:
7349      case TLSModel::LocalExec:
7350        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7351                                   Subtarget->is64Bit());
7352    }
7353  } else if (Subtarget->isTargetDarwin()) {
7354    // Darwin only has one model of TLS.  Lower to that.
7355    unsigned char OpFlag = 0;
7356    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7357                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7358
7359    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7360    // global base reg.
7361    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7362                  !Subtarget->is64Bit();
7363    if (PIC32)
7364      OpFlag = X86II::MO_TLVP_PIC_BASE;
7365    else
7366      OpFlag = X86II::MO_TLVP;
7367    DebugLoc DL = Op.getDebugLoc();
7368    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7369                                                GA->getValueType(0),
7370                                                GA->getOffset(), OpFlag);
7371    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7372
7373    // With PIC32, the address is actually $g + Offset.
7374    if (PIC32)
7375      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7376                           DAG.getNode(X86ISD::GlobalBaseReg,
7377                                       DebugLoc(), getPointerTy()),
7378                           Offset);
7379
7380    // Lowering the machine isd will make sure everything is in the right
7381    // location.
7382    SDValue Chain = DAG.getEntryNode();
7383    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7384    SDValue Args[] = { Chain, Offset };
7385    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7386
7387    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7388    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7389    MFI->setAdjustsStack(true);
7390
7391    // And our return value (tls address) is in the standard call return value
7392    // location.
7393    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7394    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7395                              Chain.getValue(1));
7396  }
7397
7398  llvm_unreachable("TLS not implemented for this target.");
7399}
7400
7401
7402/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7403/// and take a 2 x i32 value to shift plus a shift amount.
7404SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7405  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7406  EVT VT = Op.getValueType();
7407  unsigned VTBits = VT.getSizeInBits();
7408  DebugLoc dl = Op.getDebugLoc();
7409  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7410  SDValue ShOpLo = Op.getOperand(0);
7411  SDValue ShOpHi = Op.getOperand(1);
7412  SDValue ShAmt  = Op.getOperand(2);
7413  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7414                                     DAG.getConstant(VTBits - 1, MVT::i8))
7415                       : DAG.getConstant(0, VT);
7416
7417  SDValue Tmp2, Tmp3;
7418  if (Op.getOpcode() == ISD::SHL_PARTS) {
7419    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7420    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7421  } else {
7422    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7423    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7424  }
7425
7426  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7427                                DAG.getConstant(VTBits, MVT::i8));
7428  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7429                             AndNode, DAG.getConstant(0, MVT::i8));
7430
7431  SDValue Hi, Lo;
7432  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7433  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7434  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7435
7436  if (Op.getOpcode() == ISD::SHL_PARTS) {
7437    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7438    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7439  } else {
7440    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7441    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7442  }
7443
7444  SDValue Ops[2] = { Lo, Hi };
7445  return DAG.getMergeValues(Ops, 2, dl);
7446}
7447
7448SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7449                                           SelectionDAG &DAG) const {
7450  EVT SrcVT = Op.getOperand(0).getValueType();
7451
7452  if (SrcVT.isVector())
7453    return SDValue();
7454
7455  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7456         "Unknown SINT_TO_FP to lower!");
7457
7458  // These are really Legal; return the operand so the caller accepts it as
7459  // Legal.
7460  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7461    return Op;
7462  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7463      Subtarget->is64Bit()) {
7464    return Op;
7465  }
7466
7467  DebugLoc dl = Op.getDebugLoc();
7468  unsigned Size = SrcVT.getSizeInBits()/8;
7469  MachineFunction &MF = DAG.getMachineFunction();
7470  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7471  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7472  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7473                               StackSlot,
7474                               MachinePointerInfo::getFixedStack(SSFI),
7475                               false, false, 0);
7476  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7477}
7478
7479SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7480                                     SDValue StackSlot,
7481                                     SelectionDAG &DAG) const {
7482  // Build the FILD
7483  DebugLoc DL = Op.getDebugLoc();
7484  SDVTList Tys;
7485  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7486  if (useSSE)
7487    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7488  else
7489    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7490
7491  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7492
7493  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7494  MachineMemOperand *MMO;
7495  if (FI) {
7496    int SSFI = FI->getIndex();
7497    MMO =
7498      DAG.getMachineFunction()
7499      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7500                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7501  } else {
7502    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7503    StackSlot = StackSlot.getOperand(1);
7504  }
7505  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7506  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7507                                           X86ISD::FILD, DL,
7508                                           Tys, Ops, array_lengthof(Ops),
7509                                           SrcVT, MMO);
7510
7511  if (useSSE) {
7512    Chain = Result.getValue(1);
7513    SDValue InFlag = Result.getValue(2);
7514
7515    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7516    // shouldn't be necessary except that RFP cannot be live across
7517    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7518    MachineFunction &MF = DAG.getMachineFunction();
7519    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7520    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7521    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7522    Tys = DAG.getVTList(MVT::Other);
7523    SDValue Ops[] = {
7524      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7525    };
7526    MachineMemOperand *MMO =
7527      DAG.getMachineFunction()
7528      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7529                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7530
7531    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7532                                    Ops, array_lengthof(Ops),
7533                                    Op.getValueType(), MMO);
7534    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7535                         MachinePointerInfo::getFixedStack(SSFI),
7536                         false, false, false, 0);
7537  }
7538
7539  return Result;
7540}
7541
7542// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7543SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7544                                               SelectionDAG &DAG) const {
7545  // This algorithm is not obvious. Here it is what we're trying to output:
7546  /*
7547     movq       %rax,  %xmm0
7548     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7549     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7550     #ifdef __SSE3__
7551       haddpd   %xmm0, %xmm0
7552     #else
7553       pshufd   $0x4e, %xmm0, %xmm1
7554       addpd    %xmm1, %xmm0
7555     #endif
7556  */
7557
7558  DebugLoc dl = Op.getDebugLoc();
7559  LLVMContext *Context = DAG.getContext();
7560
7561  // Build some magic constants.
7562  SmallVector<Constant*,4> CV0;
7563  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7564  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7565  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7566  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7567  Constant *C0 = ConstantVector::get(CV0);
7568  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7569
7570  SmallVector<Constant*,2> CV1;
7571  CV1.push_back(
7572        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7573  CV1.push_back(
7574        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7575  Constant *C1 = ConstantVector::get(CV1);
7576  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7577
7578  // Load the 64-bit value into an XMM register.
7579  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7580                            Op.getOperand(0));
7581  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7582                              MachinePointerInfo::getConstantPool(),
7583                              false, false, false, 16);
7584  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7585                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7586                              CLod0);
7587
7588  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7589                              MachinePointerInfo::getConstantPool(),
7590                              false, false, false, 16);
7591  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7592  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7593  SDValue Result;
7594
7595  if (Subtarget->hasSSE3()) {
7596    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7597    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7598  } else {
7599    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7600    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7601                                           S2F, 0x4E, DAG);
7602    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7603                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7604                         Sub);
7605  }
7606
7607  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7608                     DAG.getIntPtrConstant(0));
7609}
7610
7611// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7612SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7613                                               SelectionDAG &DAG) const {
7614  DebugLoc dl = Op.getDebugLoc();
7615  // FP constant to bias correct the final result.
7616  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7617                                   MVT::f64);
7618
7619  // Load the 32-bit value into an XMM register.
7620  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7621                             Op.getOperand(0));
7622
7623  // Zero out the upper parts of the register.
7624  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7625
7626  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7627                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7628                     DAG.getIntPtrConstant(0));
7629
7630  // Or the load with the bias.
7631  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7632                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7633                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7634                                                   MVT::v2f64, Load)),
7635                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7636                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7637                                                   MVT::v2f64, Bias)));
7638  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7639                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7640                   DAG.getIntPtrConstant(0));
7641
7642  // Subtract the bias.
7643  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7644
7645  // Handle final rounding.
7646  EVT DestVT = Op.getValueType();
7647
7648  if (DestVT.bitsLT(MVT::f64)) {
7649    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7650                       DAG.getIntPtrConstant(0));
7651  } else if (DestVT.bitsGT(MVT::f64)) {
7652    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7653  }
7654
7655  // Handle final rounding.
7656  return Sub;
7657}
7658
7659SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7660                                           SelectionDAG &DAG) const {
7661  SDValue N0 = Op.getOperand(0);
7662  DebugLoc dl = Op.getDebugLoc();
7663
7664  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7665  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7666  // the optimization here.
7667  if (DAG.SignBitIsZero(N0))
7668    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7669
7670  EVT SrcVT = N0.getValueType();
7671  EVT DstVT = Op.getValueType();
7672  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7673    return LowerUINT_TO_FP_i64(Op, DAG);
7674  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7675    return LowerUINT_TO_FP_i32(Op, DAG);
7676  else if (Subtarget->is64Bit() &&
7677           SrcVT == MVT::i64 && DstVT == MVT::f32)
7678    return SDValue();
7679
7680  // Make a 64-bit buffer, and use it to build an FILD.
7681  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7682  if (SrcVT == MVT::i32) {
7683    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7684    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7685                                     getPointerTy(), StackSlot, WordOff);
7686    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7687                                  StackSlot, MachinePointerInfo(),
7688                                  false, false, 0);
7689    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7690                                  OffsetSlot, MachinePointerInfo(),
7691                                  false, false, 0);
7692    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7693    return Fild;
7694  }
7695
7696  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7697  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7698                               StackSlot, MachinePointerInfo(),
7699                               false, false, 0);
7700  // For i64 source, we need to add the appropriate power of 2 if the input
7701  // was negative.  This is the same as the optimization in
7702  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7703  // we must be careful to do the computation in x87 extended precision, not
7704  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7705  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7706  MachineMemOperand *MMO =
7707    DAG.getMachineFunction()
7708    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7709                          MachineMemOperand::MOLoad, 8, 8);
7710
7711  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7712  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7713  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7714                                         MVT::i64, MMO);
7715
7716  APInt FF(32, 0x5F800000ULL);
7717
7718  // Check whether the sign bit is set.
7719  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7720                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7721                                 ISD::SETLT);
7722
7723  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7724  SDValue FudgePtr = DAG.getConstantPool(
7725                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7726                                         getPointerTy());
7727
7728  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7729  SDValue Zero = DAG.getIntPtrConstant(0);
7730  SDValue Four = DAG.getIntPtrConstant(4);
7731  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7732                               Zero, Four);
7733  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7734
7735  // Load the value out, extending it from f32 to f80.
7736  // FIXME: Avoid the extend by constructing the right constant pool?
7737  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7738                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7739                                 MVT::f32, false, false, 4);
7740  // Extend everything to 80 bits to force it to be done on x87.
7741  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7742  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7743}
7744
7745std::pair<SDValue,SDValue> X86TargetLowering::
7746FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7747  DebugLoc DL = Op.getDebugLoc();
7748
7749  EVT DstTy = Op.getValueType();
7750
7751  if (!IsSigned) {
7752    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7753    DstTy = MVT::i64;
7754  }
7755
7756  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7757         DstTy.getSimpleVT() >= MVT::i16 &&
7758         "Unknown FP_TO_SINT to lower!");
7759
7760  // These are really Legal.
7761  if (DstTy == MVT::i32 &&
7762      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7763    return std::make_pair(SDValue(), SDValue());
7764  if (Subtarget->is64Bit() &&
7765      DstTy == MVT::i64 &&
7766      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7767    return std::make_pair(SDValue(), SDValue());
7768
7769  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7770  // stack slot.
7771  MachineFunction &MF = DAG.getMachineFunction();
7772  unsigned MemSize = DstTy.getSizeInBits()/8;
7773  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7774  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7775
7776
7777
7778  unsigned Opc;
7779  switch (DstTy.getSimpleVT().SimpleTy) {
7780  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7781  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7782  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7783  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7784  }
7785
7786  SDValue Chain = DAG.getEntryNode();
7787  SDValue Value = Op.getOperand(0);
7788  EVT TheVT = Op.getOperand(0).getValueType();
7789  if (isScalarFPTypeInSSEReg(TheVT)) {
7790    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7791    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7792                         MachinePointerInfo::getFixedStack(SSFI),
7793                         false, false, 0);
7794    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7795    SDValue Ops[] = {
7796      Chain, StackSlot, DAG.getValueType(TheVT)
7797    };
7798
7799    MachineMemOperand *MMO =
7800      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7801                              MachineMemOperand::MOLoad, MemSize, MemSize);
7802    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7803                                    DstTy, MMO);
7804    Chain = Value.getValue(1);
7805    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7806    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7807  }
7808
7809  MachineMemOperand *MMO =
7810    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7811                            MachineMemOperand::MOStore, MemSize, MemSize);
7812
7813  // Build the FP_TO_INT*_IN_MEM
7814  SDValue Ops[] = { Chain, Value, StackSlot };
7815  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7816                                         Ops, 3, DstTy, MMO);
7817
7818  return std::make_pair(FIST, StackSlot);
7819}
7820
7821SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7822                                           SelectionDAG &DAG) const {
7823  if (Op.getValueType().isVector())
7824    return SDValue();
7825
7826  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7827  SDValue FIST = Vals.first, StackSlot = Vals.second;
7828  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7829  if (FIST.getNode() == 0) return Op;
7830
7831  // Load the result.
7832  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7833                     FIST, StackSlot, MachinePointerInfo(),
7834                     false, false, false, 0);
7835}
7836
7837SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7838                                           SelectionDAG &DAG) const {
7839  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7840  SDValue FIST = Vals.first, StackSlot = Vals.second;
7841  assert(FIST.getNode() && "Unexpected failure");
7842
7843  // Load the result.
7844  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7845                     FIST, StackSlot, MachinePointerInfo(),
7846                     false, false, false, 0);
7847}
7848
7849SDValue X86TargetLowering::LowerFABS(SDValue Op,
7850                                     SelectionDAG &DAG) const {
7851  LLVMContext *Context = DAG.getContext();
7852  DebugLoc dl = Op.getDebugLoc();
7853  EVT VT = Op.getValueType();
7854  EVT EltVT = VT;
7855  if (VT.isVector())
7856    EltVT = VT.getVectorElementType();
7857  Constant *C;
7858  if (EltVT == MVT::f64) {
7859    C = ConstantVector::getSplat(2,
7860                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7861  } else {
7862    C = ConstantVector::getSplat(4,
7863               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7864  }
7865  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7866  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7867                             MachinePointerInfo::getConstantPool(),
7868                             false, false, false, 16);
7869  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7870}
7871
7872SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7873  LLVMContext *Context = DAG.getContext();
7874  DebugLoc dl = Op.getDebugLoc();
7875  EVT VT = Op.getValueType();
7876  EVT EltVT = VT;
7877  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7878  if (VT.isVector()) {
7879    EltVT = VT.getVectorElementType();
7880    NumElts = VT.getVectorNumElements();
7881  }
7882  Constant *C;
7883  if (EltVT == MVT::f64)
7884    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7885  else
7886    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7887  C = ConstantVector::getSplat(NumElts, C);
7888  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7889  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7890                             MachinePointerInfo::getConstantPool(),
7891                             false, false, false, 16);
7892  if (VT.isVector()) {
7893    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7894    return DAG.getNode(ISD::BITCAST, dl, VT,
7895                       DAG.getNode(ISD::XOR, dl, XORVT,
7896                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7897                                Op.getOperand(0)),
7898                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7899  } else {
7900    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7901  }
7902}
7903
7904SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7905  LLVMContext *Context = DAG.getContext();
7906  SDValue Op0 = Op.getOperand(0);
7907  SDValue Op1 = Op.getOperand(1);
7908  DebugLoc dl = Op.getDebugLoc();
7909  EVT VT = Op.getValueType();
7910  EVT SrcVT = Op1.getValueType();
7911
7912  // If second operand is smaller, extend it first.
7913  if (SrcVT.bitsLT(VT)) {
7914    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7915    SrcVT = VT;
7916  }
7917  // And if it is bigger, shrink it first.
7918  if (SrcVT.bitsGT(VT)) {
7919    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7920    SrcVT = VT;
7921  }
7922
7923  // At this point the operands and the result should have the same
7924  // type, and that won't be f80 since that is not custom lowered.
7925
7926  // First get the sign bit of second operand.
7927  SmallVector<Constant*,4> CV;
7928  if (SrcVT == MVT::f64) {
7929    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7930    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7931  } else {
7932    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7933    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7934    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7935    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7936  }
7937  Constant *C = ConstantVector::get(CV);
7938  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7939  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7940                              MachinePointerInfo::getConstantPool(),
7941                              false, false, false, 16);
7942  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7943
7944  // Shift sign bit right or left if the two operands have different types.
7945  if (SrcVT.bitsGT(VT)) {
7946    // Op0 is MVT::f32, Op1 is MVT::f64.
7947    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7948    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7949                          DAG.getConstant(32, MVT::i32));
7950    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7951    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7952                          DAG.getIntPtrConstant(0));
7953  }
7954
7955  // Clear first operand sign bit.
7956  CV.clear();
7957  if (VT == MVT::f64) {
7958    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7959    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7960  } else {
7961    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7962    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7963    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7964    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7965  }
7966  C = ConstantVector::get(CV);
7967  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7968  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7969                              MachinePointerInfo::getConstantPool(),
7970                              false, false, false, 16);
7971  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7972
7973  // Or the value with the sign bit.
7974  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7975}
7976
7977SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7978  SDValue N0 = Op.getOperand(0);
7979  DebugLoc dl = Op.getDebugLoc();
7980  EVT VT = Op.getValueType();
7981
7982  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7983  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7984                                  DAG.getConstant(1, VT));
7985  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7986}
7987
7988/// Emit nodes that will be selected as "test Op0,Op0", or something
7989/// equivalent.
7990SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7991                                    SelectionDAG &DAG) const {
7992  DebugLoc dl = Op.getDebugLoc();
7993
7994  // CF and OF aren't always set the way we want. Determine which
7995  // of these we need.
7996  bool NeedCF = false;
7997  bool NeedOF = false;
7998  switch (X86CC) {
7999  default: break;
8000  case X86::COND_A: case X86::COND_AE:
8001  case X86::COND_B: case X86::COND_BE:
8002    NeedCF = true;
8003    break;
8004  case X86::COND_G: case X86::COND_GE:
8005  case X86::COND_L: case X86::COND_LE:
8006  case X86::COND_O: case X86::COND_NO:
8007    NeedOF = true;
8008    break;
8009  }
8010
8011  // See if we can use the EFLAGS value from the operand instead of
8012  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8013  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8014  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8015    // Emit a CMP with 0, which is the TEST pattern.
8016    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8017                       DAG.getConstant(0, Op.getValueType()));
8018
8019  unsigned Opcode = 0;
8020  unsigned NumOperands = 0;
8021  switch (Op.getNode()->getOpcode()) {
8022  case ISD::ADD:
8023    // Due to an isel shortcoming, be conservative if this add is likely to be
8024    // selected as part of a load-modify-store instruction. When the root node
8025    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8026    // uses of other nodes in the match, such as the ADD in this case. This
8027    // leads to the ADD being left around and reselected, with the result being
8028    // two adds in the output.  Alas, even if none our users are stores, that
8029    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8030    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8031    // climbing the DAG back to the root, and it doesn't seem to be worth the
8032    // effort.
8033    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8034         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8035      if (UI->getOpcode() != ISD::CopyToReg &&
8036          UI->getOpcode() != ISD::SETCC &&
8037          UI->getOpcode() != ISD::STORE)
8038        goto default_case;
8039
8040    if (ConstantSDNode *C =
8041        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8042      // An add of one will be selected as an INC.
8043      if (C->getAPIntValue() == 1) {
8044        Opcode = X86ISD::INC;
8045        NumOperands = 1;
8046        break;
8047      }
8048
8049      // An add of negative one (subtract of one) will be selected as a DEC.
8050      if (C->getAPIntValue().isAllOnesValue()) {
8051        Opcode = X86ISD::DEC;
8052        NumOperands = 1;
8053        break;
8054      }
8055    }
8056
8057    // Otherwise use a regular EFLAGS-setting add.
8058    Opcode = X86ISD::ADD;
8059    NumOperands = 2;
8060    break;
8061  case ISD::AND: {
8062    // If the primary and result isn't used, don't bother using X86ISD::AND,
8063    // because a TEST instruction will be better.
8064    bool NonFlagUse = false;
8065    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8066           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8067      SDNode *User = *UI;
8068      unsigned UOpNo = UI.getOperandNo();
8069      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8070        // Look pass truncate.
8071        UOpNo = User->use_begin().getOperandNo();
8072        User = *User->use_begin();
8073      }
8074
8075      if (User->getOpcode() != ISD::BRCOND &&
8076          User->getOpcode() != ISD::SETCC &&
8077          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8078        NonFlagUse = true;
8079        break;
8080      }
8081    }
8082
8083    if (!NonFlagUse)
8084      break;
8085  }
8086    // FALL THROUGH
8087  case ISD::SUB:
8088  case ISD::OR:
8089  case ISD::XOR:
8090    // Due to the ISEL shortcoming noted above, be conservative if this op is
8091    // likely to be selected as part of a load-modify-store instruction.
8092    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8093           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8094      if (UI->getOpcode() == ISD::STORE)
8095        goto default_case;
8096
8097    // Otherwise use a regular EFLAGS-setting instruction.
8098    switch (Op.getNode()->getOpcode()) {
8099    default: llvm_unreachable("unexpected operator!");
8100    case ISD::SUB: Opcode = X86ISD::SUB; break;
8101    case ISD::OR:  Opcode = X86ISD::OR;  break;
8102    case ISD::XOR: Opcode = X86ISD::XOR; break;
8103    case ISD::AND: Opcode = X86ISD::AND; break;
8104    }
8105
8106    NumOperands = 2;
8107    break;
8108  case X86ISD::ADD:
8109  case X86ISD::SUB:
8110  case X86ISD::INC:
8111  case X86ISD::DEC:
8112  case X86ISD::OR:
8113  case X86ISD::XOR:
8114  case X86ISD::AND:
8115    return SDValue(Op.getNode(), 1);
8116  default:
8117  default_case:
8118    break;
8119  }
8120
8121  if (Opcode == 0)
8122    // Emit a CMP with 0, which is the TEST pattern.
8123    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8124                       DAG.getConstant(0, Op.getValueType()));
8125
8126  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8127  SmallVector<SDValue, 4> Ops;
8128  for (unsigned i = 0; i != NumOperands; ++i)
8129    Ops.push_back(Op.getOperand(i));
8130
8131  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8132  DAG.ReplaceAllUsesWith(Op, New);
8133  return SDValue(New.getNode(), 1);
8134}
8135
8136/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8137/// equivalent.
8138SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8139                                   SelectionDAG &DAG) const {
8140  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8141    if (C->getAPIntValue() == 0)
8142      return EmitTest(Op0, X86CC, DAG);
8143
8144  DebugLoc dl = Op0.getDebugLoc();
8145  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8146}
8147
8148/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8149/// if it's possible.
8150SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8151                                     DebugLoc dl, SelectionDAG &DAG) const {
8152  SDValue Op0 = And.getOperand(0);
8153  SDValue Op1 = And.getOperand(1);
8154  if (Op0.getOpcode() == ISD::TRUNCATE)
8155    Op0 = Op0.getOperand(0);
8156  if (Op1.getOpcode() == ISD::TRUNCATE)
8157    Op1 = Op1.getOperand(0);
8158
8159  SDValue LHS, RHS;
8160  if (Op1.getOpcode() == ISD::SHL)
8161    std::swap(Op0, Op1);
8162  if (Op0.getOpcode() == ISD::SHL) {
8163    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8164      if (And00C->getZExtValue() == 1) {
8165        // If we looked past a truncate, check that it's only truncating away
8166        // known zeros.
8167        unsigned BitWidth = Op0.getValueSizeInBits();
8168        unsigned AndBitWidth = And.getValueSizeInBits();
8169        if (BitWidth > AndBitWidth) {
8170          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8171          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8172          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8173            return SDValue();
8174        }
8175        LHS = Op1;
8176        RHS = Op0.getOperand(1);
8177      }
8178  } else if (Op1.getOpcode() == ISD::Constant) {
8179    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8180    uint64_t AndRHSVal = AndRHS->getZExtValue();
8181    SDValue AndLHS = Op0;
8182
8183    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8184      LHS = AndLHS.getOperand(0);
8185      RHS = AndLHS.getOperand(1);
8186    }
8187
8188    // Use BT if the immediate can't be encoded in a TEST instruction.
8189    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8190      LHS = AndLHS;
8191      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8192    }
8193  }
8194
8195  if (LHS.getNode()) {
8196    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8197    // instruction.  Since the shift amount is in-range-or-undefined, we know
8198    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8199    // the encoding for the i16 version is larger than the i32 version.
8200    // Also promote i16 to i32 for performance / code size reason.
8201    if (LHS.getValueType() == MVT::i8 ||
8202        LHS.getValueType() == MVT::i16)
8203      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8204
8205    // If the operand types disagree, extend the shift amount to match.  Since
8206    // BT ignores high bits (like shifts) we can use anyextend.
8207    if (LHS.getValueType() != RHS.getValueType())
8208      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8209
8210    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8211    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8212    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8213                       DAG.getConstant(Cond, MVT::i8), BT);
8214  }
8215
8216  return SDValue();
8217}
8218
8219SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8220
8221  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8222
8223  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8224  SDValue Op0 = Op.getOperand(0);
8225  SDValue Op1 = Op.getOperand(1);
8226  DebugLoc dl = Op.getDebugLoc();
8227  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8228
8229  // Optimize to BT if possible.
8230  // Lower (X & (1 << N)) == 0 to BT(X, N).
8231  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8232  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8233  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8234      Op1.getOpcode() == ISD::Constant &&
8235      cast<ConstantSDNode>(Op1)->isNullValue() &&
8236      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8237    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8238    if (NewSetCC.getNode())
8239      return NewSetCC;
8240  }
8241
8242  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8243  // these.
8244  if (Op1.getOpcode() == ISD::Constant &&
8245      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8246       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8247      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8248
8249    // If the input is a setcc, then reuse the input setcc or use a new one with
8250    // the inverted condition.
8251    if (Op0.getOpcode() == X86ISD::SETCC) {
8252      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8253      bool Invert = (CC == ISD::SETNE) ^
8254        cast<ConstantSDNode>(Op1)->isNullValue();
8255      if (!Invert) return Op0;
8256
8257      CCode = X86::GetOppositeBranchCondition(CCode);
8258      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8259                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8260    }
8261  }
8262
8263  bool isFP = Op1.getValueType().isFloatingPoint();
8264  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8265  if (X86CC == X86::COND_INVALID)
8266    return SDValue();
8267
8268  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8269  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8270                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8271}
8272
8273// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8274// ones, and then concatenate the result back.
8275static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8276  EVT VT = Op.getValueType();
8277
8278  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8279         "Unsupported value type for operation");
8280
8281  int NumElems = VT.getVectorNumElements();
8282  DebugLoc dl = Op.getDebugLoc();
8283  SDValue CC = Op.getOperand(2);
8284  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8285  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8286
8287  // Extract the LHS vectors
8288  SDValue LHS = Op.getOperand(0);
8289  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8290  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8291
8292  // Extract the RHS vectors
8293  SDValue RHS = Op.getOperand(1);
8294  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8295  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8296
8297  // Issue the operation on the smaller types and concatenate the result back
8298  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8299  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8300  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8301                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8302                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8303}
8304
8305
8306SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8307  SDValue Cond;
8308  SDValue Op0 = Op.getOperand(0);
8309  SDValue Op1 = Op.getOperand(1);
8310  SDValue CC = Op.getOperand(2);
8311  EVT VT = Op.getValueType();
8312  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8313  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8314  DebugLoc dl = Op.getDebugLoc();
8315
8316  if (isFP) {
8317    unsigned SSECC = 8;
8318    EVT EltVT = Op0.getValueType().getVectorElementType();
8319    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8320
8321    bool Swap = false;
8322
8323    // SSE Condition code mapping:
8324    //  0 - EQ
8325    //  1 - LT
8326    //  2 - LE
8327    //  3 - UNORD
8328    //  4 - NEQ
8329    //  5 - NLT
8330    //  6 - NLE
8331    //  7 - ORD
8332    switch (SetCCOpcode) {
8333    default: break;
8334    case ISD::SETOEQ:
8335    case ISD::SETEQ:  SSECC = 0; break;
8336    case ISD::SETOGT:
8337    case ISD::SETGT: Swap = true; // Fallthrough
8338    case ISD::SETLT:
8339    case ISD::SETOLT: SSECC = 1; break;
8340    case ISD::SETOGE:
8341    case ISD::SETGE: Swap = true; // Fallthrough
8342    case ISD::SETLE:
8343    case ISD::SETOLE: SSECC = 2; break;
8344    case ISD::SETUO:  SSECC = 3; break;
8345    case ISD::SETUNE:
8346    case ISD::SETNE:  SSECC = 4; break;
8347    case ISD::SETULE: Swap = true;
8348    case ISD::SETUGE: SSECC = 5; break;
8349    case ISD::SETULT: Swap = true;
8350    case ISD::SETUGT: SSECC = 6; break;
8351    case ISD::SETO:   SSECC = 7; break;
8352    }
8353    if (Swap)
8354      std::swap(Op0, Op1);
8355
8356    // In the two special cases we can't handle, emit two comparisons.
8357    if (SSECC == 8) {
8358      if (SetCCOpcode == ISD::SETUEQ) {
8359        SDValue UNORD, EQ;
8360        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8361                            DAG.getConstant(3, MVT::i8));
8362        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8363                         DAG.getConstant(0, MVT::i8));
8364        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8365      } else if (SetCCOpcode == ISD::SETONE) {
8366        SDValue ORD, NEQ;
8367        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8368                          DAG.getConstant(7, MVT::i8));
8369        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8370                          DAG.getConstant(4, MVT::i8));
8371        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8372      }
8373      llvm_unreachable("Illegal FP comparison");
8374    }
8375    // Handle all other FP comparisons here.
8376    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8377                       DAG.getConstant(SSECC, MVT::i8));
8378  }
8379
8380  // Break 256-bit integer vector compare into smaller ones.
8381  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8382    return Lower256IntVSETCC(Op, DAG);
8383
8384  // We are handling one of the integer comparisons here.  Since SSE only has
8385  // GT and EQ comparisons for integer, swapping operands and multiple
8386  // operations may be required for some comparisons.
8387  unsigned Opc = 0;
8388  bool Swap = false, Invert = false, FlipSigns = false;
8389
8390  switch (SetCCOpcode) {
8391  default: break;
8392  case ISD::SETNE:  Invert = true;
8393  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8394  case ISD::SETLT:  Swap = true;
8395  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8396  case ISD::SETGE:  Swap = true;
8397  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8398  case ISD::SETULT: Swap = true;
8399  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8400  case ISD::SETUGE: Swap = true;
8401  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8402  }
8403  if (Swap)
8404    std::swap(Op0, Op1);
8405
8406  // Check that the operation in question is available (most are plain SSE2,
8407  // but PCMPGTQ and PCMPEQQ have different requirements).
8408  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8409    return SDValue();
8410  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8411    return SDValue();
8412
8413  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8414  // bits of the inputs before performing those operations.
8415  if (FlipSigns) {
8416    EVT EltVT = VT.getVectorElementType();
8417    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8418                                      EltVT);
8419    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8420    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8421                                    SignBits.size());
8422    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8423    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8424  }
8425
8426  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8427
8428  // If the logical-not of the result is required, perform that now.
8429  if (Invert)
8430    Result = DAG.getNOT(dl, Result, VT);
8431
8432  return Result;
8433}
8434
8435// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8436static bool isX86LogicalCmp(SDValue Op) {
8437  unsigned Opc = Op.getNode()->getOpcode();
8438  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8439    return true;
8440  if (Op.getResNo() == 1 &&
8441      (Opc == X86ISD::ADD ||
8442       Opc == X86ISD::SUB ||
8443       Opc == X86ISD::ADC ||
8444       Opc == X86ISD::SBB ||
8445       Opc == X86ISD::SMUL ||
8446       Opc == X86ISD::UMUL ||
8447       Opc == X86ISD::INC ||
8448       Opc == X86ISD::DEC ||
8449       Opc == X86ISD::OR ||
8450       Opc == X86ISD::XOR ||
8451       Opc == X86ISD::AND))
8452    return true;
8453
8454  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8455    return true;
8456
8457  return false;
8458}
8459
8460static bool isZero(SDValue V) {
8461  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8462  return C && C->isNullValue();
8463}
8464
8465static bool isAllOnes(SDValue V) {
8466  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8467  return C && C->isAllOnesValue();
8468}
8469
8470SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8471  bool addTest = true;
8472  SDValue Cond  = Op.getOperand(0);
8473  SDValue Op1 = Op.getOperand(1);
8474  SDValue Op2 = Op.getOperand(2);
8475  DebugLoc DL = Op.getDebugLoc();
8476  SDValue CC;
8477
8478  if (Cond.getOpcode() == ISD::SETCC) {
8479    SDValue NewCond = LowerSETCC(Cond, DAG);
8480    if (NewCond.getNode())
8481      Cond = NewCond;
8482  }
8483
8484  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8485  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8486  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8487  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8488  if (Cond.getOpcode() == X86ISD::SETCC &&
8489      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8490      isZero(Cond.getOperand(1).getOperand(1))) {
8491    SDValue Cmp = Cond.getOperand(1);
8492
8493    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8494
8495    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8496        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8497      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8498
8499      SDValue CmpOp0 = Cmp.getOperand(0);
8500      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8501                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8502
8503      SDValue Res =   // Res = 0 or -1.
8504        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8505                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8506
8507      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8508        Res = DAG.getNOT(DL, Res, Res.getValueType());
8509
8510      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8511      if (N2C == 0 || !N2C->isNullValue())
8512        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8513      return Res;
8514    }
8515  }
8516
8517  // Look past (and (setcc_carry (cmp ...)), 1).
8518  if (Cond.getOpcode() == ISD::AND &&
8519      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8520    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8521    if (C && C->getAPIntValue() == 1)
8522      Cond = Cond.getOperand(0);
8523  }
8524
8525  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8526  // setting operand in place of the X86ISD::SETCC.
8527  unsigned CondOpcode = Cond.getOpcode();
8528  if (CondOpcode == X86ISD::SETCC ||
8529      CondOpcode == X86ISD::SETCC_CARRY) {
8530    CC = Cond.getOperand(0);
8531
8532    SDValue Cmp = Cond.getOperand(1);
8533    unsigned Opc = Cmp.getOpcode();
8534    EVT VT = Op.getValueType();
8535
8536    bool IllegalFPCMov = false;
8537    if (VT.isFloatingPoint() && !VT.isVector() &&
8538        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8539      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8540
8541    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8542        Opc == X86ISD::BT) { // FIXME
8543      Cond = Cmp;
8544      addTest = false;
8545    }
8546  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8547             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8548             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8549              Cond.getOperand(0).getValueType() != MVT::i8)) {
8550    SDValue LHS = Cond.getOperand(0);
8551    SDValue RHS = Cond.getOperand(1);
8552    unsigned X86Opcode;
8553    unsigned X86Cond;
8554    SDVTList VTs;
8555    switch (CondOpcode) {
8556    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8557    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8558    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8559    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8560    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8561    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8562    default: llvm_unreachable("unexpected overflowing operator");
8563    }
8564    if (CondOpcode == ISD::UMULO)
8565      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8566                          MVT::i32);
8567    else
8568      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8569
8570    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8571
8572    if (CondOpcode == ISD::UMULO)
8573      Cond = X86Op.getValue(2);
8574    else
8575      Cond = X86Op.getValue(1);
8576
8577    CC = DAG.getConstant(X86Cond, MVT::i8);
8578    addTest = false;
8579  }
8580
8581  if (addTest) {
8582    // Look pass the truncate.
8583    if (Cond.getOpcode() == ISD::TRUNCATE)
8584      Cond = Cond.getOperand(0);
8585
8586    // We know the result of AND is compared against zero. Try to match
8587    // it to BT.
8588    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8589      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8590      if (NewSetCC.getNode()) {
8591        CC = NewSetCC.getOperand(0);
8592        Cond = NewSetCC.getOperand(1);
8593        addTest = false;
8594      }
8595    }
8596  }
8597
8598  if (addTest) {
8599    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8600    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8601  }
8602
8603  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8604  // a <  b ?  0 : -1 -> RES = setcc_carry
8605  // a >= b ? -1 :  0 -> RES = setcc_carry
8606  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8607  if (Cond.getOpcode() == X86ISD::CMP) {
8608    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8609
8610    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8611        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8612      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8613                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8614      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8615        return DAG.getNOT(DL, Res, Res.getValueType());
8616      return Res;
8617    }
8618  }
8619
8620  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8621  // condition is true.
8622  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8623  SDValue Ops[] = { Op2, Op1, CC, Cond };
8624  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8625}
8626
8627// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8628// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8629// from the AND / OR.
8630static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8631  Opc = Op.getOpcode();
8632  if (Opc != ISD::OR && Opc != ISD::AND)
8633    return false;
8634  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8635          Op.getOperand(0).hasOneUse() &&
8636          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8637          Op.getOperand(1).hasOneUse());
8638}
8639
8640// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8641// 1 and that the SETCC node has a single use.
8642static bool isXor1OfSetCC(SDValue Op) {
8643  if (Op.getOpcode() != ISD::XOR)
8644    return false;
8645  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8646  if (N1C && N1C->getAPIntValue() == 1) {
8647    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8648      Op.getOperand(0).hasOneUse();
8649  }
8650  return false;
8651}
8652
8653SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8654  bool addTest = true;
8655  SDValue Chain = Op.getOperand(0);
8656  SDValue Cond  = Op.getOperand(1);
8657  SDValue Dest  = Op.getOperand(2);
8658  DebugLoc dl = Op.getDebugLoc();
8659  SDValue CC;
8660  bool Inverted = false;
8661
8662  if (Cond.getOpcode() == ISD::SETCC) {
8663    // Check for setcc([su]{add,sub,mul}o == 0).
8664    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8665        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8666        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8667        Cond.getOperand(0).getResNo() == 1 &&
8668        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8669         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8670         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8671         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8672         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8673         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8674      Inverted = true;
8675      Cond = Cond.getOperand(0);
8676    } else {
8677      SDValue NewCond = LowerSETCC(Cond, DAG);
8678      if (NewCond.getNode())
8679        Cond = NewCond;
8680    }
8681  }
8682#if 0
8683  // FIXME: LowerXALUO doesn't handle these!!
8684  else if (Cond.getOpcode() == X86ISD::ADD  ||
8685           Cond.getOpcode() == X86ISD::SUB  ||
8686           Cond.getOpcode() == X86ISD::SMUL ||
8687           Cond.getOpcode() == X86ISD::UMUL)
8688    Cond = LowerXALUO(Cond, DAG);
8689#endif
8690
8691  // Look pass (and (setcc_carry (cmp ...)), 1).
8692  if (Cond.getOpcode() == ISD::AND &&
8693      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8694    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8695    if (C && C->getAPIntValue() == 1)
8696      Cond = Cond.getOperand(0);
8697  }
8698
8699  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8700  // setting operand in place of the X86ISD::SETCC.
8701  unsigned CondOpcode = Cond.getOpcode();
8702  if (CondOpcode == X86ISD::SETCC ||
8703      CondOpcode == X86ISD::SETCC_CARRY) {
8704    CC = Cond.getOperand(0);
8705
8706    SDValue Cmp = Cond.getOperand(1);
8707    unsigned Opc = Cmp.getOpcode();
8708    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8709    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8710      Cond = Cmp;
8711      addTest = false;
8712    } else {
8713      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8714      default: break;
8715      case X86::COND_O:
8716      case X86::COND_B:
8717        // These can only come from an arithmetic instruction with overflow,
8718        // e.g. SADDO, UADDO.
8719        Cond = Cond.getNode()->getOperand(1);
8720        addTest = false;
8721        break;
8722      }
8723    }
8724  }
8725  CondOpcode = Cond.getOpcode();
8726  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8727      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8728      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8729       Cond.getOperand(0).getValueType() != MVT::i8)) {
8730    SDValue LHS = Cond.getOperand(0);
8731    SDValue RHS = Cond.getOperand(1);
8732    unsigned X86Opcode;
8733    unsigned X86Cond;
8734    SDVTList VTs;
8735    switch (CondOpcode) {
8736    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8737    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8738    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8739    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8740    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8741    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8742    default: llvm_unreachable("unexpected overflowing operator");
8743    }
8744    if (Inverted)
8745      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8746    if (CondOpcode == ISD::UMULO)
8747      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8748                          MVT::i32);
8749    else
8750      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8751
8752    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8753
8754    if (CondOpcode == ISD::UMULO)
8755      Cond = X86Op.getValue(2);
8756    else
8757      Cond = X86Op.getValue(1);
8758
8759    CC = DAG.getConstant(X86Cond, MVT::i8);
8760    addTest = false;
8761  } else {
8762    unsigned CondOpc;
8763    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8764      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8765      if (CondOpc == ISD::OR) {
8766        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8767        // two branches instead of an explicit OR instruction with a
8768        // separate test.
8769        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8770            isX86LogicalCmp(Cmp)) {
8771          CC = Cond.getOperand(0).getOperand(0);
8772          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8773                              Chain, Dest, CC, Cmp);
8774          CC = Cond.getOperand(1).getOperand(0);
8775          Cond = Cmp;
8776          addTest = false;
8777        }
8778      } else { // ISD::AND
8779        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8780        // two branches instead of an explicit AND instruction with a
8781        // separate test. However, we only do this if this block doesn't
8782        // have a fall-through edge, because this requires an explicit
8783        // jmp when the condition is false.
8784        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8785            isX86LogicalCmp(Cmp) &&
8786            Op.getNode()->hasOneUse()) {
8787          X86::CondCode CCode =
8788            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8789          CCode = X86::GetOppositeBranchCondition(CCode);
8790          CC = DAG.getConstant(CCode, MVT::i8);
8791          SDNode *User = *Op.getNode()->use_begin();
8792          // Look for an unconditional branch following this conditional branch.
8793          // We need this because we need to reverse the successors in order
8794          // to implement FCMP_OEQ.
8795          if (User->getOpcode() == ISD::BR) {
8796            SDValue FalseBB = User->getOperand(1);
8797            SDNode *NewBR =
8798              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8799            assert(NewBR == User);
8800            (void)NewBR;
8801            Dest = FalseBB;
8802
8803            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8804                                Chain, Dest, CC, Cmp);
8805            X86::CondCode CCode =
8806              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8807            CCode = X86::GetOppositeBranchCondition(CCode);
8808            CC = DAG.getConstant(CCode, MVT::i8);
8809            Cond = Cmp;
8810            addTest = false;
8811          }
8812        }
8813      }
8814    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8815      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8816      // It should be transformed during dag combiner except when the condition
8817      // is set by a arithmetics with overflow node.
8818      X86::CondCode CCode =
8819        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8820      CCode = X86::GetOppositeBranchCondition(CCode);
8821      CC = DAG.getConstant(CCode, MVT::i8);
8822      Cond = Cond.getOperand(0).getOperand(1);
8823      addTest = false;
8824    } else if (Cond.getOpcode() == ISD::SETCC &&
8825               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8826      // For FCMP_OEQ, we can emit
8827      // two branches instead of an explicit AND instruction with a
8828      // separate test. However, we only do this if this block doesn't
8829      // have a fall-through edge, because this requires an explicit
8830      // jmp when the condition is false.
8831      if (Op.getNode()->hasOneUse()) {
8832        SDNode *User = *Op.getNode()->use_begin();
8833        // Look for an unconditional branch following this conditional branch.
8834        // We need this because we need to reverse the successors in order
8835        // to implement FCMP_OEQ.
8836        if (User->getOpcode() == ISD::BR) {
8837          SDValue FalseBB = User->getOperand(1);
8838          SDNode *NewBR =
8839            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8840          assert(NewBR == User);
8841          (void)NewBR;
8842          Dest = FalseBB;
8843
8844          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8845                                    Cond.getOperand(0), Cond.getOperand(1));
8846          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8847          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8848                              Chain, Dest, CC, Cmp);
8849          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8850          Cond = Cmp;
8851          addTest = false;
8852        }
8853      }
8854    } else if (Cond.getOpcode() == ISD::SETCC &&
8855               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8856      // For FCMP_UNE, we can emit
8857      // two branches instead of an explicit AND instruction with a
8858      // separate test. However, we only do this if this block doesn't
8859      // have a fall-through edge, because this requires an explicit
8860      // jmp when the condition is false.
8861      if (Op.getNode()->hasOneUse()) {
8862        SDNode *User = *Op.getNode()->use_begin();
8863        // Look for an unconditional branch following this conditional branch.
8864        // We need this because we need to reverse the successors in order
8865        // to implement FCMP_UNE.
8866        if (User->getOpcode() == ISD::BR) {
8867          SDValue FalseBB = User->getOperand(1);
8868          SDNode *NewBR =
8869            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8870          assert(NewBR == User);
8871          (void)NewBR;
8872
8873          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8874                                    Cond.getOperand(0), Cond.getOperand(1));
8875          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8876          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8877                              Chain, Dest, CC, Cmp);
8878          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8879          Cond = Cmp;
8880          addTest = false;
8881          Dest = FalseBB;
8882        }
8883      }
8884    }
8885  }
8886
8887  if (addTest) {
8888    // Look pass the truncate.
8889    if (Cond.getOpcode() == ISD::TRUNCATE)
8890      Cond = Cond.getOperand(0);
8891
8892    // We know the result of AND is compared against zero. Try to match
8893    // it to BT.
8894    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8895      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8896      if (NewSetCC.getNode()) {
8897        CC = NewSetCC.getOperand(0);
8898        Cond = NewSetCC.getOperand(1);
8899        addTest = false;
8900      }
8901    }
8902  }
8903
8904  if (addTest) {
8905    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8906    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8907  }
8908  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8909                     Chain, Dest, CC, Cond);
8910}
8911
8912
8913// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8914// Calls to _alloca is needed to probe the stack when allocating more than 4k
8915// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8916// that the guard pages used by the OS virtual memory manager are allocated in
8917// correct sequence.
8918SDValue
8919X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8920                                           SelectionDAG &DAG) const {
8921  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8922          getTargetMachine().Options.EnableSegmentedStacks) &&
8923         "This should be used only on Windows targets or when segmented stacks "
8924         "are being used");
8925  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8926  DebugLoc dl = Op.getDebugLoc();
8927
8928  // Get the inputs.
8929  SDValue Chain = Op.getOperand(0);
8930  SDValue Size  = Op.getOperand(1);
8931  // FIXME: Ensure alignment here
8932
8933  bool Is64Bit = Subtarget->is64Bit();
8934  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8935
8936  if (getTargetMachine().Options.EnableSegmentedStacks) {
8937    MachineFunction &MF = DAG.getMachineFunction();
8938    MachineRegisterInfo &MRI = MF.getRegInfo();
8939
8940    if (Is64Bit) {
8941      // The 64 bit implementation of segmented stacks needs to clobber both r10
8942      // r11. This makes it impossible to use it along with nested parameters.
8943      const Function *F = MF.getFunction();
8944
8945      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8946           I != E; I++)
8947        if (I->hasNestAttr())
8948          report_fatal_error("Cannot use segmented stacks with functions that "
8949                             "have nested arguments.");
8950    }
8951
8952    const TargetRegisterClass *AddrRegClass =
8953      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8954    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8955    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8956    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8957                                DAG.getRegister(Vreg, SPTy));
8958    SDValue Ops1[2] = { Value, Chain };
8959    return DAG.getMergeValues(Ops1, 2, dl);
8960  } else {
8961    SDValue Flag;
8962    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8963
8964    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8965    Flag = Chain.getValue(1);
8966    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8967
8968    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8969    Flag = Chain.getValue(1);
8970
8971    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8972
8973    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8974    return DAG.getMergeValues(Ops1, 2, dl);
8975  }
8976}
8977
8978SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8979  MachineFunction &MF = DAG.getMachineFunction();
8980  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8981
8982  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8983  DebugLoc DL = Op.getDebugLoc();
8984
8985  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8986    // vastart just stores the address of the VarArgsFrameIndex slot into the
8987    // memory location argument.
8988    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8989                                   getPointerTy());
8990    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8991                        MachinePointerInfo(SV), false, false, 0);
8992  }
8993
8994  // __va_list_tag:
8995  //   gp_offset         (0 - 6 * 8)
8996  //   fp_offset         (48 - 48 + 8 * 16)
8997  //   overflow_arg_area (point to parameters coming in memory).
8998  //   reg_save_area
8999  SmallVector<SDValue, 8> MemOps;
9000  SDValue FIN = Op.getOperand(1);
9001  // Store gp_offset
9002  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9003                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9004                                               MVT::i32),
9005                               FIN, MachinePointerInfo(SV), false, false, 0);
9006  MemOps.push_back(Store);
9007
9008  // Store fp_offset
9009  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9010                    FIN, DAG.getIntPtrConstant(4));
9011  Store = DAG.getStore(Op.getOperand(0), DL,
9012                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9013                                       MVT::i32),
9014                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9015  MemOps.push_back(Store);
9016
9017  // Store ptr to overflow_arg_area
9018  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9019                    FIN, DAG.getIntPtrConstant(4));
9020  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9021                                    getPointerTy());
9022  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9023                       MachinePointerInfo(SV, 8),
9024                       false, false, 0);
9025  MemOps.push_back(Store);
9026
9027  // Store ptr to reg_save_area.
9028  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9029                    FIN, DAG.getIntPtrConstant(8));
9030  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9031                                    getPointerTy());
9032  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9033                       MachinePointerInfo(SV, 16), false, false, 0);
9034  MemOps.push_back(Store);
9035  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9036                     &MemOps[0], MemOps.size());
9037}
9038
9039SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9040  assert(Subtarget->is64Bit() &&
9041         "LowerVAARG only handles 64-bit va_arg!");
9042  assert((Subtarget->isTargetLinux() ||
9043          Subtarget->isTargetDarwin()) &&
9044          "Unhandled target in LowerVAARG");
9045  assert(Op.getNode()->getNumOperands() == 4);
9046  SDValue Chain = Op.getOperand(0);
9047  SDValue SrcPtr = Op.getOperand(1);
9048  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9049  unsigned Align = Op.getConstantOperandVal(3);
9050  DebugLoc dl = Op.getDebugLoc();
9051
9052  EVT ArgVT = Op.getNode()->getValueType(0);
9053  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9054  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9055  uint8_t ArgMode;
9056
9057  // Decide which area this value should be read from.
9058  // TODO: Implement the AMD64 ABI in its entirety. This simple
9059  // selection mechanism works only for the basic types.
9060  if (ArgVT == MVT::f80) {
9061    llvm_unreachable("va_arg for f80 not yet implemented");
9062  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9063    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9064  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9065    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9066  } else {
9067    llvm_unreachable("Unhandled argument type in LowerVAARG");
9068  }
9069
9070  if (ArgMode == 2) {
9071    // Sanity Check: Make sure using fp_offset makes sense.
9072    assert(!getTargetMachine().Options.UseSoftFloat &&
9073           !(DAG.getMachineFunction()
9074                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9075           Subtarget->hasSSE1());
9076  }
9077
9078  // Insert VAARG_64 node into the DAG
9079  // VAARG_64 returns two values: Variable Argument Address, Chain
9080  SmallVector<SDValue, 11> InstOps;
9081  InstOps.push_back(Chain);
9082  InstOps.push_back(SrcPtr);
9083  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9084  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9085  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9086  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9087  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9088                                          VTs, &InstOps[0], InstOps.size(),
9089                                          MVT::i64,
9090                                          MachinePointerInfo(SV),
9091                                          /*Align=*/0,
9092                                          /*Volatile=*/false,
9093                                          /*ReadMem=*/true,
9094                                          /*WriteMem=*/true);
9095  Chain = VAARG.getValue(1);
9096
9097  // Load the next argument and return it
9098  return DAG.getLoad(ArgVT, dl,
9099                     Chain,
9100                     VAARG,
9101                     MachinePointerInfo(),
9102                     false, false, false, 0);
9103}
9104
9105SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9106  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9107  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9108  SDValue Chain = Op.getOperand(0);
9109  SDValue DstPtr = Op.getOperand(1);
9110  SDValue SrcPtr = Op.getOperand(2);
9111  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9112  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9113  DebugLoc DL = Op.getDebugLoc();
9114
9115  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9116                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9117                       false,
9118                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9119}
9120
9121// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9122// may or may not be a constant. Takes immediate version of shift as input.
9123static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9124                                   SDValue SrcOp, SDValue ShAmt,
9125                                   SelectionDAG &DAG) {
9126  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9127
9128  if (isa<ConstantSDNode>(ShAmt)) {
9129    switch (Opc) {
9130      default: llvm_unreachable("Unknown target vector shift node");
9131      case X86ISD::VSHLI:
9132      case X86ISD::VSRLI:
9133      case X86ISD::VSRAI:
9134        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9135    }
9136  }
9137
9138  // Change opcode to non-immediate version
9139  switch (Opc) {
9140    default: llvm_unreachable("Unknown target vector shift node");
9141    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9142    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9143    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9144  }
9145
9146  // Need to build a vector containing shift amount
9147  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9148  SDValue ShOps[4];
9149  ShOps[0] = ShAmt;
9150  ShOps[1] = DAG.getConstant(0, MVT::i32);
9151  ShOps[2] = DAG.getUNDEF(MVT::i32);
9152  ShOps[3] = DAG.getUNDEF(MVT::i32);
9153  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9154  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9155  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9156}
9157
9158SDValue
9159X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9160  DebugLoc dl = Op.getDebugLoc();
9161  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9162  switch (IntNo) {
9163  default: return SDValue();    // Don't custom lower most intrinsics.
9164  // Comparison intrinsics.
9165  case Intrinsic::x86_sse_comieq_ss:
9166  case Intrinsic::x86_sse_comilt_ss:
9167  case Intrinsic::x86_sse_comile_ss:
9168  case Intrinsic::x86_sse_comigt_ss:
9169  case Intrinsic::x86_sse_comige_ss:
9170  case Intrinsic::x86_sse_comineq_ss:
9171  case Intrinsic::x86_sse_ucomieq_ss:
9172  case Intrinsic::x86_sse_ucomilt_ss:
9173  case Intrinsic::x86_sse_ucomile_ss:
9174  case Intrinsic::x86_sse_ucomigt_ss:
9175  case Intrinsic::x86_sse_ucomige_ss:
9176  case Intrinsic::x86_sse_ucomineq_ss:
9177  case Intrinsic::x86_sse2_comieq_sd:
9178  case Intrinsic::x86_sse2_comilt_sd:
9179  case Intrinsic::x86_sse2_comile_sd:
9180  case Intrinsic::x86_sse2_comigt_sd:
9181  case Intrinsic::x86_sse2_comige_sd:
9182  case Intrinsic::x86_sse2_comineq_sd:
9183  case Intrinsic::x86_sse2_ucomieq_sd:
9184  case Intrinsic::x86_sse2_ucomilt_sd:
9185  case Intrinsic::x86_sse2_ucomile_sd:
9186  case Intrinsic::x86_sse2_ucomigt_sd:
9187  case Intrinsic::x86_sse2_ucomige_sd:
9188  case Intrinsic::x86_sse2_ucomineq_sd: {
9189    unsigned Opc = 0;
9190    ISD::CondCode CC = ISD::SETCC_INVALID;
9191    switch (IntNo) {
9192    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9193    case Intrinsic::x86_sse_comieq_ss:
9194    case Intrinsic::x86_sse2_comieq_sd:
9195      Opc = X86ISD::COMI;
9196      CC = ISD::SETEQ;
9197      break;
9198    case Intrinsic::x86_sse_comilt_ss:
9199    case Intrinsic::x86_sse2_comilt_sd:
9200      Opc = X86ISD::COMI;
9201      CC = ISD::SETLT;
9202      break;
9203    case Intrinsic::x86_sse_comile_ss:
9204    case Intrinsic::x86_sse2_comile_sd:
9205      Opc = X86ISD::COMI;
9206      CC = ISD::SETLE;
9207      break;
9208    case Intrinsic::x86_sse_comigt_ss:
9209    case Intrinsic::x86_sse2_comigt_sd:
9210      Opc = X86ISD::COMI;
9211      CC = ISD::SETGT;
9212      break;
9213    case Intrinsic::x86_sse_comige_ss:
9214    case Intrinsic::x86_sse2_comige_sd:
9215      Opc = X86ISD::COMI;
9216      CC = ISD::SETGE;
9217      break;
9218    case Intrinsic::x86_sse_comineq_ss:
9219    case Intrinsic::x86_sse2_comineq_sd:
9220      Opc = X86ISD::COMI;
9221      CC = ISD::SETNE;
9222      break;
9223    case Intrinsic::x86_sse_ucomieq_ss:
9224    case Intrinsic::x86_sse2_ucomieq_sd:
9225      Opc = X86ISD::UCOMI;
9226      CC = ISD::SETEQ;
9227      break;
9228    case Intrinsic::x86_sse_ucomilt_ss:
9229    case Intrinsic::x86_sse2_ucomilt_sd:
9230      Opc = X86ISD::UCOMI;
9231      CC = ISD::SETLT;
9232      break;
9233    case Intrinsic::x86_sse_ucomile_ss:
9234    case Intrinsic::x86_sse2_ucomile_sd:
9235      Opc = X86ISD::UCOMI;
9236      CC = ISD::SETLE;
9237      break;
9238    case Intrinsic::x86_sse_ucomigt_ss:
9239    case Intrinsic::x86_sse2_ucomigt_sd:
9240      Opc = X86ISD::UCOMI;
9241      CC = ISD::SETGT;
9242      break;
9243    case Intrinsic::x86_sse_ucomige_ss:
9244    case Intrinsic::x86_sse2_ucomige_sd:
9245      Opc = X86ISD::UCOMI;
9246      CC = ISD::SETGE;
9247      break;
9248    case Intrinsic::x86_sse_ucomineq_ss:
9249    case Intrinsic::x86_sse2_ucomineq_sd:
9250      Opc = X86ISD::UCOMI;
9251      CC = ISD::SETNE;
9252      break;
9253    }
9254
9255    SDValue LHS = Op.getOperand(1);
9256    SDValue RHS = Op.getOperand(2);
9257    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9258    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9259    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9260    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9261                                DAG.getConstant(X86CC, MVT::i8), Cond);
9262    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9263  }
9264  // XOP comparison intrinsics
9265  case Intrinsic::x86_xop_vpcomltb:
9266  case Intrinsic::x86_xop_vpcomltw:
9267  case Intrinsic::x86_xop_vpcomltd:
9268  case Intrinsic::x86_xop_vpcomltq:
9269  case Intrinsic::x86_xop_vpcomltub:
9270  case Intrinsic::x86_xop_vpcomltuw:
9271  case Intrinsic::x86_xop_vpcomltud:
9272  case Intrinsic::x86_xop_vpcomltuq:
9273  case Intrinsic::x86_xop_vpcomleb:
9274  case Intrinsic::x86_xop_vpcomlew:
9275  case Intrinsic::x86_xop_vpcomled:
9276  case Intrinsic::x86_xop_vpcomleq:
9277  case Intrinsic::x86_xop_vpcomleub:
9278  case Intrinsic::x86_xop_vpcomleuw:
9279  case Intrinsic::x86_xop_vpcomleud:
9280  case Intrinsic::x86_xop_vpcomleuq:
9281  case Intrinsic::x86_xop_vpcomgtb:
9282  case Intrinsic::x86_xop_vpcomgtw:
9283  case Intrinsic::x86_xop_vpcomgtd:
9284  case Intrinsic::x86_xop_vpcomgtq:
9285  case Intrinsic::x86_xop_vpcomgtub:
9286  case Intrinsic::x86_xop_vpcomgtuw:
9287  case Intrinsic::x86_xop_vpcomgtud:
9288  case Intrinsic::x86_xop_vpcomgtuq:
9289  case Intrinsic::x86_xop_vpcomgeb:
9290  case Intrinsic::x86_xop_vpcomgew:
9291  case Intrinsic::x86_xop_vpcomged:
9292  case Intrinsic::x86_xop_vpcomgeq:
9293  case Intrinsic::x86_xop_vpcomgeub:
9294  case Intrinsic::x86_xop_vpcomgeuw:
9295  case Intrinsic::x86_xop_vpcomgeud:
9296  case Intrinsic::x86_xop_vpcomgeuq:
9297  case Intrinsic::x86_xop_vpcomeqb:
9298  case Intrinsic::x86_xop_vpcomeqw:
9299  case Intrinsic::x86_xop_vpcomeqd:
9300  case Intrinsic::x86_xop_vpcomeqq:
9301  case Intrinsic::x86_xop_vpcomequb:
9302  case Intrinsic::x86_xop_vpcomequw:
9303  case Intrinsic::x86_xop_vpcomequd:
9304  case Intrinsic::x86_xop_vpcomequq:
9305  case Intrinsic::x86_xop_vpcomneb:
9306  case Intrinsic::x86_xop_vpcomnew:
9307  case Intrinsic::x86_xop_vpcomned:
9308  case Intrinsic::x86_xop_vpcomneq:
9309  case Intrinsic::x86_xop_vpcomneub:
9310  case Intrinsic::x86_xop_vpcomneuw:
9311  case Intrinsic::x86_xop_vpcomneud:
9312  case Intrinsic::x86_xop_vpcomneuq:
9313  case Intrinsic::x86_xop_vpcomfalseb:
9314  case Intrinsic::x86_xop_vpcomfalsew:
9315  case Intrinsic::x86_xop_vpcomfalsed:
9316  case Intrinsic::x86_xop_vpcomfalseq:
9317  case Intrinsic::x86_xop_vpcomfalseub:
9318  case Intrinsic::x86_xop_vpcomfalseuw:
9319  case Intrinsic::x86_xop_vpcomfalseud:
9320  case Intrinsic::x86_xop_vpcomfalseuq:
9321  case Intrinsic::x86_xop_vpcomtrueb:
9322  case Intrinsic::x86_xop_vpcomtruew:
9323  case Intrinsic::x86_xop_vpcomtrued:
9324  case Intrinsic::x86_xop_vpcomtrueq:
9325  case Intrinsic::x86_xop_vpcomtrueub:
9326  case Intrinsic::x86_xop_vpcomtrueuw:
9327  case Intrinsic::x86_xop_vpcomtrueud:
9328  case Intrinsic::x86_xop_vpcomtrueuq: {
9329    unsigned CC = 0;
9330    unsigned Opc = 0;
9331
9332    switch (IntNo) {
9333    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9334    case Intrinsic::x86_xop_vpcomltb:
9335    case Intrinsic::x86_xop_vpcomltw:
9336    case Intrinsic::x86_xop_vpcomltd:
9337    case Intrinsic::x86_xop_vpcomltq:
9338      CC = 0;
9339      Opc = X86ISD::VPCOM;
9340      break;
9341    case Intrinsic::x86_xop_vpcomltub:
9342    case Intrinsic::x86_xop_vpcomltuw:
9343    case Intrinsic::x86_xop_vpcomltud:
9344    case Intrinsic::x86_xop_vpcomltuq:
9345      CC = 0;
9346      Opc = X86ISD::VPCOMU;
9347      break;
9348    case Intrinsic::x86_xop_vpcomleb:
9349    case Intrinsic::x86_xop_vpcomlew:
9350    case Intrinsic::x86_xop_vpcomled:
9351    case Intrinsic::x86_xop_vpcomleq:
9352      CC = 1;
9353      Opc = X86ISD::VPCOM;
9354      break;
9355    case Intrinsic::x86_xop_vpcomleub:
9356    case Intrinsic::x86_xop_vpcomleuw:
9357    case Intrinsic::x86_xop_vpcomleud:
9358    case Intrinsic::x86_xop_vpcomleuq:
9359      CC = 1;
9360      Opc = X86ISD::VPCOMU;
9361      break;
9362    case Intrinsic::x86_xop_vpcomgtb:
9363    case Intrinsic::x86_xop_vpcomgtw:
9364    case Intrinsic::x86_xop_vpcomgtd:
9365    case Intrinsic::x86_xop_vpcomgtq:
9366      CC = 2;
9367      Opc = X86ISD::VPCOM;
9368      break;
9369    case Intrinsic::x86_xop_vpcomgtub:
9370    case Intrinsic::x86_xop_vpcomgtuw:
9371    case Intrinsic::x86_xop_vpcomgtud:
9372    case Intrinsic::x86_xop_vpcomgtuq:
9373      CC = 2;
9374      Opc = X86ISD::VPCOMU;
9375      break;
9376    case Intrinsic::x86_xop_vpcomgeb:
9377    case Intrinsic::x86_xop_vpcomgew:
9378    case Intrinsic::x86_xop_vpcomged:
9379    case Intrinsic::x86_xop_vpcomgeq:
9380      CC = 3;
9381      Opc = X86ISD::VPCOM;
9382      break;
9383    case Intrinsic::x86_xop_vpcomgeub:
9384    case Intrinsic::x86_xop_vpcomgeuw:
9385    case Intrinsic::x86_xop_vpcomgeud:
9386    case Intrinsic::x86_xop_vpcomgeuq:
9387      CC = 3;
9388      Opc = X86ISD::VPCOMU;
9389      break;
9390    case Intrinsic::x86_xop_vpcomeqb:
9391    case Intrinsic::x86_xop_vpcomeqw:
9392    case Intrinsic::x86_xop_vpcomeqd:
9393    case Intrinsic::x86_xop_vpcomeqq:
9394      CC = 4;
9395      Opc = X86ISD::VPCOM;
9396      break;
9397    case Intrinsic::x86_xop_vpcomequb:
9398    case Intrinsic::x86_xop_vpcomequw:
9399    case Intrinsic::x86_xop_vpcomequd:
9400    case Intrinsic::x86_xop_vpcomequq:
9401      CC = 4;
9402      Opc = X86ISD::VPCOMU;
9403      break;
9404    case Intrinsic::x86_xop_vpcomneb:
9405    case Intrinsic::x86_xop_vpcomnew:
9406    case Intrinsic::x86_xop_vpcomned:
9407    case Intrinsic::x86_xop_vpcomneq:
9408      CC = 5;
9409      Opc = X86ISD::VPCOM;
9410      break;
9411    case Intrinsic::x86_xop_vpcomneub:
9412    case Intrinsic::x86_xop_vpcomneuw:
9413    case Intrinsic::x86_xop_vpcomneud:
9414    case Intrinsic::x86_xop_vpcomneuq:
9415      CC = 5;
9416      Opc = X86ISD::VPCOMU;
9417      break;
9418    case Intrinsic::x86_xop_vpcomfalseb:
9419    case Intrinsic::x86_xop_vpcomfalsew:
9420    case Intrinsic::x86_xop_vpcomfalsed:
9421    case Intrinsic::x86_xop_vpcomfalseq:
9422      CC = 6;
9423      Opc = X86ISD::VPCOM;
9424      break;
9425    case Intrinsic::x86_xop_vpcomfalseub:
9426    case Intrinsic::x86_xop_vpcomfalseuw:
9427    case Intrinsic::x86_xop_vpcomfalseud:
9428    case Intrinsic::x86_xop_vpcomfalseuq:
9429      CC = 6;
9430      Opc = X86ISD::VPCOMU;
9431      break;
9432    case Intrinsic::x86_xop_vpcomtrueb:
9433    case Intrinsic::x86_xop_vpcomtruew:
9434    case Intrinsic::x86_xop_vpcomtrued:
9435    case Intrinsic::x86_xop_vpcomtrueq:
9436      CC = 7;
9437      Opc = X86ISD::VPCOM;
9438      break;
9439    case Intrinsic::x86_xop_vpcomtrueub:
9440    case Intrinsic::x86_xop_vpcomtrueuw:
9441    case Intrinsic::x86_xop_vpcomtrueud:
9442    case Intrinsic::x86_xop_vpcomtrueuq:
9443      CC = 7;
9444      Opc = X86ISD::VPCOMU;
9445      break;
9446    }
9447
9448    SDValue LHS = Op.getOperand(1);
9449    SDValue RHS = Op.getOperand(2);
9450    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9451                       DAG.getConstant(CC, MVT::i8));
9452  }
9453
9454  // Arithmetic intrinsics.
9455  case Intrinsic::x86_sse3_hadd_ps:
9456  case Intrinsic::x86_sse3_hadd_pd:
9457  case Intrinsic::x86_avx_hadd_ps_256:
9458  case Intrinsic::x86_avx_hadd_pd_256:
9459    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9460                       Op.getOperand(1), Op.getOperand(2));
9461  case Intrinsic::x86_sse3_hsub_ps:
9462  case Intrinsic::x86_sse3_hsub_pd:
9463  case Intrinsic::x86_avx_hsub_ps_256:
9464  case Intrinsic::x86_avx_hsub_pd_256:
9465    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9466                       Op.getOperand(1), Op.getOperand(2));
9467  case Intrinsic::x86_ssse3_phadd_w_128:
9468  case Intrinsic::x86_ssse3_phadd_d_128:
9469  case Intrinsic::x86_avx2_phadd_w:
9470  case Intrinsic::x86_avx2_phadd_d:
9471    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9472                       Op.getOperand(1), Op.getOperand(2));
9473  case Intrinsic::x86_ssse3_phsub_w_128:
9474  case Intrinsic::x86_ssse3_phsub_d_128:
9475  case Intrinsic::x86_avx2_phsub_w:
9476  case Intrinsic::x86_avx2_phsub_d:
9477    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9478                       Op.getOperand(1), Op.getOperand(2));
9479  case Intrinsic::x86_avx2_psllv_d:
9480  case Intrinsic::x86_avx2_psllv_q:
9481  case Intrinsic::x86_avx2_psllv_d_256:
9482  case Intrinsic::x86_avx2_psllv_q_256:
9483    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9484                      Op.getOperand(1), Op.getOperand(2));
9485  case Intrinsic::x86_avx2_psrlv_d:
9486  case Intrinsic::x86_avx2_psrlv_q:
9487  case Intrinsic::x86_avx2_psrlv_d_256:
9488  case Intrinsic::x86_avx2_psrlv_q_256:
9489    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9490                      Op.getOperand(1), Op.getOperand(2));
9491  case Intrinsic::x86_avx2_psrav_d:
9492  case Intrinsic::x86_avx2_psrav_d_256:
9493    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9494                      Op.getOperand(1), Op.getOperand(2));
9495  case Intrinsic::x86_sse2_pcmpeq_b:
9496  case Intrinsic::x86_sse2_pcmpeq_w:
9497  case Intrinsic::x86_sse2_pcmpeq_d:
9498  case Intrinsic::x86_sse41_pcmpeqq:
9499  case Intrinsic::x86_avx2_pcmpeq_b:
9500  case Intrinsic::x86_avx2_pcmpeq_w:
9501  case Intrinsic::x86_avx2_pcmpeq_d:
9502  case Intrinsic::x86_avx2_pcmpeq_q:
9503    return DAG.getNode(X86ISD::PCMPEQ, dl, Op.getValueType(),
9504                       Op.getOperand(1), Op.getOperand(2));
9505  case Intrinsic::x86_sse2_pcmpgt_b:
9506  case Intrinsic::x86_sse2_pcmpgt_w:
9507  case Intrinsic::x86_sse2_pcmpgt_d:
9508  case Intrinsic::x86_sse42_pcmpgtq:
9509  case Intrinsic::x86_avx2_pcmpgt_b:
9510  case Intrinsic::x86_avx2_pcmpgt_w:
9511  case Intrinsic::x86_avx2_pcmpgt_d:
9512  case Intrinsic::x86_avx2_pcmpgt_q:
9513    return DAG.getNode(X86ISD::PCMPGT, dl, Op.getValueType(),
9514                       Op.getOperand(1), Op.getOperand(2));
9515  case Intrinsic::x86_ssse3_pshuf_b_128:
9516  case Intrinsic::x86_avx2_pshuf_b:
9517    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9518                       Op.getOperand(1), Op.getOperand(2));
9519  case Intrinsic::x86_ssse3_psign_b_128:
9520  case Intrinsic::x86_ssse3_psign_w_128:
9521  case Intrinsic::x86_ssse3_psign_d_128:
9522  case Intrinsic::x86_avx2_psign_b:
9523  case Intrinsic::x86_avx2_psign_w:
9524  case Intrinsic::x86_avx2_psign_d:
9525    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9526                       Op.getOperand(1), Op.getOperand(2));
9527  case Intrinsic::x86_sse41_insertps:
9528    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9529                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9530  case Intrinsic::x86_avx_vperm2f128_ps_256:
9531  case Intrinsic::x86_avx_vperm2f128_pd_256:
9532  case Intrinsic::x86_avx_vperm2f128_si_256:
9533  case Intrinsic::x86_avx2_vperm2i128:
9534    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9535                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9536
9537  // ptest and testp intrinsics. The intrinsic these come from are designed to
9538  // return an integer value, not just an instruction so lower it to the ptest
9539  // or testp pattern and a setcc for the result.
9540  case Intrinsic::x86_sse41_ptestz:
9541  case Intrinsic::x86_sse41_ptestc:
9542  case Intrinsic::x86_sse41_ptestnzc:
9543  case Intrinsic::x86_avx_ptestz_256:
9544  case Intrinsic::x86_avx_ptestc_256:
9545  case Intrinsic::x86_avx_ptestnzc_256:
9546  case Intrinsic::x86_avx_vtestz_ps:
9547  case Intrinsic::x86_avx_vtestc_ps:
9548  case Intrinsic::x86_avx_vtestnzc_ps:
9549  case Intrinsic::x86_avx_vtestz_pd:
9550  case Intrinsic::x86_avx_vtestc_pd:
9551  case Intrinsic::x86_avx_vtestnzc_pd:
9552  case Intrinsic::x86_avx_vtestz_ps_256:
9553  case Intrinsic::x86_avx_vtestc_ps_256:
9554  case Intrinsic::x86_avx_vtestnzc_ps_256:
9555  case Intrinsic::x86_avx_vtestz_pd_256:
9556  case Intrinsic::x86_avx_vtestc_pd_256:
9557  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9558    bool IsTestPacked = false;
9559    unsigned X86CC = 0;
9560    switch (IntNo) {
9561    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9562    case Intrinsic::x86_avx_vtestz_ps:
9563    case Intrinsic::x86_avx_vtestz_pd:
9564    case Intrinsic::x86_avx_vtestz_ps_256:
9565    case Intrinsic::x86_avx_vtestz_pd_256:
9566      IsTestPacked = true; // Fallthrough
9567    case Intrinsic::x86_sse41_ptestz:
9568    case Intrinsic::x86_avx_ptestz_256:
9569      // ZF = 1
9570      X86CC = X86::COND_E;
9571      break;
9572    case Intrinsic::x86_avx_vtestc_ps:
9573    case Intrinsic::x86_avx_vtestc_pd:
9574    case Intrinsic::x86_avx_vtestc_ps_256:
9575    case Intrinsic::x86_avx_vtestc_pd_256:
9576      IsTestPacked = true; // Fallthrough
9577    case Intrinsic::x86_sse41_ptestc:
9578    case Intrinsic::x86_avx_ptestc_256:
9579      // CF = 1
9580      X86CC = X86::COND_B;
9581      break;
9582    case Intrinsic::x86_avx_vtestnzc_ps:
9583    case Intrinsic::x86_avx_vtestnzc_pd:
9584    case Intrinsic::x86_avx_vtestnzc_ps_256:
9585    case Intrinsic::x86_avx_vtestnzc_pd_256:
9586      IsTestPacked = true; // Fallthrough
9587    case Intrinsic::x86_sse41_ptestnzc:
9588    case Intrinsic::x86_avx_ptestnzc_256:
9589      // ZF and CF = 0
9590      X86CC = X86::COND_A;
9591      break;
9592    }
9593
9594    SDValue LHS = Op.getOperand(1);
9595    SDValue RHS = Op.getOperand(2);
9596    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9597    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9598    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9599    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9600    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9601  }
9602
9603  // SSE/AVX shift intrinsics
9604  case Intrinsic::x86_sse2_psll_w:
9605  case Intrinsic::x86_sse2_psll_d:
9606  case Intrinsic::x86_sse2_psll_q:
9607  case Intrinsic::x86_avx2_psll_w:
9608  case Intrinsic::x86_avx2_psll_d:
9609  case Intrinsic::x86_avx2_psll_q:
9610    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9611                       Op.getOperand(1), Op.getOperand(2));
9612  case Intrinsic::x86_sse2_psrl_w:
9613  case Intrinsic::x86_sse2_psrl_d:
9614  case Intrinsic::x86_sse2_psrl_q:
9615  case Intrinsic::x86_avx2_psrl_w:
9616  case Intrinsic::x86_avx2_psrl_d:
9617  case Intrinsic::x86_avx2_psrl_q:
9618    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9619                       Op.getOperand(1), Op.getOperand(2));
9620  case Intrinsic::x86_sse2_psra_w:
9621  case Intrinsic::x86_sse2_psra_d:
9622  case Intrinsic::x86_avx2_psra_w:
9623  case Intrinsic::x86_avx2_psra_d:
9624    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9625                       Op.getOperand(1), Op.getOperand(2));
9626  case Intrinsic::x86_sse2_pslli_w:
9627  case Intrinsic::x86_sse2_pslli_d:
9628  case Intrinsic::x86_sse2_pslli_q:
9629  case Intrinsic::x86_avx2_pslli_w:
9630  case Intrinsic::x86_avx2_pslli_d:
9631  case Intrinsic::x86_avx2_pslli_q:
9632    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9633                               Op.getOperand(1), Op.getOperand(2), DAG);
9634  case Intrinsic::x86_sse2_psrli_w:
9635  case Intrinsic::x86_sse2_psrli_d:
9636  case Intrinsic::x86_sse2_psrli_q:
9637  case Intrinsic::x86_avx2_psrli_w:
9638  case Intrinsic::x86_avx2_psrli_d:
9639  case Intrinsic::x86_avx2_psrli_q:
9640    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9641                               Op.getOperand(1), Op.getOperand(2), DAG);
9642  case Intrinsic::x86_sse2_psrai_w:
9643  case Intrinsic::x86_sse2_psrai_d:
9644  case Intrinsic::x86_avx2_psrai_w:
9645  case Intrinsic::x86_avx2_psrai_d:
9646    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9647                               Op.getOperand(1), Op.getOperand(2), DAG);
9648  // Fix vector shift instructions where the last operand is a non-immediate
9649  // i32 value.
9650  case Intrinsic::x86_mmx_pslli_w:
9651  case Intrinsic::x86_mmx_pslli_d:
9652  case Intrinsic::x86_mmx_pslli_q:
9653  case Intrinsic::x86_mmx_psrli_w:
9654  case Intrinsic::x86_mmx_psrli_d:
9655  case Intrinsic::x86_mmx_psrli_q:
9656  case Intrinsic::x86_mmx_psrai_w:
9657  case Intrinsic::x86_mmx_psrai_d: {
9658    SDValue ShAmt = Op.getOperand(2);
9659    if (isa<ConstantSDNode>(ShAmt))
9660      return SDValue();
9661
9662    unsigned NewIntNo = 0;
9663    switch (IntNo) {
9664    case Intrinsic::x86_mmx_pslli_w:
9665      NewIntNo = Intrinsic::x86_mmx_psll_w;
9666      break;
9667    case Intrinsic::x86_mmx_pslli_d:
9668      NewIntNo = Intrinsic::x86_mmx_psll_d;
9669      break;
9670    case Intrinsic::x86_mmx_pslli_q:
9671      NewIntNo = Intrinsic::x86_mmx_psll_q;
9672      break;
9673    case Intrinsic::x86_mmx_psrli_w:
9674      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9675      break;
9676    case Intrinsic::x86_mmx_psrli_d:
9677      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9678      break;
9679    case Intrinsic::x86_mmx_psrli_q:
9680      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9681      break;
9682    case Intrinsic::x86_mmx_psrai_w:
9683      NewIntNo = Intrinsic::x86_mmx_psra_w;
9684      break;
9685    case Intrinsic::x86_mmx_psrai_d:
9686      NewIntNo = Intrinsic::x86_mmx_psra_d;
9687      break;
9688    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9689    }
9690
9691    // The vector shift intrinsics with scalars uses 32b shift amounts but
9692    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9693    // to be zero.
9694    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9695                         DAG.getConstant(0, MVT::i32));
9696// FIXME this must be lowered to get rid of the invalid type.
9697
9698    EVT VT = Op.getValueType();
9699    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9700    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9701                       DAG.getConstant(NewIntNo, MVT::i32),
9702                       Op.getOperand(1), ShAmt);
9703  }
9704  }
9705}
9706
9707SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9708                                           SelectionDAG &DAG) const {
9709  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9710  MFI->setReturnAddressIsTaken(true);
9711
9712  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9713  DebugLoc dl = Op.getDebugLoc();
9714
9715  if (Depth > 0) {
9716    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9717    SDValue Offset =
9718      DAG.getConstant(TD->getPointerSize(),
9719                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9720    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9721                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9722                                   FrameAddr, Offset),
9723                       MachinePointerInfo(), false, false, false, 0);
9724  }
9725
9726  // Just load the return address.
9727  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9728  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9729                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9730}
9731
9732SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9733  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9734  MFI->setFrameAddressIsTaken(true);
9735
9736  EVT VT = Op.getValueType();
9737  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9738  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9739  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9740  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9741  while (Depth--)
9742    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9743                            MachinePointerInfo(),
9744                            false, false, false, 0);
9745  return FrameAddr;
9746}
9747
9748SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9749                                                     SelectionDAG &DAG) const {
9750  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9751}
9752
9753SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9754  MachineFunction &MF = DAG.getMachineFunction();
9755  SDValue Chain     = Op.getOperand(0);
9756  SDValue Offset    = Op.getOperand(1);
9757  SDValue Handler   = Op.getOperand(2);
9758  DebugLoc dl       = Op.getDebugLoc();
9759
9760  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9761                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9762                                     getPointerTy());
9763  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9764
9765  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9766                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9767  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9768  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9769                       false, false, 0);
9770  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9771  MF.getRegInfo().addLiveOut(StoreAddrReg);
9772
9773  return DAG.getNode(X86ISD::EH_RETURN, dl,
9774                     MVT::Other,
9775                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9776}
9777
9778SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9779                                                  SelectionDAG &DAG) const {
9780  return Op.getOperand(0);
9781}
9782
9783SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9784                                                SelectionDAG &DAG) const {
9785  SDValue Root = Op.getOperand(0);
9786  SDValue Trmp = Op.getOperand(1); // trampoline
9787  SDValue FPtr = Op.getOperand(2); // nested function
9788  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9789  DebugLoc dl  = Op.getDebugLoc();
9790
9791  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9792
9793  if (Subtarget->is64Bit()) {
9794    SDValue OutChains[6];
9795
9796    // Large code-model.
9797    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9798    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9799
9800    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9801    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9802
9803    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9804
9805    // Load the pointer to the nested function into R11.
9806    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9807    SDValue Addr = Trmp;
9808    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9809                                Addr, MachinePointerInfo(TrmpAddr),
9810                                false, false, 0);
9811
9812    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9813                       DAG.getConstant(2, MVT::i64));
9814    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9815                                MachinePointerInfo(TrmpAddr, 2),
9816                                false, false, 2);
9817
9818    // Load the 'nest' parameter value into R10.
9819    // R10 is specified in X86CallingConv.td
9820    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9821    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9822                       DAG.getConstant(10, MVT::i64));
9823    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9824                                Addr, MachinePointerInfo(TrmpAddr, 10),
9825                                false, false, 0);
9826
9827    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9828                       DAG.getConstant(12, MVT::i64));
9829    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9830                                MachinePointerInfo(TrmpAddr, 12),
9831                                false, false, 2);
9832
9833    // Jump to the nested function.
9834    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9835    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9836                       DAG.getConstant(20, MVT::i64));
9837    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9838                                Addr, MachinePointerInfo(TrmpAddr, 20),
9839                                false, false, 0);
9840
9841    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9842    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9843                       DAG.getConstant(22, MVT::i64));
9844    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9845                                MachinePointerInfo(TrmpAddr, 22),
9846                                false, false, 0);
9847
9848    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9849  } else {
9850    const Function *Func =
9851      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9852    CallingConv::ID CC = Func->getCallingConv();
9853    unsigned NestReg;
9854
9855    switch (CC) {
9856    default:
9857      llvm_unreachable("Unsupported calling convention");
9858    case CallingConv::C:
9859    case CallingConv::X86_StdCall: {
9860      // Pass 'nest' parameter in ECX.
9861      // Must be kept in sync with X86CallingConv.td
9862      NestReg = X86::ECX;
9863
9864      // Check that ECX wasn't needed by an 'inreg' parameter.
9865      FunctionType *FTy = Func->getFunctionType();
9866      const AttrListPtr &Attrs = Func->getAttributes();
9867
9868      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9869        unsigned InRegCount = 0;
9870        unsigned Idx = 1;
9871
9872        for (FunctionType::param_iterator I = FTy->param_begin(),
9873             E = FTy->param_end(); I != E; ++I, ++Idx)
9874          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9875            // FIXME: should only count parameters that are lowered to integers.
9876            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9877
9878        if (InRegCount > 2) {
9879          report_fatal_error("Nest register in use - reduce number of inreg"
9880                             " parameters!");
9881        }
9882      }
9883      break;
9884    }
9885    case CallingConv::X86_FastCall:
9886    case CallingConv::X86_ThisCall:
9887    case CallingConv::Fast:
9888      // Pass 'nest' parameter in EAX.
9889      // Must be kept in sync with X86CallingConv.td
9890      NestReg = X86::EAX;
9891      break;
9892    }
9893
9894    SDValue OutChains[4];
9895    SDValue Addr, Disp;
9896
9897    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9898                       DAG.getConstant(10, MVT::i32));
9899    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9900
9901    // This is storing the opcode for MOV32ri.
9902    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9903    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9904    OutChains[0] = DAG.getStore(Root, dl,
9905                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9906                                Trmp, MachinePointerInfo(TrmpAddr),
9907                                false, false, 0);
9908
9909    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9910                       DAG.getConstant(1, MVT::i32));
9911    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9912                                MachinePointerInfo(TrmpAddr, 1),
9913                                false, false, 1);
9914
9915    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9916    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9917                       DAG.getConstant(5, MVT::i32));
9918    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9919                                MachinePointerInfo(TrmpAddr, 5),
9920                                false, false, 1);
9921
9922    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9923                       DAG.getConstant(6, MVT::i32));
9924    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9925                                MachinePointerInfo(TrmpAddr, 6),
9926                                false, false, 1);
9927
9928    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9929  }
9930}
9931
9932SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9933                                            SelectionDAG &DAG) const {
9934  /*
9935   The rounding mode is in bits 11:10 of FPSR, and has the following
9936   settings:
9937     00 Round to nearest
9938     01 Round to -inf
9939     10 Round to +inf
9940     11 Round to 0
9941
9942  FLT_ROUNDS, on the other hand, expects the following:
9943    -1 Undefined
9944     0 Round to 0
9945     1 Round to nearest
9946     2 Round to +inf
9947     3 Round to -inf
9948
9949  To perform the conversion, we do:
9950    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9951  */
9952
9953  MachineFunction &MF = DAG.getMachineFunction();
9954  const TargetMachine &TM = MF.getTarget();
9955  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9956  unsigned StackAlignment = TFI.getStackAlignment();
9957  EVT VT = Op.getValueType();
9958  DebugLoc DL = Op.getDebugLoc();
9959
9960  // Save FP Control Word to stack slot
9961  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9962  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9963
9964
9965  MachineMemOperand *MMO =
9966   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9967                           MachineMemOperand::MOStore, 2, 2);
9968
9969  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9970  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9971                                          DAG.getVTList(MVT::Other),
9972                                          Ops, 2, MVT::i16, MMO);
9973
9974  // Load FP Control Word from stack slot
9975  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9976                            MachinePointerInfo(), false, false, false, 0);
9977
9978  // Transform as necessary
9979  SDValue CWD1 =
9980    DAG.getNode(ISD::SRL, DL, MVT::i16,
9981                DAG.getNode(ISD::AND, DL, MVT::i16,
9982                            CWD, DAG.getConstant(0x800, MVT::i16)),
9983                DAG.getConstant(11, MVT::i8));
9984  SDValue CWD2 =
9985    DAG.getNode(ISD::SRL, DL, MVT::i16,
9986                DAG.getNode(ISD::AND, DL, MVT::i16,
9987                            CWD, DAG.getConstant(0x400, MVT::i16)),
9988                DAG.getConstant(9, MVT::i8));
9989
9990  SDValue RetVal =
9991    DAG.getNode(ISD::AND, DL, MVT::i16,
9992                DAG.getNode(ISD::ADD, DL, MVT::i16,
9993                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9994                            DAG.getConstant(1, MVT::i16)),
9995                DAG.getConstant(3, MVT::i16));
9996
9997
9998  return DAG.getNode((VT.getSizeInBits() < 16 ?
9999                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10000}
10001
10002SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10003  EVT VT = Op.getValueType();
10004  EVT OpVT = VT;
10005  unsigned NumBits = VT.getSizeInBits();
10006  DebugLoc dl = Op.getDebugLoc();
10007
10008  Op = Op.getOperand(0);
10009  if (VT == MVT::i8) {
10010    // Zero extend to i32 since there is not an i8 bsr.
10011    OpVT = MVT::i32;
10012    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10013  }
10014
10015  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10016  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10017  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10018
10019  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10020  SDValue Ops[] = {
10021    Op,
10022    DAG.getConstant(NumBits+NumBits-1, OpVT),
10023    DAG.getConstant(X86::COND_E, MVT::i8),
10024    Op.getValue(1)
10025  };
10026  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10027
10028  // Finally xor with NumBits-1.
10029  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10030
10031  if (VT == MVT::i8)
10032    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10033  return Op;
10034}
10035
10036SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10037                                                SelectionDAG &DAG) const {
10038  EVT VT = Op.getValueType();
10039  EVT OpVT = VT;
10040  unsigned NumBits = VT.getSizeInBits();
10041  DebugLoc dl = Op.getDebugLoc();
10042
10043  Op = Op.getOperand(0);
10044  if (VT == MVT::i8) {
10045    // Zero extend to i32 since there is not an i8 bsr.
10046    OpVT = MVT::i32;
10047    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10048  }
10049
10050  // Issue a bsr (scan bits in reverse).
10051  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10052  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10053
10054  // And xor with NumBits-1.
10055  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10056
10057  if (VT == MVT::i8)
10058    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10059  return Op;
10060}
10061
10062SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10063  EVT VT = Op.getValueType();
10064  unsigned NumBits = VT.getSizeInBits();
10065  DebugLoc dl = Op.getDebugLoc();
10066  Op = Op.getOperand(0);
10067
10068  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10069  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10070  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10071
10072  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10073  SDValue Ops[] = {
10074    Op,
10075    DAG.getConstant(NumBits, VT),
10076    DAG.getConstant(X86::COND_E, MVT::i8),
10077    Op.getValue(1)
10078  };
10079  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10080}
10081
10082// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10083// ones, and then concatenate the result back.
10084static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10085  EVT VT = Op.getValueType();
10086
10087  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10088         "Unsupported value type for operation");
10089
10090  int NumElems = VT.getVectorNumElements();
10091  DebugLoc dl = Op.getDebugLoc();
10092  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10093  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10094
10095  // Extract the LHS vectors
10096  SDValue LHS = Op.getOperand(0);
10097  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10098  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10099
10100  // Extract the RHS vectors
10101  SDValue RHS = Op.getOperand(1);
10102  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10103  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10104
10105  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10106  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10107
10108  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10109                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10110                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10111}
10112
10113SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10114  assert(Op.getValueType().getSizeInBits() == 256 &&
10115         Op.getValueType().isInteger() &&
10116         "Only handle AVX 256-bit vector integer operation");
10117  return Lower256IntArith(Op, DAG);
10118}
10119
10120SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10121  assert(Op.getValueType().getSizeInBits() == 256 &&
10122         Op.getValueType().isInteger() &&
10123         "Only handle AVX 256-bit vector integer operation");
10124  return Lower256IntArith(Op, DAG);
10125}
10126
10127SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10128  EVT VT = Op.getValueType();
10129
10130  // Decompose 256-bit ops into smaller 128-bit ops.
10131  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10132    return Lower256IntArith(Op, DAG);
10133
10134  DebugLoc dl = Op.getDebugLoc();
10135
10136  SDValue A = Op.getOperand(0);
10137  SDValue B = Op.getOperand(1);
10138
10139  if (VT == MVT::v4i64) {
10140    assert(Subtarget->hasAVX2() && "Lowering v4i64 multiply requires AVX2");
10141
10142    //  ulong2 Ahi = __builtin_ia32_psrlqi256( a, 32);
10143    //  ulong2 Bhi = __builtin_ia32_psrlqi256( b, 32);
10144    //  ulong2 AloBlo = __builtin_ia32_pmuludq256( a, b );
10145    //  ulong2 AloBhi = __builtin_ia32_pmuludq256( a, Bhi );
10146    //  ulong2 AhiBlo = __builtin_ia32_pmuludq256( Ahi, b );
10147    //
10148    //  AloBhi = __builtin_ia32_psllqi256( AloBhi, 32 );
10149    //  AhiBlo = __builtin_ia32_psllqi256( AhiBlo, 32 );
10150    //  return AloBlo + AloBhi + AhiBlo;
10151
10152    SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A,
10153                              DAG.getConstant(32, MVT::i32));
10154    SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B,
10155                              DAG.getConstant(32, MVT::i32));
10156    SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10157                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10158                         A, B);
10159    SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10160                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10161                         A, Bhi);
10162    SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10163                         DAG.getConstant(Intrinsic::x86_avx2_pmulu_dq, MVT::i32),
10164                         Ahi, B);
10165    AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi,
10166                         DAG.getConstant(32, MVT::i32));
10167    AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo,
10168                         DAG.getConstant(32, MVT::i32));
10169    SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10170    Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10171    return Res;
10172  }
10173
10174  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
10175
10176  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
10177  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
10178  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
10179  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
10180  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
10181  //
10182  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
10183  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
10184  //  return AloBlo + AloBhi + AhiBlo;
10185
10186  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A,
10187                            DAG.getConstant(32, MVT::i32));
10188  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B,
10189                            DAG.getConstant(32, MVT::i32));
10190  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10191                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10192                       A, B);
10193  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10194                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10195                       A, Bhi);
10196  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10197                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
10198                       Ahi, B);
10199  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi,
10200                       DAG.getConstant(32, MVT::i32));
10201  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo,
10202                       DAG.getConstant(32, MVT::i32));
10203  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10204  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10205  return Res;
10206}
10207
10208SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10209
10210  EVT VT = Op.getValueType();
10211  DebugLoc dl = Op.getDebugLoc();
10212  SDValue R = Op.getOperand(0);
10213  SDValue Amt = Op.getOperand(1);
10214  LLVMContext *Context = DAG.getContext();
10215
10216  if (!Subtarget->hasSSE2())
10217    return SDValue();
10218
10219  // Optimize shl/srl/sra with constant shift amount.
10220  if (isSplatVector(Amt.getNode())) {
10221    SDValue SclrAmt = Amt->getOperand(0);
10222    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10223      uint64_t ShiftAmt = C->getZExtValue();
10224
10225      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10226          (Subtarget->hasAVX2() &&
10227           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10228        if (Op.getOpcode() == ISD::SHL)
10229          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10230                             DAG.getConstant(ShiftAmt, MVT::i32));
10231        if (Op.getOpcode() == ISD::SRL)
10232          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10233                             DAG.getConstant(ShiftAmt, MVT::i32));
10234        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10235          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10236                             DAG.getConstant(ShiftAmt, MVT::i32));
10237      }
10238
10239      if (VT == MVT::v16i8) {
10240        if (Op.getOpcode() == ISD::SHL) {
10241          // Make a large shift.
10242          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10243                                    DAG.getConstant(ShiftAmt, MVT::i32));
10244          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10245          // Zero out the rightmost bits.
10246          SmallVector<SDValue, 16> V(16,
10247                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10248                                                     MVT::i8));
10249          return DAG.getNode(ISD::AND, dl, VT, SHL,
10250                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10251        }
10252        if (Op.getOpcode() == ISD::SRL) {
10253          // Make a large shift.
10254          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10255                                    DAG.getConstant(ShiftAmt, MVT::i32));
10256          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10257          // Zero out the leftmost bits.
10258          SmallVector<SDValue, 16> V(16,
10259                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10260                                                     MVT::i8));
10261          return DAG.getNode(ISD::AND, dl, VT, SRL,
10262                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10263        }
10264        if (Op.getOpcode() == ISD::SRA) {
10265          if (ShiftAmt == 7) {
10266            // R s>> 7  ===  R s< 0
10267            SDValue Zeros = getZeroVector(VT, /* HasSSE2 */true,
10268                                          /* HasAVX2 */false, DAG, dl);
10269            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10270          }
10271
10272          // R s>> a === ((R u>> a) ^ m) - m
10273          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10274          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10275                                                         MVT::i8));
10276          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10277          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10278          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10279          return Res;
10280        }
10281      }
10282
10283      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10284        if (Op.getOpcode() == ISD::SHL) {
10285          // Make a large shift.
10286          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10287                                    DAG.getConstant(ShiftAmt, MVT::i32));
10288          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10289          // Zero out the rightmost bits.
10290          SmallVector<SDValue, 32> V(32,
10291                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10292                                                     MVT::i8));
10293          return DAG.getNode(ISD::AND, dl, VT, SHL,
10294                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10295        }
10296        if (Op.getOpcode() == ISD::SRL) {
10297          // Make a large shift.
10298          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10299                                    DAG.getConstant(ShiftAmt, MVT::i32));
10300          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10301          // Zero out the leftmost bits.
10302          SmallVector<SDValue, 32> V(32,
10303                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10304                                                     MVT::i8));
10305          return DAG.getNode(ISD::AND, dl, VT, SRL,
10306                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10307        }
10308        if (Op.getOpcode() == ISD::SRA) {
10309          if (ShiftAmt == 7) {
10310            // R s>> 7  ===  R s< 0
10311            SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */,
10312                                          true /* HasAVX2 */, DAG, dl);
10313            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10314          }
10315
10316          // R s>> a === ((R u>> a) ^ m) - m
10317          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10318          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10319                                                         MVT::i8));
10320          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10321          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10322          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10323          return Res;
10324        }
10325      }
10326    }
10327  }
10328
10329  // Lower SHL with variable shift amount.
10330  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10331    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10332                     DAG.getConstant(23, MVT::i32));
10333
10334    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
10335    Constant *C = ConstantVector::getSplat(4, CI);
10336    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10337    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10338                                 MachinePointerInfo::getConstantPool(),
10339                                 false, false, false, 16);
10340
10341    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10342    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10343    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10344    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10345  }
10346  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10347    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10348
10349    // a = a << 5;
10350    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10351                     DAG.getConstant(5, MVT::i32));
10352    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10353
10354    // Turn 'a' into a mask suitable for VSELECT
10355    SDValue VSelM = DAG.getConstant(0x80, VT);
10356    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10357    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10358
10359    SDValue CM1 = DAG.getConstant(0x0f, VT);
10360    SDValue CM2 = DAG.getConstant(0x3f, VT);
10361
10362    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10363    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10364    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10365                            DAG.getConstant(4, MVT::i32), DAG);
10366    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10367    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10368
10369    // a += a
10370    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10371    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10372    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10373
10374    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10375    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10376    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10377                            DAG.getConstant(2, MVT::i32), DAG);
10378    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10379    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10380
10381    // a += a
10382    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10383    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10384    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10385
10386    // return VSELECT(r, r+r, a);
10387    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10388                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10389    return R;
10390  }
10391
10392  // Decompose 256-bit shifts into smaller 128-bit shifts.
10393  if (VT.getSizeInBits() == 256) {
10394    unsigned NumElems = VT.getVectorNumElements();
10395    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10396    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10397
10398    // Extract the two vectors
10399    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10400    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10401                                     DAG, dl);
10402
10403    // Recreate the shift amount vectors
10404    SDValue Amt1, Amt2;
10405    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10406      // Constant shift amount
10407      SmallVector<SDValue, 4> Amt1Csts;
10408      SmallVector<SDValue, 4> Amt2Csts;
10409      for (unsigned i = 0; i != NumElems/2; ++i)
10410        Amt1Csts.push_back(Amt->getOperand(i));
10411      for (unsigned i = NumElems/2; i != NumElems; ++i)
10412        Amt2Csts.push_back(Amt->getOperand(i));
10413
10414      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10415                                 &Amt1Csts[0], NumElems/2);
10416      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10417                                 &Amt2Csts[0], NumElems/2);
10418    } else {
10419      // Variable shift amount
10420      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10421      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10422                                 DAG, dl);
10423    }
10424
10425    // Issue new vector shifts for the smaller types
10426    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10427    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10428
10429    // Concatenate the result back
10430    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10431  }
10432
10433  return SDValue();
10434}
10435
10436SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10437  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10438  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10439  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10440  // has only one use.
10441  SDNode *N = Op.getNode();
10442  SDValue LHS = N->getOperand(0);
10443  SDValue RHS = N->getOperand(1);
10444  unsigned BaseOp = 0;
10445  unsigned Cond = 0;
10446  DebugLoc DL = Op.getDebugLoc();
10447  switch (Op.getOpcode()) {
10448  default: llvm_unreachable("Unknown ovf instruction!");
10449  case ISD::SADDO:
10450    // A subtract of one will be selected as a INC. Note that INC doesn't
10451    // set CF, so we can't do this for UADDO.
10452    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10453      if (C->isOne()) {
10454        BaseOp = X86ISD::INC;
10455        Cond = X86::COND_O;
10456        break;
10457      }
10458    BaseOp = X86ISD::ADD;
10459    Cond = X86::COND_O;
10460    break;
10461  case ISD::UADDO:
10462    BaseOp = X86ISD::ADD;
10463    Cond = X86::COND_B;
10464    break;
10465  case ISD::SSUBO:
10466    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10467    // set CF, so we can't do this for USUBO.
10468    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10469      if (C->isOne()) {
10470        BaseOp = X86ISD::DEC;
10471        Cond = X86::COND_O;
10472        break;
10473      }
10474    BaseOp = X86ISD::SUB;
10475    Cond = X86::COND_O;
10476    break;
10477  case ISD::USUBO:
10478    BaseOp = X86ISD::SUB;
10479    Cond = X86::COND_B;
10480    break;
10481  case ISD::SMULO:
10482    BaseOp = X86ISD::SMUL;
10483    Cond = X86::COND_O;
10484    break;
10485  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10486    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10487                                 MVT::i32);
10488    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10489
10490    SDValue SetCC =
10491      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10492                  DAG.getConstant(X86::COND_O, MVT::i32),
10493                  SDValue(Sum.getNode(), 2));
10494
10495    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10496  }
10497  }
10498
10499  // Also sets EFLAGS.
10500  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10501  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10502
10503  SDValue SetCC =
10504    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10505                DAG.getConstant(Cond, MVT::i32),
10506                SDValue(Sum.getNode(), 1));
10507
10508  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10509}
10510
10511SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10512                                                  SelectionDAG &DAG) const {
10513  DebugLoc dl = Op.getDebugLoc();
10514  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10515  EVT VT = Op.getValueType();
10516
10517  if (!Subtarget->hasSSE2() || !VT.isVector())
10518    return SDValue();
10519
10520  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10521                      ExtraVT.getScalarType().getSizeInBits();
10522  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10523
10524  switch (VT.getSimpleVT().SimpleTy) {
10525    default: return SDValue();
10526    case MVT::v8i32:
10527    case MVT::v16i16:
10528      if (!Subtarget->hasAVX())
10529        return SDValue();
10530      if (!Subtarget->hasAVX2()) {
10531        // needs to be split
10532        int NumElems = VT.getVectorNumElements();
10533        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10534        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10535
10536        // Extract the LHS vectors
10537        SDValue LHS = Op.getOperand(0);
10538        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10539        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10540
10541        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10542        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10543
10544        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10545        int ExtraNumElems = ExtraVT.getVectorNumElements();
10546        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10547                                   ExtraNumElems/2);
10548        SDValue Extra = DAG.getValueType(ExtraVT);
10549
10550        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10551        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10552
10553        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10554      }
10555      // fall through
10556    case MVT::v4i32:
10557    case MVT::v8i16: {
10558      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10559                                         Op.getOperand(0), ShAmt, DAG);
10560      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10561    }
10562  }
10563}
10564
10565
10566SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10567  DebugLoc dl = Op.getDebugLoc();
10568
10569  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10570  // There isn't any reason to disable it if the target processor supports it.
10571  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10572    SDValue Chain = Op.getOperand(0);
10573    SDValue Zero = DAG.getConstant(0, MVT::i32);
10574    SDValue Ops[] = {
10575      DAG.getRegister(X86::ESP, MVT::i32), // Base
10576      DAG.getTargetConstant(1, MVT::i8),   // Scale
10577      DAG.getRegister(0, MVT::i32),        // Index
10578      DAG.getTargetConstant(0, MVT::i32),  // Disp
10579      DAG.getRegister(0, MVT::i32),        // Segment.
10580      Zero,
10581      Chain
10582    };
10583    SDNode *Res =
10584      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10585                          array_lengthof(Ops));
10586    return SDValue(Res, 0);
10587  }
10588
10589  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10590  if (!isDev)
10591    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10592
10593  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10594  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10595  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10596  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10597
10598  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10599  if (!Op1 && !Op2 && !Op3 && Op4)
10600    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10601
10602  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10603  if (Op1 && !Op2 && !Op3 && !Op4)
10604    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10605
10606  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10607  //           (MFENCE)>;
10608  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10609}
10610
10611SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10612                                             SelectionDAG &DAG) const {
10613  DebugLoc dl = Op.getDebugLoc();
10614  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10615    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10616  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10617    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10618
10619  // The only fence that needs an instruction is a sequentially-consistent
10620  // cross-thread fence.
10621  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10622    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10623    // no-sse2). There isn't any reason to disable it if the target processor
10624    // supports it.
10625    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10626      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10627
10628    SDValue Chain = Op.getOperand(0);
10629    SDValue Zero = DAG.getConstant(0, MVT::i32);
10630    SDValue Ops[] = {
10631      DAG.getRegister(X86::ESP, MVT::i32), // Base
10632      DAG.getTargetConstant(1, MVT::i8),   // Scale
10633      DAG.getRegister(0, MVT::i32),        // Index
10634      DAG.getTargetConstant(0, MVT::i32),  // Disp
10635      DAG.getRegister(0, MVT::i32),        // Segment.
10636      Zero,
10637      Chain
10638    };
10639    SDNode *Res =
10640      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10641                         array_lengthof(Ops));
10642    return SDValue(Res, 0);
10643  }
10644
10645  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10646  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10647}
10648
10649
10650SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10651  EVT T = Op.getValueType();
10652  DebugLoc DL = Op.getDebugLoc();
10653  unsigned Reg = 0;
10654  unsigned size = 0;
10655  switch(T.getSimpleVT().SimpleTy) {
10656  default:
10657    assert(false && "Invalid value type!");
10658  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10659  case MVT::i16: Reg = X86::AX;  size = 2; break;
10660  case MVT::i32: Reg = X86::EAX; size = 4; break;
10661  case MVT::i64:
10662    assert(Subtarget->is64Bit() && "Node not type legal!");
10663    Reg = X86::RAX; size = 8;
10664    break;
10665  }
10666  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10667                                    Op.getOperand(2), SDValue());
10668  SDValue Ops[] = { cpIn.getValue(0),
10669                    Op.getOperand(1),
10670                    Op.getOperand(3),
10671                    DAG.getTargetConstant(size, MVT::i8),
10672                    cpIn.getValue(1) };
10673  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10674  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10675  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10676                                           Ops, 5, T, MMO);
10677  SDValue cpOut =
10678    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10679  return cpOut;
10680}
10681
10682SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10683                                                 SelectionDAG &DAG) const {
10684  assert(Subtarget->is64Bit() && "Result not type legalized?");
10685  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10686  SDValue TheChain = Op.getOperand(0);
10687  DebugLoc dl = Op.getDebugLoc();
10688  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10689  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10690  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10691                                   rax.getValue(2));
10692  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10693                            DAG.getConstant(32, MVT::i8));
10694  SDValue Ops[] = {
10695    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10696    rdx.getValue(1)
10697  };
10698  return DAG.getMergeValues(Ops, 2, dl);
10699}
10700
10701SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10702                                            SelectionDAG &DAG) const {
10703  EVT SrcVT = Op.getOperand(0).getValueType();
10704  EVT DstVT = Op.getValueType();
10705  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10706         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10707  assert((DstVT == MVT::i64 ||
10708          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10709         "Unexpected custom BITCAST");
10710  // i64 <=> MMX conversions are Legal.
10711  if (SrcVT==MVT::i64 && DstVT.isVector())
10712    return Op;
10713  if (DstVT==MVT::i64 && SrcVT.isVector())
10714    return Op;
10715  // MMX <=> MMX conversions are Legal.
10716  if (SrcVT.isVector() && DstVT.isVector())
10717    return Op;
10718  // All other conversions need to be expanded.
10719  return SDValue();
10720}
10721
10722SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10723  SDNode *Node = Op.getNode();
10724  DebugLoc dl = Node->getDebugLoc();
10725  EVT T = Node->getValueType(0);
10726  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10727                              DAG.getConstant(0, T), Node->getOperand(2));
10728  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10729                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10730                       Node->getOperand(0),
10731                       Node->getOperand(1), negOp,
10732                       cast<AtomicSDNode>(Node)->getSrcValue(),
10733                       cast<AtomicSDNode>(Node)->getAlignment(),
10734                       cast<AtomicSDNode>(Node)->getOrdering(),
10735                       cast<AtomicSDNode>(Node)->getSynchScope());
10736}
10737
10738static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10739  SDNode *Node = Op.getNode();
10740  DebugLoc dl = Node->getDebugLoc();
10741  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10742
10743  // Convert seq_cst store -> xchg
10744  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10745  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10746  //        (The only way to get a 16-byte store is cmpxchg16b)
10747  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10748  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10749      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10750    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10751                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10752                                 Node->getOperand(0),
10753                                 Node->getOperand(1), Node->getOperand(2),
10754                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10755                                 cast<AtomicSDNode>(Node)->getOrdering(),
10756                                 cast<AtomicSDNode>(Node)->getSynchScope());
10757    return Swap.getValue(1);
10758  }
10759  // Other atomic stores have a simple pattern.
10760  return Op;
10761}
10762
10763static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10764  EVT VT = Op.getNode()->getValueType(0);
10765
10766  // Let legalize expand this if it isn't a legal type yet.
10767  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10768    return SDValue();
10769
10770  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10771
10772  unsigned Opc;
10773  bool ExtraOp = false;
10774  switch (Op.getOpcode()) {
10775  default: assert(0 && "Invalid code");
10776  case ISD::ADDC: Opc = X86ISD::ADD; break;
10777  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10778  case ISD::SUBC: Opc = X86ISD::SUB; break;
10779  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10780  }
10781
10782  if (!ExtraOp)
10783    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10784                       Op.getOperand(1));
10785  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10786                     Op.getOperand(1), Op.getOperand(2));
10787}
10788
10789/// LowerOperation - Provide custom lowering hooks for some operations.
10790///
10791SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10792  switch (Op.getOpcode()) {
10793  default: llvm_unreachable("Should not custom lower this!");
10794  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10795  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10796  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10797  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10798  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10799  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10800  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10801  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10802  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10803  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10804  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10805  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10806  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10807  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10808  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10809  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10810  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10811  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10812  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10813  case ISD::SHL_PARTS:
10814  case ISD::SRA_PARTS:
10815  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10816  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10817  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10818  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10819  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10820  case ISD::FABS:               return LowerFABS(Op, DAG);
10821  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10822  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10823  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10824  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10825  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10826  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10827  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10828  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10829  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10830  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10831  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10832  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10833  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10834  case ISD::FRAME_TO_ARGS_OFFSET:
10835                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10836  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10837  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10838  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10839  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10840  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10841  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10842  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10843  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10844  case ISD::MUL:                return LowerMUL(Op, DAG);
10845  case ISD::SRA:
10846  case ISD::SRL:
10847  case ISD::SHL:                return LowerShift(Op, DAG);
10848  case ISD::SADDO:
10849  case ISD::UADDO:
10850  case ISD::SSUBO:
10851  case ISD::USUBO:
10852  case ISD::SMULO:
10853  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10854  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10855  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10856  case ISD::ADDC:
10857  case ISD::ADDE:
10858  case ISD::SUBC:
10859  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10860  case ISD::ADD:                return LowerADD(Op, DAG);
10861  case ISD::SUB:                return LowerSUB(Op, DAG);
10862  }
10863}
10864
10865static void ReplaceATOMIC_LOAD(SDNode *Node,
10866                                  SmallVectorImpl<SDValue> &Results,
10867                                  SelectionDAG &DAG) {
10868  DebugLoc dl = Node->getDebugLoc();
10869  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10870
10871  // Convert wide load -> cmpxchg8b/cmpxchg16b
10872  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10873  //        (The only way to get a 16-byte load is cmpxchg16b)
10874  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10875  SDValue Zero = DAG.getConstant(0, VT);
10876  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10877                               Node->getOperand(0),
10878                               Node->getOperand(1), Zero, Zero,
10879                               cast<AtomicSDNode>(Node)->getMemOperand(),
10880                               cast<AtomicSDNode>(Node)->getOrdering(),
10881                               cast<AtomicSDNode>(Node)->getSynchScope());
10882  Results.push_back(Swap.getValue(0));
10883  Results.push_back(Swap.getValue(1));
10884}
10885
10886void X86TargetLowering::
10887ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10888                        SelectionDAG &DAG, unsigned NewOp) const {
10889  DebugLoc dl = Node->getDebugLoc();
10890  assert (Node->getValueType(0) == MVT::i64 &&
10891          "Only know how to expand i64 atomics");
10892
10893  SDValue Chain = Node->getOperand(0);
10894  SDValue In1 = Node->getOperand(1);
10895  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10896                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10897  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10898                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10899  SDValue Ops[] = { Chain, In1, In2L, In2H };
10900  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10901  SDValue Result =
10902    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10903                            cast<MemSDNode>(Node)->getMemOperand());
10904  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10905  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10906  Results.push_back(Result.getValue(2));
10907}
10908
10909/// ReplaceNodeResults - Replace a node with an illegal result type
10910/// with a new node built out of custom code.
10911void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10912                                           SmallVectorImpl<SDValue>&Results,
10913                                           SelectionDAG &DAG) const {
10914  DebugLoc dl = N->getDebugLoc();
10915  switch (N->getOpcode()) {
10916  default:
10917    assert(false && "Do not know how to custom type legalize this operation!");
10918    return;
10919  case ISD::SIGN_EXTEND_INREG:
10920  case ISD::ADDC:
10921  case ISD::ADDE:
10922  case ISD::SUBC:
10923  case ISD::SUBE:
10924    // We don't want to expand or promote these.
10925    return;
10926  case ISD::FP_TO_SINT: {
10927    std::pair<SDValue,SDValue> Vals =
10928        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10929    SDValue FIST = Vals.first, StackSlot = Vals.second;
10930    if (FIST.getNode() != 0) {
10931      EVT VT = N->getValueType(0);
10932      // Return a load from the stack slot.
10933      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10934                                    MachinePointerInfo(),
10935                                    false, false, false, 0));
10936    }
10937    return;
10938  }
10939  case ISD::READCYCLECOUNTER: {
10940    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10941    SDValue TheChain = N->getOperand(0);
10942    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10943    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10944                                     rd.getValue(1));
10945    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10946                                     eax.getValue(2));
10947    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10948    SDValue Ops[] = { eax, edx };
10949    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10950    Results.push_back(edx.getValue(1));
10951    return;
10952  }
10953  case ISD::ATOMIC_CMP_SWAP: {
10954    EVT T = N->getValueType(0);
10955    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10956    bool Regs64bit = T == MVT::i128;
10957    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10958    SDValue cpInL, cpInH;
10959    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10960                        DAG.getConstant(0, HalfT));
10961    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10962                        DAG.getConstant(1, HalfT));
10963    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10964                             Regs64bit ? X86::RAX : X86::EAX,
10965                             cpInL, SDValue());
10966    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10967                             Regs64bit ? X86::RDX : X86::EDX,
10968                             cpInH, cpInL.getValue(1));
10969    SDValue swapInL, swapInH;
10970    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10971                          DAG.getConstant(0, HalfT));
10972    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10973                          DAG.getConstant(1, HalfT));
10974    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10975                               Regs64bit ? X86::RBX : X86::EBX,
10976                               swapInL, cpInH.getValue(1));
10977    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10978                               Regs64bit ? X86::RCX : X86::ECX,
10979                               swapInH, swapInL.getValue(1));
10980    SDValue Ops[] = { swapInH.getValue(0),
10981                      N->getOperand(1),
10982                      swapInH.getValue(1) };
10983    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10984    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10985    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10986                                  X86ISD::LCMPXCHG8_DAG;
10987    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10988                                             Ops, 3, T, MMO);
10989    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10990                                        Regs64bit ? X86::RAX : X86::EAX,
10991                                        HalfT, Result.getValue(1));
10992    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10993                                        Regs64bit ? X86::RDX : X86::EDX,
10994                                        HalfT, cpOutL.getValue(2));
10995    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10996    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10997    Results.push_back(cpOutH.getValue(1));
10998    return;
10999  }
11000  case ISD::ATOMIC_LOAD_ADD:
11001    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11002    return;
11003  case ISD::ATOMIC_LOAD_AND:
11004    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11005    return;
11006  case ISD::ATOMIC_LOAD_NAND:
11007    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11008    return;
11009  case ISD::ATOMIC_LOAD_OR:
11010    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11011    return;
11012  case ISD::ATOMIC_LOAD_SUB:
11013    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11014    return;
11015  case ISD::ATOMIC_LOAD_XOR:
11016    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11017    return;
11018  case ISD::ATOMIC_SWAP:
11019    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11020    return;
11021  case ISD::ATOMIC_LOAD:
11022    ReplaceATOMIC_LOAD(N, Results, DAG);
11023  }
11024}
11025
11026const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11027  switch (Opcode) {
11028  default: return NULL;
11029  case X86ISD::BSF:                return "X86ISD::BSF";
11030  case X86ISD::BSR:                return "X86ISD::BSR";
11031  case X86ISD::SHLD:               return "X86ISD::SHLD";
11032  case X86ISD::SHRD:               return "X86ISD::SHRD";
11033  case X86ISD::FAND:               return "X86ISD::FAND";
11034  case X86ISD::FOR:                return "X86ISD::FOR";
11035  case X86ISD::FXOR:               return "X86ISD::FXOR";
11036  case X86ISD::FSRL:               return "X86ISD::FSRL";
11037  case X86ISD::FILD:               return "X86ISD::FILD";
11038  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11039  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11040  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11041  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11042  case X86ISD::FLD:                return "X86ISD::FLD";
11043  case X86ISD::FST:                return "X86ISD::FST";
11044  case X86ISD::CALL:               return "X86ISD::CALL";
11045  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11046  case X86ISD::BT:                 return "X86ISD::BT";
11047  case X86ISD::CMP:                return "X86ISD::CMP";
11048  case X86ISD::COMI:               return "X86ISD::COMI";
11049  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11050  case X86ISD::SETCC:              return "X86ISD::SETCC";
11051  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11052  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11053  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11054  case X86ISD::CMOV:               return "X86ISD::CMOV";
11055  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11056  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11057  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11058  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11059  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11060  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11061  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11062  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11063  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11064  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11065  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11066  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11067  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11068  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11069  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11070  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11071  case X86ISD::HADD:               return "X86ISD::HADD";
11072  case X86ISD::HSUB:               return "X86ISD::HSUB";
11073  case X86ISD::FHADD:              return "X86ISD::FHADD";
11074  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11075  case X86ISD::FMAX:               return "X86ISD::FMAX";
11076  case X86ISD::FMIN:               return "X86ISD::FMIN";
11077  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11078  case X86ISD::FRCP:               return "X86ISD::FRCP";
11079  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11080  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11081  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11082  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11083  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11084  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11085  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11086  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11087  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11088  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11089  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11090  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11091  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11092  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11093  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11094  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11095  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11096  case X86ISD::VSHL:               return "X86ISD::VSHL";
11097  case X86ISD::VSRL:               return "X86ISD::VSRL";
11098  case X86ISD::VSRA:               return "X86ISD::VSRA";
11099  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11100  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11101  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11102  case X86ISD::CMPP:               return "X86ISD::CMPP";
11103  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11104  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11105  case X86ISD::ADD:                return "X86ISD::ADD";
11106  case X86ISD::SUB:                return "X86ISD::SUB";
11107  case X86ISD::ADC:                return "X86ISD::ADC";
11108  case X86ISD::SBB:                return "X86ISD::SBB";
11109  case X86ISD::SMUL:               return "X86ISD::SMUL";
11110  case X86ISD::UMUL:               return "X86ISD::UMUL";
11111  case X86ISD::INC:                return "X86ISD::INC";
11112  case X86ISD::DEC:                return "X86ISD::DEC";
11113  case X86ISD::OR:                 return "X86ISD::OR";
11114  case X86ISD::XOR:                return "X86ISD::XOR";
11115  case X86ISD::AND:                return "X86ISD::AND";
11116  case X86ISD::ANDN:               return "X86ISD::ANDN";
11117  case X86ISD::BLSI:               return "X86ISD::BLSI";
11118  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11119  case X86ISD::BLSR:               return "X86ISD::BLSR";
11120  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11121  case X86ISD::PTEST:              return "X86ISD::PTEST";
11122  case X86ISD::TESTP:              return "X86ISD::TESTP";
11123  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11124  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11125  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11126  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11127  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11128  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11129  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11130  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11131  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11132  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11133  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11134  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11135  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11136  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11137  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11138  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11139  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11140  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11141  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11142  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11143  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11144  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11145  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11146  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11147  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11148  }
11149}
11150
11151// isLegalAddressingMode - Return true if the addressing mode represented
11152// by AM is legal for this target, for a load/store of the specified type.
11153bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11154                                              Type *Ty) const {
11155  // X86 supports extremely general addressing modes.
11156  CodeModel::Model M = getTargetMachine().getCodeModel();
11157  Reloc::Model R = getTargetMachine().getRelocationModel();
11158
11159  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11160  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11161    return false;
11162
11163  if (AM.BaseGV) {
11164    unsigned GVFlags =
11165      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11166
11167    // If a reference to this global requires an extra load, we can't fold it.
11168    if (isGlobalStubReference(GVFlags))
11169      return false;
11170
11171    // If BaseGV requires a register for the PIC base, we cannot also have a
11172    // BaseReg specified.
11173    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11174      return false;
11175
11176    // If lower 4G is not available, then we must use rip-relative addressing.
11177    if ((M != CodeModel::Small || R != Reloc::Static) &&
11178        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11179      return false;
11180  }
11181
11182  switch (AM.Scale) {
11183  case 0:
11184  case 1:
11185  case 2:
11186  case 4:
11187  case 8:
11188    // These scales always work.
11189    break;
11190  case 3:
11191  case 5:
11192  case 9:
11193    // These scales are formed with basereg+scalereg.  Only accept if there is
11194    // no basereg yet.
11195    if (AM.HasBaseReg)
11196      return false;
11197    break;
11198  default:  // Other stuff never works.
11199    return false;
11200  }
11201
11202  return true;
11203}
11204
11205
11206bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11207  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11208    return false;
11209  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11210  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11211  if (NumBits1 <= NumBits2)
11212    return false;
11213  return true;
11214}
11215
11216bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11217  if (!VT1.isInteger() || !VT2.isInteger())
11218    return false;
11219  unsigned NumBits1 = VT1.getSizeInBits();
11220  unsigned NumBits2 = VT2.getSizeInBits();
11221  if (NumBits1 <= NumBits2)
11222    return false;
11223  return true;
11224}
11225
11226bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11227  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11228  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11229}
11230
11231bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11232  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11233  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11234}
11235
11236bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11237  // i16 instructions are longer (0x66 prefix) and potentially slower.
11238  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11239}
11240
11241/// isShuffleMaskLegal - Targets can use this to indicate that they only
11242/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11243/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11244/// are assumed to be legal.
11245bool
11246X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11247                                      EVT VT) const {
11248  // Very little shuffling can be done for 64-bit vectors right now.
11249  if (VT.getSizeInBits() == 64)
11250    return false;
11251
11252  // FIXME: pshufb, blends, shifts.
11253  return (VT.getVectorNumElements() == 2 ||
11254          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11255          isMOVLMask(M, VT) ||
11256          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11257          isPSHUFDMask(M, VT) ||
11258          isPSHUFHWMask(M, VT) ||
11259          isPSHUFLWMask(M, VT) ||
11260          isPALIGNRMask(M, VT, Subtarget) ||
11261          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11262          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11263          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11264          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11265}
11266
11267bool
11268X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11269                                          EVT VT) const {
11270  unsigned NumElts = VT.getVectorNumElements();
11271  // FIXME: This collection of masks seems suspect.
11272  if (NumElts == 2)
11273    return true;
11274  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11275    return (isMOVLMask(Mask, VT)  ||
11276            isCommutedMOVLMask(Mask, VT, true) ||
11277            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11278            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11279  }
11280  return false;
11281}
11282
11283//===----------------------------------------------------------------------===//
11284//                           X86 Scheduler Hooks
11285//===----------------------------------------------------------------------===//
11286
11287// private utility function
11288MachineBasicBlock *
11289X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11290                                                       MachineBasicBlock *MBB,
11291                                                       unsigned regOpc,
11292                                                       unsigned immOpc,
11293                                                       unsigned LoadOpc,
11294                                                       unsigned CXchgOpc,
11295                                                       unsigned notOpc,
11296                                                       unsigned EAXreg,
11297                                                       TargetRegisterClass *RC,
11298                                                       bool invSrc) const {
11299  // For the atomic bitwise operator, we generate
11300  //   thisMBB:
11301  //   newMBB:
11302  //     ld  t1 = [bitinstr.addr]
11303  //     op  t2 = t1, [bitinstr.val]
11304  //     mov EAX = t1
11305  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11306  //     bz  newMBB
11307  //     fallthrough -->nextMBB
11308  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11309  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11310  MachineFunction::iterator MBBIter = MBB;
11311  ++MBBIter;
11312
11313  /// First build the CFG
11314  MachineFunction *F = MBB->getParent();
11315  MachineBasicBlock *thisMBB = MBB;
11316  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11317  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11318  F->insert(MBBIter, newMBB);
11319  F->insert(MBBIter, nextMBB);
11320
11321  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11322  nextMBB->splice(nextMBB->begin(), thisMBB,
11323                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11324                  thisMBB->end());
11325  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11326
11327  // Update thisMBB to fall through to newMBB
11328  thisMBB->addSuccessor(newMBB);
11329
11330  // newMBB jumps to itself and fall through to nextMBB
11331  newMBB->addSuccessor(nextMBB);
11332  newMBB->addSuccessor(newMBB);
11333
11334  // Insert instructions into newMBB based on incoming instruction
11335  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11336         "unexpected number of operands");
11337  DebugLoc dl = bInstr->getDebugLoc();
11338  MachineOperand& destOper = bInstr->getOperand(0);
11339  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11340  int numArgs = bInstr->getNumOperands() - 1;
11341  for (int i=0; i < numArgs; ++i)
11342    argOpers[i] = &bInstr->getOperand(i+1);
11343
11344  // x86 address has 4 operands: base, index, scale, and displacement
11345  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11346  int valArgIndx = lastAddrIndx + 1;
11347
11348  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11349  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11350  for (int i=0; i <= lastAddrIndx; ++i)
11351    (*MIB).addOperand(*argOpers[i]);
11352
11353  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11354  if (invSrc) {
11355    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11356  }
11357  else
11358    tt = t1;
11359
11360  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11361  assert((argOpers[valArgIndx]->isReg() ||
11362          argOpers[valArgIndx]->isImm()) &&
11363         "invalid operand");
11364  if (argOpers[valArgIndx]->isReg())
11365    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11366  else
11367    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11368  MIB.addReg(tt);
11369  (*MIB).addOperand(*argOpers[valArgIndx]);
11370
11371  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11372  MIB.addReg(t1);
11373
11374  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11375  for (int i=0; i <= lastAddrIndx; ++i)
11376    (*MIB).addOperand(*argOpers[i]);
11377  MIB.addReg(t2);
11378  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11379  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11380                    bInstr->memoperands_end());
11381
11382  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11383  MIB.addReg(EAXreg);
11384
11385  // insert branch
11386  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11387
11388  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11389  return nextMBB;
11390}
11391
11392// private utility function:  64 bit atomics on 32 bit host.
11393MachineBasicBlock *
11394X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11395                                                       MachineBasicBlock *MBB,
11396                                                       unsigned regOpcL,
11397                                                       unsigned regOpcH,
11398                                                       unsigned immOpcL,
11399                                                       unsigned immOpcH,
11400                                                       bool invSrc) const {
11401  // For the atomic bitwise operator, we generate
11402  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11403  //     ld t1,t2 = [bitinstr.addr]
11404  //   newMBB:
11405  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11406  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11407  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11408  //     mov ECX, EBX <- t5, t6
11409  //     mov EAX, EDX <- t1, t2
11410  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11411  //     mov t3, t4 <- EAX, EDX
11412  //     bz  newMBB
11413  //     result in out1, out2
11414  //     fallthrough -->nextMBB
11415
11416  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11417  const unsigned LoadOpc = X86::MOV32rm;
11418  const unsigned NotOpc = X86::NOT32r;
11419  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11420  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11421  MachineFunction::iterator MBBIter = MBB;
11422  ++MBBIter;
11423
11424  /// First build the CFG
11425  MachineFunction *F = MBB->getParent();
11426  MachineBasicBlock *thisMBB = MBB;
11427  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11428  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11429  F->insert(MBBIter, newMBB);
11430  F->insert(MBBIter, nextMBB);
11431
11432  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11433  nextMBB->splice(nextMBB->begin(), thisMBB,
11434                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11435                  thisMBB->end());
11436  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11437
11438  // Update thisMBB to fall through to newMBB
11439  thisMBB->addSuccessor(newMBB);
11440
11441  // newMBB jumps to itself and fall through to nextMBB
11442  newMBB->addSuccessor(nextMBB);
11443  newMBB->addSuccessor(newMBB);
11444
11445  DebugLoc dl = bInstr->getDebugLoc();
11446  // Insert instructions into newMBB based on incoming instruction
11447  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11448  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11449         "unexpected number of operands");
11450  MachineOperand& dest1Oper = bInstr->getOperand(0);
11451  MachineOperand& dest2Oper = bInstr->getOperand(1);
11452  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11453  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11454    argOpers[i] = &bInstr->getOperand(i+2);
11455
11456    // We use some of the operands multiple times, so conservatively just
11457    // clear any kill flags that might be present.
11458    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11459      argOpers[i]->setIsKill(false);
11460  }
11461
11462  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11463  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11464
11465  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11466  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11467  for (int i=0; i <= lastAddrIndx; ++i)
11468    (*MIB).addOperand(*argOpers[i]);
11469  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11470  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11471  // add 4 to displacement.
11472  for (int i=0; i <= lastAddrIndx-2; ++i)
11473    (*MIB).addOperand(*argOpers[i]);
11474  MachineOperand newOp3 = *(argOpers[3]);
11475  if (newOp3.isImm())
11476    newOp3.setImm(newOp3.getImm()+4);
11477  else
11478    newOp3.setOffset(newOp3.getOffset()+4);
11479  (*MIB).addOperand(newOp3);
11480  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11481
11482  // t3/4 are defined later, at the bottom of the loop
11483  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11484  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11485  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11486    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11487  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11488    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11489
11490  // The subsequent operations should be using the destination registers of
11491  //the PHI instructions.
11492  if (invSrc) {
11493    t1 = F->getRegInfo().createVirtualRegister(RC);
11494    t2 = F->getRegInfo().createVirtualRegister(RC);
11495    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11496    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11497  } else {
11498    t1 = dest1Oper.getReg();
11499    t2 = dest2Oper.getReg();
11500  }
11501
11502  int valArgIndx = lastAddrIndx + 1;
11503  assert((argOpers[valArgIndx]->isReg() ||
11504          argOpers[valArgIndx]->isImm()) &&
11505         "invalid operand");
11506  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11507  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11508  if (argOpers[valArgIndx]->isReg())
11509    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11510  else
11511    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11512  if (regOpcL != X86::MOV32rr)
11513    MIB.addReg(t1);
11514  (*MIB).addOperand(*argOpers[valArgIndx]);
11515  assert(argOpers[valArgIndx + 1]->isReg() ==
11516         argOpers[valArgIndx]->isReg());
11517  assert(argOpers[valArgIndx + 1]->isImm() ==
11518         argOpers[valArgIndx]->isImm());
11519  if (argOpers[valArgIndx + 1]->isReg())
11520    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11521  else
11522    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11523  if (regOpcH != X86::MOV32rr)
11524    MIB.addReg(t2);
11525  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11526
11527  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11528  MIB.addReg(t1);
11529  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11530  MIB.addReg(t2);
11531
11532  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11533  MIB.addReg(t5);
11534  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11535  MIB.addReg(t6);
11536
11537  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11538  for (int i=0; i <= lastAddrIndx; ++i)
11539    (*MIB).addOperand(*argOpers[i]);
11540
11541  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11542  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11543                    bInstr->memoperands_end());
11544
11545  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11546  MIB.addReg(X86::EAX);
11547  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11548  MIB.addReg(X86::EDX);
11549
11550  // insert branch
11551  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11552
11553  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11554  return nextMBB;
11555}
11556
11557// private utility function
11558MachineBasicBlock *
11559X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11560                                                      MachineBasicBlock *MBB,
11561                                                      unsigned cmovOpc) const {
11562  // For the atomic min/max operator, we generate
11563  //   thisMBB:
11564  //   newMBB:
11565  //     ld t1 = [min/max.addr]
11566  //     mov t2 = [min/max.val]
11567  //     cmp  t1, t2
11568  //     cmov[cond] t2 = t1
11569  //     mov EAX = t1
11570  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11571  //     bz   newMBB
11572  //     fallthrough -->nextMBB
11573  //
11574  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11575  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11576  MachineFunction::iterator MBBIter = MBB;
11577  ++MBBIter;
11578
11579  /// First build the CFG
11580  MachineFunction *F = MBB->getParent();
11581  MachineBasicBlock *thisMBB = MBB;
11582  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11583  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11584  F->insert(MBBIter, newMBB);
11585  F->insert(MBBIter, nextMBB);
11586
11587  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11588  nextMBB->splice(nextMBB->begin(), thisMBB,
11589                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11590                  thisMBB->end());
11591  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11592
11593  // Update thisMBB to fall through to newMBB
11594  thisMBB->addSuccessor(newMBB);
11595
11596  // newMBB jumps to newMBB and fall through to nextMBB
11597  newMBB->addSuccessor(nextMBB);
11598  newMBB->addSuccessor(newMBB);
11599
11600  DebugLoc dl = mInstr->getDebugLoc();
11601  // Insert instructions into newMBB based on incoming instruction
11602  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11603         "unexpected number of operands");
11604  MachineOperand& destOper = mInstr->getOperand(0);
11605  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11606  int numArgs = mInstr->getNumOperands() - 1;
11607  for (int i=0; i < numArgs; ++i)
11608    argOpers[i] = &mInstr->getOperand(i+1);
11609
11610  // x86 address has 4 operands: base, index, scale, and displacement
11611  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11612  int valArgIndx = lastAddrIndx + 1;
11613
11614  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11615  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11616  for (int i=0; i <= lastAddrIndx; ++i)
11617    (*MIB).addOperand(*argOpers[i]);
11618
11619  // We only support register and immediate values
11620  assert((argOpers[valArgIndx]->isReg() ||
11621          argOpers[valArgIndx]->isImm()) &&
11622         "invalid operand");
11623
11624  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11625  if (argOpers[valArgIndx]->isReg())
11626    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11627  else
11628    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11629  (*MIB).addOperand(*argOpers[valArgIndx]);
11630
11631  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11632  MIB.addReg(t1);
11633
11634  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11635  MIB.addReg(t1);
11636  MIB.addReg(t2);
11637
11638  // Generate movc
11639  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11640  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11641  MIB.addReg(t2);
11642  MIB.addReg(t1);
11643
11644  // Cmp and exchange if none has modified the memory location
11645  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11646  for (int i=0; i <= lastAddrIndx; ++i)
11647    (*MIB).addOperand(*argOpers[i]);
11648  MIB.addReg(t3);
11649  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11650  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11651                    mInstr->memoperands_end());
11652
11653  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11654  MIB.addReg(X86::EAX);
11655
11656  // insert branch
11657  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11658
11659  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11660  return nextMBB;
11661}
11662
11663// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11664// or XMM0_V32I8 in AVX all of this code can be replaced with that
11665// in the .td file.
11666MachineBasicBlock *
11667X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11668                            unsigned numArgs, bool memArg) const {
11669  assert(Subtarget->hasSSE42() &&
11670         "Target must have SSE4.2 or AVX features enabled");
11671
11672  DebugLoc dl = MI->getDebugLoc();
11673  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11674  unsigned Opc;
11675  if (!Subtarget->hasAVX()) {
11676    if (memArg)
11677      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11678    else
11679      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11680  } else {
11681    if (memArg)
11682      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11683    else
11684      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11685  }
11686
11687  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11688  for (unsigned i = 0; i < numArgs; ++i) {
11689    MachineOperand &Op = MI->getOperand(i+1);
11690    if (!(Op.isReg() && Op.isImplicit()))
11691      MIB.addOperand(Op);
11692  }
11693  BuildMI(*BB, MI, dl,
11694    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11695             MI->getOperand(0).getReg())
11696    .addReg(X86::XMM0);
11697
11698  MI->eraseFromParent();
11699  return BB;
11700}
11701
11702MachineBasicBlock *
11703X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11704  DebugLoc dl = MI->getDebugLoc();
11705  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11706
11707  // Address into RAX/EAX, other two args into ECX, EDX.
11708  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11709  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11710  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11711  for (int i = 0; i < X86::AddrNumOperands; ++i)
11712    MIB.addOperand(MI->getOperand(i));
11713
11714  unsigned ValOps = X86::AddrNumOperands;
11715  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11716    .addReg(MI->getOperand(ValOps).getReg());
11717  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11718    .addReg(MI->getOperand(ValOps+1).getReg());
11719
11720  // The instruction doesn't actually take any operands though.
11721  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11722
11723  MI->eraseFromParent(); // The pseudo is gone now.
11724  return BB;
11725}
11726
11727MachineBasicBlock *
11728X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11729  DebugLoc dl = MI->getDebugLoc();
11730  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11731
11732  // First arg in ECX, the second in EAX.
11733  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11734    .addReg(MI->getOperand(0).getReg());
11735  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11736    .addReg(MI->getOperand(1).getReg());
11737
11738  // The instruction doesn't actually take any operands though.
11739  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11740
11741  MI->eraseFromParent(); // The pseudo is gone now.
11742  return BB;
11743}
11744
11745MachineBasicBlock *
11746X86TargetLowering::EmitVAARG64WithCustomInserter(
11747                   MachineInstr *MI,
11748                   MachineBasicBlock *MBB) const {
11749  // Emit va_arg instruction on X86-64.
11750
11751  // Operands to this pseudo-instruction:
11752  // 0  ) Output        : destination address (reg)
11753  // 1-5) Input         : va_list address (addr, i64mem)
11754  // 6  ) ArgSize       : Size (in bytes) of vararg type
11755  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11756  // 8  ) Align         : Alignment of type
11757  // 9  ) EFLAGS (implicit-def)
11758
11759  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11760  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11761
11762  unsigned DestReg = MI->getOperand(0).getReg();
11763  MachineOperand &Base = MI->getOperand(1);
11764  MachineOperand &Scale = MI->getOperand(2);
11765  MachineOperand &Index = MI->getOperand(3);
11766  MachineOperand &Disp = MI->getOperand(4);
11767  MachineOperand &Segment = MI->getOperand(5);
11768  unsigned ArgSize = MI->getOperand(6).getImm();
11769  unsigned ArgMode = MI->getOperand(7).getImm();
11770  unsigned Align = MI->getOperand(8).getImm();
11771
11772  // Memory Reference
11773  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11774  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11775  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11776
11777  // Machine Information
11778  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11779  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11780  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11781  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11782  DebugLoc DL = MI->getDebugLoc();
11783
11784  // struct va_list {
11785  //   i32   gp_offset
11786  //   i32   fp_offset
11787  //   i64   overflow_area (address)
11788  //   i64   reg_save_area (address)
11789  // }
11790  // sizeof(va_list) = 24
11791  // alignment(va_list) = 8
11792
11793  unsigned TotalNumIntRegs = 6;
11794  unsigned TotalNumXMMRegs = 8;
11795  bool UseGPOffset = (ArgMode == 1);
11796  bool UseFPOffset = (ArgMode == 2);
11797  unsigned MaxOffset = TotalNumIntRegs * 8 +
11798                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11799
11800  /* Align ArgSize to a multiple of 8 */
11801  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11802  bool NeedsAlign = (Align > 8);
11803
11804  MachineBasicBlock *thisMBB = MBB;
11805  MachineBasicBlock *overflowMBB;
11806  MachineBasicBlock *offsetMBB;
11807  MachineBasicBlock *endMBB;
11808
11809  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11810  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11811  unsigned OffsetReg = 0;
11812
11813  if (!UseGPOffset && !UseFPOffset) {
11814    // If we only pull from the overflow region, we don't create a branch.
11815    // We don't need to alter control flow.
11816    OffsetDestReg = 0; // unused
11817    OverflowDestReg = DestReg;
11818
11819    offsetMBB = NULL;
11820    overflowMBB = thisMBB;
11821    endMBB = thisMBB;
11822  } else {
11823    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11824    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11825    // If not, pull from overflow_area. (branch to overflowMBB)
11826    //
11827    //       thisMBB
11828    //         |     .
11829    //         |        .
11830    //     offsetMBB   overflowMBB
11831    //         |        .
11832    //         |     .
11833    //        endMBB
11834
11835    // Registers for the PHI in endMBB
11836    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11837    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11838
11839    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11840    MachineFunction *MF = MBB->getParent();
11841    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11842    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11843    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11844
11845    MachineFunction::iterator MBBIter = MBB;
11846    ++MBBIter;
11847
11848    // Insert the new basic blocks
11849    MF->insert(MBBIter, offsetMBB);
11850    MF->insert(MBBIter, overflowMBB);
11851    MF->insert(MBBIter, endMBB);
11852
11853    // Transfer the remainder of MBB and its successor edges to endMBB.
11854    endMBB->splice(endMBB->begin(), thisMBB,
11855                    llvm::next(MachineBasicBlock::iterator(MI)),
11856                    thisMBB->end());
11857    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11858
11859    // Make offsetMBB and overflowMBB successors of thisMBB
11860    thisMBB->addSuccessor(offsetMBB);
11861    thisMBB->addSuccessor(overflowMBB);
11862
11863    // endMBB is a successor of both offsetMBB and overflowMBB
11864    offsetMBB->addSuccessor(endMBB);
11865    overflowMBB->addSuccessor(endMBB);
11866
11867    // Load the offset value into a register
11868    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11869    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11870      .addOperand(Base)
11871      .addOperand(Scale)
11872      .addOperand(Index)
11873      .addDisp(Disp, UseFPOffset ? 4 : 0)
11874      .addOperand(Segment)
11875      .setMemRefs(MMOBegin, MMOEnd);
11876
11877    // Check if there is enough room left to pull this argument.
11878    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11879      .addReg(OffsetReg)
11880      .addImm(MaxOffset + 8 - ArgSizeA8);
11881
11882    // Branch to "overflowMBB" if offset >= max
11883    // Fall through to "offsetMBB" otherwise
11884    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11885      .addMBB(overflowMBB);
11886  }
11887
11888  // In offsetMBB, emit code to use the reg_save_area.
11889  if (offsetMBB) {
11890    assert(OffsetReg != 0);
11891
11892    // Read the reg_save_area address.
11893    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11894    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11895      .addOperand(Base)
11896      .addOperand(Scale)
11897      .addOperand(Index)
11898      .addDisp(Disp, 16)
11899      .addOperand(Segment)
11900      .setMemRefs(MMOBegin, MMOEnd);
11901
11902    // Zero-extend the offset
11903    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11904      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11905        .addImm(0)
11906        .addReg(OffsetReg)
11907        .addImm(X86::sub_32bit);
11908
11909    // Add the offset to the reg_save_area to get the final address.
11910    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11911      .addReg(OffsetReg64)
11912      .addReg(RegSaveReg);
11913
11914    // Compute the offset for the next argument
11915    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11916    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11917      .addReg(OffsetReg)
11918      .addImm(UseFPOffset ? 16 : 8);
11919
11920    // Store it back into the va_list.
11921    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11922      .addOperand(Base)
11923      .addOperand(Scale)
11924      .addOperand(Index)
11925      .addDisp(Disp, UseFPOffset ? 4 : 0)
11926      .addOperand(Segment)
11927      .addReg(NextOffsetReg)
11928      .setMemRefs(MMOBegin, MMOEnd);
11929
11930    // Jump to endMBB
11931    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11932      .addMBB(endMBB);
11933  }
11934
11935  //
11936  // Emit code to use overflow area
11937  //
11938
11939  // Load the overflow_area address into a register.
11940  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11941  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11942    .addOperand(Base)
11943    .addOperand(Scale)
11944    .addOperand(Index)
11945    .addDisp(Disp, 8)
11946    .addOperand(Segment)
11947    .setMemRefs(MMOBegin, MMOEnd);
11948
11949  // If we need to align it, do so. Otherwise, just copy the address
11950  // to OverflowDestReg.
11951  if (NeedsAlign) {
11952    // Align the overflow address
11953    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11954    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11955
11956    // aligned_addr = (addr + (align-1)) & ~(align-1)
11957    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11958      .addReg(OverflowAddrReg)
11959      .addImm(Align-1);
11960
11961    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11962      .addReg(TmpReg)
11963      .addImm(~(uint64_t)(Align-1));
11964  } else {
11965    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11966      .addReg(OverflowAddrReg);
11967  }
11968
11969  // Compute the next overflow address after this argument.
11970  // (the overflow address should be kept 8-byte aligned)
11971  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11972  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11973    .addReg(OverflowDestReg)
11974    .addImm(ArgSizeA8);
11975
11976  // Store the new overflow address.
11977  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11978    .addOperand(Base)
11979    .addOperand(Scale)
11980    .addOperand(Index)
11981    .addDisp(Disp, 8)
11982    .addOperand(Segment)
11983    .addReg(NextAddrReg)
11984    .setMemRefs(MMOBegin, MMOEnd);
11985
11986  // If we branched, emit the PHI to the front of endMBB.
11987  if (offsetMBB) {
11988    BuildMI(*endMBB, endMBB->begin(), DL,
11989            TII->get(X86::PHI), DestReg)
11990      .addReg(OffsetDestReg).addMBB(offsetMBB)
11991      .addReg(OverflowDestReg).addMBB(overflowMBB);
11992  }
11993
11994  // Erase the pseudo instruction
11995  MI->eraseFromParent();
11996
11997  return endMBB;
11998}
11999
12000MachineBasicBlock *
12001X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12002                                                 MachineInstr *MI,
12003                                                 MachineBasicBlock *MBB) const {
12004  // Emit code to save XMM registers to the stack. The ABI says that the
12005  // number of registers to save is given in %al, so it's theoretically
12006  // possible to do an indirect jump trick to avoid saving all of them,
12007  // however this code takes a simpler approach and just executes all
12008  // of the stores if %al is non-zero. It's less code, and it's probably
12009  // easier on the hardware branch predictor, and stores aren't all that
12010  // expensive anyway.
12011
12012  // Create the new basic blocks. One block contains all the XMM stores,
12013  // and one block is the final destination regardless of whether any
12014  // stores were performed.
12015  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12016  MachineFunction *F = MBB->getParent();
12017  MachineFunction::iterator MBBIter = MBB;
12018  ++MBBIter;
12019  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12020  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12021  F->insert(MBBIter, XMMSaveMBB);
12022  F->insert(MBBIter, EndMBB);
12023
12024  // Transfer the remainder of MBB and its successor edges to EndMBB.
12025  EndMBB->splice(EndMBB->begin(), MBB,
12026                 llvm::next(MachineBasicBlock::iterator(MI)),
12027                 MBB->end());
12028  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12029
12030  // The original block will now fall through to the XMM save block.
12031  MBB->addSuccessor(XMMSaveMBB);
12032  // The XMMSaveMBB will fall through to the end block.
12033  XMMSaveMBB->addSuccessor(EndMBB);
12034
12035  // Now add the instructions.
12036  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12037  DebugLoc DL = MI->getDebugLoc();
12038
12039  unsigned CountReg = MI->getOperand(0).getReg();
12040  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12041  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12042
12043  if (!Subtarget->isTargetWin64()) {
12044    // If %al is 0, branch around the XMM save block.
12045    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12046    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12047    MBB->addSuccessor(EndMBB);
12048  }
12049
12050  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12051  // In the XMM save block, save all the XMM argument registers.
12052  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12053    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12054    MachineMemOperand *MMO =
12055      F->getMachineMemOperand(
12056          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12057        MachineMemOperand::MOStore,
12058        /*Size=*/16, /*Align=*/16);
12059    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12060      .addFrameIndex(RegSaveFrameIndex)
12061      .addImm(/*Scale=*/1)
12062      .addReg(/*IndexReg=*/0)
12063      .addImm(/*Disp=*/Offset)
12064      .addReg(/*Segment=*/0)
12065      .addReg(MI->getOperand(i).getReg())
12066      .addMemOperand(MMO);
12067  }
12068
12069  MI->eraseFromParent();   // The pseudo instruction is gone now.
12070
12071  return EndMBB;
12072}
12073
12074MachineBasicBlock *
12075X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12076                                     MachineBasicBlock *BB) const {
12077  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12078  DebugLoc DL = MI->getDebugLoc();
12079
12080  // To "insert" a SELECT_CC instruction, we actually have to insert the
12081  // diamond control-flow pattern.  The incoming instruction knows the
12082  // destination vreg to set, the condition code register to branch on, the
12083  // true/false values to select between, and a branch opcode to use.
12084  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12085  MachineFunction::iterator It = BB;
12086  ++It;
12087
12088  //  thisMBB:
12089  //  ...
12090  //   TrueVal = ...
12091  //   cmpTY ccX, r1, r2
12092  //   bCC copy1MBB
12093  //   fallthrough --> copy0MBB
12094  MachineBasicBlock *thisMBB = BB;
12095  MachineFunction *F = BB->getParent();
12096  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12097  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12098  F->insert(It, copy0MBB);
12099  F->insert(It, sinkMBB);
12100
12101  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12102  // live into the sink and copy blocks.
12103  if (!MI->killsRegister(X86::EFLAGS)) {
12104    copy0MBB->addLiveIn(X86::EFLAGS);
12105    sinkMBB->addLiveIn(X86::EFLAGS);
12106  }
12107
12108  // Transfer the remainder of BB and its successor edges to sinkMBB.
12109  sinkMBB->splice(sinkMBB->begin(), BB,
12110                  llvm::next(MachineBasicBlock::iterator(MI)),
12111                  BB->end());
12112  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12113
12114  // Add the true and fallthrough blocks as its successors.
12115  BB->addSuccessor(copy0MBB);
12116  BB->addSuccessor(sinkMBB);
12117
12118  // Create the conditional branch instruction.
12119  unsigned Opc =
12120    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12121  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12122
12123  //  copy0MBB:
12124  //   %FalseValue = ...
12125  //   # fallthrough to sinkMBB
12126  copy0MBB->addSuccessor(sinkMBB);
12127
12128  //  sinkMBB:
12129  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12130  //  ...
12131  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12132          TII->get(X86::PHI), MI->getOperand(0).getReg())
12133    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12134    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12135
12136  MI->eraseFromParent();   // The pseudo instruction is gone now.
12137  return sinkMBB;
12138}
12139
12140MachineBasicBlock *
12141X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12142                                        bool Is64Bit) const {
12143  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12144  DebugLoc DL = MI->getDebugLoc();
12145  MachineFunction *MF = BB->getParent();
12146  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12147
12148  assert(getTargetMachine().Options.EnableSegmentedStacks);
12149
12150  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12151  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12152
12153  // BB:
12154  //  ... [Till the alloca]
12155  // If stacklet is not large enough, jump to mallocMBB
12156  //
12157  // bumpMBB:
12158  //  Allocate by subtracting from RSP
12159  //  Jump to continueMBB
12160  //
12161  // mallocMBB:
12162  //  Allocate by call to runtime
12163  //
12164  // continueMBB:
12165  //  ...
12166  //  [rest of original BB]
12167  //
12168
12169  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12170  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12171  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12172
12173  MachineRegisterInfo &MRI = MF->getRegInfo();
12174  const TargetRegisterClass *AddrRegClass =
12175    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12176
12177  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12178    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12179    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12180    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12181    sizeVReg = MI->getOperand(1).getReg(),
12182    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12183
12184  MachineFunction::iterator MBBIter = BB;
12185  ++MBBIter;
12186
12187  MF->insert(MBBIter, bumpMBB);
12188  MF->insert(MBBIter, mallocMBB);
12189  MF->insert(MBBIter, continueMBB);
12190
12191  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12192                      (MachineBasicBlock::iterator(MI)), BB->end());
12193  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12194
12195  // Add code to the main basic block to check if the stack limit has been hit,
12196  // and if so, jump to mallocMBB otherwise to bumpMBB.
12197  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12198  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12199    .addReg(tmpSPVReg).addReg(sizeVReg);
12200  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12201    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12202    .addReg(SPLimitVReg);
12203  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12204
12205  // bumpMBB simply decreases the stack pointer, since we know the current
12206  // stacklet has enough space.
12207  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12208    .addReg(SPLimitVReg);
12209  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12210    .addReg(SPLimitVReg);
12211  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12212
12213  // Calls into a routine in libgcc to allocate more space from the heap.
12214  if (Is64Bit) {
12215    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12216      .addReg(sizeVReg);
12217    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12218    .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
12219  } else {
12220    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12221      .addImm(12);
12222    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12223    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12224      .addExternalSymbol("__morestack_allocate_stack_space");
12225  }
12226
12227  if (!Is64Bit)
12228    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12229      .addImm(16);
12230
12231  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12232    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12233  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12234
12235  // Set up the CFG correctly.
12236  BB->addSuccessor(bumpMBB);
12237  BB->addSuccessor(mallocMBB);
12238  mallocMBB->addSuccessor(continueMBB);
12239  bumpMBB->addSuccessor(continueMBB);
12240
12241  // Take care of the PHI nodes.
12242  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12243          MI->getOperand(0).getReg())
12244    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12245    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12246
12247  // Delete the original pseudo instruction.
12248  MI->eraseFromParent();
12249
12250  // And we're done.
12251  return continueMBB;
12252}
12253
12254MachineBasicBlock *
12255X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12256                                          MachineBasicBlock *BB) const {
12257  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12258  DebugLoc DL = MI->getDebugLoc();
12259
12260  assert(!Subtarget->isTargetEnvMacho());
12261
12262  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12263  // non-trivial part is impdef of ESP.
12264
12265  if (Subtarget->isTargetWin64()) {
12266    if (Subtarget->isTargetCygMing()) {
12267      // ___chkstk(Mingw64):
12268      // Clobbers R10, R11, RAX and EFLAGS.
12269      // Updates RSP.
12270      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12271        .addExternalSymbol("___chkstk")
12272        .addReg(X86::RAX, RegState::Implicit)
12273        .addReg(X86::RSP, RegState::Implicit)
12274        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12275        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12276        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12277    } else {
12278      // __chkstk(MSVCRT): does not update stack pointer.
12279      // Clobbers R10, R11 and EFLAGS.
12280      // FIXME: RAX(allocated size) might be reused and not killed.
12281      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12282        .addExternalSymbol("__chkstk")
12283        .addReg(X86::RAX, RegState::Implicit)
12284        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12285      // RAX has the offset to subtracted from RSP.
12286      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12287        .addReg(X86::RSP)
12288        .addReg(X86::RAX);
12289    }
12290  } else {
12291    const char *StackProbeSymbol =
12292      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12293
12294    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12295      .addExternalSymbol(StackProbeSymbol)
12296      .addReg(X86::EAX, RegState::Implicit)
12297      .addReg(X86::ESP, RegState::Implicit)
12298      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12299      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12300      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12301  }
12302
12303  MI->eraseFromParent();   // The pseudo instruction is gone now.
12304  return BB;
12305}
12306
12307MachineBasicBlock *
12308X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12309                                      MachineBasicBlock *BB) const {
12310  // This is pretty easy.  We're taking the value that we received from
12311  // our load from the relocation, sticking it in either RDI (x86-64)
12312  // or EAX and doing an indirect call.  The return value will then
12313  // be in the normal return register.
12314  const X86InstrInfo *TII
12315    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12316  DebugLoc DL = MI->getDebugLoc();
12317  MachineFunction *F = BB->getParent();
12318
12319  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12320  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12321
12322  if (Subtarget->is64Bit()) {
12323    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12324                                      TII->get(X86::MOV64rm), X86::RDI)
12325    .addReg(X86::RIP)
12326    .addImm(0).addReg(0)
12327    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12328                      MI->getOperand(3).getTargetFlags())
12329    .addReg(0);
12330    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12331    addDirectMem(MIB, X86::RDI);
12332  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12333    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12334                                      TII->get(X86::MOV32rm), X86::EAX)
12335    .addReg(0)
12336    .addImm(0).addReg(0)
12337    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12338                      MI->getOperand(3).getTargetFlags())
12339    .addReg(0);
12340    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12341    addDirectMem(MIB, X86::EAX);
12342  } else {
12343    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12344                                      TII->get(X86::MOV32rm), X86::EAX)
12345    .addReg(TII->getGlobalBaseReg(F))
12346    .addImm(0).addReg(0)
12347    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12348                      MI->getOperand(3).getTargetFlags())
12349    .addReg(0);
12350    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12351    addDirectMem(MIB, X86::EAX);
12352  }
12353
12354  MI->eraseFromParent(); // The pseudo instruction is gone now.
12355  return BB;
12356}
12357
12358MachineBasicBlock *
12359X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12360                                               MachineBasicBlock *BB) const {
12361  switch (MI->getOpcode()) {
12362  default: assert(0 && "Unexpected instr type to insert");
12363  case X86::TAILJMPd64:
12364  case X86::TAILJMPr64:
12365  case X86::TAILJMPm64:
12366    assert(0 && "TAILJMP64 would not be touched here.");
12367  case X86::TCRETURNdi64:
12368  case X86::TCRETURNri64:
12369  case X86::TCRETURNmi64:
12370    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
12371    // On AMD64, additional defs should be added before register allocation.
12372    if (!Subtarget->isTargetWin64()) {
12373      MI->addRegisterDefined(X86::RSI);
12374      MI->addRegisterDefined(X86::RDI);
12375      MI->addRegisterDefined(X86::XMM6);
12376      MI->addRegisterDefined(X86::XMM7);
12377      MI->addRegisterDefined(X86::XMM8);
12378      MI->addRegisterDefined(X86::XMM9);
12379      MI->addRegisterDefined(X86::XMM10);
12380      MI->addRegisterDefined(X86::XMM11);
12381      MI->addRegisterDefined(X86::XMM12);
12382      MI->addRegisterDefined(X86::XMM13);
12383      MI->addRegisterDefined(X86::XMM14);
12384      MI->addRegisterDefined(X86::XMM15);
12385    }
12386    return BB;
12387  case X86::WIN_ALLOCA:
12388    return EmitLoweredWinAlloca(MI, BB);
12389  case X86::SEG_ALLOCA_32:
12390    return EmitLoweredSegAlloca(MI, BB, false);
12391  case X86::SEG_ALLOCA_64:
12392    return EmitLoweredSegAlloca(MI, BB, true);
12393  case X86::TLSCall_32:
12394  case X86::TLSCall_64:
12395    return EmitLoweredTLSCall(MI, BB);
12396  case X86::CMOV_GR8:
12397  case X86::CMOV_FR32:
12398  case X86::CMOV_FR64:
12399  case X86::CMOV_V4F32:
12400  case X86::CMOV_V2F64:
12401  case X86::CMOV_V2I64:
12402  case X86::CMOV_V8F32:
12403  case X86::CMOV_V4F64:
12404  case X86::CMOV_V4I64:
12405  case X86::CMOV_GR16:
12406  case X86::CMOV_GR32:
12407  case X86::CMOV_RFP32:
12408  case X86::CMOV_RFP64:
12409  case X86::CMOV_RFP80:
12410    return EmitLoweredSelect(MI, BB);
12411
12412  case X86::FP32_TO_INT16_IN_MEM:
12413  case X86::FP32_TO_INT32_IN_MEM:
12414  case X86::FP32_TO_INT64_IN_MEM:
12415  case X86::FP64_TO_INT16_IN_MEM:
12416  case X86::FP64_TO_INT32_IN_MEM:
12417  case X86::FP64_TO_INT64_IN_MEM:
12418  case X86::FP80_TO_INT16_IN_MEM:
12419  case X86::FP80_TO_INT32_IN_MEM:
12420  case X86::FP80_TO_INT64_IN_MEM: {
12421    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12422    DebugLoc DL = MI->getDebugLoc();
12423
12424    // Change the floating point control register to use "round towards zero"
12425    // mode when truncating to an integer value.
12426    MachineFunction *F = BB->getParent();
12427    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12428    addFrameReference(BuildMI(*BB, MI, DL,
12429                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12430
12431    // Load the old value of the high byte of the control word...
12432    unsigned OldCW =
12433      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12434    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12435                      CWFrameIdx);
12436
12437    // Set the high part to be round to zero...
12438    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12439      .addImm(0xC7F);
12440
12441    // Reload the modified control word now...
12442    addFrameReference(BuildMI(*BB, MI, DL,
12443                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12444
12445    // Restore the memory image of control word to original value
12446    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12447      .addReg(OldCW);
12448
12449    // Get the X86 opcode to use.
12450    unsigned Opc;
12451    switch (MI->getOpcode()) {
12452    default: llvm_unreachable("illegal opcode!");
12453    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12454    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12455    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12456    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12457    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12458    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12459    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12460    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12461    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12462    }
12463
12464    X86AddressMode AM;
12465    MachineOperand &Op = MI->getOperand(0);
12466    if (Op.isReg()) {
12467      AM.BaseType = X86AddressMode::RegBase;
12468      AM.Base.Reg = Op.getReg();
12469    } else {
12470      AM.BaseType = X86AddressMode::FrameIndexBase;
12471      AM.Base.FrameIndex = Op.getIndex();
12472    }
12473    Op = MI->getOperand(1);
12474    if (Op.isImm())
12475      AM.Scale = Op.getImm();
12476    Op = MI->getOperand(2);
12477    if (Op.isImm())
12478      AM.IndexReg = Op.getImm();
12479    Op = MI->getOperand(3);
12480    if (Op.isGlobal()) {
12481      AM.GV = Op.getGlobal();
12482    } else {
12483      AM.Disp = Op.getImm();
12484    }
12485    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12486                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12487
12488    // Reload the original control word now.
12489    addFrameReference(BuildMI(*BB, MI, DL,
12490                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12491
12492    MI->eraseFromParent();   // The pseudo instruction is gone now.
12493    return BB;
12494  }
12495    // String/text processing lowering.
12496  case X86::PCMPISTRM128REG:
12497  case X86::VPCMPISTRM128REG:
12498    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12499  case X86::PCMPISTRM128MEM:
12500  case X86::VPCMPISTRM128MEM:
12501    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12502  case X86::PCMPESTRM128REG:
12503  case X86::VPCMPESTRM128REG:
12504    return EmitPCMP(MI, BB, 5, false /* in mem */);
12505  case X86::PCMPESTRM128MEM:
12506  case X86::VPCMPESTRM128MEM:
12507    return EmitPCMP(MI, BB, 5, true /* in mem */);
12508
12509    // Thread synchronization.
12510  case X86::MONITOR:
12511    return EmitMonitor(MI, BB);
12512  case X86::MWAIT:
12513    return EmitMwait(MI, BB);
12514
12515    // Atomic Lowering.
12516  case X86::ATOMAND32:
12517    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12518                                               X86::AND32ri, X86::MOV32rm,
12519                                               X86::LCMPXCHG32,
12520                                               X86::NOT32r, X86::EAX,
12521                                               X86::GR32RegisterClass);
12522  case X86::ATOMOR32:
12523    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12524                                               X86::OR32ri, X86::MOV32rm,
12525                                               X86::LCMPXCHG32,
12526                                               X86::NOT32r, X86::EAX,
12527                                               X86::GR32RegisterClass);
12528  case X86::ATOMXOR32:
12529    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12530                                               X86::XOR32ri, X86::MOV32rm,
12531                                               X86::LCMPXCHG32,
12532                                               X86::NOT32r, X86::EAX,
12533                                               X86::GR32RegisterClass);
12534  case X86::ATOMNAND32:
12535    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12536                                               X86::AND32ri, X86::MOV32rm,
12537                                               X86::LCMPXCHG32,
12538                                               X86::NOT32r, X86::EAX,
12539                                               X86::GR32RegisterClass, true);
12540  case X86::ATOMMIN32:
12541    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12542  case X86::ATOMMAX32:
12543    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12544  case X86::ATOMUMIN32:
12545    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12546  case X86::ATOMUMAX32:
12547    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12548
12549  case X86::ATOMAND16:
12550    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12551                                               X86::AND16ri, X86::MOV16rm,
12552                                               X86::LCMPXCHG16,
12553                                               X86::NOT16r, X86::AX,
12554                                               X86::GR16RegisterClass);
12555  case X86::ATOMOR16:
12556    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12557                                               X86::OR16ri, X86::MOV16rm,
12558                                               X86::LCMPXCHG16,
12559                                               X86::NOT16r, X86::AX,
12560                                               X86::GR16RegisterClass);
12561  case X86::ATOMXOR16:
12562    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12563                                               X86::XOR16ri, X86::MOV16rm,
12564                                               X86::LCMPXCHG16,
12565                                               X86::NOT16r, X86::AX,
12566                                               X86::GR16RegisterClass);
12567  case X86::ATOMNAND16:
12568    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12569                                               X86::AND16ri, X86::MOV16rm,
12570                                               X86::LCMPXCHG16,
12571                                               X86::NOT16r, X86::AX,
12572                                               X86::GR16RegisterClass, true);
12573  case X86::ATOMMIN16:
12574    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12575  case X86::ATOMMAX16:
12576    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12577  case X86::ATOMUMIN16:
12578    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12579  case X86::ATOMUMAX16:
12580    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12581
12582  case X86::ATOMAND8:
12583    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12584                                               X86::AND8ri, X86::MOV8rm,
12585                                               X86::LCMPXCHG8,
12586                                               X86::NOT8r, X86::AL,
12587                                               X86::GR8RegisterClass);
12588  case X86::ATOMOR8:
12589    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12590                                               X86::OR8ri, X86::MOV8rm,
12591                                               X86::LCMPXCHG8,
12592                                               X86::NOT8r, X86::AL,
12593                                               X86::GR8RegisterClass);
12594  case X86::ATOMXOR8:
12595    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12596                                               X86::XOR8ri, X86::MOV8rm,
12597                                               X86::LCMPXCHG8,
12598                                               X86::NOT8r, X86::AL,
12599                                               X86::GR8RegisterClass);
12600  case X86::ATOMNAND8:
12601    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12602                                               X86::AND8ri, X86::MOV8rm,
12603                                               X86::LCMPXCHG8,
12604                                               X86::NOT8r, X86::AL,
12605                                               X86::GR8RegisterClass, true);
12606  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12607  // This group is for 64-bit host.
12608  case X86::ATOMAND64:
12609    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12610                                               X86::AND64ri32, X86::MOV64rm,
12611                                               X86::LCMPXCHG64,
12612                                               X86::NOT64r, X86::RAX,
12613                                               X86::GR64RegisterClass);
12614  case X86::ATOMOR64:
12615    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12616                                               X86::OR64ri32, X86::MOV64rm,
12617                                               X86::LCMPXCHG64,
12618                                               X86::NOT64r, X86::RAX,
12619                                               X86::GR64RegisterClass);
12620  case X86::ATOMXOR64:
12621    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12622                                               X86::XOR64ri32, X86::MOV64rm,
12623                                               X86::LCMPXCHG64,
12624                                               X86::NOT64r, X86::RAX,
12625                                               X86::GR64RegisterClass);
12626  case X86::ATOMNAND64:
12627    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12628                                               X86::AND64ri32, X86::MOV64rm,
12629                                               X86::LCMPXCHG64,
12630                                               X86::NOT64r, X86::RAX,
12631                                               X86::GR64RegisterClass, true);
12632  case X86::ATOMMIN64:
12633    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12634  case X86::ATOMMAX64:
12635    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12636  case X86::ATOMUMIN64:
12637    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12638  case X86::ATOMUMAX64:
12639    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12640
12641  // This group does 64-bit operations on a 32-bit host.
12642  case X86::ATOMAND6432:
12643    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12644                                               X86::AND32rr, X86::AND32rr,
12645                                               X86::AND32ri, X86::AND32ri,
12646                                               false);
12647  case X86::ATOMOR6432:
12648    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12649                                               X86::OR32rr, X86::OR32rr,
12650                                               X86::OR32ri, X86::OR32ri,
12651                                               false);
12652  case X86::ATOMXOR6432:
12653    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12654                                               X86::XOR32rr, X86::XOR32rr,
12655                                               X86::XOR32ri, X86::XOR32ri,
12656                                               false);
12657  case X86::ATOMNAND6432:
12658    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12659                                               X86::AND32rr, X86::AND32rr,
12660                                               X86::AND32ri, X86::AND32ri,
12661                                               true);
12662  case X86::ATOMADD6432:
12663    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12664                                               X86::ADD32rr, X86::ADC32rr,
12665                                               X86::ADD32ri, X86::ADC32ri,
12666                                               false);
12667  case X86::ATOMSUB6432:
12668    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12669                                               X86::SUB32rr, X86::SBB32rr,
12670                                               X86::SUB32ri, X86::SBB32ri,
12671                                               false);
12672  case X86::ATOMSWAP6432:
12673    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12674                                               X86::MOV32rr, X86::MOV32rr,
12675                                               X86::MOV32ri, X86::MOV32ri,
12676                                               false);
12677  case X86::VASTART_SAVE_XMM_REGS:
12678    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12679
12680  case X86::VAARG_64:
12681    return EmitVAARG64WithCustomInserter(MI, BB);
12682  }
12683}
12684
12685//===----------------------------------------------------------------------===//
12686//                           X86 Optimization Hooks
12687//===----------------------------------------------------------------------===//
12688
12689void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12690                                                       const APInt &Mask,
12691                                                       APInt &KnownZero,
12692                                                       APInt &KnownOne,
12693                                                       const SelectionDAG &DAG,
12694                                                       unsigned Depth) const {
12695  unsigned Opc = Op.getOpcode();
12696  assert((Opc >= ISD::BUILTIN_OP_END ||
12697          Opc == ISD::INTRINSIC_WO_CHAIN ||
12698          Opc == ISD::INTRINSIC_W_CHAIN ||
12699          Opc == ISD::INTRINSIC_VOID) &&
12700         "Should use MaskedValueIsZero if you don't know whether Op"
12701         " is a target node!");
12702
12703  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12704  switch (Opc) {
12705  default: break;
12706  case X86ISD::ADD:
12707  case X86ISD::SUB:
12708  case X86ISD::ADC:
12709  case X86ISD::SBB:
12710  case X86ISD::SMUL:
12711  case X86ISD::UMUL:
12712  case X86ISD::INC:
12713  case X86ISD::DEC:
12714  case X86ISD::OR:
12715  case X86ISD::XOR:
12716  case X86ISD::AND:
12717    // These nodes' second result is a boolean.
12718    if (Op.getResNo() == 0)
12719      break;
12720    // Fallthrough
12721  case X86ISD::SETCC:
12722    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12723                                       Mask.getBitWidth() - 1);
12724    break;
12725  case ISD::INTRINSIC_WO_CHAIN: {
12726    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12727    unsigned NumLoBits = 0;
12728    switch (IntId) {
12729    default: break;
12730    case Intrinsic::x86_sse_movmsk_ps:
12731    case Intrinsic::x86_avx_movmsk_ps_256:
12732    case Intrinsic::x86_sse2_movmsk_pd:
12733    case Intrinsic::x86_avx_movmsk_pd_256:
12734    case Intrinsic::x86_mmx_pmovmskb:
12735    case Intrinsic::x86_sse2_pmovmskb_128:
12736    case Intrinsic::x86_avx2_pmovmskb: {
12737      // High bits of movmskp{s|d}, pmovmskb are known zero.
12738      switch (IntId) {
12739        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12740        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12741        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12742        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12743        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12744        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12745        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12746      }
12747      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12748                                        Mask.getBitWidth() - NumLoBits);
12749      break;
12750    }
12751    }
12752    break;
12753  }
12754  }
12755}
12756
12757unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12758                                                         unsigned Depth) const {
12759  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12760  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12761    return Op.getValueType().getScalarType().getSizeInBits();
12762
12763  // Fallback case.
12764  return 1;
12765}
12766
12767/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12768/// node is a GlobalAddress + offset.
12769bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12770                                       const GlobalValue* &GA,
12771                                       int64_t &Offset) const {
12772  if (N->getOpcode() == X86ISD::Wrapper) {
12773    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12774      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12775      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12776      return true;
12777    }
12778  }
12779  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12780}
12781
12782/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12783/// same as extracting the high 128-bit part of 256-bit vector and then
12784/// inserting the result into the low part of a new 256-bit vector
12785static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12786  EVT VT = SVOp->getValueType(0);
12787  int NumElems = VT.getVectorNumElements();
12788
12789  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12790  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12791    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12792        SVOp->getMaskElt(j) >= 0)
12793      return false;
12794
12795  return true;
12796}
12797
12798/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12799/// same as extracting the low 128-bit part of 256-bit vector and then
12800/// inserting the result into the high part of a new 256-bit vector
12801static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12802  EVT VT = SVOp->getValueType(0);
12803  int NumElems = VT.getVectorNumElements();
12804
12805  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12806  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12807    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12808        SVOp->getMaskElt(j) >= 0)
12809      return false;
12810
12811  return true;
12812}
12813
12814/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12815static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12816                                        TargetLowering::DAGCombinerInfo &DCI,
12817                                        bool HasAVX2) {
12818  DebugLoc dl = N->getDebugLoc();
12819  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12820  SDValue V1 = SVOp->getOperand(0);
12821  SDValue V2 = SVOp->getOperand(1);
12822  EVT VT = SVOp->getValueType(0);
12823  int NumElems = VT.getVectorNumElements();
12824
12825  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12826      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12827    //
12828    //                   0,0,0,...
12829    //                      |
12830    //    V      UNDEF    BUILD_VECTOR    UNDEF
12831    //     \      /           \           /
12832    //  CONCAT_VECTOR         CONCAT_VECTOR
12833    //         \                  /
12834    //          \                /
12835    //          RESULT: V + zero extended
12836    //
12837    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12838        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12839        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12840      return SDValue();
12841
12842    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12843      return SDValue();
12844
12845    // To match the shuffle mask, the first half of the mask should
12846    // be exactly the first vector, and all the rest a splat with the
12847    // first element of the second one.
12848    for (int i = 0; i < NumElems/2; ++i)
12849      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12850          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12851        return SDValue();
12852
12853    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12854    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12855      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12856      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12857      SDValue ResNode =
12858        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12859                                Ld->getMemoryVT(),
12860                                Ld->getPointerInfo(),
12861                                Ld->getAlignment(),
12862                                false/*isVolatile*/, true/*ReadMem*/,
12863                                false/*WriteMem*/);
12864      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12865    }
12866
12867    // Emit a zeroed vector and insert the desired subvector on its
12868    // first half.
12869    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, HasAVX2, DAG, dl);
12870    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12871                         DAG.getConstant(0, MVT::i32), DAG, dl);
12872    return DCI.CombineTo(N, InsV);
12873  }
12874
12875  //===--------------------------------------------------------------------===//
12876  // Combine some shuffles into subvector extracts and inserts:
12877  //
12878
12879  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12880  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12881    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12882                                    DAG, dl);
12883    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12884                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12885    return DCI.CombineTo(N, InsV);
12886  }
12887
12888  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12889  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12890    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12891    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12892                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12893    return DCI.CombineTo(N, InsV);
12894  }
12895
12896  return SDValue();
12897}
12898
12899/// PerformShuffleCombine - Performs several different shuffle combines.
12900static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12901                                     TargetLowering::DAGCombinerInfo &DCI,
12902                                     const X86Subtarget *Subtarget) {
12903  DebugLoc dl = N->getDebugLoc();
12904  EVT VT = N->getValueType(0);
12905
12906  // Don't create instructions with illegal types after legalize types has run.
12907  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12908  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12909    return SDValue();
12910
12911  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12912  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12913      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12914    return PerformShuffleCombine256(N, DAG, DCI, Subtarget->hasAVX2());
12915
12916  // Only handle 128 wide vector from here on.
12917  if (VT.getSizeInBits() != 128)
12918    return SDValue();
12919
12920  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12921  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12922  // consecutive, non-overlapping, and in the right order.
12923  SmallVector<SDValue, 16> Elts;
12924  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12925    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12926
12927  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12928}
12929
12930/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12931/// generation and convert it from being a bunch of shuffles and extracts
12932/// to a simple store and scalar loads to extract the elements.
12933static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12934                                                const TargetLowering &TLI) {
12935  SDValue InputVector = N->getOperand(0);
12936
12937  // Only operate on vectors of 4 elements, where the alternative shuffling
12938  // gets to be more expensive.
12939  if (InputVector.getValueType() != MVT::v4i32)
12940    return SDValue();
12941
12942  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12943  // single use which is a sign-extend or zero-extend, and all elements are
12944  // used.
12945  SmallVector<SDNode *, 4> Uses;
12946  unsigned ExtractedElements = 0;
12947  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12948       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12949    if (UI.getUse().getResNo() != InputVector.getResNo())
12950      return SDValue();
12951
12952    SDNode *Extract = *UI;
12953    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12954      return SDValue();
12955
12956    if (Extract->getValueType(0) != MVT::i32)
12957      return SDValue();
12958    if (!Extract->hasOneUse())
12959      return SDValue();
12960    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12961        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12962      return SDValue();
12963    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12964      return SDValue();
12965
12966    // Record which element was extracted.
12967    ExtractedElements |=
12968      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12969
12970    Uses.push_back(Extract);
12971  }
12972
12973  // If not all the elements were used, this may not be worthwhile.
12974  if (ExtractedElements != 15)
12975    return SDValue();
12976
12977  // Ok, we've now decided to do the transformation.
12978  DebugLoc dl = InputVector.getDebugLoc();
12979
12980  // Store the value to a temporary stack slot.
12981  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12982  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12983                            MachinePointerInfo(), false, false, 0);
12984
12985  // Replace each use (extract) with a load of the appropriate element.
12986  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12987       UE = Uses.end(); UI != UE; ++UI) {
12988    SDNode *Extract = *UI;
12989
12990    // cOMpute the element's address.
12991    SDValue Idx = Extract->getOperand(1);
12992    unsigned EltSize =
12993        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12994    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12995    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12996
12997    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12998                                     StackPtr, OffsetVal);
12999
13000    // Load the scalar.
13001    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13002                                     ScalarAddr, MachinePointerInfo(),
13003                                     false, false, false, 0);
13004
13005    // Replace the exact with the load.
13006    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13007  }
13008
13009  // The replacement was made in place; don't return anything.
13010  return SDValue();
13011}
13012
13013/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13014/// nodes.
13015static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13016                                    TargetLowering::DAGCombinerInfo &DCI,
13017                                    const X86Subtarget *Subtarget) {
13018  DebugLoc DL = N->getDebugLoc();
13019  SDValue Cond = N->getOperand(0);
13020  // Get the LHS/RHS of the select.
13021  SDValue LHS = N->getOperand(1);
13022  SDValue RHS = N->getOperand(2);
13023  EVT VT = LHS.getValueType();
13024
13025  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13026  // instructions match the semantics of the common C idiom x<y?x:y but not
13027  // x<=y?x:y, because of how they handle negative zero (which can be
13028  // ignored in unsafe-math mode).
13029  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13030      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13031      (Subtarget->hasSSE2() ||
13032       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13033    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13034
13035    unsigned Opcode = 0;
13036    // Check for x CC y ? x : y.
13037    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13038        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13039      switch (CC) {
13040      default: break;
13041      case ISD::SETULT:
13042        // Converting this to a min would handle NaNs incorrectly, and swapping
13043        // the operands would cause it to handle comparisons between positive
13044        // and negative zero incorrectly.
13045        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13046          if (!DAG.getTarget().Options.UnsafeFPMath &&
13047              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13048            break;
13049          std::swap(LHS, RHS);
13050        }
13051        Opcode = X86ISD::FMIN;
13052        break;
13053      case ISD::SETOLE:
13054        // Converting this to a min would handle comparisons between positive
13055        // and negative zero incorrectly.
13056        if (!DAG.getTarget().Options.UnsafeFPMath &&
13057            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13058          break;
13059        Opcode = X86ISD::FMIN;
13060        break;
13061      case ISD::SETULE:
13062        // Converting this to a min would handle both negative zeros and NaNs
13063        // incorrectly, but we can swap the operands to fix both.
13064        std::swap(LHS, RHS);
13065      case ISD::SETOLT:
13066      case ISD::SETLT:
13067      case ISD::SETLE:
13068        Opcode = X86ISD::FMIN;
13069        break;
13070
13071      case ISD::SETOGE:
13072        // Converting this to a max would handle comparisons between positive
13073        // and negative zero incorrectly.
13074        if (!DAG.getTarget().Options.UnsafeFPMath &&
13075            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13076          break;
13077        Opcode = X86ISD::FMAX;
13078        break;
13079      case ISD::SETUGT:
13080        // Converting this to a max would handle NaNs incorrectly, and swapping
13081        // the operands would cause it to handle comparisons between positive
13082        // and negative zero incorrectly.
13083        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13084          if (!DAG.getTarget().Options.UnsafeFPMath &&
13085              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13086            break;
13087          std::swap(LHS, RHS);
13088        }
13089        Opcode = X86ISD::FMAX;
13090        break;
13091      case ISD::SETUGE:
13092        // Converting this to a max would handle both negative zeros and NaNs
13093        // incorrectly, but we can swap the operands to fix both.
13094        std::swap(LHS, RHS);
13095      case ISD::SETOGT:
13096      case ISD::SETGT:
13097      case ISD::SETGE:
13098        Opcode = X86ISD::FMAX;
13099        break;
13100      }
13101    // Check for x CC y ? y : x -- a min/max with reversed arms.
13102    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13103               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13104      switch (CC) {
13105      default: break;
13106      case ISD::SETOGE:
13107        // Converting this to a min would handle comparisons between positive
13108        // and negative zero incorrectly, and swapping the operands would
13109        // cause it to handle NaNs incorrectly.
13110        if (!DAG.getTarget().Options.UnsafeFPMath &&
13111            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13112          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13113            break;
13114          std::swap(LHS, RHS);
13115        }
13116        Opcode = X86ISD::FMIN;
13117        break;
13118      case ISD::SETUGT:
13119        // Converting this to a min would handle NaNs incorrectly.
13120        if (!DAG.getTarget().Options.UnsafeFPMath &&
13121            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13122          break;
13123        Opcode = X86ISD::FMIN;
13124        break;
13125      case ISD::SETUGE:
13126        // Converting this to a min would handle both negative zeros and NaNs
13127        // incorrectly, but we can swap the operands to fix both.
13128        std::swap(LHS, RHS);
13129      case ISD::SETOGT:
13130      case ISD::SETGT:
13131      case ISD::SETGE:
13132        Opcode = X86ISD::FMIN;
13133        break;
13134
13135      case ISD::SETULT:
13136        // Converting this to a max would handle NaNs incorrectly.
13137        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13138          break;
13139        Opcode = X86ISD::FMAX;
13140        break;
13141      case ISD::SETOLE:
13142        // Converting this to a max would handle comparisons between positive
13143        // and negative zero incorrectly, and swapping the operands would
13144        // cause it to handle NaNs incorrectly.
13145        if (!DAG.getTarget().Options.UnsafeFPMath &&
13146            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13147          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13148            break;
13149          std::swap(LHS, RHS);
13150        }
13151        Opcode = X86ISD::FMAX;
13152        break;
13153      case ISD::SETULE:
13154        // Converting this to a max would handle both negative zeros and NaNs
13155        // incorrectly, but we can swap the operands to fix both.
13156        std::swap(LHS, RHS);
13157      case ISD::SETOLT:
13158      case ISD::SETLT:
13159      case ISD::SETLE:
13160        Opcode = X86ISD::FMAX;
13161        break;
13162      }
13163    }
13164
13165    if (Opcode)
13166      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13167  }
13168
13169  // If this is a select between two integer constants, try to do some
13170  // optimizations.
13171  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13172    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13173      // Don't do this for crazy integer types.
13174      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13175        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13176        // so that TrueC (the true value) is larger than FalseC.
13177        bool NeedsCondInvert = false;
13178
13179        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13180            // Efficiently invertible.
13181            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13182             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13183              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13184          NeedsCondInvert = true;
13185          std::swap(TrueC, FalseC);
13186        }
13187
13188        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13189        if (FalseC->getAPIntValue() == 0 &&
13190            TrueC->getAPIntValue().isPowerOf2()) {
13191          if (NeedsCondInvert) // Invert the condition if needed.
13192            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13193                               DAG.getConstant(1, Cond.getValueType()));
13194
13195          // Zero extend the condition if needed.
13196          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13197
13198          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13199          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13200                             DAG.getConstant(ShAmt, MVT::i8));
13201        }
13202
13203        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13204        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13205          if (NeedsCondInvert) // Invert the condition if needed.
13206            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13207                               DAG.getConstant(1, Cond.getValueType()));
13208
13209          // Zero extend the condition if needed.
13210          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13211                             FalseC->getValueType(0), Cond);
13212          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13213                             SDValue(FalseC, 0));
13214        }
13215
13216        // Optimize cases that will turn into an LEA instruction.  This requires
13217        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13218        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13219          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13220          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13221
13222          bool isFastMultiplier = false;
13223          if (Diff < 10) {
13224            switch ((unsigned char)Diff) {
13225              default: break;
13226              case 1:  // result = add base, cond
13227              case 2:  // result = lea base(    , cond*2)
13228              case 3:  // result = lea base(cond, cond*2)
13229              case 4:  // result = lea base(    , cond*4)
13230              case 5:  // result = lea base(cond, cond*4)
13231              case 8:  // result = lea base(    , cond*8)
13232              case 9:  // result = lea base(cond, cond*8)
13233                isFastMultiplier = true;
13234                break;
13235            }
13236          }
13237
13238          if (isFastMultiplier) {
13239            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13240            if (NeedsCondInvert) // Invert the condition if needed.
13241              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13242                                 DAG.getConstant(1, Cond.getValueType()));
13243
13244            // Zero extend the condition if needed.
13245            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13246                               Cond);
13247            // Scale the condition by the difference.
13248            if (Diff != 1)
13249              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13250                                 DAG.getConstant(Diff, Cond.getValueType()));
13251
13252            // Add the base if non-zero.
13253            if (FalseC->getAPIntValue() != 0)
13254              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13255                                 SDValue(FalseC, 0));
13256            return Cond;
13257          }
13258        }
13259      }
13260  }
13261
13262  // Canonicalize max and min:
13263  // (x > y) ? x : y -> (x >= y) ? x : y
13264  // (x < y) ? x : y -> (x <= y) ? x : y
13265  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13266  // the need for an extra compare
13267  // against zero. e.g.
13268  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13269  // subl   %esi, %edi
13270  // testl  %edi, %edi
13271  // movl   $0, %eax
13272  // cmovgl %edi, %eax
13273  // =>
13274  // xorl   %eax, %eax
13275  // subl   %esi, $edi
13276  // cmovsl %eax, %edi
13277  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13278      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13279      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13280    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13281    switch (CC) {
13282    default: break;
13283    case ISD::SETLT:
13284    case ISD::SETGT: {
13285      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13286      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13287                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13288      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13289    }
13290    }
13291  }
13292
13293  // If we know that this node is legal then we know that it is going to be
13294  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13295  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13296  // to simplify previous instructions.
13297  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13298  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13299      !DCI.isBeforeLegalize() &&
13300      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13301    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13302    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13303    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13304
13305    APInt KnownZero, KnownOne;
13306    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13307                                          DCI.isBeforeLegalizeOps());
13308    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13309        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13310      DCI.CommitTargetLoweringOpt(TLO);
13311  }
13312
13313  return SDValue();
13314}
13315
13316/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13317static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13318                                  TargetLowering::DAGCombinerInfo &DCI) {
13319  DebugLoc DL = N->getDebugLoc();
13320
13321  // If the flag operand isn't dead, don't touch this CMOV.
13322  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13323    return SDValue();
13324
13325  SDValue FalseOp = N->getOperand(0);
13326  SDValue TrueOp = N->getOperand(1);
13327  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13328  SDValue Cond = N->getOperand(3);
13329  if (CC == X86::COND_E || CC == X86::COND_NE) {
13330    switch (Cond.getOpcode()) {
13331    default: break;
13332    case X86ISD::BSR:
13333    case X86ISD::BSF:
13334      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13335      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13336        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13337    }
13338  }
13339
13340  // If this is a select between two integer constants, try to do some
13341  // optimizations.  Note that the operands are ordered the opposite of SELECT
13342  // operands.
13343  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13344    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13345      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13346      // larger than FalseC (the false value).
13347      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13348        CC = X86::GetOppositeBranchCondition(CC);
13349        std::swap(TrueC, FalseC);
13350      }
13351
13352      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13353      // This is efficient for any integer data type (including i8/i16) and
13354      // shift amount.
13355      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13356        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13357                           DAG.getConstant(CC, MVT::i8), Cond);
13358
13359        // Zero extend the condition if needed.
13360        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13361
13362        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13363        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13364                           DAG.getConstant(ShAmt, MVT::i8));
13365        if (N->getNumValues() == 2)  // Dead flag value?
13366          return DCI.CombineTo(N, Cond, SDValue());
13367        return Cond;
13368      }
13369
13370      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13371      // for any integer data type, including i8/i16.
13372      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13373        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13374                           DAG.getConstant(CC, MVT::i8), Cond);
13375
13376        // Zero extend the condition if needed.
13377        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13378                           FalseC->getValueType(0), Cond);
13379        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13380                           SDValue(FalseC, 0));
13381
13382        if (N->getNumValues() == 2)  // Dead flag value?
13383          return DCI.CombineTo(N, Cond, SDValue());
13384        return Cond;
13385      }
13386
13387      // Optimize cases that will turn into an LEA instruction.  This requires
13388      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13389      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13390        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13391        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13392
13393        bool isFastMultiplier = false;
13394        if (Diff < 10) {
13395          switch ((unsigned char)Diff) {
13396          default: break;
13397          case 1:  // result = add base, cond
13398          case 2:  // result = lea base(    , cond*2)
13399          case 3:  // result = lea base(cond, cond*2)
13400          case 4:  // result = lea base(    , cond*4)
13401          case 5:  // result = lea base(cond, cond*4)
13402          case 8:  // result = lea base(    , cond*8)
13403          case 9:  // result = lea base(cond, cond*8)
13404            isFastMultiplier = true;
13405            break;
13406          }
13407        }
13408
13409        if (isFastMultiplier) {
13410          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13411          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13412                             DAG.getConstant(CC, MVT::i8), Cond);
13413          // Zero extend the condition if needed.
13414          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13415                             Cond);
13416          // Scale the condition by the difference.
13417          if (Diff != 1)
13418            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13419                               DAG.getConstant(Diff, Cond.getValueType()));
13420
13421          // Add the base if non-zero.
13422          if (FalseC->getAPIntValue() != 0)
13423            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13424                               SDValue(FalseC, 0));
13425          if (N->getNumValues() == 2)  // Dead flag value?
13426            return DCI.CombineTo(N, Cond, SDValue());
13427          return Cond;
13428        }
13429      }
13430    }
13431  }
13432  return SDValue();
13433}
13434
13435
13436/// PerformMulCombine - Optimize a single multiply with constant into two
13437/// in order to implement it with two cheaper instructions, e.g.
13438/// LEA + SHL, LEA + LEA.
13439static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13440                                 TargetLowering::DAGCombinerInfo &DCI) {
13441  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13442    return SDValue();
13443
13444  EVT VT = N->getValueType(0);
13445  if (VT != MVT::i64)
13446    return SDValue();
13447
13448  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13449  if (!C)
13450    return SDValue();
13451  uint64_t MulAmt = C->getZExtValue();
13452  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13453    return SDValue();
13454
13455  uint64_t MulAmt1 = 0;
13456  uint64_t MulAmt2 = 0;
13457  if ((MulAmt % 9) == 0) {
13458    MulAmt1 = 9;
13459    MulAmt2 = MulAmt / 9;
13460  } else if ((MulAmt % 5) == 0) {
13461    MulAmt1 = 5;
13462    MulAmt2 = MulAmt / 5;
13463  } else if ((MulAmt % 3) == 0) {
13464    MulAmt1 = 3;
13465    MulAmt2 = MulAmt / 3;
13466  }
13467  if (MulAmt2 &&
13468      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13469    DebugLoc DL = N->getDebugLoc();
13470
13471    if (isPowerOf2_64(MulAmt2) &&
13472        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13473      // If second multiplifer is pow2, issue it first. We want the multiply by
13474      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13475      // is an add.
13476      std::swap(MulAmt1, MulAmt2);
13477
13478    SDValue NewMul;
13479    if (isPowerOf2_64(MulAmt1))
13480      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13481                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13482    else
13483      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13484                           DAG.getConstant(MulAmt1, VT));
13485
13486    if (isPowerOf2_64(MulAmt2))
13487      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13488                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13489    else
13490      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13491                           DAG.getConstant(MulAmt2, VT));
13492
13493    // Do not add new nodes to DAG combiner worklist.
13494    DCI.CombineTo(N, NewMul, false);
13495  }
13496  return SDValue();
13497}
13498
13499static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13500  SDValue N0 = N->getOperand(0);
13501  SDValue N1 = N->getOperand(1);
13502  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13503  EVT VT = N0.getValueType();
13504
13505  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13506  // since the result of setcc_c is all zero's or all ones.
13507  if (VT.isInteger() && !VT.isVector() &&
13508      N1C && N0.getOpcode() == ISD::AND &&
13509      N0.getOperand(1).getOpcode() == ISD::Constant) {
13510    SDValue N00 = N0.getOperand(0);
13511    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13512        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13513          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13514         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13515      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13516      APInt ShAmt = N1C->getAPIntValue();
13517      Mask = Mask.shl(ShAmt);
13518      if (Mask != 0)
13519        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13520                           N00, DAG.getConstant(Mask, VT));
13521    }
13522  }
13523
13524
13525  // Hardware support for vector shifts is sparse which makes us scalarize the
13526  // vector operations in many cases. Also, on sandybridge ADD is faster than
13527  // shl.
13528  // (shl V, 1) -> add V,V
13529  if (isSplatVector(N1.getNode())) {
13530    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13531    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13532    // We shift all of the values by one. In many cases we do not have
13533    // hardware support for this operation. This is better expressed as an ADD
13534    // of two values.
13535    if (N1C && (1 == N1C->getZExtValue())) {
13536      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13537    }
13538  }
13539
13540  return SDValue();
13541}
13542
13543/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13544///                       when possible.
13545static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13546                                   const X86Subtarget *Subtarget) {
13547  EVT VT = N->getValueType(0);
13548  if (N->getOpcode() == ISD::SHL) {
13549    SDValue V = PerformSHLCombine(N, DAG);
13550    if (V.getNode()) return V;
13551  }
13552
13553  // On X86 with SSE2 support, we can transform this to a vector shift if
13554  // all elements are shifted by the same amount.  We can't do this in legalize
13555  // because the a constant vector is typically transformed to a constant pool
13556  // so we have no knowledge of the shift amount.
13557  if (!Subtarget->hasSSE2())
13558    return SDValue();
13559
13560  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13561      (!Subtarget->hasAVX2() ||
13562       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13563    return SDValue();
13564
13565  SDValue ShAmtOp = N->getOperand(1);
13566  EVT EltVT = VT.getVectorElementType();
13567  DebugLoc DL = N->getDebugLoc();
13568  SDValue BaseShAmt = SDValue();
13569  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13570    unsigned NumElts = VT.getVectorNumElements();
13571    unsigned i = 0;
13572    for (; i != NumElts; ++i) {
13573      SDValue Arg = ShAmtOp.getOperand(i);
13574      if (Arg.getOpcode() == ISD::UNDEF) continue;
13575      BaseShAmt = Arg;
13576      break;
13577    }
13578    // Handle the case where the build_vector is all undef
13579    // FIXME: Should DAG allow this?
13580    if (i == NumElts)
13581      return SDValue();
13582
13583    for (; i != NumElts; ++i) {
13584      SDValue Arg = ShAmtOp.getOperand(i);
13585      if (Arg.getOpcode() == ISD::UNDEF) continue;
13586      if (Arg != BaseShAmt) {
13587        return SDValue();
13588      }
13589    }
13590  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13591             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13592    SDValue InVec = ShAmtOp.getOperand(0);
13593    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13594      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13595      unsigned i = 0;
13596      for (; i != NumElts; ++i) {
13597        SDValue Arg = InVec.getOperand(i);
13598        if (Arg.getOpcode() == ISD::UNDEF) continue;
13599        BaseShAmt = Arg;
13600        break;
13601      }
13602    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13603       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13604         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13605         if (C->getZExtValue() == SplatIdx)
13606           BaseShAmt = InVec.getOperand(1);
13607       }
13608    }
13609    if (BaseShAmt.getNode() == 0)
13610      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13611                              DAG.getIntPtrConstant(0));
13612  } else
13613    return SDValue();
13614
13615  // The shift amount is an i32.
13616  if (EltVT.bitsGT(MVT::i32))
13617    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13618  else if (EltVT.bitsLT(MVT::i32))
13619    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13620
13621  // The shift amount is identical so we can do a vector shift.
13622  SDValue  ValOp = N->getOperand(0);
13623  switch (N->getOpcode()) {
13624  default:
13625    llvm_unreachable("Unknown shift opcode!");
13626  case ISD::SHL:
13627    switch (VT.getSimpleVT().SimpleTy) {
13628    default: return SDValue();
13629    case MVT::v2i64:
13630    case MVT::v4i32:
13631    case MVT::v8i16:
13632    case MVT::v4i64:
13633    case MVT::v8i32:
13634    case MVT::v16i16:
13635      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13636    }
13637  case ISD::SRA:
13638    switch (VT.getSimpleVT().SimpleTy) {
13639    default: return SDValue();
13640    case MVT::v4i32:
13641    case MVT::v8i16:
13642    case MVT::v8i32:
13643    case MVT::v16i16:
13644      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13645    }
13646  case ISD::SRL:
13647    switch (VT.getSimpleVT().SimpleTy) {
13648    default: return SDValue();
13649    case MVT::v2i64:
13650    case MVT::v4i32:
13651    case MVT::v8i16:
13652    case MVT::v4i64:
13653    case MVT::v8i32:
13654    case MVT::v16i16:
13655      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13656    }
13657  }
13658}
13659
13660
13661// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13662// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13663// and friends.  Likewise for OR -> CMPNEQSS.
13664static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13665                            TargetLowering::DAGCombinerInfo &DCI,
13666                            const X86Subtarget *Subtarget) {
13667  unsigned opcode;
13668
13669  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13670  // we're requiring SSE2 for both.
13671  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13672    SDValue N0 = N->getOperand(0);
13673    SDValue N1 = N->getOperand(1);
13674    SDValue CMP0 = N0->getOperand(1);
13675    SDValue CMP1 = N1->getOperand(1);
13676    DebugLoc DL = N->getDebugLoc();
13677
13678    // The SETCCs should both refer to the same CMP.
13679    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13680      return SDValue();
13681
13682    SDValue CMP00 = CMP0->getOperand(0);
13683    SDValue CMP01 = CMP0->getOperand(1);
13684    EVT     VT    = CMP00.getValueType();
13685
13686    if (VT == MVT::f32 || VT == MVT::f64) {
13687      bool ExpectingFlags = false;
13688      // Check for any users that want flags:
13689      for (SDNode::use_iterator UI = N->use_begin(),
13690             UE = N->use_end();
13691           !ExpectingFlags && UI != UE; ++UI)
13692        switch (UI->getOpcode()) {
13693        default:
13694        case ISD::BR_CC:
13695        case ISD::BRCOND:
13696        case ISD::SELECT:
13697          ExpectingFlags = true;
13698          break;
13699        case ISD::CopyToReg:
13700        case ISD::SIGN_EXTEND:
13701        case ISD::ZERO_EXTEND:
13702        case ISD::ANY_EXTEND:
13703          break;
13704        }
13705
13706      if (!ExpectingFlags) {
13707        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13708        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13709
13710        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13711          X86::CondCode tmp = cc0;
13712          cc0 = cc1;
13713          cc1 = tmp;
13714        }
13715
13716        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13717            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13718          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13719          X86ISD::NodeType NTOperator = is64BitFP ?
13720            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13721          // FIXME: need symbolic constants for these magic numbers.
13722          // See X86ATTInstPrinter.cpp:printSSECC().
13723          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13724          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13725                                              DAG.getConstant(x86cc, MVT::i8));
13726          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13727                                              OnesOrZeroesF);
13728          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13729                                      DAG.getConstant(1, MVT::i32));
13730          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13731          return OneBitOfTruth;
13732        }
13733      }
13734    }
13735  }
13736  return SDValue();
13737}
13738
13739/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13740/// so it can be folded inside ANDNP.
13741static bool CanFoldXORWithAllOnes(const SDNode *N) {
13742  EVT VT = N->getValueType(0);
13743
13744  // Match direct AllOnes for 128 and 256-bit vectors
13745  if (ISD::isBuildVectorAllOnes(N))
13746    return true;
13747
13748  // Look through a bit convert.
13749  if (N->getOpcode() == ISD::BITCAST)
13750    N = N->getOperand(0).getNode();
13751
13752  // Sometimes the operand may come from a insert_subvector building a 256-bit
13753  // allones vector
13754  if (VT.getSizeInBits() == 256 &&
13755      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13756    SDValue V1 = N->getOperand(0);
13757    SDValue V2 = N->getOperand(1);
13758
13759    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13760        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13761        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13762        ISD::isBuildVectorAllOnes(V2.getNode()))
13763      return true;
13764  }
13765
13766  return false;
13767}
13768
13769static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13770                                 TargetLowering::DAGCombinerInfo &DCI,
13771                                 const X86Subtarget *Subtarget) {
13772  if (DCI.isBeforeLegalizeOps())
13773    return SDValue();
13774
13775  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13776  if (R.getNode())
13777    return R;
13778
13779  EVT VT = N->getValueType(0);
13780
13781  // Create ANDN, BLSI, and BLSR instructions
13782  // BLSI is X & (-X)
13783  // BLSR is X & (X-1)
13784  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13785    SDValue N0 = N->getOperand(0);
13786    SDValue N1 = N->getOperand(1);
13787    DebugLoc DL = N->getDebugLoc();
13788
13789    // Check LHS for not
13790    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13791      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13792    // Check RHS for not
13793    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13794      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13795
13796    // Check LHS for neg
13797    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13798        isZero(N0.getOperand(0)))
13799      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13800
13801    // Check RHS for neg
13802    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13803        isZero(N1.getOperand(0)))
13804      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13805
13806    // Check LHS for X-1
13807    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13808        isAllOnes(N0.getOperand(1)))
13809      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13810
13811    // Check RHS for X-1
13812    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13813        isAllOnes(N1.getOperand(1)))
13814      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13815
13816    return SDValue();
13817  }
13818
13819  // Want to form ANDNP nodes:
13820  // 1) In the hopes of then easily combining them with OR and AND nodes
13821  //    to form PBLEND/PSIGN.
13822  // 2) To match ANDN packed intrinsics
13823  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13824    return SDValue();
13825
13826  SDValue N0 = N->getOperand(0);
13827  SDValue N1 = N->getOperand(1);
13828  DebugLoc DL = N->getDebugLoc();
13829
13830  // Check LHS for vnot
13831  if (N0.getOpcode() == ISD::XOR &&
13832      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13833      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13834    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13835
13836  // Check RHS for vnot
13837  if (N1.getOpcode() == ISD::XOR &&
13838      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13839      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13840    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13841
13842  return SDValue();
13843}
13844
13845static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13846                                TargetLowering::DAGCombinerInfo &DCI,
13847                                const X86Subtarget *Subtarget) {
13848  if (DCI.isBeforeLegalizeOps())
13849    return SDValue();
13850
13851  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13852  if (R.getNode())
13853    return R;
13854
13855  EVT VT = N->getValueType(0);
13856
13857  SDValue N0 = N->getOperand(0);
13858  SDValue N1 = N->getOperand(1);
13859
13860  // look for psign/blend
13861  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13862    if (!Subtarget->hasSSSE3() ||
13863        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13864      return SDValue();
13865
13866    // Canonicalize pandn to RHS
13867    if (N0.getOpcode() == X86ISD::ANDNP)
13868      std::swap(N0, N1);
13869    // or (and (m, y), (pandn m, x))
13870    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13871      SDValue Mask = N1.getOperand(0);
13872      SDValue X    = N1.getOperand(1);
13873      SDValue Y;
13874      if (N0.getOperand(0) == Mask)
13875        Y = N0.getOperand(1);
13876      if (N0.getOperand(1) == Mask)
13877        Y = N0.getOperand(0);
13878
13879      // Check to see if the mask appeared in both the AND and ANDNP and
13880      if (!Y.getNode())
13881        return SDValue();
13882
13883      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13884      if (Mask.getOpcode() != ISD::BITCAST ||
13885          X.getOpcode() != ISD::BITCAST ||
13886          Y.getOpcode() != ISD::BITCAST)
13887        return SDValue();
13888
13889      // Look through mask bitcast.
13890      Mask = Mask.getOperand(0);
13891      EVT MaskVT = Mask.getValueType();
13892
13893      // Validate that the Mask operand is a vector sra node.
13894      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13895      // there is no psrai.b
13896      if (Mask.getOpcode() != X86ISD::VSRAI)
13897        return SDValue();
13898
13899      // Check that the SRA is all signbits.
13900      SDValue SraC = Mask.getOperand(1);
13901      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13902      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13903      if ((SraAmt + 1) != EltBits)
13904        return SDValue();
13905
13906      DebugLoc DL = N->getDebugLoc();
13907
13908      // Now we know we at least have a plendvb with the mask val.  See if
13909      // we can form a psignb/w/d.
13910      // psign = x.type == y.type == mask.type && y = sub(0, x);
13911      X = X.getOperand(0);
13912      Y = Y.getOperand(0);
13913      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13914          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13915          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
13916        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
13917               "Unsupported VT for PSIGN");
13918        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
13919        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13920      }
13921      // PBLENDVB only available on SSE 4.1
13922      if (!Subtarget->hasSSE41())
13923        return SDValue();
13924
13925      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
13926
13927      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
13928      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
13929      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
13930      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
13931      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
13932    }
13933  }
13934
13935  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
13936    return SDValue();
13937
13938  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13939  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13940    std::swap(N0, N1);
13941  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13942    return SDValue();
13943  if (!N0.hasOneUse() || !N1.hasOneUse())
13944    return SDValue();
13945
13946  SDValue ShAmt0 = N0.getOperand(1);
13947  if (ShAmt0.getValueType() != MVT::i8)
13948    return SDValue();
13949  SDValue ShAmt1 = N1.getOperand(1);
13950  if (ShAmt1.getValueType() != MVT::i8)
13951    return SDValue();
13952  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13953    ShAmt0 = ShAmt0.getOperand(0);
13954  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13955    ShAmt1 = ShAmt1.getOperand(0);
13956
13957  DebugLoc DL = N->getDebugLoc();
13958  unsigned Opc = X86ISD::SHLD;
13959  SDValue Op0 = N0.getOperand(0);
13960  SDValue Op1 = N1.getOperand(0);
13961  if (ShAmt0.getOpcode() == ISD::SUB) {
13962    Opc = X86ISD::SHRD;
13963    std::swap(Op0, Op1);
13964    std::swap(ShAmt0, ShAmt1);
13965  }
13966
13967  unsigned Bits = VT.getSizeInBits();
13968  if (ShAmt1.getOpcode() == ISD::SUB) {
13969    SDValue Sum = ShAmt1.getOperand(0);
13970    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13971      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13972      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13973        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13974      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13975        return DAG.getNode(Opc, DL, VT,
13976                           Op0, Op1,
13977                           DAG.getNode(ISD::TRUNCATE, DL,
13978                                       MVT::i8, ShAmt0));
13979    }
13980  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13981    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13982    if (ShAmt0C &&
13983        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13984      return DAG.getNode(Opc, DL, VT,
13985                         N0.getOperand(0), N1.getOperand(0),
13986                         DAG.getNode(ISD::TRUNCATE, DL,
13987                                       MVT::i8, ShAmt0));
13988  }
13989
13990  return SDValue();
13991}
13992
13993// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
13994static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
13995                                 TargetLowering::DAGCombinerInfo &DCI,
13996                                 const X86Subtarget *Subtarget) {
13997  if (DCI.isBeforeLegalizeOps())
13998    return SDValue();
13999
14000  EVT VT = N->getValueType(0);
14001
14002  if (VT != MVT::i32 && VT != MVT::i64)
14003    return SDValue();
14004
14005  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14006
14007  // Create BLSMSK instructions by finding X ^ (X-1)
14008  SDValue N0 = N->getOperand(0);
14009  SDValue N1 = N->getOperand(1);
14010  DebugLoc DL = N->getDebugLoc();
14011
14012  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14013      isAllOnes(N0.getOperand(1)))
14014    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14015
14016  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14017      isAllOnes(N1.getOperand(1)))
14018    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14019
14020  return SDValue();
14021}
14022
14023/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14024static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14025                                   const X86Subtarget *Subtarget) {
14026  LoadSDNode *Ld = cast<LoadSDNode>(N);
14027  EVT RegVT = Ld->getValueType(0);
14028  EVT MemVT = Ld->getMemoryVT();
14029  DebugLoc dl = Ld->getDebugLoc();
14030  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14031
14032  ISD::LoadExtType Ext = Ld->getExtensionType();
14033
14034  // If this is a vector EXT Load then attempt to optimize it using a
14035  // shuffle. We need SSE4 for the shuffles.
14036  // TODO: It is possible to support ZExt by zeroing the undef values
14037  // during the shuffle phase or after the shuffle.
14038  if (RegVT.isVector() && RegVT.isInteger() &&
14039      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14040    assert(MemVT != RegVT && "Cannot extend to the same type");
14041    assert(MemVT.isVector() && "Must load a vector from memory");
14042
14043    unsigned NumElems = RegVT.getVectorNumElements();
14044    unsigned RegSz = RegVT.getSizeInBits();
14045    unsigned MemSz = MemVT.getSizeInBits();
14046    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14047    // All sizes must be a power of two
14048    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14049
14050    // Attempt to load the original value using a single load op.
14051    // Find a scalar type which is equal to the loaded word size.
14052    MVT SclrLoadTy = MVT::i8;
14053    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14054         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14055      MVT Tp = (MVT::SimpleValueType)tp;
14056      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14057        SclrLoadTy = Tp;
14058        break;
14059      }
14060    }
14061
14062    // Proceed if a load word is found.
14063    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14064
14065    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14066      RegSz/SclrLoadTy.getSizeInBits());
14067
14068    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14069                                  RegSz/MemVT.getScalarType().getSizeInBits());
14070    // Can't shuffle using an illegal type.
14071    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14072
14073    // Perform a single load.
14074    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14075                                  Ld->getBasePtr(),
14076                                  Ld->getPointerInfo(), Ld->isVolatile(),
14077                                  Ld->isNonTemporal(), Ld->isInvariant(),
14078                                  Ld->getAlignment());
14079
14080    // Insert the word loaded into a vector.
14081    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14082      LoadUnitVecVT, ScalarLoad);
14083
14084    // Bitcast the loaded value to a vector of the original element type, in
14085    // the size of the target vector type.
14086    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14087                                    ScalarInVector);
14088    unsigned SizeRatio = RegSz/MemSz;
14089
14090    // Redistribute the loaded elements into the different locations.
14091    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14092    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14093
14094    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14095                                DAG.getUNDEF(SlicedVec.getValueType()),
14096                                ShuffleVec.data());
14097
14098    // Bitcast to the requested type.
14099    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14100    // Replace the original load with the new sequence
14101    // and return the new chain.
14102    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14103    return SDValue(ScalarLoad.getNode(), 1);
14104  }
14105
14106  return SDValue();
14107}
14108
14109/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14110static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14111                                   const X86Subtarget *Subtarget) {
14112  StoreSDNode *St = cast<StoreSDNode>(N);
14113  EVT VT = St->getValue().getValueType();
14114  EVT StVT = St->getMemoryVT();
14115  DebugLoc dl = St->getDebugLoc();
14116  SDValue StoredVal = St->getOperand(1);
14117  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14118
14119  // If we are saving a concatenation of two XMM registers, perform two stores.
14120  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14121  // 128-bit ones. If in the future the cost becomes only one memory access the
14122  // first version would be better.
14123  if (VT.getSizeInBits() == 256 &&
14124    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14125    StoredVal.getNumOperands() == 2) {
14126
14127    SDValue Value0 = StoredVal.getOperand(0);
14128    SDValue Value1 = StoredVal.getOperand(1);
14129
14130    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14131    SDValue Ptr0 = St->getBasePtr();
14132    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14133
14134    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14135                                St->getPointerInfo(), St->isVolatile(),
14136                                St->isNonTemporal(), St->getAlignment());
14137    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14138                                St->getPointerInfo(), St->isVolatile(),
14139                                St->isNonTemporal(), St->getAlignment());
14140    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14141  }
14142
14143  // Optimize trunc store (of multiple scalars) to shuffle and store.
14144  // First, pack all of the elements in one place. Next, store to memory
14145  // in fewer chunks.
14146  if (St->isTruncatingStore() && VT.isVector()) {
14147    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14148    unsigned NumElems = VT.getVectorNumElements();
14149    assert(StVT != VT && "Cannot truncate to the same type");
14150    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14151    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14152
14153    // From, To sizes and ElemCount must be pow of two
14154    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14155    // We are going to use the original vector elt for storing.
14156    // Accumulated smaller vector elements must be a multiple of the store size.
14157    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14158
14159    unsigned SizeRatio  = FromSz / ToSz;
14160
14161    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14162
14163    // Create a type on which we perform the shuffle
14164    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14165            StVT.getScalarType(), NumElems*SizeRatio);
14166
14167    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14168
14169    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14170    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14171    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14172
14173    // Can't shuffle using an illegal type
14174    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14175
14176    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14177                                DAG.getUNDEF(WideVec.getValueType()),
14178                                ShuffleVec.data());
14179    // At this point all of the data is stored at the bottom of the
14180    // register. We now need to save it to mem.
14181
14182    // Find the largest store unit
14183    MVT StoreType = MVT::i8;
14184    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14185         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14186      MVT Tp = (MVT::SimpleValueType)tp;
14187      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14188        StoreType = Tp;
14189    }
14190
14191    // Bitcast the original vector into a vector of store-size units
14192    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14193            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14194    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14195    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14196    SmallVector<SDValue, 8> Chains;
14197    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14198                                        TLI.getPointerTy());
14199    SDValue Ptr = St->getBasePtr();
14200
14201    // Perform one or more big stores into memory.
14202    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14203      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14204                                   StoreType, ShuffWide,
14205                                   DAG.getIntPtrConstant(i));
14206      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14207                                St->getPointerInfo(), St->isVolatile(),
14208                                St->isNonTemporal(), St->getAlignment());
14209      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14210      Chains.push_back(Ch);
14211    }
14212
14213    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14214                               Chains.size());
14215  }
14216
14217
14218  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14219  // the FP state in cases where an emms may be missing.
14220  // A preferable solution to the general problem is to figure out the right
14221  // places to insert EMMS.  This qualifies as a quick hack.
14222
14223  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14224  if (VT.getSizeInBits() != 64)
14225    return SDValue();
14226
14227  const Function *F = DAG.getMachineFunction().getFunction();
14228  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14229  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14230                     && Subtarget->hasSSE2();
14231  if ((VT.isVector() ||
14232       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14233      isa<LoadSDNode>(St->getValue()) &&
14234      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14235      St->getChain().hasOneUse() && !St->isVolatile()) {
14236    SDNode* LdVal = St->getValue().getNode();
14237    LoadSDNode *Ld = 0;
14238    int TokenFactorIndex = -1;
14239    SmallVector<SDValue, 8> Ops;
14240    SDNode* ChainVal = St->getChain().getNode();
14241    // Must be a store of a load.  We currently handle two cases:  the load
14242    // is a direct child, and it's under an intervening TokenFactor.  It is
14243    // possible to dig deeper under nested TokenFactors.
14244    if (ChainVal == LdVal)
14245      Ld = cast<LoadSDNode>(St->getChain());
14246    else if (St->getValue().hasOneUse() &&
14247             ChainVal->getOpcode() == ISD::TokenFactor) {
14248      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
14249        if (ChainVal->getOperand(i).getNode() == LdVal) {
14250          TokenFactorIndex = i;
14251          Ld = cast<LoadSDNode>(St->getValue());
14252        } else
14253          Ops.push_back(ChainVal->getOperand(i));
14254      }
14255    }
14256
14257    if (!Ld || !ISD::isNormalLoad(Ld))
14258      return SDValue();
14259
14260    // If this is not the MMX case, i.e. we are just turning i64 load/store
14261    // into f64 load/store, avoid the transformation if there are multiple
14262    // uses of the loaded value.
14263    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14264      return SDValue();
14265
14266    DebugLoc LdDL = Ld->getDebugLoc();
14267    DebugLoc StDL = N->getDebugLoc();
14268    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14269    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14270    // pair instead.
14271    if (Subtarget->is64Bit() || F64IsLegal) {
14272      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14273      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14274                                  Ld->getPointerInfo(), Ld->isVolatile(),
14275                                  Ld->isNonTemporal(), Ld->isInvariant(),
14276                                  Ld->getAlignment());
14277      SDValue NewChain = NewLd.getValue(1);
14278      if (TokenFactorIndex != -1) {
14279        Ops.push_back(NewChain);
14280        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14281                               Ops.size());
14282      }
14283      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14284                          St->getPointerInfo(),
14285                          St->isVolatile(), St->isNonTemporal(),
14286                          St->getAlignment());
14287    }
14288
14289    // Otherwise, lower to two pairs of 32-bit loads / stores.
14290    SDValue LoAddr = Ld->getBasePtr();
14291    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14292                                 DAG.getConstant(4, MVT::i32));
14293
14294    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14295                               Ld->getPointerInfo(),
14296                               Ld->isVolatile(), Ld->isNonTemporal(),
14297                               Ld->isInvariant(), Ld->getAlignment());
14298    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14299                               Ld->getPointerInfo().getWithOffset(4),
14300                               Ld->isVolatile(), Ld->isNonTemporal(),
14301                               Ld->isInvariant(),
14302                               MinAlign(Ld->getAlignment(), 4));
14303
14304    SDValue NewChain = LoLd.getValue(1);
14305    if (TokenFactorIndex != -1) {
14306      Ops.push_back(LoLd);
14307      Ops.push_back(HiLd);
14308      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14309                             Ops.size());
14310    }
14311
14312    LoAddr = St->getBasePtr();
14313    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14314                         DAG.getConstant(4, MVT::i32));
14315
14316    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14317                                St->getPointerInfo(),
14318                                St->isVolatile(), St->isNonTemporal(),
14319                                St->getAlignment());
14320    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14321                                St->getPointerInfo().getWithOffset(4),
14322                                St->isVolatile(),
14323                                St->isNonTemporal(),
14324                                MinAlign(St->getAlignment(), 4));
14325    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14326  }
14327  return SDValue();
14328}
14329
14330/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14331/// and return the operands for the horizontal operation in LHS and RHS.  A
14332/// horizontal operation performs the binary operation on successive elements
14333/// of its first operand, then on successive elements of its second operand,
14334/// returning the resulting values in a vector.  For example, if
14335///   A = < float a0, float a1, float a2, float a3 >
14336/// and
14337///   B = < float b0, float b1, float b2, float b3 >
14338/// then the result of doing a horizontal operation on A and B is
14339///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14340/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14341/// A horizontal-op B, for some already available A and B, and if so then LHS is
14342/// set to A, RHS to B, and the routine returns 'true'.
14343/// Note that the binary operation should have the property that if one of the
14344/// operands is UNDEF then the result is UNDEF.
14345static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14346  // Look for the following pattern: if
14347  //   A = < float a0, float a1, float a2, float a3 >
14348  //   B = < float b0, float b1, float b2, float b3 >
14349  // and
14350  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14351  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14352  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14353  // which is A horizontal-op B.
14354
14355  // At least one of the operands should be a vector shuffle.
14356  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14357      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14358    return false;
14359
14360  EVT VT = LHS.getValueType();
14361
14362  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14363         "Unsupported vector type for horizontal add/sub");
14364
14365  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14366  // operate independently on 128-bit lanes.
14367  unsigned NumElts = VT.getVectorNumElements();
14368  unsigned NumLanes = VT.getSizeInBits()/128;
14369  unsigned NumLaneElts = NumElts / NumLanes;
14370  assert((NumLaneElts % 2 == 0) &&
14371         "Vector type should have an even number of elements in each lane");
14372  unsigned HalfLaneElts = NumLaneElts/2;
14373
14374  // View LHS in the form
14375  //   LHS = VECTOR_SHUFFLE A, B, LMask
14376  // If LHS is not a shuffle then pretend it is the shuffle
14377  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14378  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14379  // type VT.
14380  SDValue A, B;
14381  SmallVector<int, 16> LMask(NumElts);
14382  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14383    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14384      A = LHS.getOperand(0);
14385    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14386      B = LHS.getOperand(1);
14387    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14388    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14389  } else {
14390    if (LHS.getOpcode() != ISD::UNDEF)
14391      A = LHS;
14392    for (unsigned i = 0; i != NumElts; ++i)
14393      LMask[i] = i;
14394  }
14395
14396  // Likewise, view RHS in the form
14397  //   RHS = VECTOR_SHUFFLE C, D, RMask
14398  SDValue C, D;
14399  SmallVector<int, 16> RMask(NumElts);
14400  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14401    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14402      C = RHS.getOperand(0);
14403    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14404      D = RHS.getOperand(1);
14405    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14406    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14407  } else {
14408    if (RHS.getOpcode() != ISD::UNDEF)
14409      C = RHS;
14410    for (unsigned i = 0; i != NumElts; ++i)
14411      RMask[i] = i;
14412  }
14413
14414  // Check that the shuffles are both shuffling the same vectors.
14415  if (!(A == C && B == D) && !(A == D && B == C))
14416    return false;
14417
14418  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14419  if (!A.getNode() && !B.getNode())
14420    return false;
14421
14422  // If A and B occur in reverse order in RHS, then "swap" them (which means
14423  // rewriting the mask).
14424  if (A != C)
14425    CommuteVectorShuffleMask(RMask, NumElts);
14426
14427  // At this point LHS and RHS are equivalent to
14428  //   LHS = VECTOR_SHUFFLE A, B, LMask
14429  //   RHS = VECTOR_SHUFFLE A, B, RMask
14430  // Check that the masks correspond to performing a horizontal operation.
14431  for (unsigned i = 0; i != NumElts; ++i) {
14432    int LIdx = LMask[i], RIdx = RMask[i];
14433
14434    // Ignore any UNDEF components.
14435    if (LIdx < 0 || RIdx < 0 ||
14436        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14437        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14438      continue;
14439
14440    // Check that successive elements are being operated on.  If not, this is
14441    // not a horizontal operation.
14442    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14443    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14444    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14445    if (!(LIdx == Index && RIdx == Index + 1) &&
14446        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14447      return false;
14448  }
14449
14450  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14451  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14452  return true;
14453}
14454
14455/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14456static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14457                                  const X86Subtarget *Subtarget) {
14458  EVT VT = N->getValueType(0);
14459  SDValue LHS = N->getOperand(0);
14460  SDValue RHS = N->getOperand(1);
14461
14462  // Try to synthesize horizontal adds from adds of shuffles.
14463  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14464       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14465      isHorizontalBinOp(LHS, RHS, true))
14466    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14467  return SDValue();
14468}
14469
14470/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14471static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14472                                  const X86Subtarget *Subtarget) {
14473  EVT VT = N->getValueType(0);
14474  SDValue LHS = N->getOperand(0);
14475  SDValue RHS = N->getOperand(1);
14476
14477  // Try to synthesize horizontal subs from subs of shuffles.
14478  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14479       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14480      isHorizontalBinOp(LHS, RHS, false))
14481    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14482  return SDValue();
14483}
14484
14485/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14486/// X86ISD::FXOR nodes.
14487static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14488  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14489  // F[X]OR(0.0, x) -> x
14490  // F[X]OR(x, 0.0) -> x
14491  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14492    if (C->getValueAPF().isPosZero())
14493      return N->getOperand(1);
14494  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14495    if (C->getValueAPF().isPosZero())
14496      return N->getOperand(0);
14497  return SDValue();
14498}
14499
14500/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14501static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14502  // FAND(0.0, x) -> 0.0
14503  // FAND(x, 0.0) -> 0.0
14504  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14505    if (C->getValueAPF().isPosZero())
14506      return N->getOperand(0);
14507  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14508    if (C->getValueAPF().isPosZero())
14509      return N->getOperand(1);
14510  return SDValue();
14511}
14512
14513static SDValue PerformBTCombine(SDNode *N,
14514                                SelectionDAG &DAG,
14515                                TargetLowering::DAGCombinerInfo &DCI) {
14516  // BT ignores high bits in the bit index operand.
14517  SDValue Op1 = N->getOperand(1);
14518  if (Op1.hasOneUse()) {
14519    unsigned BitWidth = Op1.getValueSizeInBits();
14520    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14521    APInt KnownZero, KnownOne;
14522    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14523                                          !DCI.isBeforeLegalizeOps());
14524    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14525    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14526        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14527      DCI.CommitTargetLoweringOpt(TLO);
14528  }
14529  return SDValue();
14530}
14531
14532static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14533  SDValue Op = N->getOperand(0);
14534  if (Op.getOpcode() == ISD::BITCAST)
14535    Op = Op.getOperand(0);
14536  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14537  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14538      VT.getVectorElementType().getSizeInBits() ==
14539      OpVT.getVectorElementType().getSizeInBits()) {
14540    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14541  }
14542  return SDValue();
14543}
14544
14545static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14546                                  const X86Subtarget *Subtarget) {
14547  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14548  //           (and (i32 x86isd::setcc_carry), 1)
14549  // This eliminates the zext. This transformation is necessary because
14550  // ISD::SETCC is always legalized to i8.
14551  DebugLoc dl = N->getDebugLoc();
14552  SDValue N0 = N->getOperand(0);
14553  EVT VT = N->getValueType(0);
14554  EVT OpVT = N0.getValueType();
14555
14556  if (N0.getOpcode() == ISD::AND &&
14557      N0.hasOneUse() &&
14558      N0.getOperand(0).hasOneUse()) {
14559    SDValue N00 = N0.getOperand(0);
14560    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14561      return SDValue();
14562    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14563    if (!C || C->getZExtValue() != 1)
14564      return SDValue();
14565    return DAG.getNode(ISD::AND, dl, VT,
14566                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14567                                   N00.getOperand(0), N00.getOperand(1)),
14568                       DAG.getConstant(1, VT));
14569  }
14570  // Optimize vectors in AVX mode:
14571  //
14572  //   v8i16 -> v8i32
14573  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14574  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14575  //   Concat upper and lower parts.
14576  //
14577  //   v4i32 -> v4i64
14578  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14579  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14580  //   Concat upper and lower parts.
14581  //
14582  if (Subtarget->hasAVX()) {
14583
14584    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14585      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14586
14587      SDValue ZeroVec = getZeroVector(OpVT, Subtarget->hasSSE2(), Subtarget->hasAVX2(),
14588        DAG, dl);
14589      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14590      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14591
14592      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14593        VT.getVectorNumElements()/2);
14594
14595      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14596      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14597
14598      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14599    }
14600  }
14601
14602
14603  return SDValue();
14604}
14605
14606// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14607static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14608  unsigned X86CC = N->getConstantOperandVal(0);
14609  SDValue EFLAG = N->getOperand(1);
14610  DebugLoc DL = N->getDebugLoc();
14611
14612  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14613  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14614  // cases.
14615  if (X86CC == X86::COND_B)
14616    return DAG.getNode(ISD::AND, DL, MVT::i8,
14617                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14618                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14619                       DAG.getConstant(1, MVT::i8));
14620
14621  return SDValue();
14622}
14623
14624static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14625                                        const X86TargetLowering *XTLI) {
14626  SDValue Op0 = N->getOperand(0);
14627  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14628  // a 32-bit target where SSE doesn't support i64->FP operations.
14629  if (Op0.getOpcode() == ISD::LOAD) {
14630    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14631    EVT VT = Ld->getValueType(0);
14632    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14633        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14634        !XTLI->getSubtarget()->is64Bit() &&
14635        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14636      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14637                                          Ld->getChain(), Op0, DAG);
14638      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14639      return FILDChain;
14640    }
14641  }
14642  return SDValue();
14643}
14644
14645// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14646static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14647                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14648  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14649  // the result is either zero or one (depending on the input carry bit).
14650  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14651  if (X86::isZeroNode(N->getOperand(0)) &&
14652      X86::isZeroNode(N->getOperand(1)) &&
14653      // We don't have a good way to replace an EFLAGS use, so only do this when
14654      // dead right now.
14655      SDValue(N, 1).use_empty()) {
14656    DebugLoc DL = N->getDebugLoc();
14657    EVT VT = N->getValueType(0);
14658    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14659    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14660                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14661                                           DAG.getConstant(X86::COND_B,MVT::i8),
14662                                           N->getOperand(2)),
14663                               DAG.getConstant(1, VT));
14664    return DCI.CombineTo(N, Res1, CarryOut);
14665  }
14666
14667  return SDValue();
14668}
14669
14670// fold (add Y, (sete  X, 0)) -> adc  0, Y
14671//      (add Y, (setne X, 0)) -> sbb -1, Y
14672//      (sub (sete  X, 0), Y) -> sbb  0, Y
14673//      (sub (setne X, 0), Y) -> adc -1, Y
14674static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14675  DebugLoc DL = N->getDebugLoc();
14676
14677  // Look through ZExts.
14678  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14679  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14680    return SDValue();
14681
14682  SDValue SetCC = Ext.getOperand(0);
14683  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14684    return SDValue();
14685
14686  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14687  if (CC != X86::COND_E && CC != X86::COND_NE)
14688    return SDValue();
14689
14690  SDValue Cmp = SetCC.getOperand(1);
14691  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14692      !X86::isZeroNode(Cmp.getOperand(1)) ||
14693      !Cmp.getOperand(0).getValueType().isInteger())
14694    return SDValue();
14695
14696  SDValue CmpOp0 = Cmp.getOperand(0);
14697  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14698                               DAG.getConstant(1, CmpOp0.getValueType()));
14699
14700  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14701  if (CC == X86::COND_NE)
14702    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14703                       DL, OtherVal.getValueType(), OtherVal,
14704                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14705  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14706                     DL, OtherVal.getValueType(), OtherVal,
14707                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14708}
14709
14710/// PerformADDCombine - Do target-specific dag combines on integer adds.
14711static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14712                                 const X86Subtarget *Subtarget) {
14713  EVT VT = N->getValueType(0);
14714  SDValue Op0 = N->getOperand(0);
14715  SDValue Op1 = N->getOperand(1);
14716
14717  // Try to synthesize horizontal adds from adds of shuffles.
14718  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14719       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14720      isHorizontalBinOp(Op0, Op1, true))
14721    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14722
14723  return OptimizeConditionalInDecrement(N, DAG);
14724}
14725
14726static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14727                                 const X86Subtarget *Subtarget) {
14728  SDValue Op0 = N->getOperand(0);
14729  SDValue Op1 = N->getOperand(1);
14730
14731  // X86 can't encode an immediate LHS of a sub. See if we can push the
14732  // negation into a preceding instruction.
14733  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14734    // If the RHS of the sub is a XOR with one use and a constant, invert the
14735    // immediate. Then add one to the LHS of the sub so we can turn
14736    // X-Y -> X+~Y+1, saving one register.
14737    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14738        isa<ConstantSDNode>(Op1.getOperand(1))) {
14739      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14740      EVT VT = Op0.getValueType();
14741      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14742                                   Op1.getOperand(0),
14743                                   DAG.getConstant(~XorC, VT));
14744      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14745                         DAG.getConstant(C->getAPIntValue()+1, VT));
14746    }
14747  }
14748
14749  // Try to synthesize horizontal adds from adds of shuffles.
14750  EVT VT = N->getValueType(0);
14751  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14752       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14753      isHorizontalBinOp(Op0, Op1, true))
14754    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14755
14756  return OptimizeConditionalInDecrement(N, DAG);
14757}
14758
14759SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14760                                             DAGCombinerInfo &DCI) const {
14761  SelectionDAG &DAG = DCI.DAG;
14762  switch (N->getOpcode()) {
14763  default: break;
14764  case ISD::EXTRACT_VECTOR_ELT:
14765    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14766  case ISD::VSELECT:
14767  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14768  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14769  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14770  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14771  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14772  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14773  case ISD::SHL:
14774  case ISD::SRA:
14775  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14776  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14777  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14778  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14779  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14780  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14781  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14782  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14783  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14784  case X86ISD::FXOR:
14785  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14786  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14787  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14788  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14789  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
14790  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14791  case X86ISD::SHUFP:       // Handle all target specific shuffles
14792  case X86ISD::PALIGN:
14793  case X86ISD::UNPCKH:
14794  case X86ISD::UNPCKL:
14795  case X86ISD::MOVHLPS:
14796  case X86ISD::MOVLHPS:
14797  case X86ISD::PSHUFD:
14798  case X86ISD::PSHUFHW:
14799  case X86ISD::PSHUFLW:
14800  case X86ISD::MOVSS:
14801  case X86ISD::MOVSD:
14802  case X86ISD::VPERMILP:
14803  case X86ISD::VPERM2X128:
14804  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14805  }
14806
14807  return SDValue();
14808}
14809
14810/// isTypeDesirableForOp - Return true if the target has native support for
14811/// the specified value type and it is 'desirable' to use the type for the
14812/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14813/// instruction encodings are longer and some i16 instructions are slow.
14814bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14815  if (!isTypeLegal(VT))
14816    return false;
14817  if (VT != MVT::i16)
14818    return true;
14819
14820  switch (Opc) {
14821  default:
14822    return true;
14823  case ISD::LOAD:
14824  case ISD::SIGN_EXTEND:
14825  case ISD::ZERO_EXTEND:
14826  case ISD::ANY_EXTEND:
14827  case ISD::SHL:
14828  case ISD::SRL:
14829  case ISD::SUB:
14830  case ISD::ADD:
14831  case ISD::MUL:
14832  case ISD::AND:
14833  case ISD::OR:
14834  case ISD::XOR:
14835    return false;
14836  }
14837}
14838
14839/// IsDesirableToPromoteOp - This method query the target whether it is
14840/// beneficial for dag combiner to promote the specified node. If true, it
14841/// should return the desired promotion type by reference.
14842bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14843  EVT VT = Op.getValueType();
14844  if (VT != MVT::i16)
14845    return false;
14846
14847  bool Promote = false;
14848  bool Commute = false;
14849  switch (Op.getOpcode()) {
14850  default: break;
14851  case ISD::LOAD: {
14852    LoadSDNode *LD = cast<LoadSDNode>(Op);
14853    // If the non-extending load has a single use and it's not live out, then it
14854    // might be folded.
14855    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14856                                                     Op.hasOneUse()*/) {
14857      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14858             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14859        // The only case where we'd want to promote LOAD (rather then it being
14860        // promoted as an operand is when it's only use is liveout.
14861        if (UI->getOpcode() != ISD::CopyToReg)
14862          return false;
14863      }
14864    }
14865    Promote = true;
14866    break;
14867  }
14868  case ISD::SIGN_EXTEND:
14869  case ISD::ZERO_EXTEND:
14870  case ISD::ANY_EXTEND:
14871    Promote = true;
14872    break;
14873  case ISD::SHL:
14874  case ISD::SRL: {
14875    SDValue N0 = Op.getOperand(0);
14876    // Look out for (store (shl (load), x)).
14877    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14878      return false;
14879    Promote = true;
14880    break;
14881  }
14882  case ISD::ADD:
14883  case ISD::MUL:
14884  case ISD::AND:
14885  case ISD::OR:
14886  case ISD::XOR:
14887    Commute = true;
14888    // fallthrough
14889  case ISD::SUB: {
14890    SDValue N0 = Op.getOperand(0);
14891    SDValue N1 = Op.getOperand(1);
14892    if (!Commute && MayFoldLoad(N1))
14893      return false;
14894    // Avoid disabling potential load folding opportunities.
14895    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14896      return false;
14897    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14898      return false;
14899    Promote = true;
14900  }
14901  }
14902
14903  PVT = MVT::i32;
14904  return Promote;
14905}
14906
14907//===----------------------------------------------------------------------===//
14908//                           X86 Inline Assembly Support
14909//===----------------------------------------------------------------------===//
14910
14911namespace {
14912  // Helper to match a string separated by whitespace.
14913  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
14914    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
14915
14916    for (unsigned i = 0, e = args.size(); i != e; ++i) {
14917      StringRef piece(*args[i]);
14918      if (!s.startswith(piece)) // Check if the piece matches.
14919        return false;
14920
14921      s = s.substr(piece.size());
14922      StringRef::size_type pos = s.find_first_not_of(" \t");
14923      if (pos == 0) // We matched a prefix.
14924        return false;
14925
14926      s = s.substr(pos);
14927    }
14928
14929    return s.empty();
14930  }
14931  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
14932}
14933
14934bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14935  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14936
14937  std::string AsmStr = IA->getAsmString();
14938
14939  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14940  if (!Ty || Ty->getBitWidth() % 16 != 0)
14941    return false;
14942
14943  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14944  SmallVector<StringRef, 4> AsmPieces;
14945  SplitString(AsmStr, AsmPieces, ";\n");
14946
14947  switch (AsmPieces.size()) {
14948  default: return false;
14949  case 1:
14950    // FIXME: this should verify that we are targeting a 486 or better.  If not,
14951    // we will turn this bswap into something that will be lowered to logical
14952    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
14953    // lower so don't worry about this.
14954    // bswap $0
14955    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
14956        matchAsm(AsmPieces[0], "bswapl", "$0") ||
14957        matchAsm(AsmPieces[0], "bswapq", "$0") ||
14958        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
14959        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
14960        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
14961      // No need to check constraints, nothing other than the equivalent of
14962      // "=r,0" would be valid here.
14963      return IntrinsicLowering::LowerToByteSwap(CI);
14964    }
14965
14966    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14967    if (CI->getType()->isIntegerTy(16) &&
14968        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14969        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
14970         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
14971      AsmPieces.clear();
14972      const std::string &ConstraintsStr = IA->getConstraintString();
14973      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14974      std::sort(AsmPieces.begin(), AsmPieces.end());
14975      if (AsmPieces.size() == 4 &&
14976          AsmPieces[0] == "~{cc}" &&
14977          AsmPieces[1] == "~{dirflag}" &&
14978          AsmPieces[2] == "~{flags}" &&
14979          AsmPieces[3] == "~{fpsr}")
14980      return IntrinsicLowering::LowerToByteSwap(CI);
14981    }
14982    break;
14983  case 3:
14984    if (CI->getType()->isIntegerTy(32) &&
14985        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
14986        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
14987        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
14988        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
14989      AsmPieces.clear();
14990      const std::string &ConstraintsStr = IA->getConstraintString();
14991      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14992      std::sort(AsmPieces.begin(), AsmPieces.end());
14993      if (AsmPieces.size() == 4 &&
14994          AsmPieces[0] == "~{cc}" &&
14995          AsmPieces[1] == "~{dirflag}" &&
14996          AsmPieces[2] == "~{flags}" &&
14997          AsmPieces[3] == "~{fpsr}")
14998        return IntrinsicLowering::LowerToByteSwap(CI);
14999    }
15000
15001    if (CI->getType()->isIntegerTy(64)) {
15002      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15003      if (Constraints.size() >= 2 &&
15004          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15005          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15006        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15007        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15008            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15009            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15010          return IntrinsicLowering::LowerToByteSwap(CI);
15011      }
15012    }
15013    break;
15014  }
15015  return false;
15016}
15017
15018
15019
15020/// getConstraintType - Given a constraint letter, return the type of
15021/// constraint it is for this target.
15022X86TargetLowering::ConstraintType
15023X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15024  if (Constraint.size() == 1) {
15025    switch (Constraint[0]) {
15026    case 'R':
15027    case 'q':
15028    case 'Q':
15029    case 'f':
15030    case 't':
15031    case 'u':
15032    case 'y':
15033    case 'x':
15034    case 'Y':
15035    case 'l':
15036      return C_RegisterClass;
15037    case 'a':
15038    case 'b':
15039    case 'c':
15040    case 'd':
15041    case 'S':
15042    case 'D':
15043    case 'A':
15044      return C_Register;
15045    case 'I':
15046    case 'J':
15047    case 'K':
15048    case 'L':
15049    case 'M':
15050    case 'N':
15051    case 'G':
15052    case 'C':
15053    case 'e':
15054    case 'Z':
15055      return C_Other;
15056    default:
15057      break;
15058    }
15059  }
15060  return TargetLowering::getConstraintType(Constraint);
15061}
15062
15063/// Examine constraint type and operand type and determine a weight value.
15064/// This object must already have been set up with the operand type
15065/// and the current alternative constraint selected.
15066TargetLowering::ConstraintWeight
15067  X86TargetLowering::getSingleConstraintMatchWeight(
15068    AsmOperandInfo &info, const char *constraint) const {
15069  ConstraintWeight weight = CW_Invalid;
15070  Value *CallOperandVal = info.CallOperandVal;
15071    // If we don't have a value, we can't do a match,
15072    // but allow it at the lowest weight.
15073  if (CallOperandVal == NULL)
15074    return CW_Default;
15075  Type *type = CallOperandVal->getType();
15076  // Look at the constraint type.
15077  switch (*constraint) {
15078  default:
15079    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15080  case 'R':
15081  case 'q':
15082  case 'Q':
15083  case 'a':
15084  case 'b':
15085  case 'c':
15086  case 'd':
15087  case 'S':
15088  case 'D':
15089  case 'A':
15090    if (CallOperandVal->getType()->isIntegerTy())
15091      weight = CW_SpecificReg;
15092    break;
15093  case 'f':
15094  case 't':
15095  case 'u':
15096      if (type->isFloatingPointTy())
15097        weight = CW_SpecificReg;
15098      break;
15099  case 'y':
15100      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15101        weight = CW_SpecificReg;
15102      break;
15103  case 'x':
15104  case 'Y':
15105    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15106        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15107      weight = CW_Register;
15108    break;
15109  case 'I':
15110    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15111      if (C->getZExtValue() <= 31)
15112        weight = CW_Constant;
15113    }
15114    break;
15115  case 'J':
15116    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15117      if (C->getZExtValue() <= 63)
15118        weight = CW_Constant;
15119    }
15120    break;
15121  case 'K':
15122    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15123      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15124        weight = CW_Constant;
15125    }
15126    break;
15127  case 'L':
15128    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15129      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15130        weight = CW_Constant;
15131    }
15132    break;
15133  case 'M':
15134    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15135      if (C->getZExtValue() <= 3)
15136        weight = CW_Constant;
15137    }
15138    break;
15139  case 'N':
15140    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15141      if (C->getZExtValue() <= 0xff)
15142        weight = CW_Constant;
15143    }
15144    break;
15145  case 'G':
15146  case 'C':
15147    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15148      weight = CW_Constant;
15149    }
15150    break;
15151  case 'e':
15152    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15153      if ((C->getSExtValue() >= -0x80000000LL) &&
15154          (C->getSExtValue() <= 0x7fffffffLL))
15155        weight = CW_Constant;
15156    }
15157    break;
15158  case 'Z':
15159    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15160      if (C->getZExtValue() <= 0xffffffff)
15161        weight = CW_Constant;
15162    }
15163    break;
15164  }
15165  return weight;
15166}
15167
15168/// LowerXConstraint - try to replace an X constraint, which matches anything,
15169/// with another that has more specific requirements based on the type of the
15170/// corresponding operand.
15171const char *X86TargetLowering::
15172LowerXConstraint(EVT ConstraintVT) const {
15173  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15174  // 'f' like normal targets.
15175  if (ConstraintVT.isFloatingPoint()) {
15176    if (Subtarget->hasSSE2())
15177      return "Y";
15178    if (Subtarget->hasSSE1())
15179      return "x";
15180  }
15181
15182  return TargetLowering::LowerXConstraint(ConstraintVT);
15183}
15184
15185/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15186/// vector.  If it is invalid, don't add anything to Ops.
15187void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15188                                                     std::string &Constraint,
15189                                                     std::vector<SDValue>&Ops,
15190                                                     SelectionDAG &DAG) const {
15191  SDValue Result(0, 0);
15192
15193  // Only support length 1 constraints for now.
15194  if (Constraint.length() > 1) return;
15195
15196  char ConstraintLetter = Constraint[0];
15197  switch (ConstraintLetter) {
15198  default: break;
15199  case 'I':
15200    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15201      if (C->getZExtValue() <= 31) {
15202        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15203        break;
15204      }
15205    }
15206    return;
15207  case 'J':
15208    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15209      if (C->getZExtValue() <= 63) {
15210        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15211        break;
15212      }
15213    }
15214    return;
15215  case 'K':
15216    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15217      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15218        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15219        break;
15220      }
15221    }
15222    return;
15223  case 'N':
15224    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15225      if (C->getZExtValue() <= 255) {
15226        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15227        break;
15228      }
15229    }
15230    return;
15231  case 'e': {
15232    // 32-bit signed value
15233    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15234      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15235                                           C->getSExtValue())) {
15236        // Widen to 64 bits here to get it sign extended.
15237        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15238        break;
15239      }
15240    // FIXME gcc accepts some relocatable values here too, but only in certain
15241    // memory models; it's complicated.
15242    }
15243    return;
15244  }
15245  case 'Z': {
15246    // 32-bit unsigned value
15247    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15248      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15249                                           C->getZExtValue())) {
15250        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15251        break;
15252      }
15253    }
15254    // FIXME gcc accepts some relocatable values here too, but only in certain
15255    // memory models; it's complicated.
15256    return;
15257  }
15258  case 'i': {
15259    // Literal immediates are always ok.
15260    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15261      // Widen to 64 bits here to get it sign extended.
15262      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15263      break;
15264    }
15265
15266    // In any sort of PIC mode addresses need to be computed at runtime by
15267    // adding in a register or some sort of table lookup.  These can't
15268    // be used as immediates.
15269    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15270      return;
15271
15272    // If we are in non-pic codegen mode, we allow the address of a global (with
15273    // an optional displacement) to be used with 'i'.
15274    GlobalAddressSDNode *GA = 0;
15275    int64_t Offset = 0;
15276
15277    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15278    while (1) {
15279      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15280        Offset += GA->getOffset();
15281        break;
15282      } else if (Op.getOpcode() == ISD::ADD) {
15283        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15284          Offset += C->getZExtValue();
15285          Op = Op.getOperand(0);
15286          continue;
15287        }
15288      } else if (Op.getOpcode() == ISD::SUB) {
15289        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15290          Offset += -C->getZExtValue();
15291          Op = Op.getOperand(0);
15292          continue;
15293        }
15294      }
15295
15296      // Otherwise, this isn't something we can handle, reject it.
15297      return;
15298    }
15299
15300    const GlobalValue *GV = GA->getGlobal();
15301    // If we require an extra load to get this address, as in PIC mode, we
15302    // can't accept it.
15303    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15304                                                        getTargetMachine())))
15305      return;
15306
15307    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15308                                        GA->getValueType(0), Offset);
15309    break;
15310  }
15311  }
15312
15313  if (Result.getNode()) {
15314    Ops.push_back(Result);
15315    return;
15316  }
15317  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15318}
15319
15320std::pair<unsigned, const TargetRegisterClass*>
15321X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15322                                                EVT VT) const {
15323  // First, see if this is a constraint that directly corresponds to an LLVM
15324  // register class.
15325  if (Constraint.size() == 1) {
15326    // GCC Constraint Letters
15327    switch (Constraint[0]) {
15328    default: break;
15329      // TODO: Slight differences here in allocation order and leaving
15330      // RIP in the class. Do they matter any more here than they do
15331      // in the normal allocation?
15332    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15333      if (Subtarget->is64Bit()) {
15334	if (VT == MVT::i32 || VT == MVT::f32)
15335	  return std::make_pair(0U, X86::GR32RegisterClass);
15336	else if (VT == MVT::i16)
15337	  return std::make_pair(0U, X86::GR16RegisterClass);
15338	else if (VT == MVT::i8 || VT == MVT::i1)
15339	  return std::make_pair(0U, X86::GR8RegisterClass);
15340	else if (VT == MVT::i64 || VT == MVT::f64)
15341	  return std::make_pair(0U, X86::GR64RegisterClass);
15342	break;
15343      }
15344      // 32-bit fallthrough
15345    case 'Q':   // Q_REGS
15346      if (VT == MVT::i32 || VT == MVT::f32)
15347	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15348      else if (VT == MVT::i16)
15349	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15350      else if (VT == MVT::i8 || VT == MVT::i1)
15351	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15352      else if (VT == MVT::i64)
15353	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15354      break;
15355    case 'r':   // GENERAL_REGS
15356    case 'l':   // INDEX_REGS
15357      if (VT == MVT::i8 || VT == MVT::i1)
15358        return std::make_pair(0U, X86::GR8RegisterClass);
15359      if (VT == MVT::i16)
15360        return std::make_pair(0U, X86::GR16RegisterClass);
15361      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15362        return std::make_pair(0U, X86::GR32RegisterClass);
15363      return std::make_pair(0U, X86::GR64RegisterClass);
15364    case 'R':   // LEGACY_REGS
15365      if (VT == MVT::i8 || VT == MVT::i1)
15366        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15367      if (VT == MVT::i16)
15368        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15369      if (VT == MVT::i32 || !Subtarget->is64Bit())
15370        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15371      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15372    case 'f':  // FP Stack registers.
15373      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15374      // value to the correct fpstack register class.
15375      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15376        return std::make_pair(0U, X86::RFP32RegisterClass);
15377      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15378        return std::make_pair(0U, X86::RFP64RegisterClass);
15379      return std::make_pair(0U, X86::RFP80RegisterClass);
15380    case 'y':   // MMX_REGS if MMX allowed.
15381      if (!Subtarget->hasMMX()) break;
15382      return std::make_pair(0U, X86::VR64RegisterClass);
15383    case 'Y':   // SSE_REGS if SSE2 allowed
15384      if (!Subtarget->hasSSE2()) break;
15385      // FALL THROUGH.
15386    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15387      if (!Subtarget->hasSSE1()) break;
15388
15389      switch (VT.getSimpleVT().SimpleTy) {
15390      default: break;
15391      // Scalar SSE types.
15392      case MVT::f32:
15393      case MVT::i32:
15394        return std::make_pair(0U, X86::FR32RegisterClass);
15395      case MVT::f64:
15396      case MVT::i64:
15397        return std::make_pair(0U, X86::FR64RegisterClass);
15398      // Vector types.
15399      case MVT::v16i8:
15400      case MVT::v8i16:
15401      case MVT::v4i32:
15402      case MVT::v2i64:
15403      case MVT::v4f32:
15404      case MVT::v2f64:
15405        return std::make_pair(0U, X86::VR128RegisterClass);
15406      // AVX types.
15407      case MVT::v32i8:
15408      case MVT::v16i16:
15409      case MVT::v8i32:
15410      case MVT::v4i64:
15411      case MVT::v8f32:
15412      case MVT::v4f64:
15413        return std::make_pair(0U, X86::VR256RegisterClass);
15414
15415      }
15416      break;
15417    }
15418  }
15419
15420  // Use the default implementation in TargetLowering to convert the register
15421  // constraint into a member of a register class.
15422  std::pair<unsigned, const TargetRegisterClass*> Res;
15423  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15424
15425  // Not found as a standard register?
15426  if (Res.second == 0) {
15427    // Map st(0) -> st(7) -> ST0
15428    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15429        tolower(Constraint[1]) == 's' &&
15430        tolower(Constraint[2]) == 't' &&
15431        Constraint[3] == '(' &&
15432        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15433        Constraint[5] == ')' &&
15434        Constraint[6] == '}') {
15435
15436      Res.first = X86::ST0+Constraint[4]-'0';
15437      Res.second = X86::RFP80RegisterClass;
15438      return Res;
15439    }
15440
15441    // GCC allows "st(0)" to be called just plain "st".
15442    if (StringRef("{st}").equals_lower(Constraint)) {
15443      Res.first = X86::ST0;
15444      Res.second = X86::RFP80RegisterClass;
15445      return Res;
15446    }
15447
15448    // flags -> EFLAGS
15449    if (StringRef("{flags}").equals_lower(Constraint)) {
15450      Res.first = X86::EFLAGS;
15451      Res.second = X86::CCRRegisterClass;
15452      return Res;
15453    }
15454
15455    // 'A' means EAX + EDX.
15456    if (Constraint == "A") {
15457      Res.first = X86::EAX;
15458      Res.second = X86::GR32_ADRegisterClass;
15459      return Res;
15460    }
15461    return Res;
15462  }
15463
15464  // Otherwise, check to see if this is a register class of the wrong value
15465  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15466  // turn into {ax},{dx}.
15467  if (Res.second->hasType(VT))
15468    return Res;   // Correct type already, nothing to do.
15469
15470  // All of the single-register GCC register classes map their values onto
15471  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15472  // really want an 8-bit or 32-bit register, map to the appropriate register
15473  // class and return the appropriate register.
15474  if (Res.second == X86::GR16RegisterClass) {
15475    if (VT == MVT::i8) {
15476      unsigned DestReg = 0;
15477      switch (Res.first) {
15478      default: break;
15479      case X86::AX: DestReg = X86::AL; break;
15480      case X86::DX: DestReg = X86::DL; break;
15481      case X86::CX: DestReg = X86::CL; break;
15482      case X86::BX: DestReg = X86::BL; break;
15483      }
15484      if (DestReg) {
15485        Res.first = DestReg;
15486        Res.second = X86::GR8RegisterClass;
15487      }
15488    } else if (VT == MVT::i32) {
15489      unsigned DestReg = 0;
15490      switch (Res.first) {
15491      default: break;
15492      case X86::AX: DestReg = X86::EAX; break;
15493      case X86::DX: DestReg = X86::EDX; break;
15494      case X86::CX: DestReg = X86::ECX; break;
15495      case X86::BX: DestReg = X86::EBX; break;
15496      case X86::SI: DestReg = X86::ESI; break;
15497      case X86::DI: DestReg = X86::EDI; break;
15498      case X86::BP: DestReg = X86::EBP; break;
15499      case X86::SP: DestReg = X86::ESP; break;
15500      }
15501      if (DestReg) {
15502        Res.first = DestReg;
15503        Res.second = X86::GR32RegisterClass;
15504      }
15505    } else if (VT == MVT::i64) {
15506      unsigned DestReg = 0;
15507      switch (Res.first) {
15508      default: break;
15509      case X86::AX: DestReg = X86::RAX; break;
15510      case X86::DX: DestReg = X86::RDX; break;
15511      case X86::CX: DestReg = X86::RCX; break;
15512      case X86::BX: DestReg = X86::RBX; break;
15513      case X86::SI: DestReg = X86::RSI; break;
15514      case X86::DI: DestReg = X86::RDI; break;
15515      case X86::BP: DestReg = X86::RBP; break;
15516      case X86::SP: DestReg = X86::RSP; break;
15517      }
15518      if (DestReg) {
15519        Res.first = DestReg;
15520        Res.second = X86::GR64RegisterClass;
15521      }
15522    }
15523  } else if (Res.second == X86::FR32RegisterClass ||
15524             Res.second == X86::FR64RegisterClass ||
15525             Res.second == X86::VR128RegisterClass) {
15526    // Handle references to XMM physical registers that got mapped into the
15527    // wrong class.  This can happen with constraints like {xmm0} where the
15528    // target independent register mapper will just pick the first match it can
15529    // find, ignoring the required type.
15530    if (VT == MVT::f32)
15531      Res.second = X86::FR32RegisterClass;
15532    else if (VT == MVT::f64)
15533      Res.second = X86::FR64RegisterClass;
15534    else if (X86::VR128RegisterClass->hasType(VT))
15535      Res.second = X86::VR128RegisterClass;
15536  }
15537
15538  return Res;
15539}
15540