X86ISelLowering.cpp revision b6ac30a15591a8dab3cff3f0891d7e1ca9476826
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "Utils/X86ShuffleDecode.h"
18#include "X86.h"
19#include "X86InstrBuilder.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/ADT/SmallSet.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/VariadicFunction.h"
26#include "llvm/CodeGen/IntrinsicLowering.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineInstrBuilder.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineModuleInfo.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/IR/CallingConv.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Function.h"
37#include "llvm/IR/GlobalAlias.h"
38#include "llvm/IR/GlobalVariable.h"
39#include "llvm/IR/Instructions.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/LLVMContext.h"
42#include "llvm/MC/MCAsmInfo.h"
43#include "llvm/MC/MCContext.h"
44#include "llvm/MC/MCExpr.h"
45#include "llvm/MC/MCSymbol.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61static SDValue ExtractSubVector(SDValue Vec, unsigned IdxVal,
62                                SelectionDAG &DAG, SDLoc dl,
63                                unsigned vectorWidth) {
64  assert((vectorWidth == 128 || vectorWidth == 256) &&
65         "Unsupported vector width");
66  EVT VT = Vec.getValueType();
67  EVT ElVT = VT.getVectorElementType();
68  unsigned Factor = VT.getSizeInBits()/vectorWidth;
69  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
70                                  VT.getVectorNumElements()/Factor);
71
72  // Extract from UNDEF is UNDEF.
73  if (Vec.getOpcode() == ISD::UNDEF)
74    return DAG.getUNDEF(ResultVT);
75
76  // Extract the relevant vectorWidth bits.  Generate an EXTRACT_SUBVECTOR
77  unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
78
79  // This is the index of the first element of the vectorWidth-bit chunk
80  // we want.
81  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / vectorWidth)
82                               * ElemsPerChunk);
83
84  // If the input is a buildvector just emit a smaller one.
85  if (Vec.getOpcode() == ISD::BUILD_VECTOR)
86    return DAG.getNode(ISD::BUILD_VECTOR, dl, ResultVT,
87                       Vec->op_begin()+NormalizedIdxVal, ElemsPerChunk);
88
89  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
90  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
91                               VecIdx);
92
93  return Result;
94
95}
96/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
97/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
98/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
99/// instructions or a simple subregister reference. Idx is an index in the
100/// 128 bits we want.  It need not be aligned to a 128-bit bounday.  That makes
101/// lowering EXTRACT_VECTOR_ELT operations easier.
102static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
103                                   SelectionDAG &DAG, SDLoc dl) {
104  assert((Vec.getValueType().is256BitVector() ||
105          Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
106  return ExtractSubVector(Vec, IdxVal, DAG, dl, 128);
107}
108
109/// Generate a DAG to grab 256-bits from a 512-bit vector.
110static SDValue Extract256BitVector(SDValue Vec, unsigned IdxVal,
111                                   SelectionDAG &DAG, SDLoc dl) {
112  assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
113  return ExtractSubVector(Vec, IdxVal, DAG, dl, 256);
114}
115
116static SDValue InsertSubVector(SDValue Result, SDValue Vec,
117                               unsigned IdxVal, SelectionDAG &DAG,
118                               SDLoc dl, unsigned vectorWidth) {
119  assert((vectorWidth == 128 || vectorWidth == 256) &&
120         "Unsupported vector width");
121  // Inserting UNDEF is Result
122  if (Vec.getOpcode() == ISD::UNDEF)
123    return Result;
124  EVT VT = Vec.getValueType();
125  EVT ElVT = VT.getVectorElementType();
126  EVT ResultVT = Result.getValueType();
127
128  // Insert the relevant vectorWidth bits.
129  unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
130
131  // This is the index of the first element of the vectorWidth-bit chunk
132  // we want.
133  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/vectorWidth)
134                               * ElemsPerChunk);
135
136  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
137  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
138                     VecIdx);
139}
140/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
141/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
142/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
143/// simple superregister reference.  Idx is an index in the 128 bits
144/// we want.  It need not be aligned to a 128-bit bounday.  That makes
145/// lowering INSERT_VECTOR_ELT operations easier.
146static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
147                                  unsigned IdxVal, SelectionDAG &DAG,
148                                  SDLoc dl) {
149  assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
150  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
151}
152
153static SDValue Insert256BitVector(SDValue Result, SDValue Vec,
154                                  unsigned IdxVal, SelectionDAG &DAG,
155                                  SDLoc dl) {
156  assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
157  return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
158}
159
160/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
161/// instructions. This is used because creating CONCAT_VECTOR nodes of
162/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
163/// large BUILD_VECTORS.
164static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
165                                   unsigned NumElems, SelectionDAG &DAG,
166                                   SDLoc dl) {
167  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
168  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
169}
170
171static SDValue Concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
172                                   unsigned NumElems, SelectionDAG &DAG,
173                                   SDLoc dl) {
174  SDValue V = Insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
175  return Insert256BitVector(V, V2, NumElems/2, DAG, dl);
176}
177
178static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
179  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
180  bool is64Bit = Subtarget->is64Bit();
181
182  if (Subtarget->isTargetEnvMacho()) {
183    if (is64Bit)
184      return new X86_64MachoTargetObjectFile();
185    return new TargetLoweringObjectFileMachO();
186  }
187
188  if (Subtarget->isTargetLinux())
189    return new X86LinuxTargetObjectFile();
190  if (Subtarget->isTargetELF())
191    return new TargetLoweringObjectFileELF();
192  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
193    return new TargetLoweringObjectFileCOFF();
194  llvm_unreachable("unknown subtarget type");
195}
196
197X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
198  : TargetLowering(TM, createTLOF(TM)) {
199  Subtarget = &TM.getSubtarget<X86Subtarget>();
200  X86ScalarSSEf64 = Subtarget->hasSSE2();
201  X86ScalarSSEf32 = Subtarget->hasSSE1();
202  TD = getDataLayout();
203
204  resetOperationActions();
205}
206
207void X86TargetLowering::resetOperationActions() {
208  const TargetMachine &TM = getTargetMachine();
209  static bool FirstTimeThrough = true;
210
211  // If none of the target options have changed, then we don't need to reset the
212  // operation actions.
213  if (!FirstTimeThrough && TO == TM.Options) return;
214
215  if (!FirstTimeThrough) {
216    // Reinitialize the actions.
217    initActions();
218    FirstTimeThrough = false;
219  }
220
221  TO = TM.Options;
222
223  // Set up the TargetLowering object.
224  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
225
226  // X86 is weird, it always uses i8 for shift amounts and setcc results.
227  setBooleanContents(ZeroOrOneBooleanContent);
228  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
229  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
230
231  // For 64-bit since we have so many registers use the ILP scheduler, for
232  // 32-bit code use the register pressure specific scheduling.
233  // For Atom, always use ILP scheduling.
234  if (Subtarget->isAtom())
235    setSchedulingPreference(Sched::ILP);
236  else if (Subtarget->is64Bit())
237    setSchedulingPreference(Sched::ILP);
238  else
239    setSchedulingPreference(Sched::RegPressure);
240  const X86RegisterInfo *RegInfo =
241    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
242  setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
243
244  // Bypass expensive divides on Atom when compiling with O2
245  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default) {
246    addBypassSlowDiv(32, 8);
247    if (Subtarget->is64Bit())
248      addBypassSlowDiv(64, 16);
249  }
250
251  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
252    // Setup Windows compiler runtime calls.
253    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
254    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
255    setLibcallName(RTLIB::SREM_I64, "_allrem");
256    setLibcallName(RTLIB::UREM_I64, "_aullrem");
257    setLibcallName(RTLIB::MUL_I64, "_allmul");
258    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
259    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
260    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
261    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
262    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
263
264    // The _ftol2 runtime function has an unusual calling conv, which
265    // is modeled by a special pseudo-instruction.
266    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
267    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
268    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
269    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
270  }
271
272  if (Subtarget->isTargetDarwin()) {
273    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
274    setUseUnderscoreSetJmp(false);
275    setUseUnderscoreLongJmp(false);
276  } else if (Subtarget->isTargetMingw()) {
277    // MS runtime is weird: it exports _setjmp, but longjmp!
278    setUseUnderscoreSetJmp(true);
279    setUseUnderscoreLongJmp(false);
280  } else {
281    setUseUnderscoreSetJmp(true);
282    setUseUnderscoreLongJmp(true);
283  }
284
285  // Set up the register classes.
286  addRegisterClass(MVT::i8, &X86::GR8RegClass);
287  addRegisterClass(MVT::i16, &X86::GR16RegClass);
288  addRegisterClass(MVT::i32, &X86::GR32RegClass);
289  if (Subtarget->is64Bit())
290    addRegisterClass(MVT::i64, &X86::GR64RegClass);
291
292  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
293
294  // We don't accept any truncstore of integer registers.
295  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
296  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
297  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
298  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
299  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
300  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
301
302  // SETOEQ and SETUNE require checking two conditions.
303  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
304  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
305  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
306  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
307  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
308  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
309
310  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
311  // operation.
312  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
313  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
314  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
315
316  if (Subtarget->is64Bit()) {
317    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
318    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
319  } else if (!TM.Options.UseSoftFloat) {
320    // We have an algorithm for SSE2->double, and we turn this into a
321    // 64-bit FILD followed by conditional FADD for other targets.
322    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
323    // We have an algorithm for SSE2, and we turn this into a 64-bit
324    // FILD for other targets.
325    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
326  }
327
328  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
329  // this operation.
330  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
331  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
332
333  if (!TM.Options.UseSoftFloat) {
334    // SSE has no i16 to fp conversion, only i32
335    if (X86ScalarSSEf32) {
336      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
337      // f32 and f64 cases are Legal, f80 case is not
338      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
339    } else {
340      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
341      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
342    }
343  } else {
344    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
345    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
346  }
347
348  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
349  // are Legal, f80 is custom lowered.
350  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
351  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
352
353  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
354  // this operation.
355  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
356  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
357
358  if (X86ScalarSSEf32) {
359    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
360    // f32 and f64 cases are Legal, f80 case is not
361    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
362  } else {
363    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
364    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
365  }
366
367  // Handle FP_TO_UINT by promoting the destination to a larger signed
368  // conversion.
369  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
370  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
371  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
372
373  if (Subtarget->is64Bit()) {
374    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
375    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
376  } else if (!TM.Options.UseSoftFloat) {
377    // Since AVX is a superset of SSE3, only check for SSE here.
378    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
379      // Expand FP_TO_UINT into a select.
380      // FIXME: We would like to use a Custom expander here eventually to do
381      // the optimal thing for SSE vs. the default expansion in the legalizer.
382      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
383    else
384      // With SSE3 we can use fisttpll to convert to a signed i64; without
385      // SSE, we're stuck with a fistpll.
386      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
387  }
388
389  if (isTargetFTOL()) {
390    // Use the _ftol2 runtime function, which has a pseudo-instruction
391    // to handle its weird calling convention.
392    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
393  }
394
395  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
396  if (!X86ScalarSSEf64) {
397    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
398    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
399    if (Subtarget->is64Bit()) {
400      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
401      // Without SSE, i64->f64 goes through memory.
402      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
403    }
404  }
405
406  // Scalar integer divide and remainder are lowered to use operations that
407  // produce two results, to match the available instructions. This exposes
408  // the two-result form to trivial CSE, which is able to combine x/y and x%y
409  // into a single instruction.
410  //
411  // Scalar integer multiply-high is also lowered to use two-result
412  // operations, to match the available instructions. However, plain multiply
413  // (low) operations are left as Legal, as there are single-result
414  // instructions for this in x86. Using the two-result multiply instructions
415  // when both high and low results are needed must be arranged by dagcombine.
416  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
417    MVT VT = IntVTs[i];
418    setOperationAction(ISD::MULHS, VT, Expand);
419    setOperationAction(ISD::MULHU, VT, Expand);
420    setOperationAction(ISD::SDIV, VT, Expand);
421    setOperationAction(ISD::UDIV, VT, Expand);
422    setOperationAction(ISD::SREM, VT, Expand);
423    setOperationAction(ISD::UREM, VT, Expand);
424
425    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
426    setOperationAction(ISD::ADDC, VT, Custom);
427    setOperationAction(ISD::ADDE, VT, Custom);
428    setOperationAction(ISD::SUBC, VT, Custom);
429    setOperationAction(ISD::SUBE, VT, Custom);
430  }
431
432  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
433  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
434  setOperationAction(ISD::BR_CC            , MVT::f32,   Expand);
435  setOperationAction(ISD::BR_CC            , MVT::f64,   Expand);
436  setOperationAction(ISD::BR_CC            , MVT::f80,   Expand);
437  setOperationAction(ISD::BR_CC            , MVT::i8,    Expand);
438  setOperationAction(ISD::BR_CC            , MVT::i16,   Expand);
439  setOperationAction(ISD::BR_CC            , MVT::i32,   Expand);
440  setOperationAction(ISD::BR_CC            , MVT::i64,   Expand);
441  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
442  if (Subtarget->is64Bit())
443    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
444  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
445  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
446  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
447  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
448  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
449  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
450  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
451  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
452
453  // Promote the i8 variants and force them on up to i32 which has a shorter
454  // encoding.
455  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
456  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
457  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
458  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
459  if (Subtarget->hasBMI()) {
460    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
461    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
462    if (Subtarget->is64Bit())
463      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
464  } else {
465    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
466    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
467    if (Subtarget->is64Bit())
468      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
469  }
470
471  if (Subtarget->hasLZCNT()) {
472    // When promoting the i8 variants, force them to i32 for a shorter
473    // encoding.
474    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
475    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
476    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
477    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
478    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
479    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
480    if (Subtarget->is64Bit())
481      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
482  } else {
483    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
484    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
485    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
486    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
487    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
488    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
489    if (Subtarget->is64Bit()) {
490      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
491      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
492    }
493  }
494
495  if (Subtarget->hasPOPCNT()) {
496    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
497  } else {
498    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
499    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
500    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
501    if (Subtarget->is64Bit())
502      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
503  }
504
505  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
506  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
507
508  // These should be promoted to a larger select which is supported.
509  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
510  // X86 wants to expand cmov itself.
511  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
512  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
513  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
514  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
515  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
516  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
517  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
518  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
519  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
520  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
521  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
522  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
523  if (Subtarget->is64Bit()) {
524    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
525    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
526  }
527  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
528  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
529  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
530  // support continuation, user-level threading, and etc.. As a result, no
531  // other SjLj exception interfaces are implemented and please don't build
532  // your own exception handling based on them.
533  // LLVM/Clang supports zero-cost DWARF exception handling.
534  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
535  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
536
537  // Darwin ABI issue.
538  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
539  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
540  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
541  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
542  if (Subtarget->is64Bit())
543    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
544  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
545  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
546  if (Subtarget->is64Bit()) {
547    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
548    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
549    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
550    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
551    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
552  }
553  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
554  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
555  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
556  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
557  if (Subtarget->is64Bit()) {
558    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
559    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
560    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
561  }
562
563  if (Subtarget->hasSSE1())
564    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
565
566  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
567
568  // Expand certain atomics
569  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
570    MVT VT = IntVTs[i];
571    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
572    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
573    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
574  }
575
576  if (!Subtarget->is64Bit()) {
577    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
578    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
579    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
580    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
581    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
582    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
583    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
584    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
585    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
586    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
587    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
588    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
589  }
590
591  if (Subtarget->hasCmpxchg16b()) {
592    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
593  }
594
595  // FIXME - use subtarget debug flags
596  if (!Subtarget->isTargetDarwin() &&
597      !Subtarget->isTargetELF() &&
598      !Subtarget->isTargetCygMing()) {
599    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
600  }
601
602  if (Subtarget->is64Bit()) {
603    setExceptionPointerRegister(X86::RAX);
604    setExceptionSelectorRegister(X86::RDX);
605  } else {
606    setExceptionPointerRegister(X86::EAX);
607    setExceptionSelectorRegister(X86::EDX);
608  }
609  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
610  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
611
612  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
613  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
614
615  setOperationAction(ISD::TRAP, MVT::Other, Legal);
616  setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
617
618  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
619  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
620  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
621  if (Subtarget->is64Bit() && !Subtarget->isTargetWin64()) {
622    // TargetInfo::X86_64ABIBuiltinVaList
623    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
624    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
625  } else {
626    // TargetInfo::CharPtrBuiltinVaList
627    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
628    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
629  }
630
631  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
632  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
633
634  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
635    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
636                       MVT::i64 : MVT::i32, Custom);
637  else if (TM.Options.EnableSegmentedStacks)
638    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
639                       MVT::i64 : MVT::i32, Custom);
640  else
641    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
642                       MVT::i64 : MVT::i32, Expand);
643
644  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
645    // f32 and f64 use SSE.
646    // Set up the FP register classes.
647    addRegisterClass(MVT::f32, &X86::FR32RegClass);
648    addRegisterClass(MVT::f64, &X86::FR64RegClass);
649
650    // Use ANDPD to simulate FABS.
651    setOperationAction(ISD::FABS , MVT::f64, Custom);
652    setOperationAction(ISD::FABS , MVT::f32, Custom);
653
654    // Use XORP to simulate FNEG.
655    setOperationAction(ISD::FNEG , MVT::f64, Custom);
656    setOperationAction(ISD::FNEG , MVT::f32, Custom);
657
658    // Use ANDPD and ORPD to simulate FCOPYSIGN.
659    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
660    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
661
662    // Lower this to FGETSIGNx86 plus an AND.
663    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
664    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
665
666    // We don't support sin/cos/fmod
667    setOperationAction(ISD::FSIN   , MVT::f64, Expand);
668    setOperationAction(ISD::FCOS   , MVT::f64, Expand);
669    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
670    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
671    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
672    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
673
674    // Expand FP immediates into loads from the stack, except for the special
675    // cases we handle.
676    addLegalFPImmediate(APFloat(+0.0)); // xorpd
677    addLegalFPImmediate(APFloat(+0.0f)); // xorps
678  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
679    // Use SSE for f32, x87 for f64.
680    // Set up the FP register classes.
681    addRegisterClass(MVT::f32, &X86::FR32RegClass);
682    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
683
684    // Use ANDPS to simulate FABS.
685    setOperationAction(ISD::FABS , MVT::f32, Custom);
686
687    // Use XORP to simulate FNEG.
688    setOperationAction(ISD::FNEG , MVT::f32, Custom);
689
690    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
691
692    // Use ANDPS and ORPS to simulate FCOPYSIGN.
693    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
694    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
695
696    // We don't support sin/cos/fmod
697    setOperationAction(ISD::FSIN   , MVT::f32, Expand);
698    setOperationAction(ISD::FCOS   , MVT::f32, Expand);
699    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
700
701    // Special cases we handle for FP constants.
702    addLegalFPImmediate(APFloat(+0.0f)); // xorps
703    addLegalFPImmediate(APFloat(+0.0)); // FLD0
704    addLegalFPImmediate(APFloat(+1.0)); // FLD1
705    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
706    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
707
708    if (!TM.Options.UnsafeFPMath) {
709      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
710      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
711      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
712    }
713  } else if (!TM.Options.UseSoftFloat) {
714    // f32 and f64 in x87.
715    // Set up the FP register classes.
716    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
717    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
718
719    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
720    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
721    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
722    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
723
724    if (!TM.Options.UnsafeFPMath) {
725      setOperationAction(ISD::FSIN   , MVT::f64, Expand);
726      setOperationAction(ISD::FSIN   , MVT::f32, Expand);
727      setOperationAction(ISD::FCOS   , MVT::f64, Expand);
728      setOperationAction(ISD::FCOS   , MVT::f32, Expand);
729      setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
730      setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
731    }
732    addLegalFPImmediate(APFloat(+0.0)); // FLD0
733    addLegalFPImmediate(APFloat(+1.0)); // FLD1
734    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
735    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
736    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
737    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
738    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
739    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
740  }
741
742  // We don't support FMA.
743  setOperationAction(ISD::FMA, MVT::f64, Expand);
744  setOperationAction(ISD::FMA, MVT::f32, Expand);
745
746  // Long double always uses X87.
747  if (!TM.Options.UseSoftFloat) {
748    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
749    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
750    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
751    {
752      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
753      addLegalFPImmediate(TmpFlt);  // FLD0
754      TmpFlt.changeSign();
755      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
756
757      bool ignored;
758      APFloat TmpFlt2(+1.0);
759      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
760                      &ignored);
761      addLegalFPImmediate(TmpFlt2);  // FLD1
762      TmpFlt2.changeSign();
763      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
764    }
765
766    if (!TM.Options.UnsafeFPMath) {
767      setOperationAction(ISD::FSIN   , MVT::f80, Expand);
768      setOperationAction(ISD::FCOS   , MVT::f80, Expand);
769      setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
770    }
771
772    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
773    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
774    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
775    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
776    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
777    setOperationAction(ISD::FMA, MVT::f80, Expand);
778  }
779
780  // Always use a library call for pow.
781  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
782  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
783  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
784
785  setOperationAction(ISD::FLOG, MVT::f80, Expand);
786  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
787  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
788  setOperationAction(ISD::FEXP, MVT::f80, Expand);
789  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
790
791  // First set operation action for all vector types to either promote
792  // (for widening) or expand (for scalarization). Then we will selectively
793  // turn on ones that can be effectively codegen'd.
794  for (int i = MVT::FIRST_VECTOR_VALUETYPE;
795           i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
796    MVT VT = (MVT::SimpleValueType)i;
797    setOperationAction(ISD::ADD , VT, Expand);
798    setOperationAction(ISD::SUB , VT, Expand);
799    setOperationAction(ISD::FADD, VT, Expand);
800    setOperationAction(ISD::FNEG, VT, Expand);
801    setOperationAction(ISD::FSUB, VT, Expand);
802    setOperationAction(ISD::MUL , VT, Expand);
803    setOperationAction(ISD::FMUL, VT, Expand);
804    setOperationAction(ISD::SDIV, VT, Expand);
805    setOperationAction(ISD::UDIV, VT, Expand);
806    setOperationAction(ISD::FDIV, VT, Expand);
807    setOperationAction(ISD::SREM, VT, Expand);
808    setOperationAction(ISD::UREM, VT, Expand);
809    setOperationAction(ISD::LOAD, VT, Expand);
810    setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
811    setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
812    setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
813    setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
814    setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
815    setOperationAction(ISD::FABS, VT, Expand);
816    setOperationAction(ISD::FSIN, VT, Expand);
817    setOperationAction(ISD::FSINCOS, VT, Expand);
818    setOperationAction(ISD::FCOS, VT, Expand);
819    setOperationAction(ISD::FSINCOS, VT, Expand);
820    setOperationAction(ISD::FREM, VT, Expand);
821    setOperationAction(ISD::FMA,  VT, Expand);
822    setOperationAction(ISD::FPOWI, VT, Expand);
823    setOperationAction(ISD::FSQRT, VT, Expand);
824    setOperationAction(ISD::FCOPYSIGN, VT, Expand);
825    setOperationAction(ISD::FFLOOR, VT, Expand);
826    setOperationAction(ISD::FCEIL, VT, Expand);
827    setOperationAction(ISD::FTRUNC, VT, Expand);
828    setOperationAction(ISD::FRINT, VT, Expand);
829    setOperationAction(ISD::FNEARBYINT, VT, Expand);
830    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
831    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
832    setOperationAction(ISD::SDIVREM, VT, Expand);
833    setOperationAction(ISD::UDIVREM, VT, Expand);
834    setOperationAction(ISD::FPOW, VT, Expand);
835    setOperationAction(ISD::CTPOP, VT, Expand);
836    setOperationAction(ISD::CTTZ, VT, Expand);
837    setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
838    setOperationAction(ISD::CTLZ, VT, Expand);
839    setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
840    setOperationAction(ISD::SHL, VT, Expand);
841    setOperationAction(ISD::SRA, VT, Expand);
842    setOperationAction(ISD::SRL, VT, Expand);
843    setOperationAction(ISD::ROTL, VT, Expand);
844    setOperationAction(ISD::ROTR, VT, Expand);
845    setOperationAction(ISD::BSWAP, VT, Expand);
846    setOperationAction(ISD::SETCC, VT, Expand);
847    setOperationAction(ISD::FLOG, VT, Expand);
848    setOperationAction(ISD::FLOG2, VT, Expand);
849    setOperationAction(ISD::FLOG10, VT, Expand);
850    setOperationAction(ISD::FEXP, VT, Expand);
851    setOperationAction(ISD::FEXP2, VT, Expand);
852    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
853    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
854    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
855    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
856    setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
857    setOperationAction(ISD::TRUNCATE, VT, Expand);
858    setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
859    setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
860    setOperationAction(ISD::ANY_EXTEND, VT, Expand);
861    setOperationAction(ISD::VSELECT, VT, Expand);
862    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
863             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
864      setTruncStoreAction(VT,
865                          (MVT::SimpleValueType)InnerVT, Expand);
866    setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
867    setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
868    setLoadExtAction(ISD::EXTLOAD, VT, Expand);
869  }
870
871  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
872  // with -msoft-float, disable use of MMX as well.
873  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
874    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
875    // No operations on x86mmx supported, everything uses intrinsics.
876  }
877
878  // MMX-sized vectors (other than x86mmx) are expected to be expanded
879  // into smaller operations.
880  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
881  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
882  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
883  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
884  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
885  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
886  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
887  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
888  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
889  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
890  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
891  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
892  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
893  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
894  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
895  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
896  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
897  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
898  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
899  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
900  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
901  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
902  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
903  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
904  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
905  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
906  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
907  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
908  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
909
910  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
911    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
912
913    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
914    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
915    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
916    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
917    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
918    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
919    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
920    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
921    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
922    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
923    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
924    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
925  }
926
927  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
928    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
929
930    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
931    // registers cannot be used even for integer operations.
932    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
933    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
934    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
935    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
936
937    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
938    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
939    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
940    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
941    setOperationAction(ISD::MUL,                MVT::v4i32, Custom);
942    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
943    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
944    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
945    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
946    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
947    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
948    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
949    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
950    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
951    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
952    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
953    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
954    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
955
956    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
957    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
958    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
959    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
960
961    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
962    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
963    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
966
967    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
968    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
969      MVT VT = (MVT::SimpleValueType)i;
970      // Do not attempt to custom lower non-power-of-2 vectors
971      if (!isPowerOf2_32(VT.getVectorNumElements()))
972        continue;
973      // Do not attempt to custom lower non-128-bit vectors
974      if (!VT.is128BitVector())
975        continue;
976      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
977      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
978      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
979    }
980
981    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
982    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
983    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
984    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
985    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
986    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
987
988    if (Subtarget->is64Bit()) {
989      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
990      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
991    }
992
993    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
994    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
995      MVT VT = (MVT::SimpleValueType)i;
996
997      // Do not attempt to promote non-128-bit vectors
998      if (!VT.is128BitVector())
999        continue;
1000
1001      setOperationAction(ISD::AND,    VT, Promote);
1002      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
1003      setOperationAction(ISD::OR,     VT, Promote);
1004      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
1005      setOperationAction(ISD::XOR,    VT, Promote);
1006      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
1007      setOperationAction(ISD::LOAD,   VT, Promote);
1008      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
1009      setOperationAction(ISD::SELECT, VT, Promote);
1010      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
1011    }
1012
1013    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1014
1015    // Custom lower v2i64 and v2f64 selects.
1016    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
1017    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
1018    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
1019    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
1020
1021    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
1022    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
1023
1024    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i8,  Custom);
1025    setOperationAction(ISD::UINT_TO_FP,         MVT::v4i16, Custom);
1026    // As there is no 64-bit GPR available, we need build a special custom
1027    // sequence to convert from v2i32 to v2f32.
1028    if (!Subtarget->is64Bit())
1029      setOperationAction(ISD::UINT_TO_FP,       MVT::v2f32, Custom);
1030
1031    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
1032    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
1033
1034    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
1035  }
1036
1037  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE41()) {
1038    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
1039    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
1040    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
1041    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
1042    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
1043    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
1044    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
1045    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
1046    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
1047    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
1048
1049    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
1050    setOperationAction(ISD::FCEIL,              MVT::v4f32, Legal);
1051    setOperationAction(ISD::FTRUNC,             MVT::v4f32, Legal);
1052    setOperationAction(ISD::FRINT,              MVT::v4f32, Legal);
1053    setOperationAction(ISD::FNEARBYINT,         MVT::v4f32, Legal);
1054    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
1055    setOperationAction(ISD::FCEIL,              MVT::v2f64, Legal);
1056    setOperationAction(ISD::FTRUNC,             MVT::v2f64, Legal);
1057    setOperationAction(ISD::FRINT,              MVT::v2f64, Legal);
1058    setOperationAction(ISD::FNEARBYINT,         MVT::v2f64, Legal);
1059
1060    // FIXME: Do we need to handle scalar-to-vector here?
1061    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
1062
1063    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
1064    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
1065    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
1066    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
1067    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
1068
1069    // i8 and i16 vectors are custom , because the source register and source
1070    // source memory operand types are not the same width.  f32 vectors are
1071    // custom since the immediate controlling the insert encodes additional
1072    // information.
1073    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
1074    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
1075    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
1076    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
1077
1078    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
1079    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
1080    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
1081    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
1082
1083    // FIXME: these should be Legal but thats only for the case where
1084    // the index is constant.  For now custom expand to deal with that.
1085    if (Subtarget->is64Bit()) {
1086      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
1087      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
1088    }
1089  }
1090
1091  if (Subtarget->hasSSE2()) {
1092    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1093    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1094
1095    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1096    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1097
1098    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1099    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1100
1101    // In the customized shift lowering, the legal cases in AVX2 will be
1102    // recognized.
1103    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
1104    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
1105
1106    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
1107    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
1108
1109    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
1110
1111    setOperationAction(ISD::SDIV,              MVT::v8i16, Custom);
1112    setOperationAction(ISD::SDIV,              MVT::v4i32, Custom);
1113  }
1114
1115  if (!TM.Options.UseSoftFloat && Subtarget->hasFp256()) {
1116    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1117    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1118    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1119    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1120    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1121    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1122
1123    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1124    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1125    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1126
1127    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1128    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1129    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1130    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1131    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1132    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1133    setOperationAction(ISD::FCEIL,              MVT::v8f32, Legal);
1134    setOperationAction(ISD::FTRUNC,             MVT::v8f32, Legal);
1135    setOperationAction(ISD::FRINT,              MVT::v8f32, Legal);
1136    setOperationAction(ISD::FNEARBYINT,         MVT::v8f32, Legal);
1137    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1138    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1139
1140    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1141    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1142    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1143    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1144    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1145    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1146    setOperationAction(ISD::FCEIL,              MVT::v4f64, Legal);
1147    setOperationAction(ISD::FTRUNC,             MVT::v4f64, Legal);
1148    setOperationAction(ISD::FRINT,              MVT::v4f64, Legal);
1149    setOperationAction(ISD::FNEARBYINT,         MVT::v4f64, Legal);
1150    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1151    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1152
1153    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1154    setOperationAction(ISD::TRUNCATE,           MVT::v4i32, Custom);
1155
1156    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1157
1158    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1159    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i16, Promote);
1160    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1161    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1162
1163    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i32, Custom);
1164    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i8,  Custom);
1165    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i16, Custom);
1166
1167    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1168
1169    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1170    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1171
1172    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1173    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1174
1175    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1176    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1177
1178    setOperationAction(ISD::SDIV,              MVT::v16i16, Custom);
1179
1180    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1181    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1182    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1183    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1184
1185    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1186    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1187    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1188
1189    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1190    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1191    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1192    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1193
1194    setOperationAction(ISD::SIGN_EXTEND,       MVT::v4i64, Custom);
1195    setOperationAction(ISD::SIGN_EXTEND,       MVT::v8i32, Custom);
1196    setOperationAction(ISD::ZERO_EXTEND,       MVT::v4i64, Custom);
1197    setOperationAction(ISD::ZERO_EXTEND,       MVT::v8i32, Custom);
1198    setOperationAction(ISD::ANY_EXTEND,        MVT::v4i64, Custom);
1199    setOperationAction(ISD::ANY_EXTEND,        MVT::v8i32, Custom);
1200
1201    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1202      setOperationAction(ISD::FMA,             MVT::v8f32, Legal);
1203      setOperationAction(ISD::FMA,             MVT::v4f64, Legal);
1204      setOperationAction(ISD::FMA,             MVT::v4f32, Legal);
1205      setOperationAction(ISD::FMA,             MVT::v2f64, Legal);
1206      setOperationAction(ISD::FMA,             MVT::f32, Legal);
1207      setOperationAction(ISD::FMA,             MVT::f64, Legal);
1208    }
1209
1210    if (Subtarget->hasInt256()) {
1211      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1212      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1213      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1214      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1215
1216      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1217      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1218      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1219      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1220
1221      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1222      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1223      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1224      // Don't lower v32i8 because there is no 128-bit byte mul
1225
1226      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1227
1228      setOperationAction(ISD::SDIV,            MVT::v8i32, Custom);
1229    } else {
1230      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1231      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1232      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1233      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1234
1235      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1236      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1237      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1238      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1239
1240      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1241      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1242      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1243      // Don't lower v32i8 because there is no 128-bit byte mul
1244    }
1245
1246    // In the customized shift lowering, the legal cases in AVX2 will be
1247    // recognized.
1248    setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1249    setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1250
1251    setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1252    setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1253
1254    setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1255
1256    // Custom lower several nodes for 256-bit types.
1257    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1258             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1259      MVT VT = (MVT::SimpleValueType)i;
1260
1261      // Extract subvector is special because the value type
1262      // (result) is 128-bit but the source is 256-bit wide.
1263      if (VT.is128BitVector())
1264        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1265
1266      // Do not attempt to custom lower other non-256-bit vectors
1267      if (!VT.is256BitVector())
1268        continue;
1269
1270      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1271      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1272      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1273      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1274      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1275      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1276      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1277    }
1278
1279    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1280    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1281      MVT VT = (MVT::SimpleValueType)i;
1282
1283      // Do not attempt to promote non-256-bit vectors
1284      if (!VT.is256BitVector())
1285        continue;
1286
1287      setOperationAction(ISD::AND,    VT, Promote);
1288      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1289      setOperationAction(ISD::OR,     VT, Promote);
1290      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1291      setOperationAction(ISD::XOR,    VT, Promote);
1292      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1293      setOperationAction(ISD::LOAD,   VT, Promote);
1294      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1295      setOperationAction(ISD::SELECT, VT, Promote);
1296      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1297    }
1298  }
1299
1300  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX512()) {
1301    addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
1302    addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
1303    addRegisterClass(MVT::v8i64,  &X86::VR512RegClass);
1304    addRegisterClass(MVT::v8f64,  &X86::VR512RegClass);
1305
1306    addRegisterClass(MVT::v8i1,   &X86::VK8RegClass);
1307    addRegisterClass(MVT::v16i1,  &X86::VK16RegClass);
1308
1309    setLoadExtAction(ISD::EXTLOAD,              MVT::v8f32, Legal);
1310    setOperationAction(ISD::LOAD,               MVT::v16f32, Legal);
1311    setOperationAction(ISD::LOAD,               MVT::v8f64, Legal);
1312    setOperationAction(ISD::LOAD,               MVT::v8i64, Legal);
1313    setOperationAction(ISD::LOAD,               MVT::v16i32, Legal);
1314    setOperationAction(ISD::LOAD,               MVT::v16i1, Legal);
1315
1316    setOperationAction(ISD::FADD,               MVT::v16f32, Legal);
1317    setOperationAction(ISD::FSUB,               MVT::v16f32, Legal);
1318    setOperationAction(ISD::FMUL,               MVT::v16f32, Legal);
1319    setOperationAction(ISD::FDIV,               MVT::v16f32, Legal);
1320    setOperationAction(ISD::FSQRT,              MVT::v16f32, Legal);
1321    setOperationAction(ISD::FNEG,               MVT::v16f32, Custom);
1322
1323    setOperationAction(ISD::FADD,               MVT::v8f64, Legal);
1324    setOperationAction(ISD::FSUB,               MVT::v8f64, Legal);
1325    setOperationAction(ISD::FMUL,               MVT::v8f64, Legal);
1326    setOperationAction(ISD::FDIV,               MVT::v8f64, Legal);
1327    setOperationAction(ISD::FSQRT,              MVT::v8f64, Legal);
1328    setOperationAction(ISD::FNEG,               MVT::v8f64, Custom);
1329    setOperationAction(ISD::FMA,                MVT::v8f64, Legal);
1330    setOperationAction(ISD::FMA,                MVT::v16f32, Legal);
1331    setOperationAction(ISD::SDIV,               MVT::v16i32, Custom);
1332
1333
1334    setOperationAction(ISD::FP_TO_SINT,         MVT::v16i32, Legal);
1335    setOperationAction(ISD::FP_TO_UINT,         MVT::v16i32, Legal);
1336    setOperationAction(ISD::FP_TO_UINT,         MVT::v8i32, Legal);
1337    setOperationAction(ISD::SINT_TO_FP,         MVT::v16i32, Legal);
1338    setOperationAction(ISD::UINT_TO_FP,         MVT::v16i32, Legal);
1339    setOperationAction(ISD::UINT_TO_FP,         MVT::v8i32, Legal);
1340    setOperationAction(ISD::FP_ROUND,           MVT::v8f32, Legal);
1341    setOperationAction(ISD::FP_EXTEND,          MVT::v8f32, Legal);
1342
1343    setOperationAction(ISD::TRUNCATE,           MVT::i1, Legal);
1344    setOperationAction(ISD::TRUNCATE,           MVT::v16i8, Custom);
1345    setOperationAction(ISD::TRUNCATE,           MVT::v8i32, Custom);
1346    setOperationAction(ISD::TRUNCATE,           MVT::v8i1, Custom);
1347    setOperationAction(ISD::TRUNCATE,           MVT::v16i1, Custom);
1348    setOperationAction(ISD::ZERO_EXTEND,        MVT::v16i32, Custom);
1349    setOperationAction(ISD::ZERO_EXTEND,        MVT::v8i64, Custom);
1350    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i32, Custom);
1351    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i64, Custom);
1352    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i8, Custom);
1353    setOperationAction(ISD::SIGN_EXTEND,        MVT::v8i16, Custom);
1354    setOperationAction(ISD::SIGN_EXTEND,        MVT::v16i16, Custom);
1355
1356    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f64,  Custom);
1357    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i64,  Custom);
1358    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16f32,  Custom);
1359    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i32,  Custom);
1360    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i1,    Custom);
1361
1362    setOperationAction(ISD::SETCC,              MVT::v16i1, Custom);
1363    setOperationAction(ISD::SETCC,              MVT::v8i1, Custom);
1364
1365    setOperationAction(ISD::MUL,              MVT::v8i64, Custom);
1366
1367    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i1, Custom);
1368    setOperationAction(ISD::BUILD_VECTOR,       MVT::v16i1, Custom);
1369    setOperationAction(ISD::SELECT,             MVT::v8f64, Custom);
1370    setOperationAction(ISD::SELECT,             MVT::v8i64, Custom);
1371    setOperationAction(ISD::SELECT,             MVT::v16f32, Custom);
1372
1373    setOperationAction(ISD::ADD,                MVT::v8i64, Legal);
1374    setOperationAction(ISD::ADD,                MVT::v16i32, Legal);
1375
1376    setOperationAction(ISD::SUB,                MVT::v8i64, Legal);
1377    setOperationAction(ISD::SUB,                MVT::v16i32, Legal);
1378
1379    setOperationAction(ISD::MUL,                MVT::v16i32, Legal);
1380
1381    setOperationAction(ISD::SRL,                MVT::v8i64, Custom);
1382    setOperationAction(ISD::SRL,                MVT::v16i32, Custom);
1383
1384    setOperationAction(ISD::SHL,                MVT::v8i64, Custom);
1385    setOperationAction(ISD::SHL,                MVT::v16i32, Custom);
1386
1387    setOperationAction(ISD::SRA,                MVT::v8i64, Custom);
1388    setOperationAction(ISD::SRA,                MVT::v16i32, Custom);
1389
1390    setOperationAction(ISD::AND,                MVT::v8i64, Legal);
1391    setOperationAction(ISD::OR,                 MVT::v8i64, Legal);
1392    setOperationAction(ISD::XOR,                MVT::v8i64, Legal);
1393    setOperationAction(ISD::AND,                MVT::v16i32, Legal);
1394    setOperationAction(ISD::OR,                 MVT::v16i32, Legal);
1395    setOperationAction(ISD::XOR,                MVT::v16i32, Legal);
1396
1397    // Custom lower several nodes.
1398    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1399             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1400      MVT VT = (MVT::SimpleValueType)i;
1401
1402      unsigned EltSize = VT.getVectorElementType().getSizeInBits();
1403      // Extract subvector is special because the value type
1404      // (result) is 256/128-bit but the source is 512-bit wide.
1405      if (VT.is128BitVector() || VT.is256BitVector())
1406        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1407
1408      if (VT.getVectorElementType() == MVT::i1)
1409        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
1410
1411      // Do not attempt to custom lower other non-512-bit vectors
1412      if (!VT.is512BitVector())
1413        continue;
1414
1415      if ( EltSize >= 32) {
1416        setOperationAction(ISD::VECTOR_SHUFFLE,      VT, Custom);
1417        setOperationAction(ISD::INSERT_VECTOR_ELT,   VT, Custom);
1418        setOperationAction(ISD::BUILD_VECTOR,        VT, Custom);
1419        setOperationAction(ISD::VSELECT,             VT, Legal);
1420        setOperationAction(ISD::EXTRACT_VECTOR_ELT,  VT, Custom);
1421        setOperationAction(ISD::SCALAR_TO_VECTOR,    VT, Custom);
1422        setOperationAction(ISD::INSERT_SUBVECTOR,    VT, Custom);
1423      }
1424    }
1425    for (int i = MVT::v32i8; i != MVT::v8i64; ++i) {
1426      MVT VT = (MVT::SimpleValueType)i;
1427
1428      // Do not attempt to promote non-256-bit vectors
1429      if (!VT.is512BitVector())
1430        continue;
1431
1432      setOperationAction(ISD::SELECT, VT, Promote);
1433      AddPromotedToType (ISD::SELECT, VT, MVT::v8i64);
1434    }
1435  }// has  AVX-512
1436
1437  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1438  // of this type with custom code.
1439  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1440           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1441    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1442                       Custom);
1443  }
1444
1445  // We want to custom lower some of our intrinsics.
1446  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1447  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1448
1449  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1450  // handle type legalization for these operations here.
1451  //
1452  // FIXME: We really should do custom legalization for addition and
1453  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1454  // than generic legalization for 64-bit multiplication-with-overflow, though.
1455  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1456    // Add/Sub/Mul with overflow operations are custom lowered.
1457    MVT VT = IntVTs[i];
1458    setOperationAction(ISD::SADDO, VT, Custom);
1459    setOperationAction(ISD::UADDO, VT, Custom);
1460    setOperationAction(ISD::SSUBO, VT, Custom);
1461    setOperationAction(ISD::USUBO, VT, Custom);
1462    setOperationAction(ISD::SMULO, VT, Custom);
1463    setOperationAction(ISD::UMULO, VT, Custom);
1464  }
1465
1466  // There are no 8-bit 3-address imul/mul instructions
1467  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1468  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1469
1470  if (!Subtarget->is64Bit()) {
1471    // These libcalls are not available in 32-bit.
1472    setLibcallName(RTLIB::SHL_I128, 0);
1473    setLibcallName(RTLIB::SRL_I128, 0);
1474    setLibcallName(RTLIB::SRA_I128, 0);
1475  }
1476
1477  // Combine sin / cos into one node or libcall if possible.
1478  if (Subtarget->hasSinCos()) {
1479    setLibcallName(RTLIB::SINCOS_F32, "sincosf");
1480    setLibcallName(RTLIB::SINCOS_F64, "sincos");
1481    if (Subtarget->isTargetDarwin()) {
1482      // For MacOSX, we don't want to the normal expansion of a libcall to
1483      // sincos. We want to issue a libcall to __sincos_stret to avoid memory
1484      // traffic.
1485      setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1486      setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1487    }
1488  }
1489
1490  // We have target-specific dag combine patterns for the following nodes:
1491  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1492  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1493  setTargetDAGCombine(ISD::VSELECT);
1494  setTargetDAGCombine(ISD::SELECT);
1495  setTargetDAGCombine(ISD::SHL);
1496  setTargetDAGCombine(ISD::SRA);
1497  setTargetDAGCombine(ISD::SRL);
1498  setTargetDAGCombine(ISD::OR);
1499  setTargetDAGCombine(ISD::AND);
1500  setTargetDAGCombine(ISD::ADD);
1501  setTargetDAGCombine(ISD::FADD);
1502  setTargetDAGCombine(ISD::FSUB);
1503  setTargetDAGCombine(ISD::FMA);
1504  setTargetDAGCombine(ISD::SUB);
1505  setTargetDAGCombine(ISD::LOAD);
1506  setTargetDAGCombine(ISD::STORE);
1507  setTargetDAGCombine(ISD::ZERO_EXTEND);
1508  setTargetDAGCombine(ISD::ANY_EXTEND);
1509  setTargetDAGCombine(ISD::SIGN_EXTEND);
1510  setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1511  setTargetDAGCombine(ISD::TRUNCATE);
1512  setTargetDAGCombine(ISD::SINT_TO_FP);
1513  setTargetDAGCombine(ISD::SETCC);
1514  if (Subtarget->is64Bit())
1515    setTargetDAGCombine(ISD::MUL);
1516  setTargetDAGCombine(ISD::XOR);
1517
1518  computeRegisterProperties();
1519
1520  // On Darwin, -Os means optimize for size without hurting performance,
1521  // do not reduce the limit.
1522  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1523  MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1524  MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1525  MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1526  MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1527  MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1528  setPrefLoopAlignment(4); // 2^4 bytes.
1529
1530  // Predictable cmov don't hurt on atom because it's in-order.
1531  PredictableSelectIsExpensive = !Subtarget->isAtom();
1532
1533  setPrefFunctionAlignment(4); // 2^4 bytes.
1534}
1535
1536EVT X86TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
1537  if (!VT.isVector()) return MVT::i8;
1538  return VT.changeVectorElementTypeToInteger();
1539}
1540
1541/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1542/// the desired ByVal argument alignment.
1543static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1544  if (MaxAlign == 16)
1545    return;
1546  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1547    if (VTy->getBitWidth() == 128)
1548      MaxAlign = 16;
1549  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1550    unsigned EltAlign = 0;
1551    getMaxByValAlign(ATy->getElementType(), EltAlign);
1552    if (EltAlign > MaxAlign)
1553      MaxAlign = EltAlign;
1554  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1555    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1556      unsigned EltAlign = 0;
1557      getMaxByValAlign(STy->getElementType(i), EltAlign);
1558      if (EltAlign > MaxAlign)
1559        MaxAlign = EltAlign;
1560      if (MaxAlign == 16)
1561        break;
1562    }
1563  }
1564}
1565
1566/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1567/// function arguments in the caller parameter area. For X86, aggregates
1568/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1569/// are at 4-byte boundaries.
1570unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1571  if (Subtarget->is64Bit()) {
1572    // Max of 8 and alignment of type.
1573    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1574    if (TyAlign > 8)
1575      return TyAlign;
1576    return 8;
1577  }
1578
1579  unsigned Align = 4;
1580  if (Subtarget->hasSSE1())
1581    getMaxByValAlign(Ty, Align);
1582  return Align;
1583}
1584
1585/// getOptimalMemOpType - Returns the target specific optimal type for load
1586/// and store operations as a result of memset, memcpy, and memmove
1587/// lowering. If DstAlign is zero that means it's safe to destination
1588/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1589/// means there isn't a need to check it against alignment requirement,
1590/// probably because the source does not need to be loaded. If 'IsMemset' is
1591/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
1592/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
1593/// source is constant so it does not need to be loaded.
1594/// It returns EVT::Other if the type should be determined using generic
1595/// target-independent logic.
1596EVT
1597X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1598                                       unsigned DstAlign, unsigned SrcAlign,
1599                                       bool IsMemset, bool ZeroMemset,
1600                                       bool MemcpyStrSrc,
1601                                       MachineFunction &MF) const {
1602  const Function *F = MF.getFunction();
1603  if ((!IsMemset || ZeroMemset) &&
1604      !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
1605                                       Attribute::NoImplicitFloat)) {
1606    if (Size >= 16 &&
1607        (Subtarget->isUnalignedMemAccessFast() ||
1608         ((DstAlign == 0 || DstAlign >= 16) &&
1609          (SrcAlign == 0 || SrcAlign >= 16)))) {
1610      if (Size >= 32) {
1611        if (Subtarget->hasInt256())
1612          return MVT::v8i32;
1613        if (Subtarget->hasFp256())
1614          return MVT::v8f32;
1615      }
1616      if (Subtarget->hasSSE2())
1617        return MVT::v4i32;
1618      if (Subtarget->hasSSE1())
1619        return MVT::v4f32;
1620    } else if (!MemcpyStrSrc && Size >= 8 &&
1621               !Subtarget->is64Bit() &&
1622               Subtarget->hasSSE2()) {
1623      // Do not use f64 to lower memcpy if source is string constant. It's
1624      // better to use i32 to avoid the loads.
1625      return MVT::f64;
1626    }
1627  }
1628  if (Subtarget->is64Bit() && Size >= 8)
1629    return MVT::i64;
1630  return MVT::i32;
1631}
1632
1633bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
1634  if (VT == MVT::f32)
1635    return X86ScalarSSEf32;
1636  else if (VT == MVT::f64)
1637    return X86ScalarSSEf64;
1638  return true;
1639}
1640
1641bool
1642X86TargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
1643  if (Fast)
1644    *Fast = Subtarget->isUnalignedMemAccessFast();
1645  return true;
1646}
1647
1648/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1649/// current function.  The returned value is a member of the
1650/// MachineJumpTableInfo::JTEntryKind enum.
1651unsigned X86TargetLowering::getJumpTableEncoding() const {
1652  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1653  // symbol.
1654  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1655      Subtarget->isPICStyleGOT())
1656    return MachineJumpTableInfo::EK_Custom32;
1657
1658  // Otherwise, use the normal jump table encoding heuristics.
1659  return TargetLowering::getJumpTableEncoding();
1660}
1661
1662const MCExpr *
1663X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1664                                             const MachineBasicBlock *MBB,
1665                                             unsigned uid,MCContext &Ctx) const{
1666  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1667         Subtarget->isPICStyleGOT());
1668  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1669  // entries.
1670  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1671                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1672}
1673
1674/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1675/// jumptable.
1676SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1677                                                    SelectionDAG &DAG) const {
1678  if (!Subtarget->is64Bit())
1679    // This doesn't have SDLoc associated with it, but is not really the
1680    // same as a Register.
1681    return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy());
1682  return Table;
1683}
1684
1685/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1686/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1687/// MCExpr.
1688const MCExpr *X86TargetLowering::
1689getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1690                             MCContext &Ctx) const {
1691  // X86-64 uses RIP relative addressing based on the jump table label.
1692  if (Subtarget->isPICStyleRIPRel())
1693    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1694
1695  // Otherwise, the reference is relative to the PIC base.
1696  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1697}
1698
1699// FIXME: Why this routine is here? Move to RegInfo!
1700std::pair<const TargetRegisterClass*, uint8_t>
1701X86TargetLowering::findRepresentativeClass(MVT VT) const{
1702  const TargetRegisterClass *RRC = 0;
1703  uint8_t Cost = 1;
1704  switch (VT.SimpleTy) {
1705  default:
1706    return TargetLowering::findRepresentativeClass(VT);
1707  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1708    RRC = Subtarget->is64Bit() ?
1709      (const TargetRegisterClass*)&X86::GR64RegClass :
1710      (const TargetRegisterClass*)&X86::GR32RegClass;
1711    break;
1712  case MVT::x86mmx:
1713    RRC = &X86::VR64RegClass;
1714    break;
1715  case MVT::f32: case MVT::f64:
1716  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1717  case MVT::v4f32: case MVT::v2f64:
1718  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1719  case MVT::v4f64:
1720    RRC = &X86::VR128RegClass;
1721    break;
1722  }
1723  return std::make_pair(RRC, Cost);
1724}
1725
1726bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1727                                               unsigned &Offset) const {
1728  if (!Subtarget->isTargetLinux())
1729    return false;
1730
1731  if (Subtarget->is64Bit()) {
1732    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1733    Offset = 0x28;
1734    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1735      AddressSpace = 256;
1736    else
1737      AddressSpace = 257;
1738  } else {
1739    // %gs:0x14 on i386
1740    Offset = 0x14;
1741    AddressSpace = 256;
1742  }
1743  return true;
1744}
1745
1746//===----------------------------------------------------------------------===//
1747//               Return Value Calling Convention Implementation
1748//===----------------------------------------------------------------------===//
1749
1750#include "X86GenCallingConv.inc"
1751
1752bool
1753X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1754                                  MachineFunction &MF, bool isVarArg,
1755                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1756                        LLVMContext &Context) const {
1757  SmallVector<CCValAssign, 16> RVLocs;
1758  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1759                 RVLocs, Context);
1760  return CCInfo.CheckReturn(Outs, RetCC_X86);
1761}
1762
1763SDValue
1764X86TargetLowering::LowerReturn(SDValue Chain,
1765                               CallingConv::ID CallConv, bool isVarArg,
1766                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1767                               const SmallVectorImpl<SDValue> &OutVals,
1768                               SDLoc dl, SelectionDAG &DAG) const {
1769  MachineFunction &MF = DAG.getMachineFunction();
1770  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1771
1772  SmallVector<CCValAssign, 16> RVLocs;
1773  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1774                 RVLocs, *DAG.getContext());
1775  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1776
1777  SDValue Flag;
1778  SmallVector<SDValue, 6> RetOps;
1779  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1780  // Operand #1 = Bytes To Pop
1781  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1782                   MVT::i16));
1783
1784  // Copy the result values into the output registers.
1785  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1786    CCValAssign &VA = RVLocs[i];
1787    assert(VA.isRegLoc() && "Can only return in registers!");
1788    SDValue ValToCopy = OutVals[i];
1789    EVT ValVT = ValToCopy.getValueType();
1790
1791    // Promote values to the appropriate types
1792    if (VA.getLocInfo() == CCValAssign::SExt)
1793      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1794    else if (VA.getLocInfo() == CCValAssign::ZExt)
1795      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1796    else if (VA.getLocInfo() == CCValAssign::AExt)
1797      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1798    else if (VA.getLocInfo() == CCValAssign::BCvt)
1799      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1800
1801    // If this is x86-64, and we disabled SSE, we can't return FP values,
1802    // or SSE or MMX vectors.
1803    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1804         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1805          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1806      report_fatal_error("SSE register return with SSE disabled");
1807    }
1808    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1809    // llvm-gcc has never done it right and no one has noticed, so this
1810    // should be OK for now.
1811    if (ValVT == MVT::f64 &&
1812        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1813      report_fatal_error("SSE2 register return with SSE2 disabled");
1814
1815    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1816    // the RET instruction and handled by the FP Stackifier.
1817    if (VA.getLocReg() == X86::ST0 ||
1818        VA.getLocReg() == X86::ST1) {
1819      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1820      // change the value to the FP stack register class.
1821      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1822        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1823      RetOps.push_back(ValToCopy);
1824      // Don't emit a copytoreg.
1825      continue;
1826    }
1827
1828    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1829    // which is returned in RAX / RDX.
1830    if (Subtarget->is64Bit()) {
1831      if (ValVT == MVT::x86mmx) {
1832        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1833          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1834          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1835                                  ValToCopy);
1836          // If we don't have SSE2 available, convert to v4f32 so the generated
1837          // register is legal.
1838          if (!Subtarget->hasSSE2())
1839            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1840        }
1841      }
1842    }
1843
1844    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1845    Flag = Chain.getValue(1);
1846    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1847  }
1848
1849  // The x86-64 ABIs require that for returning structs by value we copy
1850  // the sret argument into %rax/%eax (depending on ABI) for the return.
1851  // Win32 requires us to put the sret argument to %eax as well.
1852  // We saved the argument into a virtual register in the entry block,
1853  // so now we copy the value out and into %rax/%eax.
1854  if (DAG.getMachineFunction().getFunction()->hasStructRetAttr() &&
1855      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
1856    MachineFunction &MF = DAG.getMachineFunction();
1857    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1858    unsigned Reg = FuncInfo->getSRetReturnReg();
1859    assert(Reg &&
1860           "SRetReturnReg should have been set in LowerFormalArguments().");
1861    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1862
1863    unsigned RetValReg
1864        = (Subtarget->is64Bit() && !Subtarget->isTarget64BitILP32()) ?
1865          X86::RAX : X86::EAX;
1866    Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
1867    Flag = Chain.getValue(1);
1868
1869    // RAX/EAX now acts like a return value.
1870    RetOps.push_back(DAG.getRegister(RetValReg, getPointerTy()));
1871  }
1872
1873  RetOps[0] = Chain;  // Update chain.
1874
1875  // Add the flag if we have it.
1876  if (Flag.getNode())
1877    RetOps.push_back(Flag);
1878
1879  return DAG.getNode(X86ISD::RET_FLAG, dl,
1880                     MVT::Other, &RetOps[0], RetOps.size());
1881}
1882
1883bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1884  if (N->getNumValues() != 1)
1885    return false;
1886  if (!N->hasNUsesOfValue(1, 0))
1887    return false;
1888
1889  SDValue TCChain = Chain;
1890  SDNode *Copy = *N->use_begin();
1891  if (Copy->getOpcode() == ISD::CopyToReg) {
1892    // If the copy has a glue operand, we conservatively assume it isn't safe to
1893    // perform a tail call.
1894    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1895      return false;
1896    TCChain = Copy->getOperand(0);
1897  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1898    return false;
1899
1900  bool HasRet = false;
1901  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1902       UI != UE; ++UI) {
1903    if (UI->getOpcode() != X86ISD::RET_FLAG)
1904      return false;
1905    HasRet = true;
1906  }
1907
1908  if (!HasRet)
1909    return false;
1910
1911  Chain = TCChain;
1912  return true;
1913}
1914
1915MVT
1916X86TargetLowering::getTypeForExtArgOrReturn(MVT VT,
1917                                            ISD::NodeType ExtendKind) const {
1918  MVT ReturnMVT;
1919  // TODO: Is this also valid on 32-bit?
1920  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1921    ReturnMVT = MVT::i8;
1922  else
1923    ReturnMVT = MVT::i32;
1924
1925  MVT MinVT = getRegisterType(ReturnMVT);
1926  return VT.bitsLT(MinVT) ? MinVT : VT;
1927}
1928
1929/// LowerCallResult - Lower the result values of a call into the
1930/// appropriate copies out of appropriate physical registers.
1931///
1932SDValue
1933X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1934                                   CallingConv::ID CallConv, bool isVarArg,
1935                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1936                                   SDLoc dl, SelectionDAG &DAG,
1937                                   SmallVectorImpl<SDValue> &InVals) const {
1938
1939  // Assign locations to each value returned by this call.
1940  SmallVector<CCValAssign, 16> RVLocs;
1941  bool Is64Bit = Subtarget->is64Bit();
1942  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1943                 getTargetMachine(), RVLocs, *DAG.getContext());
1944  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1945
1946  // Copy all of the result registers out of their specified physreg.
1947  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1948    CCValAssign &VA = RVLocs[i];
1949    EVT CopyVT = VA.getValVT();
1950
1951    // If this is x86-64, and we disabled SSE, we can't return FP values
1952    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1953        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1954      report_fatal_error("SSE register return with SSE disabled");
1955    }
1956
1957    SDValue Val;
1958
1959    // If this is a call to a function that returns an fp value on the floating
1960    // point stack, we must guarantee the value is popped from the stack, so
1961    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1962    // if the return value is not used. We use the FpPOP_RETVAL instruction
1963    // instead.
1964    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1965      // If we prefer to use the value in xmm registers, copy it out as f80 and
1966      // use a truncate to move it from fp stack reg to xmm reg.
1967      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1968      SDValue Ops[] = { Chain, InFlag };
1969      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1970                                         MVT::Other, MVT::Glue, Ops), 1);
1971      Val = Chain.getValue(0);
1972
1973      // Round the f80 to the right size, which also moves it to the appropriate
1974      // xmm register.
1975      if (CopyVT != VA.getValVT())
1976        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1977                          // This truncation won't change the value.
1978                          DAG.getIntPtrConstant(1));
1979    } else {
1980      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1981                                 CopyVT, InFlag).getValue(1);
1982      Val = Chain.getValue(0);
1983    }
1984    InFlag = Chain.getValue(2);
1985    InVals.push_back(Val);
1986  }
1987
1988  return Chain;
1989}
1990
1991//===----------------------------------------------------------------------===//
1992//                C & StdCall & Fast Calling Convention implementation
1993//===----------------------------------------------------------------------===//
1994//  StdCall calling convention seems to be standard for many Windows' API
1995//  routines and around. It differs from C calling convention just a little:
1996//  callee should clean up the stack, not caller. Symbols should be also
1997//  decorated in some fancy way :) It doesn't support any vector arguments.
1998//  For info on fast calling convention see Fast Calling Convention (tail call)
1999//  implementation LowerX86_32FastCCCallTo.
2000
2001/// CallIsStructReturn - Determines whether a call uses struct return
2002/// semantics.
2003enum StructReturnType {
2004  NotStructReturn,
2005  RegStructReturn,
2006  StackStructReturn
2007};
2008static StructReturnType
2009callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
2010  if (Outs.empty())
2011    return NotStructReturn;
2012
2013  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
2014  if (!Flags.isSRet())
2015    return NotStructReturn;
2016  if (Flags.isInReg())
2017    return RegStructReturn;
2018  return StackStructReturn;
2019}
2020
2021/// ArgsAreStructReturn - Determines whether a function uses struct
2022/// return semantics.
2023static StructReturnType
2024argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
2025  if (Ins.empty())
2026    return NotStructReturn;
2027
2028  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
2029  if (!Flags.isSRet())
2030    return NotStructReturn;
2031  if (Flags.isInReg())
2032    return RegStructReturn;
2033  return StackStructReturn;
2034}
2035
2036/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2037/// by "Src" to address "Dst" with size and alignment information specified by
2038/// the specific parameter attribute. The copy will be passed as a byval
2039/// function parameter.
2040static SDValue
2041CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2042                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2043                          SDLoc dl) {
2044  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2045
2046  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2047                       /*isVolatile*/false, /*AlwaysInline=*/true,
2048                       MachinePointerInfo(), MachinePointerInfo());
2049}
2050
2051/// IsTailCallConvention - Return true if the calling convention is one that
2052/// supports tail call optimization.
2053static bool IsTailCallConvention(CallingConv::ID CC) {
2054  return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2055          CC == CallingConv::HiPE);
2056}
2057
2058/// \brief Return true if the calling convention is a C calling convention.
2059static bool IsCCallConvention(CallingConv::ID CC) {
2060  return (CC == CallingConv::C || CC == CallingConv::X86_64_Win64 ||
2061          CC == CallingConv::X86_64_SysV);
2062}
2063
2064bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2065  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
2066    return false;
2067
2068  CallSite CS(CI);
2069  CallingConv::ID CalleeCC = CS.getCallingConv();
2070  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
2071    return false;
2072
2073  return true;
2074}
2075
2076/// FuncIsMadeTailCallSafe - Return true if the function is being made into
2077/// a tailcall target by changing its ABI.
2078static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
2079                                   bool GuaranteedTailCallOpt) {
2080  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
2081}
2082
2083SDValue
2084X86TargetLowering::LowerMemArgument(SDValue Chain,
2085                                    CallingConv::ID CallConv,
2086                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2087                                    SDLoc dl, SelectionDAG &DAG,
2088                                    const CCValAssign &VA,
2089                                    MachineFrameInfo *MFI,
2090                                    unsigned i) const {
2091  // Create the nodes corresponding to a load from this parameter slot.
2092  ISD::ArgFlagsTy Flags = Ins[i].Flags;
2093  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
2094                              getTargetMachine().Options.GuaranteedTailCallOpt);
2095  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
2096  EVT ValVT;
2097
2098  // If value is passed by pointer we have address passed instead of the value
2099  // itself.
2100  if (VA.getLocInfo() == CCValAssign::Indirect)
2101    ValVT = VA.getLocVT();
2102  else
2103    ValVT = VA.getValVT();
2104
2105  // FIXME: For now, all byval parameter objects are marked mutable. This can be
2106  // changed with more analysis.
2107  // In case of tail call optimization mark all arguments mutable. Since they
2108  // could be overwritten by lowering of arguments in case of a tail call.
2109  if (Flags.isByVal()) {
2110    unsigned Bytes = Flags.getByValSize();
2111    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
2112    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
2113    return DAG.getFrameIndex(FI, getPointerTy());
2114  } else {
2115    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
2116                                    VA.getLocMemOffset(), isImmutable);
2117    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
2118    return DAG.getLoad(ValVT, dl, Chain, FIN,
2119                       MachinePointerInfo::getFixedStack(FI),
2120                       false, false, false, 0);
2121  }
2122}
2123
2124SDValue
2125X86TargetLowering::LowerFormalArguments(SDValue Chain,
2126                                        CallingConv::ID CallConv,
2127                                        bool isVarArg,
2128                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2129                                        SDLoc dl,
2130                                        SelectionDAG &DAG,
2131                                        SmallVectorImpl<SDValue> &InVals)
2132                                          const {
2133  MachineFunction &MF = DAG.getMachineFunction();
2134  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2135
2136  const Function* Fn = MF.getFunction();
2137  if (Fn->hasExternalLinkage() &&
2138      Subtarget->isTargetCygMing() &&
2139      Fn->getName() == "main")
2140    FuncInfo->setForceFramePointer(true);
2141
2142  MachineFrameInfo *MFI = MF.getFrameInfo();
2143  bool Is64Bit = Subtarget->is64Bit();
2144  bool IsWindows = Subtarget->isTargetWindows();
2145  bool IsWin64 = Subtarget->isCallingConvWin64(CallConv);
2146
2147  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2148         "Var args not supported with calling convention fastcc, ghc or hipe");
2149
2150  // Assign locations to all of the incoming arguments.
2151  SmallVector<CCValAssign, 16> ArgLocs;
2152  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2153                 ArgLocs, *DAG.getContext());
2154
2155  // Allocate shadow area for Win64
2156  if (IsWin64)
2157    CCInfo.AllocateStack(32, 8);
2158
2159  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
2160
2161  unsigned LastVal = ~0U;
2162  SDValue ArgValue;
2163  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2164    CCValAssign &VA = ArgLocs[i];
2165    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
2166    // places.
2167    assert(VA.getValNo() != LastVal &&
2168           "Don't support value assigned to multiple locs yet");
2169    (void)LastVal;
2170    LastVal = VA.getValNo();
2171
2172    if (VA.isRegLoc()) {
2173      EVT RegVT = VA.getLocVT();
2174      const TargetRegisterClass *RC;
2175      if (RegVT == MVT::i32)
2176        RC = &X86::GR32RegClass;
2177      else if (Is64Bit && RegVT == MVT::i64)
2178        RC = &X86::GR64RegClass;
2179      else if (RegVT == MVT::f32)
2180        RC = &X86::FR32RegClass;
2181      else if (RegVT == MVT::f64)
2182        RC = &X86::FR64RegClass;
2183      else if (RegVT.is512BitVector())
2184        RC = &X86::VR512RegClass;
2185      else if (RegVT.is256BitVector())
2186        RC = &X86::VR256RegClass;
2187      else if (RegVT.is128BitVector())
2188        RC = &X86::VR128RegClass;
2189      else if (RegVT == MVT::x86mmx)
2190        RC = &X86::VR64RegClass;
2191      else if (RegVT == MVT::v8i1)
2192        RC = &X86::VK8RegClass;
2193      else if (RegVT == MVT::v16i1)
2194        RC = &X86::VK16RegClass;
2195      else
2196        llvm_unreachable("Unknown argument type!");
2197
2198      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2199      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
2200
2201      // If this is an 8 or 16-bit value, it is really passed promoted to 32
2202      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
2203      // right size.
2204      if (VA.getLocInfo() == CCValAssign::SExt)
2205        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
2206                               DAG.getValueType(VA.getValVT()));
2207      else if (VA.getLocInfo() == CCValAssign::ZExt)
2208        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
2209                               DAG.getValueType(VA.getValVT()));
2210      else if (VA.getLocInfo() == CCValAssign::BCvt)
2211        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
2212
2213      if (VA.isExtInLoc()) {
2214        // Handle MMX values passed in XMM regs.
2215        if (RegVT.isVector())
2216          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
2217        else
2218          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
2219      }
2220    } else {
2221      assert(VA.isMemLoc());
2222      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
2223    }
2224
2225    // If value is passed via pointer - do a load.
2226    if (VA.getLocInfo() == CCValAssign::Indirect)
2227      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
2228                             MachinePointerInfo(), false, false, false, 0);
2229
2230    InVals.push_back(ArgValue);
2231  }
2232
2233  // The x86-64 ABIs require that for returning structs by value we copy
2234  // the sret argument into %rax/%eax (depending on ABI) for the return.
2235  // Win32 requires us to put the sret argument to %eax as well.
2236  // Save the argument into a virtual register so that we can access it
2237  // from the return points.
2238  if (MF.getFunction()->hasStructRetAttr() &&
2239      (Subtarget->is64Bit() || Subtarget->isTargetWindows())) {
2240    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2241    unsigned Reg = FuncInfo->getSRetReturnReg();
2242    if (!Reg) {
2243      MVT PtrTy = getPointerTy();
2244      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
2245      FuncInfo->setSRetReturnReg(Reg);
2246    }
2247    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
2248    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
2249  }
2250
2251  unsigned StackSize = CCInfo.getNextStackOffset();
2252  // Align stack specially for tail calls.
2253  if (FuncIsMadeTailCallSafe(CallConv,
2254                             MF.getTarget().Options.GuaranteedTailCallOpt))
2255    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
2256
2257  // If the function takes variable number of arguments, make a frame index for
2258  // the start of the first vararg value... for expansion of llvm.va_start.
2259  if (isVarArg) {
2260    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
2261                    CallConv != CallingConv::X86_ThisCall)) {
2262      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
2263    }
2264    if (Is64Bit) {
2265      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
2266
2267      // FIXME: We should really autogenerate these arrays
2268      static const uint16_t GPR64ArgRegsWin64[] = {
2269        X86::RCX, X86::RDX, X86::R8,  X86::R9
2270      };
2271      static const uint16_t GPR64ArgRegs64Bit[] = {
2272        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2273      };
2274      static const uint16_t XMMArgRegs64Bit[] = {
2275        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2276        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2277      };
2278      const uint16_t *GPR64ArgRegs;
2279      unsigned NumXMMRegs = 0;
2280
2281      if (IsWin64) {
2282        // The XMM registers which might contain var arg parameters are shadowed
2283        // in their paired GPR.  So we only need to save the GPR to their home
2284        // slots.
2285        TotalNumIntRegs = 4;
2286        GPR64ArgRegs = GPR64ArgRegsWin64;
2287      } else {
2288        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2289        GPR64ArgRegs = GPR64ArgRegs64Bit;
2290
2291        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2292                                                TotalNumXMMRegs);
2293      }
2294      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2295                                                       TotalNumIntRegs);
2296
2297      bool NoImplicitFloatOps = Fn->getAttributes().
2298        hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
2299      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2300             "SSE register cannot be used when SSE is disabled!");
2301      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2302               NoImplicitFloatOps) &&
2303             "SSE register cannot be used when SSE is disabled!");
2304      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2305          !Subtarget->hasSSE1())
2306        // Kernel mode asks for SSE to be disabled, so don't push them
2307        // on the stack.
2308        TotalNumXMMRegs = 0;
2309
2310      if (IsWin64) {
2311        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2312        // Get to the caller-allocated home save location.  Add 8 to account
2313        // for the return address.
2314        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2315        FuncInfo->setRegSaveFrameIndex(
2316          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2317        // Fixup to set vararg frame on shadow area (4 x i64).
2318        if (NumIntRegs < 4)
2319          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2320      } else {
2321        // For X86-64, if there are vararg parameters that are passed via
2322        // registers, then we must store them to their spots on the stack so
2323        // they may be loaded by deferencing the result of va_next.
2324        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2325        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2326        FuncInfo->setRegSaveFrameIndex(
2327          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2328                               false));
2329      }
2330
2331      // Store the integer parameter registers.
2332      SmallVector<SDValue, 8> MemOps;
2333      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2334                                        getPointerTy());
2335      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2336      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2337        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2338                                  DAG.getIntPtrConstant(Offset));
2339        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2340                                     &X86::GR64RegClass);
2341        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2342        SDValue Store =
2343          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2344                       MachinePointerInfo::getFixedStack(
2345                         FuncInfo->getRegSaveFrameIndex(), Offset),
2346                       false, false, 0);
2347        MemOps.push_back(Store);
2348        Offset += 8;
2349      }
2350
2351      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2352        // Now store the XMM (fp + vector) parameter registers.
2353        SmallVector<SDValue, 11> SaveXMMOps;
2354        SaveXMMOps.push_back(Chain);
2355
2356        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2357        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2358        SaveXMMOps.push_back(ALVal);
2359
2360        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2361                               FuncInfo->getRegSaveFrameIndex()));
2362        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2363                               FuncInfo->getVarArgsFPOffset()));
2364
2365        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2366          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2367                                       &X86::VR128RegClass);
2368          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2369          SaveXMMOps.push_back(Val);
2370        }
2371        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2372                                     MVT::Other,
2373                                     &SaveXMMOps[0], SaveXMMOps.size()));
2374      }
2375
2376      if (!MemOps.empty())
2377        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2378                            &MemOps[0], MemOps.size());
2379    }
2380  }
2381
2382  // Some CCs need callee pop.
2383  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2384                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2385    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2386  } else {
2387    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2388    // If this is an sret function, the return should pop the hidden pointer.
2389    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2390        argsAreStructReturn(Ins) == StackStructReturn)
2391      FuncInfo->setBytesToPopOnReturn(4);
2392  }
2393
2394  if (!Is64Bit) {
2395    // RegSaveFrameIndex is X86-64 only.
2396    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2397    if (CallConv == CallingConv::X86_FastCall ||
2398        CallConv == CallingConv::X86_ThisCall)
2399      // fastcc functions can't have varargs.
2400      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2401  }
2402
2403  FuncInfo->setArgumentStackSize(StackSize);
2404
2405  return Chain;
2406}
2407
2408SDValue
2409X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2410                                    SDValue StackPtr, SDValue Arg,
2411                                    SDLoc dl, SelectionDAG &DAG,
2412                                    const CCValAssign &VA,
2413                                    ISD::ArgFlagsTy Flags) const {
2414  unsigned LocMemOffset = VA.getLocMemOffset();
2415  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2416  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2417  if (Flags.isByVal())
2418    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2419
2420  return DAG.getStore(Chain, dl, Arg, PtrOff,
2421                      MachinePointerInfo::getStack(LocMemOffset),
2422                      false, false, 0);
2423}
2424
2425/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2426/// optimization is performed and it is required.
2427SDValue
2428X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2429                                           SDValue &OutRetAddr, SDValue Chain,
2430                                           bool IsTailCall, bool Is64Bit,
2431                                           int FPDiff, SDLoc dl) const {
2432  // Adjust the Return address stack slot.
2433  EVT VT = getPointerTy();
2434  OutRetAddr = getReturnAddressFrameIndex(DAG);
2435
2436  // Load the "old" Return address.
2437  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2438                           false, false, false, 0);
2439  return SDValue(OutRetAddr.getNode(), 1);
2440}
2441
2442/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2443/// optimization is performed and it is required (FPDiff!=0).
2444static SDValue
2445EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2446                         SDValue Chain, SDValue RetAddrFrIdx, EVT PtrVT,
2447                         unsigned SlotSize, int FPDiff, SDLoc dl) {
2448  // Store the return address to the appropriate stack slot.
2449  if (!FPDiff) return Chain;
2450  // Calculate the new stack slot for the return address.
2451  int NewReturnAddrFI =
2452    MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
2453                                         false);
2454  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
2455  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2456                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2457                       false, false, 0);
2458  return Chain;
2459}
2460
2461SDValue
2462X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2463                             SmallVectorImpl<SDValue> &InVals) const {
2464  SelectionDAG &DAG                     = CLI.DAG;
2465  SDLoc &dl                             = CLI.DL;
2466  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2467  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2468  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2469  SDValue Chain                         = CLI.Chain;
2470  SDValue Callee                        = CLI.Callee;
2471  CallingConv::ID CallConv              = CLI.CallConv;
2472  bool &isTailCall                      = CLI.IsTailCall;
2473  bool isVarArg                         = CLI.IsVarArg;
2474
2475  MachineFunction &MF = DAG.getMachineFunction();
2476  bool Is64Bit        = Subtarget->is64Bit();
2477  bool IsWin64        = Subtarget->isCallingConvWin64(CallConv);
2478  bool IsWindows      = Subtarget->isTargetWindows();
2479  StructReturnType SR = callIsStructReturn(Outs);
2480  bool IsSibcall      = false;
2481
2482  if (MF.getTarget().Options.DisableTailCalls)
2483    isTailCall = false;
2484
2485  if (isTailCall) {
2486    // Check if it's really possible to do a tail call.
2487    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2488                    isVarArg, SR != NotStructReturn,
2489                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2490                    Outs, OutVals, Ins, DAG);
2491
2492    // Sibcalls are automatically detected tailcalls which do not require
2493    // ABI changes.
2494    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2495      IsSibcall = true;
2496
2497    if (isTailCall)
2498      ++NumTailCalls;
2499  }
2500
2501  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2502         "Var args not supported with calling convention fastcc, ghc or hipe");
2503
2504  // Analyze operands of the call, assigning locations to each operand.
2505  SmallVector<CCValAssign, 16> ArgLocs;
2506  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2507                 ArgLocs, *DAG.getContext());
2508
2509  // Allocate shadow area for Win64
2510  if (IsWin64)
2511    CCInfo.AllocateStack(32, 8);
2512
2513  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2514
2515  // Get a count of how many bytes are to be pushed on the stack.
2516  unsigned NumBytes = CCInfo.getNextStackOffset();
2517  if (IsSibcall)
2518    // This is a sibcall. The memory operands are available in caller's
2519    // own caller's stack.
2520    NumBytes = 0;
2521  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2522           IsTailCallConvention(CallConv))
2523    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2524
2525  int FPDiff = 0;
2526  if (isTailCall && !IsSibcall) {
2527    // Lower arguments at fp - stackoffset + fpdiff.
2528    X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
2529    unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
2530
2531    FPDiff = NumBytesCallerPushed - NumBytes;
2532
2533    // Set the delta of movement of the returnaddr stackslot.
2534    // But only set if delta is greater than previous delta.
2535    if (FPDiff < X86Info->getTCReturnAddrDelta())
2536      X86Info->setTCReturnAddrDelta(FPDiff);
2537  }
2538
2539  if (!IsSibcall)
2540    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
2541                                 dl);
2542
2543  SDValue RetAddrFrIdx;
2544  // Load return address for tail calls.
2545  if (isTailCall && FPDiff)
2546    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2547                                    Is64Bit, FPDiff, dl);
2548
2549  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2550  SmallVector<SDValue, 8> MemOpChains;
2551  SDValue StackPtr;
2552
2553  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2554  // of tail call optimization arguments are handle later.
2555  const X86RegisterInfo *RegInfo =
2556    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
2557  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2558    CCValAssign &VA = ArgLocs[i];
2559    EVT RegVT = VA.getLocVT();
2560    SDValue Arg = OutVals[i];
2561    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2562    bool isByVal = Flags.isByVal();
2563
2564    // Promote the value if needed.
2565    switch (VA.getLocInfo()) {
2566    default: llvm_unreachable("Unknown loc info!");
2567    case CCValAssign::Full: break;
2568    case CCValAssign::SExt:
2569      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2570      break;
2571    case CCValAssign::ZExt:
2572      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2573      break;
2574    case CCValAssign::AExt:
2575      if (RegVT.is128BitVector()) {
2576        // Special case: passing MMX values in XMM registers.
2577        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2578        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2579        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2580      } else
2581        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2582      break;
2583    case CCValAssign::BCvt:
2584      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2585      break;
2586    case CCValAssign::Indirect: {
2587      // Store the argument.
2588      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2589      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2590      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2591                           MachinePointerInfo::getFixedStack(FI),
2592                           false, false, 0);
2593      Arg = SpillSlot;
2594      break;
2595    }
2596    }
2597
2598    if (VA.isRegLoc()) {
2599      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2600      if (isVarArg && IsWin64) {
2601        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2602        // shadow reg if callee is a varargs function.
2603        unsigned ShadowReg = 0;
2604        switch (VA.getLocReg()) {
2605        case X86::XMM0: ShadowReg = X86::RCX; break;
2606        case X86::XMM1: ShadowReg = X86::RDX; break;
2607        case X86::XMM2: ShadowReg = X86::R8; break;
2608        case X86::XMM3: ShadowReg = X86::R9; break;
2609        }
2610        if (ShadowReg)
2611          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2612      }
2613    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2614      assert(VA.isMemLoc());
2615      if (StackPtr.getNode() == 0)
2616        StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
2617                                      getPointerTy());
2618      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2619                                             dl, DAG, VA, Flags));
2620    }
2621  }
2622
2623  if (!MemOpChains.empty())
2624    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2625                        &MemOpChains[0], MemOpChains.size());
2626
2627  if (Subtarget->isPICStyleGOT()) {
2628    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2629    // GOT pointer.
2630    if (!isTailCall) {
2631      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2632               DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), getPointerTy())));
2633    } else {
2634      // If we are tail calling and generating PIC/GOT style code load the
2635      // address of the callee into ECX. The value in ecx is used as target of
2636      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2637      // for tail calls on PIC/GOT architectures. Normally we would just put the
2638      // address of GOT into ebx and then call target@PLT. But for tail calls
2639      // ebx would be restored (since ebx is callee saved) before jumping to the
2640      // target@PLT.
2641
2642      // Note: The actual moving to ECX is done further down.
2643      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2644      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2645          !G->getGlobal()->hasProtectedVisibility())
2646        Callee = LowerGlobalAddress(Callee, DAG);
2647      else if (isa<ExternalSymbolSDNode>(Callee))
2648        Callee = LowerExternalSymbol(Callee, DAG);
2649    }
2650  }
2651
2652  if (Is64Bit && isVarArg && !IsWin64) {
2653    // From AMD64 ABI document:
2654    // For calls that may call functions that use varargs or stdargs
2655    // (prototype-less calls or calls to functions containing ellipsis (...) in
2656    // the declaration) %al is used as hidden argument to specify the number
2657    // of SSE registers used. The contents of %al do not need to match exactly
2658    // the number of registers, but must be an ubound on the number of SSE
2659    // registers used and is in the range 0 - 8 inclusive.
2660
2661    // Count the number of XMM registers allocated.
2662    static const uint16_t XMMArgRegs[] = {
2663      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2664      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2665    };
2666    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2667    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2668           && "SSE registers cannot be used when SSE is disabled");
2669
2670    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2671                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2672  }
2673
2674  // For tail calls lower the arguments to the 'real' stack slot.
2675  if (isTailCall) {
2676    // Force all the incoming stack arguments to be loaded from the stack
2677    // before any new outgoing arguments are stored to the stack, because the
2678    // outgoing stack slots may alias the incoming argument stack slots, and
2679    // the alias isn't otherwise explicit. This is slightly more conservative
2680    // than necessary, because it means that each store effectively depends
2681    // on every argument instead of just those arguments it would clobber.
2682    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2683
2684    SmallVector<SDValue, 8> MemOpChains2;
2685    SDValue FIN;
2686    int FI = 0;
2687    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2688      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2689        CCValAssign &VA = ArgLocs[i];
2690        if (VA.isRegLoc())
2691          continue;
2692        assert(VA.isMemLoc());
2693        SDValue Arg = OutVals[i];
2694        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2695        // Create frame index.
2696        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2697        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2698        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2699        FIN = DAG.getFrameIndex(FI, getPointerTy());
2700
2701        if (Flags.isByVal()) {
2702          // Copy relative to framepointer.
2703          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2704          if (StackPtr.getNode() == 0)
2705            StackPtr = DAG.getCopyFromReg(Chain, dl,
2706                                          RegInfo->getStackRegister(),
2707                                          getPointerTy());
2708          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2709
2710          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2711                                                           ArgChain,
2712                                                           Flags, DAG, dl));
2713        } else {
2714          // Store relative to framepointer.
2715          MemOpChains2.push_back(
2716            DAG.getStore(ArgChain, dl, Arg, FIN,
2717                         MachinePointerInfo::getFixedStack(FI),
2718                         false, false, 0));
2719        }
2720      }
2721    }
2722
2723    if (!MemOpChains2.empty())
2724      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2725                          &MemOpChains2[0], MemOpChains2.size());
2726
2727    // Store the return address to the appropriate stack slot.
2728    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
2729                                     getPointerTy(), RegInfo->getSlotSize(),
2730                                     FPDiff, dl);
2731  }
2732
2733  // Build a sequence of copy-to-reg nodes chained together with token chain
2734  // and flag operands which copy the outgoing args into registers.
2735  SDValue InFlag;
2736  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2737    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2738                             RegsToPass[i].second, InFlag);
2739    InFlag = Chain.getValue(1);
2740  }
2741
2742  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2743    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2744    // In the 64-bit large code model, we have to make all calls
2745    // through a register, since the call instruction's 32-bit
2746    // pc-relative offset may not be large enough to hold the whole
2747    // address.
2748  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2749    // If the callee is a GlobalAddress node (quite common, every direct call
2750    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2751    // it.
2752
2753    // We should use extra load for direct calls to dllimported functions in
2754    // non-JIT mode.
2755    const GlobalValue *GV = G->getGlobal();
2756    if (!GV->hasDLLImportLinkage()) {
2757      unsigned char OpFlags = 0;
2758      bool ExtraLoad = false;
2759      unsigned WrapperKind = ISD::DELETED_NODE;
2760
2761      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2762      // external symbols most go through the PLT in PIC mode.  If the symbol
2763      // has hidden or protected visibility, or if it is static or local, then
2764      // we don't need to use the PLT - we can directly call it.
2765      if (Subtarget->isTargetELF() &&
2766          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2767          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2768        OpFlags = X86II::MO_PLT;
2769      } else if (Subtarget->isPICStyleStubAny() &&
2770                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2771                 (!Subtarget->getTargetTriple().isMacOSX() ||
2772                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2773        // PC-relative references to external symbols should go through $stub,
2774        // unless we're building with the leopard linker or later, which
2775        // automatically synthesizes these stubs.
2776        OpFlags = X86II::MO_DARWIN_STUB;
2777      } else if (Subtarget->isPICStyleRIPRel() &&
2778                 isa<Function>(GV) &&
2779                 cast<Function>(GV)->getAttributes().
2780                   hasAttribute(AttributeSet::FunctionIndex,
2781                                Attribute::NonLazyBind)) {
2782        // If the function is marked as non-lazy, generate an indirect call
2783        // which loads from the GOT directly. This avoids runtime overhead
2784        // at the cost of eager binding (and one extra byte of encoding).
2785        OpFlags = X86II::MO_GOTPCREL;
2786        WrapperKind = X86ISD::WrapperRIP;
2787        ExtraLoad = true;
2788      }
2789
2790      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2791                                          G->getOffset(), OpFlags);
2792
2793      // Add a wrapper if needed.
2794      if (WrapperKind != ISD::DELETED_NODE)
2795        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2796      // Add extra indirection if needed.
2797      if (ExtraLoad)
2798        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2799                             MachinePointerInfo::getGOT(),
2800                             false, false, false, 0);
2801    }
2802  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2803    unsigned char OpFlags = 0;
2804
2805    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2806    // external symbols should go through the PLT.
2807    if (Subtarget->isTargetELF() &&
2808        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2809      OpFlags = X86II::MO_PLT;
2810    } else if (Subtarget->isPICStyleStubAny() &&
2811               (!Subtarget->getTargetTriple().isMacOSX() ||
2812                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2813      // PC-relative references to external symbols should go through $stub,
2814      // unless we're building with the leopard linker or later, which
2815      // automatically synthesizes these stubs.
2816      OpFlags = X86II::MO_DARWIN_STUB;
2817    }
2818
2819    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2820                                         OpFlags);
2821  }
2822
2823  // Returns a chain & a flag for retval copy to use.
2824  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2825  SmallVector<SDValue, 8> Ops;
2826
2827  if (!IsSibcall && isTailCall) {
2828    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2829                           DAG.getIntPtrConstant(0, true), InFlag, dl);
2830    InFlag = Chain.getValue(1);
2831  }
2832
2833  Ops.push_back(Chain);
2834  Ops.push_back(Callee);
2835
2836  if (isTailCall)
2837    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2838
2839  // Add argument registers to the end of the list so that they are known live
2840  // into the call.
2841  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2842    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2843                                  RegsToPass[i].second.getValueType()));
2844
2845  // Add a register mask operand representing the call-preserved registers.
2846  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2847  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2848  assert(Mask && "Missing call preserved mask for calling convention");
2849  Ops.push_back(DAG.getRegisterMask(Mask));
2850
2851  if (InFlag.getNode())
2852    Ops.push_back(InFlag);
2853
2854  if (isTailCall) {
2855    // We used to do:
2856    //// If this is the first return lowered for this function, add the regs
2857    //// to the liveout set for the function.
2858    // This isn't right, although it's probably harmless on x86; liveouts
2859    // should be computed from returns not tail calls.  Consider a void
2860    // function making a tail call to a function returning int.
2861    return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
2862  }
2863
2864  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2865  InFlag = Chain.getValue(1);
2866
2867  // Create the CALLSEQ_END node.
2868  unsigned NumBytesForCalleeToPush;
2869  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2870                       getTargetMachine().Options.GuaranteedTailCallOpt))
2871    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2872  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2873           SR == StackStructReturn)
2874    // If this is a call to a struct-return function, the callee
2875    // pops the hidden struct pointer, so we have to push it back.
2876    // This is common for Darwin/X86, Linux & Mingw32 targets.
2877    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2878    NumBytesForCalleeToPush = 4;
2879  else
2880    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2881
2882  // Returns a flag for retval copy to use.
2883  if (!IsSibcall) {
2884    Chain = DAG.getCALLSEQ_END(Chain,
2885                               DAG.getIntPtrConstant(NumBytes, true),
2886                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2887                                                     true),
2888                               InFlag, dl);
2889    InFlag = Chain.getValue(1);
2890  }
2891
2892  // Handle result values, copying them out of physregs into vregs that we
2893  // return.
2894  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2895                         Ins, dl, DAG, InVals);
2896}
2897
2898//===----------------------------------------------------------------------===//
2899//                Fast Calling Convention (tail call) implementation
2900//===----------------------------------------------------------------------===//
2901
2902//  Like std call, callee cleans arguments, convention except that ECX is
2903//  reserved for storing the tail called function address. Only 2 registers are
2904//  free for argument passing (inreg). Tail call optimization is performed
2905//  provided:
2906//                * tailcallopt is enabled
2907//                * caller/callee are fastcc
2908//  On X86_64 architecture with GOT-style position independent code only local
2909//  (within module) calls are supported at the moment.
2910//  To keep the stack aligned according to platform abi the function
2911//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2912//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2913//  If a tail called function callee has more arguments than the caller the
2914//  caller needs to make sure that there is room to move the RETADDR to. This is
2915//  achieved by reserving an area the size of the argument delta right after the
2916//  original REtADDR, but before the saved framepointer or the spilled registers
2917//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2918//  stack layout:
2919//    arg1
2920//    arg2
2921//    RETADDR
2922//    [ new RETADDR
2923//      move area ]
2924//    (possible EBP)
2925//    ESI
2926//    EDI
2927//    local1 ..
2928
2929/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2930/// for a 16 byte align requirement.
2931unsigned
2932X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2933                                               SelectionDAG& DAG) const {
2934  MachineFunction &MF = DAG.getMachineFunction();
2935  const TargetMachine &TM = MF.getTarget();
2936  const X86RegisterInfo *RegInfo =
2937    static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
2938  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2939  unsigned StackAlignment = TFI.getStackAlignment();
2940  uint64_t AlignMask = StackAlignment - 1;
2941  int64_t Offset = StackSize;
2942  unsigned SlotSize = RegInfo->getSlotSize();
2943  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2944    // Number smaller than 12 so just add the difference.
2945    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2946  } else {
2947    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2948    Offset = ((~AlignMask) & Offset) + StackAlignment +
2949      (StackAlignment-SlotSize);
2950  }
2951  return Offset;
2952}
2953
2954/// MatchingStackOffset - Return true if the given stack call argument is
2955/// already available in the same position (relatively) of the caller's
2956/// incoming argument stack.
2957static
2958bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2959                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2960                         const X86InstrInfo *TII) {
2961  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2962  int FI = INT_MAX;
2963  if (Arg.getOpcode() == ISD::CopyFromReg) {
2964    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2965    if (!TargetRegisterInfo::isVirtualRegister(VR))
2966      return false;
2967    MachineInstr *Def = MRI->getVRegDef(VR);
2968    if (!Def)
2969      return false;
2970    if (!Flags.isByVal()) {
2971      if (!TII->isLoadFromStackSlot(Def, FI))
2972        return false;
2973    } else {
2974      unsigned Opcode = Def->getOpcode();
2975      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2976          Def->getOperand(1).isFI()) {
2977        FI = Def->getOperand(1).getIndex();
2978        Bytes = Flags.getByValSize();
2979      } else
2980        return false;
2981    }
2982  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2983    if (Flags.isByVal())
2984      // ByVal argument is passed in as a pointer but it's now being
2985      // dereferenced. e.g.
2986      // define @foo(%struct.X* %A) {
2987      //   tail call @bar(%struct.X* byval %A)
2988      // }
2989      return false;
2990    SDValue Ptr = Ld->getBasePtr();
2991    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2992    if (!FINode)
2993      return false;
2994    FI = FINode->getIndex();
2995  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2996    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2997    FI = FINode->getIndex();
2998    Bytes = Flags.getByValSize();
2999  } else
3000    return false;
3001
3002  assert(FI != INT_MAX);
3003  if (!MFI->isFixedObjectIndex(FI))
3004    return false;
3005  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
3006}
3007
3008/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3009/// for tail call optimization. Targets which want to do tail call
3010/// optimization should implement this function.
3011bool
3012X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3013                                                     CallingConv::ID CalleeCC,
3014                                                     bool isVarArg,
3015                                                     bool isCalleeStructRet,
3016                                                     bool isCallerStructRet,
3017                                                     Type *RetTy,
3018                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3019                                    const SmallVectorImpl<SDValue> &OutVals,
3020                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3021                                                     SelectionDAG &DAG) const {
3022  if (!IsTailCallConvention(CalleeCC) && !IsCCallConvention(CalleeCC))
3023    return false;
3024
3025  // If -tailcallopt is specified, make fastcc functions tail-callable.
3026  const MachineFunction &MF = DAG.getMachineFunction();
3027  const Function *CallerF = MF.getFunction();
3028
3029  // If the function return type is x86_fp80 and the callee return type is not,
3030  // then the FP_EXTEND of the call result is not a nop. It's not safe to
3031  // perform a tailcall optimization here.
3032  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
3033    return false;
3034
3035  CallingConv::ID CallerCC = CallerF->getCallingConv();
3036  bool CCMatch = CallerCC == CalleeCC;
3037  bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC);
3038  bool IsCallerWin64 = Subtarget->isCallingConvWin64(CallerCC);
3039
3040  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
3041    if (IsTailCallConvention(CalleeCC) && CCMatch)
3042      return true;
3043    return false;
3044  }
3045
3046  // Look for obvious safe cases to perform tail call optimization that do not
3047  // require ABI changes. This is what gcc calls sibcall.
3048
3049  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
3050  // emit a special epilogue.
3051  const X86RegisterInfo *RegInfo =
3052    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3053  if (RegInfo->needsStackRealignment(MF))
3054    return false;
3055
3056  // Also avoid sibcall optimization if either caller or callee uses struct
3057  // return semantics.
3058  if (isCalleeStructRet || isCallerStructRet)
3059    return false;
3060
3061  // An stdcall caller is expected to clean up its arguments; the callee
3062  // isn't going to do that.
3063  if (!CCMatch && CallerCC == CallingConv::X86_StdCall)
3064    return false;
3065
3066  // Do not sibcall optimize vararg calls unless all arguments are passed via
3067  // registers.
3068  if (isVarArg && !Outs.empty()) {
3069
3070    // Optimizing for varargs on Win64 is unlikely to be safe without
3071    // additional testing.
3072    if (IsCalleeWin64 || IsCallerWin64)
3073      return false;
3074
3075    SmallVector<CCValAssign, 16> ArgLocs;
3076    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3077                   getTargetMachine(), ArgLocs, *DAG.getContext());
3078
3079    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3080    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
3081      if (!ArgLocs[i].isRegLoc())
3082        return false;
3083  }
3084
3085  // If the call result is in ST0 / ST1, it needs to be popped off the x87
3086  // stack.  Therefore, if it's not used by the call it is not safe to optimize
3087  // this into a sibcall.
3088  bool Unused = false;
3089  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3090    if (!Ins[i].Used) {
3091      Unused = true;
3092      break;
3093    }
3094  }
3095  if (Unused) {
3096    SmallVector<CCValAssign, 16> RVLocs;
3097    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
3098                   getTargetMachine(), RVLocs, *DAG.getContext());
3099    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
3100    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3101      CCValAssign &VA = RVLocs[i];
3102      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
3103        return false;
3104    }
3105  }
3106
3107  // If the calling conventions do not match, then we'd better make sure the
3108  // results are returned in the same way as what the caller expects.
3109  if (!CCMatch) {
3110    SmallVector<CCValAssign, 16> RVLocs1;
3111    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
3112                    getTargetMachine(), RVLocs1, *DAG.getContext());
3113    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
3114
3115    SmallVector<CCValAssign, 16> RVLocs2;
3116    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
3117                    getTargetMachine(), RVLocs2, *DAG.getContext());
3118    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
3119
3120    if (RVLocs1.size() != RVLocs2.size())
3121      return false;
3122    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
3123      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
3124        return false;
3125      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
3126        return false;
3127      if (RVLocs1[i].isRegLoc()) {
3128        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
3129          return false;
3130      } else {
3131        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
3132          return false;
3133      }
3134    }
3135  }
3136
3137  // If the callee takes no arguments then go on to check the results of the
3138  // call.
3139  if (!Outs.empty()) {
3140    // Check if stack adjustment is needed. For now, do not do this if any
3141    // argument is passed on the stack.
3142    SmallVector<CCValAssign, 16> ArgLocs;
3143    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
3144                   getTargetMachine(), ArgLocs, *DAG.getContext());
3145
3146    // Allocate shadow area for Win64
3147    if (IsCalleeWin64)
3148      CCInfo.AllocateStack(32, 8);
3149
3150    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
3151    if (CCInfo.getNextStackOffset()) {
3152      MachineFunction &MF = DAG.getMachineFunction();
3153      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
3154        return false;
3155
3156      // Check if the arguments are already laid out in the right way as
3157      // the caller's fixed stack objects.
3158      MachineFrameInfo *MFI = MF.getFrameInfo();
3159      const MachineRegisterInfo *MRI = &MF.getRegInfo();
3160      const X86InstrInfo *TII =
3161        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
3162      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3163        CCValAssign &VA = ArgLocs[i];
3164        SDValue Arg = OutVals[i];
3165        ISD::ArgFlagsTy Flags = Outs[i].Flags;
3166        if (VA.getLocInfo() == CCValAssign::Indirect)
3167          return false;
3168        if (!VA.isRegLoc()) {
3169          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3170                                   MFI, MRI, TII))
3171            return false;
3172        }
3173      }
3174    }
3175
3176    // If the tailcall address may be in a register, then make sure it's
3177    // possible to register allocate for it. In 32-bit, the call address can
3178    // only target EAX, EDX, or ECX since the tail call must be scheduled after
3179    // callee-saved registers are restored. These happen to be the same
3180    // registers used to pass 'inreg' arguments so watch out for those.
3181    if (!Subtarget->is64Bit() &&
3182        ((!isa<GlobalAddressSDNode>(Callee) &&
3183          !isa<ExternalSymbolSDNode>(Callee)) ||
3184         getTargetMachine().getRelocationModel() == Reloc::PIC_)) {
3185      unsigned NumInRegs = 0;
3186      // In PIC we need an extra register to formulate the address computation
3187      // for the callee.
3188      unsigned MaxInRegs =
3189          (getTargetMachine().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
3190
3191      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3192        CCValAssign &VA = ArgLocs[i];
3193        if (!VA.isRegLoc())
3194          continue;
3195        unsigned Reg = VA.getLocReg();
3196        switch (Reg) {
3197        default: break;
3198        case X86::EAX: case X86::EDX: case X86::ECX:
3199          if (++NumInRegs == MaxInRegs)
3200            return false;
3201          break;
3202        }
3203      }
3204    }
3205  }
3206
3207  return true;
3208}
3209
3210FastISel *
3211X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
3212                                  const TargetLibraryInfo *libInfo) const {
3213  return X86::createFastISel(funcInfo, libInfo);
3214}
3215
3216//===----------------------------------------------------------------------===//
3217//                           Other Lowering Hooks
3218//===----------------------------------------------------------------------===//
3219
3220static bool MayFoldLoad(SDValue Op) {
3221  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
3222}
3223
3224static bool MayFoldIntoStore(SDValue Op) {
3225  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
3226}
3227
3228static bool isTargetShuffle(unsigned Opcode) {
3229  switch(Opcode) {
3230  default: return false;
3231  case X86ISD::PSHUFD:
3232  case X86ISD::PSHUFHW:
3233  case X86ISD::PSHUFLW:
3234  case X86ISD::SHUFP:
3235  case X86ISD::PALIGNR:
3236  case X86ISD::MOVLHPS:
3237  case X86ISD::MOVLHPD:
3238  case X86ISD::MOVHLPS:
3239  case X86ISD::MOVLPS:
3240  case X86ISD::MOVLPD:
3241  case X86ISD::MOVSHDUP:
3242  case X86ISD::MOVSLDUP:
3243  case X86ISD::MOVDDUP:
3244  case X86ISD::MOVSS:
3245  case X86ISD::MOVSD:
3246  case X86ISD::UNPCKL:
3247  case X86ISD::UNPCKH:
3248  case X86ISD::VPERMILP:
3249  case X86ISD::VPERM2X128:
3250  case X86ISD::VPERMI:
3251    return true;
3252  }
3253}
3254
3255static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3256                                    SDValue V1, SelectionDAG &DAG) {
3257  switch(Opc) {
3258  default: llvm_unreachable("Unknown x86 shuffle node");
3259  case X86ISD::MOVSHDUP:
3260  case X86ISD::MOVSLDUP:
3261  case X86ISD::MOVDDUP:
3262    return DAG.getNode(Opc, dl, VT, V1);
3263  }
3264}
3265
3266static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3267                                    SDValue V1, unsigned TargetMask,
3268                                    SelectionDAG &DAG) {
3269  switch(Opc) {
3270  default: llvm_unreachable("Unknown x86 shuffle node");
3271  case X86ISD::PSHUFD:
3272  case X86ISD::PSHUFHW:
3273  case X86ISD::PSHUFLW:
3274  case X86ISD::VPERMILP:
3275  case X86ISD::VPERMI:
3276    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
3277  }
3278}
3279
3280static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3281                                    SDValue V1, SDValue V2, unsigned TargetMask,
3282                                    SelectionDAG &DAG) {
3283  switch(Opc) {
3284  default: llvm_unreachable("Unknown x86 shuffle node");
3285  case X86ISD::PALIGNR:
3286  case X86ISD::SHUFP:
3287  case X86ISD::VPERM2X128:
3288    return DAG.getNode(Opc, dl, VT, V1, V2,
3289                       DAG.getConstant(TargetMask, MVT::i8));
3290  }
3291}
3292
3293static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, EVT VT,
3294                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3295  switch(Opc) {
3296  default: llvm_unreachable("Unknown x86 shuffle node");
3297  case X86ISD::MOVLHPS:
3298  case X86ISD::MOVLHPD:
3299  case X86ISD::MOVHLPS:
3300  case X86ISD::MOVLPS:
3301  case X86ISD::MOVLPD:
3302  case X86ISD::MOVSS:
3303  case X86ISD::MOVSD:
3304  case X86ISD::UNPCKL:
3305  case X86ISD::UNPCKH:
3306    return DAG.getNode(Opc, dl, VT, V1, V2);
3307  }
3308}
3309
3310SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3311  MachineFunction &MF = DAG.getMachineFunction();
3312  const X86RegisterInfo *RegInfo =
3313    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
3314  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3315  int ReturnAddrIndex = FuncInfo->getRAIndex();
3316
3317  if (ReturnAddrIndex == 0) {
3318    // Set up a frame object for the return address.
3319    unsigned SlotSize = RegInfo->getSlotSize();
3320    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3321                                                           -(int64_t)SlotSize,
3322                                                           false);
3323    FuncInfo->setRAIndex(ReturnAddrIndex);
3324  }
3325
3326  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3327}
3328
3329bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3330                                       bool hasSymbolicDisplacement) {
3331  // Offset should fit into 32 bit immediate field.
3332  if (!isInt<32>(Offset))
3333    return false;
3334
3335  // If we don't have a symbolic displacement - we don't have any extra
3336  // restrictions.
3337  if (!hasSymbolicDisplacement)
3338    return true;
3339
3340  // FIXME: Some tweaks might be needed for medium code model.
3341  if (M != CodeModel::Small && M != CodeModel::Kernel)
3342    return false;
3343
3344  // For small code model we assume that latest object is 16MB before end of 31
3345  // bits boundary. We may also accept pretty large negative constants knowing
3346  // that all objects are in the positive half of address space.
3347  if (M == CodeModel::Small && Offset < 16*1024*1024)
3348    return true;
3349
3350  // For kernel code model we know that all object resist in the negative half
3351  // of 32bits address space. We may not accept negative offsets, since they may
3352  // be just off and we may accept pretty large positive ones.
3353  if (M == CodeModel::Kernel && Offset > 0)
3354    return true;
3355
3356  return false;
3357}
3358
3359/// isCalleePop - Determines whether the callee is required to pop its
3360/// own arguments. Callee pop is necessary to support tail calls.
3361bool X86::isCalleePop(CallingConv::ID CallingConv,
3362                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3363  if (IsVarArg)
3364    return false;
3365
3366  switch (CallingConv) {
3367  default:
3368    return false;
3369  case CallingConv::X86_StdCall:
3370    return !is64Bit;
3371  case CallingConv::X86_FastCall:
3372    return !is64Bit;
3373  case CallingConv::X86_ThisCall:
3374    return !is64Bit;
3375  case CallingConv::Fast:
3376    return TailCallOpt;
3377  case CallingConv::GHC:
3378    return TailCallOpt;
3379  case CallingConv::HiPE:
3380    return TailCallOpt;
3381  }
3382}
3383
3384/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3385/// specific condition code, returning the condition code and the LHS/RHS of the
3386/// comparison to make.
3387static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3388                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3389  if (!isFP) {
3390    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3391      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3392        // X > -1   -> X == 0, jump !sign.
3393        RHS = DAG.getConstant(0, RHS.getValueType());
3394        return X86::COND_NS;
3395      }
3396      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3397        // X < 0   -> X == 0, jump on sign.
3398        return X86::COND_S;
3399      }
3400      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3401        // X < 1   -> X <= 0
3402        RHS = DAG.getConstant(0, RHS.getValueType());
3403        return X86::COND_LE;
3404      }
3405    }
3406
3407    switch (SetCCOpcode) {
3408    default: llvm_unreachable("Invalid integer condition!");
3409    case ISD::SETEQ:  return X86::COND_E;
3410    case ISD::SETGT:  return X86::COND_G;
3411    case ISD::SETGE:  return X86::COND_GE;
3412    case ISD::SETLT:  return X86::COND_L;
3413    case ISD::SETLE:  return X86::COND_LE;
3414    case ISD::SETNE:  return X86::COND_NE;
3415    case ISD::SETULT: return X86::COND_B;
3416    case ISD::SETUGT: return X86::COND_A;
3417    case ISD::SETULE: return X86::COND_BE;
3418    case ISD::SETUGE: return X86::COND_AE;
3419    }
3420  }
3421
3422  // First determine if it is required or is profitable to flip the operands.
3423
3424  // If LHS is a foldable load, but RHS is not, flip the condition.
3425  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3426      !ISD::isNON_EXTLoad(RHS.getNode())) {
3427    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3428    std::swap(LHS, RHS);
3429  }
3430
3431  switch (SetCCOpcode) {
3432  default: break;
3433  case ISD::SETOLT:
3434  case ISD::SETOLE:
3435  case ISD::SETUGT:
3436  case ISD::SETUGE:
3437    std::swap(LHS, RHS);
3438    break;
3439  }
3440
3441  // On a floating point condition, the flags are set as follows:
3442  // ZF  PF  CF   op
3443  //  0 | 0 | 0 | X > Y
3444  //  0 | 0 | 1 | X < Y
3445  //  1 | 0 | 0 | X == Y
3446  //  1 | 1 | 1 | unordered
3447  switch (SetCCOpcode) {
3448  default: llvm_unreachable("Condcode should be pre-legalized away");
3449  case ISD::SETUEQ:
3450  case ISD::SETEQ:   return X86::COND_E;
3451  case ISD::SETOLT:              // flipped
3452  case ISD::SETOGT:
3453  case ISD::SETGT:   return X86::COND_A;
3454  case ISD::SETOLE:              // flipped
3455  case ISD::SETOGE:
3456  case ISD::SETGE:   return X86::COND_AE;
3457  case ISD::SETUGT:              // flipped
3458  case ISD::SETULT:
3459  case ISD::SETLT:   return X86::COND_B;
3460  case ISD::SETUGE:              // flipped
3461  case ISD::SETULE:
3462  case ISD::SETLE:   return X86::COND_BE;
3463  case ISD::SETONE:
3464  case ISD::SETNE:   return X86::COND_NE;
3465  case ISD::SETUO:   return X86::COND_P;
3466  case ISD::SETO:    return X86::COND_NP;
3467  case ISD::SETOEQ:
3468  case ISD::SETUNE:  return X86::COND_INVALID;
3469  }
3470}
3471
3472/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3473/// code. Current x86 isa includes the following FP cmov instructions:
3474/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3475static bool hasFPCMov(unsigned X86CC) {
3476  switch (X86CC) {
3477  default:
3478    return false;
3479  case X86::COND_B:
3480  case X86::COND_BE:
3481  case X86::COND_E:
3482  case X86::COND_P:
3483  case X86::COND_A:
3484  case X86::COND_AE:
3485  case X86::COND_NE:
3486  case X86::COND_NP:
3487    return true;
3488  }
3489}
3490
3491/// isFPImmLegal - Returns true if the target can instruction select the
3492/// specified FP immediate natively. If false, the legalizer will
3493/// materialize the FP immediate as a load from a constant pool.
3494bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3495  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3496    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3497      return true;
3498  }
3499  return false;
3500}
3501
3502/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3503/// the specified range (L, H].
3504static bool isUndefOrInRange(int Val, int Low, int Hi) {
3505  return (Val < 0) || (Val >= Low && Val < Hi);
3506}
3507
3508/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3509/// specified value.
3510static bool isUndefOrEqual(int Val, int CmpVal) {
3511  return (Val < 0 || Val == CmpVal);
3512}
3513
3514/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3515/// from position Pos and ending in Pos+Size, falls within the specified
3516/// sequential range (L, L+Pos]. or is undef.
3517static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3518                                       unsigned Pos, unsigned Size, int Low) {
3519  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3520    if (!isUndefOrEqual(Mask[i], Low))
3521      return false;
3522  return true;
3523}
3524
3525/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3526/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3527/// the second operand.
3528static bool isPSHUFDMask(ArrayRef<int> Mask, MVT VT) {
3529  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3530    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3531  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3532    return (Mask[0] < 2 && Mask[1] < 2);
3533  return false;
3534}
3535
3536/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3537/// is suitable for input to PSHUFHW.
3538static bool isPSHUFHWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3539  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3540    return false;
3541
3542  // Lower quadword copied in order or undef.
3543  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3544    return false;
3545
3546  // Upper quadword shuffled.
3547  for (unsigned i = 4; i != 8; ++i)
3548    if (!isUndefOrInRange(Mask[i], 4, 8))
3549      return false;
3550
3551  if (VT == MVT::v16i16) {
3552    // Lower quadword copied in order or undef.
3553    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3554      return false;
3555
3556    // Upper quadword shuffled.
3557    for (unsigned i = 12; i != 16; ++i)
3558      if (!isUndefOrInRange(Mask[i], 12, 16))
3559        return false;
3560  }
3561
3562  return true;
3563}
3564
3565/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3566/// is suitable for input to PSHUFLW.
3567static bool isPSHUFLWMask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3568  if (VT != MVT::v8i16 && (!HasInt256 || VT != MVT::v16i16))
3569    return false;
3570
3571  // Upper quadword copied in order.
3572  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3573    return false;
3574
3575  // Lower quadword shuffled.
3576  for (unsigned i = 0; i != 4; ++i)
3577    if (!isUndefOrInRange(Mask[i], 0, 4))
3578      return false;
3579
3580  if (VT == MVT::v16i16) {
3581    // Upper quadword copied in order.
3582    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3583      return false;
3584
3585    // Lower quadword shuffled.
3586    for (unsigned i = 8; i != 12; ++i)
3587      if (!isUndefOrInRange(Mask[i], 8, 12))
3588        return false;
3589  }
3590
3591  return true;
3592}
3593
3594/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3595/// is suitable for input to PALIGNR.
3596static bool isPALIGNRMask(ArrayRef<int> Mask, MVT VT,
3597                          const X86Subtarget *Subtarget) {
3598  if ((VT.is128BitVector() && !Subtarget->hasSSSE3()) ||
3599      (VT.is256BitVector() && !Subtarget->hasInt256()))
3600    return false;
3601
3602  unsigned NumElts = VT.getVectorNumElements();
3603  unsigned NumLanes = VT.is512BitVector() ? 1: VT.getSizeInBits()/128;
3604  unsigned NumLaneElts = NumElts/NumLanes;
3605
3606  // Do not handle 64-bit element shuffles with palignr.
3607  if (NumLaneElts == 2)
3608    return false;
3609
3610  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3611    unsigned i;
3612    for (i = 0; i != NumLaneElts; ++i) {
3613      if (Mask[i+l] >= 0)
3614        break;
3615    }
3616
3617    // Lane is all undef, go to next lane
3618    if (i == NumLaneElts)
3619      continue;
3620
3621    int Start = Mask[i+l];
3622
3623    // Make sure its in this lane in one of the sources
3624    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3625        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3626      return false;
3627
3628    // If not lane 0, then we must match lane 0
3629    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3630      return false;
3631
3632    // Correct second source to be contiguous with first source
3633    if (Start >= (int)NumElts)
3634      Start -= NumElts - NumLaneElts;
3635
3636    // Make sure we're shifting in the right direction.
3637    if (Start <= (int)(i+l))
3638      return false;
3639
3640    Start -= i;
3641
3642    // Check the rest of the elements to see if they are consecutive.
3643    for (++i; i != NumLaneElts; ++i) {
3644      int Idx = Mask[i+l];
3645
3646      // Make sure its in this lane
3647      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3648          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3649        return false;
3650
3651      // If not lane 0, then we must match lane 0
3652      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3653        return false;
3654
3655      if (Idx >= (int)NumElts)
3656        Idx -= NumElts - NumLaneElts;
3657
3658      if (!isUndefOrEqual(Idx, Start+i))
3659        return false;
3660
3661    }
3662  }
3663
3664  return true;
3665}
3666
3667/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3668/// the two vector operands have swapped position.
3669static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3670                                     unsigned NumElems) {
3671  for (unsigned i = 0; i != NumElems; ++i) {
3672    int idx = Mask[i];
3673    if (idx < 0)
3674      continue;
3675    else if (idx < (int)NumElems)
3676      Mask[i] = idx + NumElems;
3677    else
3678      Mask[i] = idx - NumElems;
3679  }
3680}
3681
3682/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3683/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3684/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3685/// reverse of what x86 shuffles want.
3686static bool isSHUFPMask(ArrayRef<int> Mask, MVT VT, bool Commuted = false) {
3687
3688  unsigned NumElems = VT.getVectorNumElements();
3689  unsigned NumLanes = VT.getSizeInBits()/128;
3690  unsigned NumLaneElems = NumElems/NumLanes;
3691
3692  if (NumLaneElems != 2 && NumLaneElems != 4)
3693    return false;
3694
3695  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
3696  bool symetricMaskRequired =
3697    (VT.getSizeInBits() >= 256) && (EltSize == 32);
3698
3699  // VSHUFPSY divides the resulting vector into 4 chunks.
3700  // The sources are also splitted into 4 chunks, and each destination
3701  // chunk must come from a different source chunk.
3702  //
3703  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3704  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3705  //
3706  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3707  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3708  //
3709  // VSHUFPDY divides the resulting vector into 4 chunks.
3710  // The sources are also splitted into 4 chunks, and each destination
3711  // chunk must come from a different source chunk.
3712  //
3713  //  SRC1 =>      X3       X2       X1       X0
3714  //  SRC2 =>      Y3       Y2       Y1       Y0
3715  //
3716  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3717  //
3718  SmallVector<int, 4> MaskVal(NumLaneElems, -1);
3719  unsigned HalfLaneElems = NumLaneElems/2;
3720  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3721    for (unsigned i = 0; i != NumLaneElems; ++i) {
3722      int Idx = Mask[i+l];
3723      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3724      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3725        return false;
3726      // For VSHUFPSY, the mask of the second half must be the same as the
3727      // first but with the appropriate offsets. This works in the same way as
3728      // VPERMILPS works with masks.
3729      if (!symetricMaskRequired || Idx < 0)
3730        continue;
3731      if (MaskVal[i] < 0) {
3732        MaskVal[i] = Idx - l;
3733        continue;
3734      }
3735      if ((signed)(Idx - l) != MaskVal[i])
3736        return false;
3737    }
3738  }
3739
3740  return true;
3741}
3742
3743/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3744/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3745static bool isMOVHLPSMask(ArrayRef<int> Mask, MVT VT) {
3746  if (!VT.is128BitVector())
3747    return false;
3748
3749  unsigned NumElems = VT.getVectorNumElements();
3750
3751  if (NumElems != 4)
3752    return false;
3753
3754  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3755  return isUndefOrEqual(Mask[0], 6) &&
3756         isUndefOrEqual(Mask[1], 7) &&
3757         isUndefOrEqual(Mask[2], 2) &&
3758         isUndefOrEqual(Mask[3], 3);
3759}
3760
3761/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3762/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3763/// <2, 3, 2, 3>
3764static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, MVT VT) {
3765  if (!VT.is128BitVector())
3766    return false;
3767
3768  unsigned NumElems = VT.getVectorNumElements();
3769
3770  if (NumElems != 4)
3771    return false;
3772
3773  return isUndefOrEqual(Mask[0], 2) &&
3774         isUndefOrEqual(Mask[1], 3) &&
3775         isUndefOrEqual(Mask[2], 2) &&
3776         isUndefOrEqual(Mask[3], 3);
3777}
3778
3779/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3780/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3781static bool isMOVLPMask(ArrayRef<int> Mask, MVT VT) {
3782  if (!VT.is128BitVector())
3783    return false;
3784
3785  unsigned NumElems = VT.getVectorNumElements();
3786
3787  if (NumElems != 2 && NumElems != 4)
3788    return false;
3789
3790  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3791    if (!isUndefOrEqual(Mask[i], i + NumElems))
3792      return false;
3793
3794  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3795    if (!isUndefOrEqual(Mask[i], i))
3796      return false;
3797
3798  return true;
3799}
3800
3801/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3802/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3803static bool isMOVLHPSMask(ArrayRef<int> Mask, MVT VT) {
3804  if (!VT.is128BitVector())
3805    return false;
3806
3807  unsigned NumElems = VT.getVectorNumElements();
3808
3809  if (NumElems != 2 && NumElems != 4)
3810    return false;
3811
3812  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3813    if (!isUndefOrEqual(Mask[i], i))
3814      return false;
3815
3816  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3817    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3818      return false;
3819
3820  return true;
3821}
3822
3823//
3824// Some special combinations that can be optimized.
3825//
3826static
3827SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3828                               SelectionDAG &DAG) {
3829  MVT VT = SVOp->getSimpleValueType(0);
3830  SDLoc dl(SVOp);
3831
3832  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3833    return SDValue();
3834
3835  ArrayRef<int> Mask = SVOp->getMask();
3836
3837  // These are the special masks that may be optimized.
3838  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3839  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3840  bool MatchEvenMask = true;
3841  bool MatchOddMask  = true;
3842  for (int i=0; i<8; ++i) {
3843    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3844      MatchEvenMask = false;
3845    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3846      MatchOddMask = false;
3847  }
3848
3849  if (!MatchEvenMask && !MatchOddMask)
3850    return SDValue();
3851
3852  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3853
3854  SDValue Op0 = SVOp->getOperand(0);
3855  SDValue Op1 = SVOp->getOperand(1);
3856
3857  if (MatchEvenMask) {
3858    // Shift the second operand right to 32 bits.
3859    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3860    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3861  } else {
3862    // Shift the first operand left to 32 bits.
3863    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3864    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3865  }
3866  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3867  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3868}
3869
3870/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3871/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3872static bool isUNPCKLMask(ArrayRef<int> Mask, MVT VT,
3873                         bool HasInt256, bool V2IsSplat = false) {
3874
3875  assert(VT.getSizeInBits() >= 128 &&
3876         "Unsupported vector type for unpckl");
3877
3878  // AVX defines UNPCK* to operate independently on 128-bit lanes.
3879  unsigned NumLanes;
3880  unsigned NumOf256BitLanes;
3881  unsigned NumElts = VT.getVectorNumElements();
3882  if (VT.is256BitVector()) {
3883    if (NumElts != 4 && NumElts != 8 &&
3884        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3885    return false;
3886    NumLanes = 2;
3887    NumOf256BitLanes = 1;
3888  } else if (VT.is512BitVector()) {
3889    assert(VT.getScalarType().getSizeInBits() >= 32 &&
3890           "Unsupported vector type for unpckh");
3891    NumLanes = 2;
3892    NumOf256BitLanes = 2;
3893  } else {
3894    NumLanes = 1;
3895    NumOf256BitLanes = 1;
3896  }
3897
3898  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
3899  unsigned NumLaneElts = NumEltsInStride/NumLanes;
3900
3901  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
3902    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
3903      for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
3904        int BitI  = Mask[l256*NumEltsInStride+l+i];
3905        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
3906        if (!isUndefOrEqual(BitI, j+l256*NumElts))
3907          return false;
3908        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
3909          return false;
3910        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
3911          return false;
3912      }
3913    }
3914  }
3915  return true;
3916}
3917
3918/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3919/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3920static bool isUNPCKHMask(ArrayRef<int> Mask, MVT VT,
3921                         bool HasInt256, bool V2IsSplat = false) {
3922  assert(VT.getSizeInBits() >= 128 &&
3923         "Unsupported vector type for unpckh");
3924
3925  // AVX defines UNPCK* to operate independently on 128-bit lanes.
3926  unsigned NumLanes;
3927  unsigned NumOf256BitLanes;
3928  unsigned NumElts = VT.getVectorNumElements();
3929  if (VT.is256BitVector()) {
3930    if (NumElts != 4 && NumElts != 8 &&
3931        (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3932    return false;
3933    NumLanes = 2;
3934    NumOf256BitLanes = 1;
3935  } else if (VT.is512BitVector()) {
3936    assert(VT.getScalarType().getSizeInBits() >= 32 &&
3937           "Unsupported vector type for unpckh");
3938    NumLanes = 2;
3939    NumOf256BitLanes = 2;
3940  } else {
3941    NumLanes = 1;
3942    NumOf256BitLanes = 1;
3943  }
3944
3945  unsigned NumEltsInStride = NumElts/NumOf256BitLanes;
3946  unsigned NumLaneElts = NumEltsInStride/NumLanes;
3947
3948  for (unsigned l256 = 0; l256 < NumOf256BitLanes; l256 += 1) {
3949    for (unsigned l = 0; l != NumEltsInStride; l += NumLaneElts) {
3950      for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
3951        int BitI  = Mask[l256*NumEltsInStride+l+i];
3952        int BitI1 = Mask[l256*NumEltsInStride+l+i+1];
3953        if (!isUndefOrEqual(BitI, j+l256*NumElts))
3954          return false;
3955        if (V2IsSplat && !isUndefOrEqual(BitI1, NumElts))
3956          return false;
3957        if (!isUndefOrEqual(BitI1, j+l256*NumElts+NumEltsInStride))
3958          return false;
3959      }
3960    }
3961  }
3962  return true;
3963}
3964
3965/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3966/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3967/// <0, 0, 1, 1>
3968static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
3969  unsigned NumElts = VT.getVectorNumElements();
3970  bool Is256BitVec = VT.is256BitVector();
3971
3972  if (VT.is512BitVector())
3973    return false;
3974  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3975         "Unsupported vector type for unpckh");
3976
3977  if (Is256BitVec && NumElts != 4 && NumElts != 8 &&
3978      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
3979    return false;
3980
3981  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3982  // FIXME: Need a better way to get rid of this, there's no latency difference
3983  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3984  // the former later. We should also remove the "_undef" special mask.
3985  if (NumElts == 4 && Is256BitVec)
3986    return false;
3987
3988  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3989  // independently on 128-bit lanes.
3990  unsigned NumLanes = VT.getSizeInBits()/128;
3991  unsigned NumLaneElts = NumElts/NumLanes;
3992
3993  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
3994    for (unsigned i = 0, j = l; i != NumLaneElts; i += 2, ++j) {
3995      int BitI  = Mask[l+i];
3996      int BitI1 = Mask[l+i+1];
3997
3998      if (!isUndefOrEqual(BitI, j))
3999        return false;
4000      if (!isUndefOrEqual(BitI1, j))
4001        return false;
4002    }
4003  }
4004
4005  return true;
4006}
4007
4008/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
4009/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
4010/// <2, 2, 3, 3>
4011static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, MVT VT, bool HasInt256) {
4012  unsigned NumElts = VT.getVectorNumElements();
4013
4014  if (VT.is512BitVector())
4015    return false;
4016
4017  assert((VT.is128BitVector() || VT.is256BitVector()) &&
4018         "Unsupported vector type for unpckh");
4019
4020  if (VT.is256BitVector() && NumElts != 4 && NumElts != 8 &&
4021      (!HasInt256 || (NumElts != 16 && NumElts != 32)))
4022    return false;
4023
4024  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
4025  // independently on 128-bit lanes.
4026  unsigned NumLanes = VT.getSizeInBits()/128;
4027  unsigned NumLaneElts = NumElts/NumLanes;
4028
4029  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
4030    for (unsigned i = 0, j = l+NumLaneElts/2; i != NumLaneElts; i += 2, ++j) {
4031      int BitI  = Mask[l+i];
4032      int BitI1 = Mask[l+i+1];
4033      if (!isUndefOrEqual(BitI, j))
4034        return false;
4035      if (!isUndefOrEqual(BitI1, j))
4036        return false;
4037    }
4038  }
4039  return true;
4040}
4041
4042/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
4043/// specifies a shuffle of elements that is suitable for input to MOVSS,
4044/// MOVSD, and MOVD, i.e. setting the lowest element.
4045static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
4046  if (VT.getVectorElementType().getSizeInBits() < 32)
4047    return false;
4048  if (!VT.is128BitVector())
4049    return false;
4050
4051  unsigned NumElts = VT.getVectorNumElements();
4052
4053  if (!isUndefOrEqual(Mask[0], NumElts))
4054    return false;
4055
4056  for (unsigned i = 1; i != NumElts; ++i)
4057    if (!isUndefOrEqual(Mask[i], i))
4058      return false;
4059
4060  return true;
4061}
4062
4063/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
4064/// as permutations between 128-bit chunks or halves. As an example: this
4065/// shuffle bellow:
4066///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
4067/// The first half comes from the second half of V1 and the second half from the
4068/// the second half of V2.
4069static bool isVPERM2X128Mask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4070  if (!HasFp256 || !VT.is256BitVector())
4071    return false;
4072
4073  // The shuffle result is divided into half A and half B. In total the two
4074  // sources have 4 halves, namely: C, D, E, F. The final values of A and
4075  // B must come from C, D, E or F.
4076  unsigned HalfSize = VT.getVectorNumElements()/2;
4077  bool MatchA = false, MatchB = false;
4078
4079  // Check if A comes from one of C, D, E, F.
4080  for (unsigned Half = 0; Half != 4; ++Half) {
4081    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
4082      MatchA = true;
4083      break;
4084    }
4085  }
4086
4087  // Check if B comes from one of C, D, E, F.
4088  for (unsigned Half = 0; Half != 4; ++Half) {
4089    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
4090      MatchB = true;
4091      break;
4092    }
4093  }
4094
4095  return MatchA && MatchB;
4096}
4097
4098/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
4099/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
4100static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
4101  MVT VT = SVOp->getSimpleValueType(0);
4102
4103  unsigned HalfSize = VT.getVectorNumElements()/2;
4104
4105  unsigned FstHalf = 0, SndHalf = 0;
4106  for (unsigned i = 0; i < HalfSize; ++i) {
4107    if (SVOp->getMaskElt(i) > 0) {
4108      FstHalf = SVOp->getMaskElt(i)/HalfSize;
4109      break;
4110    }
4111  }
4112  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
4113    if (SVOp->getMaskElt(i) > 0) {
4114      SndHalf = SVOp->getMaskElt(i)/HalfSize;
4115      break;
4116    }
4117  }
4118
4119  return (FstHalf | (SndHalf << 4));
4120}
4121
4122// Symetric in-lane mask. Each lane has 4 elements (for imm8)
4123static bool isPermImmMask(ArrayRef<int> Mask, MVT VT, unsigned& Imm8) {
4124  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4125  if (EltSize < 32)
4126    return false;
4127
4128  unsigned NumElts = VT.getVectorNumElements();
4129  Imm8 = 0;
4130  if (VT.is128BitVector() || (VT.is256BitVector() && EltSize == 64)) {
4131    for (unsigned i = 0; i != NumElts; ++i) {
4132      if (Mask[i] < 0)
4133        continue;
4134      Imm8 |= Mask[i] << (i*2);
4135    }
4136    return true;
4137  }
4138
4139  unsigned LaneSize = 4;
4140  SmallVector<int, 4> MaskVal(LaneSize, -1);
4141
4142  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4143    for (unsigned i = 0; i != LaneSize; ++i) {
4144      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4145        return false;
4146      if (Mask[i+l] < 0)
4147        continue;
4148      if (MaskVal[i] < 0) {
4149        MaskVal[i] = Mask[i+l] - l;
4150        Imm8 |= MaskVal[i] << (i*2);
4151        continue;
4152      }
4153      if (Mask[i+l] != (signed)(MaskVal[i]+l))
4154        return false;
4155    }
4156  }
4157  return true;
4158}
4159
4160/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
4161/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
4162/// Note that VPERMIL mask matching is different depending whether theunderlying
4163/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
4164/// to the same elements of the low, but to the higher half of the source.
4165/// In VPERMILPD the two lanes could be shuffled independently of each other
4166/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
4167static bool isVPERMILPMask(ArrayRef<int> Mask, MVT VT) {
4168  unsigned EltSize = VT.getVectorElementType().getSizeInBits();
4169  if (VT.getSizeInBits() < 256 || EltSize < 32)
4170    return false;
4171  bool symetricMaskRequired = (EltSize == 32);
4172  unsigned NumElts = VT.getVectorNumElements();
4173
4174  unsigned NumLanes = VT.getSizeInBits()/128;
4175  unsigned LaneSize = NumElts/NumLanes;
4176  // 2 or 4 elements in one lane
4177
4178  SmallVector<int, 4> ExpectedMaskVal(LaneSize, -1);
4179  for (unsigned l = 0; l != NumElts; l += LaneSize) {
4180    for (unsigned i = 0; i != LaneSize; ++i) {
4181      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
4182        return false;
4183      if (symetricMaskRequired) {
4184        if (ExpectedMaskVal[i] < 0 && Mask[i+l] >= 0) {
4185          ExpectedMaskVal[i] = Mask[i+l] - l;
4186          continue;
4187        }
4188        if (!isUndefOrEqual(Mask[i+l], ExpectedMaskVal[i]+l))
4189          return false;
4190      }
4191    }
4192  }
4193  return true;
4194}
4195
4196/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
4197/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
4198/// element of vector 2 and the other elements to come from vector 1 in order.
4199static bool isCommutedMOVLMask(ArrayRef<int> Mask, MVT VT,
4200                               bool V2IsSplat = false, bool V2IsUndef = false) {
4201  if (!VT.is128BitVector())
4202    return false;
4203
4204  unsigned NumOps = VT.getVectorNumElements();
4205  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
4206    return false;
4207
4208  if (!isUndefOrEqual(Mask[0], 0))
4209    return false;
4210
4211  for (unsigned i = 1; i != NumOps; ++i)
4212    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
4213          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
4214          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
4215      return false;
4216
4217  return true;
4218}
4219
4220/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4221/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
4222/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
4223static bool isMOVSHDUPMask(ArrayRef<int> Mask, MVT VT,
4224                           const X86Subtarget *Subtarget) {
4225  if (!Subtarget->hasSSE3())
4226    return false;
4227
4228  unsigned NumElems = VT.getVectorNumElements();
4229
4230  if ((VT.is128BitVector() && NumElems != 4) ||
4231      (VT.is256BitVector() && NumElems != 8) ||
4232      (VT.is512BitVector() && NumElems != 16))
4233    return false;
4234
4235  // "i+1" is the value the indexed mask element must have
4236  for (unsigned i = 0; i != NumElems; i += 2)
4237    if (!isUndefOrEqual(Mask[i], i+1) ||
4238        !isUndefOrEqual(Mask[i+1], i+1))
4239      return false;
4240
4241  return true;
4242}
4243
4244/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4245/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
4246/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
4247static bool isMOVSLDUPMask(ArrayRef<int> Mask, MVT VT,
4248                           const X86Subtarget *Subtarget) {
4249  if (!Subtarget->hasSSE3())
4250    return false;
4251
4252  unsigned NumElems = VT.getVectorNumElements();
4253
4254  if ((VT.is128BitVector() && NumElems != 4) ||
4255      (VT.is256BitVector() && NumElems != 8) ||
4256      (VT.is512BitVector() && NumElems != 16))
4257    return false;
4258
4259  // "i" is the value the indexed mask element must have
4260  for (unsigned i = 0; i != NumElems; i += 2)
4261    if (!isUndefOrEqual(Mask[i], i) ||
4262        !isUndefOrEqual(Mask[i+1], i))
4263      return false;
4264
4265  return true;
4266}
4267
4268/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
4269/// specifies a shuffle of elements that is suitable for input to 256-bit
4270/// version of MOVDDUP.
4271static bool isMOVDDUPYMask(ArrayRef<int> Mask, MVT VT, bool HasFp256) {
4272  if (!HasFp256 || !VT.is256BitVector())
4273    return false;
4274
4275  unsigned NumElts = VT.getVectorNumElements();
4276  if (NumElts != 4)
4277    return false;
4278
4279  for (unsigned i = 0; i != NumElts/2; ++i)
4280    if (!isUndefOrEqual(Mask[i], 0))
4281      return false;
4282  for (unsigned i = NumElts/2; i != NumElts; ++i)
4283    if (!isUndefOrEqual(Mask[i], NumElts/2))
4284      return false;
4285  return true;
4286}
4287
4288/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
4289/// specifies a shuffle of elements that is suitable for input to 128-bit
4290/// version of MOVDDUP.
4291static bool isMOVDDUPMask(ArrayRef<int> Mask, MVT VT) {
4292  if (!VT.is128BitVector())
4293    return false;
4294
4295  unsigned e = VT.getVectorNumElements() / 2;
4296  for (unsigned i = 0; i != e; ++i)
4297    if (!isUndefOrEqual(Mask[i], i))
4298      return false;
4299  for (unsigned i = 0; i != e; ++i)
4300    if (!isUndefOrEqual(Mask[e+i], i))
4301      return false;
4302  return true;
4303}
4304
4305/// isVEXTRACTIndex - Return true if the specified
4306/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4307/// suitable for instruction that extract 128 or 256 bit vectors
4308static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
4309  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4310  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4311    return false;
4312
4313  // The index should be aligned on a vecWidth-bit boundary.
4314  uint64_t Index =
4315    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4316
4317  MVT VT = N->getSimpleValueType(0);
4318  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4319  bool Result = (Index * ElSize) % vecWidth == 0;
4320
4321  return Result;
4322}
4323
4324/// isVINSERTIndex - Return true if the specified INSERT_SUBVECTOR
4325/// operand specifies a subvector insert that is suitable for input to
4326/// insertion of 128 or 256-bit subvectors
4327static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
4328  assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
4329  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4330    return false;
4331  // The index should be aligned on a vecWidth-bit boundary.
4332  uint64_t Index =
4333    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4334
4335  MVT VT = N->getSimpleValueType(0);
4336  unsigned ElSize = VT.getVectorElementType().getSizeInBits();
4337  bool Result = (Index * ElSize) % vecWidth == 0;
4338
4339  return Result;
4340}
4341
4342bool X86::isVINSERT128Index(SDNode *N) {
4343  return isVINSERTIndex(N, 128);
4344}
4345
4346bool X86::isVINSERT256Index(SDNode *N) {
4347  return isVINSERTIndex(N, 256);
4348}
4349
4350bool X86::isVEXTRACT128Index(SDNode *N) {
4351  return isVEXTRACTIndex(N, 128);
4352}
4353
4354bool X86::isVEXTRACT256Index(SDNode *N) {
4355  return isVEXTRACTIndex(N, 256);
4356}
4357
4358/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4359/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
4360/// Handles 128-bit and 256-bit.
4361static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
4362  MVT VT = N->getSimpleValueType(0);
4363
4364  assert((VT.getSizeInBits() >= 128) &&
4365         "Unsupported vector type for PSHUF/SHUFP");
4366
4367  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4368  // independently on 128-bit lanes.
4369  unsigned NumElts = VT.getVectorNumElements();
4370  unsigned NumLanes = VT.getSizeInBits()/128;
4371  unsigned NumLaneElts = NumElts/NumLanes;
4372
4373  assert((NumLaneElts == 2 || NumLaneElts == 4 || NumLaneElts == 8) &&
4374         "Only supports 2, 4 or 8 elements per lane");
4375
4376  unsigned Shift = (NumLaneElts >= 4) ? 1 : 0;
4377  unsigned Mask = 0;
4378  for (unsigned i = 0; i != NumElts; ++i) {
4379    int Elt = N->getMaskElt(i);
4380    if (Elt < 0) continue;
4381    Elt &= NumLaneElts - 1;
4382    unsigned ShAmt = (i << Shift) % 8;
4383    Mask |= Elt << ShAmt;
4384  }
4385
4386  return Mask;
4387}
4388
4389/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4390/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4391static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4392  MVT VT = N->getSimpleValueType(0);
4393
4394  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4395         "Unsupported vector type for PSHUFHW");
4396
4397  unsigned NumElts = VT.getVectorNumElements();
4398
4399  unsigned Mask = 0;
4400  for (unsigned l = 0; l != NumElts; l += 8) {
4401    // 8 nodes per lane, but we only care about the last 4.
4402    for (unsigned i = 0; i < 4; ++i) {
4403      int Elt = N->getMaskElt(l+i+4);
4404      if (Elt < 0) continue;
4405      Elt &= 0x3; // only 2-bits.
4406      Mask |= Elt << (i * 2);
4407    }
4408  }
4409
4410  return Mask;
4411}
4412
4413/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4414/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4415static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4416  MVT VT = N->getSimpleValueType(0);
4417
4418  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4419         "Unsupported vector type for PSHUFHW");
4420
4421  unsigned NumElts = VT.getVectorNumElements();
4422
4423  unsigned Mask = 0;
4424  for (unsigned l = 0; l != NumElts; l += 8) {
4425    // 8 nodes per lane, but we only care about the first 4.
4426    for (unsigned i = 0; i < 4; ++i) {
4427      int Elt = N->getMaskElt(l+i);
4428      if (Elt < 0) continue;
4429      Elt &= 0x3; // only 2-bits
4430      Mask |= Elt << (i * 2);
4431    }
4432  }
4433
4434  return Mask;
4435}
4436
4437/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4438/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4439static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4440  MVT VT = SVOp->getSimpleValueType(0);
4441  unsigned EltSize = VT.is512BitVector() ? 1 :
4442    VT.getVectorElementType().getSizeInBits() >> 3;
4443
4444  unsigned NumElts = VT.getVectorNumElements();
4445  unsigned NumLanes = VT.is512BitVector() ? 1 : VT.getSizeInBits()/128;
4446  unsigned NumLaneElts = NumElts/NumLanes;
4447
4448  int Val = 0;
4449  unsigned i;
4450  for (i = 0; i != NumElts; ++i) {
4451    Val = SVOp->getMaskElt(i);
4452    if (Val >= 0)
4453      break;
4454  }
4455  if (Val >= (int)NumElts)
4456    Val -= NumElts - NumLaneElts;
4457
4458  assert(Val - i > 0 && "PALIGNR imm should be positive");
4459  return (Val - i) * EltSize;
4460}
4461
4462static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
4463  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4464  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4465    llvm_unreachable("Illegal extract subvector for VEXTRACT");
4466
4467  uint64_t Index =
4468    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4469
4470  MVT VecVT = N->getOperand(0).getSimpleValueType();
4471  MVT ElVT = VecVT.getVectorElementType();
4472
4473  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4474  return Index / NumElemsPerChunk;
4475}
4476
4477static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
4478  assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
4479  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4480    llvm_unreachable("Illegal insert subvector for VINSERT");
4481
4482  uint64_t Index =
4483    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4484
4485  MVT VecVT = N->getSimpleValueType(0);
4486  MVT ElVT = VecVT.getVectorElementType();
4487
4488  unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
4489  return Index / NumElemsPerChunk;
4490}
4491
4492/// getExtractVEXTRACT128Immediate - Return the appropriate immediate
4493/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4494/// and VINSERTI128 instructions.
4495unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
4496  return getExtractVEXTRACTImmediate(N, 128);
4497}
4498
4499/// getExtractVEXTRACT256Immediate - Return the appropriate immediate
4500/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF64x4
4501/// and VINSERTI64x4 instructions.
4502unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
4503  return getExtractVEXTRACTImmediate(N, 256);
4504}
4505
4506/// getInsertVINSERT128Immediate - Return the appropriate immediate
4507/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4508/// and VINSERTI128 instructions.
4509unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
4510  return getInsertVINSERTImmediate(N, 128);
4511}
4512
4513/// getInsertVINSERT256Immediate - Return the appropriate immediate
4514/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF46x4
4515/// and VINSERTI64x4 instructions.
4516unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
4517  return getInsertVINSERTImmediate(N, 256);
4518}
4519
4520/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4521/// constant +0.0.
4522bool X86::isZeroNode(SDValue Elt) {
4523  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Elt))
4524    return CN->isNullValue();
4525  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Elt))
4526    return CFP->getValueAPF().isPosZero();
4527  return false;
4528}
4529
4530/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4531/// their permute mask.
4532static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4533                                    SelectionDAG &DAG) {
4534  MVT VT = SVOp->getSimpleValueType(0);
4535  unsigned NumElems = VT.getVectorNumElements();
4536  SmallVector<int, 8> MaskVec;
4537
4538  for (unsigned i = 0; i != NumElems; ++i) {
4539    int Idx = SVOp->getMaskElt(i);
4540    if (Idx >= 0) {
4541      if (Idx < (int)NumElems)
4542        Idx += NumElems;
4543      else
4544        Idx -= NumElems;
4545    }
4546    MaskVec.push_back(Idx);
4547  }
4548  return DAG.getVectorShuffle(VT, SDLoc(SVOp), SVOp->getOperand(1),
4549                              SVOp->getOperand(0), &MaskVec[0]);
4550}
4551
4552/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4553/// match movhlps. The lower half elements should come from upper half of
4554/// V1 (and in order), and the upper half elements should come from the upper
4555/// half of V2 (and in order).
4556static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, MVT VT) {
4557  if (!VT.is128BitVector())
4558    return false;
4559  if (VT.getVectorNumElements() != 4)
4560    return false;
4561  for (unsigned i = 0, e = 2; i != e; ++i)
4562    if (!isUndefOrEqual(Mask[i], i+2))
4563      return false;
4564  for (unsigned i = 2; i != 4; ++i)
4565    if (!isUndefOrEqual(Mask[i], i+4))
4566      return false;
4567  return true;
4568}
4569
4570/// isScalarLoadToVector - Returns true if the node is a scalar load that
4571/// is promoted to a vector. It also returns the LoadSDNode by reference if
4572/// required.
4573static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4574  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4575    return false;
4576  N = N->getOperand(0).getNode();
4577  if (!ISD::isNON_EXTLoad(N))
4578    return false;
4579  if (LD)
4580    *LD = cast<LoadSDNode>(N);
4581  return true;
4582}
4583
4584// Test whether the given value is a vector value which will be legalized
4585// into a load.
4586static bool WillBeConstantPoolLoad(SDNode *N) {
4587  if (N->getOpcode() != ISD::BUILD_VECTOR)
4588    return false;
4589
4590  // Check for any non-constant elements.
4591  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4592    switch (N->getOperand(i).getNode()->getOpcode()) {
4593    case ISD::UNDEF:
4594    case ISD::ConstantFP:
4595    case ISD::Constant:
4596      break;
4597    default:
4598      return false;
4599    }
4600
4601  // Vectors of all-zeros and all-ones are materialized with special
4602  // instructions rather than being loaded.
4603  return !ISD::isBuildVectorAllZeros(N) &&
4604         !ISD::isBuildVectorAllOnes(N);
4605}
4606
4607/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4608/// match movlp{s|d}. The lower half elements should come from lower half of
4609/// V1 (and in order), and the upper half elements should come from the upper
4610/// half of V2 (and in order). And since V1 will become the source of the
4611/// MOVLP, it must be either a vector load or a scalar load to vector.
4612static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4613                               ArrayRef<int> Mask, MVT VT) {
4614  if (!VT.is128BitVector())
4615    return false;
4616
4617  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4618    return false;
4619  // Is V2 is a vector load, don't do this transformation. We will try to use
4620  // load folding shufps op.
4621  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4622    return false;
4623
4624  unsigned NumElems = VT.getVectorNumElements();
4625
4626  if (NumElems != 2 && NumElems != 4)
4627    return false;
4628  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4629    if (!isUndefOrEqual(Mask[i], i))
4630      return false;
4631  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4632    if (!isUndefOrEqual(Mask[i], i+NumElems))
4633      return false;
4634  return true;
4635}
4636
4637/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4638/// all the same.
4639static bool isSplatVector(SDNode *N) {
4640  if (N->getOpcode() != ISD::BUILD_VECTOR)
4641    return false;
4642
4643  SDValue SplatValue = N->getOperand(0);
4644  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4645    if (N->getOperand(i) != SplatValue)
4646      return false;
4647  return true;
4648}
4649
4650/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4651/// to an zero vector.
4652/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4653static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4654  SDValue V1 = N->getOperand(0);
4655  SDValue V2 = N->getOperand(1);
4656  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4657  for (unsigned i = 0; i != NumElems; ++i) {
4658    int Idx = N->getMaskElt(i);
4659    if (Idx >= (int)NumElems) {
4660      unsigned Opc = V2.getOpcode();
4661      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4662        continue;
4663      if (Opc != ISD::BUILD_VECTOR ||
4664          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4665        return false;
4666    } else if (Idx >= 0) {
4667      unsigned Opc = V1.getOpcode();
4668      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4669        continue;
4670      if (Opc != ISD::BUILD_VECTOR ||
4671          !X86::isZeroNode(V1.getOperand(Idx)))
4672        return false;
4673    }
4674  }
4675  return true;
4676}
4677
4678/// getZeroVector - Returns a vector of specified type with all zero elements.
4679///
4680static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4681                             SelectionDAG &DAG, SDLoc dl) {
4682  assert(VT.isVector() && "Expected a vector type");
4683
4684  // Always build SSE zero vectors as <4 x i32> bitcasted
4685  // to their dest type. This ensures they get CSE'd.
4686  SDValue Vec;
4687  if (VT.is128BitVector()) {  // SSE
4688    if (Subtarget->hasSSE2()) {  // SSE2
4689      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4690      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4691    } else { // SSE1
4692      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4693      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4694    }
4695  } else if (VT.is256BitVector()) { // AVX
4696    if (Subtarget->hasInt256()) { // AVX2
4697      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4698      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4699      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4700                        array_lengthof(Ops));
4701    } else {
4702      // 256-bit logic and arithmetic instructions in AVX are all
4703      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4704      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4705      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4706      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops,
4707                        array_lengthof(Ops));
4708    }
4709  } else if (VT.is512BitVector()) { // AVX-512
4710      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4711      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
4712                        Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4713      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i32, Ops, 16);
4714  } else
4715    llvm_unreachable("Unexpected vector type");
4716
4717  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4718}
4719
4720/// getOnesVector - Returns a vector of specified type with all bits set.
4721/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4722/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4723/// Then bitcast to their original type, ensuring they get CSE'd.
4724static SDValue getOnesVector(MVT VT, bool HasInt256, SelectionDAG &DAG,
4725                             SDLoc dl) {
4726  assert(VT.isVector() && "Expected a vector type");
4727
4728  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4729  SDValue Vec;
4730  if (VT.is256BitVector()) {
4731    if (HasInt256) { // AVX2
4732      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4733      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops,
4734                        array_lengthof(Ops));
4735    } else { // AVX
4736      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4737      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4738    }
4739  } else if (VT.is128BitVector()) {
4740    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4741  } else
4742    llvm_unreachable("Unexpected vector type");
4743
4744  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4745}
4746
4747/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4748/// that point to V2 points to its first element.
4749static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4750  for (unsigned i = 0; i != NumElems; ++i) {
4751    if (Mask[i] > (int)NumElems) {
4752      Mask[i] = NumElems;
4753    }
4754  }
4755}
4756
4757/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4758/// operation of specified width.
4759static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue V1,
4760                       SDValue V2) {
4761  unsigned NumElems = VT.getVectorNumElements();
4762  SmallVector<int, 8> Mask;
4763  Mask.push_back(NumElems);
4764  for (unsigned i = 1; i != NumElems; ++i)
4765    Mask.push_back(i);
4766  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4767}
4768
4769/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4770static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4771                          SDValue V2) {
4772  unsigned NumElems = VT.getVectorNumElements();
4773  SmallVector<int, 8> Mask;
4774  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4775    Mask.push_back(i);
4776    Mask.push_back(i + NumElems);
4777  }
4778  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4779}
4780
4781/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4782static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
4783                          SDValue V2) {
4784  unsigned NumElems = VT.getVectorNumElements();
4785  SmallVector<int, 8> Mask;
4786  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4787    Mask.push_back(i + Half);
4788    Mask.push_back(i + NumElems + Half);
4789  }
4790  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4791}
4792
4793// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4794// a generic shuffle instruction because the target has no such instructions.
4795// Generate shuffles which repeat i16 and i8 several times until they can be
4796// represented by v4f32 and then be manipulated by target suported shuffles.
4797static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4798  MVT VT = V.getSimpleValueType();
4799  int NumElems = VT.getVectorNumElements();
4800  SDLoc dl(V);
4801
4802  while (NumElems > 4) {
4803    if (EltNo < NumElems/2) {
4804      V = getUnpackl(DAG, dl, VT, V, V);
4805    } else {
4806      V = getUnpackh(DAG, dl, VT, V, V);
4807      EltNo -= NumElems/2;
4808    }
4809    NumElems >>= 1;
4810  }
4811  return V;
4812}
4813
4814/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4815static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4816  MVT VT = V.getSimpleValueType();
4817  SDLoc dl(V);
4818
4819  if (VT.is128BitVector()) {
4820    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4821    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4822    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4823                             &SplatMask[0]);
4824  } else if (VT.is256BitVector()) {
4825    // To use VPERMILPS to splat scalars, the second half of indicies must
4826    // refer to the higher part, which is a duplication of the lower one,
4827    // because VPERMILPS can only handle in-lane permutations.
4828    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4829                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4830
4831    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4832    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4833                             &SplatMask[0]);
4834  } else
4835    llvm_unreachable("Vector size not supported");
4836
4837  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4838}
4839
4840/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4841static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4842  MVT SrcVT = SV->getSimpleValueType(0);
4843  SDValue V1 = SV->getOperand(0);
4844  SDLoc dl(SV);
4845
4846  int EltNo = SV->getSplatIndex();
4847  int NumElems = SrcVT.getVectorNumElements();
4848  bool Is256BitVec = SrcVT.is256BitVector();
4849
4850  assert(((SrcVT.is128BitVector() && NumElems > 4) || Is256BitVec) &&
4851         "Unknown how to promote splat for type");
4852
4853  // Extract the 128-bit part containing the splat element and update
4854  // the splat element index when it refers to the higher register.
4855  if (Is256BitVec) {
4856    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4857    if (EltNo >= NumElems/2)
4858      EltNo -= NumElems/2;
4859  }
4860
4861  // All i16 and i8 vector types can't be used directly by a generic shuffle
4862  // instruction because the target has no such instruction. Generate shuffles
4863  // which repeat i16 and i8 several times until they fit in i32, and then can
4864  // be manipulated by target suported shuffles.
4865  MVT EltVT = SrcVT.getVectorElementType();
4866  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4867    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4868
4869  // Recreate the 256-bit vector and place the same 128-bit vector
4870  // into the low and high part. This is necessary because we want
4871  // to use VPERM* to shuffle the vectors
4872  if (Is256BitVec) {
4873    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4874  }
4875
4876  return getLegalSplat(DAG, V1, EltNo);
4877}
4878
4879/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4880/// vector of zero or undef vector.  This produces a shuffle where the low
4881/// element of V2 is swizzled into the zero/undef vector, landing at element
4882/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4883static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4884                                           bool IsZero,
4885                                           const X86Subtarget *Subtarget,
4886                                           SelectionDAG &DAG) {
4887  MVT VT = V2.getSimpleValueType();
4888  SDValue V1 = IsZero
4889    ? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
4890  unsigned NumElems = VT.getVectorNumElements();
4891  SmallVector<int, 16> MaskVec;
4892  for (unsigned i = 0; i != NumElems; ++i)
4893    // If this is the insertion idx, put the low elt of V2 here.
4894    MaskVec.push_back(i == Idx ? NumElems : i);
4895  return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
4896}
4897
4898/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4899/// target specific opcode. Returns true if the Mask could be calculated.
4900/// Sets IsUnary to true if only uses one source.
4901static bool getTargetShuffleMask(SDNode *N, MVT VT,
4902                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4903  unsigned NumElems = VT.getVectorNumElements();
4904  SDValue ImmN;
4905
4906  IsUnary = false;
4907  switch(N->getOpcode()) {
4908  case X86ISD::SHUFP:
4909    ImmN = N->getOperand(N->getNumOperands()-1);
4910    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4911    break;
4912  case X86ISD::UNPCKH:
4913    DecodeUNPCKHMask(VT, Mask);
4914    break;
4915  case X86ISD::UNPCKL:
4916    DecodeUNPCKLMask(VT, Mask);
4917    break;
4918  case X86ISD::MOVHLPS:
4919    DecodeMOVHLPSMask(NumElems, Mask);
4920    break;
4921  case X86ISD::MOVLHPS:
4922    DecodeMOVLHPSMask(NumElems, Mask);
4923    break;
4924  case X86ISD::PALIGNR:
4925    ImmN = N->getOperand(N->getNumOperands()-1);
4926    DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4927    break;
4928  case X86ISD::PSHUFD:
4929  case X86ISD::VPERMILP:
4930    ImmN = N->getOperand(N->getNumOperands()-1);
4931    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4932    IsUnary = true;
4933    break;
4934  case X86ISD::PSHUFHW:
4935    ImmN = N->getOperand(N->getNumOperands()-1);
4936    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4937    IsUnary = true;
4938    break;
4939  case X86ISD::PSHUFLW:
4940    ImmN = N->getOperand(N->getNumOperands()-1);
4941    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4942    IsUnary = true;
4943    break;
4944  case X86ISD::VPERMI:
4945    ImmN = N->getOperand(N->getNumOperands()-1);
4946    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4947    IsUnary = true;
4948    break;
4949  case X86ISD::MOVSS:
4950  case X86ISD::MOVSD: {
4951    // The index 0 always comes from the first element of the second source,
4952    // this is why MOVSS and MOVSD are used in the first place. The other
4953    // elements come from the other positions of the first source vector
4954    Mask.push_back(NumElems);
4955    for (unsigned i = 1; i != NumElems; ++i) {
4956      Mask.push_back(i);
4957    }
4958    break;
4959  }
4960  case X86ISD::VPERM2X128:
4961    ImmN = N->getOperand(N->getNumOperands()-1);
4962    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4963    if (Mask.empty()) return false;
4964    break;
4965  case X86ISD::MOVDDUP:
4966  case X86ISD::MOVLHPD:
4967  case X86ISD::MOVLPD:
4968  case X86ISD::MOVLPS:
4969  case X86ISD::MOVSHDUP:
4970  case X86ISD::MOVSLDUP:
4971    // Not yet implemented
4972    return false;
4973  default: llvm_unreachable("unknown target shuffle node");
4974  }
4975
4976  return true;
4977}
4978
4979/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4980/// element of the result of the vector shuffle.
4981static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4982                                   unsigned Depth) {
4983  if (Depth == 6)
4984    return SDValue();  // Limit search depth.
4985
4986  SDValue V = SDValue(N, 0);
4987  EVT VT = V.getValueType();
4988  unsigned Opcode = V.getOpcode();
4989
4990  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4991  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4992    int Elt = SV->getMaskElt(Index);
4993
4994    if (Elt < 0)
4995      return DAG.getUNDEF(VT.getVectorElementType());
4996
4997    unsigned NumElems = VT.getVectorNumElements();
4998    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4999                                         : SV->getOperand(1);
5000    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
5001  }
5002
5003  // Recurse into target specific vector shuffles to find scalars.
5004  if (isTargetShuffle(Opcode)) {
5005    MVT ShufVT = V.getSimpleValueType();
5006    unsigned NumElems = ShufVT.getVectorNumElements();
5007    SmallVector<int, 16> ShuffleMask;
5008    bool IsUnary;
5009
5010    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
5011      return SDValue();
5012
5013    int Elt = ShuffleMask[Index];
5014    if (Elt < 0)
5015      return DAG.getUNDEF(ShufVT.getVectorElementType());
5016
5017    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
5018                                         : N->getOperand(1);
5019    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
5020                               Depth+1);
5021  }
5022
5023  // Actual nodes that may contain scalar elements
5024  if (Opcode == ISD::BITCAST) {
5025    V = V.getOperand(0);
5026    EVT SrcVT = V.getValueType();
5027    unsigned NumElems = VT.getVectorNumElements();
5028
5029    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
5030      return SDValue();
5031  }
5032
5033  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5034    return (Index == 0) ? V.getOperand(0)
5035                        : DAG.getUNDEF(VT.getVectorElementType());
5036
5037  if (V.getOpcode() == ISD::BUILD_VECTOR)
5038    return V.getOperand(Index);
5039
5040  return SDValue();
5041}
5042
5043/// getNumOfConsecutiveZeros - Return the number of elements of a vector
5044/// shuffle operation which come from a consecutively from a zero. The
5045/// search can start in two different directions, from left or right.
5046/// We count undefs as zeros until PreferredNum is reached.
5047static unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp,
5048                                         unsigned NumElems, bool ZerosFromLeft,
5049                                         SelectionDAG &DAG,
5050                                         unsigned PreferredNum = -1U) {
5051  unsigned NumZeros = 0;
5052  for (unsigned i = 0; i != NumElems; ++i) {
5053    unsigned Index = ZerosFromLeft ? i : NumElems - i - 1;
5054    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
5055    if (!Elt.getNode())
5056      break;
5057
5058    if (X86::isZeroNode(Elt))
5059      ++NumZeros;
5060    else if (Elt.getOpcode() == ISD::UNDEF) // Undef as zero up to PreferredNum.
5061      NumZeros = std::min(NumZeros + 1, PreferredNum);
5062    else
5063      break;
5064  }
5065
5066  return NumZeros;
5067}
5068
5069/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
5070/// correspond consecutively to elements from one of the vector operands,
5071/// starting from its index OpIdx. Also tell OpNum which source vector operand.
5072static
5073bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
5074                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
5075                              unsigned NumElems, unsigned &OpNum) {
5076  bool SeenV1 = false;
5077  bool SeenV2 = false;
5078
5079  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
5080    int Idx = SVOp->getMaskElt(i);
5081    // Ignore undef indicies
5082    if (Idx < 0)
5083      continue;
5084
5085    if (Idx < (int)NumElems)
5086      SeenV1 = true;
5087    else
5088      SeenV2 = true;
5089
5090    // Only accept consecutive elements from the same vector
5091    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
5092      return false;
5093  }
5094
5095  OpNum = SeenV1 ? 0 : 1;
5096  return true;
5097}
5098
5099/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
5100/// logical left shift of a vector.
5101static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5102                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5103  unsigned NumElems =
5104    SVOp->getSimpleValueType(0).getVectorNumElements();
5105  unsigned NumZeros = getNumOfConsecutiveZeros(
5106      SVOp, NumElems, false /* check zeros from right */, DAG,
5107      SVOp->getMaskElt(0));
5108  unsigned OpSrc;
5109
5110  if (!NumZeros)
5111    return false;
5112
5113  // Considering the elements in the mask that are not consecutive zeros,
5114  // check if they consecutively come from only one of the source vectors.
5115  //
5116  //               V1 = {X, A, B, C}     0
5117  //                         \  \  \    /
5118  //   vector_shuffle V1, V2 <1, 2, 3, X>
5119  //
5120  if (!isShuffleMaskConsecutive(SVOp,
5121            0,                   // Mask Start Index
5122            NumElems-NumZeros,   // Mask End Index(exclusive)
5123            NumZeros,            // Where to start looking in the src vector
5124            NumElems,            // Number of elements in vector
5125            OpSrc))              // Which source operand ?
5126    return false;
5127
5128  isLeft = false;
5129  ShAmt = NumZeros;
5130  ShVal = SVOp->getOperand(OpSrc);
5131  return true;
5132}
5133
5134/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
5135/// logical left shift of a vector.
5136static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5137                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5138  unsigned NumElems =
5139    SVOp->getSimpleValueType(0).getVectorNumElements();
5140  unsigned NumZeros = getNumOfConsecutiveZeros(
5141      SVOp, NumElems, true /* check zeros from left */, DAG,
5142      NumElems - SVOp->getMaskElt(NumElems - 1) - 1);
5143  unsigned OpSrc;
5144
5145  if (!NumZeros)
5146    return false;
5147
5148  // Considering the elements in the mask that are not consecutive zeros,
5149  // check if they consecutively come from only one of the source vectors.
5150  //
5151  //                           0    { A, B, X, X } = V2
5152  //                          / \    /  /
5153  //   vector_shuffle V1, V2 <X, X, 4, 5>
5154  //
5155  if (!isShuffleMaskConsecutive(SVOp,
5156            NumZeros,     // Mask Start Index
5157            NumElems,     // Mask End Index(exclusive)
5158            0,            // Where to start looking in the src vector
5159            NumElems,     // Number of elements in vector
5160            OpSrc))       // Which source operand ?
5161    return false;
5162
5163  isLeft = true;
5164  ShAmt = NumZeros;
5165  ShVal = SVOp->getOperand(OpSrc);
5166  return true;
5167}
5168
5169/// isVectorShift - Returns true if the shuffle can be implemented as a
5170/// logical left or right shift of a vector.
5171static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
5172                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
5173  // Although the logic below support any bitwidth size, there are no
5174  // shift instructions which handle more than 128-bit vectors.
5175  if (!SVOp->getSimpleValueType(0).is128BitVector())
5176    return false;
5177
5178  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
5179      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
5180    return true;
5181
5182  return false;
5183}
5184
5185/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
5186///
5187static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
5188                                       unsigned NumNonZero, unsigned NumZero,
5189                                       SelectionDAG &DAG,
5190                                       const X86Subtarget* Subtarget,
5191                                       const TargetLowering &TLI) {
5192  if (NumNonZero > 8)
5193    return SDValue();
5194
5195  SDLoc dl(Op);
5196  SDValue V(0, 0);
5197  bool First = true;
5198  for (unsigned i = 0; i < 16; ++i) {
5199    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
5200    if (ThisIsNonZero && First) {
5201      if (NumZero)
5202        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5203      else
5204        V = DAG.getUNDEF(MVT::v8i16);
5205      First = false;
5206    }
5207
5208    if ((i & 1) != 0) {
5209      SDValue ThisElt(0, 0), LastElt(0, 0);
5210      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
5211      if (LastIsNonZero) {
5212        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
5213                              MVT::i16, Op.getOperand(i-1));
5214      }
5215      if (ThisIsNonZero) {
5216        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
5217        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
5218                              ThisElt, DAG.getConstant(8, MVT::i8));
5219        if (LastIsNonZero)
5220          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
5221      } else
5222        ThisElt = LastElt;
5223
5224      if (ThisElt.getNode())
5225        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
5226                        DAG.getIntPtrConstant(i/2));
5227    }
5228  }
5229
5230  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
5231}
5232
5233/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
5234///
5235static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
5236                                     unsigned NumNonZero, unsigned NumZero,
5237                                     SelectionDAG &DAG,
5238                                     const X86Subtarget* Subtarget,
5239                                     const TargetLowering &TLI) {
5240  if (NumNonZero > 4)
5241    return SDValue();
5242
5243  SDLoc dl(Op);
5244  SDValue V(0, 0);
5245  bool First = true;
5246  for (unsigned i = 0; i < 8; ++i) {
5247    bool isNonZero = (NonZeros & (1 << i)) != 0;
5248    if (isNonZero) {
5249      if (First) {
5250        if (NumZero)
5251          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
5252        else
5253          V = DAG.getUNDEF(MVT::v8i16);
5254        First = false;
5255      }
5256      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
5257                      MVT::v8i16, V, Op.getOperand(i),
5258                      DAG.getIntPtrConstant(i));
5259    }
5260  }
5261
5262  return V;
5263}
5264
5265/// getVShift - Return a vector logical shift node.
5266///
5267static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
5268                         unsigned NumBits, SelectionDAG &DAG,
5269                         const TargetLowering &TLI, SDLoc dl) {
5270  assert(VT.is128BitVector() && "Unknown type for VShift");
5271  EVT ShVT = MVT::v2i64;
5272  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
5273  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
5274  return DAG.getNode(ISD::BITCAST, dl, VT,
5275                     DAG.getNode(Opc, dl, ShVT, SrcOp,
5276                             DAG.getConstant(NumBits,
5277                                  TLI.getScalarShiftAmountTy(SrcOp.getValueType()))));
5278}
5279
5280static SDValue
5281LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
5282
5283  // Check if the scalar load can be widened into a vector load. And if
5284  // the address is "base + cst" see if the cst can be "absorbed" into
5285  // the shuffle mask.
5286  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
5287    SDValue Ptr = LD->getBasePtr();
5288    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
5289      return SDValue();
5290    EVT PVT = LD->getValueType(0);
5291    if (PVT != MVT::i32 && PVT != MVT::f32)
5292      return SDValue();
5293
5294    int FI = -1;
5295    int64_t Offset = 0;
5296    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
5297      FI = FINode->getIndex();
5298      Offset = 0;
5299    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
5300               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5301      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5302      Offset = Ptr.getConstantOperandVal(1);
5303      Ptr = Ptr.getOperand(0);
5304    } else {
5305      return SDValue();
5306    }
5307
5308    // FIXME: 256-bit vector instructions don't require a strict alignment,
5309    // improve this code to support it better.
5310    unsigned RequiredAlign = VT.getSizeInBits()/8;
5311    SDValue Chain = LD->getChain();
5312    // Make sure the stack object alignment is at least 16 or 32.
5313    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5314    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
5315      if (MFI->isFixedObjectIndex(FI)) {
5316        // Can't change the alignment. FIXME: It's possible to compute
5317        // the exact stack offset and reference FI + adjust offset instead.
5318        // If someone *really* cares about this. That's the way to implement it.
5319        return SDValue();
5320      } else {
5321        MFI->setObjectAlignment(FI, RequiredAlign);
5322      }
5323    }
5324
5325    // (Offset % 16 or 32) must be multiple of 4. Then address is then
5326    // Ptr + (Offset & ~15).
5327    if (Offset < 0)
5328      return SDValue();
5329    if ((Offset % RequiredAlign) & 3)
5330      return SDValue();
5331    int64_t StartOffset = Offset & ~(RequiredAlign-1);
5332    if (StartOffset)
5333      Ptr = DAG.getNode(ISD::ADD, SDLoc(Ptr), Ptr.getValueType(),
5334                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
5335
5336    int EltNo = (Offset - StartOffset) >> 2;
5337    unsigned NumElems = VT.getVectorNumElements();
5338
5339    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
5340    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
5341                             LD->getPointerInfo().getWithOffset(StartOffset),
5342                             false, false, false, 0);
5343
5344    SmallVector<int, 8> Mask;
5345    for (unsigned i = 0; i != NumElems; ++i)
5346      Mask.push_back(EltNo);
5347
5348    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
5349  }
5350
5351  return SDValue();
5352}
5353
5354/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
5355/// vector of type 'VT', see if the elements can be replaced by a single large
5356/// load which has the same value as a build_vector whose operands are 'elts'.
5357///
5358/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
5359///
5360/// FIXME: we'd also like to handle the case where the last elements are zero
5361/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
5362/// There's even a handy isZeroNode for that purpose.
5363static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
5364                                        SDLoc &DL, SelectionDAG &DAG) {
5365  EVT EltVT = VT.getVectorElementType();
5366  unsigned NumElems = Elts.size();
5367
5368  LoadSDNode *LDBase = NULL;
5369  unsigned LastLoadedElt = -1U;
5370
5371  // For each element in the initializer, see if we've found a load or an undef.
5372  // If we don't find an initial load element, or later load elements are
5373  // non-consecutive, bail out.
5374  for (unsigned i = 0; i < NumElems; ++i) {
5375    SDValue Elt = Elts[i];
5376
5377    if (!Elt.getNode() ||
5378        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5379      return SDValue();
5380    if (!LDBase) {
5381      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5382        return SDValue();
5383      LDBase = cast<LoadSDNode>(Elt.getNode());
5384      LastLoadedElt = i;
5385      continue;
5386    }
5387    if (Elt.getOpcode() == ISD::UNDEF)
5388      continue;
5389
5390    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5391    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5392      return SDValue();
5393    LastLoadedElt = i;
5394  }
5395
5396  // If we have found an entire vector of loads and undefs, then return a large
5397  // load of the entire vector width starting at the base pointer.  If we found
5398  // consecutive loads for the low half, generate a vzext_load node.
5399  if (LastLoadedElt == NumElems - 1) {
5400    SDValue NewLd = SDValue();
5401    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5402      NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5403                          LDBase->getPointerInfo(),
5404                          LDBase->isVolatile(), LDBase->isNonTemporal(),
5405                          LDBase->isInvariant(), 0);
5406    NewLd = DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5407                        LDBase->getPointerInfo(),
5408                        LDBase->isVolatile(), LDBase->isNonTemporal(),
5409                        LDBase->isInvariant(), LDBase->getAlignment());
5410
5411    if (LDBase->hasAnyUseOfValue(1)) {
5412      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5413                                     SDValue(LDBase, 1),
5414                                     SDValue(NewLd.getNode(), 1));
5415      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5416      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5417                             SDValue(NewLd.getNode(), 1));
5418    }
5419
5420    return NewLd;
5421  }
5422  if (NumElems == 4 && LastLoadedElt == 1 &&
5423      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5424    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5425    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5426    SDValue ResNode =
5427        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops,
5428                                array_lengthof(Ops), MVT::i64,
5429                                LDBase->getPointerInfo(),
5430                                LDBase->getAlignment(),
5431                                false/*isVolatile*/, true/*ReadMem*/,
5432                                false/*WriteMem*/);
5433
5434    // Make sure the newly-created LOAD is in the same position as LDBase in
5435    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5436    // update uses of LDBase's output chain to use the TokenFactor.
5437    if (LDBase->hasAnyUseOfValue(1)) {
5438      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5439                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5440      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5441      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5442                             SDValue(ResNode.getNode(), 1));
5443    }
5444
5445    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5446  }
5447  return SDValue();
5448}
5449
5450/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5451/// to generate a splat value for the following cases:
5452/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5453/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5454/// a scalar load, or a constant.
5455/// The VBROADCAST node is returned when a pattern is found,
5456/// or SDValue() otherwise.
5457static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget* Subtarget,
5458                                    SelectionDAG &DAG) {
5459  if (!Subtarget->hasFp256())
5460    return SDValue();
5461
5462  MVT VT = Op.getSimpleValueType();
5463  SDLoc dl(Op);
5464
5465  assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
5466         "Unsupported vector type for broadcast.");
5467
5468  SDValue Ld;
5469  bool ConstSplatVal;
5470
5471  switch (Op.getOpcode()) {
5472    default:
5473      // Unknown pattern found.
5474      return SDValue();
5475
5476    case ISD::BUILD_VECTOR: {
5477      // The BUILD_VECTOR node must be a splat.
5478      if (!isSplatVector(Op.getNode()))
5479        return SDValue();
5480
5481      Ld = Op.getOperand(0);
5482      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5483                     Ld.getOpcode() == ISD::ConstantFP);
5484
5485      // The suspected load node has several users. Make sure that all
5486      // of its users are from the BUILD_VECTOR node.
5487      // Constants may have multiple users.
5488      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5489        return SDValue();
5490      break;
5491    }
5492
5493    case ISD::VECTOR_SHUFFLE: {
5494      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5495
5496      // Shuffles must have a splat mask where the first element is
5497      // broadcasted.
5498      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5499        return SDValue();
5500
5501      SDValue Sc = Op.getOperand(0);
5502      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5503          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5504
5505        if (!Subtarget->hasInt256())
5506          return SDValue();
5507
5508        // Use the register form of the broadcast instruction available on AVX2.
5509        if (VT.getSizeInBits() >= 256)
5510          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5511        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5512      }
5513
5514      Ld = Sc.getOperand(0);
5515      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5516                       Ld.getOpcode() == ISD::ConstantFP);
5517
5518      // The scalar_to_vector node and the suspected
5519      // load node must have exactly one user.
5520      // Constants may have multiple users.
5521
5522      // AVX-512 has register version of the broadcast
5523      bool hasRegVer = Subtarget->hasAVX512() && VT.is512BitVector() &&
5524        Ld.getValueType().getSizeInBits() >= 32;
5525      if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
5526          !hasRegVer))
5527        return SDValue();
5528      break;
5529    }
5530  }
5531
5532  bool IsGE256 = (VT.getSizeInBits() >= 256);
5533
5534  // Handle the broadcasting a single constant scalar from the constant pool
5535  // into a vector. On Sandybridge it is still better to load a constant vector
5536  // from the constant pool and not to broadcast it from a scalar.
5537  if (ConstSplatVal && Subtarget->hasInt256()) {
5538    EVT CVT = Ld.getValueType();
5539    assert(!CVT.isVector() && "Must not broadcast a vector type");
5540    unsigned ScalarSize = CVT.getSizeInBits();
5541
5542    if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)) {
5543      const Constant *C = 0;
5544      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5545        C = CI->getConstantIntValue();
5546      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5547        C = CF->getConstantFPValue();
5548
5549      assert(C && "Invalid constant type");
5550
5551      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5552      SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
5553      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5554      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5555                       MachinePointerInfo::getConstantPool(),
5556                       false, false, false, Alignment);
5557
5558      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5559    }
5560  }
5561
5562  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5563  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5564
5565  // Handle AVX2 in-register broadcasts.
5566  if (!IsLoad && Subtarget->hasInt256() &&
5567      (ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
5568    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5569
5570  // The scalar source must be a normal load.
5571  if (!IsLoad)
5572    return SDValue();
5573
5574  if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64))
5575    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5576
5577  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5578  // double since there is no vbroadcastsd xmm
5579  if (Subtarget->hasInt256() && Ld.getValueType().isInteger()) {
5580    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5581      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5582  }
5583
5584  // Unsupported broadcast.
5585  return SDValue();
5586}
5587
5588static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
5589  MVT VT = Op.getSimpleValueType();
5590
5591  // Skip if insert_vec_elt is not supported.
5592  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5593  if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
5594    return SDValue();
5595
5596  SDLoc DL(Op);
5597  unsigned NumElems = Op.getNumOperands();
5598
5599  SDValue VecIn1;
5600  SDValue VecIn2;
5601  SmallVector<unsigned, 4> InsertIndices;
5602  SmallVector<int, 8> Mask(NumElems, -1);
5603
5604  for (unsigned i = 0; i != NumElems; ++i) {
5605    unsigned Opc = Op.getOperand(i).getOpcode();
5606
5607    if (Opc == ISD::UNDEF)
5608      continue;
5609
5610    if (Opc != ISD::EXTRACT_VECTOR_ELT) {
5611      // Quit if more than 1 elements need inserting.
5612      if (InsertIndices.size() > 1)
5613        return SDValue();
5614
5615      InsertIndices.push_back(i);
5616      continue;
5617    }
5618
5619    SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
5620    SDValue ExtIdx = Op.getOperand(i).getOperand(1);
5621
5622    // Quit if extracted from vector of different type.
5623    if (ExtractedFromVec.getValueType() != VT)
5624      return SDValue();
5625
5626    // Quit if non-constant index.
5627    if (!isa<ConstantSDNode>(ExtIdx))
5628      return SDValue();
5629
5630    if (VecIn1.getNode() == 0)
5631      VecIn1 = ExtractedFromVec;
5632    else if (VecIn1 != ExtractedFromVec) {
5633      if (VecIn2.getNode() == 0)
5634        VecIn2 = ExtractedFromVec;
5635      else if (VecIn2 != ExtractedFromVec)
5636        // Quit if more than 2 vectors to shuffle
5637        return SDValue();
5638    }
5639
5640    unsigned Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
5641
5642    if (ExtractedFromVec == VecIn1)
5643      Mask[i] = Idx;
5644    else if (ExtractedFromVec == VecIn2)
5645      Mask[i] = Idx + NumElems;
5646  }
5647
5648  if (VecIn1.getNode() == 0)
5649    return SDValue();
5650
5651  VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
5652  SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
5653  for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
5654    unsigned Idx = InsertIndices[i];
5655    NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
5656                     DAG.getIntPtrConstant(Idx));
5657  }
5658
5659  return NV;
5660}
5661
5662// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
5663SDValue
5664X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
5665
5666  MVT VT = Op.getSimpleValueType();
5667  assert((VT.getVectorElementType() == MVT::i1) && (VT.getSizeInBits() <= 16) &&
5668         "Unexpected type in LowerBUILD_VECTORvXi1!");
5669
5670  SDLoc dl(Op);
5671  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5672    SDValue Cst = DAG.getTargetConstant(0, MVT::i1);
5673    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
5674                      Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5675    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
5676                       Ops, VT.getVectorNumElements());
5677  }
5678
5679  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5680    SDValue Cst = DAG.getTargetConstant(1, MVT::i1);
5681    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst,
5682                      Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
5683    return DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
5684                       Ops, VT.getVectorNumElements());
5685  }
5686
5687  bool AllContants = true;
5688  uint64_t Immediate = 0;
5689  for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
5690    SDValue In = Op.getOperand(idx);
5691    if (In.getOpcode() == ISD::UNDEF)
5692      continue;
5693    if (!isa<ConstantSDNode>(In)) {
5694      AllContants = false;
5695      break;
5696    }
5697    if (cast<ConstantSDNode>(In)->getZExtValue())
5698      Immediate |= (1ULL << idx);
5699  }
5700
5701  if (AllContants) {
5702    SDValue FullMask = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1,
5703      DAG.getConstant(Immediate, MVT::i16));
5704    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, FullMask,
5705                       DAG.getIntPtrConstant(0));
5706  }
5707
5708  // Splat vector (with undefs)
5709  SDValue In = Op.getOperand(0);
5710  for (unsigned i = 1, e = Op.getNumOperands(); i != e; ++i) {
5711    if (Op.getOperand(i) != In && Op.getOperand(i).getOpcode() != ISD::UNDEF)
5712      llvm_unreachable("Unsupported predicate operation");
5713  }
5714
5715  SDValue EFLAGS, X86CC;
5716  if (In.getOpcode() == ISD::SETCC) {
5717    SDValue Op0 = In.getOperand(0);
5718    SDValue Op1 = In.getOperand(1);
5719    ISD::CondCode CC = cast<CondCodeSDNode>(In.getOperand(2))->get();
5720    bool isFP = Op1.getValueType().isFloatingPoint();
5721    unsigned X86CCVal = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5722
5723    assert(X86CCVal != X86::COND_INVALID && "Unsupported predicate operation");
5724
5725    X86CC = DAG.getConstant(X86CCVal, MVT::i8);
5726    EFLAGS = EmitCmp(Op0, Op1, X86CCVal, DAG);
5727    EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
5728  } else if (In.getOpcode() == X86ISD::SETCC) {
5729    X86CC = In.getOperand(0);
5730    EFLAGS = In.getOperand(1);
5731  } else {
5732    // The algorithm:
5733    //   Bit1 = In & 0x1
5734    //   if (Bit1 != 0)
5735    //     ZF = 0
5736    //   else
5737    //     ZF = 1
5738    //   if (ZF == 0)
5739    //     res = allOnes ### CMOVNE -1, %res
5740    //   else
5741    //     res = allZero
5742    MVT InVT = In.getSimpleValueType();
5743    SDValue Bit1 = DAG.getNode(ISD::AND, dl, InVT, In, DAG.getConstant(1, InVT));
5744    EFLAGS = EmitTest(Bit1, X86::COND_NE, DAG);
5745    X86CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5746  }
5747
5748  if (VT == MVT::v16i1) {
5749    SDValue Cst1 = DAG.getConstant(-1, MVT::i16);
5750    SDValue Cst0 = DAG.getConstant(0, MVT::i16);
5751    SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i16,
5752          Cst0, Cst1, X86CC, EFLAGS);
5753    return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
5754  }
5755
5756  if (VT == MVT::v8i1) {
5757    SDValue Cst1 = DAG.getConstant(-1, MVT::i32);
5758    SDValue Cst0 = DAG.getConstant(0, MVT::i32);
5759    SDValue CmovOp = DAG.getNode(X86ISD::CMOV, dl, MVT::i32,
5760          Cst0, Cst1, X86CC, EFLAGS);
5761    CmovOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CmovOp);
5762    return DAG.getNode(ISD::BITCAST, dl, VT, CmovOp);
5763  }
5764  llvm_unreachable("Unsupported predicate operation");
5765}
5766
5767SDValue
5768X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5769  SDLoc dl(Op);
5770
5771  MVT VT = Op.getSimpleValueType();
5772  MVT ExtVT = VT.getVectorElementType();
5773  unsigned NumElems = Op.getNumOperands();
5774
5775  // Generate vectors for predicate vectors.
5776  if (VT.getScalarType() == MVT::i1 && Subtarget->hasAVX512())
5777    return LowerBUILD_VECTORvXi1(Op, DAG);
5778
5779  // Vectors containing all zeros can be matched by pxor and xorps later
5780  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5781    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5782    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5783    if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
5784      return Op;
5785
5786    return getZeroVector(VT, Subtarget, DAG, dl);
5787  }
5788
5789  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5790  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5791  // vpcmpeqd on 256-bit vectors.
5792  if (Subtarget->hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
5793    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasInt256()))
5794      return Op;
5795
5796    if (!VT.is512BitVector())
5797      return getOnesVector(VT, Subtarget->hasInt256(), DAG, dl);
5798  }
5799
5800  SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
5801  if (Broadcast.getNode())
5802    return Broadcast;
5803
5804  unsigned EVTBits = ExtVT.getSizeInBits();
5805
5806  unsigned NumZero  = 0;
5807  unsigned NumNonZero = 0;
5808  unsigned NonZeros = 0;
5809  bool IsAllConstants = true;
5810  SmallSet<SDValue, 8> Values;
5811  for (unsigned i = 0; i < NumElems; ++i) {
5812    SDValue Elt = Op.getOperand(i);
5813    if (Elt.getOpcode() == ISD::UNDEF)
5814      continue;
5815    Values.insert(Elt);
5816    if (Elt.getOpcode() != ISD::Constant &&
5817        Elt.getOpcode() != ISD::ConstantFP)
5818      IsAllConstants = false;
5819    if (X86::isZeroNode(Elt))
5820      NumZero++;
5821    else {
5822      NonZeros |= (1 << i);
5823      NumNonZero++;
5824    }
5825  }
5826
5827  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5828  if (NumNonZero == 0)
5829    return DAG.getUNDEF(VT);
5830
5831  // Special case for single non-zero, non-undef, element.
5832  if (NumNonZero == 1) {
5833    unsigned Idx = countTrailingZeros(NonZeros);
5834    SDValue Item = Op.getOperand(Idx);
5835
5836    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5837    // the value are obviously zero, truncate the value to i32 and do the
5838    // insertion that way.  Only do this if the value is non-constant or if the
5839    // value is a constant being inserted into element 0.  It is cheaper to do
5840    // a constant pool load than it is to do a movd + shuffle.
5841    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5842        (!IsAllConstants || Idx == 0)) {
5843      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5844        // Handle SSE only.
5845        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5846        EVT VecVT = MVT::v4i32;
5847        unsigned VecElts = 4;
5848
5849        // Truncate the value (which may itself be a constant) to i32, and
5850        // convert it to a vector with movd (S2V+shuffle to zero extend).
5851        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5852        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5853        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5854
5855        // Now we have our 32-bit value zero extended in the low element of
5856        // a vector.  If Idx != 0, swizzle it into place.
5857        if (Idx != 0) {
5858          SmallVector<int, 4> Mask;
5859          Mask.push_back(Idx);
5860          for (unsigned i = 1; i != VecElts; ++i)
5861            Mask.push_back(i);
5862          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5863                                      &Mask[0]);
5864        }
5865        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5866      }
5867    }
5868
5869    // If we have a constant or non-constant insertion into the low element of
5870    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5871    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5872    // depending on what the source datatype is.
5873    if (Idx == 0) {
5874      if (NumZero == 0)
5875        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5876
5877      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5878          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5879        if (VT.is256BitVector() || VT.is512BitVector()) {
5880          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5881          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5882                             Item, DAG.getIntPtrConstant(0));
5883        }
5884        assert(VT.is128BitVector() && "Expected an SSE value type!");
5885        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5886        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5887        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5888      }
5889
5890      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5891        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5892        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5893        if (VT.is256BitVector()) {
5894          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5895          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5896        } else {
5897          assert(VT.is128BitVector() && "Expected an SSE value type!");
5898          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5899        }
5900        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5901      }
5902    }
5903
5904    // Is it a vector logical left shift?
5905    if (NumElems == 2 && Idx == 1 &&
5906        X86::isZeroNode(Op.getOperand(0)) &&
5907        !X86::isZeroNode(Op.getOperand(1))) {
5908      unsigned NumBits = VT.getSizeInBits();
5909      return getVShift(true, VT,
5910                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5911                                   VT, Op.getOperand(1)),
5912                       NumBits/2, DAG, *this, dl);
5913    }
5914
5915    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5916      return SDValue();
5917
5918    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5919    // is a non-constant being inserted into an element other than the low one,
5920    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5921    // movd/movss) to move this into the low element, then shuffle it into
5922    // place.
5923    if (EVTBits == 32) {
5924      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5925
5926      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5927      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5928      SmallVector<int, 8> MaskVec;
5929      for (unsigned i = 0; i != NumElems; ++i)
5930        MaskVec.push_back(i == Idx ? 0 : 1);
5931      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5932    }
5933  }
5934
5935  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5936  if (Values.size() == 1) {
5937    if (EVTBits == 32) {
5938      // Instead of a shuffle like this:
5939      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5940      // Check if it's possible to issue this instead.
5941      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5942      unsigned Idx = countTrailingZeros(NonZeros);
5943      SDValue Item = Op.getOperand(Idx);
5944      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5945        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5946    }
5947    return SDValue();
5948  }
5949
5950  // A vector full of immediates; various special cases are already
5951  // handled, so this is best done with a single constant-pool load.
5952  if (IsAllConstants)
5953    return SDValue();
5954
5955  // For AVX-length vectors, build the individual 128-bit pieces and use
5956  // shuffles to put them in place.
5957  if (VT.is256BitVector()) {
5958    SmallVector<SDValue, 32> V;
5959    for (unsigned i = 0; i != NumElems; ++i)
5960      V.push_back(Op.getOperand(i));
5961
5962    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5963
5964    // Build both the lower and upper subvector.
5965    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5966    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5967                                NumElems/2);
5968
5969    // Recreate the wider vector with the lower and upper part.
5970    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5971  }
5972
5973  // Let legalizer expand 2-wide build_vectors.
5974  if (EVTBits == 64) {
5975    if (NumNonZero == 1) {
5976      // One half is zero or undef.
5977      unsigned Idx = countTrailingZeros(NonZeros);
5978      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5979                                 Op.getOperand(Idx));
5980      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5981    }
5982    return SDValue();
5983  }
5984
5985  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5986  if (EVTBits == 8 && NumElems == 16) {
5987    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5988                                        Subtarget, *this);
5989    if (V.getNode()) return V;
5990  }
5991
5992  if (EVTBits == 16 && NumElems == 8) {
5993    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5994                                      Subtarget, *this);
5995    if (V.getNode()) return V;
5996  }
5997
5998  // If element VT is == 32 bits, turn it into a number of shuffles.
5999  SmallVector<SDValue, 8> V(NumElems);
6000  if (NumElems == 4 && NumZero > 0) {
6001    for (unsigned i = 0; i < 4; ++i) {
6002      bool isZero = !(NonZeros & (1 << i));
6003      if (isZero)
6004        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
6005      else
6006        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6007    }
6008
6009    for (unsigned i = 0; i < 2; ++i) {
6010      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
6011        default: break;
6012        case 0:
6013          V[i] = V[i*2];  // Must be a zero vector.
6014          break;
6015        case 1:
6016          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
6017          break;
6018        case 2:
6019          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
6020          break;
6021        case 3:
6022          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
6023          break;
6024      }
6025    }
6026
6027    bool Reverse1 = (NonZeros & 0x3) == 2;
6028    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
6029    int MaskVec[] = {
6030      Reverse1 ? 1 : 0,
6031      Reverse1 ? 0 : 1,
6032      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
6033      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
6034    };
6035    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
6036  }
6037
6038  if (Values.size() > 1 && VT.is128BitVector()) {
6039    // Check for a build vector of consecutive loads.
6040    for (unsigned i = 0; i < NumElems; ++i)
6041      V[i] = Op.getOperand(i);
6042
6043    // Check for elements which are consecutive loads.
6044    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
6045    if (LD.getNode())
6046      return LD;
6047
6048    // Check for a build vector from mostly shuffle plus few inserting.
6049    SDValue Sh = buildFromShuffleMostly(Op, DAG);
6050    if (Sh.getNode())
6051      return Sh;
6052
6053    // For SSE 4.1, use insertps to put the high elements into the low element.
6054    if (getSubtarget()->hasSSE41()) {
6055      SDValue Result;
6056      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
6057        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
6058      else
6059        Result = DAG.getUNDEF(VT);
6060
6061      for (unsigned i = 1; i < NumElems; ++i) {
6062        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
6063        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
6064                             Op.getOperand(i), DAG.getIntPtrConstant(i));
6065      }
6066      return Result;
6067    }
6068
6069    // Otherwise, expand into a number of unpckl*, start by extending each of
6070    // our (non-undef) elements to the full vector width with the element in the
6071    // bottom slot of the vector (which generates no code for SSE).
6072    for (unsigned i = 0; i < NumElems; ++i) {
6073      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
6074        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
6075      else
6076        V[i] = DAG.getUNDEF(VT);
6077    }
6078
6079    // Next, we iteratively mix elements, e.g. for v4f32:
6080    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
6081    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
6082    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
6083    unsigned EltStride = NumElems >> 1;
6084    while (EltStride != 0) {
6085      for (unsigned i = 0; i < EltStride; ++i) {
6086        // If V[i+EltStride] is undef and this is the first round of mixing,
6087        // then it is safe to just drop this shuffle: V[i] is already in the
6088        // right place, the one element (since it's the first round) being
6089        // inserted as undef can be dropped.  This isn't safe for successive
6090        // rounds because they will permute elements within both vectors.
6091        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
6092            EltStride == NumElems/2)
6093          continue;
6094
6095        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
6096      }
6097      EltStride >>= 1;
6098    }
6099    return V[0];
6100  }
6101  return SDValue();
6102}
6103
6104// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
6105// to create 256-bit vectors from two other 128-bit ones.
6106static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6107  SDLoc dl(Op);
6108  MVT ResVT = Op.getSimpleValueType();
6109
6110  assert((ResVT.is256BitVector() ||
6111          ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
6112
6113  SDValue V1 = Op.getOperand(0);
6114  SDValue V2 = Op.getOperand(1);
6115  unsigned NumElems = ResVT.getVectorNumElements();
6116  if(ResVT.is256BitVector())
6117    return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6118
6119  return Concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
6120}
6121
6122static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6123  assert(Op.getNumOperands() == 2);
6124
6125  // AVX/AVX-512 can use the vinsertf128 instruction to create 256-bit vectors
6126  // from two other 128-bit ones.
6127  return LowerAVXCONCAT_VECTORS(Op, DAG);
6128}
6129
6130// Try to lower a shuffle node into a simple blend instruction.
6131static SDValue
6132LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
6133                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
6134  SDValue V1 = SVOp->getOperand(0);
6135  SDValue V2 = SVOp->getOperand(1);
6136  SDLoc dl(SVOp);
6137  MVT VT = SVOp->getSimpleValueType(0);
6138  MVT EltVT = VT.getVectorElementType();
6139  unsigned NumElems = VT.getVectorNumElements();
6140
6141  if (!Subtarget->hasSSE41() || EltVT == MVT::i8)
6142    return SDValue();
6143  if (!Subtarget->hasInt256() && VT == MVT::v16i16)
6144    return SDValue();
6145
6146  // Check the mask for BLEND and build the value.
6147  unsigned MaskValue = 0;
6148  // There are 2 lanes if (NumElems > 8), and 1 lane otherwise.
6149  unsigned NumLanes = (NumElems-1)/8 + 1;
6150  unsigned NumElemsInLane = NumElems / NumLanes;
6151
6152  // Blend for v16i16 should be symetric for the both lanes.
6153  for (unsigned i = 0; i < NumElemsInLane; ++i) {
6154
6155    int SndLaneEltIdx = (NumLanes == 2) ?
6156      SVOp->getMaskElt(i + NumElemsInLane) : -1;
6157    int EltIdx = SVOp->getMaskElt(i);
6158
6159    if ((EltIdx < 0 || EltIdx == (int)i) &&
6160        (SndLaneEltIdx < 0 || SndLaneEltIdx == (int)(i + NumElemsInLane)))
6161      continue;
6162
6163    if (((unsigned)EltIdx == (i + NumElems)) &&
6164        (SndLaneEltIdx < 0 ||
6165         (unsigned)SndLaneEltIdx == i + NumElems + NumElemsInLane))
6166      MaskValue |= (1<<i);
6167    else
6168      return SDValue();
6169  }
6170
6171  // Convert i32 vectors to floating point if it is not AVX2.
6172  // AVX2 introduced VPBLENDD instruction for 128 and 256-bit vectors.
6173  MVT BlendVT = VT;
6174  if (EltVT == MVT::i64 || (EltVT == MVT::i32 && !Subtarget->hasInt256())) {
6175    BlendVT = MVT::getVectorVT(MVT::getFloatingPointVT(EltVT.getSizeInBits()),
6176                               NumElems);
6177    V1 = DAG.getNode(ISD::BITCAST, dl, VT, V1);
6178    V2 = DAG.getNode(ISD::BITCAST, dl, VT, V2);
6179  }
6180
6181  SDValue Ret = DAG.getNode(X86ISD::BLENDI, dl, BlendVT, V1, V2,
6182                            DAG.getConstant(MaskValue, MVT::i32));
6183  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
6184}
6185
6186// v8i16 shuffles - Prefer shuffles in the following order:
6187// 1. [all]   pshuflw, pshufhw, optional move
6188// 2. [ssse3] 1 x pshufb
6189// 3. [ssse3] 2 x pshufb + 1 x por
6190// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
6191static SDValue
6192LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
6193                         SelectionDAG &DAG) {
6194  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6195  SDValue V1 = SVOp->getOperand(0);
6196  SDValue V2 = SVOp->getOperand(1);
6197  SDLoc dl(SVOp);
6198  SmallVector<int, 8> MaskVals;
6199
6200  // Determine if more than 1 of the words in each of the low and high quadwords
6201  // of the result come from the same quadword of one of the two inputs.  Undef
6202  // mask values count as coming from any quadword, for better codegen.
6203  unsigned LoQuad[] = { 0, 0, 0, 0 };
6204  unsigned HiQuad[] = { 0, 0, 0, 0 };
6205  std::bitset<4> InputQuads;
6206  for (unsigned i = 0; i < 8; ++i) {
6207    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
6208    int EltIdx = SVOp->getMaskElt(i);
6209    MaskVals.push_back(EltIdx);
6210    if (EltIdx < 0) {
6211      ++Quad[0];
6212      ++Quad[1];
6213      ++Quad[2];
6214      ++Quad[3];
6215      continue;
6216    }
6217    ++Quad[EltIdx / 4];
6218    InputQuads.set(EltIdx / 4);
6219  }
6220
6221  int BestLoQuad = -1;
6222  unsigned MaxQuad = 1;
6223  for (unsigned i = 0; i < 4; ++i) {
6224    if (LoQuad[i] > MaxQuad) {
6225      BestLoQuad = i;
6226      MaxQuad = LoQuad[i];
6227    }
6228  }
6229
6230  int BestHiQuad = -1;
6231  MaxQuad = 1;
6232  for (unsigned i = 0; i < 4; ++i) {
6233    if (HiQuad[i] > MaxQuad) {
6234      BestHiQuad = i;
6235      MaxQuad = HiQuad[i];
6236    }
6237  }
6238
6239  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
6240  // of the two input vectors, shuffle them into one input vector so only a
6241  // single pshufb instruction is necessary. If There are more than 2 input
6242  // quads, disable the next transformation since it does not help SSSE3.
6243  bool V1Used = InputQuads[0] || InputQuads[1];
6244  bool V2Used = InputQuads[2] || InputQuads[3];
6245  if (Subtarget->hasSSSE3()) {
6246    if (InputQuads.count() == 2 && V1Used && V2Used) {
6247      BestLoQuad = InputQuads[0] ? 0 : 1;
6248      BestHiQuad = InputQuads[2] ? 2 : 3;
6249    }
6250    if (InputQuads.count() > 2) {
6251      BestLoQuad = -1;
6252      BestHiQuad = -1;
6253    }
6254  }
6255
6256  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
6257  // the shuffle mask.  If a quad is scored as -1, that means that it contains
6258  // words from all 4 input quadwords.
6259  SDValue NewV;
6260  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
6261    int MaskV[] = {
6262      BestLoQuad < 0 ? 0 : BestLoQuad,
6263      BestHiQuad < 0 ? 1 : BestHiQuad
6264    };
6265    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
6266                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
6267                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
6268    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
6269
6270    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
6271    // source words for the shuffle, to aid later transformations.
6272    bool AllWordsInNewV = true;
6273    bool InOrder[2] = { true, true };
6274    for (unsigned i = 0; i != 8; ++i) {
6275      int idx = MaskVals[i];
6276      if (idx != (int)i)
6277        InOrder[i/4] = false;
6278      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
6279        continue;
6280      AllWordsInNewV = false;
6281      break;
6282    }
6283
6284    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
6285    if (AllWordsInNewV) {
6286      for (int i = 0; i != 8; ++i) {
6287        int idx = MaskVals[i];
6288        if (idx < 0)
6289          continue;
6290        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
6291        if ((idx != i) && idx < 4)
6292          pshufhw = false;
6293        if ((idx != i) && idx > 3)
6294          pshuflw = false;
6295      }
6296      V1 = NewV;
6297      V2Used = false;
6298      BestLoQuad = 0;
6299      BestHiQuad = 1;
6300    }
6301
6302    // If we've eliminated the use of V2, and the new mask is a pshuflw or
6303    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
6304    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
6305      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
6306      unsigned TargetMask = 0;
6307      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
6308                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
6309      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6310      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
6311                             getShufflePSHUFLWImmediate(SVOp);
6312      V1 = NewV.getOperand(0);
6313      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
6314    }
6315  }
6316
6317  // Promote splats to a larger type which usually leads to more efficient code.
6318  // FIXME: Is this true if pshufb is available?
6319  if (SVOp->isSplat())
6320    return PromoteSplat(SVOp, DAG);
6321
6322  // If we have SSSE3, and all words of the result are from 1 input vector,
6323  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
6324  // is present, fall back to case 4.
6325  if (Subtarget->hasSSSE3()) {
6326    SmallVector<SDValue,16> pshufbMask;
6327
6328    // If we have elements from both input vectors, set the high bit of the
6329    // shuffle mask element to zero out elements that come from V2 in the V1
6330    // mask, and elements that come from V1 in the V2 mask, so that the two
6331    // results can be OR'd together.
6332    bool TwoInputs = V1Used && V2Used;
6333    for (unsigned i = 0; i != 8; ++i) {
6334      int EltIdx = MaskVals[i] * 2;
6335      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
6336      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
6337      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
6338      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
6339    }
6340    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
6341    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6342                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6343                                 MVT::v16i8, &pshufbMask[0], 16));
6344    if (!TwoInputs)
6345      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6346
6347    // Calculate the shuffle mask for the second input, shuffle it, and
6348    // OR it with the first shuffled input.
6349    pshufbMask.clear();
6350    for (unsigned i = 0; i != 8; ++i) {
6351      int EltIdx = MaskVals[i] * 2;
6352      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6353      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
6354      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
6355      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
6356    }
6357    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
6358    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6359                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6360                                 MVT::v16i8, &pshufbMask[0], 16));
6361    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6362    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6363  }
6364
6365  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
6366  // and update MaskVals with new element order.
6367  std::bitset<8> InOrder;
6368  if (BestLoQuad >= 0) {
6369    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
6370    for (int i = 0; i != 4; ++i) {
6371      int idx = MaskVals[i];
6372      if (idx < 0) {
6373        InOrder.set(i);
6374      } else if ((idx / 4) == BestLoQuad) {
6375        MaskV[i] = idx & 3;
6376        InOrder.set(i);
6377      }
6378    }
6379    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6380                                &MaskV[0]);
6381
6382    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
6383      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6384      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
6385                                  NewV.getOperand(0),
6386                                  getShufflePSHUFLWImmediate(SVOp), DAG);
6387    }
6388  }
6389
6390  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
6391  // and update MaskVals with the new element order.
6392  if (BestHiQuad >= 0) {
6393    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
6394    for (unsigned i = 4; i != 8; ++i) {
6395      int idx = MaskVals[i];
6396      if (idx < 0) {
6397        InOrder.set(i);
6398      } else if ((idx / 4) == BestHiQuad) {
6399        MaskV[i] = (idx & 3) + 4;
6400        InOrder.set(i);
6401      }
6402    }
6403    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
6404                                &MaskV[0]);
6405
6406    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
6407      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
6408      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
6409                                  NewV.getOperand(0),
6410                                  getShufflePSHUFHWImmediate(SVOp), DAG);
6411    }
6412  }
6413
6414  // In case BestHi & BestLo were both -1, which means each quadword has a word
6415  // from each of the four input quadwords, calculate the InOrder bitvector now
6416  // before falling through to the insert/extract cleanup.
6417  if (BestLoQuad == -1 && BestHiQuad == -1) {
6418    NewV = V1;
6419    for (int i = 0; i != 8; ++i)
6420      if (MaskVals[i] < 0 || MaskVals[i] == i)
6421        InOrder.set(i);
6422  }
6423
6424  // The other elements are put in the right place using pextrw and pinsrw.
6425  for (unsigned i = 0; i != 8; ++i) {
6426    if (InOrder[i])
6427      continue;
6428    int EltIdx = MaskVals[i];
6429    if (EltIdx < 0)
6430      continue;
6431    SDValue ExtOp = (EltIdx < 8) ?
6432      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
6433                  DAG.getIntPtrConstant(EltIdx)) :
6434      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
6435                  DAG.getIntPtrConstant(EltIdx - 8));
6436    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
6437                       DAG.getIntPtrConstant(i));
6438  }
6439  return NewV;
6440}
6441
6442// v16i8 shuffles - Prefer shuffles in the following order:
6443// 1. [ssse3] 1 x pshufb
6444// 2. [ssse3] 2 x pshufb + 1 x por
6445// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
6446static SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
6447                                        const X86Subtarget* Subtarget,
6448                                        SelectionDAG &DAG) {
6449  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6450  SDValue V1 = SVOp->getOperand(0);
6451  SDValue V2 = SVOp->getOperand(1);
6452  SDLoc dl(SVOp);
6453  ArrayRef<int> MaskVals = SVOp->getMask();
6454
6455  // Promote splats to a larger type which usually leads to more efficient code.
6456  // FIXME: Is this true if pshufb is available?
6457  if (SVOp->isSplat())
6458    return PromoteSplat(SVOp, DAG);
6459
6460  // If we have SSSE3, case 1 is generated when all result bytes come from
6461  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
6462  // present, fall back to case 3.
6463
6464  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
6465  if (Subtarget->hasSSSE3()) {
6466    SmallVector<SDValue,16> pshufbMask;
6467
6468    // If all result elements are from one input vector, then only translate
6469    // undef mask values to 0x80 (zero out result) in the pshufb mask.
6470    //
6471    // Otherwise, we have elements from both input vectors, and must zero out
6472    // elements that come from V2 in the first mask, and V1 in the second mask
6473    // so that we can OR them together.
6474    for (unsigned i = 0; i != 16; ++i) {
6475      int EltIdx = MaskVals[i];
6476      if (EltIdx < 0 || EltIdx >= 16)
6477        EltIdx = 0x80;
6478      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6479    }
6480    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
6481                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6482                                 MVT::v16i8, &pshufbMask[0], 16));
6483
6484    // As PSHUFB will zero elements with negative indices, it's safe to ignore
6485    // the 2nd operand if it's undefined or zero.
6486    if (V2.getOpcode() == ISD::UNDEF ||
6487        ISD::isBuildVectorAllZeros(V2.getNode()))
6488      return V1;
6489
6490    // Calculate the shuffle mask for the second input, shuffle it, and
6491    // OR it with the first shuffled input.
6492    pshufbMask.clear();
6493    for (unsigned i = 0; i != 16; ++i) {
6494      int EltIdx = MaskVals[i];
6495      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
6496      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6497    }
6498    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
6499                     DAG.getNode(ISD::BUILD_VECTOR, dl,
6500                                 MVT::v16i8, &pshufbMask[0], 16));
6501    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
6502  }
6503
6504  // No SSSE3 - Calculate in place words and then fix all out of place words
6505  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
6506  // the 16 different words that comprise the two doublequadword input vectors.
6507  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
6508  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
6509  SDValue NewV = V1;
6510  for (int i = 0; i != 8; ++i) {
6511    int Elt0 = MaskVals[i*2];
6512    int Elt1 = MaskVals[i*2+1];
6513
6514    // This word of the result is all undef, skip it.
6515    if (Elt0 < 0 && Elt1 < 0)
6516      continue;
6517
6518    // This word of the result is already in the correct place, skip it.
6519    if ((Elt0 == i*2) && (Elt1 == i*2+1))
6520      continue;
6521
6522    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
6523    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
6524    SDValue InsElt;
6525
6526    // If Elt0 and Elt1 are defined, are consecutive, and can be load
6527    // using a single extract together, load it and store it.
6528    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
6529      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6530                           DAG.getIntPtrConstant(Elt1 / 2));
6531      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6532                        DAG.getIntPtrConstant(i));
6533      continue;
6534    }
6535
6536    // If Elt1 is defined, extract it from the appropriate source.  If the
6537    // source byte is not also odd, shift the extracted word left 8 bits
6538    // otherwise clear the bottom 8 bits if we need to do an or.
6539    if (Elt1 >= 0) {
6540      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
6541                           DAG.getIntPtrConstant(Elt1 / 2));
6542      if ((Elt1 & 1) == 0)
6543        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
6544                             DAG.getConstant(8,
6545                                  TLI.getShiftAmountTy(InsElt.getValueType())));
6546      else if (Elt0 >= 0)
6547        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
6548                             DAG.getConstant(0xFF00, MVT::i16));
6549    }
6550    // If Elt0 is defined, extract it from the appropriate source.  If the
6551    // source byte is not also even, shift the extracted word right 8 bits. If
6552    // Elt1 was also defined, OR the extracted values together before
6553    // inserting them in the result.
6554    if (Elt0 >= 0) {
6555      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
6556                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
6557      if ((Elt0 & 1) != 0)
6558        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
6559                              DAG.getConstant(8,
6560                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
6561      else if (Elt1 >= 0)
6562        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
6563                             DAG.getConstant(0x00FF, MVT::i16));
6564      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
6565                         : InsElt0;
6566    }
6567    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
6568                       DAG.getIntPtrConstant(i));
6569  }
6570  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
6571}
6572
6573// v32i8 shuffles - Translate to VPSHUFB if possible.
6574static
6575SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
6576                                 const X86Subtarget *Subtarget,
6577                                 SelectionDAG &DAG) {
6578  MVT VT = SVOp->getSimpleValueType(0);
6579  SDValue V1 = SVOp->getOperand(0);
6580  SDValue V2 = SVOp->getOperand(1);
6581  SDLoc dl(SVOp);
6582  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
6583
6584  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6585  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
6586  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
6587
6588  // VPSHUFB may be generated if
6589  // (1) one of input vector is undefined or zeroinitializer.
6590  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
6591  // And (2) the mask indexes don't cross the 128-bit lane.
6592  if (VT != MVT::v32i8 || !Subtarget->hasInt256() ||
6593      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
6594    return SDValue();
6595
6596  if (V1IsAllZero && !V2IsAllZero) {
6597    CommuteVectorShuffleMask(MaskVals, 32);
6598    V1 = V2;
6599  }
6600  SmallVector<SDValue, 32> pshufbMask;
6601  for (unsigned i = 0; i != 32; i++) {
6602    int EltIdx = MaskVals[i];
6603    if (EltIdx < 0 || EltIdx >= 32)
6604      EltIdx = 0x80;
6605    else {
6606      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6607        // Cross lane is not allowed.
6608        return SDValue();
6609      EltIdx &= 0xf;
6610    }
6611    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6612  }
6613  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6614                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6615                                  MVT::v32i8, &pshufbMask[0], 32));
6616}
6617
6618/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6619/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6620/// done when every pair / quad of shuffle mask elements point to elements in
6621/// the right sequence. e.g.
6622/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6623static
6624SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6625                                 SelectionDAG &DAG) {
6626  MVT VT = SVOp->getSimpleValueType(0);
6627  SDLoc dl(SVOp);
6628  unsigned NumElems = VT.getVectorNumElements();
6629  MVT NewVT;
6630  unsigned Scale;
6631  switch (VT.SimpleTy) {
6632  default: llvm_unreachable("Unexpected!");
6633  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6634  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6635  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6636  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6637  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6638  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6639  }
6640
6641  SmallVector<int, 8> MaskVec;
6642  for (unsigned i = 0; i != NumElems; i += Scale) {
6643    int StartIdx = -1;
6644    for (unsigned j = 0; j != Scale; ++j) {
6645      int EltIdx = SVOp->getMaskElt(i+j);
6646      if (EltIdx < 0)
6647        continue;
6648      if (StartIdx < 0)
6649        StartIdx = (EltIdx / Scale);
6650      if (EltIdx != (int)(StartIdx*Scale + j))
6651        return SDValue();
6652    }
6653    MaskVec.push_back(StartIdx);
6654  }
6655
6656  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6657  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6658  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6659}
6660
6661/// getVZextMovL - Return a zero-extending vector move low node.
6662///
6663static SDValue getVZextMovL(MVT VT, MVT OpVT,
6664                            SDValue SrcOp, SelectionDAG &DAG,
6665                            const X86Subtarget *Subtarget, SDLoc dl) {
6666  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6667    LoadSDNode *LD = NULL;
6668    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6669      LD = dyn_cast<LoadSDNode>(SrcOp);
6670    if (!LD) {
6671      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6672      // instead.
6673      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6674      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6675          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6676          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6677          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6678        // PR2108
6679        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6680        return DAG.getNode(ISD::BITCAST, dl, VT,
6681                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6682                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6683                                                   OpVT,
6684                                                   SrcOp.getOperand(0)
6685                                                          .getOperand(0))));
6686      }
6687    }
6688  }
6689
6690  return DAG.getNode(ISD::BITCAST, dl, VT,
6691                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6692                                 DAG.getNode(ISD::BITCAST, dl,
6693                                             OpVT, SrcOp)));
6694}
6695
6696/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6697/// which could not be matched by any known target speficic shuffle
6698static SDValue
6699LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6700
6701  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6702  if (NewOp.getNode())
6703    return NewOp;
6704
6705  MVT VT = SVOp->getSimpleValueType(0);
6706
6707  unsigned NumElems = VT.getVectorNumElements();
6708  unsigned NumLaneElems = NumElems / 2;
6709
6710  SDLoc dl(SVOp);
6711  MVT EltVT = VT.getVectorElementType();
6712  MVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6713  SDValue Output[2];
6714
6715  SmallVector<int, 16> Mask;
6716  for (unsigned l = 0; l < 2; ++l) {
6717    // Build a shuffle mask for the output, discovering on the fly which
6718    // input vectors to use as shuffle operands (recorded in InputUsed).
6719    // If building a suitable shuffle vector proves too hard, then bail
6720    // out with UseBuildVector set.
6721    bool UseBuildVector = false;
6722    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6723    unsigned LaneStart = l * NumLaneElems;
6724    for (unsigned i = 0; i != NumLaneElems; ++i) {
6725      // The mask element.  This indexes into the input.
6726      int Idx = SVOp->getMaskElt(i+LaneStart);
6727      if (Idx < 0) {
6728        // the mask element does not index into any input vector.
6729        Mask.push_back(-1);
6730        continue;
6731      }
6732
6733      // The input vector this mask element indexes into.
6734      int Input = Idx / NumLaneElems;
6735
6736      // Turn the index into an offset from the start of the input vector.
6737      Idx -= Input * NumLaneElems;
6738
6739      // Find or create a shuffle vector operand to hold this input.
6740      unsigned OpNo;
6741      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6742        if (InputUsed[OpNo] == Input)
6743          // This input vector is already an operand.
6744          break;
6745        if (InputUsed[OpNo] < 0) {
6746          // Create a new operand for this input vector.
6747          InputUsed[OpNo] = Input;
6748          break;
6749        }
6750      }
6751
6752      if (OpNo >= array_lengthof(InputUsed)) {
6753        // More than two input vectors used!  Give up on trying to create a
6754        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6755        UseBuildVector = true;
6756        break;
6757      }
6758
6759      // Add the mask index for the new shuffle vector.
6760      Mask.push_back(Idx + OpNo * NumLaneElems);
6761    }
6762
6763    if (UseBuildVector) {
6764      SmallVector<SDValue, 16> SVOps;
6765      for (unsigned i = 0; i != NumLaneElems; ++i) {
6766        // The mask element.  This indexes into the input.
6767        int Idx = SVOp->getMaskElt(i+LaneStart);
6768        if (Idx < 0) {
6769          SVOps.push_back(DAG.getUNDEF(EltVT));
6770          continue;
6771        }
6772
6773        // The input vector this mask element indexes into.
6774        int Input = Idx / NumElems;
6775
6776        // Turn the index into an offset from the start of the input vector.
6777        Idx -= Input * NumElems;
6778
6779        // Extract the vector element by hand.
6780        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6781                                    SVOp->getOperand(Input),
6782                                    DAG.getIntPtrConstant(Idx)));
6783      }
6784
6785      // Construct the output using a BUILD_VECTOR.
6786      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6787                              SVOps.size());
6788    } else if (InputUsed[0] < 0) {
6789      // No input vectors were used! The result is undefined.
6790      Output[l] = DAG.getUNDEF(NVT);
6791    } else {
6792      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6793                                        (InputUsed[0] % 2) * NumLaneElems,
6794                                        DAG, dl);
6795      // If only one input was used, use an undefined vector for the other.
6796      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6797        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6798                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6799      // At least one input vector was used. Create a new shuffle vector.
6800      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6801    }
6802
6803    Mask.clear();
6804  }
6805
6806  // Concatenate the result back
6807  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6808}
6809
6810/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6811/// 4 elements, and match them with several different shuffle types.
6812static SDValue
6813LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6814  SDValue V1 = SVOp->getOperand(0);
6815  SDValue V2 = SVOp->getOperand(1);
6816  SDLoc dl(SVOp);
6817  MVT VT = SVOp->getSimpleValueType(0);
6818
6819  assert(VT.is128BitVector() && "Unsupported vector size");
6820
6821  std::pair<int, int> Locs[4];
6822  int Mask1[] = { -1, -1, -1, -1 };
6823  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6824
6825  unsigned NumHi = 0;
6826  unsigned NumLo = 0;
6827  for (unsigned i = 0; i != 4; ++i) {
6828    int Idx = PermMask[i];
6829    if (Idx < 0) {
6830      Locs[i] = std::make_pair(-1, -1);
6831    } else {
6832      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6833      if (Idx < 4) {
6834        Locs[i] = std::make_pair(0, NumLo);
6835        Mask1[NumLo] = Idx;
6836        NumLo++;
6837      } else {
6838        Locs[i] = std::make_pair(1, NumHi);
6839        if (2+NumHi < 4)
6840          Mask1[2+NumHi] = Idx;
6841        NumHi++;
6842      }
6843    }
6844  }
6845
6846  if (NumLo <= 2 && NumHi <= 2) {
6847    // If no more than two elements come from either vector. This can be
6848    // implemented with two shuffles. First shuffle gather the elements.
6849    // The second shuffle, which takes the first shuffle as both of its
6850    // vector operands, put the elements into the right order.
6851    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6852
6853    int Mask2[] = { -1, -1, -1, -1 };
6854
6855    for (unsigned i = 0; i != 4; ++i)
6856      if (Locs[i].first != -1) {
6857        unsigned Idx = (i < 2) ? 0 : 4;
6858        Idx += Locs[i].first * 2 + Locs[i].second;
6859        Mask2[i] = Idx;
6860      }
6861
6862    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6863  }
6864
6865  if (NumLo == 3 || NumHi == 3) {
6866    // Otherwise, we must have three elements from one vector, call it X, and
6867    // one element from the other, call it Y.  First, use a shufps to build an
6868    // intermediate vector with the one element from Y and the element from X
6869    // that will be in the same half in the final destination (the indexes don't
6870    // matter). Then, use a shufps to build the final vector, taking the half
6871    // containing the element from Y from the intermediate, and the other half
6872    // from X.
6873    if (NumHi == 3) {
6874      // Normalize it so the 3 elements come from V1.
6875      CommuteVectorShuffleMask(PermMask, 4);
6876      std::swap(V1, V2);
6877    }
6878
6879    // Find the element from V2.
6880    unsigned HiIndex;
6881    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6882      int Val = PermMask[HiIndex];
6883      if (Val < 0)
6884        continue;
6885      if (Val >= 4)
6886        break;
6887    }
6888
6889    Mask1[0] = PermMask[HiIndex];
6890    Mask1[1] = -1;
6891    Mask1[2] = PermMask[HiIndex^1];
6892    Mask1[3] = -1;
6893    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6894
6895    if (HiIndex >= 2) {
6896      Mask1[0] = PermMask[0];
6897      Mask1[1] = PermMask[1];
6898      Mask1[2] = HiIndex & 1 ? 6 : 4;
6899      Mask1[3] = HiIndex & 1 ? 4 : 6;
6900      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6901    }
6902
6903    Mask1[0] = HiIndex & 1 ? 2 : 0;
6904    Mask1[1] = HiIndex & 1 ? 0 : 2;
6905    Mask1[2] = PermMask[2];
6906    Mask1[3] = PermMask[3];
6907    if (Mask1[2] >= 0)
6908      Mask1[2] += 4;
6909    if (Mask1[3] >= 0)
6910      Mask1[3] += 4;
6911    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6912  }
6913
6914  // Break it into (shuffle shuffle_hi, shuffle_lo).
6915  int LoMask[] = { -1, -1, -1, -1 };
6916  int HiMask[] = { -1, -1, -1, -1 };
6917
6918  int *MaskPtr = LoMask;
6919  unsigned MaskIdx = 0;
6920  unsigned LoIdx = 0;
6921  unsigned HiIdx = 2;
6922  for (unsigned i = 0; i != 4; ++i) {
6923    if (i == 2) {
6924      MaskPtr = HiMask;
6925      MaskIdx = 1;
6926      LoIdx = 0;
6927      HiIdx = 2;
6928    }
6929    int Idx = PermMask[i];
6930    if (Idx < 0) {
6931      Locs[i] = std::make_pair(-1, -1);
6932    } else if (Idx < 4) {
6933      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6934      MaskPtr[LoIdx] = Idx;
6935      LoIdx++;
6936    } else {
6937      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6938      MaskPtr[HiIdx] = Idx;
6939      HiIdx++;
6940    }
6941  }
6942
6943  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6944  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6945  int MaskOps[] = { -1, -1, -1, -1 };
6946  for (unsigned i = 0; i != 4; ++i)
6947    if (Locs[i].first != -1)
6948      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6949  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6950}
6951
6952static bool MayFoldVectorLoad(SDValue V) {
6953  while (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6954    V = V.getOperand(0);
6955
6956  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6957    V = V.getOperand(0);
6958  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6959      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6960    // BUILD_VECTOR (load), undef
6961    V = V.getOperand(0);
6962
6963  return MayFoldLoad(V);
6964}
6965
6966static
6967SDValue getMOVDDup(SDValue &Op, SDLoc &dl, SDValue V1, SelectionDAG &DAG) {
6968  MVT VT = Op.getSimpleValueType();
6969
6970  // Canonizalize to v2f64.
6971  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6972  return DAG.getNode(ISD::BITCAST, dl, VT,
6973                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6974                                          V1, DAG));
6975}
6976
6977static
6978SDValue getMOVLowToHigh(SDValue &Op, SDLoc &dl, SelectionDAG &DAG,
6979                        bool HasSSE2) {
6980  SDValue V1 = Op.getOperand(0);
6981  SDValue V2 = Op.getOperand(1);
6982  MVT VT = Op.getSimpleValueType();
6983
6984  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6985
6986  if (HasSSE2 && VT == MVT::v2f64)
6987    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6988
6989  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6990  return DAG.getNode(ISD::BITCAST, dl, VT,
6991                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6992                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6993                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6994}
6995
6996static
6997SDValue getMOVHighToLow(SDValue &Op, SDLoc &dl, SelectionDAG &DAG) {
6998  SDValue V1 = Op.getOperand(0);
6999  SDValue V2 = Op.getOperand(1);
7000  MVT VT = Op.getSimpleValueType();
7001
7002  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
7003         "unsupported shuffle type");
7004
7005  if (V2.getOpcode() == ISD::UNDEF)
7006    V2 = V1;
7007
7008  // v4i32 or v4f32
7009  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
7010}
7011
7012static
7013SDValue getMOVLP(SDValue &Op, SDLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
7014  SDValue V1 = Op.getOperand(0);
7015  SDValue V2 = Op.getOperand(1);
7016  MVT VT = Op.getSimpleValueType();
7017  unsigned NumElems = VT.getVectorNumElements();
7018
7019  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
7020  // operand of these instructions is only memory, so check if there's a
7021  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
7022  // same masks.
7023  bool CanFoldLoad = false;
7024
7025  // Trivial case, when V2 comes from a load.
7026  if (MayFoldVectorLoad(V2))
7027    CanFoldLoad = true;
7028
7029  // When V1 is a load, it can be folded later into a store in isel, example:
7030  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
7031  //    turns into:
7032  //  (MOVLPSmr addr:$src1, VR128:$src2)
7033  // So, recognize this potential and also use MOVLPS or MOVLPD
7034  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
7035    CanFoldLoad = true;
7036
7037  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7038  if (CanFoldLoad) {
7039    if (HasSSE2 && NumElems == 2)
7040      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
7041
7042    if (NumElems == 4)
7043      // If we don't care about the second element, proceed to use movss.
7044      if (SVOp->getMaskElt(1) != -1)
7045        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
7046  }
7047
7048  // movl and movlp will both match v2i64, but v2i64 is never matched by
7049  // movl earlier because we make it strict to avoid messing with the movlp load
7050  // folding logic (see the code above getMOVLP call). Match it here then,
7051  // this is horrible, but will stay like this until we move all shuffle
7052  // matching to x86 specific nodes. Note that for the 1st condition all
7053  // types are matched with movsd.
7054  if (HasSSE2) {
7055    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
7056    // as to remove this logic from here, as much as possible
7057    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
7058      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7059    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7060  }
7061
7062  assert(VT != MVT::v4i32 && "unsupported shuffle type");
7063
7064  // Invert the operand order and use SHUFPS to match it.
7065  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
7066                              getShuffleSHUFImmediate(SVOp), DAG);
7067}
7068
7069// Reduce a vector shuffle to zext.
7070static SDValue LowerVectorIntExtend(SDValue Op, const X86Subtarget *Subtarget,
7071                                    SelectionDAG &DAG) {
7072  // PMOVZX is only available from SSE41.
7073  if (!Subtarget->hasSSE41())
7074    return SDValue();
7075
7076  MVT VT = Op.getSimpleValueType();
7077
7078  // Only AVX2 support 256-bit vector integer extending.
7079  if (!Subtarget->hasInt256() && VT.is256BitVector())
7080    return SDValue();
7081
7082  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7083  SDLoc DL(Op);
7084  SDValue V1 = Op.getOperand(0);
7085  SDValue V2 = Op.getOperand(1);
7086  unsigned NumElems = VT.getVectorNumElements();
7087
7088  // Extending is an unary operation and the element type of the source vector
7089  // won't be equal to or larger than i64.
7090  if (V2.getOpcode() != ISD::UNDEF || !VT.isInteger() ||
7091      VT.getVectorElementType() == MVT::i64)
7092    return SDValue();
7093
7094  // Find the expansion ratio, e.g. expanding from i8 to i32 has a ratio of 4.
7095  unsigned Shift = 1; // Start from 2, i.e. 1 << 1.
7096  while ((1U << Shift) < NumElems) {
7097    if (SVOp->getMaskElt(1U << Shift) == 1)
7098      break;
7099    Shift += 1;
7100    // The maximal ratio is 8, i.e. from i8 to i64.
7101    if (Shift > 3)
7102      return SDValue();
7103  }
7104
7105  // Check the shuffle mask.
7106  unsigned Mask = (1U << Shift) - 1;
7107  for (unsigned i = 0; i != NumElems; ++i) {
7108    int EltIdx = SVOp->getMaskElt(i);
7109    if ((i & Mask) != 0 && EltIdx != -1)
7110      return SDValue();
7111    if ((i & Mask) == 0 && (unsigned)EltIdx != (i >> Shift))
7112      return SDValue();
7113  }
7114
7115  unsigned NBits = VT.getVectorElementType().getSizeInBits() << Shift;
7116  MVT NeVT = MVT::getIntegerVT(NBits);
7117  MVT NVT = MVT::getVectorVT(NeVT, NumElems >> Shift);
7118
7119  if (!DAG.getTargetLoweringInfo().isTypeLegal(NVT))
7120    return SDValue();
7121
7122  // Simplify the operand as it's prepared to be fed into shuffle.
7123  unsigned SignificantBits = NVT.getSizeInBits() >> Shift;
7124  if (V1.getOpcode() == ISD::BITCAST &&
7125      V1.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
7126      V1.getOperand(0).getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7127      V1.getOperand(0).getOperand(0)
7128        .getSimpleValueType().getSizeInBits() == SignificantBits) {
7129    // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
7130    SDValue V = V1.getOperand(0).getOperand(0).getOperand(0);
7131    ConstantSDNode *CIdx =
7132      dyn_cast<ConstantSDNode>(V1.getOperand(0).getOperand(0).getOperand(1));
7133    // If it's foldable, i.e. normal load with single use, we will let code
7134    // selection to fold it. Otherwise, we will short the conversion sequence.
7135    if (CIdx && CIdx->getZExtValue() == 0 &&
7136        (!ISD::isNormalLoad(V.getNode()) || !V.hasOneUse())) {
7137      MVT FullVT = V.getSimpleValueType();
7138      MVT V1VT = V1.getSimpleValueType();
7139      if (FullVT.getSizeInBits() > V1VT.getSizeInBits()) {
7140        // The "ext_vec_elt" node is wider than the result node.
7141        // In this case we should extract subvector from V.
7142        // (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast (extract_subvector x)).
7143        unsigned Ratio = FullVT.getSizeInBits() / V1VT.getSizeInBits();
7144        MVT SubVecVT = MVT::getVectorVT(FullVT.getVectorElementType(),
7145                                        FullVT.getVectorNumElements()/Ratio);
7146        V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVecVT, V,
7147                        DAG.getIntPtrConstant(0));
7148      }
7149      V1 = DAG.getNode(ISD::BITCAST, DL, V1VT, V);
7150    }
7151  }
7152
7153  return DAG.getNode(ISD::BITCAST, DL, VT,
7154                     DAG.getNode(X86ISD::VZEXT, DL, NVT, V1));
7155}
7156
7157static SDValue
7158NormalizeVectorShuffle(SDValue Op, const X86Subtarget *Subtarget,
7159                       SelectionDAG &DAG) {
7160  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7161  MVT VT = Op.getSimpleValueType();
7162  SDLoc dl(Op);
7163  SDValue V1 = Op.getOperand(0);
7164  SDValue V2 = Op.getOperand(1);
7165
7166  if (isZeroShuffle(SVOp))
7167    return getZeroVector(VT, Subtarget, DAG, dl);
7168
7169  // Handle splat operations
7170  if (SVOp->isSplat()) {
7171    // Use vbroadcast whenever the splat comes from a foldable load
7172    SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG);
7173    if (Broadcast.getNode())
7174      return Broadcast;
7175  }
7176
7177  // Check integer expanding shuffles.
7178  SDValue NewOp = LowerVectorIntExtend(Op, Subtarget, DAG);
7179  if (NewOp.getNode())
7180    return NewOp;
7181
7182  // If the shuffle can be profitably rewritten as a narrower shuffle, then
7183  // do it!
7184  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
7185      VT == MVT::v16i16 || VT == MVT::v32i8) {
7186    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7187    if (NewOp.getNode())
7188      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
7189  } else if ((VT == MVT::v4i32 ||
7190             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
7191    // FIXME: Figure out a cleaner way to do this.
7192    // Try to make use of movq to zero out the top part.
7193    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
7194      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7195      if (NewOp.getNode()) {
7196        MVT NewVT = NewOp.getSimpleValueType();
7197        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
7198                               NewVT, true, false))
7199          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
7200                              DAG, Subtarget, dl);
7201      }
7202    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
7203      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG);
7204      if (NewOp.getNode()) {
7205        MVT NewVT = NewOp.getSimpleValueType();
7206        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
7207          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
7208                              DAG, Subtarget, dl);
7209      }
7210    }
7211  }
7212  return SDValue();
7213}
7214
7215SDValue
7216X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
7217  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
7218  SDValue V1 = Op.getOperand(0);
7219  SDValue V2 = Op.getOperand(1);
7220  MVT VT = Op.getSimpleValueType();
7221  SDLoc dl(Op);
7222  unsigned NumElems = VT.getVectorNumElements();
7223  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
7224  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
7225  bool V1IsSplat = false;
7226  bool V2IsSplat = false;
7227  bool HasSSE2 = Subtarget->hasSSE2();
7228  bool HasFp256    = Subtarget->hasFp256();
7229  bool HasInt256   = Subtarget->hasInt256();
7230  MachineFunction &MF = DAG.getMachineFunction();
7231  bool OptForSize = MF.getFunction()->getAttributes().
7232    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
7233
7234  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
7235
7236  if (V1IsUndef && V2IsUndef)
7237    return DAG.getUNDEF(VT);
7238
7239  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
7240
7241  // Vector shuffle lowering takes 3 steps:
7242  //
7243  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
7244  //    narrowing and commutation of operands should be handled.
7245  // 2) Matching of shuffles with known shuffle masks to x86 target specific
7246  //    shuffle nodes.
7247  // 3) Rewriting of unmatched masks into new generic shuffle operations,
7248  //    so the shuffle can be broken into other shuffles and the legalizer can
7249  //    try the lowering again.
7250  //
7251  // The general idea is that no vector_shuffle operation should be left to
7252  // be matched during isel, all of them must be converted to a target specific
7253  // node here.
7254
7255  // Normalize the input vectors. Here splats, zeroed vectors, profitable
7256  // narrowing and commutation of operands should be handled. The actual code
7257  // doesn't include all of those, work in progress...
7258  SDValue NewOp = NormalizeVectorShuffle(Op, Subtarget, DAG);
7259  if (NewOp.getNode())
7260    return NewOp;
7261
7262  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
7263
7264  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
7265  // unpckh_undef). Only use pshufd if speed is more important than size.
7266  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7267    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7268  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7269    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7270
7271  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
7272      V2IsUndef && MayFoldVectorLoad(V1))
7273    return getMOVDDup(Op, dl, V1, DAG);
7274
7275  if (isMOVHLPS_v_undef_Mask(M, VT))
7276    return getMOVHighToLow(Op, dl, DAG);
7277
7278  // Use to match splats
7279  if (HasSSE2 && isUNPCKHMask(M, VT, HasInt256) && V2IsUndef &&
7280      (VT == MVT::v2f64 || VT == MVT::v2i64))
7281    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7282
7283  if (isPSHUFDMask(M, VT)) {
7284    // The actual implementation will match the mask in the if above and then
7285    // during isel it can match several different instructions, not only pshufd
7286    // as its name says, sad but true, emulate the behavior for now...
7287    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
7288      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
7289
7290    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
7291
7292    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
7293      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
7294
7295    if (HasFp256 && (VT == MVT::v4f32 || VT == MVT::v2f64))
7296      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask,
7297                                  DAG);
7298
7299    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
7300                                TargetMask, DAG);
7301  }
7302
7303  if (isPALIGNRMask(M, VT, Subtarget))
7304    return getTargetShuffleNode(X86ISD::PALIGNR, dl, VT, V1, V2,
7305                                getShufflePALIGNRImmediate(SVOp),
7306                                DAG);
7307
7308  // Check if this can be converted into a logical shift.
7309  bool isLeft = false;
7310  unsigned ShAmt = 0;
7311  SDValue ShVal;
7312  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
7313  if (isShift && ShVal.hasOneUse()) {
7314    // If the shifted value has multiple uses, it may be cheaper to use
7315    // v_set0 + movlhps or movhlps, etc.
7316    MVT EltVT = VT.getVectorElementType();
7317    ShAmt *= EltVT.getSizeInBits();
7318    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7319  }
7320
7321  if (isMOVLMask(M, VT)) {
7322    if (ISD::isBuildVectorAllZeros(V1.getNode()))
7323      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
7324    if (!isMOVLPMask(M, VT)) {
7325      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
7326        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
7327
7328      if (VT == MVT::v4i32 || VT == MVT::v4f32)
7329        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
7330    }
7331  }
7332
7333  // FIXME: fold these into legal mask.
7334  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasInt256))
7335    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
7336
7337  if (isMOVHLPSMask(M, VT))
7338    return getMOVHighToLow(Op, dl, DAG);
7339
7340  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
7341    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
7342
7343  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
7344    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
7345
7346  if (isMOVLPMask(M, VT))
7347    return getMOVLP(Op, dl, DAG, HasSSE2);
7348
7349  if (ShouldXformToMOVHLPS(M, VT) ||
7350      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
7351    return CommuteVectorShuffle(SVOp, DAG);
7352
7353  if (isShift) {
7354    // No better options. Use a vshldq / vsrldq.
7355    MVT EltVT = VT.getVectorElementType();
7356    ShAmt *= EltVT.getSizeInBits();
7357    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
7358  }
7359
7360  bool Commuted = false;
7361  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
7362  // 1,1,1,1 -> v8i16 though.
7363  V1IsSplat = isSplatVector(V1.getNode());
7364  V2IsSplat = isSplatVector(V2.getNode());
7365
7366  // Canonicalize the splat or undef, if present, to be on the RHS.
7367  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
7368    CommuteVectorShuffleMask(M, NumElems);
7369    std::swap(V1, V2);
7370    std::swap(V1IsSplat, V2IsSplat);
7371    Commuted = true;
7372  }
7373
7374  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
7375    // Shuffling low element of v1 into undef, just return v1.
7376    if (V2IsUndef)
7377      return V1;
7378    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
7379    // the instruction selector will not match, so get a canonical MOVL with
7380    // swapped operands to undo the commute.
7381    return getMOVL(DAG, dl, VT, V2, V1);
7382  }
7383
7384  if (isUNPCKLMask(M, VT, HasInt256))
7385    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7386
7387  if (isUNPCKHMask(M, VT, HasInt256))
7388    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7389
7390  if (V2IsSplat) {
7391    // Normalize mask so all entries that point to V2 points to its first
7392    // element then try to match unpck{h|l} again. If match, return a
7393    // new vector_shuffle with the corrected mask.p
7394    SmallVector<int, 8> NewMask(M.begin(), M.end());
7395    NormalizeMask(NewMask, NumElems);
7396    if (isUNPCKLMask(NewMask, VT, HasInt256, true))
7397      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7398    if (isUNPCKHMask(NewMask, VT, HasInt256, true))
7399      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7400  }
7401
7402  if (Commuted) {
7403    // Commute is back and try unpck* again.
7404    // FIXME: this seems wrong.
7405    CommuteVectorShuffleMask(M, NumElems);
7406    std::swap(V1, V2);
7407    std::swap(V1IsSplat, V2IsSplat);
7408    Commuted = false;
7409
7410    if (isUNPCKLMask(M, VT, HasInt256))
7411      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
7412
7413    if (isUNPCKHMask(M, VT, HasInt256))
7414      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
7415  }
7416
7417  // Normalize the node to match x86 shuffle ops if needed
7418  if (!V2IsUndef && (isSHUFPMask(M, VT, /* Commuted */ true)))
7419    return CommuteVectorShuffle(SVOp, DAG);
7420
7421  // The checks below are all present in isShuffleMaskLegal, but they are
7422  // inlined here right now to enable us to directly emit target specific
7423  // nodes, and remove one by one until they don't return Op anymore.
7424
7425  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
7426      SVOp->getSplatIndex() == 0 && V2IsUndef) {
7427    if (VT == MVT::v2f64 || VT == MVT::v2i64)
7428      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7429  }
7430
7431  if (isPSHUFHWMask(M, VT, HasInt256))
7432    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
7433                                getShufflePSHUFHWImmediate(SVOp),
7434                                DAG);
7435
7436  if (isPSHUFLWMask(M, VT, HasInt256))
7437    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
7438                                getShufflePSHUFLWImmediate(SVOp),
7439                                DAG);
7440
7441  if (isSHUFPMask(M, VT))
7442    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
7443                                getShuffleSHUFImmediate(SVOp), DAG);
7444
7445  if (isUNPCKL_v_undef_Mask(M, VT, HasInt256))
7446    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
7447  if (isUNPCKH_v_undef_Mask(M, VT, HasInt256))
7448    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
7449
7450  //===--------------------------------------------------------------------===//
7451  // Generate target specific nodes for 128 or 256-bit shuffles only
7452  // supported in the AVX instruction set.
7453  //
7454
7455  // Handle VMOVDDUPY permutations
7456  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasFp256))
7457    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
7458
7459  // Handle VPERMILPS/D* permutations
7460  if (isVPERMILPMask(M, VT)) {
7461    if ((HasInt256 && VT == MVT::v8i32) || VT == MVT::v16i32)
7462      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
7463                                  getShuffleSHUFImmediate(SVOp), DAG);
7464    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
7465                                getShuffleSHUFImmediate(SVOp), DAG);
7466  }
7467
7468  // Handle VPERM2F128/VPERM2I128 permutations
7469  if (isVPERM2X128Mask(M, VT, HasFp256))
7470    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
7471                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
7472
7473  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
7474  if (BlendOp.getNode())
7475    return BlendOp;
7476
7477  unsigned Imm8;
7478  if (V2IsUndef && HasInt256 && isPermImmMask(M, VT, Imm8))
7479    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1, Imm8, DAG);
7480
7481  if ((V2IsUndef && HasInt256 && VT.is256BitVector() && NumElems == 8) ||
7482      VT.is512BitVector()) {
7483    MVT MaskEltVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
7484    MVT MaskVectorVT = MVT::getVectorVT(MaskEltVT, NumElems);
7485    SmallVector<SDValue, 16> permclMask;
7486    for (unsigned i = 0; i != NumElems; ++i) {
7487      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MaskEltVT));
7488    }
7489
7490    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MaskVectorVT,
7491                                &permclMask[0], NumElems);
7492    if (V2IsUndef)
7493      // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
7494      return DAG.getNode(X86ISD::VPERMV, dl, VT,
7495                          DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
7496    return DAG.getNode(X86ISD::VPERMV3, dl, VT,
7497                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1, V2);
7498  }
7499
7500  //===--------------------------------------------------------------------===//
7501  // Since no target specific shuffle was selected for this generic one,
7502  // lower it into other known shuffles. FIXME: this isn't true yet, but
7503  // this is the plan.
7504  //
7505
7506  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
7507  if (VT == MVT::v8i16) {
7508    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
7509    if (NewOp.getNode())
7510      return NewOp;
7511  }
7512
7513  if (VT == MVT::v16i8) {
7514    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, Subtarget, DAG);
7515    if (NewOp.getNode())
7516      return NewOp;
7517  }
7518
7519  if (VT == MVT::v32i8) {
7520    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
7521    if (NewOp.getNode())
7522      return NewOp;
7523  }
7524
7525  // Handle all 128-bit wide vectors with 4 elements, and match them with
7526  // several different shuffle types.
7527  if (NumElems == 4 && VT.is128BitVector())
7528    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
7529
7530  // Handle general 256-bit shuffles
7531  if (VT.is256BitVector())
7532    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
7533
7534  return SDValue();
7535}
7536
7537static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7538  MVT VT = Op.getSimpleValueType();
7539  SDLoc dl(Op);
7540
7541  if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
7542    return SDValue();
7543
7544  if (VT.getSizeInBits() == 8) {
7545    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
7546                                  Op.getOperand(0), Op.getOperand(1));
7547    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7548                                  DAG.getValueType(VT));
7549    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7550  }
7551
7552  if (VT.getSizeInBits() == 16) {
7553    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7554    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
7555    if (Idx == 0)
7556      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7557                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7558                                     DAG.getNode(ISD::BITCAST, dl,
7559                                                 MVT::v4i32,
7560                                                 Op.getOperand(0)),
7561                                     Op.getOperand(1)));
7562    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
7563                                  Op.getOperand(0), Op.getOperand(1));
7564    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
7565                                  DAG.getValueType(VT));
7566    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7567  }
7568
7569  if (VT == MVT::f32) {
7570    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
7571    // the result back to FR32 register. It's only worth matching if the
7572    // result has a single use which is a store or a bitcast to i32.  And in
7573    // the case of a store, it's not worth it if the index is a constant 0,
7574    // because a MOVSSmr can be used instead, which is smaller and faster.
7575    if (!Op.hasOneUse())
7576      return SDValue();
7577    SDNode *User = *Op.getNode()->use_begin();
7578    if ((User->getOpcode() != ISD::STORE ||
7579         (isa<ConstantSDNode>(Op.getOperand(1)) &&
7580          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
7581        (User->getOpcode() != ISD::BITCAST ||
7582         User->getValueType(0) != MVT::i32))
7583      return SDValue();
7584    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7585                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
7586                                              Op.getOperand(0)),
7587                                              Op.getOperand(1));
7588    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
7589  }
7590
7591  if (VT == MVT::i32 || VT == MVT::i64) {
7592    // ExtractPS/pextrq works with constant index.
7593    if (isa<ConstantSDNode>(Op.getOperand(1)))
7594      return Op;
7595  }
7596  return SDValue();
7597}
7598
7599SDValue
7600X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
7601                                           SelectionDAG &DAG) const {
7602  SDLoc dl(Op);
7603  if (!isa<ConstantSDNode>(Op.getOperand(1)))
7604    return SDValue();
7605
7606  SDValue Vec = Op.getOperand(0);
7607  MVT VecVT = Vec.getSimpleValueType();
7608
7609  // If this is a 256-bit vector result, first extract the 128-bit vector and
7610  // then extract the element from the 128-bit vector.
7611  if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
7612    SDValue Idx = Op.getOperand(1);
7613    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7614
7615    // Get the 128-bit vector.
7616    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
7617    MVT EltVT = VecVT.getVectorElementType();
7618
7619    unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
7620
7621    //if (IdxVal >= NumElems/2)
7622    //  IdxVal -= NumElems/2;
7623    IdxVal -= (IdxVal/ElemsPerChunk)*ElemsPerChunk;
7624    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
7625                       DAG.getConstant(IdxVal, MVT::i32));
7626  }
7627
7628  assert(VecVT.is128BitVector() && "Unexpected vector length");
7629
7630  if (Subtarget->hasSSE41()) {
7631    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
7632    if (Res.getNode())
7633      return Res;
7634  }
7635
7636  MVT VT = Op.getSimpleValueType();
7637  // TODO: handle v16i8.
7638  if (VT.getSizeInBits() == 16) {
7639    SDValue Vec = Op.getOperand(0);
7640    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7641    if (Idx == 0)
7642      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
7643                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7644                                     DAG.getNode(ISD::BITCAST, dl,
7645                                                 MVT::v4i32, Vec),
7646                                     Op.getOperand(1)));
7647    // Transform it so it match pextrw which produces a 32-bit result.
7648    MVT EltVT = MVT::i32;
7649    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
7650                                  Op.getOperand(0), Op.getOperand(1));
7651    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
7652                                  DAG.getValueType(VT));
7653    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
7654  }
7655
7656  if (VT.getSizeInBits() == 32) {
7657    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7658    if (Idx == 0)
7659      return Op;
7660
7661    // SHUFPS the element to the lowest double word, then movss.
7662    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
7663    MVT VVT = Op.getOperand(0).getSimpleValueType();
7664    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7665                                       DAG.getUNDEF(VVT), Mask);
7666    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7667                       DAG.getIntPtrConstant(0));
7668  }
7669
7670  if (VT.getSizeInBits() == 64) {
7671    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
7672    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7673    //        to match extract_elt for f64.
7674    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7675    if (Idx == 0)
7676      return Op;
7677
7678    // UNPCKHPD the element to the lowest double word, then movsd.
7679    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7680    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7681    int Mask[2] = { 1, -1 };
7682    MVT VVT = Op.getOperand(0).getSimpleValueType();
7683    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7684                                       DAG.getUNDEF(VVT), Mask);
7685    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7686                       DAG.getIntPtrConstant(0));
7687  }
7688
7689  return SDValue();
7690}
7691
7692static SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
7693  MVT VT = Op.getSimpleValueType();
7694  MVT EltVT = VT.getVectorElementType();
7695  SDLoc dl(Op);
7696
7697  SDValue N0 = Op.getOperand(0);
7698  SDValue N1 = Op.getOperand(1);
7699  SDValue N2 = Op.getOperand(2);
7700
7701  if (!VT.is128BitVector())
7702    return SDValue();
7703
7704  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7705      isa<ConstantSDNode>(N2)) {
7706    unsigned Opc;
7707    if (VT == MVT::v8i16)
7708      Opc = X86ISD::PINSRW;
7709    else if (VT == MVT::v16i8)
7710      Opc = X86ISD::PINSRB;
7711    else
7712      Opc = X86ISD::PINSRB;
7713
7714    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7715    // argument.
7716    if (N1.getValueType() != MVT::i32)
7717      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7718    if (N2.getValueType() != MVT::i32)
7719      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7720    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7721  }
7722
7723  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7724    // Bits [7:6] of the constant are the source select.  This will always be
7725    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7726    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7727    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7728    // Bits [5:4] of the constant are the destination select.  This is the
7729    //  value of the incoming immediate.
7730    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7731    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7732    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7733    // Create this as a scalar to vector..
7734    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7735    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7736  }
7737
7738  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7739    // PINSR* works with constant index.
7740    return Op;
7741  }
7742  return SDValue();
7743}
7744
7745SDValue
7746X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7747  MVT VT = Op.getSimpleValueType();
7748  MVT EltVT = VT.getVectorElementType();
7749
7750  SDLoc dl(Op);
7751  SDValue N0 = Op.getOperand(0);
7752  SDValue N1 = Op.getOperand(1);
7753  SDValue N2 = Op.getOperand(2);
7754
7755  // If this is a 256-bit vector result, first extract the 128-bit vector,
7756  // insert the element into the extracted half and then place it back.
7757  if (VT.is256BitVector() || VT.is512BitVector()) {
7758    if (!isa<ConstantSDNode>(N2))
7759      return SDValue();
7760
7761    // Get the desired 128-bit vector half.
7762    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7763    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7764
7765    // Insert the element into the desired half.
7766    unsigned NumEltsIn128 = 128/EltVT.getSizeInBits();
7767    unsigned IdxIn128 = IdxVal - (IdxVal/NumEltsIn128) * NumEltsIn128;
7768
7769    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7770                    DAG.getConstant(IdxIn128, MVT::i32));
7771
7772    // Insert the changed part back to the 256-bit vector
7773    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7774  }
7775
7776  if (Subtarget->hasSSE41())
7777    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7778
7779  if (EltVT == MVT::i8)
7780    return SDValue();
7781
7782  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7783    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7784    // as its second argument.
7785    if (N1.getValueType() != MVT::i32)
7786      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7787    if (N2.getValueType() != MVT::i32)
7788      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7789    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7790  }
7791  return SDValue();
7792}
7793
7794static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7795  SDLoc dl(Op);
7796  MVT OpVT = Op.getSimpleValueType();
7797
7798  // If this is a 256-bit vector result, first insert into a 128-bit
7799  // vector and then insert into the 256-bit vector.
7800  if (!OpVT.is128BitVector()) {
7801    // Insert into a 128-bit vector.
7802    unsigned SizeFactor = OpVT.getSizeInBits()/128;
7803    MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
7804                                 OpVT.getVectorNumElements() / SizeFactor);
7805
7806    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7807
7808    // Insert the 128-bit vector.
7809    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7810  }
7811
7812  if (OpVT == MVT::v1i64 &&
7813      Op.getOperand(0).getValueType() == MVT::i64)
7814    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7815
7816  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7817  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7818  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7819                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7820}
7821
7822// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7823// a simple subregister reference or explicit instructions to grab
7824// upper bits of a vector.
7825static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7826                                      SelectionDAG &DAG) {
7827  SDLoc dl(Op);
7828  SDValue In =  Op.getOperand(0);
7829  SDValue Idx = Op.getOperand(1);
7830  unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7831  MVT ResVT   = Op.getSimpleValueType();
7832  MVT InVT    = In.getSimpleValueType();
7833
7834  if (Subtarget->hasFp256()) {
7835    if (ResVT.is128BitVector() &&
7836        (InVT.is256BitVector() || InVT.is512BitVector()) &&
7837        isa<ConstantSDNode>(Idx)) {
7838      return Extract128BitVector(In, IdxVal, DAG, dl);
7839    }
7840    if (ResVT.is256BitVector() && InVT.is512BitVector() &&
7841        isa<ConstantSDNode>(Idx)) {
7842      return Extract256BitVector(In, IdxVal, DAG, dl);
7843    }
7844  }
7845  return SDValue();
7846}
7847
7848// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7849// simple superregister reference or explicit instructions to insert
7850// the upper bits of a vector.
7851static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7852                                     SelectionDAG &DAG) {
7853  if (Subtarget->hasFp256()) {
7854    SDLoc dl(Op.getNode());
7855    SDValue Vec = Op.getNode()->getOperand(0);
7856    SDValue SubVec = Op.getNode()->getOperand(1);
7857    SDValue Idx = Op.getNode()->getOperand(2);
7858
7859    if ((Op.getNode()->getSimpleValueType(0).is256BitVector() ||
7860         Op.getNode()->getSimpleValueType(0).is512BitVector()) &&
7861        SubVec.getNode()->getSimpleValueType(0).is128BitVector() &&
7862        isa<ConstantSDNode>(Idx)) {
7863      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7864      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7865    }
7866
7867    if (Op.getNode()->getSimpleValueType(0).is512BitVector() &&
7868        SubVec.getNode()->getSimpleValueType(0).is256BitVector() &&
7869        isa<ConstantSDNode>(Idx)) {
7870      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7871      return Insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
7872    }
7873  }
7874  return SDValue();
7875}
7876
7877// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7878// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7879// one of the above mentioned nodes. It has to be wrapped because otherwise
7880// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7881// be used to form addressing mode. These wrapped nodes will be selected
7882// into MOV32ri.
7883SDValue
7884X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7885  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7886
7887  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7888  // global base reg.
7889  unsigned char OpFlag = 0;
7890  unsigned WrapperKind = X86ISD::Wrapper;
7891  CodeModel::Model M = getTargetMachine().getCodeModel();
7892
7893  if (Subtarget->isPICStyleRIPRel() &&
7894      (M == CodeModel::Small || M == CodeModel::Kernel))
7895    WrapperKind = X86ISD::WrapperRIP;
7896  else if (Subtarget->isPICStyleGOT())
7897    OpFlag = X86II::MO_GOTOFF;
7898  else if (Subtarget->isPICStyleStubPIC())
7899    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7900
7901  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7902                                             CP->getAlignment(),
7903                                             CP->getOffset(), OpFlag);
7904  SDLoc DL(CP);
7905  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7906  // With PIC, the address is actually $g + Offset.
7907  if (OpFlag) {
7908    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7909                         DAG.getNode(X86ISD::GlobalBaseReg,
7910                                     SDLoc(), getPointerTy()),
7911                         Result);
7912  }
7913
7914  return Result;
7915}
7916
7917SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7918  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7919
7920  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7921  // global base reg.
7922  unsigned char OpFlag = 0;
7923  unsigned WrapperKind = X86ISD::Wrapper;
7924  CodeModel::Model M = getTargetMachine().getCodeModel();
7925
7926  if (Subtarget->isPICStyleRIPRel() &&
7927      (M == CodeModel::Small || M == CodeModel::Kernel))
7928    WrapperKind = X86ISD::WrapperRIP;
7929  else if (Subtarget->isPICStyleGOT())
7930    OpFlag = X86II::MO_GOTOFF;
7931  else if (Subtarget->isPICStyleStubPIC())
7932    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7933
7934  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7935                                          OpFlag);
7936  SDLoc DL(JT);
7937  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7938
7939  // With PIC, the address is actually $g + Offset.
7940  if (OpFlag)
7941    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7942                         DAG.getNode(X86ISD::GlobalBaseReg,
7943                                     SDLoc(), getPointerTy()),
7944                         Result);
7945
7946  return Result;
7947}
7948
7949SDValue
7950X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7951  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7952
7953  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7954  // global base reg.
7955  unsigned char OpFlag = 0;
7956  unsigned WrapperKind = X86ISD::Wrapper;
7957  CodeModel::Model M = getTargetMachine().getCodeModel();
7958
7959  if (Subtarget->isPICStyleRIPRel() &&
7960      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7961    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7962      OpFlag = X86II::MO_GOTPCREL;
7963    WrapperKind = X86ISD::WrapperRIP;
7964  } else if (Subtarget->isPICStyleGOT()) {
7965    OpFlag = X86II::MO_GOT;
7966  } else if (Subtarget->isPICStyleStubPIC()) {
7967    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7968  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7969    OpFlag = X86II::MO_DARWIN_NONLAZY;
7970  }
7971
7972  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7973
7974  SDLoc DL(Op);
7975  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7976
7977  // With PIC, the address is actually $g + Offset.
7978  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7979      !Subtarget->is64Bit()) {
7980    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7981                         DAG.getNode(X86ISD::GlobalBaseReg,
7982                                     SDLoc(), getPointerTy()),
7983                         Result);
7984  }
7985
7986  // For symbols that require a load from a stub to get the address, emit the
7987  // load.
7988  if (isGlobalStubReference(OpFlag))
7989    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7990                         MachinePointerInfo::getGOT(), false, false, false, 0);
7991
7992  return Result;
7993}
7994
7995SDValue
7996X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7997  // Create the TargetBlockAddressAddress node.
7998  unsigned char OpFlags =
7999    Subtarget->ClassifyBlockAddressReference();
8000  CodeModel::Model M = getTargetMachine().getCodeModel();
8001  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
8002  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
8003  SDLoc dl(Op);
8004  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
8005                                             OpFlags);
8006
8007  if (Subtarget->isPICStyleRIPRel() &&
8008      (M == CodeModel::Small || M == CodeModel::Kernel))
8009    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8010  else
8011    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8012
8013  // With PIC, the address is actually $g + Offset.
8014  if (isGlobalRelativeToPICBase(OpFlags)) {
8015    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8016                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8017                         Result);
8018  }
8019
8020  return Result;
8021}
8022
8023SDValue
8024X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
8025                                      int64_t Offset, SelectionDAG &DAG) const {
8026  // Create the TargetGlobalAddress node, folding in the constant
8027  // offset if it is legal.
8028  unsigned char OpFlags =
8029    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
8030  CodeModel::Model M = getTargetMachine().getCodeModel();
8031  SDValue Result;
8032  if (OpFlags == X86II::MO_NO_FLAG &&
8033      X86::isOffsetSuitableForCodeModel(Offset, M)) {
8034    // A direct static reference to a global.
8035    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
8036    Offset = 0;
8037  } else {
8038    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
8039  }
8040
8041  if (Subtarget->isPICStyleRIPRel() &&
8042      (M == CodeModel::Small || M == CodeModel::Kernel))
8043    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
8044  else
8045    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
8046
8047  // With PIC, the address is actually $g + Offset.
8048  if (isGlobalRelativeToPICBase(OpFlags)) {
8049    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
8050                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
8051                         Result);
8052  }
8053
8054  // For globals that require a load from a stub to get the address, emit the
8055  // load.
8056  if (isGlobalStubReference(OpFlags))
8057    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
8058                         MachinePointerInfo::getGOT(), false, false, false, 0);
8059
8060  // If there was a non-zero offset that we didn't fold, create an explicit
8061  // addition for it.
8062  if (Offset != 0)
8063    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
8064                         DAG.getConstant(Offset, getPointerTy()));
8065
8066  return Result;
8067}
8068
8069SDValue
8070X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
8071  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
8072  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
8073  return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
8074}
8075
8076static SDValue
8077GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
8078           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
8079           unsigned char OperandFlags, bool LocalDynamic = false) {
8080  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8081  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8082  SDLoc dl(GA);
8083  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8084                                           GA->getValueType(0),
8085                                           GA->getOffset(),
8086                                           OperandFlags);
8087
8088  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
8089                                           : X86ISD::TLSADDR;
8090
8091  if (InFlag) {
8092    SDValue Ops[] = { Chain,  TGA, *InFlag };
8093    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
8094  } else {
8095    SDValue Ops[]  = { Chain, TGA };
8096    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, array_lengthof(Ops));
8097  }
8098
8099  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8100  MFI->setAdjustsStack(true);
8101
8102  SDValue Flag = Chain.getValue(1);
8103  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
8104}
8105
8106// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
8107static SDValue
8108LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8109                                const EVT PtrVT) {
8110  SDValue InFlag;
8111  SDLoc dl(GA);  // ? function entry point might be better
8112  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8113                                   DAG.getNode(X86ISD::GlobalBaseReg,
8114                                               SDLoc(), PtrVT), InFlag);
8115  InFlag = Chain.getValue(1);
8116
8117  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
8118}
8119
8120// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
8121static SDValue
8122LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8123                                const EVT PtrVT) {
8124  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
8125                    X86::RAX, X86II::MO_TLSGD);
8126}
8127
8128static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
8129                                           SelectionDAG &DAG,
8130                                           const EVT PtrVT,
8131                                           bool is64Bit) {
8132  SDLoc dl(GA);
8133
8134  // Get the start address of the TLS block for this module.
8135  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
8136      .getInfo<X86MachineFunctionInfo>();
8137  MFI->incNumLocalDynamicTLSAccesses();
8138
8139  SDValue Base;
8140  if (is64Bit) {
8141    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
8142                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
8143  } else {
8144    SDValue InFlag;
8145    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
8146        DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
8147    InFlag = Chain.getValue(1);
8148    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
8149                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
8150  }
8151
8152  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
8153  // of Base.
8154
8155  // Build x@dtpoff.
8156  unsigned char OperandFlags = X86II::MO_DTPOFF;
8157  unsigned WrapperKind = X86ISD::Wrapper;
8158  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8159                                           GA->getValueType(0),
8160                                           GA->getOffset(), OperandFlags);
8161  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8162
8163  // Add x@dtpoff with the base.
8164  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
8165}
8166
8167// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
8168static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
8169                                   const EVT PtrVT, TLSModel::Model model,
8170                                   bool is64Bit, bool isPIC) {
8171  SDLoc dl(GA);
8172
8173  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
8174  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
8175                                                         is64Bit ? 257 : 256));
8176
8177  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
8178                                      DAG.getIntPtrConstant(0),
8179                                      MachinePointerInfo(Ptr),
8180                                      false, false, false, 0);
8181
8182  unsigned char OperandFlags = 0;
8183  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
8184  // initialexec.
8185  unsigned WrapperKind = X86ISD::Wrapper;
8186  if (model == TLSModel::LocalExec) {
8187    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
8188  } else if (model == TLSModel::InitialExec) {
8189    if (is64Bit) {
8190      OperandFlags = X86II::MO_GOTTPOFF;
8191      WrapperKind = X86ISD::WrapperRIP;
8192    } else {
8193      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
8194    }
8195  } else {
8196    llvm_unreachable("Unexpected model");
8197  }
8198
8199  // emit "addl x@ntpoff,%eax" (local exec)
8200  // or "addl x@indntpoff,%eax" (initial exec)
8201  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
8202  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8203                                           GA->getValueType(0),
8204                                           GA->getOffset(), OperandFlags);
8205  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
8206
8207  if (model == TLSModel::InitialExec) {
8208    if (isPIC && !is64Bit) {
8209      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
8210                          DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
8211                           Offset);
8212    }
8213
8214    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
8215                         MachinePointerInfo::getGOT(), false, false, false,
8216                         0);
8217  }
8218
8219  // The address of the thread local variable is the add of the thread
8220  // pointer with the offset of the variable.
8221  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
8222}
8223
8224SDValue
8225X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
8226
8227  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
8228  const GlobalValue *GV = GA->getGlobal();
8229
8230  if (Subtarget->isTargetELF()) {
8231    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
8232
8233    switch (model) {
8234      case TLSModel::GeneralDynamic:
8235        if (Subtarget->is64Bit())
8236          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
8237        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
8238      case TLSModel::LocalDynamic:
8239        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
8240                                           Subtarget->is64Bit());
8241      case TLSModel::InitialExec:
8242      case TLSModel::LocalExec:
8243        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
8244                                   Subtarget->is64Bit(),
8245                        getTargetMachine().getRelocationModel() == Reloc::PIC_);
8246    }
8247    llvm_unreachable("Unknown TLS model.");
8248  }
8249
8250  if (Subtarget->isTargetDarwin()) {
8251    // Darwin only has one model of TLS.  Lower to that.
8252    unsigned char OpFlag = 0;
8253    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
8254                           X86ISD::WrapperRIP : X86ISD::Wrapper;
8255
8256    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
8257    // global base reg.
8258    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
8259                  !Subtarget->is64Bit();
8260    if (PIC32)
8261      OpFlag = X86II::MO_TLVP_PIC_BASE;
8262    else
8263      OpFlag = X86II::MO_TLVP;
8264    SDLoc DL(Op);
8265    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
8266                                                GA->getValueType(0),
8267                                                GA->getOffset(), OpFlag);
8268    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
8269
8270    // With PIC32, the address is actually $g + Offset.
8271    if (PIC32)
8272      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8273                           DAG.getNode(X86ISD::GlobalBaseReg,
8274                                       SDLoc(), getPointerTy()),
8275                           Offset);
8276
8277    // Lowering the machine isd will make sure everything is in the right
8278    // location.
8279    SDValue Chain = DAG.getEntryNode();
8280    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8281    SDValue Args[] = { Chain, Offset };
8282    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
8283
8284    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
8285    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8286    MFI->setAdjustsStack(true);
8287
8288    // And our return value (tls address) is in the standard call return value
8289    // location.
8290    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
8291    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
8292                              Chain.getValue(1));
8293  }
8294
8295  if (Subtarget->isTargetWindows() || Subtarget->isTargetMingw()) {
8296    // Just use the implicit TLS architecture
8297    // Need to generate someting similar to:
8298    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
8299    //                                  ; from TEB
8300    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
8301    //   mov     rcx, qword [rdx+rcx*8]
8302    //   mov     eax, .tls$:tlsvar
8303    //   [rax+rcx] contains the address
8304    // Windows 64bit: gs:0x58
8305    // Windows 32bit: fs:__tls_array
8306
8307    // If GV is an alias then use the aliasee for determining
8308    // thread-localness.
8309    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
8310      GV = GA->resolveAliasedGlobal(false);
8311    SDLoc dl(GA);
8312    SDValue Chain = DAG.getEntryNode();
8313
8314    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
8315    // %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
8316    // use its literal value of 0x2C.
8317    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
8318                                        ? Type::getInt8PtrTy(*DAG.getContext(),
8319                                                             256)
8320                                        : Type::getInt32PtrTy(*DAG.getContext(),
8321                                                              257));
8322
8323    SDValue TlsArray = Subtarget->is64Bit() ? DAG.getIntPtrConstant(0x58) :
8324      (Subtarget->isTargetMingw() ? DAG.getIntPtrConstant(0x2C) :
8325        DAG.getExternalSymbol("_tls_array", getPointerTy()));
8326
8327    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain, TlsArray,
8328                                        MachinePointerInfo(Ptr),
8329                                        false, false, false, 0);
8330
8331    // Load the _tls_index variable
8332    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
8333    if (Subtarget->is64Bit())
8334      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
8335                           IDX, MachinePointerInfo(), MVT::i32,
8336                           false, false, 0);
8337    else
8338      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
8339                        false, false, false, 0);
8340
8341    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
8342                                    getPointerTy());
8343    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
8344
8345    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
8346    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
8347                      false, false, false, 0);
8348
8349    // Get the offset of start of .tls section
8350    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
8351                                             GA->getValueType(0),
8352                                             GA->getOffset(), X86II::MO_SECREL);
8353    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
8354
8355    // The address of the thread local variable is the add of the thread
8356    // pointer with the offset of the variable.
8357    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
8358  }
8359
8360  llvm_unreachable("TLS not implemented for this target.");
8361}
8362
8363/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
8364/// and take a 2 x i32 value to shift plus a shift amount.
8365SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
8366  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
8367  EVT VT = Op.getValueType();
8368  unsigned VTBits = VT.getSizeInBits();
8369  SDLoc dl(Op);
8370  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
8371  SDValue ShOpLo = Op.getOperand(0);
8372  SDValue ShOpHi = Op.getOperand(1);
8373  SDValue ShAmt  = Op.getOperand(2);
8374  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
8375                                     DAG.getConstant(VTBits - 1, MVT::i8))
8376                       : DAG.getConstant(0, VT);
8377
8378  SDValue Tmp2, Tmp3;
8379  if (Op.getOpcode() == ISD::SHL_PARTS) {
8380    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
8381    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
8382  } else {
8383    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
8384    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
8385  }
8386
8387  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
8388                                DAG.getConstant(VTBits, MVT::i8));
8389  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8390                             AndNode, DAG.getConstant(0, MVT::i8));
8391
8392  SDValue Hi, Lo;
8393  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8394  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
8395  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
8396
8397  if (Op.getOpcode() == ISD::SHL_PARTS) {
8398    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
8399    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
8400  } else {
8401    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
8402    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
8403  }
8404
8405  SDValue Ops[2] = { Lo, Hi };
8406  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
8407}
8408
8409SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
8410                                           SelectionDAG &DAG) const {
8411  EVT SrcVT = Op.getOperand(0).getValueType();
8412
8413  if (SrcVT.isVector())
8414    return SDValue();
8415
8416  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
8417         "Unknown SINT_TO_FP to lower!");
8418
8419  // These are really Legal; return the operand so the caller accepts it as
8420  // Legal.
8421  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
8422    return Op;
8423  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
8424      Subtarget->is64Bit()) {
8425    return Op;
8426  }
8427
8428  SDLoc dl(Op);
8429  unsigned Size = SrcVT.getSizeInBits()/8;
8430  MachineFunction &MF = DAG.getMachineFunction();
8431  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
8432  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8433  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8434                               StackSlot,
8435                               MachinePointerInfo::getFixedStack(SSFI),
8436                               false, false, 0);
8437  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
8438}
8439
8440SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
8441                                     SDValue StackSlot,
8442                                     SelectionDAG &DAG) const {
8443  // Build the FILD
8444  SDLoc DL(Op);
8445  SDVTList Tys;
8446  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
8447  if (useSSE)
8448    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
8449  else
8450    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
8451
8452  unsigned ByteSize = SrcVT.getSizeInBits()/8;
8453
8454  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
8455  MachineMemOperand *MMO;
8456  if (FI) {
8457    int SSFI = FI->getIndex();
8458    MMO =
8459      DAG.getMachineFunction()
8460      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8461                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
8462  } else {
8463    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
8464    StackSlot = StackSlot.getOperand(1);
8465  }
8466  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
8467  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
8468                                           X86ISD::FILD, DL,
8469                                           Tys, Ops, array_lengthof(Ops),
8470                                           SrcVT, MMO);
8471
8472  if (useSSE) {
8473    Chain = Result.getValue(1);
8474    SDValue InFlag = Result.getValue(2);
8475
8476    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
8477    // shouldn't be necessary except that RFP cannot be live across
8478    // multiple blocks. When stackifier is fixed, they can be uncoupled.
8479    MachineFunction &MF = DAG.getMachineFunction();
8480    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
8481    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
8482    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8483    Tys = DAG.getVTList(MVT::Other);
8484    SDValue Ops[] = {
8485      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
8486    };
8487    MachineMemOperand *MMO =
8488      DAG.getMachineFunction()
8489      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8490                            MachineMemOperand::MOStore, SSFISize, SSFISize);
8491
8492    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
8493                                    Ops, array_lengthof(Ops),
8494                                    Op.getValueType(), MMO);
8495    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
8496                         MachinePointerInfo::getFixedStack(SSFI),
8497                         false, false, false, 0);
8498  }
8499
8500  return Result;
8501}
8502
8503// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
8504SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
8505                                               SelectionDAG &DAG) const {
8506  // This algorithm is not obvious. Here it is what we're trying to output:
8507  /*
8508     movq       %rax,  %xmm0
8509     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
8510     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
8511     #ifdef __SSE3__
8512       haddpd   %xmm0, %xmm0
8513     #else
8514       pshufd   $0x4e, %xmm0, %xmm1
8515       addpd    %xmm1, %xmm0
8516     #endif
8517  */
8518
8519  SDLoc dl(Op);
8520  LLVMContext *Context = DAG.getContext();
8521
8522  // Build some magic constants.
8523  static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
8524  Constant *C0 = ConstantDataVector::get(*Context, CV0);
8525  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
8526
8527  SmallVector<Constant*,2> CV1;
8528  CV1.push_back(
8529    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8530                                      APInt(64, 0x4330000000000000ULL))));
8531  CV1.push_back(
8532    ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
8533                                      APInt(64, 0x4530000000000000ULL))));
8534  Constant *C1 = ConstantVector::get(CV1);
8535  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
8536
8537  // Load the 64-bit value into an XMM register.
8538  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
8539                            Op.getOperand(0));
8540  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
8541                              MachinePointerInfo::getConstantPool(),
8542                              false, false, false, 16);
8543  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
8544                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
8545                              CLod0);
8546
8547  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
8548                              MachinePointerInfo::getConstantPool(),
8549                              false, false, false, 16);
8550  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
8551  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
8552  SDValue Result;
8553
8554  if (Subtarget->hasSSE3()) {
8555    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
8556    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
8557  } else {
8558    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
8559    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
8560                                           S2F, 0x4E, DAG);
8561    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
8562                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
8563                         Sub);
8564  }
8565
8566  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
8567                     DAG.getIntPtrConstant(0));
8568}
8569
8570// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
8571SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
8572                                               SelectionDAG &DAG) const {
8573  SDLoc dl(Op);
8574  // FP constant to bias correct the final result.
8575  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
8576                                   MVT::f64);
8577
8578  // Load the 32-bit value into an XMM register.
8579  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
8580                             Op.getOperand(0));
8581
8582  // Zero out the upper parts of the register.
8583  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
8584
8585  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8586                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
8587                     DAG.getIntPtrConstant(0));
8588
8589  // Or the load with the bias.
8590  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
8591                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8592                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8593                                                   MVT::v2f64, Load)),
8594                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8595                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
8596                                                   MVT::v2f64, Bias)));
8597  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
8598                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
8599                   DAG.getIntPtrConstant(0));
8600
8601  // Subtract the bias.
8602  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
8603
8604  // Handle final rounding.
8605  EVT DestVT = Op.getValueType();
8606
8607  if (DestVT.bitsLT(MVT::f64))
8608    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
8609                       DAG.getIntPtrConstant(0));
8610  if (DestVT.bitsGT(MVT::f64))
8611    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
8612
8613  // Handle final rounding.
8614  return Sub;
8615}
8616
8617SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
8618                                               SelectionDAG &DAG) const {
8619  SDValue N0 = Op.getOperand(0);
8620  EVT SVT = N0.getValueType();
8621  SDLoc dl(Op);
8622
8623  assert((SVT == MVT::v4i8 || SVT == MVT::v4i16 ||
8624          SVT == MVT::v8i8 || SVT == MVT::v8i16) &&
8625         "Custom UINT_TO_FP is not supported!");
8626
8627  EVT NVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
8628                             SVT.getVectorNumElements());
8629  return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
8630                     DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
8631}
8632
8633SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
8634                                           SelectionDAG &DAG) const {
8635  SDValue N0 = Op.getOperand(0);
8636  SDLoc dl(Op);
8637
8638  if (Op.getValueType().isVector())
8639    return lowerUINT_TO_FP_vec(Op, DAG);
8640
8641  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
8642  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
8643  // the optimization here.
8644  if (DAG.SignBitIsZero(N0))
8645    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
8646
8647  EVT SrcVT = N0.getValueType();
8648  EVT DstVT = Op.getValueType();
8649  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
8650    return LowerUINT_TO_FP_i64(Op, DAG);
8651  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
8652    return LowerUINT_TO_FP_i32(Op, DAG);
8653  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
8654    return SDValue();
8655
8656  // Make a 64-bit buffer, and use it to build an FILD.
8657  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
8658  if (SrcVT == MVT::i32) {
8659    SDValue WordOff = DAG.getConstant(4, getPointerTy());
8660    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
8661                                     getPointerTy(), StackSlot, WordOff);
8662    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8663                                  StackSlot, MachinePointerInfo(),
8664                                  false, false, 0);
8665    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
8666                                  OffsetSlot, MachinePointerInfo(),
8667                                  false, false, 0);
8668    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
8669    return Fild;
8670  }
8671
8672  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
8673  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
8674                               StackSlot, MachinePointerInfo(),
8675                               false, false, 0);
8676  // For i64 source, we need to add the appropriate power of 2 if the input
8677  // was negative.  This is the same as the optimization in
8678  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
8679  // we must be careful to do the computation in x87 extended precision, not
8680  // in SSE. (The generic code can't know it's OK to do this, or how to.)
8681  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
8682  MachineMemOperand *MMO =
8683    DAG.getMachineFunction()
8684    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8685                          MachineMemOperand::MOLoad, 8, 8);
8686
8687  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
8688  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
8689  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
8690                                         array_lengthof(Ops), MVT::i64, MMO);
8691
8692  APInt FF(32, 0x5F800000ULL);
8693
8694  // Check whether the sign bit is set.
8695  SDValue SignSet = DAG.getSetCC(dl,
8696                                 getSetCCResultType(*DAG.getContext(), MVT::i64),
8697                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
8698                                 ISD::SETLT);
8699
8700  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
8701  SDValue FudgePtr = DAG.getConstantPool(
8702                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
8703                                         getPointerTy());
8704
8705  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8706  SDValue Zero = DAG.getIntPtrConstant(0);
8707  SDValue Four = DAG.getIntPtrConstant(4);
8708  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8709                               Zero, Four);
8710  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8711
8712  // Load the value out, extending it from f32 to f80.
8713  // FIXME: Avoid the extend by constructing the right constant pool?
8714  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8715                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8716                                 MVT::f32, false, false, 4);
8717  // Extend everything to 80 bits to force it to be done on x87.
8718  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8719  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8720}
8721
8722std::pair<SDValue,SDValue>
8723X86TargetLowering:: FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
8724                                    bool IsSigned, bool IsReplace) const {
8725  SDLoc DL(Op);
8726
8727  EVT DstTy = Op.getValueType();
8728
8729  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8730    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8731    DstTy = MVT::i64;
8732  }
8733
8734  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8735         DstTy.getSimpleVT() >= MVT::i16 &&
8736         "Unknown FP_TO_INT to lower!");
8737
8738  // These are really Legal.
8739  if (DstTy == MVT::i32 &&
8740      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8741    return std::make_pair(SDValue(), SDValue());
8742  if (Subtarget->is64Bit() &&
8743      DstTy == MVT::i64 &&
8744      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8745    return std::make_pair(SDValue(), SDValue());
8746
8747  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8748  // stack slot, or into the FTOL runtime function.
8749  MachineFunction &MF = DAG.getMachineFunction();
8750  unsigned MemSize = DstTy.getSizeInBits()/8;
8751  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8752  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8753
8754  unsigned Opc;
8755  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8756    Opc = X86ISD::WIN_FTOL;
8757  else
8758    switch (DstTy.getSimpleVT().SimpleTy) {
8759    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8760    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8761    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8762    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8763    }
8764
8765  SDValue Chain = DAG.getEntryNode();
8766  SDValue Value = Op.getOperand(0);
8767  EVT TheVT = Op.getOperand(0).getValueType();
8768  // FIXME This causes a redundant load/store if the SSE-class value is already
8769  // in memory, such as if it is on the callstack.
8770  if (isScalarFPTypeInSSEReg(TheVT)) {
8771    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8772    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8773                         MachinePointerInfo::getFixedStack(SSFI),
8774                         false, false, 0);
8775    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8776    SDValue Ops[] = {
8777      Chain, StackSlot, DAG.getValueType(TheVT)
8778    };
8779
8780    MachineMemOperand *MMO =
8781      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8782                              MachineMemOperand::MOLoad, MemSize, MemSize);
8783    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops,
8784                                    array_lengthof(Ops), DstTy, MMO);
8785    Chain = Value.getValue(1);
8786    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8787    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8788  }
8789
8790  MachineMemOperand *MMO =
8791    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8792                            MachineMemOperand::MOStore, MemSize, MemSize);
8793
8794  if (Opc != X86ISD::WIN_FTOL) {
8795    // Build the FP_TO_INT*_IN_MEM
8796    SDValue Ops[] = { Chain, Value, StackSlot };
8797    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8798                                           Ops, array_lengthof(Ops), DstTy,
8799                                           MMO);
8800    return std::make_pair(FIST, StackSlot);
8801  } else {
8802    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8803      DAG.getVTList(MVT::Other, MVT::Glue),
8804      Chain, Value);
8805    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8806      MVT::i32, ftol.getValue(1));
8807    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8808      MVT::i32, eax.getValue(2));
8809    SDValue Ops[] = { eax, edx };
8810    SDValue pair = IsReplace
8811      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, array_lengthof(Ops))
8812      : DAG.getMergeValues(Ops, array_lengthof(Ops), DL);
8813    return std::make_pair(pair, SDValue());
8814  }
8815}
8816
8817static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
8818                              const X86Subtarget *Subtarget) {
8819  MVT VT = Op->getSimpleValueType(0);
8820  SDValue In = Op->getOperand(0);
8821  MVT InVT = In.getSimpleValueType();
8822  SDLoc dl(Op);
8823
8824  // Optimize vectors in AVX mode:
8825  //
8826  //   v8i16 -> v8i32
8827  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
8828  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
8829  //   Concat upper and lower parts.
8830  //
8831  //   v4i32 -> v4i64
8832  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
8833  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
8834  //   Concat upper and lower parts.
8835  //
8836
8837  if (((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
8838      ((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
8839    return SDValue();
8840
8841  if (Subtarget->hasInt256())
8842    return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, In);
8843
8844  SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
8845  SDValue Undef = DAG.getUNDEF(InVT);
8846  bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
8847  SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8848  SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
8849
8850  MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
8851                             VT.getVectorNumElements()/2);
8852
8853  OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
8854  OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
8855
8856  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
8857}
8858
8859static  SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
8860                                        SelectionDAG &DAG) {
8861  MVT VT = Op->getValueType(0).getSimpleVT();
8862  SDValue In = Op->getOperand(0);
8863  MVT InVT = In.getValueType().getSimpleVT();
8864  SDLoc DL(Op);
8865  unsigned int NumElts = VT.getVectorNumElements();
8866  if (NumElts != 8 && NumElts != 16)
8867    return SDValue();
8868
8869  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
8870    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8871
8872  EVT ExtVT = (NumElts == 8)? MVT::v8i64 : MVT::v16i32;
8873  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8874  // Now we have only mask extension
8875  assert(InVT.getVectorElementType() == MVT::i1);
8876  SDValue Cst = DAG.getTargetConstant(1, ExtVT.getScalarType());
8877  const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
8878  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
8879  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
8880  SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
8881                           MachinePointerInfo::getConstantPool(),
8882                           false, false, false, Alignment);
8883
8884  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, DL, ExtVT, In, Ld);
8885  if (VT.is512BitVector())
8886    return Brcst;
8887  return DAG.getNode(X86ISD::VTRUNC, DL, VT, Brcst);
8888}
8889
8890static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
8891                               SelectionDAG &DAG) {
8892  if (Subtarget->hasFp256()) {
8893    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8894    if (Res.getNode())
8895      return Res;
8896  }
8897
8898  return SDValue();
8899}
8900
8901static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
8902                                SelectionDAG &DAG) {
8903  SDLoc DL(Op);
8904  MVT VT = Op.getSimpleValueType();
8905  SDValue In = Op.getOperand(0);
8906  MVT SVT = In.getSimpleValueType();
8907
8908  if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
8909    return LowerZERO_EXTEND_AVX512(Op, DAG);
8910
8911  if (Subtarget->hasFp256()) {
8912    SDValue Res = LowerAVXExtend(Op, DAG, Subtarget);
8913    if (Res.getNode())
8914      return Res;
8915  }
8916
8917  if (!VT.is256BitVector() || !SVT.is128BitVector() ||
8918      VT.getVectorNumElements() != SVT.getVectorNumElements())
8919    return SDValue();
8920
8921  assert(Subtarget->hasFp256() && "256-bit vector is observed without AVX!");
8922
8923  // AVX2 has better support of integer extending.
8924  if (Subtarget->hasInt256())
8925    return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
8926
8927  SDValue Lo = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32, In);
8928  static const int Mask[] = {4, 5, 6, 7, -1, -1, -1, -1};
8929  SDValue Hi = DAG.getNode(X86ISD::VZEXT, DL, MVT::v4i32,
8930                           DAG.getVectorShuffle(MVT::v8i16, DL, In,
8931                                                DAG.getUNDEF(MVT::v8i16),
8932                                                &Mask[0]));
8933
8934  return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i32, Lo, Hi);
8935}
8936
8937SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8938  SDLoc DL(Op);
8939  MVT VT = Op.getSimpleValueType();
8940  SDValue In = Op.getOperand(0);
8941  MVT InVT = In.getSimpleValueType();
8942  assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
8943         "Invalid TRUNCATE operation");
8944
8945  if (InVT.is512BitVector() || VT.getVectorElementType() == MVT::i1) {
8946    if (VT.getVectorElementType().getSizeInBits() >=8)
8947      return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
8948
8949    assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
8950    unsigned NumElts = InVT.getVectorNumElements();
8951    assert ((NumElts == 8 || NumElts == 16) && "Unexpected vector type");
8952    if (InVT.getSizeInBits() < 512) {
8953      MVT ExtVT = (NumElts == 16)? MVT::v16i32 : MVT::v8i64;
8954      In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
8955      InVT = ExtVT;
8956    }
8957    SDValue Cst = DAG.getTargetConstant(1, InVT.getVectorElementType());
8958    const Constant *C = (dyn_cast<ConstantSDNode>(Cst))->getConstantIntValue();
8959    SDValue CP = DAG.getConstantPool(C, getPointerTy());
8960    unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
8961    SDValue Ld = DAG.getLoad(Cst.getValueType(), DL, DAG.getEntryNode(), CP,
8962                           MachinePointerInfo::getConstantPool(),
8963                           false, false, false, Alignment);
8964    SDValue OneV = DAG.getNode(X86ISD::VBROADCAST, DL, InVT, Ld);
8965    SDValue And = DAG.getNode(ISD::AND, DL, InVT, OneV, In);
8966    return DAG.getNode(X86ISD::TESTM, DL, VT, And, And);
8967  }
8968
8969  if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
8970    // On AVX2, v4i64 -> v4i32 becomes VPERMD.
8971    if (Subtarget->hasInt256()) {
8972      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
8973      In = DAG.getNode(ISD::BITCAST, DL, MVT::v8i32, In);
8974      In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
8975                                ShufMask);
8976      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
8977                         DAG.getIntPtrConstant(0));
8978    }
8979
8980    // On AVX, v4i64 -> v4i32 becomes a sequence that uses PSHUFD and MOVLHPS.
8981    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8982                               DAG.getIntPtrConstant(0));
8983    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
8984                               DAG.getIntPtrConstant(2));
8985
8986    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
8987    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
8988
8989    // The PSHUFD mask:
8990    static const int ShufMask1[] = {0, 2, 0, 0};
8991    SDValue Undef = DAG.getUNDEF(VT);
8992    OpLo = DAG.getVectorShuffle(VT, DL, OpLo, Undef, ShufMask1);
8993    OpHi = DAG.getVectorShuffle(VT, DL, OpHi, Undef, ShufMask1);
8994
8995    // The MOVLHPS mask:
8996    static const int ShufMask2[] = {0, 1, 4, 5};
8997    return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask2);
8998  }
8999
9000  if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
9001    // On AVX2, v8i32 -> v8i16 becomed PSHUFB.
9002    if (Subtarget->hasInt256()) {
9003      In = DAG.getNode(ISD::BITCAST, DL, MVT::v32i8, In);
9004
9005      SmallVector<SDValue,32> pshufbMask;
9006      for (unsigned i = 0; i < 2; ++i) {
9007        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
9008        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
9009        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
9010        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
9011        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
9012        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
9013        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
9014        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
9015        for (unsigned j = 0; j < 8; ++j)
9016          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
9017      }
9018      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v32i8,
9019                               &pshufbMask[0], 32);
9020      In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
9021      In = DAG.getNode(ISD::BITCAST, DL, MVT::v4i64, In);
9022
9023      static const int ShufMask[] = {0,  2,  -1,  -1};
9024      In = DAG.getVectorShuffle(MVT::v4i64, DL,  In, DAG.getUNDEF(MVT::v4i64),
9025                                &ShufMask[0]);
9026      In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
9027                       DAG.getIntPtrConstant(0));
9028      return DAG.getNode(ISD::BITCAST, DL, VT, In);
9029    }
9030
9031    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9032                               DAG.getIntPtrConstant(0));
9033
9034    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
9035                               DAG.getIntPtrConstant(4));
9036
9037    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpLo);
9038    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, OpHi);
9039
9040    // The PSHUFB mask:
9041    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
9042                                   -1, -1, -1, -1, -1, -1, -1, -1};
9043
9044    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
9045    OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
9046    OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
9047
9048    OpLo = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpLo);
9049    OpHi = DAG.getNode(ISD::BITCAST, DL, MVT::v4i32, OpHi);
9050
9051    // The MOVLHPS Mask:
9052    static const int ShufMask2[] = {0, 1, 4, 5};
9053    SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
9054    return DAG.getNode(ISD::BITCAST, DL, MVT::v8i16, res);
9055  }
9056
9057  // Handle truncation of V256 to V128 using shuffles.
9058  if (!VT.is128BitVector() || !InVT.is256BitVector())
9059    return SDValue();
9060
9061  assert(Subtarget->hasFp256() && "256-bit vector without AVX!");
9062
9063  unsigned NumElems = VT.getVectorNumElements();
9064  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9065                             NumElems * 2);
9066
9067  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
9068  // Prepare truncation shuffle mask
9069  for (unsigned i = 0; i != NumElems; ++i)
9070    MaskVec[i] = i * 2;
9071  SDValue V = DAG.getVectorShuffle(NVT, DL,
9072                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
9073                                   DAG.getUNDEF(NVT), &MaskVec[0]);
9074  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
9075                     DAG.getIntPtrConstant(0));
9076}
9077
9078SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
9079                                           SelectionDAG &DAG) const {
9080  MVT VT = Op.getSimpleValueType();
9081  if (VT.isVector()) {
9082    if (VT == MVT::v8i16)
9083      return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT,
9084                         DAG.getNode(ISD::FP_TO_SINT, SDLoc(Op),
9085                                     MVT::v8i32, Op.getOperand(0)));
9086    return SDValue();
9087  }
9088
9089  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9090    /*IsSigned=*/ true, /*IsReplace=*/ false);
9091  SDValue FIST = Vals.first, StackSlot = Vals.second;
9092  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
9093  if (FIST.getNode() == 0) return Op;
9094
9095  if (StackSlot.getNode())
9096    // Load the result.
9097    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9098                       FIST, StackSlot, MachinePointerInfo(),
9099                       false, false, false, 0);
9100
9101  // The node is the result.
9102  return FIST;
9103}
9104
9105SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
9106                                           SelectionDAG &DAG) const {
9107  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
9108    /*IsSigned=*/ false, /*IsReplace=*/ false);
9109  SDValue FIST = Vals.first, StackSlot = Vals.second;
9110  assert(FIST.getNode() && "Unexpected failure");
9111
9112  if (StackSlot.getNode())
9113    // Load the result.
9114    return DAG.getLoad(Op.getValueType(), SDLoc(Op),
9115                       FIST, StackSlot, MachinePointerInfo(),
9116                       false, false, false, 0);
9117
9118  // The node is the result.
9119  return FIST;
9120}
9121
9122static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
9123  SDLoc DL(Op);
9124  MVT VT = Op.getSimpleValueType();
9125  SDValue In = Op.getOperand(0);
9126  MVT SVT = In.getSimpleValueType();
9127
9128  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
9129
9130  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
9131                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
9132                                 In, DAG.getUNDEF(SVT)));
9133}
9134
9135SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
9136  LLVMContext *Context = DAG.getContext();
9137  SDLoc dl(Op);
9138  MVT VT = Op.getSimpleValueType();
9139  MVT EltVT = VT;
9140  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9141  if (VT.isVector()) {
9142    EltVT = VT.getVectorElementType();
9143    NumElts = VT.getVectorNumElements();
9144  }
9145  Constant *C;
9146  if (EltVT == MVT::f64)
9147    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9148                                          APInt(64, ~(1ULL << 63))));
9149  else
9150    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9151                                          APInt(32, ~(1U << 31))));
9152  C = ConstantVector::getSplat(NumElts, C);
9153  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
9154  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9155  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9156                             MachinePointerInfo::getConstantPool(),
9157                             false, false, false, Alignment);
9158  if (VT.isVector()) {
9159    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9160    return DAG.getNode(ISD::BITCAST, dl, VT,
9161                       DAG.getNode(ISD::AND, dl, ANDVT,
9162                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
9163                                               Op.getOperand(0)),
9164                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
9165  }
9166  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
9167}
9168
9169SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
9170  LLVMContext *Context = DAG.getContext();
9171  SDLoc dl(Op);
9172  MVT VT = Op.getSimpleValueType();
9173  MVT EltVT = VT;
9174  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
9175  if (VT.isVector()) {
9176    EltVT = VT.getVectorElementType();
9177    NumElts = VT.getVectorNumElements();
9178  }
9179  Constant *C;
9180  if (EltVT == MVT::f64)
9181    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
9182                                          APInt(64, 1ULL << 63)));
9183  else
9184    C = ConstantFP::get(*Context, APFloat(APFloat::IEEEsingle,
9185                                          APInt(32, 1U << 31)));
9186  C = ConstantVector::getSplat(NumElts, C);
9187  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
9188  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
9189  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9190                             MachinePointerInfo::getConstantPool(),
9191                             false, false, false, Alignment);
9192  if (VT.isVector()) {
9193    MVT XORVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits()/64);
9194    return DAG.getNode(ISD::BITCAST, dl, VT,
9195                       DAG.getNode(ISD::XOR, dl, XORVT,
9196                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
9197                                               Op.getOperand(0)),
9198                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
9199  }
9200
9201  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
9202}
9203
9204SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
9205  LLVMContext *Context = DAG.getContext();
9206  SDValue Op0 = Op.getOperand(0);
9207  SDValue Op1 = Op.getOperand(1);
9208  SDLoc dl(Op);
9209  MVT VT = Op.getSimpleValueType();
9210  MVT SrcVT = Op1.getSimpleValueType();
9211
9212  // If second operand is smaller, extend it first.
9213  if (SrcVT.bitsLT(VT)) {
9214    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
9215    SrcVT = VT;
9216  }
9217  // And if it is bigger, shrink it first.
9218  if (SrcVT.bitsGT(VT)) {
9219    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
9220    SrcVT = VT;
9221  }
9222
9223  // At this point the operands and the result should have the same
9224  // type, and that won't be f80 since that is not custom lowered.
9225
9226  // First get the sign bit of second operand.
9227  SmallVector<Constant*,4> CV;
9228  if (SrcVT == MVT::f64) {
9229    const fltSemantics &Sem = APFloat::IEEEdouble;
9230    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 1ULL << 63))));
9231    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9232  } else {
9233    const fltSemantics &Sem = APFloat::IEEEsingle;
9234    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 1U << 31))));
9235    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9236    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9237    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9238  }
9239  Constant *C = ConstantVector::get(CV);
9240  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9241  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
9242                              MachinePointerInfo::getConstantPool(),
9243                              false, false, false, 16);
9244  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
9245
9246  // Shift sign bit right or left if the two operands have different types.
9247  if (SrcVT.bitsGT(VT)) {
9248    // Op0 is MVT::f32, Op1 is MVT::f64.
9249    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
9250    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
9251                          DAG.getConstant(32, MVT::i32));
9252    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
9253    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
9254                          DAG.getIntPtrConstant(0));
9255  }
9256
9257  // Clear first operand sign bit.
9258  CV.clear();
9259  if (VT == MVT::f64) {
9260    const fltSemantics &Sem = APFloat::IEEEdouble;
9261    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9262                                                   APInt(64, ~(1ULL << 63)))));
9263    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(64, 0))));
9264  } else {
9265    const fltSemantics &Sem = APFloat::IEEEsingle;
9266    CV.push_back(ConstantFP::get(*Context, APFloat(Sem,
9267                                                   APInt(32, ~(1U << 31)))));
9268    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9269    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9270    CV.push_back(ConstantFP::get(*Context, APFloat(Sem, APInt(32, 0))));
9271  }
9272  C = ConstantVector::get(CV);
9273  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9274  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9275                              MachinePointerInfo::getConstantPool(),
9276                              false, false, false, 16);
9277  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
9278
9279  // Or the value with the sign bit.
9280  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
9281}
9282
9283static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
9284  SDValue N0 = Op.getOperand(0);
9285  SDLoc dl(Op);
9286  MVT VT = Op.getSimpleValueType();
9287
9288  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
9289  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
9290                                  DAG.getConstant(1, VT));
9291  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
9292}
9293
9294// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
9295//
9296static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget *Subtarget,
9297                                      SelectionDAG &DAG) {
9298  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
9299
9300  if (!Subtarget->hasSSE41())
9301    return SDValue();
9302
9303  if (!Op->hasOneUse())
9304    return SDValue();
9305
9306  SDNode *N = Op.getNode();
9307  SDLoc DL(N);
9308
9309  SmallVector<SDValue, 8> Opnds;
9310  DenseMap<SDValue, unsigned> VecInMap;
9311  EVT VT = MVT::Other;
9312
9313  // Recognize a special case where a vector is casted into wide integer to
9314  // test all 0s.
9315  Opnds.push_back(N->getOperand(0));
9316  Opnds.push_back(N->getOperand(1));
9317
9318  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
9319    SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
9320    // BFS traverse all OR'd operands.
9321    if (I->getOpcode() == ISD::OR) {
9322      Opnds.push_back(I->getOperand(0));
9323      Opnds.push_back(I->getOperand(1));
9324      // Re-evaluate the number of nodes to be traversed.
9325      e += 2; // 2 more nodes (LHS and RHS) are pushed.
9326      continue;
9327    }
9328
9329    // Quit if a non-EXTRACT_VECTOR_ELT
9330    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9331      return SDValue();
9332
9333    // Quit if without a constant index.
9334    SDValue Idx = I->getOperand(1);
9335    if (!isa<ConstantSDNode>(Idx))
9336      return SDValue();
9337
9338    SDValue ExtractedFromVec = I->getOperand(0);
9339    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
9340    if (M == VecInMap.end()) {
9341      VT = ExtractedFromVec.getValueType();
9342      // Quit if not 128/256-bit vector.
9343      if (!VT.is128BitVector() && !VT.is256BitVector())
9344        return SDValue();
9345      // Quit if not the same type.
9346      if (VecInMap.begin() != VecInMap.end() &&
9347          VT != VecInMap.begin()->first.getValueType())
9348        return SDValue();
9349      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
9350    }
9351    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
9352  }
9353
9354  assert((VT.is128BitVector() || VT.is256BitVector()) &&
9355         "Not extracted from 128-/256-bit vector.");
9356
9357  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
9358  SmallVector<SDValue, 8> VecIns;
9359
9360  for (DenseMap<SDValue, unsigned>::const_iterator
9361        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
9362    // Quit if not all elements are used.
9363    if (I->second != FullMask)
9364      return SDValue();
9365    VecIns.push_back(I->first);
9366  }
9367
9368  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
9369
9370  // Cast all vectors into TestVT for PTEST.
9371  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
9372    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
9373
9374  // If more than one full vectors are evaluated, OR them first before PTEST.
9375  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
9376    // Each iteration will OR 2 nodes and append the result until there is only
9377    // 1 node left, i.e. the final OR'd value of all vectors.
9378    SDValue LHS = VecIns[Slot];
9379    SDValue RHS = VecIns[Slot + 1];
9380    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
9381  }
9382
9383  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
9384                     VecIns.back(), VecIns.back());
9385}
9386
9387/// Emit nodes that will be selected as "test Op0,Op0", or something
9388/// equivalent.
9389SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
9390                                    SelectionDAG &DAG) const {
9391  SDLoc dl(Op);
9392
9393  // CF and OF aren't always set the way we want. Determine which
9394  // of these we need.
9395  bool NeedCF = false;
9396  bool NeedOF = false;
9397  switch (X86CC) {
9398  default: break;
9399  case X86::COND_A: case X86::COND_AE:
9400  case X86::COND_B: case X86::COND_BE:
9401    NeedCF = true;
9402    break;
9403  case X86::COND_G: case X86::COND_GE:
9404  case X86::COND_L: case X86::COND_LE:
9405  case X86::COND_O: case X86::COND_NO:
9406    NeedOF = true;
9407    break;
9408  }
9409
9410  // See if we can use the EFLAGS value from the operand instead of
9411  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
9412  // we prove that the arithmetic won't overflow, we can't use OF or CF.
9413  if (Op.getResNo() != 0 || NeedOF || NeedCF)
9414    // Emit a CMP with 0, which is the TEST pattern.
9415    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9416                       DAG.getConstant(0, Op.getValueType()));
9417
9418  unsigned Opcode = 0;
9419  unsigned NumOperands = 0;
9420
9421  // Truncate operations may prevent the merge of the SETCC instruction
9422  // and the arithmetic intruction before it. Attempt to truncate the operands
9423  // of the arithmetic instruction and use a reduced bit-width instruction.
9424  bool NeedTruncation = false;
9425  SDValue ArithOp = Op;
9426  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
9427    SDValue Arith = Op->getOperand(0);
9428    // Both the trunc and the arithmetic op need to have one user each.
9429    if (Arith->hasOneUse())
9430      switch (Arith.getOpcode()) {
9431        default: break;
9432        case ISD::ADD:
9433        case ISD::SUB:
9434        case ISD::AND:
9435        case ISD::OR:
9436        case ISD::XOR: {
9437          NeedTruncation = true;
9438          ArithOp = Arith;
9439        }
9440      }
9441  }
9442
9443  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
9444  // which may be the result of a CAST.  We use the variable 'Op', which is the
9445  // non-casted variable when we check for possible users.
9446  switch (ArithOp.getOpcode()) {
9447  case ISD::ADD:
9448    // Due to an isel shortcoming, be conservative if this add is likely to be
9449    // selected as part of a load-modify-store instruction. When the root node
9450    // in a match is a store, isel doesn't know how to remap non-chain non-flag
9451    // uses of other nodes in the match, such as the ADD in this case. This
9452    // leads to the ADD being left around and reselected, with the result being
9453    // two adds in the output.  Alas, even if none our users are stores, that
9454    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
9455    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
9456    // climbing the DAG back to the root, and it doesn't seem to be worth the
9457    // effort.
9458    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9459         UE = Op.getNode()->use_end(); UI != UE; ++UI)
9460      if (UI->getOpcode() != ISD::CopyToReg &&
9461          UI->getOpcode() != ISD::SETCC &&
9462          UI->getOpcode() != ISD::STORE)
9463        goto default_case;
9464
9465    if (ConstantSDNode *C =
9466        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
9467      // An add of one will be selected as an INC.
9468      if (C->getAPIntValue() == 1) {
9469        Opcode = X86ISD::INC;
9470        NumOperands = 1;
9471        break;
9472      }
9473
9474      // An add of negative one (subtract of one) will be selected as a DEC.
9475      if (C->getAPIntValue().isAllOnesValue()) {
9476        Opcode = X86ISD::DEC;
9477        NumOperands = 1;
9478        break;
9479      }
9480    }
9481
9482    // Otherwise use a regular EFLAGS-setting add.
9483    Opcode = X86ISD::ADD;
9484    NumOperands = 2;
9485    break;
9486  case ISD::AND: {
9487    // If the primary and result isn't used, don't bother using X86ISD::AND,
9488    // because a TEST instruction will be better.
9489    bool NonFlagUse = false;
9490    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9491           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
9492      SDNode *User = *UI;
9493      unsigned UOpNo = UI.getOperandNo();
9494      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
9495        // Look pass truncate.
9496        UOpNo = User->use_begin().getOperandNo();
9497        User = *User->use_begin();
9498      }
9499
9500      if (User->getOpcode() != ISD::BRCOND &&
9501          User->getOpcode() != ISD::SETCC &&
9502          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
9503        NonFlagUse = true;
9504        break;
9505      }
9506    }
9507
9508    if (!NonFlagUse)
9509      break;
9510  }
9511    // FALL THROUGH
9512  case ISD::SUB:
9513  case ISD::OR:
9514  case ISD::XOR:
9515    // Due to the ISEL shortcoming noted above, be conservative if this op is
9516    // likely to be selected as part of a load-modify-store instruction.
9517    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
9518           UE = Op.getNode()->use_end(); UI != UE; ++UI)
9519      if (UI->getOpcode() == ISD::STORE)
9520        goto default_case;
9521
9522    // Otherwise use a regular EFLAGS-setting instruction.
9523    switch (ArithOp.getOpcode()) {
9524    default: llvm_unreachable("unexpected operator!");
9525    case ISD::SUB: Opcode = X86ISD::SUB; break;
9526    case ISD::XOR: Opcode = X86ISD::XOR; break;
9527    case ISD::AND: Opcode = X86ISD::AND; break;
9528    case ISD::OR: {
9529      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
9530        SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG);
9531        if (EFLAGS.getNode())
9532          return EFLAGS;
9533      }
9534      Opcode = X86ISD::OR;
9535      break;
9536    }
9537    }
9538
9539    NumOperands = 2;
9540    break;
9541  case X86ISD::ADD:
9542  case X86ISD::SUB:
9543  case X86ISD::INC:
9544  case X86ISD::DEC:
9545  case X86ISD::OR:
9546  case X86ISD::XOR:
9547  case X86ISD::AND:
9548    return SDValue(Op.getNode(), 1);
9549  default:
9550  default_case:
9551    break;
9552  }
9553
9554  // If we found that truncation is beneficial, perform the truncation and
9555  // update 'Op'.
9556  if (NeedTruncation) {
9557    EVT VT = Op.getValueType();
9558    SDValue WideVal = Op->getOperand(0);
9559    EVT WideVT = WideVal.getValueType();
9560    unsigned ConvertedOp = 0;
9561    // Use a target machine opcode to prevent further DAGCombine
9562    // optimizations that may separate the arithmetic operations
9563    // from the setcc node.
9564    switch (WideVal.getOpcode()) {
9565      default: break;
9566      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
9567      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
9568      case ISD::AND: ConvertedOp = X86ISD::AND; break;
9569      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
9570      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
9571    }
9572
9573    if (ConvertedOp) {
9574      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9575      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
9576        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
9577        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
9578        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
9579      }
9580    }
9581  }
9582
9583  if (Opcode == 0)
9584    // Emit a CMP with 0, which is the TEST pattern.
9585    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
9586                       DAG.getConstant(0, Op.getValueType()));
9587
9588  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
9589  SmallVector<SDValue, 4> Ops;
9590  for (unsigned i = 0; i != NumOperands; ++i)
9591    Ops.push_back(Op.getOperand(i));
9592
9593  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
9594  DAG.ReplaceAllUsesWith(Op, New);
9595  return SDValue(New.getNode(), 1);
9596}
9597
9598/// Emit nodes that will be selected as "cmp Op0,Op1", or something
9599/// equivalent.
9600SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
9601                                   SelectionDAG &DAG) const {
9602  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
9603    if (C->getAPIntValue() == 0)
9604      return EmitTest(Op0, X86CC, DAG);
9605
9606  SDLoc dl(Op0);
9607  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
9608       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
9609    // Use SUB instead of CMP to enable CSE between SUB and CMP.
9610    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
9611    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
9612                              Op0, Op1);
9613    return SDValue(Sub.getNode(), 1);
9614  }
9615  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
9616}
9617
9618/// Convert a comparison if required by the subtarget.
9619SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
9620                                                 SelectionDAG &DAG) const {
9621  // If the subtarget does not support the FUCOMI instruction, floating-point
9622  // comparisons have to be converted.
9623  if (Subtarget->hasCMov() ||
9624      Cmp.getOpcode() != X86ISD::CMP ||
9625      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
9626      !Cmp.getOperand(1).getValueType().isFloatingPoint())
9627    return Cmp;
9628
9629  // The instruction selector will select an FUCOM instruction instead of
9630  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
9631  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
9632  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
9633  SDLoc dl(Cmp);
9634  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
9635  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
9636  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
9637                            DAG.getConstant(8, MVT::i8));
9638  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
9639  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
9640}
9641
9642static bool isAllOnes(SDValue V) {
9643  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9644  return C && C->isAllOnesValue();
9645}
9646
9647/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
9648/// if it's possible.
9649SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
9650                                     SDLoc dl, SelectionDAG &DAG) const {
9651  SDValue Op0 = And.getOperand(0);
9652  SDValue Op1 = And.getOperand(1);
9653  if (Op0.getOpcode() == ISD::TRUNCATE)
9654    Op0 = Op0.getOperand(0);
9655  if (Op1.getOpcode() == ISD::TRUNCATE)
9656    Op1 = Op1.getOperand(0);
9657
9658  SDValue LHS, RHS;
9659  if (Op1.getOpcode() == ISD::SHL)
9660    std::swap(Op0, Op1);
9661  if (Op0.getOpcode() == ISD::SHL) {
9662    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
9663      if (And00C->getZExtValue() == 1) {
9664        // If we looked past a truncate, check that it's only truncating away
9665        // known zeros.
9666        unsigned BitWidth = Op0.getValueSizeInBits();
9667        unsigned AndBitWidth = And.getValueSizeInBits();
9668        if (BitWidth > AndBitWidth) {
9669          APInt Zeros, Ones;
9670          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
9671          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
9672            return SDValue();
9673        }
9674        LHS = Op1;
9675        RHS = Op0.getOperand(1);
9676      }
9677  } else if (Op1.getOpcode() == ISD::Constant) {
9678    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
9679    uint64_t AndRHSVal = AndRHS->getZExtValue();
9680    SDValue AndLHS = Op0;
9681
9682    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
9683      LHS = AndLHS.getOperand(0);
9684      RHS = AndLHS.getOperand(1);
9685    }
9686
9687    // Use BT if the immediate can't be encoded in a TEST instruction.
9688    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
9689      LHS = AndLHS;
9690      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
9691    }
9692  }
9693
9694  if (LHS.getNode()) {
9695    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
9696    // instruction.  Since the shift amount is in-range-or-undefined, we know
9697    // that doing a bittest on the i32 value is ok.  We extend to i32 because
9698    // the encoding for the i16 version is larger than the i32 version.
9699    // Also promote i16 to i32 for performance / code size reason.
9700    if (LHS.getValueType() == MVT::i8 ||
9701        LHS.getValueType() == MVT::i16)
9702      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
9703
9704    // If the operand types disagree, extend the shift amount to match.  Since
9705    // BT ignores high bits (like shifts) we can use anyextend.
9706    if (LHS.getValueType() != RHS.getValueType())
9707      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
9708
9709    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
9710    X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
9711    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9712                       DAG.getConstant(Cond, MVT::i8), BT);
9713  }
9714
9715  return SDValue();
9716}
9717
9718/// \brief - Turns an ISD::CondCode into a value suitable for SSE floating point
9719/// mask CMPs.
9720static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
9721                              SDValue &Op1) {
9722  unsigned SSECC;
9723  bool Swap = false;
9724
9725  // SSE Condition code mapping:
9726  //  0 - EQ
9727  //  1 - LT
9728  //  2 - LE
9729  //  3 - UNORD
9730  //  4 - NEQ
9731  //  5 - NLT
9732  //  6 - NLE
9733  //  7 - ORD
9734  switch (SetCCOpcode) {
9735  default: llvm_unreachable("Unexpected SETCC condition");
9736  case ISD::SETOEQ:
9737  case ISD::SETEQ:  SSECC = 0; break;
9738  case ISD::SETOGT:
9739  case ISD::SETGT:  Swap = true; // Fallthrough
9740  case ISD::SETLT:
9741  case ISD::SETOLT: SSECC = 1; break;
9742  case ISD::SETOGE:
9743  case ISD::SETGE:  Swap = true; // Fallthrough
9744  case ISD::SETLE:
9745  case ISD::SETOLE: SSECC = 2; break;
9746  case ISD::SETUO:  SSECC = 3; break;
9747  case ISD::SETUNE:
9748  case ISD::SETNE:  SSECC = 4; break;
9749  case ISD::SETULE: Swap = true; // Fallthrough
9750  case ISD::SETUGE: SSECC = 5; break;
9751  case ISD::SETULT: Swap = true; // Fallthrough
9752  case ISD::SETUGT: SSECC = 6; break;
9753  case ISD::SETO:   SSECC = 7; break;
9754  case ISD::SETUEQ:
9755  case ISD::SETONE: SSECC = 8; break;
9756  }
9757  if (Swap)
9758    std::swap(Op0, Op1);
9759
9760  return SSECC;
9761}
9762
9763// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
9764// ones, and then concatenate the result back.
9765static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
9766  MVT VT = Op.getSimpleValueType();
9767
9768  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
9769         "Unsupported value type for operation");
9770
9771  unsigned NumElems = VT.getVectorNumElements();
9772  SDLoc dl(Op);
9773  SDValue CC = Op.getOperand(2);
9774
9775  // Extract the LHS vectors
9776  SDValue LHS = Op.getOperand(0);
9777  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
9778  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
9779
9780  // Extract the RHS vectors
9781  SDValue RHS = Op.getOperand(1);
9782  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
9783  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
9784
9785  // Issue the operation on the smaller types and concatenate the result back
9786  MVT EltVT = VT.getVectorElementType();
9787  MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9788  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9789                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
9790                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
9791}
9792
9793static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
9794  SDValue Cond;
9795  SDValue Op0 = Op.getOperand(0);
9796  SDValue Op1 = Op.getOperand(1);
9797  SDValue CC = Op.getOperand(2);
9798  MVT VT = Op.getSimpleValueType();
9799
9800  assert(Op0.getValueType().getVectorElementType().getSizeInBits() >= 32 &&
9801         Op.getValueType().getScalarType() == MVT::i1 &&
9802         "Cannot set masked compare for this operation");
9803
9804  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9805  SDLoc dl(Op);
9806
9807  bool Unsigned = false;
9808  unsigned SSECC;
9809  switch (SetCCOpcode) {
9810  default: llvm_unreachable("Unexpected SETCC condition");
9811  case ISD::SETNE:  SSECC = 4; break;
9812  case ISD::SETEQ:  SSECC = 0; break;
9813  case ISD::SETUGT: Unsigned = true;
9814  case ISD::SETGT:  SSECC = 6; break; // NLE
9815  case ISD::SETULT: Unsigned = true;
9816  case ISD::SETLT:  SSECC = 1; break;
9817  case ISD::SETUGE: Unsigned = true;
9818  case ISD::SETGE:  SSECC = 5; break; // NLT
9819  case ISD::SETULE: Unsigned = true;
9820  case ISD::SETLE:  SSECC = 2; break;
9821  }
9822  unsigned  Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
9823  return DAG.getNode(Opc, dl, VT, Op0, Op1,
9824                     DAG.getConstant(SSECC, MVT::i8));
9825
9826}
9827
9828static SDValue LowerVSETCC(SDValue Op, const X86Subtarget *Subtarget,
9829                           SelectionDAG &DAG) {
9830  SDValue Cond;
9831  SDValue Op0 = Op.getOperand(0);
9832  SDValue Op1 = Op.getOperand(1);
9833  SDValue CC = Op.getOperand(2);
9834  MVT VT = Op.getSimpleValueType();
9835  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
9836  bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
9837  SDLoc dl(Op);
9838
9839  if (isFP) {
9840#ifndef NDEBUG
9841    MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
9842    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
9843#endif
9844
9845    unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
9846    unsigned Opc = X86ISD::CMPP;
9847    if (Subtarget->hasAVX512() && VT.getVectorElementType() == MVT::i1) {
9848      assert(VT.getVectorNumElements() <= 16);
9849      Opc = X86ISD::CMPM;
9850    }
9851    // In the two special cases we can't handle, emit two comparisons.
9852    if (SSECC == 8) {
9853      unsigned CC0, CC1;
9854      unsigned CombineOpc;
9855      if (SetCCOpcode == ISD::SETUEQ) {
9856        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
9857      } else {
9858        assert(SetCCOpcode == ISD::SETONE);
9859        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
9860      }
9861
9862      SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
9863                                 DAG.getConstant(CC0, MVT::i8));
9864      SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
9865                                 DAG.getConstant(CC1, MVT::i8));
9866      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
9867    }
9868    // Handle all other FP comparisons here.
9869    return DAG.getNode(Opc, dl, VT, Op0, Op1,
9870                       DAG.getConstant(SSECC, MVT::i8));
9871  }
9872
9873  // Break 256-bit integer vector compare into smaller ones.
9874  if (VT.is256BitVector() && !Subtarget->hasInt256())
9875    return Lower256IntVSETCC(Op, DAG);
9876
9877  bool MaskResult = (VT.getVectorElementType() == MVT::i1);
9878  EVT OpVT = Op1.getValueType();
9879  if (Subtarget->hasAVX512()) {
9880    if (Op1.getValueType().is512BitVector() ||
9881        (MaskResult && OpVT.getVectorElementType().getSizeInBits() >= 32))
9882      return LowerIntVSETCC_AVX512(Op, DAG);
9883
9884    // In AVX-512 architecture setcc returns mask with i1 elements,
9885    // But there is no compare instruction for i8 and i16 elements.
9886    // We are not talking about 512-bit operands in this case, these
9887    // types are illegal.
9888    if (MaskResult &&
9889        (OpVT.getVectorElementType().getSizeInBits() < 32 &&
9890         OpVT.getVectorElementType().getSizeInBits() >= 8))
9891      return DAG.getNode(ISD::TRUNCATE, dl, VT,
9892                         DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
9893  }
9894
9895  // We are handling one of the integer comparisons here.  Since SSE only has
9896  // GT and EQ comparisons for integer, swapping operands and multiple
9897  // operations may be required for some comparisons.
9898  unsigned Opc;
9899  bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
9900
9901  switch (SetCCOpcode) {
9902  default: llvm_unreachable("Unexpected SETCC condition");
9903  case ISD::SETNE:  Invert = true;
9904  case ISD::SETEQ:  Opc = MaskResult? X86ISD::PCMPEQM: X86ISD::PCMPEQ; break;
9905  case ISD::SETLT:  Swap = true;
9906  case ISD::SETGT:  Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT; break;
9907  case ISD::SETGE:  Swap = true;
9908  case ISD::SETLE:  Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9909                    Invert = true; break;
9910  case ISD::SETULT: Swap = true;
9911  case ISD::SETUGT: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9912                    FlipSigns = true; break;
9913  case ISD::SETUGE: Swap = true;
9914  case ISD::SETULE: Opc = MaskResult? X86ISD::PCMPGTM: X86ISD::PCMPGT;
9915                    FlipSigns = true; Invert = true; break;
9916  }
9917
9918  // Special case: Use min/max operations for SETULE/SETUGE
9919  MVT VET = VT.getVectorElementType();
9920  bool hasMinMax =
9921       (Subtarget->hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
9922    || (Subtarget->hasSSE2()  && (VET == MVT::i8));
9923
9924  if (hasMinMax) {
9925    switch (SetCCOpcode) {
9926    default: break;
9927    case ISD::SETULE: Opc = X86ISD::UMIN; MinMax = true; break;
9928    case ISD::SETUGE: Opc = X86ISD::UMAX; MinMax = true; break;
9929    }
9930
9931    if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
9932  }
9933
9934  if (Swap)
9935    std::swap(Op0, Op1);
9936
9937  // Check that the operation in question is available (most are plain SSE2,
9938  // but PCMPGTQ and PCMPEQQ have different requirements).
9939  if (VT == MVT::v2i64) {
9940    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42()) {
9941      assert(Subtarget->hasSSE2() && "Don't know how to lower!");
9942
9943      // First cast everything to the right type.
9944      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9945      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9946
9947      // Since SSE has no unsigned integer comparisons, we need to flip the sign
9948      // bits of the inputs before performing those operations. The lower
9949      // compare is always unsigned.
9950      SDValue SB;
9951      if (FlipSigns) {
9952        SB = DAG.getConstant(0x80000000U, MVT::v4i32);
9953      } else {
9954        SDValue Sign = DAG.getConstant(0x80000000U, MVT::i32);
9955        SDValue Zero = DAG.getConstant(0x00000000U, MVT::i32);
9956        SB = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
9957                         Sign, Zero, Sign, Zero);
9958      }
9959      Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
9960      Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
9961
9962      // Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
9963      SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
9964      SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
9965
9966      // Create masks for only the low parts/high parts of the 64 bit integers.
9967      static const int MaskHi[] = { 1, 1, 3, 3 };
9968      static const int MaskLo[] = { 0, 0, 2, 2 };
9969      SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
9970      SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
9971      SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
9972
9973      SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
9974      Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
9975
9976      if (Invert)
9977        Result = DAG.getNOT(dl, Result, MVT::v4i32);
9978
9979      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9980    }
9981
9982    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41()) {
9983      // If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
9984      // pcmpeqd + pshufd + pand.
9985      assert(Subtarget->hasSSE2() && !FlipSigns && "Don't know how to lower!");
9986
9987      // First cast everything to the right type.
9988      Op0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op0);
9989      Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op1);
9990
9991      // Do the compare.
9992      SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
9993
9994      // Make sure the lower and upper halves are both all-ones.
9995      static const int Mask[] = { 1, 0, 3, 2 };
9996      SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
9997      Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
9998
9999      if (Invert)
10000        Result = DAG.getNOT(dl, Result, MVT::v4i32);
10001
10002      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
10003    }
10004  }
10005
10006  // Since SSE has no unsigned integer comparisons, we need to flip the sign
10007  // bits of the inputs before performing those operations.
10008  if (FlipSigns) {
10009    EVT EltVT = VT.getVectorElementType();
10010    SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), VT);
10011    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
10012    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
10013  }
10014
10015  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
10016
10017  // If the logical-not of the result is required, perform that now.
10018  if (Invert)
10019    Result = DAG.getNOT(dl, Result, VT);
10020
10021  if (MinMax)
10022    Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
10023
10024  return Result;
10025}
10026
10027SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
10028
10029  MVT VT = Op.getSimpleValueType();
10030
10031  if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
10032
10033  assert(VT == MVT::i8 && "SetCC type must be 8-bit integer");
10034  SDValue Op0 = Op.getOperand(0);
10035  SDValue Op1 = Op.getOperand(1);
10036  SDLoc dl(Op);
10037  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
10038
10039  // Optimize to BT if possible.
10040  // Lower (X & (1 << N)) == 0 to BT(X, N).
10041  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
10042  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
10043  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
10044      Op1.getOpcode() == ISD::Constant &&
10045      cast<ConstantSDNode>(Op1)->isNullValue() &&
10046      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10047    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
10048    if (NewSetCC.getNode())
10049      return NewSetCC;
10050  }
10051
10052  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
10053  // these.
10054  if (Op1.getOpcode() == ISD::Constant &&
10055      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
10056       cast<ConstantSDNode>(Op1)->isNullValue()) &&
10057      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
10058
10059    // If the input is a setcc, then reuse the input setcc or use a new one with
10060    // the inverted condition.
10061    if (Op0.getOpcode() == X86ISD::SETCC) {
10062      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
10063      bool Invert = (CC == ISD::SETNE) ^
10064        cast<ConstantSDNode>(Op1)->isNullValue();
10065      if (!Invert) return Op0;
10066
10067      CCode = X86::GetOppositeBranchCondition(CCode);
10068      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10069                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
10070    }
10071  }
10072
10073  bool isFP = Op1.getSimpleValueType().isFloatingPoint();
10074  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
10075  if (X86CC == X86::COND_INVALID)
10076    return SDValue();
10077
10078  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
10079  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
10080  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10081                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
10082}
10083
10084// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
10085static bool isX86LogicalCmp(SDValue Op) {
10086  unsigned Opc = Op.getNode()->getOpcode();
10087  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
10088      Opc == X86ISD::SAHF)
10089    return true;
10090  if (Op.getResNo() == 1 &&
10091      (Opc == X86ISD::ADD ||
10092       Opc == X86ISD::SUB ||
10093       Opc == X86ISD::ADC ||
10094       Opc == X86ISD::SBB ||
10095       Opc == X86ISD::SMUL ||
10096       Opc == X86ISD::UMUL ||
10097       Opc == X86ISD::INC ||
10098       Opc == X86ISD::DEC ||
10099       Opc == X86ISD::OR ||
10100       Opc == X86ISD::XOR ||
10101       Opc == X86ISD::AND))
10102    return true;
10103
10104  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
10105    return true;
10106
10107  return false;
10108}
10109
10110static bool isZero(SDValue V) {
10111  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
10112  return C && C->isNullValue();
10113}
10114
10115static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
10116  if (V.getOpcode() != ISD::TRUNCATE)
10117    return false;
10118
10119  SDValue VOp0 = V.getOperand(0);
10120  unsigned InBits = VOp0.getValueSizeInBits();
10121  unsigned Bits = V.getValueSizeInBits();
10122  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
10123}
10124
10125SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
10126  bool addTest = true;
10127  SDValue Cond  = Op.getOperand(0);
10128  SDValue Op1 = Op.getOperand(1);
10129  SDValue Op2 = Op.getOperand(2);
10130  SDLoc DL(Op);
10131  EVT VT = Op1.getValueType();
10132  SDValue CC;
10133
10134  // Lower fp selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
10135  // are available. Otherwise fp cmovs get lowered into a less efficient branch
10136  // sequence later on.
10137  if (Cond.getOpcode() == ISD::SETCC &&
10138      ((Subtarget->hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
10139       (Subtarget->hasSSE1() && VT == MVT::f32)) &&
10140      VT == Cond.getOperand(0).getValueType() && Cond->hasOneUse()) {
10141    SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
10142    int SSECC = translateX86FSETCC(
10143        cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
10144
10145    if (SSECC != 8) {
10146      unsigned Opcode = VT == MVT::f32 ? X86ISD::FSETCCss : X86ISD::FSETCCsd;
10147      SDValue Cmp = DAG.getNode(Opcode, DL, VT, CondOp0, CondOp1,
10148                                DAG.getConstant(SSECC, MVT::i8));
10149      SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
10150      SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
10151      return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
10152    }
10153  }
10154
10155  if (Cond.getOpcode() == ISD::SETCC) {
10156    SDValue NewCond = LowerSETCC(Cond, DAG);
10157    if (NewCond.getNode())
10158      Cond = NewCond;
10159  }
10160
10161  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
10162  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
10163  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
10164  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
10165  if (Cond.getOpcode() == X86ISD::SETCC &&
10166      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
10167      isZero(Cond.getOperand(1).getOperand(1))) {
10168    SDValue Cmp = Cond.getOperand(1);
10169
10170    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
10171
10172    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
10173        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
10174      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
10175
10176      SDValue CmpOp0 = Cmp.getOperand(0);
10177      // Apply further optimizations for special cases
10178      // (select (x != 0), -1, 0) -> neg & sbb
10179      // (select (x == 0), 0, -1) -> neg & sbb
10180      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
10181        if (YC->isNullValue() &&
10182            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
10183          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
10184          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
10185                                    DAG.getConstant(0, CmpOp0.getValueType()),
10186                                    CmpOp0);
10187          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10188                                    DAG.getConstant(X86::COND_B, MVT::i8),
10189                                    SDValue(Neg.getNode(), 1));
10190          return Res;
10191        }
10192
10193      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
10194                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
10195      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10196
10197      SDValue Res =   // Res = 0 or -1.
10198        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10199                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
10200
10201      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
10202        Res = DAG.getNOT(DL, Res, Res.getValueType());
10203
10204      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
10205      if (N2C == 0 || !N2C->isNullValue())
10206        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
10207      return Res;
10208    }
10209  }
10210
10211  // Look past (and (setcc_carry (cmp ...)), 1).
10212  if (Cond.getOpcode() == ISD::AND &&
10213      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
10214    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
10215    if (C && C->getAPIntValue() == 1)
10216      Cond = Cond.getOperand(0);
10217  }
10218
10219  // If condition flag is set by a X86ISD::CMP, then use it as the condition
10220  // setting operand in place of the X86ISD::SETCC.
10221  unsigned CondOpcode = Cond.getOpcode();
10222  if (CondOpcode == X86ISD::SETCC ||
10223      CondOpcode == X86ISD::SETCC_CARRY) {
10224    CC = Cond.getOperand(0);
10225
10226    SDValue Cmp = Cond.getOperand(1);
10227    unsigned Opc = Cmp.getOpcode();
10228    MVT VT = Op.getSimpleValueType();
10229
10230    bool IllegalFPCMov = false;
10231    if (VT.isFloatingPoint() && !VT.isVector() &&
10232        !isScalarFPTypeInSSEReg(VT))  // FPStack?
10233      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
10234
10235    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
10236        Opc == X86ISD::BT) { // FIXME
10237      Cond = Cmp;
10238      addTest = false;
10239    }
10240  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
10241             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
10242             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
10243              Cond.getOperand(0).getValueType() != MVT::i8)) {
10244    SDValue LHS = Cond.getOperand(0);
10245    SDValue RHS = Cond.getOperand(1);
10246    unsigned X86Opcode;
10247    unsigned X86Cond;
10248    SDVTList VTs;
10249    switch (CondOpcode) {
10250    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
10251    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
10252    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
10253    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
10254    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
10255    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
10256    default: llvm_unreachable("unexpected overflowing operator");
10257    }
10258    if (CondOpcode == ISD::UMULO)
10259      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
10260                          MVT::i32);
10261    else
10262      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
10263
10264    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
10265
10266    if (CondOpcode == ISD::UMULO)
10267      Cond = X86Op.getValue(2);
10268    else
10269      Cond = X86Op.getValue(1);
10270
10271    CC = DAG.getConstant(X86Cond, MVT::i8);
10272    addTest = false;
10273  }
10274
10275  if (addTest) {
10276    // Look pass the truncate if the high bits are known zero.
10277    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10278        Cond = Cond.getOperand(0);
10279
10280    // We know the result of AND is compared against zero. Try to match
10281    // it to BT.
10282    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10283      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
10284      if (NewSetCC.getNode()) {
10285        CC = NewSetCC.getOperand(0);
10286        Cond = NewSetCC.getOperand(1);
10287        addTest = false;
10288      }
10289    }
10290  }
10291
10292  if (addTest) {
10293    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10294    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10295  }
10296
10297  // a <  b ? -1 :  0 -> RES = ~setcc_carry
10298  // a <  b ?  0 : -1 -> RES = setcc_carry
10299  // a >= b ? -1 :  0 -> RES = setcc_carry
10300  // a >= b ?  0 : -1 -> RES = ~setcc_carry
10301  if (Cond.getOpcode() == X86ISD::SUB) {
10302    Cond = ConvertCmpIfNecessary(Cond, DAG);
10303    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
10304
10305    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
10306        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
10307      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
10308                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
10309      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
10310        return DAG.getNOT(DL, Res, Res.getValueType());
10311      return Res;
10312    }
10313  }
10314
10315  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
10316  // widen the cmov and push the truncate through. This avoids introducing a new
10317  // branch during isel and doesn't add any extensions.
10318  if (Op.getValueType() == MVT::i8 &&
10319      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
10320    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
10321    if (T1.getValueType() == T2.getValueType() &&
10322        // Blacklist CopyFromReg to avoid partial register stalls.
10323        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
10324      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
10325      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
10326      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
10327    }
10328  }
10329
10330  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
10331  // condition is true.
10332  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
10333  SDValue Ops[] = { Op2, Op1, CC, Cond };
10334  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
10335}
10336
10337static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op, SelectionDAG &DAG) {
10338  MVT VT = Op->getSimpleValueType(0);
10339  SDValue In = Op->getOperand(0);
10340  MVT InVT = In.getSimpleValueType();
10341  SDLoc dl(Op);
10342
10343  unsigned int NumElts = VT.getVectorNumElements();
10344  if (NumElts != 8 && NumElts != 16)
10345    return SDValue();
10346
10347  if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
10348    return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
10349
10350  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10351  assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
10352
10353  MVT ExtVT = (NumElts == 8) ? MVT::v8i64 : MVT::v16i32;
10354  Constant *C = ConstantInt::get(*DAG.getContext(),
10355    APInt::getAllOnesValue(ExtVT.getScalarType().getSizeInBits()));
10356
10357  SDValue CP = DAG.getConstantPool(C, TLI.getPointerTy());
10358  unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
10359  SDValue Ld = DAG.getLoad(ExtVT.getScalarType(), dl, DAG.getEntryNode(), CP,
10360                          MachinePointerInfo::getConstantPool(),
10361                          false, false, false, Alignment);
10362  SDValue Brcst = DAG.getNode(X86ISD::VBROADCASTM, dl, ExtVT, In, Ld);
10363  if (VT.is512BitVector())
10364    return Brcst;
10365  return DAG.getNode(X86ISD::VTRUNC, dl, VT, Brcst);
10366}
10367
10368static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget *Subtarget,
10369                                SelectionDAG &DAG) {
10370  MVT VT = Op->getSimpleValueType(0);
10371  SDValue In = Op->getOperand(0);
10372  MVT InVT = In.getSimpleValueType();
10373  SDLoc dl(Op);
10374
10375  if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
10376    return LowerSIGN_EXTEND_AVX512(Op, DAG);
10377
10378  if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
10379      (VT != MVT::v8i32 || InVT != MVT::v8i16))
10380    return SDValue();
10381
10382  if (Subtarget->hasInt256())
10383    return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, In);
10384
10385  // Optimize vectors in AVX mode
10386  // Sign extend  v8i16 to v8i32 and
10387  //              v4i32 to v4i64
10388  //
10389  // Divide input vector into two parts
10390  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
10391  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
10392  // concat the vectors to original VT
10393
10394  unsigned NumElems = InVT.getVectorNumElements();
10395  SDValue Undef = DAG.getUNDEF(InVT);
10396
10397  SmallVector<int,8> ShufMask1(NumElems, -1);
10398  for (unsigned i = 0; i != NumElems/2; ++i)
10399    ShufMask1[i] = i;
10400
10401  SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
10402
10403  SmallVector<int,8> ShufMask2(NumElems, -1);
10404  for (unsigned i = 0; i != NumElems/2; ++i)
10405    ShufMask2[i] = i + NumElems/2;
10406
10407  SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
10408
10409  MVT HalfVT = MVT::getVectorVT(VT.getScalarType(),
10410                                VT.getVectorNumElements()/2);
10411
10412  OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
10413  OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
10414
10415  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
10416}
10417
10418// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
10419// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
10420// from the AND / OR.
10421static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
10422  Opc = Op.getOpcode();
10423  if (Opc != ISD::OR && Opc != ISD::AND)
10424    return false;
10425  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
10426          Op.getOperand(0).hasOneUse() &&
10427          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
10428          Op.getOperand(1).hasOneUse());
10429}
10430
10431// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
10432// 1 and that the SETCC node has a single use.
10433static bool isXor1OfSetCC(SDValue Op) {
10434  if (Op.getOpcode() != ISD::XOR)
10435    return false;
10436  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
10437  if (N1C && N1C->getAPIntValue() == 1) {
10438    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
10439      Op.getOperand(0).hasOneUse();
10440  }
10441  return false;
10442}
10443
10444SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
10445  bool addTest = true;
10446  SDValue Chain = Op.getOperand(0);
10447  SDValue Cond  = Op.getOperand(1);
10448  SDValue Dest  = Op.getOperand(2);
10449  SDLoc dl(Op);
10450  SDValue CC;
10451  bool Inverted = false;
10452
10453  if (Cond.getOpcode() == ISD::SETCC) {
10454    // Check for setcc([su]{add,sub,mul}o == 0).
10455    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
10456        isa<ConstantSDNode>(Cond.getOperand(1)) &&
10457        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
10458        Cond.getOperand(0).getResNo() == 1 &&
10459        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
10460         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
10461         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
10462         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
10463         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
10464         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
10465      Inverted = true;
10466      Cond = Cond.getOperand(0);
10467    } else {
10468      SDValue NewCond = LowerSETCC(Cond, DAG);
10469      if (NewCond.getNode())
10470        Cond = NewCond;
10471    }
10472  }
10473#if 0
10474  // FIXME: LowerXALUO doesn't handle these!!
10475  else if (Cond.getOpcode() == X86ISD::ADD  ||
10476           Cond.getOpcode() == X86ISD::SUB  ||
10477           Cond.getOpcode() == X86ISD::SMUL ||
10478           Cond.getOpcode() == X86ISD::UMUL)
10479    Cond = LowerXALUO(Cond, DAG);
10480#endif
10481
10482  // Look pass (and (setcc_carry (cmp ...)), 1).
10483  if (Cond.getOpcode() == ISD::AND &&
10484      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
10485    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
10486    if (C && C->getAPIntValue() == 1)
10487      Cond = Cond.getOperand(0);
10488  }
10489
10490  // If condition flag is set by a X86ISD::CMP, then use it as the condition
10491  // setting operand in place of the X86ISD::SETCC.
10492  unsigned CondOpcode = Cond.getOpcode();
10493  if (CondOpcode == X86ISD::SETCC ||
10494      CondOpcode == X86ISD::SETCC_CARRY) {
10495    CC = Cond.getOperand(0);
10496
10497    SDValue Cmp = Cond.getOperand(1);
10498    unsigned Opc = Cmp.getOpcode();
10499    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
10500    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
10501      Cond = Cmp;
10502      addTest = false;
10503    } else {
10504      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
10505      default: break;
10506      case X86::COND_O:
10507      case X86::COND_B:
10508        // These can only come from an arithmetic instruction with overflow,
10509        // e.g. SADDO, UADDO.
10510        Cond = Cond.getNode()->getOperand(1);
10511        addTest = false;
10512        break;
10513      }
10514    }
10515  }
10516  CondOpcode = Cond.getOpcode();
10517  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
10518      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
10519      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
10520       Cond.getOperand(0).getValueType() != MVT::i8)) {
10521    SDValue LHS = Cond.getOperand(0);
10522    SDValue RHS = Cond.getOperand(1);
10523    unsigned X86Opcode;
10524    unsigned X86Cond;
10525    SDVTList VTs;
10526    switch (CondOpcode) {
10527    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
10528    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
10529    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
10530    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
10531    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
10532    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
10533    default: llvm_unreachable("unexpected overflowing operator");
10534    }
10535    if (Inverted)
10536      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
10537    if (CondOpcode == ISD::UMULO)
10538      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
10539                          MVT::i32);
10540    else
10541      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
10542
10543    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
10544
10545    if (CondOpcode == ISD::UMULO)
10546      Cond = X86Op.getValue(2);
10547    else
10548      Cond = X86Op.getValue(1);
10549
10550    CC = DAG.getConstant(X86Cond, MVT::i8);
10551    addTest = false;
10552  } else {
10553    unsigned CondOpc;
10554    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
10555      SDValue Cmp = Cond.getOperand(0).getOperand(1);
10556      if (CondOpc == ISD::OR) {
10557        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
10558        // two branches instead of an explicit OR instruction with a
10559        // separate test.
10560        if (Cmp == Cond.getOperand(1).getOperand(1) &&
10561            isX86LogicalCmp(Cmp)) {
10562          CC = Cond.getOperand(0).getOperand(0);
10563          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10564                              Chain, Dest, CC, Cmp);
10565          CC = Cond.getOperand(1).getOperand(0);
10566          Cond = Cmp;
10567          addTest = false;
10568        }
10569      } else { // ISD::AND
10570        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
10571        // two branches instead of an explicit AND instruction with a
10572        // separate test. However, we only do this if this block doesn't
10573        // have a fall-through edge, because this requires an explicit
10574        // jmp when the condition is false.
10575        if (Cmp == Cond.getOperand(1).getOperand(1) &&
10576            isX86LogicalCmp(Cmp) &&
10577            Op.getNode()->hasOneUse()) {
10578          X86::CondCode CCode =
10579            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
10580          CCode = X86::GetOppositeBranchCondition(CCode);
10581          CC = DAG.getConstant(CCode, MVT::i8);
10582          SDNode *User = *Op.getNode()->use_begin();
10583          // Look for an unconditional branch following this conditional branch.
10584          // We need this because we need to reverse the successors in order
10585          // to implement FCMP_OEQ.
10586          if (User->getOpcode() == ISD::BR) {
10587            SDValue FalseBB = User->getOperand(1);
10588            SDNode *NewBR =
10589              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10590            assert(NewBR == User);
10591            (void)NewBR;
10592            Dest = FalseBB;
10593
10594            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10595                                Chain, Dest, CC, Cmp);
10596            X86::CondCode CCode =
10597              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
10598            CCode = X86::GetOppositeBranchCondition(CCode);
10599            CC = DAG.getConstant(CCode, MVT::i8);
10600            Cond = Cmp;
10601            addTest = false;
10602          }
10603        }
10604      }
10605    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
10606      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
10607      // It should be transformed during dag combiner except when the condition
10608      // is set by a arithmetics with overflow node.
10609      X86::CondCode CCode =
10610        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
10611      CCode = X86::GetOppositeBranchCondition(CCode);
10612      CC = DAG.getConstant(CCode, MVT::i8);
10613      Cond = Cond.getOperand(0).getOperand(1);
10614      addTest = false;
10615    } else if (Cond.getOpcode() == ISD::SETCC &&
10616               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
10617      // For FCMP_OEQ, we can emit
10618      // two branches instead of an explicit AND instruction with a
10619      // separate test. However, we only do this if this block doesn't
10620      // have a fall-through edge, because this requires an explicit
10621      // jmp when the condition is false.
10622      if (Op.getNode()->hasOneUse()) {
10623        SDNode *User = *Op.getNode()->use_begin();
10624        // Look for an unconditional branch following this conditional branch.
10625        // We need this because we need to reverse the successors in order
10626        // to implement FCMP_OEQ.
10627        if (User->getOpcode() == ISD::BR) {
10628          SDValue FalseBB = User->getOperand(1);
10629          SDNode *NewBR =
10630            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10631          assert(NewBR == User);
10632          (void)NewBR;
10633          Dest = FalseBB;
10634
10635          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10636                                    Cond.getOperand(0), Cond.getOperand(1));
10637          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10638          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10639          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10640                              Chain, Dest, CC, Cmp);
10641          CC = DAG.getConstant(X86::COND_P, MVT::i8);
10642          Cond = Cmp;
10643          addTest = false;
10644        }
10645      }
10646    } else if (Cond.getOpcode() == ISD::SETCC &&
10647               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
10648      // For FCMP_UNE, we can emit
10649      // two branches instead of an explicit AND instruction with a
10650      // separate test. However, we only do this if this block doesn't
10651      // have a fall-through edge, because this requires an explicit
10652      // jmp when the condition is false.
10653      if (Op.getNode()->hasOneUse()) {
10654        SDNode *User = *Op.getNode()->use_begin();
10655        // Look for an unconditional branch following this conditional branch.
10656        // We need this because we need to reverse the successors in order
10657        // to implement FCMP_UNE.
10658        if (User->getOpcode() == ISD::BR) {
10659          SDValue FalseBB = User->getOperand(1);
10660          SDNode *NewBR =
10661            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
10662          assert(NewBR == User);
10663          (void)NewBR;
10664
10665          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
10666                                    Cond.getOperand(0), Cond.getOperand(1));
10667          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
10668          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10669          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10670                              Chain, Dest, CC, Cmp);
10671          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
10672          Cond = Cmp;
10673          addTest = false;
10674          Dest = FalseBB;
10675        }
10676      }
10677    }
10678  }
10679
10680  if (addTest) {
10681    // Look pass the truncate if the high bits are known zero.
10682    if (isTruncWithZeroHighBitsInput(Cond, DAG))
10683        Cond = Cond.getOperand(0);
10684
10685    // We know the result of AND is compared against zero. Try to match
10686    // it to BT.
10687    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
10688      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
10689      if (NewSetCC.getNode()) {
10690        CC = NewSetCC.getOperand(0);
10691        Cond = NewSetCC.getOperand(1);
10692        addTest = false;
10693      }
10694    }
10695  }
10696
10697  if (addTest) {
10698    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
10699    Cond = EmitTest(Cond, X86::COND_NE, DAG);
10700  }
10701  Cond = ConvertCmpIfNecessary(Cond, DAG);
10702  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
10703                     Chain, Dest, CC, Cond);
10704}
10705
10706// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
10707// Calls to _alloca is needed to probe the stack when allocating more than 4k
10708// bytes in one go. Touching the stack at 4K increments is necessary to ensure
10709// that the guard pages used by the OS virtual memory manager are allocated in
10710// correct sequence.
10711SDValue
10712X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
10713                                           SelectionDAG &DAG) const {
10714  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
10715          getTargetMachine().Options.EnableSegmentedStacks) &&
10716         "This should be used only on Windows targets or when segmented stacks "
10717         "are being used");
10718  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
10719  SDLoc dl(Op);
10720
10721  // Get the inputs.
10722  SDValue Chain = Op.getOperand(0);
10723  SDValue Size  = Op.getOperand(1);
10724  // FIXME: Ensure alignment here
10725
10726  bool Is64Bit = Subtarget->is64Bit();
10727  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
10728
10729  if (getTargetMachine().Options.EnableSegmentedStacks) {
10730    MachineFunction &MF = DAG.getMachineFunction();
10731    MachineRegisterInfo &MRI = MF.getRegInfo();
10732
10733    if (Is64Bit) {
10734      // The 64 bit implementation of segmented stacks needs to clobber both r10
10735      // r11. This makes it impossible to use it along with nested parameters.
10736      const Function *F = MF.getFunction();
10737
10738      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
10739           I != E; ++I)
10740        if (I->hasNestAttr())
10741          report_fatal_error("Cannot use segmented stacks with functions that "
10742                             "have nested arguments.");
10743    }
10744
10745    const TargetRegisterClass *AddrRegClass =
10746      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
10747    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
10748    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
10749    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
10750                                DAG.getRegister(Vreg, SPTy));
10751    SDValue Ops1[2] = { Value, Chain };
10752    return DAG.getMergeValues(Ops1, 2, dl);
10753  } else {
10754    SDValue Flag;
10755    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
10756
10757    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
10758    Flag = Chain.getValue(1);
10759    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
10760
10761    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
10762    Flag = Chain.getValue(1);
10763
10764    const X86RegisterInfo *RegInfo =
10765      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
10766    Chain = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
10767                               SPTy).getValue(1);
10768
10769    SDValue Ops1[2] = { Chain.getValue(0), Chain };
10770    return DAG.getMergeValues(Ops1, 2, dl);
10771  }
10772}
10773
10774SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
10775  MachineFunction &MF = DAG.getMachineFunction();
10776  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
10777
10778  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10779  SDLoc DL(Op);
10780
10781  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
10782    // vastart just stores the address of the VarArgsFrameIndex slot into the
10783    // memory location argument.
10784    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10785                                   getPointerTy());
10786    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
10787                        MachinePointerInfo(SV), false, false, 0);
10788  }
10789
10790  // __va_list_tag:
10791  //   gp_offset         (0 - 6 * 8)
10792  //   fp_offset         (48 - 48 + 8 * 16)
10793  //   overflow_arg_area (point to parameters coming in memory).
10794  //   reg_save_area
10795  SmallVector<SDValue, 8> MemOps;
10796  SDValue FIN = Op.getOperand(1);
10797  // Store gp_offset
10798  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
10799                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
10800                                               MVT::i32),
10801                               FIN, MachinePointerInfo(SV), false, false, 0);
10802  MemOps.push_back(Store);
10803
10804  // Store fp_offset
10805  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10806                    FIN, DAG.getIntPtrConstant(4));
10807  Store = DAG.getStore(Op.getOperand(0), DL,
10808                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
10809                                       MVT::i32),
10810                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
10811  MemOps.push_back(Store);
10812
10813  // Store ptr to overflow_arg_area
10814  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10815                    FIN, DAG.getIntPtrConstant(4));
10816  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
10817                                    getPointerTy());
10818  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
10819                       MachinePointerInfo(SV, 8),
10820                       false, false, 0);
10821  MemOps.push_back(Store);
10822
10823  // Store ptr to reg_save_area.
10824  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
10825                    FIN, DAG.getIntPtrConstant(8));
10826  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
10827                                    getPointerTy());
10828  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
10829                       MachinePointerInfo(SV, 16), false, false, 0);
10830  MemOps.push_back(Store);
10831  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
10832                     &MemOps[0], MemOps.size());
10833}
10834
10835SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
10836  assert(Subtarget->is64Bit() &&
10837         "LowerVAARG only handles 64-bit va_arg!");
10838  assert((Subtarget->isTargetLinux() ||
10839          Subtarget->isTargetDarwin()) &&
10840          "Unhandled target in LowerVAARG");
10841  assert(Op.getNode()->getNumOperands() == 4);
10842  SDValue Chain = Op.getOperand(0);
10843  SDValue SrcPtr = Op.getOperand(1);
10844  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
10845  unsigned Align = Op.getConstantOperandVal(3);
10846  SDLoc dl(Op);
10847
10848  EVT ArgVT = Op.getNode()->getValueType(0);
10849  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
10850  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
10851  uint8_t ArgMode;
10852
10853  // Decide which area this value should be read from.
10854  // TODO: Implement the AMD64 ABI in its entirety. This simple
10855  // selection mechanism works only for the basic types.
10856  if (ArgVT == MVT::f80) {
10857    llvm_unreachable("va_arg for f80 not yet implemented");
10858  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
10859    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
10860  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
10861    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
10862  } else {
10863    llvm_unreachable("Unhandled argument type in LowerVAARG");
10864  }
10865
10866  if (ArgMode == 2) {
10867    // Sanity Check: Make sure using fp_offset makes sense.
10868    assert(!getTargetMachine().Options.UseSoftFloat &&
10869           !(DAG.getMachineFunction()
10870                .getFunction()->getAttributes()
10871                .hasAttribute(AttributeSet::FunctionIndex,
10872                              Attribute::NoImplicitFloat)) &&
10873           Subtarget->hasSSE1());
10874  }
10875
10876  // Insert VAARG_64 node into the DAG
10877  // VAARG_64 returns two values: Variable Argument Address, Chain
10878  SmallVector<SDValue, 11> InstOps;
10879  InstOps.push_back(Chain);
10880  InstOps.push_back(SrcPtr);
10881  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
10882  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
10883  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
10884  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
10885  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
10886                                          VTs, &InstOps[0], InstOps.size(),
10887                                          MVT::i64,
10888                                          MachinePointerInfo(SV),
10889                                          /*Align=*/0,
10890                                          /*Volatile=*/false,
10891                                          /*ReadMem=*/true,
10892                                          /*WriteMem=*/true);
10893  Chain = VAARG.getValue(1);
10894
10895  // Load the next argument and return it
10896  return DAG.getLoad(ArgVT, dl,
10897                     Chain,
10898                     VAARG,
10899                     MachinePointerInfo(),
10900                     false, false, false, 0);
10901}
10902
10903static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
10904                           SelectionDAG &DAG) {
10905  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
10906  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
10907  SDValue Chain = Op.getOperand(0);
10908  SDValue DstPtr = Op.getOperand(1);
10909  SDValue SrcPtr = Op.getOperand(2);
10910  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
10911  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10912  SDLoc DL(Op);
10913
10914  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
10915                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
10916                       false,
10917                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
10918}
10919
10920// getTargetVShiftNode - Handle vector element shifts where the shift amount
10921// may or may not be a constant. Takes immediate version of shift as input.
10922static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, EVT VT,
10923                                   SDValue SrcOp, SDValue ShAmt,
10924                                   SelectionDAG &DAG) {
10925  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
10926
10927  if (isa<ConstantSDNode>(ShAmt)) {
10928    // Constant may be a TargetConstant. Use a regular constant.
10929    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
10930    switch (Opc) {
10931      default: llvm_unreachable("Unknown target vector shift node");
10932      case X86ISD::VSHLI:
10933      case X86ISD::VSRLI:
10934      case X86ISD::VSRAI:
10935        return DAG.getNode(Opc, dl, VT, SrcOp,
10936                           DAG.getConstant(ShiftAmt, MVT::i32));
10937    }
10938  }
10939
10940  // Change opcode to non-immediate version
10941  switch (Opc) {
10942    default: llvm_unreachable("Unknown target vector shift node");
10943    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
10944    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
10945    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
10946  }
10947
10948  // Need to build a vector containing shift amount
10949  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
10950  SDValue ShOps[4];
10951  ShOps[0] = ShAmt;
10952  ShOps[1] = DAG.getConstant(0, MVT::i32);
10953  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
10954  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
10955
10956  // The return type has to be a 128-bit type with the same element
10957  // type as the input type.
10958  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10959  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
10960
10961  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
10962  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
10963}
10964
10965static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
10966  SDLoc dl(Op);
10967  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10968  switch (IntNo) {
10969  default: return SDValue();    // Don't custom lower most intrinsics.
10970  // Comparison intrinsics.
10971  case Intrinsic::x86_sse_comieq_ss:
10972  case Intrinsic::x86_sse_comilt_ss:
10973  case Intrinsic::x86_sse_comile_ss:
10974  case Intrinsic::x86_sse_comigt_ss:
10975  case Intrinsic::x86_sse_comige_ss:
10976  case Intrinsic::x86_sse_comineq_ss:
10977  case Intrinsic::x86_sse_ucomieq_ss:
10978  case Intrinsic::x86_sse_ucomilt_ss:
10979  case Intrinsic::x86_sse_ucomile_ss:
10980  case Intrinsic::x86_sse_ucomigt_ss:
10981  case Intrinsic::x86_sse_ucomige_ss:
10982  case Intrinsic::x86_sse_ucomineq_ss:
10983  case Intrinsic::x86_sse2_comieq_sd:
10984  case Intrinsic::x86_sse2_comilt_sd:
10985  case Intrinsic::x86_sse2_comile_sd:
10986  case Intrinsic::x86_sse2_comigt_sd:
10987  case Intrinsic::x86_sse2_comige_sd:
10988  case Intrinsic::x86_sse2_comineq_sd:
10989  case Intrinsic::x86_sse2_ucomieq_sd:
10990  case Intrinsic::x86_sse2_ucomilt_sd:
10991  case Intrinsic::x86_sse2_ucomile_sd:
10992  case Intrinsic::x86_sse2_ucomigt_sd:
10993  case Intrinsic::x86_sse2_ucomige_sd:
10994  case Intrinsic::x86_sse2_ucomineq_sd: {
10995    unsigned Opc;
10996    ISD::CondCode CC;
10997    switch (IntNo) {
10998    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10999    case Intrinsic::x86_sse_comieq_ss:
11000    case Intrinsic::x86_sse2_comieq_sd:
11001      Opc = X86ISD::COMI;
11002      CC = ISD::SETEQ;
11003      break;
11004    case Intrinsic::x86_sse_comilt_ss:
11005    case Intrinsic::x86_sse2_comilt_sd:
11006      Opc = X86ISD::COMI;
11007      CC = ISD::SETLT;
11008      break;
11009    case Intrinsic::x86_sse_comile_ss:
11010    case Intrinsic::x86_sse2_comile_sd:
11011      Opc = X86ISD::COMI;
11012      CC = ISD::SETLE;
11013      break;
11014    case Intrinsic::x86_sse_comigt_ss:
11015    case Intrinsic::x86_sse2_comigt_sd:
11016      Opc = X86ISD::COMI;
11017      CC = ISD::SETGT;
11018      break;
11019    case Intrinsic::x86_sse_comige_ss:
11020    case Intrinsic::x86_sse2_comige_sd:
11021      Opc = X86ISD::COMI;
11022      CC = ISD::SETGE;
11023      break;
11024    case Intrinsic::x86_sse_comineq_ss:
11025    case Intrinsic::x86_sse2_comineq_sd:
11026      Opc = X86ISD::COMI;
11027      CC = ISD::SETNE;
11028      break;
11029    case Intrinsic::x86_sse_ucomieq_ss:
11030    case Intrinsic::x86_sse2_ucomieq_sd:
11031      Opc = X86ISD::UCOMI;
11032      CC = ISD::SETEQ;
11033      break;
11034    case Intrinsic::x86_sse_ucomilt_ss:
11035    case Intrinsic::x86_sse2_ucomilt_sd:
11036      Opc = X86ISD::UCOMI;
11037      CC = ISD::SETLT;
11038      break;
11039    case Intrinsic::x86_sse_ucomile_ss:
11040    case Intrinsic::x86_sse2_ucomile_sd:
11041      Opc = X86ISD::UCOMI;
11042      CC = ISD::SETLE;
11043      break;
11044    case Intrinsic::x86_sse_ucomigt_ss:
11045    case Intrinsic::x86_sse2_ucomigt_sd:
11046      Opc = X86ISD::UCOMI;
11047      CC = ISD::SETGT;
11048      break;
11049    case Intrinsic::x86_sse_ucomige_ss:
11050    case Intrinsic::x86_sse2_ucomige_sd:
11051      Opc = X86ISD::UCOMI;
11052      CC = ISD::SETGE;
11053      break;
11054    case Intrinsic::x86_sse_ucomineq_ss:
11055    case Intrinsic::x86_sse2_ucomineq_sd:
11056      Opc = X86ISD::UCOMI;
11057      CC = ISD::SETNE;
11058      break;
11059    }
11060
11061    SDValue LHS = Op.getOperand(1);
11062    SDValue RHS = Op.getOperand(2);
11063    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
11064    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
11065    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
11066    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11067                                DAG.getConstant(X86CC, MVT::i8), Cond);
11068    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11069  }
11070
11071  // Arithmetic intrinsics.
11072  case Intrinsic::x86_sse2_pmulu_dq:
11073  case Intrinsic::x86_avx2_pmulu_dq:
11074    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
11075                       Op.getOperand(1), Op.getOperand(2));
11076
11077  // SSE2/AVX2 sub with unsigned saturation intrinsics
11078  case Intrinsic::x86_sse2_psubus_b:
11079  case Intrinsic::x86_sse2_psubus_w:
11080  case Intrinsic::x86_avx2_psubus_b:
11081  case Intrinsic::x86_avx2_psubus_w:
11082    return DAG.getNode(X86ISD::SUBUS, dl, Op.getValueType(),
11083                       Op.getOperand(1), Op.getOperand(2));
11084
11085  // SSE3/AVX horizontal add/sub intrinsics
11086  case Intrinsic::x86_sse3_hadd_ps:
11087  case Intrinsic::x86_sse3_hadd_pd:
11088  case Intrinsic::x86_avx_hadd_ps_256:
11089  case Intrinsic::x86_avx_hadd_pd_256:
11090  case Intrinsic::x86_sse3_hsub_ps:
11091  case Intrinsic::x86_sse3_hsub_pd:
11092  case Intrinsic::x86_avx_hsub_ps_256:
11093  case Intrinsic::x86_avx_hsub_pd_256:
11094  case Intrinsic::x86_ssse3_phadd_w_128:
11095  case Intrinsic::x86_ssse3_phadd_d_128:
11096  case Intrinsic::x86_avx2_phadd_w:
11097  case Intrinsic::x86_avx2_phadd_d:
11098  case Intrinsic::x86_ssse3_phsub_w_128:
11099  case Intrinsic::x86_ssse3_phsub_d_128:
11100  case Intrinsic::x86_avx2_phsub_w:
11101  case Intrinsic::x86_avx2_phsub_d: {
11102    unsigned Opcode;
11103    switch (IntNo) {
11104    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11105    case Intrinsic::x86_sse3_hadd_ps:
11106    case Intrinsic::x86_sse3_hadd_pd:
11107    case Intrinsic::x86_avx_hadd_ps_256:
11108    case Intrinsic::x86_avx_hadd_pd_256:
11109      Opcode = X86ISD::FHADD;
11110      break;
11111    case Intrinsic::x86_sse3_hsub_ps:
11112    case Intrinsic::x86_sse3_hsub_pd:
11113    case Intrinsic::x86_avx_hsub_ps_256:
11114    case Intrinsic::x86_avx_hsub_pd_256:
11115      Opcode = X86ISD::FHSUB;
11116      break;
11117    case Intrinsic::x86_ssse3_phadd_w_128:
11118    case Intrinsic::x86_ssse3_phadd_d_128:
11119    case Intrinsic::x86_avx2_phadd_w:
11120    case Intrinsic::x86_avx2_phadd_d:
11121      Opcode = X86ISD::HADD;
11122      break;
11123    case Intrinsic::x86_ssse3_phsub_w_128:
11124    case Intrinsic::x86_ssse3_phsub_d_128:
11125    case Intrinsic::x86_avx2_phsub_w:
11126    case Intrinsic::x86_avx2_phsub_d:
11127      Opcode = X86ISD::HSUB;
11128      break;
11129    }
11130    return DAG.getNode(Opcode, dl, Op.getValueType(),
11131                       Op.getOperand(1), Op.getOperand(2));
11132  }
11133
11134  // SSE2/SSE41/AVX2 integer max/min intrinsics.
11135  case Intrinsic::x86_sse2_pmaxu_b:
11136  case Intrinsic::x86_sse41_pmaxuw:
11137  case Intrinsic::x86_sse41_pmaxud:
11138  case Intrinsic::x86_avx2_pmaxu_b:
11139  case Intrinsic::x86_avx2_pmaxu_w:
11140  case Intrinsic::x86_avx2_pmaxu_d:
11141  case Intrinsic::x86_sse2_pminu_b:
11142  case Intrinsic::x86_sse41_pminuw:
11143  case Intrinsic::x86_sse41_pminud:
11144  case Intrinsic::x86_avx2_pminu_b:
11145  case Intrinsic::x86_avx2_pminu_w:
11146  case Intrinsic::x86_avx2_pminu_d:
11147  case Intrinsic::x86_sse41_pmaxsb:
11148  case Intrinsic::x86_sse2_pmaxs_w:
11149  case Intrinsic::x86_sse41_pmaxsd:
11150  case Intrinsic::x86_avx2_pmaxs_b:
11151  case Intrinsic::x86_avx2_pmaxs_w:
11152  case Intrinsic::x86_avx2_pmaxs_d:
11153  case Intrinsic::x86_sse41_pminsb:
11154  case Intrinsic::x86_sse2_pmins_w:
11155  case Intrinsic::x86_sse41_pminsd:
11156  case Intrinsic::x86_avx2_pmins_b:
11157  case Intrinsic::x86_avx2_pmins_w:
11158  case Intrinsic::x86_avx2_pmins_d: {
11159    unsigned Opcode;
11160    switch (IntNo) {
11161    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11162    case Intrinsic::x86_sse2_pmaxu_b:
11163    case Intrinsic::x86_sse41_pmaxuw:
11164    case Intrinsic::x86_sse41_pmaxud:
11165    case Intrinsic::x86_avx2_pmaxu_b:
11166    case Intrinsic::x86_avx2_pmaxu_w:
11167    case Intrinsic::x86_avx2_pmaxu_d:
11168      Opcode = X86ISD::UMAX;
11169      break;
11170    case Intrinsic::x86_sse2_pminu_b:
11171    case Intrinsic::x86_sse41_pminuw:
11172    case Intrinsic::x86_sse41_pminud:
11173    case Intrinsic::x86_avx2_pminu_b:
11174    case Intrinsic::x86_avx2_pminu_w:
11175    case Intrinsic::x86_avx2_pminu_d:
11176      Opcode = X86ISD::UMIN;
11177      break;
11178    case Intrinsic::x86_sse41_pmaxsb:
11179    case Intrinsic::x86_sse2_pmaxs_w:
11180    case Intrinsic::x86_sse41_pmaxsd:
11181    case Intrinsic::x86_avx2_pmaxs_b:
11182    case Intrinsic::x86_avx2_pmaxs_w:
11183    case Intrinsic::x86_avx2_pmaxs_d:
11184      Opcode = X86ISD::SMAX;
11185      break;
11186    case Intrinsic::x86_sse41_pminsb:
11187    case Intrinsic::x86_sse2_pmins_w:
11188    case Intrinsic::x86_sse41_pminsd:
11189    case Intrinsic::x86_avx2_pmins_b:
11190    case Intrinsic::x86_avx2_pmins_w:
11191    case Intrinsic::x86_avx2_pmins_d:
11192      Opcode = X86ISD::SMIN;
11193      break;
11194    }
11195    return DAG.getNode(Opcode, dl, Op.getValueType(),
11196                       Op.getOperand(1), Op.getOperand(2));
11197  }
11198
11199  // SSE/SSE2/AVX floating point max/min intrinsics.
11200  case Intrinsic::x86_sse_max_ps:
11201  case Intrinsic::x86_sse2_max_pd:
11202  case Intrinsic::x86_avx_max_ps_256:
11203  case Intrinsic::x86_avx_max_pd_256:
11204  case Intrinsic::x86_avx512_max_ps_512:
11205  case Intrinsic::x86_avx512_max_pd_512:
11206  case Intrinsic::x86_sse_min_ps:
11207  case Intrinsic::x86_sse2_min_pd:
11208  case Intrinsic::x86_avx_min_ps_256:
11209  case Intrinsic::x86_avx_min_pd_256:
11210  case Intrinsic::x86_avx512_min_ps_512:
11211  case Intrinsic::x86_avx512_min_pd_512:  {
11212    unsigned Opcode;
11213    switch (IntNo) {
11214    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11215    case Intrinsic::x86_sse_max_ps:
11216    case Intrinsic::x86_sse2_max_pd:
11217    case Intrinsic::x86_avx_max_ps_256:
11218    case Intrinsic::x86_avx_max_pd_256:
11219    case Intrinsic::x86_avx512_max_ps_512:
11220    case Intrinsic::x86_avx512_max_pd_512:
11221      Opcode = X86ISD::FMAX;
11222      break;
11223    case Intrinsic::x86_sse_min_ps:
11224    case Intrinsic::x86_sse2_min_pd:
11225    case Intrinsic::x86_avx_min_ps_256:
11226    case Intrinsic::x86_avx_min_pd_256:
11227    case Intrinsic::x86_avx512_min_ps_512:
11228    case Intrinsic::x86_avx512_min_pd_512:
11229      Opcode = X86ISD::FMIN;
11230      break;
11231    }
11232    return DAG.getNode(Opcode, dl, Op.getValueType(),
11233                       Op.getOperand(1), Op.getOperand(2));
11234  }
11235
11236  // AVX2 variable shift intrinsics
11237  case Intrinsic::x86_avx2_psllv_d:
11238  case Intrinsic::x86_avx2_psllv_q:
11239  case Intrinsic::x86_avx2_psllv_d_256:
11240  case Intrinsic::x86_avx2_psllv_q_256:
11241  case Intrinsic::x86_avx2_psrlv_d:
11242  case Intrinsic::x86_avx2_psrlv_q:
11243  case Intrinsic::x86_avx2_psrlv_d_256:
11244  case Intrinsic::x86_avx2_psrlv_q_256:
11245  case Intrinsic::x86_avx2_psrav_d:
11246  case Intrinsic::x86_avx2_psrav_d_256: {
11247    unsigned Opcode;
11248    switch (IntNo) {
11249    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11250    case Intrinsic::x86_avx2_psllv_d:
11251    case Intrinsic::x86_avx2_psllv_q:
11252    case Intrinsic::x86_avx2_psllv_d_256:
11253    case Intrinsic::x86_avx2_psllv_q_256:
11254      Opcode = ISD::SHL;
11255      break;
11256    case Intrinsic::x86_avx2_psrlv_d:
11257    case Intrinsic::x86_avx2_psrlv_q:
11258    case Intrinsic::x86_avx2_psrlv_d_256:
11259    case Intrinsic::x86_avx2_psrlv_q_256:
11260      Opcode = ISD::SRL;
11261      break;
11262    case Intrinsic::x86_avx2_psrav_d:
11263    case Intrinsic::x86_avx2_psrav_d_256:
11264      Opcode = ISD::SRA;
11265      break;
11266    }
11267    return DAG.getNode(Opcode, dl, Op.getValueType(),
11268                       Op.getOperand(1), Op.getOperand(2));
11269  }
11270
11271  case Intrinsic::x86_ssse3_pshuf_b_128:
11272  case Intrinsic::x86_avx2_pshuf_b:
11273    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
11274                       Op.getOperand(1), Op.getOperand(2));
11275
11276  case Intrinsic::x86_ssse3_psign_b_128:
11277  case Intrinsic::x86_ssse3_psign_w_128:
11278  case Intrinsic::x86_ssse3_psign_d_128:
11279  case Intrinsic::x86_avx2_psign_b:
11280  case Intrinsic::x86_avx2_psign_w:
11281  case Intrinsic::x86_avx2_psign_d:
11282    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
11283                       Op.getOperand(1), Op.getOperand(2));
11284
11285  case Intrinsic::x86_sse41_insertps:
11286    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
11287                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
11288
11289  case Intrinsic::x86_avx_vperm2f128_ps_256:
11290  case Intrinsic::x86_avx_vperm2f128_pd_256:
11291  case Intrinsic::x86_avx_vperm2f128_si_256:
11292  case Intrinsic::x86_avx2_vperm2i128:
11293    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
11294                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
11295
11296  case Intrinsic::x86_avx2_permd:
11297  case Intrinsic::x86_avx2_permps:
11298    // Operands intentionally swapped. Mask is last operand to intrinsic,
11299    // but second operand for node/intruction.
11300    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
11301                       Op.getOperand(2), Op.getOperand(1));
11302
11303  case Intrinsic::x86_sse_sqrt_ps:
11304  case Intrinsic::x86_sse2_sqrt_pd:
11305  case Intrinsic::x86_avx_sqrt_ps_256:
11306  case Intrinsic::x86_avx_sqrt_pd_256:
11307    return DAG.getNode(ISD::FSQRT, dl, Op.getValueType(), Op.getOperand(1));
11308
11309  // ptest and testp intrinsics. The intrinsic these come from are designed to
11310  // return an integer value, not just an instruction so lower it to the ptest
11311  // or testp pattern and a setcc for the result.
11312  case Intrinsic::x86_sse41_ptestz:
11313  case Intrinsic::x86_sse41_ptestc:
11314  case Intrinsic::x86_sse41_ptestnzc:
11315  case Intrinsic::x86_avx_ptestz_256:
11316  case Intrinsic::x86_avx_ptestc_256:
11317  case Intrinsic::x86_avx_ptestnzc_256:
11318  case Intrinsic::x86_avx_vtestz_ps:
11319  case Intrinsic::x86_avx_vtestc_ps:
11320  case Intrinsic::x86_avx_vtestnzc_ps:
11321  case Intrinsic::x86_avx_vtestz_pd:
11322  case Intrinsic::x86_avx_vtestc_pd:
11323  case Intrinsic::x86_avx_vtestnzc_pd:
11324  case Intrinsic::x86_avx_vtestz_ps_256:
11325  case Intrinsic::x86_avx_vtestc_ps_256:
11326  case Intrinsic::x86_avx_vtestnzc_ps_256:
11327  case Intrinsic::x86_avx_vtestz_pd_256:
11328  case Intrinsic::x86_avx_vtestc_pd_256:
11329  case Intrinsic::x86_avx_vtestnzc_pd_256: {
11330    bool IsTestPacked = false;
11331    unsigned X86CC;
11332    switch (IntNo) {
11333    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
11334    case Intrinsic::x86_avx_vtestz_ps:
11335    case Intrinsic::x86_avx_vtestz_pd:
11336    case Intrinsic::x86_avx_vtestz_ps_256:
11337    case Intrinsic::x86_avx_vtestz_pd_256:
11338      IsTestPacked = true; // Fallthrough
11339    case Intrinsic::x86_sse41_ptestz:
11340    case Intrinsic::x86_avx_ptestz_256:
11341      // ZF = 1
11342      X86CC = X86::COND_E;
11343      break;
11344    case Intrinsic::x86_avx_vtestc_ps:
11345    case Intrinsic::x86_avx_vtestc_pd:
11346    case Intrinsic::x86_avx_vtestc_ps_256:
11347    case Intrinsic::x86_avx_vtestc_pd_256:
11348      IsTestPacked = true; // Fallthrough
11349    case Intrinsic::x86_sse41_ptestc:
11350    case Intrinsic::x86_avx_ptestc_256:
11351      // CF = 1
11352      X86CC = X86::COND_B;
11353      break;
11354    case Intrinsic::x86_avx_vtestnzc_ps:
11355    case Intrinsic::x86_avx_vtestnzc_pd:
11356    case Intrinsic::x86_avx_vtestnzc_ps_256:
11357    case Intrinsic::x86_avx_vtestnzc_pd_256:
11358      IsTestPacked = true; // Fallthrough
11359    case Intrinsic::x86_sse41_ptestnzc:
11360    case Intrinsic::x86_avx_ptestnzc_256:
11361      // ZF and CF = 0
11362      X86CC = X86::COND_A;
11363      break;
11364    }
11365
11366    SDValue LHS = Op.getOperand(1);
11367    SDValue RHS = Op.getOperand(2);
11368    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
11369    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
11370    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
11371    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
11372    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11373  }
11374  case Intrinsic::x86_avx512_kortestz:
11375  case Intrinsic::x86_avx512_kortestc: {
11376    unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz)? X86::COND_E: X86::COND_B;
11377    SDValue LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(1));
11378    SDValue RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i1, Op.getOperand(2));
11379    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
11380    SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
11381    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
11382    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11383  }
11384
11385  // SSE/AVX shift intrinsics
11386  case Intrinsic::x86_sse2_psll_w:
11387  case Intrinsic::x86_sse2_psll_d:
11388  case Intrinsic::x86_sse2_psll_q:
11389  case Intrinsic::x86_avx2_psll_w:
11390  case Intrinsic::x86_avx2_psll_d:
11391  case Intrinsic::x86_avx2_psll_q:
11392  case Intrinsic::x86_sse2_psrl_w:
11393  case Intrinsic::x86_sse2_psrl_d:
11394  case Intrinsic::x86_sse2_psrl_q:
11395  case Intrinsic::x86_avx2_psrl_w:
11396  case Intrinsic::x86_avx2_psrl_d:
11397  case Intrinsic::x86_avx2_psrl_q:
11398  case Intrinsic::x86_sse2_psra_w:
11399  case Intrinsic::x86_sse2_psra_d:
11400  case Intrinsic::x86_avx2_psra_w:
11401  case Intrinsic::x86_avx2_psra_d: {
11402    unsigned Opcode;
11403    switch (IntNo) {
11404    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11405    case Intrinsic::x86_sse2_psll_w:
11406    case Intrinsic::x86_sse2_psll_d:
11407    case Intrinsic::x86_sse2_psll_q:
11408    case Intrinsic::x86_avx2_psll_w:
11409    case Intrinsic::x86_avx2_psll_d:
11410    case Intrinsic::x86_avx2_psll_q:
11411      Opcode = X86ISD::VSHL;
11412      break;
11413    case Intrinsic::x86_sse2_psrl_w:
11414    case Intrinsic::x86_sse2_psrl_d:
11415    case Intrinsic::x86_sse2_psrl_q:
11416    case Intrinsic::x86_avx2_psrl_w:
11417    case Intrinsic::x86_avx2_psrl_d:
11418    case Intrinsic::x86_avx2_psrl_q:
11419      Opcode = X86ISD::VSRL;
11420      break;
11421    case Intrinsic::x86_sse2_psra_w:
11422    case Intrinsic::x86_sse2_psra_d:
11423    case Intrinsic::x86_avx2_psra_w:
11424    case Intrinsic::x86_avx2_psra_d:
11425      Opcode = X86ISD::VSRA;
11426      break;
11427    }
11428    return DAG.getNode(Opcode, dl, Op.getValueType(),
11429                       Op.getOperand(1), Op.getOperand(2));
11430  }
11431
11432  // SSE/AVX immediate shift intrinsics
11433  case Intrinsic::x86_sse2_pslli_w:
11434  case Intrinsic::x86_sse2_pslli_d:
11435  case Intrinsic::x86_sse2_pslli_q:
11436  case Intrinsic::x86_avx2_pslli_w:
11437  case Intrinsic::x86_avx2_pslli_d:
11438  case Intrinsic::x86_avx2_pslli_q:
11439  case Intrinsic::x86_sse2_psrli_w:
11440  case Intrinsic::x86_sse2_psrli_d:
11441  case Intrinsic::x86_sse2_psrli_q:
11442  case Intrinsic::x86_avx2_psrli_w:
11443  case Intrinsic::x86_avx2_psrli_d:
11444  case Intrinsic::x86_avx2_psrli_q:
11445  case Intrinsic::x86_sse2_psrai_w:
11446  case Intrinsic::x86_sse2_psrai_d:
11447  case Intrinsic::x86_avx2_psrai_w:
11448  case Intrinsic::x86_avx2_psrai_d: {
11449    unsigned Opcode;
11450    switch (IntNo) {
11451    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11452    case Intrinsic::x86_sse2_pslli_w:
11453    case Intrinsic::x86_sse2_pslli_d:
11454    case Intrinsic::x86_sse2_pslli_q:
11455    case Intrinsic::x86_avx2_pslli_w:
11456    case Intrinsic::x86_avx2_pslli_d:
11457    case Intrinsic::x86_avx2_pslli_q:
11458      Opcode = X86ISD::VSHLI;
11459      break;
11460    case Intrinsic::x86_sse2_psrli_w:
11461    case Intrinsic::x86_sse2_psrli_d:
11462    case Intrinsic::x86_sse2_psrli_q:
11463    case Intrinsic::x86_avx2_psrli_w:
11464    case Intrinsic::x86_avx2_psrli_d:
11465    case Intrinsic::x86_avx2_psrli_q:
11466      Opcode = X86ISD::VSRLI;
11467      break;
11468    case Intrinsic::x86_sse2_psrai_w:
11469    case Intrinsic::x86_sse2_psrai_d:
11470    case Intrinsic::x86_avx2_psrai_w:
11471    case Intrinsic::x86_avx2_psrai_d:
11472      Opcode = X86ISD::VSRAI;
11473      break;
11474    }
11475    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
11476                               Op.getOperand(1), Op.getOperand(2), DAG);
11477  }
11478
11479  case Intrinsic::x86_sse42_pcmpistria128:
11480  case Intrinsic::x86_sse42_pcmpestria128:
11481  case Intrinsic::x86_sse42_pcmpistric128:
11482  case Intrinsic::x86_sse42_pcmpestric128:
11483  case Intrinsic::x86_sse42_pcmpistrio128:
11484  case Intrinsic::x86_sse42_pcmpestrio128:
11485  case Intrinsic::x86_sse42_pcmpistris128:
11486  case Intrinsic::x86_sse42_pcmpestris128:
11487  case Intrinsic::x86_sse42_pcmpistriz128:
11488  case Intrinsic::x86_sse42_pcmpestriz128: {
11489    unsigned Opcode;
11490    unsigned X86CC;
11491    switch (IntNo) {
11492    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11493    case Intrinsic::x86_sse42_pcmpistria128:
11494      Opcode = X86ISD::PCMPISTRI;
11495      X86CC = X86::COND_A;
11496      break;
11497    case Intrinsic::x86_sse42_pcmpestria128:
11498      Opcode = X86ISD::PCMPESTRI;
11499      X86CC = X86::COND_A;
11500      break;
11501    case Intrinsic::x86_sse42_pcmpistric128:
11502      Opcode = X86ISD::PCMPISTRI;
11503      X86CC = X86::COND_B;
11504      break;
11505    case Intrinsic::x86_sse42_pcmpestric128:
11506      Opcode = X86ISD::PCMPESTRI;
11507      X86CC = X86::COND_B;
11508      break;
11509    case Intrinsic::x86_sse42_pcmpistrio128:
11510      Opcode = X86ISD::PCMPISTRI;
11511      X86CC = X86::COND_O;
11512      break;
11513    case Intrinsic::x86_sse42_pcmpestrio128:
11514      Opcode = X86ISD::PCMPESTRI;
11515      X86CC = X86::COND_O;
11516      break;
11517    case Intrinsic::x86_sse42_pcmpistris128:
11518      Opcode = X86ISD::PCMPISTRI;
11519      X86CC = X86::COND_S;
11520      break;
11521    case Intrinsic::x86_sse42_pcmpestris128:
11522      Opcode = X86ISD::PCMPESTRI;
11523      X86CC = X86::COND_S;
11524      break;
11525    case Intrinsic::x86_sse42_pcmpistriz128:
11526      Opcode = X86ISD::PCMPISTRI;
11527      X86CC = X86::COND_E;
11528      break;
11529    case Intrinsic::x86_sse42_pcmpestriz128:
11530      Opcode = X86ISD::PCMPESTRI;
11531      X86CC = X86::COND_E;
11532      break;
11533    }
11534    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
11535    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
11536    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
11537    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11538                                DAG.getConstant(X86CC, MVT::i8),
11539                                SDValue(PCMP.getNode(), 1));
11540    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
11541  }
11542
11543  case Intrinsic::x86_sse42_pcmpistri128:
11544  case Intrinsic::x86_sse42_pcmpestri128: {
11545    unsigned Opcode;
11546    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
11547      Opcode = X86ISD::PCMPISTRI;
11548    else
11549      Opcode = X86ISD::PCMPESTRI;
11550
11551    SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
11552    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
11553    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
11554  }
11555  case Intrinsic::x86_fma_vfmadd_ps:
11556  case Intrinsic::x86_fma_vfmadd_pd:
11557  case Intrinsic::x86_fma_vfmsub_ps:
11558  case Intrinsic::x86_fma_vfmsub_pd:
11559  case Intrinsic::x86_fma_vfnmadd_ps:
11560  case Intrinsic::x86_fma_vfnmadd_pd:
11561  case Intrinsic::x86_fma_vfnmsub_ps:
11562  case Intrinsic::x86_fma_vfnmsub_pd:
11563  case Intrinsic::x86_fma_vfmaddsub_ps:
11564  case Intrinsic::x86_fma_vfmaddsub_pd:
11565  case Intrinsic::x86_fma_vfmsubadd_ps:
11566  case Intrinsic::x86_fma_vfmsubadd_pd:
11567  case Intrinsic::x86_fma_vfmadd_ps_256:
11568  case Intrinsic::x86_fma_vfmadd_pd_256:
11569  case Intrinsic::x86_fma_vfmsub_ps_256:
11570  case Intrinsic::x86_fma_vfmsub_pd_256:
11571  case Intrinsic::x86_fma_vfnmadd_ps_256:
11572  case Intrinsic::x86_fma_vfnmadd_pd_256:
11573  case Intrinsic::x86_fma_vfnmsub_ps_256:
11574  case Intrinsic::x86_fma_vfnmsub_pd_256:
11575  case Intrinsic::x86_fma_vfmaddsub_ps_256:
11576  case Intrinsic::x86_fma_vfmaddsub_pd_256:
11577  case Intrinsic::x86_fma_vfmsubadd_ps_256:
11578  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
11579    unsigned Opc;
11580    switch (IntNo) {
11581    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
11582    case Intrinsic::x86_fma_vfmadd_ps:
11583    case Intrinsic::x86_fma_vfmadd_pd:
11584    case Intrinsic::x86_fma_vfmadd_ps_256:
11585    case Intrinsic::x86_fma_vfmadd_pd_256:
11586      Opc = X86ISD::FMADD;
11587      break;
11588    case Intrinsic::x86_fma_vfmsub_ps:
11589    case Intrinsic::x86_fma_vfmsub_pd:
11590    case Intrinsic::x86_fma_vfmsub_ps_256:
11591    case Intrinsic::x86_fma_vfmsub_pd_256:
11592      Opc = X86ISD::FMSUB;
11593      break;
11594    case Intrinsic::x86_fma_vfnmadd_ps:
11595    case Intrinsic::x86_fma_vfnmadd_pd:
11596    case Intrinsic::x86_fma_vfnmadd_ps_256:
11597    case Intrinsic::x86_fma_vfnmadd_pd_256:
11598      Opc = X86ISD::FNMADD;
11599      break;
11600    case Intrinsic::x86_fma_vfnmsub_ps:
11601    case Intrinsic::x86_fma_vfnmsub_pd:
11602    case Intrinsic::x86_fma_vfnmsub_ps_256:
11603    case Intrinsic::x86_fma_vfnmsub_pd_256:
11604      Opc = X86ISD::FNMSUB;
11605      break;
11606    case Intrinsic::x86_fma_vfmaddsub_ps:
11607    case Intrinsic::x86_fma_vfmaddsub_pd:
11608    case Intrinsic::x86_fma_vfmaddsub_ps_256:
11609    case Intrinsic::x86_fma_vfmaddsub_pd_256:
11610      Opc = X86ISD::FMADDSUB;
11611      break;
11612    case Intrinsic::x86_fma_vfmsubadd_ps:
11613    case Intrinsic::x86_fma_vfmsubadd_pd:
11614    case Intrinsic::x86_fma_vfmsubadd_ps_256:
11615    case Intrinsic::x86_fma_vfmsubadd_pd_256:
11616      Opc = X86ISD::FMSUBADD;
11617      break;
11618    }
11619
11620    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
11621                       Op.getOperand(2), Op.getOperand(3));
11622  }
11623  }
11624}
11625
11626static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
11627  SDLoc dl(Op);
11628  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11629  switch (IntNo) {
11630  default: return SDValue();    // Don't custom lower most intrinsics.
11631
11632  // RDRAND/RDSEED intrinsics.
11633  case Intrinsic::x86_rdrand_16:
11634  case Intrinsic::x86_rdrand_32:
11635  case Intrinsic::x86_rdrand_64:
11636  case Intrinsic::x86_rdseed_16:
11637  case Intrinsic::x86_rdseed_32:
11638  case Intrinsic::x86_rdseed_64: {
11639    unsigned Opcode = (IntNo == Intrinsic::x86_rdseed_16 ||
11640                       IntNo == Intrinsic::x86_rdseed_32 ||
11641                       IntNo == Intrinsic::x86_rdseed_64) ? X86ISD::RDSEED :
11642                                                            X86ISD::RDRAND;
11643    // Emit the node with the right value type.
11644    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
11645    SDValue Result = DAG.getNode(Opcode, dl, VTs, Op.getOperand(0));
11646
11647    // If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
11648    // Otherwise return the value from Rand, which is always 0, casted to i32.
11649    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
11650                      DAG.getConstant(1, Op->getValueType(1)),
11651                      DAG.getConstant(X86::COND_B, MVT::i32),
11652                      SDValue(Result.getNode(), 1) };
11653    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
11654                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
11655                                  Ops, array_lengthof(Ops));
11656
11657    // Return { result, isValid, chain }.
11658    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
11659                       SDValue(Result.getNode(), 2));
11660  }
11661
11662  // XTEST intrinsics.
11663  case Intrinsic::x86_xtest: {
11664    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
11665    SDValue InTrans = DAG.getNode(X86ISD::XTEST, dl, VTs, Op.getOperand(0));
11666    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
11667                                DAG.getConstant(X86::COND_NE, MVT::i8),
11668                                InTrans);
11669    SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
11670    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
11671                       Ret, SDValue(InTrans.getNode(), 1));
11672  }
11673  }
11674}
11675
11676SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
11677                                           SelectionDAG &DAG) const {
11678  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11679  MFI->setReturnAddressIsTaken(true);
11680
11681  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11682  SDLoc dl(Op);
11683  EVT PtrVT = getPointerTy();
11684
11685  if (Depth > 0) {
11686    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
11687    const X86RegisterInfo *RegInfo =
11688      static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11689    SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), PtrVT);
11690    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11691                       DAG.getNode(ISD::ADD, dl, PtrVT,
11692                                   FrameAddr, Offset),
11693                       MachinePointerInfo(), false, false, false, 0);
11694  }
11695
11696  // Just load the return address.
11697  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
11698  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
11699                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
11700}
11701
11702SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
11703  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
11704  MFI->setFrameAddressIsTaken(true);
11705
11706  EVT VT = Op.getValueType();
11707  SDLoc dl(Op);  // FIXME probably not meaningful
11708  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
11709  const X86RegisterInfo *RegInfo =
11710    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11711  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
11712  assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
11713          (FrameReg == X86::EBP && VT == MVT::i32)) &&
11714         "Invalid Frame Register!");
11715  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
11716  while (Depth--)
11717    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
11718                            MachinePointerInfo(),
11719                            false, false, false, 0);
11720  return FrameAddr;
11721}
11722
11723SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
11724                                                     SelectionDAG &DAG) const {
11725  const X86RegisterInfo *RegInfo =
11726    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11727  return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize());
11728}
11729
11730SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
11731  SDValue Chain     = Op.getOperand(0);
11732  SDValue Offset    = Op.getOperand(1);
11733  SDValue Handler   = Op.getOperand(2);
11734  SDLoc dl      (Op);
11735
11736  EVT PtrVT = getPointerTy();
11737  const X86RegisterInfo *RegInfo =
11738    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
11739  unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
11740  assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
11741          (FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
11742         "Invalid Frame Register!");
11743  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
11744  unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
11745
11746  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
11747                                 DAG.getIntPtrConstant(RegInfo->getSlotSize()));
11748  StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
11749  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
11750                       false, false, 0);
11751  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
11752
11753  return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
11754                     DAG.getRegister(StoreAddrReg, PtrVT));
11755}
11756
11757SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
11758                                               SelectionDAG &DAG) const {
11759  SDLoc DL(Op);
11760  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
11761                     DAG.getVTList(MVT::i32, MVT::Other),
11762                     Op.getOperand(0), Op.getOperand(1));
11763}
11764
11765SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
11766                                                SelectionDAG &DAG) const {
11767  SDLoc DL(Op);
11768  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
11769                     Op.getOperand(0), Op.getOperand(1));
11770}
11771
11772static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
11773  return Op.getOperand(0);
11774}
11775
11776SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
11777                                                SelectionDAG &DAG) const {
11778  SDValue Root = Op.getOperand(0);
11779  SDValue Trmp = Op.getOperand(1); // trampoline
11780  SDValue FPtr = Op.getOperand(2); // nested function
11781  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
11782  SDLoc dl (Op);
11783
11784  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
11785  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
11786
11787  if (Subtarget->is64Bit()) {
11788    SDValue OutChains[6];
11789
11790    // Large code-model.
11791    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
11792    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
11793
11794    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
11795    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
11796
11797    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
11798
11799    // Load the pointer to the nested function into R11.
11800    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
11801    SDValue Addr = Trmp;
11802    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11803                                Addr, MachinePointerInfo(TrmpAddr),
11804                                false, false, 0);
11805
11806    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11807                       DAG.getConstant(2, MVT::i64));
11808    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
11809                                MachinePointerInfo(TrmpAddr, 2),
11810                                false, false, 2);
11811
11812    // Load the 'nest' parameter value into R10.
11813    // R10 is specified in X86CallingConv.td
11814    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
11815    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11816                       DAG.getConstant(10, MVT::i64));
11817    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11818                                Addr, MachinePointerInfo(TrmpAddr, 10),
11819                                false, false, 0);
11820
11821    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11822                       DAG.getConstant(12, MVT::i64));
11823    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
11824                                MachinePointerInfo(TrmpAddr, 12),
11825                                false, false, 2);
11826
11827    // Jump to the nested function.
11828    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
11829    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11830                       DAG.getConstant(20, MVT::i64));
11831    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
11832                                Addr, MachinePointerInfo(TrmpAddr, 20),
11833                                false, false, 0);
11834
11835    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
11836    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
11837                       DAG.getConstant(22, MVT::i64));
11838    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
11839                                MachinePointerInfo(TrmpAddr, 22),
11840                                false, false, 0);
11841
11842    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
11843  } else {
11844    const Function *Func =
11845      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
11846    CallingConv::ID CC = Func->getCallingConv();
11847    unsigned NestReg;
11848
11849    switch (CC) {
11850    default:
11851      llvm_unreachable("Unsupported calling convention");
11852    case CallingConv::C:
11853    case CallingConv::X86_StdCall: {
11854      // Pass 'nest' parameter in ECX.
11855      // Must be kept in sync with X86CallingConv.td
11856      NestReg = X86::ECX;
11857
11858      // Check that ECX wasn't needed by an 'inreg' parameter.
11859      FunctionType *FTy = Func->getFunctionType();
11860      const AttributeSet &Attrs = Func->getAttributes();
11861
11862      if (!Attrs.isEmpty() && !Func->isVarArg()) {
11863        unsigned InRegCount = 0;
11864        unsigned Idx = 1;
11865
11866        for (FunctionType::param_iterator I = FTy->param_begin(),
11867             E = FTy->param_end(); I != E; ++I, ++Idx)
11868          if (Attrs.hasAttribute(Idx, Attribute::InReg))
11869            // FIXME: should only count parameters that are lowered to integers.
11870            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
11871
11872        if (InRegCount > 2) {
11873          report_fatal_error("Nest register in use - reduce number of inreg"
11874                             " parameters!");
11875        }
11876      }
11877      break;
11878    }
11879    case CallingConv::X86_FastCall:
11880    case CallingConv::X86_ThisCall:
11881    case CallingConv::Fast:
11882      // Pass 'nest' parameter in EAX.
11883      // Must be kept in sync with X86CallingConv.td
11884      NestReg = X86::EAX;
11885      break;
11886    }
11887
11888    SDValue OutChains[4];
11889    SDValue Addr, Disp;
11890
11891    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11892                       DAG.getConstant(10, MVT::i32));
11893    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
11894
11895    // This is storing the opcode for MOV32ri.
11896    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
11897    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
11898    OutChains[0] = DAG.getStore(Root, dl,
11899                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
11900                                Trmp, MachinePointerInfo(TrmpAddr),
11901                                false, false, 0);
11902
11903    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11904                       DAG.getConstant(1, MVT::i32));
11905    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
11906                                MachinePointerInfo(TrmpAddr, 1),
11907                                false, false, 1);
11908
11909    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
11910    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11911                       DAG.getConstant(5, MVT::i32));
11912    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
11913                                MachinePointerInfo(TrmpAddr, 5),
11914                                false, false, 1);
11915
11916    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
11917                       DAG.getConstant(6, MVT::i32));
11918    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
11919                                MachinePointerInfo(TrmpAddr, 6),
11920                                false, false, 1);
11921
11922    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
11923  }
11924}
11925
11926SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
11927                                            SelectionDAG &DAG) const {
11928  /*
11929   The rounding mode is in bits 11:10 of FPSR, and has the following
11930   settings:
11931     00 Round to nearest
11932     01 Round to -inf
11933     10 Round to +inf
11934     11 Round to 0
11935
11936  FLT_ROUNDS, on the other hand, expects the following:
11937    -1 Undefined
11938     0 Round to 0
11939     1 Round to nearest
11940     2 Round to +inf
11941     3 Round to -inf
11942
11943  To perform the conversion, we do:
11944    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
11945  */
11946
11947  MachineFunction &MF = DAG.getMachineFunction();
11948  const TargetMachine &TM = MF.getTarget();
11949  const TargetFrameLowering &TFI = *TM.getFrameLowering();
11950  unsigned StackAlignment = TFI.getStackAlignment();
11951  EVT VT = Op.getValueType();
11952  SDLoc DL(Op);
11953
11954  // Save FP Control Word to stack slot
11955  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
11956  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
11957
11958  MachineMemOperand *MMO =
11959   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
11960                           MachineMemOperand::MOStore, 2, 2);
11961
11962  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
11963  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
11964                                          DAG.getVTList(MVT::Other),
11965                                          Ops, array_lengthof(Ops), MVT::i16,
11966                                          MMO);
11967
11968  // Load FP Control Word from stack slot
11969  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
11970                            MachinePointerInfo(), false, false, false, 0);
11971
11972  // Transform as necessary
11973  SDValue CWD1 =
11974    DAG.getNode(ISD::SRL, DL, MVT::i16,
11975                DAG.getNode(ISD::AND, DL, MVT::i16,
11976                            CWD, DAG.getConstant(0x800, MVT::i16)),
11977                DAG.getConstant(11, MVT::i8));
11978  SDValue CWD2 =
11979    DAG.getNode(ISD::SRL, DL, MVT::i16,
11980                DAG.getNode(ISD::AND, DL, MVT::i16,
11981                            CWD, DAG.getConstant(0x400, MVT::i16)),
11982                DAG.getConstant(9, MVT::i8));
11983
11984  SDValue RetVal =
11985    DAG.getNode(ISD::AND, DL, MVT::i16,
11986                DAG.getNode(ISD::ADD, DL, MVT::i16,
11987                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
11988                            DAG.getConstant(1, MVT::i16)),
11989                DAG.getConstant(3, MVT::i16));
11990
11991  return DAG.getNode((VT.getSizeInBits() < 16 ?
11992                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
11993}
11994
11995static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
11996  EVT VT = Op.getValueType();
11997  EVT OpVT = VT;
11998  unsigned NumBits = VT.getSizeInBits();
11999  SDLoc dl(Op);
12000
12001  Op = Op.getOperand(0);
12002  if (VT == MVT::i8) {
12003    // Zero extend to i32 since there is not an i8 bsr.
12004    OpVT = MVT::i32;
12005    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
12006  }
12007
12008  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
12009  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
12010  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
12011
12012  // If src is zero (i.e. bsr sets ZF), returns NumBits.
12013  SDValue Ops[] = {
12014    Op,
12015    DAG.getConstant(NumBits+NumBits-1, OpVT),
12016    DAG.getConstant(X86::COND_E, MVT::i8),
12017    Op.getValue(1)
12018  };
12019  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
12020
12021  // Finally xor with NumBits-1.
12022  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
12023
12024  if (VT == MVT::i8)
12025    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
12026  return Op;
12027}
12028
12029static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
12030  EVT VT = Op.getValueType();
12031  EVT OpVT = VT;
12032  unsigned NumBits = VT.getSizeInBits();
12033  SDLoc dl(Op);
12034
12035  Op = Op.getOperand(0);
12036  if (VT == MVT::i8) {
12037    // Zero extend to i32 since there is not an i8 bsr.
12038    OpVT = MVT::i32;
12039    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
12040  }
12041
12042  // Issue a bsr (scan bits in reverse).
12043  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
12044  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
12045
12046  // And xor with NumBits-1.
12047  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
12048
12049  if (VT == MVT::i8)
12050    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
12051  return Op;
12052}
12053
12054static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
12055  EVT VT = Op.getValueType();
12056  unsigned NumBits = VT.getSizeInBits();
12057  SDLoc dl(Op);
12058  Op = Op.getOperand(0);
12059
12060  // Issue a bsf (scan bits forward) which also sets EFLAGS.
12061  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12062  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
12063
12064  // If src is zero (i.e. bsf sets ZF), returns NumBits.
12065  SDValue Ops[] = {
12066    Op,
12067    DAG.getConstant(NumBits, VT),
12068    DAG.getConstant(X86::COND_E, MVT::i8),
12069    Op.getValue(1)
12070  };
12071  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
12072}
12073
12074// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
12075// ones, and then concatenate the result back.
12076static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
12077  EVT VT = Op.getValueType();
12078
12079  assert(VT.is256BitVector() && VT.isInteger() &&
12080         "Unsupported value type for operation");
12081
12082  unsigned NumElems = VT.getVectorNumElements();
12083  SDLoc dl(Op);
12084
12085  // Extract the LHS vectors
12086  SDValue LHS = Op.getOperand(0);
12087  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12088  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12089
12090  // Extract the RHS vectors
12091  SDValue RHS = Op.getOperand(1);
12092  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
12093  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
12094
12095  MVT EltVT = VT.getVectorElementType().getSimpleVT();
12096  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12097
12098  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
12099                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
12100                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
12101}
12102
12103static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
12104  assert(Op.getValueType().is256BitVector() &&
12105         Op.getValueType().isInteger() &&
12106         "Only handle AVX 256-bit vector integer operation");
12107  return Lower256IntArith(Op, DAG);
12108}
12109
12110static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
12111  assert(Op.getValueType().is256BitVector() &&
12112         Op.getValueType().isInteger() &&
12113         "Only handle AVX 256-bit vector integer operation");
12114  return Lower256IntArith(Op, DAG);
12115}
12116
12117static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
12118                        SelectionDAG &DAG) {
12119  SDLoc dl(Op);
12120  EVT VT = Op.getValueType();
12121
12122  // Decompose 256-bit ops into smaller 128-bit ops.
12123  if (VT.is256BitVector() && !Subtarget->hasInt256())
12124    return Lower256IntArith(Op, DAG);
12125
12126  SDValue A = Op.getOperand(0);
12127  SDValue B = Op.getOperand(1);
12128
12129  // Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
12130  if (VT == MVT::v4i32) {
12131    assert(Subtarget->hasSSE2() && !Subtarget->hasSSE41() &&
12132           "Should not custom lower when pmuldq is available!");
12133
12134    // Extract the odd parts.
12135    static const int UnpackMask[] = { 1, -1, 3, -1 };
12136    SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
12137    SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
12138
12139    // Multiply the even parts.
12140    SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
12141    // Now multiply odd parts.
12142    SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
12143
12144    Evens = DAG.getNode(ISD::BITCAST, dl, VT, Evens);
12145    Odds = DAG.getNode(ISD::BITCAST, dl, VT, Odds);
12146
12147    // Merge the two vectors back together with a shuffle. This expands into 2
12148    // shuffles.
12149    static const int ShufMask[] = { 0, 4, 2, 6 };
12150    return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
12151  }
12152
12153  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
12154         "Only know how to lower V2I64/V4I64 multiply");
12155
12156  //  Ahi = psrlqi(a, 32);
12157  //  Bhi = psrlqi(b, 32);
12158  //
12159  //  AloBlo = pmuludq(a, b);
12160  //  AloBhi = pmuludq(a, Bhi);
12161  //  AhiBlo = pmuludq(Ahi, b);
12162
12163  //  AloBhi = psllqi(AloBhi, 32);
12164  //  AhiBlo = psllqi(AhiBlo, 32);
12165  //  return AloBlo + AloBhi + AhiBlo;
12166
12167  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
12168
12169  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
12170  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
12171
12172  // Bit cast to 32-bit vectors for MULUDQ
12173  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
12174  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
12175  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
12176  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
12177  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
12178
12179  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
12180  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
12181  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
12182
12183  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
12184  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
12185
12186  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
12187  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
12188}
12189
12190static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
12191  EVT VT = Op.getValueType();
12192  EVT EltTy = VT.getVectorElementType();
12193  unsigned NumElts = VT.getVectorNumElements();
12194  SDValue N0 = Op.getOperand(0);
12195  SDLoc dl(Op);
12196
12197  // Lower sdiv X, pow2-const.
12198  BuildVectorSDNode *C = dyn_cast<BuildVectorSDNode>(Op.getOperand(1));
12199  if (!C)
12200    return SDValue();
12201
12202  APInt SplatValue, SplatUndef;
12203  unsigned SplatBitSize;
12204  bool HasAnyUndefs;
12205  if (!C->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
12206                          HasAnyUndefs) ||
12207      EltTy.getSizeInBits() < SplatBitSize)
12208    return SDValue();
12209
12210  if ((SplatValue != 0) &&
12211      (SplatValue.isPowerOf2() || (-SplatValue).isPowerOf2())) {
12212    unsigned lg2 = SplatValue.countTrailingZeros();
12213    // Splat the sign bit.
12214    SDValue Sz = DAG.getConstant(EltTy.getSizeInBits()-1, MVT::i32);
12215    SDValue SGN = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, N0, Sz, DAG);
12216    // Add (N0 < 0) ? abs2 - 1 : 0;
12217    SDValue Amt = DAG.getConstant(EltTy.getSizeInBits() - lg2, MVT::i32);
12218    SDValue SRL = getTargetVShiftNode(X86ISD::VSRLI, dl, VT, SGN, Amt, DAG);
12219    SDValue ADD = DAG.getNode(ISD::ADD, dl, VT, N0, SRL);
12220    SDValue Lg2Amt = DAG.getConstant(lg2, MVT::i32);
12221    SDValue SRA = getTargetVShiftNode(X86ISD::VSRAI, dl, VT, ADD, Lg2Amt, DAG);
12222
12223    // If we're dividing by a positive value, we're done.  Otherwise, we must
12224    // negate the result.
12225    if (SplatValue.isNonNegative())
12226      return SRA;
12227
12228    SmallVector<SDValue, 16> V(NumElts, DAG.getConstant(0, EltTy));
12229    SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], NumElts);
12230    return DAG.getNode(ISD::SUB, dl, VT, Zero, SRA);
12231  }
12232  return SDValue();
12233}
12234
12235static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
12236                                         const X86Subtarget *Subtarget) {
12237  EVT VT = Op.getValueType();
12238  SDLoc dl(Op);
12239  SDValue R = Op.getOperand(0);
12240  SDValue Amt = Op.getOperand(1);
12241
12242  // Optimize shl/srl/sra with constant shift amount.
12243  if (isSplatVector(Amt.getNode())) {
12244    SDValue SclrAmt = Amt->getOperand(0);
12245    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
12246      uint64_t ShiftAmt = C->getZExtValue();
12247
12248      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
12249          (Subtarget->hasInt256() &&
12250           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16)) ||
12251          (Subtarget->hasAVX512() &&
12252           (VT == MVT::v8i64 || VT == MVT::v16i32))) {
12253        if (Op.getOpcode() == ISD::SHL)
12254          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
12255                             DAG.getConstant(ShiftAmt, MVT::i32));
12256        if (Op.getOpcode() == ISD::SRL)
12257          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
12258                             DAG.getConstant(ShiftAmt, MVT::i32));
12259        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
12260          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
12261                             DAG.getConstant(ShiftAmt, MVT::i32));
12262      }
12263
12264      if (VT == MVT::v16i8) {
12265        if (Op.getOpcode() == ISD::SHL) {
12266          // Make a large shift.
12267          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
12268                                    DAG.getConstant(ShiftAmt, MVT::i32));
12269          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
12270          // Zero out the rightmost bits.
12271          SmallVector<SDValue, 16> V(16,
12272                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
12273                                                     MVT::i8));
12274          return DAG.getNode(ISD::AND, dl, VT, SHL,
12275                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
12276        }
12277        if (Op.getOpcode() == ISD::SRL) {
12278          // Make a large shift.
12279          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
12280                                    DAG.getConstant(ShiftAmt, MVT::i32));
12281          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
12282          // Zero out the leftmost bits.
12283          SmallVector<SDValue, 16> V(16,
12284                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
12285                                                     MVT::i8));
12286          return DAG.getNode(ISD::AND, dl, VT, SRL,
12287                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
12288        }
12289        if (Op.getOpcode() == ISD::SRA) {
12290          if (ShiftAmt == 7) {
12291            // R s>> 7  ===  R s< 0
12292            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12293            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
12294          }
12295
12296          // R s>> a === ((R u>> a) ^ m) - m
12297          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
12298          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
12299                                                         MVT::i8));
12300          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
12301          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
12302          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
12303          return Res;
12304        }
12305        llvm_unreachable("Unknown shift opcode.");
12306      }
12307
12308      if (Subtarget->hasInt256() && VT == MVT::v32i8) {
12309        if (Op.getOpcode() == ISD::SHL) {
12310          // Make a large shift.
12311          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
12312                                    DAG.getConstant(ShiftAmt, MVT::i32));
12313          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
12314          // Zero out the rightmost bits.
12315          SmallVector<SDValue, 32> V(32,
12316                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
12317                                                     MVT::i8));
12318          return DAG.getNode(ISD::AND, dl, VT, SHL,
12319                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
12320        }
12321        if (Op.getOpcode() == ISD::SRL) {
12322          // Make a large shift.
12323          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
12324                                    DAG.getConstant(ShiftAmt, MVT::i32));
12325          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
12326          // Zero out the leftmost bits.
12327          SmallVector<SDValue, 32> V(32,
12328                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
12329                                                     MVT::i8));
12330          return DAG.getNode(ISD::AND, dl, VT, SRL,
12331                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
12332        }
12333        if (Op.getOpcode() == ISD::SRA) {
12334          if (ShiftAmt == 7) {
12335            // R s>> 7  ===  R s< 0
12336            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12337            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
12338          }
12339
12340          // R s>> a === ((R u>> a) ^ m) - m
12341          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
12342          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
12343                                                         MVT::i8));
12344          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
12345          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
12346          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
12347          return Res;
12348        }
12349        llvm_unreachable("Unknown shift opcode.");
12350      }
12351    }
12352  }
12353
12354  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
12355  if (!Subtarget->is64Bit() &&
12356      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64)) &&
12357      Amt.getOpcode() == ISD::BITCAST &&
12358      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
12359    Amt = Amt.getOperand(0);
12360    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
12361                     VT.getVectorNumElements();
12362    unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
12363    uint64_t ShiftAmt = 0;
12364    for (unsigned i = 0; i != Ratio; ++i) {
12365      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i));
12366      if (C == 0)
12367        return SDValue();
12368      // 6 == Log2(64)
12369      ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
12370    }
12371    // Check remaining shift amounts.
12372    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
12373      uint64_t ShAmt = 0;
12374      for (unsigned j = 0; j != Ratio; ++j) {
12375        ConstantSDNode *C =
12376          dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
12377        if (C == 0)
12378          return SDValue();
12379        // 6 == Log2(64)
12380        ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
12381      }
12382      if (ShAmt != ShiftAmt)
12383        return SDValue();
12384    }
12385    switch (Op.getOpcode()) {
12386    default:
12387      llvm_unreachable("Unknown shift opcode!");
12388    case ISD::SHL:
12389      return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
12390                         DAG.getConstant(ShiftAmt, MVT::i32));
12391    case ISD::SRL:
12392      return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
12393                         DAG.getConstant(ShiftAmt, MVT::i32));
12394    case ISD::SRA:
12395      return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
12396                         DAG.getConstant(ShiftAmt, MVT::i32));
12397    }
12398  }
12399
12400  return SDValue();
12401}
12402
12403static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
12404                                        const X86Subtarget* Subtarget) {
12405  EVT VT = Op.getValueType();
12406  SDLoc dl(Op);
12407  SDValue R = Op.getOperand(0);
12408  SDValue Amt = Op.getOperand(1);
12409
12410  if ((VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) ||
12411      VT == MVT::v4i32 || VT == MVT::v8i16 ||
12412      (Subtarget->hasInt256() &&
12413       ((VT == MVT::v4i64 && Op.getOpcode() != ISD::SRA) ||
12414        VT == MVT::v8i32 || VT == MVT::v16i16)) ||
12415       (Subtarget->hasAVX512() && (VT == MVT::v8i64 || VT == MVT::v16i32))) {
12416    SDValue BaseShAmt;
12417    EVT EltVT = VT.getVectorElementType();
12418
12419    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
12420      unsigned NumElts = VT.getVectorNumElements();
12421      unsigned i, j;
12422      for (i = 0; i != NumElts; ++i) {
12423        if (Amt.getOperand(i).getOpcode() == ISD::UNDEF)
12424          continue;
12425        break;
12426      }
12427      for (j = i; j != NumElts; ++j) {
12428        SDValue Arg = Amt.getOperand(j);
12429        if (Arg.getOpcode() == ISD::UNDEF) continue;
12430        if (Arg != Amt.getOperand(i))
12431          break;
12432      }
12433      if (i != NumElts && j == NumElts)
12434        BaseShAmt = Amt.getOperand(i);
12435    } else {
12436      if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
12437        Amt = Amt.getOperand(0);
12438      if (Amt.getOpcode() == ISD::VECTOR_SHUFFLE &&
12439               cast<ShuffleVectorSDNode>(Amt)->isSplat()) {
12440        SDValue InVec = Amt.getOperand(0);
12441        if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12442          unsigned NumElts = InVec.getValueType().getVectorNumElements();
12443          unsigned i = 0;
12444          for (; i != NumElts; ++i) {
12445            SDValue Arg = InVec.getOperand(i);
12446            if (Arg.getOpcode() == ISD::UNDEF) continue;
12447            BaseShAmt = Arg;
12448            break;
12449          }
12450        } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12451           if (ConstantSDNode *C =
12452               dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12453             unsigned SplatIdx =
12454               cast<ShuffleVectorSDNode>(Amt)->getSplatIndex();
12455             if (C->getZExtValue() == SplatIdx)
12456               BaseShAmt = InVec.getOperand(1);
12457           }
12458        }
12459        if (BaseShAmt.getNode() == 0)
12460          BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Amt,
12461                                  DAG.getIntPtrConstant(0));
12462      }
12463    }
12464
12465    if (BaseShAmt.getNode()) {
12466      if (EltVT.bitsGT(MVT::i32))
12467        BaseShAmt = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BaseShAmt);
12468      else if (EltVT.bitsLT(MVT::i32))
12469        BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
12470
12471      switch (Op.getOpcode()) {
12472      default:
12473        llvm_unreachable("Unknown shift opcode!");
12474      case ISD::SHL:
12475        switch (VT.getSimpleVT().SimpleTy) {
12476        default: return SDValue();
12477        case MVT::v2i64:
12478        case MVT::v4i32:
12479        case MVT::v8i16:
12480        case MVT::v4i64:
12481        case MVT::v8i32:
12482        case MVT::v16i16:
12483        case MVT::v16i32:
12484        case MVT::v8i64:
12485          return getTargetVShiftNode(X86ISD::VSHLI, dl, VT, R, BaseShAmt, DAG);
12486        }
12487      case ISD::SRA:
12488        switch (VT.getSimpleVT().SimpleTy) {
12489        default: return SDValue();
12490        case MVT::v4i32:
12491        case MVT::v8i16:
12492        case MVT::v8i32:
12493        case MVT::v16i16:
12494        case MVT::v16i32:
12495        case MVT::v8i64:
12496          return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, R, BaseShAmt, DAG);
12497        }
12498      case ISD::SRL:
12499        switch (VT.getSimpleVT().SimpleTy) {
12500        default: return SDValue();
12501        case MVT::v2i64:
12502        case MVT::v4i32:
12503        case MVT::v8i16:
12504        case MVT::v4i64:
12505        case MVT::v8i32:
12506        case MVT::v16i16:
12507        case MVT::v16i32:
12508        case MVT::v8i64:
12509          return getTargetVShiftNode(X86ISD::VSRLI, dl, VT, R, BaseShAmt, DAG);
12510        }
12511      }
12512    }
12513  }
12514
12515  // Special case in 32-bit mode, where i64 is expanded into high and low parts.
12516  if (!Subtarget->is64Bit() &&
12517      (VT == MVT::v2i64 || (Subtarget->hasInt256() && VT == MVT::v4i64) ||
12518      (Subtarget->hasAVX512() && VT == MVT::v8i64)) &&
12519      Amt.getOpcode() == ISD::BITCAST &&
12520      Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
12521    Amt = Amt.getOperand(0);
12522    unsigned Ratio = Amt.getValueType().getVectorNumElements() /
12523                     VT.getVectorNumElements();
12524    std::vector<SDValue> Vals(Ratio);
12525    for (unsigned i = 0; i != Ratio; ++i)
12526      Vals[i] = Amt.getOperand(i);
12527    for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
12528      for (unsigned j = 0; j != Ratio; ++j)
12529        if (Vals[j] != Amt.getOperand(i + j))
12530          return SDValue();
12531    }
12532    switch (Op.getOpcode()) {
12533    default:
12534      llvm_unreachable("Unknown shift opcode!");
12535    case ISD::SHL:
12536      return DAG.getNode(X86ISD::VSHL, dl, VT, R, Op.getOperand(1));
12537    case ISD::SRL:
12538      return DAG.getNode(X86ISD::VSRL, dl, VT, R, Op.getOperand(1));
12539    case ISD::SRA:
12540      return DAG.getNode(X86ISD::VSRA, dl, VT, R, Op.getOperand(1));
12541    }
12542  }
12543
12544  return SDValue();
12545}
12546
12547static SDValue LowerShift(SDValue Op, const X86Subtarget* Subtarget,
12548                          SelectionDAG &DAG) {
12549
12550  EVT VT = Op.getValueType();
12551  SDLoc dl(Op);
12552  SDValue R = Op.getOperand(0);
12553  SDValue Amt = Op.getOperand(1);
12554  SDValue V;
12555
12556  if (!Subtarget->hasSSE2())
12557    return SDValue();
12558
12559  V = LowerScalarImmediateShift(Op, DAG, Subtarget);
12560  if (V.getNode())
12561    return V;
12562
12563  V = LowerScalarVariableShift(Op, DAG, Subtarget);
12564  if (V.getNode())
12565      return V;
12566
12567  if (Subtarget->hasAVX512() && (VT == MVT::v16i32 || VT == MVT::v8i64))
12568    return Op;
12569  // AVX2 has VPSLLV/VPSRAV/VPSRLV.
12570  if (Subtarget->hasInt256()) {
12571    if (Op.getOpcode() == ISD::SRL &&
12572        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
12573         VT == MVT::v4i64 || VT == MVT::v8i32))
12574      return Op;
12575    if (Op.getOpcode() == ISD::SHL &&
12576        (VT == MVT::v2i64 || VT == MVT::v4i32 ||
12577         VT == MVT::v4i64 || VT == MVT::v8i32))
12578      return Op;
12579    if (Op.getOpcode() == ISD::SRA && (VT == MVT::v4i32 || VT == MVT::v8i32))
12580      return Op;
12581  }
12582
12583  // Lower SHL with variable shift amount.
12584  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
12585    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, VT));
12586
12587    Op = DAG.getNode(ISD::ADD, dl, VT, Op, DAG.getConstant(0x3f800000U, VT));
12588    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
12589    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
12590    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
12591  }
12592  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
12593    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
12594
12595    // a = a << 5;
12596    Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(5, VT));
12597    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
12598
12599    // Turn 'a' into a mask suitable for VSELECT
12600    SDValue VSelM = DAG.getConstant(0x80, VT);
12601    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12602    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12603
12604    SDValue CM1 = DAG.getConstant(0x0f, VT);
12605    SDValue CM2 = DAG.getConstant(0x3f, VT);
12606
12607    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
12608    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
12609    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
12610                            DAG.getConstant(4, MVT::i32), DAG);
12611    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
12612    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
12613
12614    // a += a
12615    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
12616    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12617    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12618
12619    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
12620    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
12621    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
12622                            DAG.getConstant(2, MVT::i32), DAG);
12623    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
12624    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
12625
12626    // a += a
12627    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
12628    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
12629    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
12630
12631    // return VSELECT(r, r+r, a);
12632    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
12633                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
12634    return R;
12635  }
12636
12637  // Decompose 256-bit shifts into smaller 128-bit shifts.
12638  if (VT.is256BitVector()) {
12639    unsigned NumElems = VT.getVectorNumElements();
12640    MVT EltVT = VT.getVectorElementType().getSimpleVT();
12641    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12642
12643    // Extract the two vectors
12644    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
12645    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
12646
12647    // Recreate the shift amount vectors
12648    SDValue Amt1, Amt2;
12649    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
12650      // Constant shift amount
12651      SmallVector<SDValue, 4> Amt1Csts;
12652      SmallVector<SDValue, 4> Amt2Csts;
12653      for (unsigned i = 0; i != NumElems/2; ++i)
12654        Amt1Csts.push_back(Amt->getOperand(i));
12655      for (unsigned i = NumElems/2; i != NumElems; ++i)
12656        Amt2Csts.push_back(Amt->getOperand(i));
12657
12658      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
12659                                 &Amt1Csts[0], NumElems/2);
12660      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
12661                                 &Amt2Csts[0], NumElems/2);
12662    } else {
12663      // Variable shift amount
12664      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
12665      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
12666    }
12667
12668    // Issue new vector shifts for the smaller types
12669    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
12670    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
12671
12672    // Concatenate the result back
12673    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
12674  }
12675
12676  return SDValue();
12677}
12678
12679static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
12680  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
12681  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
12682  // looks for this combo and may remove the "setcc" instruction if the "setcc"
12683  // has only one use.
12684  SDNode *N = Op.getNode();
12685  SDValue LHS = N->getOperand(0);
12686  SDValue RHS = N->getOperand(1);
12687  unsigned BaseOp = 0;
12688  unsigned Cond = 0;
12689  SDLoc DL(Op);
12690  switch (Op.getOpcode()) {
12691  default: llvm_unreachable("Unknown ovf instruction!");
12692  case ISD::SADDO:
12693    // A subtract of one will be selected as a INC. Note that INC doesn't
12694    // set CF, so we can't do this for UADDO.
12695    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12696      if (C->isOne()) {
12697        BaseOp = X86ISD::INC;
12698        Cond = X86::COND_O;
12699        break;
12700      }
12701    BaseOp = X86ISD::ADD;
12702    Cond = X86::COND_O;
12703    break;
12704  case ISD::UADDO:
12705    BaseOp = X86ISD::ADD;
12706    Cond = X86::COND_B;
12707    break;
12708  case ISD::SSUBO:
12709    // A subtract of one will be selected as a DEC. Note that DEC doesn't
12710    // set CF, so we can't do this for USUBO.
12711    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
12712      if (C->isOne()) {
12713        BaseOp = X86ISD::DEC;
12714        Cond = X86::COND_O;
12715        break;
12716      }
12717    BaseOp = X86ISD::SUB;
12718    Cond = X86::COND_O;
12719    break;
12720  case ISD::USUBO:
12721    BaseOp = X86ISD::SUB;
12722    Cond = X86::COND_B;
12723    break;
12724  case ISD::SMULO:
12725    BaseOp = X86ISD::SMUL;
12726    Cond = X86::COND_O;
12727    break;
12728  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
12729    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
12730                                 MVT::i32);
12731    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
12732
12733    SDValue SetCC =
12734      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12735                  DAG.getConstant(X86::COND_O, MVT::i32),
12736                  SDValue(Sum.getNode(), 2));
12737
12738    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
12739  }
12740  }
12741
12742  // Also sets EFLAGS.
12743  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
12744  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
12745
12746  SDValue SetCC =
12747    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
12748                DAG.getConstant(Cond, MVT::i32),
12749                SDValue(Sum.getNode(), 1));
12750
12751  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
12752}
12753
12754SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
12755                                                  SelectionDAG &DAG) const {
12756  SDLoc dl(Op);
12757  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
12758  EVT VT = Op.getValueType();
12759
12760  if (!Subtarget->hasSSE2() || !VT.isVector())
12761    return SDValue();
12762
12763  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
12764                      ExtraVT.getScalarType().getSizeInBits();
12765  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
12766
12767  switch (VT.getSimpleVT().SimpleTy) {
12768    default: return SDValue();
12769    case MVT::v8i32:
12770    case MVT::v16i16:
12771      if (!Subtarget->hasFp256())
12772        return SDValue();
12773      if (!Subtarget->hasInt256()) {
12774        // needs to be split
12775        unsigned NumElems = VT.getVectorNumElements();
12776
12777        // Extract the LHS vectors
12778        SDValue LHS = Op.getOperand(0);
12779        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
12780        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
12781
12782        MVT EltVT = VT.getVectorElementType().getSimpleVT();
12783        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
12784
12785        EVT ExtraEltVT = ExtraVT.getVectorElementType();
12786        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
12787        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
12788                                   ExtraNumElems/2);
12789        SDValue Extra = DAG.getValueType(ExtraVT);
12790
12791        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
12792        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
12793
12794        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
12795      }
12796      // fall through
12797    case MVT::v4i32:
12798    case MVT::v8i16: {
12799      // (sext (vzext x)) -> (vsext x)
12800      SDValue Op0 = Op.getOperand(0);
12801      SDValue Op00 = Op0.getOperand(0);
12802      SDValue Tmp1;
12803      // Hopefully, this VECTOR_SHUFFLE is just a VZEXT.
12804      if (Op0.getOpcode() == ISD::BITCAST &&
12805          Op00.getOpcode() == ISD::VECTOR_SHUFFLE)
12806        Tmp1 = LowerVectorIntExtend(Op00, Subtarget, DAG);
12807      if (Tmp1.getNode()) {
12808        SDValue Tmp1Op0 = Tmp1.getOperand(0);
12809        assert(Tmp1Op0.getOpcode() == X86ISD::VZEXT &&
12810               "This optimization is invalid without a VZEXT.");
12811        return DAG.getNode(X86ISD::VSEXT, dl, VT, Tmp1Op0.getOperand(0));
12812      }
12813
12814      // If the above didn't work, then just use Shift-Left + Shift-Right.
12815      Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT, Op0, ShAmt, DAG);
12816      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
12817    }
12818  }
12819}
12820
12821static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
12822                                 SelectionDAG &DAG) {
12823  SDLoc dl(Op);
12824  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
12825    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
12826  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
12827    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
12828
12829  // The only fence that needs an instruction is a sequentially-consistent
12830  // cross-thread fence.
12831  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
12832    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
12833    // no-sse2). There isn't any reason to disable it if the target processor
12834    // supports it.
12835    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
12836      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
12837
12838    SDValue Chain = Op.getOperand(0);
12839    SDValue Zero = DAG.getConstant(0, MVT::i32);
12840    SDValue Ops[] = {
12841      DAG.getRegister(X86::ESP, MVT::i32), // Base
12842      DAG.getTargetConstant(1, MVT::i8),   // Scale
12843      DAG.getRegister(0, MVT::i32),        // Index
12844      DAG.getTargetConstant(0, MVT::i32),  // Disp
12845      DAG.getRegister(0, MVT::i32),        // Segment.
12846      Zero,
12847      Chain
12848    };
12849    SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
12850    return SDValue(Res, 0);
12851  }
12852
12853  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
12854  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
12855}
12856
12857static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
12858                             SelectionDAG &DAG) {
12859  EVT T = Op.getValueType();
12860  SDLoc DL(Op);
12861  unsigned Reg = 0;
12862  unsigned size = 0;
12863  switch(T.getSimpleVT().SimpleTy) {
12864  default: llvm_unreachable("Invalid value type!");
12865  case MVT::i8:  Reg = X86::AL;  size = 1; break;
12866  case MVT::i16: Reg = X86::AX;  size = 2; break;
12867  case MVT::i32: Reg = X86::EAX; size = 4; break;
12868  case MVT::i64:
12869    assert(Subtarget->is64Bit() && "Node not type legal!");
12870    Reg = X86::RAX; size = 8;
12871    break;
12872  }
12873  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
12874                                    Op.getOperand(2), SDValue());
12875  SDValue Ops[] = { cpIn.getValue(0),
12876                    Op.getOperand(1),
12877                    Op.getOperand(3),
12878                    DAG.getTargetConstant(size, MVT::i8),
12879                    cpIn.getValue(1) };
12880  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12881  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
12882  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
12883                                           Ops, array_lengthof(Ops), T, MMO);
12884  SDValue cpOut =
12885    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
12886  return cpOut;
12887}
12888
12889static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
12890                                     SelectionDAG &DAG) {
12891  assert(Subtarget->is64Bit() && "Result not type legalized?");
12892  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
12893  SDValue TheChain = Op.getOperand(0);
12894  SDLoc dl(Op);
12895  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
12896  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
12897  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
12898                                   rax.getValue(2));
12899  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
12900                            DAG.getConstant(32, MVT::i8));
12901  SDValue Ops[] = {
12902    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
12903    rdx.getValue(1)
12904  };
12905  return DAG.getMergeValues(Ops, array_lengthof(Ops), dl);
12906}
12907
12908static SDValue LowerBITCAST(SDValue Op, const X86Subtarget *Subtarget,
12909                            SelectionDAG &DAG) {
12910  MVT SrcVT = Op.getOperand(0).getSimpleValueType();
12911  MVT DstVT = Op.getSimpleValueType();
12912  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
12913         Subtarget->hasMMX() && "Unexpected custom BITCAST");
12914  assert((DstVT == MVT::i64 ||
12915          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
12916         "Unexpected custom BITCAST");
12917  // i64 <=> MMX conversions are Legal.
12918  if (SrcVT==MVT::i64 && DstVT.isVector())
12919    return Op;
12920  if (DstVT==MVT::i64 && SrcVT.isVector())
12921    return Op;
12922  // MMX <=> MMX conversions are Legal.
12923  if (SrcVT.isVector() && DstVT.isVector())
12924    return Op;
12925  // All other conversions need to be expanded.
12926  return SDValue();
12927}
12928
12929static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
12930  SDNode *Node = Op.getNode();
12931  SDLoc dl(Node);
12932  EVT T = Node->getValueType(0);
12933  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
12934                              DAG.getConstant(0, T), Node->getOperand(2));
12935  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
12936                       cast<AtomicSDNode>(Node)->getMemoryVT(),
12937                       Node->getOperand(0),
12938                       Node->getOperand(1), negOp,
12939                       cast<AtomicSDNode>(Node)->getSrcValue(),
12940                       cast<AtomicSDNode>(Node)->getAlignment(),
12941                       cast<AtomicSDNode>(Node)->getOrdering(),
12942                       cast<AtomicSDNode>(Node)->getSynchScope());
12943}
12944
12945static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
12946  SDNode *Node = Op.getNode();
12947  SDLoc dl(Node);
12948  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
12949
12950  // Convert seq_cst store -> xchg
12951  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
12952  // FIXME: On 32-bit, store -> fist or movq would be more efficient
12953  //        (The only way to get a 16-byte store is cmpxchg16b)
12954  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
12955  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
12956      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12957    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
12958                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
12959                                 Node->getOperand(0),
12960                                 Node->getOperand(1), Node->getOperand(2),
12961                                 cast<AtomicSDNode>(Node)->getMemOperand(),
12962                                 cast<AtomicSDNode>(Node)->getOrdering(),
12963                                 cast<AtomicSDNode>(Node)->getSynchScope());
12964    return Swap.getValue(1);
12965  }
12966  // Other atomic stores have a simple pattern.
12967  return Op;
12968}
12969
12970static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
12971  EVT VT = Op.getNode()->getValueType(0);
12972
12973  // Let legalize expand this if it isn't a legal type yet.
12974  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12975    return SDValue();
12976
12977  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
12978
12979  unsigned Opc;
12980  bool ExtraOp = false;
12981  switch (Op.getOpcode()) {
12982  default: llvm_unreachable("Invalid code");
12983  case ISD::ADDC: Opc = X86ISD::ADD; break;
12984  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
12985  case ISD::SUBC: Opc = X86ISD::SUB; break;
12986  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
12987  }
12988
12989  if (!ExtraOp)
12990    return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
12991                       Op.getOperand(1));
12992  return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
12993                     Op.getOperand(1), Op.getOperand(2));
12994}
12995
12996static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget *Subtarget,
12997                            SelectionDAG &DAG) {
12998  assert(Subtarget->isTargetDarwin() && Subtarget->is64Bit());
12999
13000  // For MacOSX, we want to call an alternative entry point: __sincos_stret,
13001  // which returns the values as { float, float } (in XMM0) or
13002  // { double, double } (which is returned in XMM0, XMM1).
13003  SDLoc dl(Op);
13004  SDValue Arg = Op.getOperand(0);
13005  EVT ArgVT = Arg.getValueType();
13006  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
13007
13008  TargetLowering::ArgListTy Args;
13009  TargetLowering::ArgListEntry Entry;
13010
13011  Entry.Node = Arg;
13012  Entry.Ty = ArgTy;
13013  Entry.isSExt = false;
13014  Entry.isZExt = false;
13015  Args.push_back(Entry);
13016
13017  bool isF64 = ArgVT == MVT::f64;
13018  // Only optimize x86_64 for now. i386 is a bit messy. For f32,
13019  // the small struct {f32, f32} is returned in (eax, edx). For f64,
13020  // the results are returned via SRet in memory.
13021  const char *LibcallName =  isF64 ? "__sincos_stret" : "__sincosf_stret";
13022  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13023  SDValue Callee = DAG.getExternalSymbol(LibcallName, TLI.getPointerTy());
13024
13025  Type *RetTy = isF64
13026    ? (Type*)StructType::get(ArgTy, ArgTy, NULL)
13027    : (Type*)VectorType::get(ArgTy, 4);
13028  TargetLowering::
13029    CallLoweringInfo CLI(DAG.getEntryNode(), RetTy,
13030                         false, false, false, false, 0,
13031                         CallingConv::C, /*isTaillCall=*/false,
13032                         /*doesNotRet=*/false, /*isReturnValueUsed*/true,
13033                         Callee, Args, DAG, dl);
13034  std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
13035
13036  if (isF64)
13037    // Returned in xmm0 and xmm1.
13038    return CallResult.first;
13039
13040  // Returned in bits 0:31 and 32:64 xmm0.
13041  SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
13042                               CallResult.first, DAG.getIntPtrConstant(0));
13043  SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
13044                               CallResult.first, DAG.getIntPtrConstant(1));
13045  SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
13046  return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
13047}
13048
13049/// LowerOperation - Provide custom lowering hooks for some operations.
13050///
13051SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
13052  switch (Op.getOpcode()) {
13053  default: llvm_unreachable("Should not custom lower this!");
13054  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
13055  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
13056  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
13057  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
13058  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
13059  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
13060  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
13061  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
13062  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
13063  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
13064  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
13065  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
13066  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
13067  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
13068  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
13069  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
13070  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
13071  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
13072  case ISD::SHL_PARTS:
13073  case ISD::SRA_PARTS:
13074  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
13075  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
13076  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
13077  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
13078  case ISD::ZERO_EXTEND:        return LowerZERO_EXTEND(Op, Subtarget, DAG);
13079  case ISD::SIGN_EXTEND:        return LowerSIGN_EXTEND(Op, Subtarget, DAG);
13080  case ISD::ANY_EXTEND:         return LowerANY_EXTEND(Op, Subtarget, DAG);
13081  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
13082  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
13083  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
13084  case ISD::FABS:               return LowerFABS(Op, DAG);
13085  case ISD::FNEG:               return LowerFNEG(Op, DAG);
13086  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
13087  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
13088  case ISD::SETCC:              return LowerSETCC(Op, DAG);
13089  case ISD::SELECT:             return LowerSELECT(Op, DAG);
13090  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
13091  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
13092  case ISD::VASTART:            return LowerVASTART(Op, DAG);
13093  case ISD::VAARG:              return LowerVAARG(Op, DAG);
13094  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
13095  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
13096  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
13097  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
13098  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
13099  case ISD::FRAME_TO_ARGS_OFFSET:
13100                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
13101  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
13102  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
13103  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
13104  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
13105  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
13106  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
13107  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
13108  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
13109  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
13110  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
13111  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
13112  case ISD::SRA:
13113  case ISD::SRL:
13114  case ISD::SHL:                return LowerShift(Op, Subtarget, DAG);
13115  case ISD::SADDO:
13116  case ISD::UADDO:
13117  case ISD::SSUBO:
13118  case ISD::USUBO:
13119  case ISD::SMULO:
13120  case ISD::UMULO:              return LowerXALUO(Op, DAG);
13121  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
13122  case ISD::BITCAST:            return LowerBITCAST(Op, Subtarget, DAG);
13123  case ISD::ADDC:
13124  case ISD::ADDE:
13125  case ISD::SUBC:
13126  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
13127  case ISD::ADD:                return LowerADD(Op, DAG);
13128  case ISD::SUB:                return LowerSUB(Op, DAG);
13129  case ISD::SDIV:               return LowerSDIV(Op, DAG);
13130  case ISD::FSINCOS:            return LowerFSINCOS(Op, Subtarget, DAG);
13131  }
13132}
13133
13134static void ReplaceATOMIC_LOAD(SDNode *Node,
13135                                  SmallVectorImpl<SDValue> &Results,
13136                                  SelectionDAG &DAG) {
13137  SDLoc dl(Node);
13138  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
13139
13140  // Convert wide load -> cmpxchg8b/cmpxchg16b
13141  // FIXME: On 32-bit, load -> fild or movq would be more efficient
13142  //        (The only way to get a 16-byte load is cmpxchg16b)
13143  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
13144  SDValue Zero = DAG.getConstant(0, VT);
13145  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
13146                               Node->getOperand(0),
13147                               Node->getOperand(1), Zero, Zero,
13148                               cast<AtomicSDNode>(Node)->getMemOperand(),
13149                               cast<AtomicSDNode>(Node)->getOrdering(),
13150                               cast<AtomicSDNode>(Node)->getSynchScope());
13151  Results.push_back(Swap.getValue(0));
13152  Results.push_back(Swap.getValue(1));
13153}
13154
13155static void
13156ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
13157                        SelectionDAG &DAG, unsigned NewOp) {
13158  SDLoc dl(Node);
13159  assert (Node->getValueType(0) == MVT::i64 &&
13160          "Only know how to expand i64 atomics");
13161
13162  SDValue Chain = Node->getOperand(0);
13163  SDValue In1 = Node->getOperand(1);
13164  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
13165                             Node->getOperand(2), DAG.getIntPtrConstant(0));
13166  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
13167                             Node->getOperand(2), DAG.getIntPtrConstant(1));
13168  SDValue Ops[] = { Chain, In1, In2L, In2H };
13169  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
13170  SDValue Result =
13171    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, array_lengthof(Ops), MVT::i64,
13172                            cast<MemSDNode>(Node)->getMemOperand());
13173  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
13174  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
13175  Results.push_back(Result.getValue(2));
13176}
13177
13178/// ReplaceNodeResults - Replace a node with an illegal result type
13179/// with a new node built out of custom code.
13180void X86TargetLowering::ReplaceNodeResults(SDNode *N,
13181                                           SmallVectorImpl<SDValue>&Results,
13182                                           SelectionDAG &DAG) const {
13183  SDLoc dl(N);
13184  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13185  switch (N->getOpcode()) {
13186  default:
13187    llvm_unreachable("Do not know how to custom type legalize this operation!");
13188  case ISD::SIGN_EXTEND_INREG:
13189  case ISD::ADDC:
13190  case ISD::ADDE:
13191  case ISD::SUBC:
13192  case ISD::SUBE:
13193    // We don't want to expand or promote these.
13194    return;
13195  case ISD::FP_TO_SINT:
13196  case ISD::FP_TO_UINT: {
13197    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
13198
13199    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
13200      return;
13201
13202    std::pair<SDValue,SDValue> Vals =
13203        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
13204    SDValue FIST = Vals.first, StackSlot = Vals.second;
13205    if (FIST.getNode() != 0) {
13206      EVT VT = N->getValueType(0);
13207      // Return a load from the stack slot.
13208      if (StackSlot.getNode() != 0)
13209        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
13210                                      MachinePointerInfo(),
13211                                      false, false, false, 0));
13212      else
13213        Results.push_back(FIST);
13214    }
13215    return;
13216  }
13217  case ISD::UINT_TO_FP: {
13218    assert(Subtarget->hasSSE2() && "Requires at least SSE2!");
13219    if (N->getOperand(0).getValueType() != MVT::v2i32 ||
13220        N->getValueType(0) != MVT::v2f32)
13221      return;
13222    SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
13223                                 N->getOperand(0));
13224    SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
13225                                     MVT::f64);
13226    SDValue VBias = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2f64, Bias, Bias);
13227    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
13228                             DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, VBias));
13229    Or = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or);
13230    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
13231    Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
13232    return;
13233  }
13234  case ISD::FP_ROUND: {
13235    if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
13236        return;
13237    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
13238    Results.push_back(V);
13239    return;
13240  }
13241  case ISD::READCYCLECOUNTER: {
13242    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13243    SDValue TheChain = N->getOperand(0);
13244    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
13245    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
13246                                     rd.getValue(1));
13247    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
13248                                     eax.getValue(2));
13249    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
13250    SDValue Ops[] = { eax, edx };
13251    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops,
13252                                  array_lengthof(Ops)));
13253    Results.push_back(edx.getValue(1));
13254    return;
13255  }
13256  case ISD::ATOMIC_CMP_SWAP: {
13257    EVT T = N->getValueType(0);
13258    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
13259    bool Regs64bit = T == MVT::i128;
13260    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
13261    SDValue cpInL, cpInH;
13262    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
13263                        DAG.getConstant(0, HalfT));
13264    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
13265                        DAG.getConstant(1, HalfT));
13266    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
13267                             Regs64bit ? X86::RAX : X86::EAX,
13268                             cpInL, SDValue());
13269    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
13270                             Regs64bit ? X86::RDX : X86::EDX,
13271                             cpInH, cpInL.getValue(1));
13272    SDValue swapInL, swapInH;
13273    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
13274                          DAG.getConstant(0, HalfT));
13275    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
13276                          DAG.getConstant(1, HalfT));
13277    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
13278                               Regs64bit ? X86::RBX : X86::EBX,
13279                               swapInL, cpInH.getValue(1));
13280    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
13281                               Regs64bit ? X86::RCX : X86::ECX,
13282                               swapInH, swapInL.getValue(1));
13283    SDValue Ops[] = { swapInH.getValue(0),
13284                      N->getOperand(1),
13285                      swapInH.getValue(1) };
13286    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
13287    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
13288    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
13289                                  X86ISD::LCMPXCHG8_DAG;
13290    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
13291                                             Ops, array_lengthof(Ops), T, MMO);
13292    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
13293                                        Regs64bit ? X86::RAX : X86::EAX,
13294                                        HalfT, Result.getValue(1));
13295    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
13296                                        Regs64bit ? X86::RDX : X86::EDX,
13297                                        HalfT, cpOutL.getValue(2));
13298    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
13299    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
13300    Results.push_back(cpOutH.getValue(1));
13301    return;
13302  }
13303  case ISD::ATOMIC_LOAD_ADD:
13304  case ISD::ATOMIC_LOAD_AND:
13305  case ISD::ATOMIC_LOAD_NAND:
13306  case ISD::ATOMIC_LOAD_OR:
13307  case ISD::ATOMIC_LOAD_SUB:
13308  case ISD::ATOMIC_LOAD_XOR:
13309  case ISD::ATOMIC_LOAD_MAX:
13310  case ISD::ATOMIC_LOAD_MIN:
13311  case ISD::ATOMIC_LOAD_UMAX:
13312  case ISD::ATOMIC_LOAD_UMIN:
13313  case ISD::ATOMIC_SWAP: {
13314    unsigned Opc;
13315    switch (N->getOpcode()) {
13316    default: llvm_unreachable("Unexpected opcode");
13317    case ISD::ATOMIC_LOAD_ADD:
13318      Opc = X86ISD::ATOMADD64_DAG;
13319      break;
13320    case ISD::ATOMIC_LOAD_AND:
13321      Opc = X86ISD::ATOMAND64_DAG;
13322      break;
13323    case ISD::ATOMIC_LOAD_NAND:
13324      Opc = X86ISD::ATOMNAND64_DAG;
13325      break;
13326    case ISD::ATOMIC_LOAD_OR:
13327      Opc = X86ISD::ATOMOR64_DAG;
13328      break;
13329    case ISD::ATOMIC_LOAD_SUB:
13330      Opc = X86ISD::ATOMSUB64_DAG;
13331      break;
13332    case ISD::ATOMIC_LOAD_XOR:
13333      Opc = X86ISD::ATOMXOR64_DAG;
13334      break;
13335    case ISD::ATOMIC_LOAD_MAX:
13336      Opc = X86ISD::ATOMMAX64_DAG;
13337      break;
13338    case ISD::ATOMIC_LOAD_MIN:
13339      Opc = X86ISD::ATOMMIN64_DAG;
13340      break;
13341    case ISD::ATOMIC_LOAD_UMAX:
13342      Opc = X86ISD::ATOMUMAX64_DAG;
13343      break;
13344    case ISD::ATOMIC_LOAD_UMIN:
13345      Opc = X86ISD::ATOMUMIN64_DAG;
13346      break;
13347    case ISD::ATOMIC_SWAP:
13348      Opc = X86ISD::ATOMSWAP64_DAG;
13349      break;
13350    }
13351    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
13352    return;
13353  }
13354  case ISD::ATOMIC_LOAD:
13355    ReplaceATOMIC_LOAD(N, Results, DAG);
13356  }
13357}
13358
13359const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
13360  switch (Opcode) {
13361  default: return NULL;
13362  case X86ISD::BSF:                return "X86ISD::BSF";
13363  case X86ISD::BSR:                return "X86ISD::BSR";
13364  case X86ISD::SHLD:               return "X86ISD::SHLD";
13365  case X86ISD::SHRD:               return "X86ISD::SHRD";
13366  case X86ISD::FAND:               return "X86ISD::FAND";
13367  case X86ISD::FANDN:              return "X86ISD::FANDN";
13368  case X86ISD::FOR:                return "X86ISD::FOR";
13369  case X86ISD::FXOR:               return "X86ISD::FXOR";
13370  case X86ISD::FSRL:               return "X86ISD::FSRL";
13371  case X86ISD::FILD:               return "X86ISD::FILD";
13372  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
13373  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
13374  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
13375  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
13376  case X86ISD::FLD:                return "X86ISD::FLD";
13377  case X86ISD::FST:                return "X86ISD::FST";
13378  case X86ISD::CALL:               return "X86ISD::CALL";
13379  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
13380  case X86ISD::BT:                 return "X86ISD::BT";
13381  case X86ISD::CMP:                return "X86ISD::CMP";
13382  case X86ISD::COMI:               return "X86ISD::COMI";
13383  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
13384  case X86ISD::CMPM:               return "X86ISD::CMPM";
13385  case X86ISD::CMPMU:              return "X86ISD::CMPMU";
13386  case X86ISD::SETCC:              return "X86ISD::SETCC";
13387  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
13388  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
13389  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
13390  case X86ISD::CMOV:               return "X86ISD::CMOV";
13391  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
13392  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
13393  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
13394  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
13395  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
13396  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
13397  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
13398  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
13399  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
13400  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
13401  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
13402  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
13403  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
13404  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
13405  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
13406  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
13407  case X86ISD::BLENDI:             return "X86ISD::BLENDI";
13408  case X86ISD::SUBUS:              return "X86ISD::SUBUS";
13409  case X86ISD::HADD:               return "X86ISD::HADD";
13410  case X86ISD::HSUB:               return "X86ISD::HSUB";
13411  case X86ISD::FHADD:              return "X86ISD::FHADD";
13412  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
13413  case X86ISD::UMAX:               return "X86ISD::UMAX";
13414  case X86ISD::UMIN:               return "X86ISD::UMIN";
13415  case X86ISD::SMAX:               return "X86ISD::SMAX";
13416  case X86ISD::SMIN:               return "X86ISD::SMIN";
13417  case X86ISD::FMAX:               return "X86ISD::FMAX";
13418  case X86ISD::FMIN:               return "X86ISD::FMIN";
13419  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
13420  case X86ISD::FMINC:              return "X86ISD::FMINC";
13421  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
13422  case X86ISD::FRCP:               return "X86ISD::FRCP";
13423  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
13424  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
13425  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
13426  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
13427  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
13428  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
13429  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
13430  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
13431  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
13432  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
13433  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
13434  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
13435  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
13436  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
13437  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
13438  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
13439  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
13440  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
13441  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
13442  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
13443  case X86ISD::VZEXT:              return "X86ISD::VZEXT";
13444  case X86ISD::VSEXT:              return "X86ISD::VSEXT";
13445  case X86ISD::VTRUNC:             return "X86ISD::VTRUNC";
13446  case X86ISD::VTRUNCM:            return "X86ISD::VTRUNCM";
13447  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
13448  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
13449  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
13450  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
13451  case X86ISD::VSHL:               return "X86ISD::VSHL";
13452  case X86ISD::VSRL:               return "X86ISD::VSRL";
13453  case X86ISD::VSRA:               return "X86ISD::VSRA";
13454  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
13455  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
13456  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
13457  case X86ISD::CMPP:               return "X86ISD::CMPP";
13458  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
13459  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
13460  case X86ISD::PCMPEQM:            return "X86ISD::PCMPEQM";
13461  case X86ISD::PCMPGTM:            return "X86ISD::PCMPGTM";
13462  case X86ISD::ADD:                return "X86ISD::ADD";
13463  case X86ISD::SUB:                return "X86ISD::SUB";
13464  case X86ISD::ADC:                return "X86ISD::ADC";
13465  case X86ISD::SBB:                return "X86ISD::SBB";
13466  case X86ISD::SMUL:               return "X86ISD::SMUL";
13467  case X86ISD::UMUL:               return "X86ISD::UMUL";
13468  case X86ISD::INC:                return "X86ISD::INC";
13469  case X86ISD::DEC:                return "X86ISD::DEC";
13470  case X86ISD::OR:                 return "X86ISD::OR";
13471  case X86ISD::XOR:                return "X86ISD::XOR";
13472  case X86ISD::AND:                return "X86ISD::AND";
13473  case X86ISD::BLSI:               return "X86ISD::BLSI";
13474  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
13475  case X86ISD::BLSR:               return "X86ISD::BLSR";
13476  case X86ISD::BZHI:               return "X86ISD::BZHI";
13477  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
13478  case X86ISD::PTEST:              return "X86ISD::PTEST";
13479  case X86ISD::TESTP:              return "X86ISD::TESTP";
13480  case X86ISD::TESTM:              return "X86ISD::TESTM";
13481  case X86ISD::KORTEST:            return "X86ISD::KORTEST";
13482  case X86ISD::KTEST:              return "X86ISD::KTEST";
13483  case X86ISD::PALIGNR:            return "X86ISD::PALIGNR";
13484  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
13485  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
13486  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
13487  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
13488  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
13489  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
13490  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
13491  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
13492  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
13493  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
13494  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
13495  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
13496  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
13497  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
13498  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
13499  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
13500  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
13501  case X86ISD::VBROADCASTM:        return "X86ISD::VBROADCASTM";
13502  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
13503  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
13504  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
13505  case X86ISD::VPERMV3:            return "X86ISD::VPERMV3";
13506  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
13507  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
13508  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
13509  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
13510  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
13511  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
13512  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
13513  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
13514  case X86ISD::SAHF:               return "X86ISD::SAHF";
13515  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
13516  case X86ISD::RDSEED:             return "X86ISD::RDSEED";
13517  case X86ISD::FMADD:              return "X86ISD::FMADD";
13518  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
13519  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
13520  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
13521  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
13522  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
13523  case X86ISD::PCMPESTRI:          return "X86ISD::PCMPESTRI";
13524  case X86ISD::PCMPISTRI:          return "X86ISD::PCMPISTRI";
13525  case X86ISD::XTEST:              return "X86ISD::XTEST";
13526  }
13527}
13528
13529// isLegalAddressingMode - Return true if the addressing mode represented
13530// by AM is legal for this target, for a load/store of the specified type.
13531bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
13532                                              Type *Ty) const {
13533  // X86 supports extremely general addressing modes.
13534  CodeModel::Model M = getTargetMachine().getCodeModel();
13535  Reloc::Model R = getTargetMachine().getRelocationModel();
13536
13537  // X86 allows a sign-extended 32-bit immediate field as a displacement.
13538  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
13539    return false;
13540
13541  if (AM.BaseGV) {
13542    unsigned GVFlags =
13543      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
13544
13545    // If a reference to this global requires an extra load, we can't fold it.
13546    if (isGlobalStubReference(GVFlags))
13547      return false;
13548
13549    // If BaseGV requires a register for the PIC base, we cannot also have a
13550    // BaseReg specified.
13551    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
13552      return false;
13553
13554    // If lower 4G is not available, then we must use rip-relative addressing.
13555    if ((M != CodeModel::Small || R != Reloc::Static) &&
13556        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
13557      return false;
13558  }
13559
13560  switch (AM.Scale) {
13561  case 0:
13562  case 1:
13563  case 2:
13564  case 4:
13565  case 8:
13566    // These scales always work.
13567    break;
13568  case 3:
13569  case 5:
13570  case 9:
13571    // These scales are formed with basereg+scalereg.  Only accept if there is
13572    // no basereg yet.
13573    if (AM.HasBaseReg)
13574      return false;
13575    break;
13576  default:  // Other stuff never works.
13577    return false;
13578  }
13579
13580  return true;
13581}
13582
13583bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13584  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13585    return false;
13586  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13587  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13588  return NumBits1 > NumBits2;
13589}
13590
13591bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
13592  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13593    return false;
13594
13595  if (!isTypeLegal(EVT::getEVT(Ty1)))
13596    return false;
13597
13598  assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
13599
13600  // Assuming the caller doesn't have a zeroext or signext return parameter,
13601  // truncation all the way down to i1 is valid.
13602  return true;
13603}
13604
13605bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13606  return isInt<32>(Imm);
13607}
13608
13609bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
13610  // Can also use sub to handle negated immediates.
13611  return isInt<32>(Imm);
13612}
13613
13614bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13615  if (!VT1.isInteger() || !VT2.isInteger())
13616    return false;
13617  unsigned NumBits1 = VT1.getSizeInBits();
13618  unsigned NumBits2 = VT2.getSizeInBits();
13619  return NumBits1 > NumBits2;
13620}
13621
13622bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
13623  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
13624  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
13625}
13626
13627bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
13628  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
13629  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
13630}
13631
13632bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13633  EVT VT1 = Val.getValueType();
13634  if (isZExtFree(VT1, VT2))
13635    return true;
13636
13637  if (Val.getOpcode() != ISD::LOAD)
13638    return false;
13639
13640  if (!VT1.isSimple() || !VT1.isInteger() ||
13641      !VT2.isSimple() || !VT2.isInteger())
13642    return false;
13643
13644  switch (VT1.getSimpleVT().SimpleTy) {
13645  default: break;
13646  case MVT::i8:
13647  case MVT::i16:
13648  case MVT::i32:
13649    // X86 has 8, 16, and 32-bit zero-extending loads.
13650    return true;
13651  }
13652
13653  return false;
13654}
13655
13656bool
13657X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
13658  if (!(Subtarget->hasFMA() || Subtarget->hasFMA4()))
13659    return false;
13660
13661  VT = VT.getScalarType();
13662
13663  if (!VT.isSimple())
13664    return false;
13665
13666  switch (VT.getSimpleVT().SimpleTy) {
13667  case MVT::f32:
13668  case MVT::f64:
13669    return true;
13670  default:
13671    break;
13672  }
13673
13674  return false;
13675}
13676
13677bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
13678  // i16 instructions are longer (0x66 prefix) and potentially slower.
13679  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
13680}
13681
13682/// isShuffleMaskLegal - Targets can use this to indicate that they only
13683/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
13684/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
13685/// are assumed to be legal.
13686bool
13687X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
13688                                      EVT VT) const {
13689  if (!VT.isSimple())
13690    return false;
13691
13692  MVT SVT = VT.getSimpleVT();
13693
13694  // Very little shuffling can be done for 64-bit vectors right now.
13695  if (VT.getSizeInBits() == 64)
13696    return false;
13697
13698  // FIXME: pshufb, blends, shifts.
13699  return (SVT.getVectorNumElements() == 2 ||
13700          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
13701          isMOVLMask(M, SVT) ||
13702          isSHUFPMask(M, SVT) ||
13703          isPSHUFDMask(M, SVT) ||
13704          isPSHUFHWMask(M, SVT, Subtarget->hasInt256()) ||
13705          isPSHUFLWMask(M, SVT, Subtarget->hasInt256()) ||
13706          isPALIGNRMask(M, SVT, Subtarget) ||
13707          isUNPCKLMask(M, SVT, Subtarget->hasInt256()) ||
13708          isUNPCKHMask(M, SVT, Subtarget->hasInt256()) ||
13709          isUNPCKL_v_undef_Mask(M, SVT, Subtarget->hasInt256()) ||
13710          isUNPCKH_v_undef_Mask(M, SVT, Subtarget->hasInt256()));
13711}
13712
13713bool
13714X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
13715                                          EVT VT) const {
13716  if (!VT.isSimple())
13717    return false;
13718
13719  MVT SVT = VT.getSimpleVT();
13720  unsigned NumElts = SVT.getVectorNumElements();
13721  // FIXME: This collection of masks seems suspect.
13722  if (NumElts == 2)
13723    return true;
13724  if (NumElts == 4 && SVT.is128BitVector()) {
13725    return (isMOVLMask(Mask, SVT)  ||
13726            isCommutedMOVLMask(Mask, SVT, true) ||
13727            isSHUFPMask(Mask, SVT) ||
13728            isSHUFPMask(Mask, SVT, /* Commuted */ true));
13729  }
13730  return false;
13731}
13732
13733//===----------------------------------------------------------------------===//
13734//                           X86 Scheduler Hooks
13735//===----------------------------------------------------------------------===//
13736
13737/// Utility function to emit xbegin specifying the start of an RTM region.
13738static MachineBasicBlock *EmitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
13739                                     const TargetInstrInfo *TII) {
13740  DebugLoc DL = MI->getDebugLoc();
13741
13742  const BasicBlock *BB = MBB->getBasicBlock();
13743  MachineFunction::iterator I = MBB;
13744  ++I;
13745
13746  // For the v = xbegin(), we generate
13747  //
13748  // thisMBB:
13749  //  xbegin sinkMBB
13750  //
13751  // mainMBB:
13752  //  eax = -1
13753  //
13754  // sinkMBB:
13755  //  v = eax
13756
13757  MachineBasicBlock *thisMBB = MBB;
13758  MachineFunction *MF = MBB->getParent();
13759  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13760  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13761  MF->insert(I, mainMBB);
13762  MF->insert(I, sinkMBB);
13763
13764  // Transfer the remainder of BB and its successor edges to sinkMBB.
13765  sinkMBB->splice(sinkMBB->begin(), MBB,
13766                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13767  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13768
13769  // thisMBB:
13770  //  xbegin sinkMBB
13771  //  # fallthrough to mainMBB
13772  //  # abortion to sinkMBB
13773  BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
13774  thisMBB->addSuccessor(mainMBB);
13775  thisMBB->addSuccessor(sinkMBB);
13776
13777  // mainMBB:
13778  //  EAX = -1
13779  BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
13780  mainMBB->addSuccessor(sinkMBB);
13781
13782  // sinkMBB:
13783  // EAX is live into the sinkMBB
13784  sinkMBB->addLiveIn(X86::EAX);
13785  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13786          TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
13787    .addReg(X86::EAX);
13788
13789  MI->eraseFromParent();
13790  return sinkMBB;
13791}
13792
13793// Get CMPXCHG opcode for the specified data type.
13794static unsigned getCmpXChgOpcode(EVT VT) {
13795  switch (VT.getSimpleVT().SimpleTy) {
13796  case MVT::i8:  return X86::LCMPXCHG8;
13797  case MVT::i16: return X86::LCMPXCHG16;
13798  case MVT::i32: return X86::LCMPXCHG32;
13799  case MVT::i64: return X86::LCMPXCHG64;
13800  default:
13801    break;
13802  }
13803  llvm_unreachable("Invalid operand size!");
13804}
13805
13806// Get LOAD opcode for the specified data type.
13807static unsigned getLoadOpcode(EVT VT) {
13808  switch (VT.getSimpleVT().SimpleTy) {
13809  case MVT::i8:  return X86::MOV8rm;
13810  case MVT::i16: return X86::MOV16rm;
13811  case MVT::i32: return X86::MOV32rm;
13812  case MVT::i64: return X86::MOV64rm;
13813  default:
13814    break;
13815  }
13816  llvm_unreachable("Invalid operand size!");
13817}
13818
13819// Get opcode of the non-atomic one from the specified atomic instruction.
13820static unsigned getNonAtomicOpcode(unsigned Opc) {
13821  switch (Opc) {
13822  case X86::ATOMAND8:  return X86::AND8rr;
13823  case X86::ATOMAND16: return X86::AND16rr;
13824  case X86::ATOMAND32: return X86::AND32rr;
13825  case X86::ATOMAND64: return X86::AND64rr;
13826  case X86::ATOMOR8:   return X86::OR8rr;
13827  case X86::ATOMOR16:  return X86::OR16rr;
13828  case X86::ATOMOR32:  return X86::OR32rr;
13829  case X86::ATOMOR64:  return X86::OR64rr;
13830  case X86::ATOMXOR8:  return X86::XOR8rr;
13831  case X86::ATOMXOR16: return X86::XOR16rr;
13832  case X86::ATOMXOR32: return X86::XOR32rr;
13833  case X86::ATOMXOR64: return X86::XOR64rr;
13834  }
13835  llvm_unreachable("Unhandled atomic-load-op opcode!");
13836}
13837
13838// Get opcode of the non-atomic one from the specified atomic instruction with
13839// extra opcode.
13840static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
13841                                               unsigned &ExtraOpc) {
13842  switch (Opc) {
13843  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
13844  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
13845  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
13846  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
13847  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
13848  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
13849  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
13850  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
13851  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
13852  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
13853  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
13854  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
13855  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
13856  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
13857  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
13858  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
13859  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
13860  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
13861  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
13862  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
13863  }
13864  llvm_unreachable("Unhandled atomic-load-op opcode!");
13865}
13866
13867// Get opcode of the non-atomic one from the specified atomic instruction for
13868// 64-bit data type on 32-bit target.
13869static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
13870  switch (Opc) {
13871  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
13872  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
13873  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
13874  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
13875  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
13876  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
13877  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
13878  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
13879  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
13880  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
13881  }
13882  llvm_unreachable("Unhandled atomic-load-op opcode!");
13883}
13884
13885// Get opcode of the non-atomic one from the specified atomic instruction for
13886// 64-bit data type on 32-bit target with extra opcode.
13887static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
13888                                                   unsigned &HiOpc,
13889                                                   unsigned &ExtraOpc) {
13890  switch (Opc) {
13891  case X86::ATOMNAND6432:
13892    ExtraOpc = X86::NOT32r;
13893    HiOpc = X86::AND32rr;
13894    return X86::AND32rr;
13895  }
13896  llvm_unreachable("Unhandled atomic-load-op opcode!");
13897}
13898
13899// Get pseudo CMOV opcode from the specified data type.
13900static unsigned getPseudoCMOVOpc(EVT VT) {
13901  switch (VT.getSimpleVT().SimpleTy) {
13902  case MVT::i8:  return X86::CMOV_GR8;
13903  case MVT::i16: return X86::CMOV_GR16;
13904  case MVT::i32: return X86::CMOV_GR32;
13905  default:
13906    break;
13907  }
13908  llvm_unreachable("Unknown CMOV opcode!");
13909}
13910
13911// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
13912// They will be translated into a spin-loop or compare-exchange loop from
13913//
13914//    ...
13915//    dst = atomic-fetch-op MI.addr, MI.val
13916//    ...
13917//
13918// to
13919//
13920//    ...
13921//    t1 = LOAD MI.addr
13922// loop:
13923//    t4 = phi(t1, t3 / loop)
13924//    t2 = OP MI.val, t4
13925//    EAX = t4
13926//    LCMPXCHG [MI.addr], t2, [EAX is implicitly used & defined]
13927//    t3 = EAX
13928//    JNE loop
13929// sink:
13930//    dst = t3
13931//    ...
13932MachineBasicBlock *
13933X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
13934                                       MachineBasicBlock *MBB) const {
13935  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13936  DebugLoc DL = MI->getDebugLoc();
13937
13938  MachineFunction *MF = MBB->getParent();
13939  MachineRegisterInfo &MRI = MF->getRegInfo();
13940
13941  const BasicBlock *BB = MBB->getBasicBlock();
13942  MachineFunction::iterator I = MBB;
13943  ++I;
13944
13945  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
13946         "Unexpected number of operands");
13947
13948  assert(MI->hasOneMemOperand() &&
13949         "Expected atomic-load-op to have one memoperand");
13950
13951  // Memory Reference
13952  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13953  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13954
13955  unsigned DstReg, SrcReg;
13956  unsigned MemOpndSlot;
13957
13958  unsigned CurOp = 0;
13959
13960  DstReg = MI->getOperand(CurOp++).getReg();
13961  MemOpndSlot = CurOp;
13962  CurOp += X86::AddrNumOperands;
13963  SrcReg = MI->getOperand(CurOp++).getReg();
13964
13965  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
13966  MVT::SimpleValueType VT = *RC->vt_begin();
13967  unsigned t1 = MRI.createVirtualRegister(RC);
13968  unsigned t2 = MRI.createVirtualRegister(RC);
13969  unsigned t3 = MRI.createVirtualRegister(RC);
13970  unsigned t4 = MRI.createVirtualRegister(RC);
13971  unsigned PhyReg = getX86SubSuperRegister(X86::EAX, VT);
13972
13973  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
13974  unsigned LOADOpc = getLoadOpcode(VT);
13975
13976  // For the atomic load-arith operator, we generate
13977  //
13978  //  thisMBB:
13979  //    t1 = LOAD [MI.addr]
13980  //  mainMBB:
13981  //    t4 = phi(t1 / thisMBB, t3 / mainMBB)
13982  //    t1 = OP MI.val, EAX
13983  //    EAX = t4
13984  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
13985  //    t3 = EAX
13986  //    JNE mainMBB
13987  //  sinkMBB:
13988  //    dst = t3
13989
13990  MachineBasicBlock *thisMBB = MBB;
13991  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13992  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13993  MF->insert(I, mainMBB);
13994  MF->insert(I, sinkMBB);
13995
13996  MachineInstrBuilder MIB;
13997
13998  // Transfer the remainder of BB and its successor edges to sinkMBB.
13999  sinkMBB->splice(sinkMBB->begin(), MBB,
14000                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14001  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14002
14003  // thisMBB:
14004  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1);
14005  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14006    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14007    if (NewMO.isReg())
14008      NewMO.setIsKill(false);
14009    MIB.addOperand(NewMO);
14010  }
14011  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
14012    unsigned flags = (*MMOI)->getFlags();
14013    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
14014    MachineMemOperand *MMO =
14015      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
14016                               (*MMOI)->getSize(),
14017                               (*MMOI)->getBaseAlignment(),
14018                               (*MMOI)->getTBAAInfo(),
14019                               (*MMOI)->getRanges());
14020    MIB.addMemOperand(MMO);
14021  }
14022
14023  thisMBB->addSuccessor(mainMBB);
14024
14025  // mainMBB:
14026  MachineBasicBlock *origMainMBB = mainMBB;
14027
14028  // Add a PHI.
14029  MachineInstr *Phi = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4)
14030                        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
14031
14032  unsigned Opc = MI->getOpcode();
14033  switch (Opc) {
14034  default:
14035    llvm_unreachable("Unhandled atomic-load-op opcode!");
14036  case X86::ATOMAND8:
14037  case X86::ATOMAND16:
14038  case X86::ATOMAND32:
14039  case X86::ATOMAND64:
14040  case X86::ATOMOR8:
14041  case X86::ATOMOR16:
14042  case X86::ATOMOR32:
14043  case X86::ATOMOR64:
14044  case X86::ATOMXOR8:
14045  case X86::ATOMXOR16:
14046  case X86::ATOMXOR32:
14047  case X86::ATOMXOR64: {
14048    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
14049    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t2).addReg(SrcReg)
14050      .addReg(t4);
14051    break;
14052  }
14053  case X86::ATOMNAND8:
14054  case X86::ATOMNAND16:
14055  case X86::ATOMNAND32:
14056  case X86::ATOMNAND64: {
14057    unsigned Tmp = MRI.createVirtualRegister(RC);
14058    unsigned NOTOpc;
14059    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
14060    BuildMI(mainMBB, DL, TII->get(ANDOpc), Tmp).addReg(SrcReg)
14061      .addReg(t4);
14062    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2).addReg(Tmp);
14063    break;
14064  }
14065  case X86::ATOMMAX8:
14066  case X86::ATOMMAX16:
14067  case X86::ATOMMAX32:
14068  case X86::ATOMMAX64:
14069  case X86::ATOMMIN8:
14070  case X86::ATOMMIN16:
14071  case X86::ATOMMIN32:
14072  case X86::ATOMMIN64:
14073  case X86::ATOMUMAX8:
14074  case X86::ATOMUMAX16:
14075  case X86::ATOMUMAX32:
14076  case X86::ATOMUMAX64:
14077  case X86::ATOMUMIN8:
14078  case X86::ATOMUMIN16:
14079  case X86::ATOMUMIN32:
14080  case X86::ATOMUMIN64: {
14081    unsigned CMPOpc;
14082    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
14083
14084    BuildMI(mainMBB, DL, TII->get(CMPOpc))
14085      .addReg(SrcReg)
14086      .addReg(t4);
14087
14088    if (Subtarget->hasCMov()) {
14089      if (VT != MVT::i8) {
14090        // Native support
14091        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
14092          .addReg(SrcReg)
14093          .addReg(t4);
14094      } else {
14095        // Promote i8 to i32 to use CMOV32
14096        const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
14097        const TargetRegisterClass *RC32 =
14098          TRI->getSubClassWithSubReg(getRegClassFor(MVT::i32), X86::sub_8bit);
14099        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
14100        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
14101        unsigned Tmp = MRI.createVirtualRegister(RC32);
14102
14103        unsigned Undef = MRI.createVirtualRegister(RC32);
14104        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
14105
14106        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
14107          .addReg(Undef)
14108          .addReg(SrcReg)
14109          .addImm(X86::sub_8bit);
14110        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
14111          .addReg(Undef)
14112          .addReg(t4)
14113          .addImm(X86::sub_8bit);
14114
14115        BuildMI(mainMBB, DL, TII->get(CMOVOpc), Tmp)
14116          .addReg(SrcReg32)
14117          .addReg(AccReg32);
14118
14119        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t2)
14120          .addReg(Tmp, 0, X86::sub_8bit);
14121      }
14122    } else {
14123      // Use pseudo select and lower them.
14124      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
14125             "Invalid atomic-load-op transformation!");
14126      unsigned SelOpc = getPseudoCMOVOpc(VT);
14127      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
14128      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
14129      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t2)
14130              .addReg(SrcReg).addReg(t4)
14131              .addImm(CC);
14132      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14133      // Replace the original PHI node as mainMBB is changed after CMOV
14134      // lowering.
14135      BuildMI(*origMainMBB, Phi, DL, TII->get(X86::PHI), t4)
14136        .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(mainMBB);
14137      Phi->eraseFromParent();
14138    }
14139    break;
14140  }
14141  }
14142
14143  // Copy PhyReg back from virtual register.
14144  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), PhyReg)
14145    .addReg(t4);
14146
14147  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
14148  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14149    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14150    if (NewMO.isReg())
14151      NewMO.setIsKill(false);
14152    MIB.addOperand(NewMO);
14153  }
14154  MIB.addReg(t2);
14155  MIB.setMemRefs(MMOBegin, MMOEnd);
14156
14157  // Copy PhyReg back to virtual register.
14158  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3)
14159    .addReg(PhyReg);
14160
14161  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
14162
14163  mainMBB->addSuccessor(origMainMBB);
14164  mainMBB->addSuccessor(sinkMBB);
14165
14166  // sinkMBB:
14167  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14168          TII->get(TargetOpcode::COPY), DstReg)
14169    .addReg(t3);
14170
14171  MI->eraseFromParent();
14172  return sinkMBB;
14173}
14174
14175// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
14176// instructions. They will be translated into a spin-loop or compare-exchange
14177// loop from
14178//
14179//    ...
14180//    dst = atomic-fetch-op MI.addr, MI.val
14181//    ...
14182//
14183// to
14184//
14185//    ...
14186//    t1L = LOAD [MI.addr + 0]
14187//    t1H = LOAD [MI.addr + 4]
14188// loop:
14189//    t4L = phi(t1L, t3L / loop)
14190//    t4H = phi(t1H, t3H / loop)
14191//    t2L = OP MI.val.lo, t4L
14192//    t2H = OP MI.val.hi, t4H
14193//    EAX = t4L
14194//    EDX = t4H
14195//    EBX = t2L
14196//    ECX = t2H
14197//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
14198//    t3L = EAX
14199//    t3H = EDX
14200//    JNE loop
14201// sink:
14202//    dstL = t3L
14203//    dstH = t3H
14204//    ...
14205MachineBasicBlock *
14206X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
14207                                           MachineBasicBlock *MBB) const {
14208  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14209  DebugLoc DL = MI->getDebugLoc();
14210
14211  MachineFunction *MF = MBB->getParent();
14212  MachineRegisterInfo &MRI = MF->getRegInfo();
14213
14214  const BasicBlock *BB = MBB->getBasicBlock();
14215  MachineFunction::iterator I = MBB;
14216  ++I;
14217
14218  assert(MI->getNumOperands() <= X86::AddrNumOperands + 7 &&
14219         "Unexpected number of operands");
14220
14221  assert(MI->hasOneMemOperand() &&
14222         "Expected atomic-load-op32 to have one memoperand");
14223
14224  // Memory Reference
14225  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14226  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14227
14228  unsigned DstLoReg, DstHiReg;
14229  unsigned SrcLoReg, SrcHiReg;
14230  unsigned MemOpndSlot;
14231
14232  unsigned CurOp = 0;
14233
14234  DstLoReg = MI->getOperand(CurOp++).getReg();
14235  DstHiReg = MI->getOperand(CurOp++).getReg();
14236  MemOpndSlot = CurOp;
14237  CurOp += X86::AddrNumOperands;
14238  SrcLoReg = MI->getOperand(CurOp++).getReg();
14239  SrcHiReg = MI->getOperand(CurOp++).getReg();
14240
14241  const TargetRegisterClass *RC = &X86::GR32RegClass;
14242  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
14243
14244  unsigned t1L = MRI.createVirtualRegister(RC);
14245  unsigned t1H = MRI.createVirtualRegister(RC);
14246  unsigned t2L = MRI.createVirtualRegister(RC);
14247  unsigned t2H = MRI.createVirtualRegister(RC);
14248  unsigned t3L = MRI.createVirtualRegister(RC);
14249  unsigned t3H = MRI.createVirtualRegister(RC);
14250  unsigned t4L = MRI.createVirtualRegister(RC);
14251  unsigned t4H = MRI.createVirtualRegister(RC);
14252
14253  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
14254  unsigned LOADOpc = X86::MOV32rm;
14255
14256  // For the atomic load-arith operator, we generate
14257  //
14258  //  thisMBB:
14259  //    t1L = LOAD [MI.addr + 0]
14260  //    t1H = LOAD [MI.addr + 4]
14261  //  mainMBB:
14262  //    t4L = phi(t1L / thisMBB, t3L / mainMBB)
14263  //    t4H = phi(t1H / thisMBB, t3H / mainMBB)
14264  //    t2L = OP MI.val.lo, t4L
14265  //    t2H = OP MI.val.hi, t4H
14266  //    EBX = t2L
14267  //    ECX = t2H
14268  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
14269  //    t3L = EAX
14270  //    t3H = EDX
14271  //    JNE loop
14272  //  sinkMBB:
14273  //    dstL = t3L
14274  //    dstH = t3H
14275
14276  MachineBasicBlock *thisMBB = MBB;
14277  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
14278  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
14279  MF->insert(I, mainMBB);
14280  MF->insert(I, sinkMBB);
14281
14282  MachineInstrBuilder MIB;
14283
14284  // Transfer the remainder of BB and its successor edges to sinkMBB.
14285  sinkMBB->splice(sinkMBB->begin(), MBB,
14286                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
14287  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
14288
14289  // thisMBB:
14290  // Lo
14291  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1L);
14292  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14293    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14294    if (NewMO.isReg())
14295      NewMO.setIsKill(false);
14296    MIB.addOperand(NewMO);
14297  }
14298  for (MachineInstr::mmo_iterator MMOI = MMOBegin; MMOI != MMOEnd; ++MMOI) {
14299    unsigned flags = (*MMOI)->getFlags();
14300    flags = (flags & ~MachineMemOperand::MOStore) | MachineMemOperand::MOLoad;
14301    MachineMemOperand *MMO =
14302      MF->getMachineMemOperand((*MMOI)->getPointerInfo(), flags,
14303                               (*MMOI)->getSize(),
14304                               (*MMOI)->getBaseAlignment(),
14305                               (*MMOI)->getTBAAInfo(),
14306                               (*MMOI)->getRanges());
14307    MIB.addMemOperand(MMO);
14308  };
14309  MachineInstr *LowMI = MIB;
14310
14311  // Hi
14312  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), t1H);
14313  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14314    if (i == X86::AddrDisp) {
14315      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
14316    } else {
14317      MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14318      if (NewMO.isReg())
14319        NewMO.setIsKill(false);
14320      MIB.addOperand(NewMO);
14321    }
14322  }
14323  MIB.setMemRefs(LowMI->memoperands_begin(), LowMI->memoperands_end());
14324
14325  thisMBB->addSuccessor(mainMBB);
14326
14327  // mainMBB:
14328  MachineBasicBlock *origMainMBB = mainMBB;
14329
14330  // Add PHIs.
14331  MachineInstr *PhiL = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4L)
14332                        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
14333  MachineInstr *PhiH = BuildMI(mainMBB, DL, TII->get(X86::PHI), t4H)
14334                        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
14335
14336  unsigned Opc = MI->getOpcode();
14337  switch (Opc) {
14338  default:
14339    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
14340  case X86::ATOMAND6432:
14341  case X86::ATOMOR6432:
14342  case X86::ATOMXOR6432:
14343  case X86::ATOMADD6432:
14344  case X86::ATOMSUB6432: {
14345    unsigned HiOpc;
14346    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14347    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(t4L)
14348      .addReg(SrcLoReg);
14349    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(t4H)
14350      .addReg(SrcHiReg);
14351    break;
14352  }
14353  case X86::ATOMNAND6432: {
14354    unsigned HiOpc, NOTOpc;
14355    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
14356    unsigned TmpL = MRI.createVirtualRegister(RC);
14357    unsigned TmpH = MRI.createVirtualRegister(RC);
14358    BuildMI(mainMBB, DL, TII->get(LoOpc), TmpL).addReg(SrcLoReg)
14359      .addReg(t4L);
14360    BuildMI(mainMBB, DL, TII->get(HiOpc), TmpH).addReg(SrcHiReg)
14361      .addReg(t4H);
14362    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2L).addReg(TmpL);
14363    BuildMI(mainMBB, DL, TII->get(NOTOpc), t2H).addReg(TmpH);
14364    break;
14365  }
14366  case X86::ATOMMAX6432:
14367  case X86::ATOMMIN6432:
14368  case X86::ATOMUMAX6432:
14369  case X86::ATOMUMIN6432: {
14370    unsigned HiOpc;
14371    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14372    unsigned cL = MRI.createVirtualRegister(RC8);
14373    unsigned cH = MRI.createVirtualRegister(RC8);
14374    unsigned cL32 = MRI.createVirtualRegister(RC);
14375    unsigned cH32 = MRI.createVirtualRegister(RC);
14376    unsigned cc = MRI.createVirtualRegister(RC);
14377    // cl := cmp src_lo, lo
14378    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
14379      .addReg(SrcLoReg).addReg(t4L);
14380    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
14381    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
14382    // ch := cmp src_hi, hi
14383    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
14384      .addReg(SrcHiReg).addReg(t4H);
14385    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
14386    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
14387    // cc := if (src_hi == hi) ? cl : ch;
14388    if (Subtarget->hasCMov()) {
14389      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
14390        .addReg(cH32).addReg(cL32);
14391    } else {
14392      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
14393              .addReg(cH32).addReg(cL32)
14394              .addImm(X86::COND_E);
14395      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14396    }
14397    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
14398    if (Subtarget->hasCMov()) {
14399      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2L)
14400        .addReg(SrcLoReg).addReg(t4L);
14401      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t2H)
14402        .addReg(SrcHiReg).addReg(t4H);
14403    } else {
14404      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2L)
14405              .addReg(SrcLoReg).addReg(t4L)
14406              .addImm(X86::COND_NE);
14407      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14408      // As the lowered CMOV won't clobber EFLAGS, we could reuse it for the
14409      // 2nd CMOV lowering.
14410      mainMBB->addLiveIn(X86::EFLAGS);
14411      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t2H)
14412              .addReg(SrcHiReg).addReg(t4H)
14413              .addImm(X86::COND_NE);
14414      mainMBB = EmitLoweredSelect(MIB, mainMBB);
14415      // Replace the original PHI node as mainMBB is changed after CMOV
14416      // lowering.
14417      BuildMI(*origMainMBB, PhiL, DL, TII->get(X86::PHI), t4L)
14418        .addReg(t1L).addMBB(thisMBB).addReg(t3L).addMBB(mainMBB);
14419      BuildMI(*origMainMBB, PhiH, DL, TII->get(X86::PHI), t4H)
14420        .addReg(t1H).addMBB(thisMBB).addReg(t3H).addMBB(mainMBB);
14421      PhiL->eraseFromParent();
14422      PhiH->eraseFromParent();
14423    }
14424    break;
14425  }
14426  case X86::ATOMSWAP6432: {
14427    unsigned HiOpc;
14428    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
14429    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg);
14430    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg);
14431    break;
14432  }
14433  }
14434
14435  // Copy EDX:EAX back from HiReg:LoReg
14436  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(t4L);
14437  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(t4H);
14438  // Copy ECX:EBX from t1H:t1L
14439  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t2L);
14440  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t2H);
14441
14442  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
14443  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
14444    MachineOperand NewMO = MI->getOperand(MemOpndSlot + i);
14445    if (NewMO.isReg())
14446      NewMO.setIsKill(false);
14447    MIB.addOperand(NewMO);
14448  }
14449  MIB.setMemRefs(MMOBegin, MMOEnd);
14450
14451  // Copy EDX:EAX back to t3H:t3L
14452  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3L).addReg(X86::EAX);
14453  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t3H).addReg(X86::EDX);
14454
14455  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
14456
14457  mainMBB->addSuccessor(origMainMBB);
14458  mainMBB->addSuccessor(sinkMBB);
14459
14460  // sinkMBB:
14461  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14462          TII->get(TargetOpcode::COPY), DstLoReg)
14463    .addReg(t3L);
14464  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14465          TII->get(TargetOpcode::COPY), DstHiReg)
14466    .addReg(t3H);
14467
14468  MI->eraseFromParent();
14469  return sinkMBB;
14470}
14471
14472// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
14473// or XMM0_V32I8 in AVX all of this code can be replaced with that
14474// in the .td file.
14475static MachineBasicBlock *EmitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
14476                                       const TargetInstrInfo *TII) {
14477  unsigned Opc;
14478  switch (MI->getOpcode()) {
14479  default: llvm_unreachable("illegal opcode!");
14480  case X86::PCMPISTRM128REG:  Opc = X86::PCMPISTRM128rr;  break;
14481  case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
14482  case X86::PCMPISTRM128MEM:  Opc = X86::PCMPISTRM128rm;  break;
14483  case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
14484  case X86::PCMPESTRM128REG:  Opc = X86::PCMPESTRM128rr;  break;
14485  case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
14486  case X86::PCMPESTRM128MEM:  Opc = X86::PCMPESTRM128rm;  break;
14487  case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
14488  }
14489
14490  DebugLoc dl = MI->getDebugLoc();
14491  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
14492
14493  unsigned NumArgs = MI->getNumOperands();
14494  for (unsigned i = 1; i < NumArgs; ++i) {
14495    MachineOperand &Op = MI->getOperand(i);
14496    if (!(Op.isReg() && Op.isImplicit()))
14497      MIB.addOperand(Op);
14498  }
14499  if (MI->hasOneMemOperand())
14500    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
14501
14502  BuildMI(*BB, MI, dl,
14503    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14504    .addReg(X86::XMM0);
14505
14506  MI->eraseFromParent();
14507  return BB;
14508}
14509
14510// FIXME: Custom handling because TableGen doesn't support multiple implicit
14511// defs in an instruction pattern
14512static MachineBasicBlock *EmitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
14513                                       const TargetInstrInfo *TII) {
14514  unsigned Opc;
14515  switch (MI->getOpcode()) {
14516  default: llvm_unreachable("illegal opcode!");
14517  case X86::PCMPISTRIREG:  Opc = X86::PCMPISTRIrr;  break;
14518  case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
14519  case X86::PCMPISTRIMEM:  Opc = X86::PCMPISTRIrm;  break;
14520  case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
14521  case X86::PCMPESTRIREG:  Opc = X86::PCMPESTRIrr;  break;
14522  case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
14523  case X86::PCMPESTRIMEM:  Opc = X86::PCMPESTRIrm;  break;
14524  case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
14525  }
14526
14527  DebugLoc dl = MI->getDebugLoc();
14528  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
14529
14530  unsigned NumArgs = MI->getNumOperands(); // remove the results
14531  for (unsigned i = 1; i < NumArgs; ++i) {
14532    MachineOperand &Op = MI->getOperand(i);
14533    if (!(Op.isReg() && Op.isImplicit()))
14534      MIB.addOperand(Op);
14535  }
14536  if (MI->hasOneMemOperand())
14537    MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
14538
14539  BuildMI(*BB, MI, dl,
14540    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
14541    .addReg(X86::ECX);
14542
14543  MI->eraseFromParent();
14544  return BB;
14545}
14546
14547static MachineBasicBlock * EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
14548                                       const TargetInstrInfo *TII,
14549                                       const X86Subtarget* Subtarget) {
14550  DebugLoc dl = MI->getDebugLoc();
14551
14552  // Address into RAX/EAX, other two args into ECX, EDX.
14553  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
14554  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
14555  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
14556  for (int i = 0; i < X86::AddrNumOperands; ++i)
14557    MIB.addOperand(MI->getOperand(i));
14558
14559  unsigned ValOps = X86::AddrNumOperands;
14560  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
14561    .addReg(MI->getOperand(ValOps).getReg());
14562  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
14563    .addReg(MI->getOperand(ValOps+1).getReg());
14564
14565  // The instruction doesn't actually take any operands though.
14566  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
14567
14568  MI->eraseFromParent(); // The pseudo is gone now.
14569  return BB;
14570}
14571
14572MachineBasicBlock *
14573X86TargetLowering::EmitVAARG64WithCustomInserter(
14574                   MachineInstr *MI,
14575                   MachineBasicBlock *MBB) const {
14576  // Emit va_arg instruction on X86-64.
14577
14578  // Operands to this pseudo-instruction:
14579  // 0  ) Output        : destination address (reg)
14580  // 1-5) Input         : va_list address (addr, i64mem)
14581  // 6  ) ArgSize       : Size (in bytes) of vararg type
14582  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
14583  // 8  ) Align         : Alignment of type
14584  // 9  ) EFLAGS (implicit-def)
14585
14586  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
14587  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
14588
14589  unsigned DestReg = MI->getOperand(0).getReg();
14590  MachineOperand &Base = MI->getOperand(1);
14591  MachineOperand &Scale = MI->getOperand(2);
14592  MachineOperand &Index = MI->getOperand(3);
14593  MachineOperand &Disp = MI->getOperand(4);
14594  MachineOperand &Segment = MI->getOperand(5);
14595  unsigned ArgSize = MI->getOperand(6).getImm();
14596  unsigned ArgMode = MI->getOperand(7).getImm();
14597  unsigned Align = MI->getOperand(8).getImm();
14598
14599  // Memory Reference
14600  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
14601  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
14602  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
14603
14604  // Machine Information
14605  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14606  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
14607  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
14608  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
14609  DebugLoc DL = MI->getDebugLoc();
14610
14611  // struct va_list {
14612  //   i32   gp_offset
14613  //   i32   fp_offset
14614  //   i64   overflow_area (address)
14615  //   i64   reg_save_area (address)
14616  // }
14617  // sizeof(va_list) = 24
14618  // alignment(va_list) = 8
14619
14620  unsigned TotalNumIntRegs = 6;
14621  unsigned TotalNumXMMRegs = 8;
14622  bool UseGPOffset = (ArgMode == 1);
14623  bool UseFPOffset = (ArgMode == 2);
14624  unsigned MaxOffset = TotalNumIntRegs * 8 +
14625                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
14626
14627  /* Align ArgSize to a multiple of 8 */
14628  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
14629  bool NeedsAlign = (Align > 8);
14630
14631  MachineBasicBlock *thisMBB = MBB;
14632  MachineBasicBlock *overflowMBB;
14633  MachineBasicBlock *offsetMBB;
14634  MachineBasicBlock *endMBB;
14635
14636  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
14637  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
14638  unsigned OffsetReg = 0;
14639
14640  if (!UseGPOffset && !UseFPOffset) {
14641    // If we only pull from the overflow region, we don't create a branch.
14642    // We don't need to alter control flow.
14643    OffsetDestReg = 0; // unused
14644    OverflowDestReg = DestReg;
14645
14646    offsetMBB = NULL;
14647    overflowMBB = thisMBB;
14648    endMBB = thisMBB;
14649  } else {
14650    // First emit code to check if gp_offset (or fp_offset) is below the bound.
14651    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
14652    // If not, pull from overflow_area. (branch to overflowMBB)
14653    //
14654    //       thisMBB
14655    //         |     .
14656    //         |        .
14657    //     offsetMBB   overflowMBB
14658    //         |        .
14659    //         |     .
14660    //        endMBB
14661
14662    // Registers for the PHI in endMBB
14663    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
14664    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
14665
14666    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
14667    MachineFunction *MF = MBB->getParent();
14668    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14669    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14670    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
14671
14672    MachineFunction::iterator MBBIter = MBB;
14673    ++MBBIter;
14674
14675    // Insert the new basic blocks
14676    MF->insert(MBBIter, offsetMBB);
14677    MF->insert(MBBIter, overflowMBB);
14678    MF->insert(MBBIter, endMBB);
14679
14680    // Transfer the remainder of MBB and its successor edges to endMBB.
14681    endMBB->splice(endMBB->begin(), thisMBB,
14682                    llvm::next(MachineBasicBlock::iterator(MI)),
14683                    thisMBB->end());
14684    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
14685
14686    // Make offsetMBB and overflowMBB successors of thisMBB
14687    thisMBB->addSuccessor(offsetMBB);
14688    thisMBB->addSuccessor(overflowMBB);
14689
14690    // endMBB is a successor of both offsetMBB and overflowMBB
14691    offsetMBB->addSuccessor(endMBB);
14692    overflowMBB->addSuccessor(endMBB);
14693
14694    // Load the offset value into a register
14695    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
14696    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
14697      .addOperand(Base)
14698      .addOperand(Scale)
14699      .addOperand(Index)
14700      .addDisp(Disp, UseFPOffset ? 4 : 0)
14701      .addOperand(Segment)
14702      .setMemRefs(MMOBegin, MMOEnd);
14703
14704    // Check if there is enough room left to pull this argument.
14705    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
14706      .addReg(OffsetReg)
14707      .addImm(MaxOffset + 8 - ArgSizeA8);
14708
14709    // Branch to "overflowMBB" if offset >= max
14710    // Fall through to "offsetMBB" otherwise
14711    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
14712      .addMBB(overflowMBB);
14713  }
14714
14715  // In offsetMBB, emit code to use the reg_save_area.
14716  if (offsetMBB) {
14717    assert(OffsetReg != 0);
14718
14719    // Read the reg_save_area address.
14720    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
14721    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
14722      .addOperand(Base)
14723      .addOperand(Scale)
14724      .addOperand(Index)
14725      .addDisp(Disp, 16)
14726      .addOperand(Segment)
14727      .setMemRefs(MMOBegin, MMOEnd);
14728
14729    // Zero-extend the offset
14730    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
14731      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
14732        .addImm(0)
14733        .addReg(OffsetReg)
14734        .addImm(X86::sub_32bit);
14735
14736    // Add the offset to the reg_save_area to get the final address.
14737    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
14738      .addReg(OffsetReg64)
14739      .addReg(RegSaveReg);
14740
14741    // Compute the offset for the next argument
14742    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
14743    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
14744      .addReg(OffsetReg)
14745      .addImm(UseFPOffset ? 16 : 8);
14746
14747    // Store it back into the va_list.
14748    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
14749      .addOperand(Base)
14750      .addOperand(Scale)
14751      .addOperand(Index)
14752      .addDisp(Disp, UseFPOffset ? 4 : 0)
14753      .addOperand(Segment)
14754      .addReg(NextOffsetReg)
14755      .setMemRefs(MMOBegin, MMOEnd);
14756
14757    // Jump to endMBB
14758    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
14759      .addMBB(endMBB);
14760  }
14761
14762  //
14763  // Emit code to use overflow area
14764  //
14765
14766  // Load the overflow_area address into a register.
14767  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
14768  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
14769    .addOperand(Base)
14770    .addOperand(Scale)
14771    .addOperand(Index)
14772    .addDisp(Disp, 8)
14773    .addOperand(Segment)
14774    .setMemRefs(MMOBegin, MMOEnd);
14775
14776  // If we need to align it, do so. Otherwise, just copy the address
14777  // to OverflowDestReg.
14778  if (NeedsAlign) {
14779    // Align the overflow address
14780    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
14781    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
14782
14783    // aligned_addr = (addr + (align-1)) & ~(align-1)
14784    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
14785      .addReg(OverflowAddrReg)
14786      .addImm(Align-1);
14787
14788    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
14789      .addReg(TmpReg)
14790      .addImm(~(uint64_t)(Align-1));
14791  } else {
14792    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
14793      .addReg(OverflowAddrReg);
14794  }
14795
14796  // Compute the next overflow address after this argument.
14797  // (the overflow address should be kept 8-byte aligned)
14798  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
14799  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
14800    .addReg(OverflowDestReg)
14801    .addImm(ArgSizeA8);
14802
14803  // Store the new overflow address.
14804  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
14805    .addOperand(Base)
14806    .addOperand(Scale)
14807    .addOperand(Index)
14808    .addDisp(Disp, 8)
14809    .addOperand(Segment)
14810    .addReg(NextAddrReg)
14811    .setMemRefs(MMOBegin, MMOEnd);
14812
14813  // If we branched, emit the PHI to the front of endMBB.
14814  if (offsetMBB) {
14815    BuildMI(*endMBB, endMBB->begin(), DL,
14816            TII->get(X86::PHI), DestReg)
14817      .addReg(OffsetDestReg).addMBB(offsetMBB)
14818      .addReg(OverflowDestReg).addMBB(overflowMBB);
14819  }
14820
14821  // Erase the pseudo instruction
14822  MI->eraseFromParent();
14823
14824  return endMBB;
14825}
14826
14827MachineBasicBlock *
14828X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
14829                                                 MachineInstr *MI,
14830                                                 MachineBasicBlock *MBB) const {
14831  // Emit code to save XMM registers to the stack. The ABI says that the
14832  // number of registers to save is given in %al, so it's theoretically
14833  // possible to do an indirect jump trick to avoid saving all of them,
14834  // however this code takes a simpler approach and just executes all
14835  // of the stores if %al is non-zero. It's less code, and it's probably
14836  // easier on the hardware branch predictor, and stores aren't all that
14837  // expensive anyway.
14838
14839  // Create the new basic blocks. One block contains all the XMM stores,
14840  // and one block is the final destination regardless of whether any
14841  // stores were performed.
14842  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
14843  MachineFunction *F = MBB->getParent();
14844  MachineFunction::iterator MBBIter = MBB;
14845  ++MBBIter;
14846  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
14847  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
14848  F->insert(MBBIter, XMMSaveMBB);
14849  F->insert(MBBIter, EndMBB);
14850
14851  // Transfer the remainder of MBB and its successor edges to EndMBB.
14852  EndMBB->splice(EndMBB->begin(), MBB,
14853                 llvm::next(MachineBasicBlock::iterator(MI)),
14854                 MBB->end());
14855  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
14856
14857  // The original block will now fall through to the XMM save block.
14858  MBB->addSuccessor(XMMSaveMBB);
14859  // The XMMSaveMBB will fall through to the end block.
14860  XMMSaveMBB->addSuccessor(EndMBB);
14861
14862  // Now add the instructions.
14863  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14864  DebugLoc DL = MI->getDebugLoc();
14865
14866  unsigned CountReg = MI->getOperand(0).getReg();
14867  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
14868  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
14869
14870  if (!Subtarget->isTargetWin64()) {
14871    // If %al is 0, branch around the XMM save block.
14872    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
14873    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
14874    MBB->addSuccessor(EndMBB);
14875  }
14876
14877  unsigned MOVOpc = Subtarget->hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
14878  // In the XMM save block, save all the XMM argument registers.
14879  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
14880    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
14881    MachineMemOperand *MMO =
14882      F->getMachineMemOperand(
14883          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
14884        MachineMemOperand::MOStore,
14885        /*Size=*/16, /*Align=*/16);
14886    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
14887      .addFrameIndex(RegSaveFrameIndex)
14888      .addImm(/*Scale=*/1)
14889      .addReg(/*IndexReg=*/0)
14890      .addImm(/*Disp=*/Offset)
14891      .addReg(/*Segment=*/0)
14892      .addReg(MI->getOperand(i).getReg())
14893      .addMemOperand(MMO);
14894  }
14895
14896  MI->eraseFromParent();   // The pseudo instruction is gone now.
14897
14898  return EndMBB;
14899}
14900
14901// The EFLAGS operand of SelectItr might be missing a kill marker
14902// because there were multiple uses of EFLAGS, and ISel didn't know
14903// which to mark. Figure out whether SelectItr should have had a
14904// kill marker, and set it if it should. Returns the correct kill
14905// marker value.
14906static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
14907                                     MachineBasicBlock* BB,
14908                                     const TargetRegisterInfo* TRI) {
14909  // Scan forward through BB for a use/def of EFLAGS.
14910  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
14911  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
14912    const MachineInstr& mi = *miI;
14913    if (mi.readsRegister(X86::EFLAGS))
14914      return false;
14915    if (mi.definesRegister(X86::EFLAGS))
14916      break; // Should have kill-flag - update below.
14917  }
14918
14919  // If we hit the end of the block, check whether EFLAGS is live into a
14920  // successor.
14921  if (miI == BB->end()) {
14922    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
14923                                          sEnd = BB->succ_end();
14924         sItr != sEnd; ++sItr) {
14925      MachineBasicBlock* succ = *sItr;
14926      if (succ->isLiveIn(X86::EFLAGS))
14927        return false;
14928    }
14929  }
14930
14931  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
14932  // out. SelectMI should have a kill flag on EFLAGS.
14933  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
14934  return true;
14935}
14936
14937MachineBasicBlock *
14938X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
14939                                     MachineBasicBlock *BB) const {
14940  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
14941  DebugLoc DL = MI->getDebugLoc();
14942
14943  // To "insert" a SELECT_CC instruction, we actually have to insert the
14944  // diamond control-flow pattern.  The incoming instruction knows the
14945  // destination vreg to set, the condition code register to branch on, the
14946  // true/false values to select between, and a branch opcode to use.
14947  const BasicBlock *LLVM_BB = BB->getBasicBlock();
14948  MachineFunction::iterator It = BB;
14949  ++It;
14950
14951  //  thisMBB:
14952  //  ...
14953  //   TrueVal = ...
14954  //   cmpTY ccX, r1, r2
14955  //   bCC copy1MBB
14956  //   fallthrough --> copy0MBB
14957  MachineBasicBlock *thisMBB = BB;
14958  MachineFunction *F = BB->getParent();
14959  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
14960  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
14961  F->insert(It, copy0MBB);
14962  F->insert(It, sinkMBB);
14963
14964  // If the EFLAGS register isn't dead in the terminator, then claim that it's
14965  // live into the sink and copy blocks.
14966  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
14967  if (!MI->killsRegister(X86::EFLAGS) &&
14968      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
14969    copy0MBB->addLiveIn(X86::EFLAGS);
14970    sinkMBB->addLiveIn(X86::EFLAGS);
14971  }
14972
14973  // Transfer the remainder of BB and its successor edges to sinkMBB.
14974  sinkMBB->splice(sinkMBB->begin(), BB,
14975                  llvm::next(MachineBasicBlock::iterator(MI)),
14976                  BB->end());
14977  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
14978
14979  // Add the true and fallthrough blocks as its successors.
14980  BB->addSuccessor(copy0MBB);
14981  BB->addSuccessor(sinkMBB);
14982
14983  // Create the conditional branch instruction.
14984  unsigned Opc =
14985    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
14986  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
14987
14988  //  copy0MBB:
14989  //   %FalseValue = ...
14990  //   # fallthrough to sinkMBB
14991  copy0MBB->addSuccessor(sinkMBB);
14992
14993  //  sinkMBB:
14994  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
14995  //  ...
14996  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
14997          TII->get(X86::PHI), MI->getOperand(0).getReg())
14998    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
14999    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
15000
15001  MI->eraseFromParent();   // The pseudo instruction is gone now.
15002  return sinkMBB;
15003}
15004
15005MachineBasicBlock *
15006X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
15007                                        bool Is64Bit) const {
15008  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15009  DebugLoc DL = MI->getDebugLoc();
15010  MachineFunction *MF = BB->getParent();
15011  const BasicBlock *LLVM_BB = BB->getBasicBlock();
15012
15013  assert(getTargetMachine().Options.EnableSegmentedStacks);
15014
15015  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
15016  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
15017
15018  // BB:
15019  //  ... [Till the alloca]
15020  // If stacklet is not large enough, jump to mallocMBB
15021  //
15022  // bumpMBB:
15023  //  Allocate by subtracting from RSP
15024  //  Jump to continueMBB
15025  //
15026  // mallocMBB:
15027  //  Allocate by call to runtime
15028  //
15029  // continueMBB:
15030  //  ...
15031  //  [rest of original BB]
15032  //
15033
15034  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15035  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15036  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
15037
15038  MachineRegisterInfo &MRI = MF->getRegInfo();
15039  const TargetRegisterClass *AddrRegClass =
15040    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
15041
15042  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
15043    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
15044    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
15045    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
15046    sizeVReg = MI->getOperand(1).getReg(),
15047    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
15048
15049  MachineFunction::iterator MBBIter = BB;
15050  ++MBBIter;
15051
15052  MF->insert(MBBIter, bumpMBB);
15053  MF->insert(MBBIter, mallocMBB);
15054  MF->insert(MBBIter, continueMBB);
15055
15056  continueMBB->splice(continueMBB->begin(), BB, llvm::next
15057                      (MachineBasicBlock::iterator(MI)), BB->end());
15058  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
15059
15060  // Add code to the main basic block to check if the stack limit has been hit,
15061  // and if so, jump to mallocMBB otherwise to bumpMBB.
15062  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
15063  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
15064    .addReg(tmpSPVReg).addReg(sizeVReg);
15065  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
15066    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
15067    .addReg(SPLimitVReg);
15068  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
15069
15070  // bumpMBB simply decreases the stack pointer, since we know the current
15071  // stacklet has enough space.
15072  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
15073    .addReg(SPLimitVReg);
15074  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
15075    .addReg(SPLimitVReg);
15076  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
15077
15078  // Calls into a routine in libgcc to allocate more space from the heap.
15079  const uint32_t *RegMask =
15080    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
15081  if (Is64Bit) {
15082    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
15083      .addReg(sizeVReg);
15084    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
15085      .addExternalSymbol("__morestack_allocate_stack_space")
15086      .addRegMask(RegMask)
15087      .addReg(X86::RDI, RegState::Implicit)
15088      .addReg(X86::RAX, RegState::ImplicitDefine);
15089  } else {
15090    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
15091      .addImm(12);
15092    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
15093    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
15094      .addExternalSymbol("__morestack_allocate_stack_space")
15095      .addRegMask(RegMask)
15096      .addReg(X86::EAX, RegState::ImplicitDefine);
15097  }
15098
15099  if (!Is64Bit)
15100    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
15101      .addImm(16);
15102
15103  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
15104    .addReg(Is64Bit ? X86::RAX : X86::EAX);
15105  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
15106
15107  // Set up the CFG correctly.
15108  BB->addSuccessor(bumpMBB);
15109  BB->addSuccessor(mallocMBB);
15110  mallocMBB->addSuccessor(continueMBB);
15111  bumpMBB->addSuccessor(continueMBB);
15112
15113  // Take care of the PHI nodes.
15114  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
15115          MI->getOperand(0).getReg())
15116    .addReg(mallocPtrVReg).addMBB(mallocMBB)
15117    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
15118
15119  // Delete the original pseudo instruction.
15120  MI->eraseFromParent();
15121
15122  // And we're done.
15123  return continueMBB;
15124}
15125
15126MachineBasicBlock *
15127X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
15128                                          MachineBasicBlock *BB) const {
15129  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15130  DebugLoc DL = MI->getDebugLoc();
15131
15132  assert(!Subtarget->isTargetEnvMacho());
15133
15134  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
15135  // non-trivial part is impdef of ESP.
15136
15137  if (Subtarget->isTargetWin64()) {
15138    if (Subtarget->isTargetCygMing()) {
15139      // ___chkstk(Mingw64):
15140      // Clobbers R10, R11, RAX and EFLAGS.
15141      // Updates RSP.
15142      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
15143        .addExternalSymbol("___chkstk")
15144        .addReg(X86::RAX, RegState::Implicit)
15145        .addReg(X86::RSP, RegState::Implicit)
15146        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
15147        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
15148        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15149    } else {
15150      // __chkstk(MSVCRT): does not update stack pointer.
15151      // Clobbers R10, R11 and EFLAGS.
15152      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
15153        .addExternalSymbol("__chkstk")
15154        .addReg(X86::RAX, RegState::Implicit)
15155        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15156      // RAX has the offset to be subtracted from RSP.
15157      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
15158        .addReg(X86::RSP)
15159        .addReg(X86::RAX);
15160    }
15161  } else {
15162    const char *StackProbeSymbol =
15163      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
15164
15165    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
15166      .addExternalSymbol(StackProbeSymbol)
15167      .addReg(X86::EAX, RegState::Implicit)
15168      .addReg(X86::ESP, RegState::Implicit)
15169      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
15170      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
15171      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
15172  }
15173
15174  MI->eraseFromParent();   // The pseudo instruction is gone now.
15175  return BB;
15176}
15177
15178MachineBasicBlock *
15179X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
15180                                      MachineBasicBlock *BB) const {
15181  // This is pretty easy.  We're taking the value that we received from
15182  // our load from the relocation, sticking it in either RDI (x86-64)
15183  // or EAX and doing an indirect call.  The return value will then
15184  // be in the normal return register.
15185  const X86InstrInfo *TII
15186    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
15187  DebugLoc DL = MI->getDebugLoc();
15188  MachineFunction *F = BB->getParent();
15189
15190  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
15191  assert(MI->getOperand(3).isGlobal() && "This should be a global");
15192
15193  // Get a register mask for the lowered call.
15194  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
15195  // proper register mask.
15196  const uint32_t *RegMask =
15197    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
15198  if (Subtarget->is64Bit()) {
15199    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15200                                      TII->get(X86::MOV64rm), X86::RDI)
15201    .addReg(X86::RIP)
15202    .addImm(0).addReg(0)
15203    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15204                      MI->getOperand(3).getTargetFlags())
15205    .addReg(0);
15206    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
15207    addDirectMem(MIB, X86::RDI);
15208    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
15209  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
15210    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15211                                      TII->get(X86::MOV32rm), X86::EAX)
15212    .addReg(0)
15213    .addImm(0).addReg(0)
15214    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15215                      MI->getOperand(3).getTargetFlags())
15216    .addReg(0);
15217    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
15218    addDirectMem(MIB, X86::EAX);
15219    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
15220  } else {
15221    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
15222                                      TII->get(X86::MOV32rm), X86::EAX)
15223    .addReg(TII->getGlobalBaseReg(F))
15224    .addImm(0).addReg(0)
15225    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
15226                      MI->getOperand(3).getTargetFlags())
15227    .addReg(0);
15228    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
15229    addDirectMem(MIB, X86::EAX);
15230    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
15231  }
15232
15233  MI->eraseFromParent(); // The pseudo instruction is gone now.
15234  return BB;
15235}
15236
15237MachineBasicBlock *
15238X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
15239                                    MachineBasicBlock *MBB) const {
15240  DebugLoc DL = MI->getDebugLoc();
15241  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15242
15243  MachineFunction *MF = MBB->getParent();
15244  MachineRegisterInfo &MRI = MF->getRegInfo();
15245
15246  const BasicBlock *BB = MBB->getBasicBlock();
15247  MachineFunction::iterator I = MBB;
15248  ++I;
15249
15250  // Memory Reference
15251  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15252  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15253
15254  unsigned DstReg;
15255  unsigned MemOpndSlot = 0;
15256
15257  unsigned CurOp = 0;
15258
15259  DstReg = MI->getOperand(CurOp++).getReg();
15260  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
15261  assert(RC->hasType(MVT::i32) && "Invalid destination!");
15262  unsigned mainDstReg = MRI.createVirtualRegister(RC);
15263  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
15264
15265  MemOpndSlot = CurOp;
15266
15267  MVT PVT = getPointerTy();
15268  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
15269         "Invalid Pointer Size!");
15270
15271  // For v = setjmp(buf), we generate
15272  //
15273  // thisMBB:
15274  //  buf[LabelOffset] = restoreMBB
15275  //  SjLjSetup restoreMBB
15276  //
15277  // mainMBB:
15278  //  v_main = 0
15279  //
15280  // sinkMBB:
15281  //  v = phi(main, restore)
15282  //
15283  // restoreMBB:
15284  //  v_restore = 1
15285
15286  MachineBasicBlock *thisMBB = MBB;
15287  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
15288  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
15289  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
15290  MF->insert(I, mainMBB);
15291  MF->insert(I, sinkMBB);
15292  MF->push_back(restoreMBB);
15293
15294  MachineInstrBuilder MIB;
15295
15296  // Transfer the remainder of BB and its successor edges to sinkMBB.
15297  sinkMBB->splice(sinkMBB->begin(), MBB,
15298                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
15299  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
15300
15301  // thisMBB:
15302  unsigned PtrStoreOpc = 0;
15303  unsigned LabelReg = 0;
15304  const int64_t LabelOffset = 1 * PVT.getStoreSize();
15305  Reloc::Model RM = getTargetMachine().getRelocationModel();
15306  bool UseImmLabel = (getTargetMachine().getCodeModel() == CodeModel::Small) &&
15307                     (RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
15308
15309  // Prepare IP either in reg or imm.
15310  if (!UseImmLabel) {
15311    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
15312    const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
15313    LabelReg = MRI.createVirtualRegister(PtrRC);
15314    if (Subtarget->is64Bit()) {
15315      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
15316              .addReg(X86::RIP)
15317              .addImm(0)
15318              .addReg(0)
15319              .addMBB(restoreMBB)
15320              .addReg(0);
15321    } else {
15322      const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
15323      MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
15324              .addReg(XII->getGlobalBaseReg(MF))
15325              .addImm(0)
15326              .addReg(0)
15327              .addMBB(restoreMBB, Subtarget->ClassifyBlockAddressReference())
15328              .addReg(0);
15329    }
15330  } else
15331    PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
15332  // Store IP
15333  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
15334  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15335    if (i == X86::AddrDisp)
15336      MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
15337    else
15338      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
15339  }
15340  if (!UseImmLabel)
15341    MIB.addReg(LabelReg);
15342  else
15343    MIB.addMBB(restoreMBB);
15344  MIB.setMemRefs(MMOBegin, MMOEnd);
15345  // Setup
15346  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
15347          .addMBB(restoreMBB);
15348
15349  const X86RegisterInfo *RegInfo =
15350    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
15351  MIB.addRegMask(RegInfo->getNoPreservedMask());
15352  thisMBB->addSuccessor(mainMBB);
15353  thisMBB->addSuccessor(restoreMBB);
15354
15355  // mainMBB:
15356  //  EAX = 0
15357  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
15358  mainMBB->addSuccessor(sinkMBB);
15359
15360  // sinkMBB:
15361  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
15362          TII->get(X86::PHI), DstReg)
15363    .addReg(mainDstReg).addMBB(mainMBB)
15364    .addReg(restoreDstReg).addMBB(restoreMBB);
15365
15366  // restoreMBB:
15367  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
15368  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
15369  restoreMBB->addSuccessor(sinkMBB);
15370
15371  MI->eraseFromParent();
15372  return sinkMBB;
15373}
15374
15375MachineBasicBlock *
15376X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
15377                                     MachineBasicBlock *MBB) const {
15378  DebugLoc DL = MI->getDebugLoc();
15379  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15380
15381  MachineFunction *MF = MBB->getParent();
15382  MachineRegisterInfo &MRI = MF->getRegInfo();
15383
15384  // Memory Reference
15385  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
15386  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
15387
15388  MVT PVT = getPointerTy();
15389  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
15390         "Invalid Pointer Size!");
15391
15392  const TargetRegisterClass *RC =
15393    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
15394  unsigned Tmp = MRI.createVirtualRegister(RC);
15395  // Since FP is only updated here but NOT referenced, it's treated as GPR.
15396  const X86RegisterInfo *RegInfo =
15397    static_cast<const X86RegisterInfo*>(getTargetMachine().getRegisterInfo());
15398  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
15399  unsigned SP = RegInfo->getStackRegister();
15400
15401  MachineInstrBuilder MIB;
15402
15403  const int64_t LabelOffset = 1 * PVT.getStoreSize();
15404  const int64_t SPOffset = 2 * PVT.getStoreSize();
15405
15406  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
15407  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
15408
15409  // Reload FP
15410  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
15411  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
15412    MIB.addOperand(MI->getOperand(i));
15413  MIB.setMemRefs(MMOBegin, MMOEnd);
15414  // Reload IP
15415  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
15416  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15417    if (i == X86::AddrDisp)
15418      MIB.addDisp(MI->getOperand(i), LabelOffset);
15419    else
15420      MIB.addOperand(MI->getOperand(i));
15421  }
15422  MIB.setMemRefs(MMOBegin, MMOEnd);
15423  // Reload SP
15424  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
15425  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
15426    if (i == X86::AddrDisp)
15427      MIB.addDisp(MI->getOperand(i), SPOffset);
15428    else
15429      MIB.addOperand(MI->getOperand(i));
15430  }
15431  MIB.setMemRefs(MMOBegin, MMOEnd);
15432  // Jump
15433  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
15434
15435  MI->eraseFromParent();
15436  return MBB;
15437}
15438
15439MachineBasicBlock *
15440X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
15441                                               MachineBasicBlock *BB) const {
15442  switch (MI->getOpcode()) {
15443  default: llvm_unreachable("Unexpected instr type to insert");
15444  case X86::TAILJMPd64:
15445  case X86::TAILJMPr64:
15446  case X86::TAILJMPm64:
15447    llvm_unreachable("TAILJMP64 would not be touched here.");
15448  case X86::TCRETURNdi64:
15449  case X86::TCRETURNri64:
15450  case X86::TCRETURNmi64:
15451    return BB;
15452  case X86::WIN_ALLOCA:
15453    return EmitLoweredWinAlloca(MI, BB);
15454  case X86::SEG_ALLOCA_32:
15455    return EmitLoweredSegAlloca(MI, BB, false);
15456  case X86::SEG_ALLOCA_64:
15457    return EmitLoweredSegAlloca(MI, BB, true);
15458  case X86::TLSCall_32:
15459  case X86::TLSCall_64:
15460    return EmitLoweredTLSCall(MI, BB);
15461  case X86::CMOV_GR8:
15462  case X86::CMOV_FR32:
15463  case X86::CMOV_FR64:
15464  case X86::CMOV_V4F32:
15465  case X86::CMOV_V2F64:
15466  case X86::CMOV_V2I64:
15467  case X86::CMOV_V8F32:
15468  case X86::CMOV_V4F64:
15469  case X86::CMOV_V4I64:
15470  case X86::CMOV_GR16:
15471  case X86::CMOV_GR32:
15472  case X86::CMOV_RFP32:
15473  case X86::CMOV_RFP64:
15474  case X86::CMOV_RFP80:
15475    return EmitLoweredSelect(MI, BB);
15476
15477  case X86::FP32_TO_INT16_IN_MEM:
15478  case X86::FP32_TO_INT32_IN_MEM:
15479  case X86::FP32_TO_INT64_IN_MEM:
15480  case X86::FP64_TO_INT16_IN_MEM:
15481  case X86::FP64_TO_INT32_IN_MEM:
15482  case X86::FP64_TO_INT64_IN_MEM:
15483  case X86::FP80_TO_INT16_IN_MEM:
15484  case X86::FP80_TO_INT32_IN_MEM:
15485  case X86::FP80_TO_INT64_IN_MEM: {
15486    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
15487    DebugLoc DL = MI->getDebugLoc();
15488
15489    // Change the floating point control register to use "round towards zero"
15490    // mode when truncating to an integer value.
15491    MachineFunction *F = BB->getParent();
15492    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
15493    addFrameReference(BuildMI(*BB, MI, DL,
15494                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
15495
15496    // Load the old value of the high byte of the control word...
15497    unsigned OldCW =
15498      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
15499    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
15500                      CWFrameIdx);
15501
15502    // Set the high part to be round to zero...
15503    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
15504      .addImm(0xC7F);
15505
15506    // Reload the modified control word now...
15507    addFrameReference(BuildMI(*BB, MI, DL,
15508                              TII->get(X86::FLDCW16m)), CWFrameIdx);
15509
15510    // Restore the memory image of control word to original value
15511    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
15512      .addReg(OldCW);
15513
15514    // Get the X86 opcode to use.
15515    unsigned Opc;
15516    switch (MI->getOpcode()) {
15517    default: llvm_unreachable("illegal opcode!");
15518    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
15519    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
15520    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
15521    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
15522    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
15523    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
15524    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
15525    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
15526    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
15527    }
15528
15529    X86AddressMode AM;
15530    MachineOperand &Op = MI->getOperand(0);
15531    if (Op.isReg()) {
15532      AM.BaseType = X86AddressMode::RegBase;
15533      AM.Base.Reg = Op.getReg();
15534    } else {
15535      AM.BaseType = X86AddressMode::FrameIndexBase;
15536      AM.Base.FrameIndex = Op.getIndex();
15537    }
15538    Op = MI->getOperand(1);
15539    if (Op.isImm())
15540      AM.Scale = Op.getImm();
15541    Op = MI->getOperand(2);
15542    if (Op.isImm())
15543      AM.IndexReg = Op.getImm();
15544    Op = MI->getOperand(3);
15545    if (Op.isGlobal()) {
15546      AM.GV = Op.getGlobal();
15547    } else {
15548      AM.Disp = Op.getImm();
15549    }
15550    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
15551                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
15552
15553    // Reload the original control word now.
15554    addFrameReference(BuildMI(*BB, MI, DL,
15555                              TII->get(X86::FLDCW16m)), CWFrameIdx);
15556
15557    MI->eraseFromParent();   // The pseudo instruction is gone now.
15558    return BB;
15559  }
15560    // String/text processing lowering.
15561  case X86::PCMPISTRM128REG:
15562  case X86::VPCMPISTRM128REG:
15563  case X86::PCMPISTRM128MEM:
15564  case X86::VPCMPISTRM128MEM:
15565  case X86::PCMPESTRM128REG:
15566  case X86::VPCMPESTRM128REG:
15567  case X86::PCMPESTRM128MEM:
15568  case X86::VPCMPESTRM128MEM:
15569    assert(Subtarget->hasSSE42() &&
15570           "Target must have SSE4.2 or AVX features enabled");
15571    return EmitPCMPSTRM(MI, BB, getTargetMachine().getInstrInfo());
15572
15573  // String/text processing lowering.
15574  case X86::PCMPISTRIREG:
15575  case X86::VPCMPISTRIREG:
15576  case X86::PCMPISTRIMEM:
15577  case X86::VPCMPISTRIMEM:
15578  case X86::PCMPESTRIREG:
15579  case X86::VPCMPESTRIREG:
15580  case X86::PCMPESTRIMEM:
15581  case X86::VPCMPESTRIMEM:
15582    assert(Subtarget->hasSSE42() &&
15583           "Target must have SSE4.2 or AVX features enabled");
15584    return EmitPCMPSTRI(MI, BB, getTargetMachine().getInstrInfo());
15585
15586  // Thread synchronization.
15587  case X86::MONITOR:
15588    return EmitMonitor(MI, BB, getTargetMachine().getInstrInfo(), Subtarget);
15589
15590  // xbegin
15591  case X86::XBEGIN:
15592    return EmitXBegin(MI, BB, getTargetMachine().getInstrInfo());
15593
15594  // Atomic Lowering.
15595  case X86::ATOMAND8:
15596  case X86::ATOMAND16:
15597  case X86::ATOMAND32:
15598  case X86::ATOMAND64:
15599    // Fall through
15600  case X86::ATOMOR8:
15601  case X86::ATOMOR16:
15602  case X86::ATOMOR32:
15603  case X86::ATOMOR64:
15604    // Fall through
15605  case X86::ATOMXOR16:
15606  case X86::ATOMXOR8:
15607  case X86::ATOMXOR32:
15608  case X86::ATOMXOR64:
15609    // Fall through
15610  case X86::ATOMNAND8:
15611  case X86::ATOMNAND16:
15612  case X86::ATOMNAND32:
15613  case X86::ATOMNAND64:
15614    // Fall through
15615  case X86::ATOMMAX8:
15616  case X86::ATOMMAX16:
15617  case X86::ATOMMAX32:
15618  case X86::ATOMMAX64:
15619    // Fall through
15620  case X86::ATOMMIN8:
15621  case X86::ATOMMIN16:
15622  case X86::ATOMMIN32:
15623  case X86::ATOMMIN64:
15624    // Fall through
15625  case X86::ATOMUMAX8:
15626  case X86::ATOMUMAX16:
15627  case X86::ATOMUMAX32:
15628  case X86::ATOMUMAX64:
15629    // Fall through
15630  case X86::ATOMUMIN8:
15631  case X86::ATOMUMIN16:
15632  case X86::ATOMUMIN32:
15633  case X86::ATOMUMIN64:
15634    return EmitAtomicLoadArith(MI, BB);
15635
15636  // This group does 64-bit operations on a 32-bit host.
15637  case X86::ATOMAND6432:
15638  case X86::ATOMOR6432:
15639  case X86::ATOMXOR6432:
15640  case X86::ATOMNAND6432:
15641  case X86::ATOMADD6432:
15642  case X86::ATOMSUB6432:
15643  case X86::ATOMMAX6432:
15644  case X86::ATOMMIN6432:
15645  case X86::ATOMUMAX6432:
15646  case X86::ATOMUMIN6432:
15647  case X86::ATOMSWAP6432:
15648    return EmitAtomicLoadArith6432(MI, BB);
15649
15650  case X86::VASTART_SAVE_XMM_REGS:
15651    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
15652
15653  case X86::VAARG_64:
15654    return EmitVAARG64WithCustomInserter(MI, BB);
15655
15656  case X86::EH_SjLj_SetJmp32:
15657  case X86::EH_SjLj_SetJmp64:
15658    return emitEHSjLjSetJmp(MI, BB);
15659
15660  case X86::EH_SjLj_LongJmp32:
15661  case X86::EH_SjLj_LongJmp64:
15662    return emitEHSjLjLongJmp(MI, BB);
15663  }
15664}
15665
15666//===----------------------------------------------------------------------===//
15667//                           X86 Optimization Hooks
15668//===----------------------------------------------------------------------===//
15669
15670void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
15671                                                       APInt &KnownZero,
15672                                                       APInt &KnownOne,
15673                                                       const SelectionDAG &DAG,
15674                                                       unsigned Depth) const {
15675  unsigned BitWidth = KnownZero.getBitWidth();
15676  unsigned Opc = Op.getOpcode();
15677  assert((Opc >= ISD::BUILTIN_OP_END ||
15678          Opc == ISD::INTRINSIC_WO_CHAIN ||
15679          Opc == ISD::INTRINSIC_W_CHAIN ||
15680          Opc == ISD::INTRINSIC_VOID) &&
15681         "Should use MaskedValueIsZero if you don't know whether Op"
15682         " is a target node!");
15683
15684  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
15685  switch (Opc) {
15686  default: break;
15687  case X86ISD::ADD:
15688  case X86ISD::SUB:
15689  case X86ISD::ADC:
15690  case X86ISD::SBB:
15691  case X86ISD::SMUL:
15692  case X86ISD::UMUL:
15693  case X86ISD::INC:
15694  case X86ISD::DEC:
15695  case X86ISD::OR:
15696  case X86ISD::XOR:
15697  case X86ISD::AND:
15698    // These nodes' second result is a boolean.
15699    if (Op.getResNo() == 0)
15700      break;
15701    // Fallthrough
15702  case X86ISD::SETCC:
15703    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
15704    break;
15705  case ISD::INTRINSIC_WO_CHAIN: {
15706    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
15707    unsigned NumLoBits = 0;
15708    switch (IntId) {
15709    default: break;
15710    case Intrinsic::x86_sse_movmsk_ps:
15711    case Intrinsic::x86_avx_movmsk_ps_256:
15712    case Intrinsic::x86_sse2_movmsk_pd:
15713    case Intrinsic::x86_avx_movmsk_pd_256:
15714    case Intrinsic::x86_mmx_pmovmskb:
15715    case Intrinsic::x86_sse2_pmovmskb_128:
15716    case Intrinsic::x86_avx2_pmovmskb: {
15717      // High bits of movmskp{s|d}, pmovmskb are known zero.
15718      switch (IntId) {
15719        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
15720        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
15721        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
15722        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
15723        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
15724        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
15725        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
15726        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
15727      }
15728      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
15729      break;
15730    }
15731    }
15732    break;
15733  }
15734  }
15735}
15736
15737unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
15738                                                         unsigned Depth) const {
15739  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
15740  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
15741    return Op.getValueType().getScalarType().getSizeInBits();
15742
15743  // Fallback case.
15744  return 1;
15745}
15746
15747/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
15748/// node is a GlobalAddress + offset.
15749bool X86TargetLowering::isGAPlusOffset(SDNode *N,
15750                                       const GlobalValue* &GA,
15751                                       int64_t &Offset) const {
15752  if (N->getOpcode() == X86ISD::Wrapper) {
15753    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
15754      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
15755      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
15756      return true;
15757    }
15758  }
15759  return TargetLowering::isGAPlusOffset(N, GA, Offset);
15760}
15761
15762/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
15763/// same as extracting the high 128-bit part of 256-bit vector and then
15764/// inserting the result into the low part of a new 256-bit vector
15765static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
15766  EVT VT = SVOp->getValueType(0);
15767  unsigned NumElems = VT.getVectorNumElements();
15768
15769  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
15770  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
15771    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
15772        SVOp->getMaskElt(j) >= 0)
15773      return false;
15774
15775  return true;
15776}
15777
15778/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
15779/// same as extracting the low 128-bit part of 256-bit vector and then
15780/// inserting the result into the high part of a new 256-bit vector
15781static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
15782  EVT VT = SVOp->getValueType(0);
15783  unsigned NumElems = VT.getVectorNumElements();
15784
15785  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
15786  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
15787    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
15788        SVOp->getMaskElt(j) >= 0)
15789      return false;
15790
15791  return true;
15792}
15793
15794/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
15795static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
15796                                        TargetLowering::DAGCombinerInfo &DCI,
15797                                        const X86Subtarget* Subtarget) {
15798  SDLoc dl(N);
15799  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
15800  SDValue V1 = SVOp->getOperand(0);
15801  SDValue V2 = SVOp->getOperand(1);
15802  EVT VT = SVOp->getValueType(0);
15803  unsigned NumElems = VT.getVectorNumElements();
15804
15805  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
15806      V2.getOpcode() == ISD::CONCAT_VECTORS) {
15807    //
15808    //                   0,0,0,...
15809    //                      |
15810    //    V      UNDEF    BUILD_VECTOR    UNDEF
15811    //     \      /           \           /
15812    //  CONCAT_VECTOR         CONCAT_VECTOR
15813    //         \                  /
15814    //          \                /
15815    //          RESULT: V + zero extended
15816    //
15817    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
15818        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
15819        V1.getOperand(1).getOpcode() != ISD::UNDEF)
15820      return SDValue();
15821
15822    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
15823      return SDValue();
15824
15825    // To match the shuffle mask, the first half of the mask should
15826    // be exactly the first vector, and all the rest a splat with the
15827    // first element of the second one.
15828    for (unsigned i = 0; i != NumElems/2; ++i)
15829      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
15830          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
15831        return SDValue();
15832
15833    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
15834    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
15835      if (Ld->hasNUsesOfValue(1, 0)) {
15836        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
15837        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
15838        SDValue ResNode =
15839          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
15840                                  array_lengthof(Ops),
15841                                  Ld->getMemoryVT(),
15842                                  Ld->getPointerInfo(),
15843                                  Ld->getAlignment(),
15844                                  false/*isVolatile*/, true/*ReadMem*/,
15845                                  false/*WriteMem*/);
15846
15847        // Make sure the newly-created LOAD is in the same position as Ld in
15848        // terms of dependency. We create a TokenFactor for Ld and ResNode,
15849        // and update uses of Ld's output chain to use the TokenFactor.
15850        if (Ld->hasAnyUseOfValue(1)) {
15851          SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15852                             SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
15853          DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
15854          DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
15855                                 SDValue(ResNode.getNode(), 1));
15856        }
15857
15858        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
15859      }
15860    }
15861
15862    // Emit a zeroed vector and insert the desired subvector on its
15863    // first half.
15864    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
15865    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
15866    return DCI.CombineTo(N, InsV);
15867  }
15868
15869  //===--------------------------------------------------------------------===//
15870  // Combine some shuffles into subvector extracts and inserts:
15871  //
15872
15873  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
15874  if (isShuffleHigh128VectorInsertLow(SVOp)) {
15875    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
15876    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
15877    return DCI.CombineTo(N, InsV);
15878  }
15879
15880  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
15881  if (isShuffleLow128VectorInsertHigh(SVOp)) {
15882    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
15883    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
15884    return DCI.CombineTo(N, InsV);
15885  }
15886
15887  return SDValue();
15888}
15889
15890/// PerformShuffleCombine - Performs several different shuffle combines.
15891static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
15892                                     TargetLowering::DAGCombinerInfo &DCI,
15893                                     const X86Subtarget *Subtarget) {
15894  SDLoc dl(N);
15895  EVT VT = N->getValueType(0);
15896
15897  // Don't create instructions with illegal types after legalize types has run.
15898  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15899  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
15900    return SDValue();
15901
15902  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
15903  if (Subtarget->hasFp256() && VT.is256BitVector() &&
15904      N->getOpcode() == ISD::VECTOR_SHUFFLE)
15905    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
15906
15907  // Only handle 128 wide vector from here on.
15908  if (!VT.is128BitVector())
15909    return SDValue();
15910
15911  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
15912  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
15913  // consecutive, non-overlapping, and in the right order.
15914  SmallVector<SDValue, 16> Elts;
15915  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
15916    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
15917
15918  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
15919}
15920
15921/// PerformTruncateCombine - Converts truncate operation to
15922/// a sequence of vector shuffle operations.
15923/// It is possible when we truncate 256-bit vector to 128-bit vector
15924static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
15925                                      TargetLowering::DAGCombinerInfo &DCI,
15926                                      const X86Subtarget *Subtarget)  {
15927  return SDValue();
15928}
15929
15930/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
15931/// specific shuffle of a load can be folded into a single element load.
15932/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
15933/// shuffles have been customed lowered so we need to handle those here.
15934static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
15935                                         TargetLowering::DAGCombinerInfo &DCI) {
15936  if (DCI.isBeforeLegalizeOps())
15937    return SDValue();
15938
15939  SDValue InVec = N->getOperand(0);
15940  SDValue EltNo = N->getOperand(1);
15941
15942  if (!isa<ConstantSDNode>(EltNo))
15943    return SDValue();
15944
15945  EVT VT = InVec.getValueType();
15946
15947  bool HasShuffleIntoBitcast = false;
15948  if (InVec.getOpcode() == ISD::BITCAST) {
15949    // Don't duplicate a load with other uses.
15950    if (!InVec.hasOneUse())
15951      return SDValue();
15952    EVT BCVT = InVec.getOperand(0).getValueType();
15953    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
15954      return SDValue();
15955    InVec = InVec.getOperand(0);
15956    HasShuffleIntoBitcast = true;
15957  }
15958
15959  if (!isTargetShuffle(InVec.getOpcode()))
15960    return SDValue();
15961
15962  // Don't duplicate a load with other uses.
15963  if (!InVec.hasOneUse())
15964    return SDValue();
15965
15966  SmallVector<int, 16> ShuffleMask;
15967  bool UnaryShuffle;
15968  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
15969                            UnaryShuffle))
15970    return SDValue();
15971
15972  // Select the input vector, guarding against out of range extract vector.
15973  unsigned NumElems = VT.getVectorNumElements();
15974  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
15975  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
15976  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
15977                                         : InVec.getOperand(1);
15978
15979  // If inputs to shuffle are the same for both ops, then allow 2 uses
15980  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
15981
15982  if (LdNode.getOpcode() == ISD::BITCAST) {
15983    // Don't duplicate a load with other uses.
15984    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
15985      return SDValue();
15986
15987    AllowedUses = 1; // only allow 1 load use if we have a bitcast
15988    LdNode = LdNode.getOperand(0);
15989  }
15990
15991  if (!ISD::isNormalLoad(LdNode.getNode()))
15992    return SDValue();
15993
15994  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
15995
15996  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
15997    return SDValue();
15998
15999  if (HasShuffleIntoBitcast) {
16000    // If there's a bitcast before the shuffle, check if the load type and
16001    // alignment is valid.
16002    unsigned Align = LN0->getAlignment();
16003    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16004    unsigned NewAlign = TLI.getDataLayout()->
16005      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
16006
16007    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
16008      return SDValue();
16009  }
16010
16011  // All checks match so transform back to vector_shuffle so that DAG combiner
16012  // can finish the job
16013  SDLoc dl(N);
16014
16015  // Create shuffle node taking into account the case that its a unary shuffle
16016  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
16017  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
16018                                 InVec.getOperand(0), Shuffle,
16019                                 &ShuffleMask[0]);
16020  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
16021  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
16022                     EltNo);
16023}
16024
16025/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
16026/// generation and convert it from being a bunch of shuffles and extracts
16027/// to a simple store and scalar loads to extract the elements.
16028static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
16029                                         TargetLowering::DAGCombinerInfo &DCI) {
16030  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
16031  if (NewOp.getNode())
16032    return NewOp;
16033
16034  SDValue InputVector = N->getOperand(0);
16035  // Detect whether we are trying to convert from mmx to i32 and the bitcast
16036  // from mmx to v2i32 has a single usage.
16037  if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
16038      InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
16039      InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
16040    return DAG.getNode(X86ISD::MMX_MOVD2W, SDLoc(InputVector),
16041                       N->getValueType(0),
16042                       InputVector.getNode()->getOperand(0));
16043
16044  // Only operate on vectors of 4 elements, where the alternative shuffling
16045  // gets to be more expensive.
16046  if (InputVector.getValueType() != MVT::v4i32)
16047    return SDValue();
16048
16049  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
16050  // single use which is a sign-extend or zero-extend, and all elements are
16051  // used.
16052  SmallVector<SDNode *, 4> Uses;
16053  unsigned ExtractedElements = 0;
16054  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
16055       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
16056    if (UI.getUse().getResNo() != InputVector.getResNo())
16057      return SDValue();
16058
16059    SDNode *Extract = *UI;
16060    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
16061      return SDValue();
16062
16063    if (Extract->getValueType(0) != MVT::i32)
16064      return SDValue();
16065    if (!Extract->hasOneUse())
16066      return SDValue();
16067    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
16068        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
16069      return SDValue();
16070    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
16071      return SDValue();
16072
16073    // Record which element was extracted.
16074    ExtractedElements |=
16075      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
16076
16077    Uses.push_back(Extract);
16078  }
16079
16080  // If not all the elements were used, this may not be worthwhile.
16081  if (ExtractedElements != 15)
16082    return SDValue();
16083
16084  // Ok, we've now decided to do the transformation.
16085  SDLoc dl(InputVector);
16086
16087  // Store the value to a temporary stack slot.
16088  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
16089  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
16090                            MachinePointerInfo(), false, false, 0);
16091
16092  // Replace each use (extract) with a load of the appropriate element.
16093  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
16094       UE = Uses.end(); UI != UE; ++UI) {
16095    SDNode *Extract = *UI;
16096
16097    // cOMpute the element's address.
16098    SDValue Idx = Extract->getOperand(1);
16099    unsigned EltSize =
16100        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
16101    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
16102    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16103    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
16104
16105    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
16106                                     StackPtr, OffsetVal);
16107
16108    // Load the scalar.
16109    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
16110                                     ScalarAddr, MachinePointerInfo(),
16111                                     false, false, false, 0);
16112
16113    // Replace the exact with the load.
16114    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
16115  }
16116
16117  // The replacement was made in place; don't return anything.
16118  return SDValue();
16119}
16120
16121/// \brief Matches a VSELECT onto min/max or return 0 if the node doesn't match.
16122static unsigned matchIntegerMINMAX(SDValue Cond, EVT VT, SDValue LHS,
16123                                   SDValue RHS, SelectionDAG &DAG,
16124                                   const X86Subtarget *Subtarget) {
16125  if (!VT.isVector())
16126    return 0;
16127
16128  switch (VT.getSimpleVT().SimpleTy) {
16129  default: return 0;
16130  case MVT::v32i8:
16131  case MVT::v16i16:
16132  case MVT::v8i32:
16133    if (!Subtarget->hasAVX2())
16134      return 0;
16135  case MVT::v16i8:
16136  case MVT::v8i16:
16137  case MVT::v4i32:
16138    if (!Subtarget->hasSSE2())
16139      return 0;
16140  }
16141
16142  // SSE2 has only a small subset of the operations.
16143  bool hasUnsigned = Subtarget->hasSSE41() ||
16144                     (Subtarget->hasSSE2() && VT == MVT::v16i8);
16145  bool hasSigned = Subtarget->hasSSE41() ||
16146                   (Subtarget->hasSSE2() && VT == MVT::v8i16);
16147
16148  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16149
16150  // Check for x CC y ? x : y.
16151  if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16152      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16153    switch (CC) {
16154    default: break;
16155    case ISD::SETULT:
16156    case ISD::SETULE:
16157      return hasUnsigned ? X86ISD::UMIN : 0;
16158    case ISD::SETUGT:
16159    case ISD::SETUGE:
16160      return hasUnsigned ? X86ISD::UMAX : 0;
16161    case ISD::SETLT:
16162    case ISD::SETLE:
16163      return hasSigned ? X86ISD::SMIN : 0;
16164    case ISD::SETGT:
16165    case ISD::SETGE:
16166      return hasSigned ? X86ISD::SMAX : 0;
16167    }
16168  // Check for x CC y ? y : x -- a min/max with reversed arms.
16169  } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
16170             DAG.isEqualTo(RHS, Cond.getOperand(0))) {
16171    switch (CC) {
16172    default: break;
16173    case ISD::SETULT:
16174    case ISD::SETULE:
16175      return hasUnsigned ? X86ISD::UMAX : 0;
16176    case ISD::SETUGT:
16177    case ISD::SETUGE:
16178      return hasUnsigned ? X86ISD::UMIN : 0;
16179    case ISD::SETLT:
16180    case ISD::SETLE:
16181      return hasSigned ? X86ISD::SMAX : 0;
16182    case ISD::SETGT:
16183    case ISD::SETGE:
16184      return hasSigned ? X86ISD::SMIN : 0;
16185    }
16186  }
16187
16188  return 0;
16189}
16190
16191/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
16192/// nodes.
16193static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
16194                                    TargetLowering::DAGCombinerInfo &DCI,
16195                                    const X86Subtarget *Subtarget) {
16196  SDLoc DL(N);
16197  SDValue Cond = N->getOperand(0);
16198  // Get the LHS/RHS of the select.
16199  SDValue LHS = N->getOperand(1);
16200  SDValue RHS = N->getOperand(2);
16201  EVT VT = LHS.getValueType();
16202
16203  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
16204  // instructions match the semantics of the common C idiom x<y?x:y but not
16205  // x<=y?x:y, because of how they handle negative zero (which can be
16206  // ignored in unsafe-math mode).
16207  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
16208      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
16209      (Subtarget->hasSSE2() ||
16210       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
16211    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16212
16213    unsigned Opcode = 0;
16214    // Check for x CC y ? x : y.
16215    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16216        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16217      switch (CC) {
16218      default: break;
16219      case ISD::SETULT:
16220        // Converting this to a min would handle NaNs incorrectly, and swapping
16221        // the operands would cause it to handle comparisons between positive
16222        // and negative zero incorrectly.
16223        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
16224          if (!DAG.getTarget().Options.UnsafeFPMath &&
16225              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
16226            break;
16227          std::swap(LHS, RHS);
16228        }
16229        Opcode = X86ISD::FMIN;
16230        break;
16231      case ISD::SETOLE:
16232        // Converting this to a min would handle comparisons between positive
16233        // and negative zero incorrectly.
16234        if (!DAG.getTarget().Options.UnsafeFPMath &&
16235            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
16236          break;
16237        Opcode = X86ISD::FMIN;
16238        break;
16239      case ISD::SETULE:
16240        // Converting this to a min would handle both negative zeros and NaNs
16241        // incorrectly, but we can swap the operands to fix both.
16242        std::swap(LHS, RHS);
16243      case ISD::SETOLT:
16244      case ISD::SETLT:
16245      case ISD::SETLE:
16246        Opcode = X86ISD::FMIN;
16247        break;
16248
16249      case ISD::SETOGE:
16250        // Converting this to a max would handle comparisons between positive
16251        // and negative zero incorrectly.
16252        if (!DAG.getTarget().Options.UnsafeFPMath &&
16253            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
16254          break;
16255        Opcode = X86ISD::FMAX;
16256        break;
16257      case ISD::SETUGT:
16258        // Converting this to a max would handle NaNs incorrectly, and swapping
16259        // the operands would cause it to handle comparisons between positive
16260        // and negative zero incorrectly.
16261        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
16262          if (!DAG.getTarget().Options.UnsafeFPMath &&
16263              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
16264            break;
16265          std::swap(LHS, RHS);
16266        }
16267        Opcode = X86ISD::FMAX;
16268        break;
16269      case ISD::SETUGE:
16270        // Converting this to a max would handle both negative zeros and NaNs
16271        // incorrectly, but we can swap the operands to fix both.
16272        std::swap(LHS, RHS);
16273      case ISD::SETOGT:
16274      case ISD::SETGT:
16275      case ISD::SETGE:
16276        Opcode = X86ISD::FMAX;
16277        break;
16278      }
16279    // Check for x CC y ? y : x -- a min/max with reversed arms.
16280    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
16281               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
16282      switch (CC) {
16283      default: break;
16284      case ISD::SETOGE:
16285        // Converting this to a min would handle comparisons between positive
16286        // and negative zero incorrectly, and swapping the operands would
16287        // cause it to handle NaNs incorrectly.
16288        if (!DAG.getTarget().Options.UnsafeFPMath &&
16289            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
16290          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16291            break;
16292          std::swap(LHS, RHS);
16293        }
16294        Opcode = X86ISD::FMIN;
16295        break;
16296      case ISD::SETUGT:
16297        // Converting this to a min would handle NaNs incorrectly.
16298        if (!DAG.getTarget().Options.UnsafeFPMath &&
16299            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
16300          break;
16301        Opcode = X86ISD::FMIN;
16302        break;
16303      case ISD::SETUGE:
16304        // Converting this to a min would handle both negative zeros and NaNs
16305        // incorrectly, but we can swap the operands to fix both.
16306        std::swap(LHS, RHS);
16307      case ISD::SETOGT:
16308      case ISD::SETGT:
16309      case ISD::SETGE:
16310        Opcode = X86ISD::FMIN;
16311        break;
16312
16313      case ISD::SETULT:
16314        // Converting this to a max would handle NaNs incorrectly.
16315        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16316          break;
16317        Opcode = X86ISD::FMAX;
16318        break;
16319      case ISD::SETOLE:
16320        // Converting this to a max would handle comparisons between positive
16321        // and negative zero incorrectly, and swapping the operands would
16322        // cause it to handle NaNs incorrectly.
16323        if (!DAG.getTarget().Options.UnsafeFPMath &&
16324            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
16325          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
16326            break;
16327          std::swap(LHS, RHS);
16328        }
16329        Opcode = X86ISD::FMAX;
16330        break;
16331      case ISD::SETULE:
16332        // Converting this to a max would handle both negative zeros and NaNs
16333        // incorrectly, but we can swap the operands to fix both.
16334        std::swap(LHS, RHS);
16335      case ISD::SETOLT:
16336      case ISD::SETLT:
16337      case ISD::SETLE:
16338        Opcode = X86ISD::FMAX;
16339        break;
16340      }
16341    }
16342
16343    if (Opcode)
16344      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
16345  }
16346
16347  if (Subtarget->hasAVX512() && VT.isVector() &&
16348      Cond.getValueType().getVectorElementType() == MVT::i1) {
16349    // v16i8 (select v16i1, v16i8, v16i8) does not have a proper
16350    // lowering on AVX-512. In this case we convert it to
16351    // v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
16352    // The same situation for all 128 and 256-bit vectors of i8 and i16
16353    EVT OpVT = LHS.getValueType();
16354    if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
16355        (OpVT.getVectorElementType() == MVT::i8 ||
16356         OpVT.getVectorElementType() == MVT::i16)) {
16357      Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
16358      DCI.AddToWorklist(Cond.getNode());
16359      return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
16360    }
16361    else
16362      return SDValue();
16363  }
16364  // If this is a select between two integer constants, try to do some
16365  // optimizations.
16366  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
16367    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
16368      // Don't do this for crazy integer types.
16369      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
16370        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
16371        // so that TrueC (the true value) is larger than FalseC.
16372        bool NeedsCondInvert = false;
16373
16374        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
16375            // Efficiently invertible.
16376            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
16377             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
16378              isa<ConstantSDNode>(Cond.getOperand(1))))) {
16379          NeedsCondInvert = true;
16380          std::swap(TrueC, FalseC);
16381        }
16382
16383        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
16384        if (FalseC->getAPIntValue() == 0 &&
16385            TrueC->getAPIntValue().isPowerOf2()) {
16386          if (NeedsCondInvert) // Invert the condition if needed.
16387            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16388                               DAG.getConstant(1, Cond.getValueType()));
16389
16390          // Zero extend the condition if needed.
16391          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
16392
16393          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
16394          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
16395                             DAG.getConstant(ShAmt, MVT::i8));
16396        }
16397
16398        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
16399        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
16400          if (NeedsCondInvert) // Invert the condition if needed.
16401            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16402                               DAG.getConstant(1, Cond.getValueType()));
16403
16404          // Zero extend the condition if needed.
16405          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
16406                             FalseC->getValueType(0), Cond);
16407          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16408                             SDValue(FalseC, 0));
16409        }
16410
16411        // Optimize cases that will turn into an LEA instruction.  This requires
16412        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
16413        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
16414          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
16415          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
16416
16417          bool isFastMultiplier = false;
16418          if (Diff < 10) {
16419            switch ((unsigned char)Diff) {
16420              default: break;
16421              case 1:  // result = add base, cond
16422              case 2:  // result = lea base(    , cond*2)
16423              case 3:  // result = lea base(cond, cond*2)
16424              case 4:  // result = lea base(    , cond*4)
16425              case 5:  // result = lea base(cond, cond*4)
16426              case 8:  // result = lea base(    , cond*8)
16427              case 9:  // result = lea base(cond, cond*8)
16428                isFastMultiplier = true;
16429                break;
16430            }
16431          }
16432
16433          if (isFastMultiplier) {
16434            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
16435            if (NeedsCondInvert) // Invert the condition if needed.
16436              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
16437                                 DAG.getConstant(1, Cond.getValueType()));
16438
16439            // Zero extend the condition if needed.
16440            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
16441                               Cond);
16442            // Scale the condition by the difference.
16443            if (Diff != 1)
16444              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
16445                                 DAG.getConstant(Diff, Cond.getValueType()));
16446
16447            // Add the base if non-zero.
16448            if (FalseC->getAPIntValue() != 0)
16449              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16450                                 SDValue(FalseC, 0));
16451            return Cond;
16452          }
16453        }
16454      }
16455  }
16456
16457  // Canonicalize max and min:
16458  // (x > y) ? x : y -> (x >= y) ? x : y
16459  // (x < y) ? x : y -> (x <= y) ? x : y
16460  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
16461  // the need for an extra compare
16462  // against zero. e.g.
16463  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
16464  // subl   %esi, %edi
16465  // testl  %edi, %edi
16466  // movl   $0, %eax
16467  // cmovgl %edi, %eax
16468  // =>
16469  // xorl   %eax, %eax
16470  // subl   %esi, $edi
16471  // cmovsl %eax, %edi
16472  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
16473      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
16474      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
16475    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16476    switch (CC) {
16477    default: break;
16478    case ISD::SETLT:
16479    case ISD::SETGT: {
16480      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
16481      Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
16482                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
16483      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
16484    }
16485    }
16486  }
16487
16488  // Match VSELECTs into subs with unsigned saturation.
16489  if (!DCI.isBeforeLegalize() &&
16490      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
16491      // psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
16492      ((Subtarget->hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
16493       (Subtarget->hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
16494    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
16495
16496    // Check if one of the arms of the VSELECT is a zero vector. If it's on the
16497    // left side invert the predicate to simplify logic below.
16498    SDValue Other;
16499    if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
16500      Other = RHS;
16501      CC = ISD::getSetCCInverse(CC, true);
16502    } else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
16503      Other = LHS;
16504    }
16505
16506    if (Other.getNode() && Other->getNumOperands() == 2 &&
16507        DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
16508      SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
16509      SDValue CondRHS = Cond->getOperand(1);
16510
16511      // Look for a general sub with unsigned saturation first.
16512      // x >= y ? x-y : 0 --> subus x, y
16513      // x >  y ? x-y : 0 --> subus x, y
16514      if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
16515          Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
16516        return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
16517
16518      // If the RHS is a constant we have to reverse the const canonicalization.
16519      // x > C-1 ? x+-C : 0 --> subus x, C
16520      if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
16521          isSplatVector(CondRHS.getNode()) && isSplatVector(OpRHS.getNode())) {
16522        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
16523        if (CondRHS.getConstantOperandVal(0) == -A-1)
16524          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS,
16525                             DAG.getConstant(-A, VT));
16526      }
16527
16528      // Another special case: If C was a sign bit, the sub has been
16529      // canonicalized into a xor.
16530      // FIXME: Would it be better to use ComputeMaskedBits to determine whether
16531      //        it's safe to decanonicalize the xor?
16532      // x s< 0 ? x^C : 0 --> subus x, C
16533      if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
16534          ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
16535          isSplatVector(OpRHS.getNode())) {
16536        APInt A = cast<ConstantSDNode>(OpRHS.getOperand(0))->getAPIntValue();
16537        if (A.isSignBit())
16538          return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
16539      }
16540    }
16541  }
16542
16543  // Try to match a min/max vector operation.
16544  if (!DCI.isBeforeLegalize() &&
16545      N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC)
16546    if (unsigned Op = matchIntegerMINMAX(Cond, VT, LHS, RHS, DAG, Subtarget))
16547      return DAG.getNode(Op, DL, N->getValueType(0), LHS, RHS);
16548
16549  // Simplify vector selection if the selector will be produced by CMPP*/PCMP*.
16550  if (!DCI.isBeforeLegalize() && N->getOpcode() == ISD::VSELECT &&
16551      Cond.getOpcode() == ISD::SETCC) {
16552
16553    assert(Cond.getValueType().isVector() &&
16554           "vector select expects a vector selector!");
16555
16556    EVT IntVT = Cond.getValueType();
16557    bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
16558    bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
16559
16560    if (!TValIsAllOnes && !FValIsAllZeros) {
16561      // Try invert the condition if true value is not all 1s and false value
16562      // is not all 0s.
16563      bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
16564      bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
16565
16566      if (TValIsAllZeros || FValIsAllOnes) {
16567        SDValue CC = Cond.getOperand(2);
16568        ISD::CondCode NewCC =
16569          ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
16570                               Cond.getOperand(0).getValueType().isInteger());
16571        Cond = DAG.getSetCC(DL, IntVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
16572        std::swap(LHS, RHS);
16573        TValIsAllOnes = FValIsAllOnes;
16574        FValIsAllZeros = TValIsAllZeros;
16575      }
16576    }
16577
16578    if (TValIsAllOnes || FValIsAllZeros) {
16579      SDValue Ret;
16580
16581      if (TValIsAllOnes && FValIsAllZeros)
16582        Ret = Cond;
16583      else if (TValIsAllOnes)
16584        Ret = DAG.getNode(ISD::OR, DL, IntVT, Cond,
16585                          DAG.getNode(ISD::BITCAST, DL, IntVT, RHS));
16586      else if (FValIsAllZeros)
16587        Ret = DAG.getNode(ISD::AND, DL, IntVT, Cond,
16588                          DAG.getNode(ISD::BITCAST, DL, IntVT, LHS));
16589
16590      return DAG.getNode(ISD::BITCAST, DL, VT, Ret);
16591    }
16592  }
16593
16594  // If we know that this node is legal then we know that it is going to be
16595  // matched by one of the SSE/AVX BLEND instructions. These instructions only
16596  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
16597  // to simplify previous instructions.
16598  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16599  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
16600      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
16601    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
16602
16603    // Don't optimize vector selects that map to mask-registers.
16604    if (BitWidth == 1)
16605      return SDValue();
16606
16607    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
16608    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
16609
16610    APInt KnownZero, KnownOne;
16611    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
16612                                          DCI.isBeforeLegalizeOps());
16613    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
16614        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
16615      DCI.CommitTargetLoweringOpt(TLO);
16616  }
16617
16618  return SDValue();
16619}
16620
16621// Check whether a boolean test is testing a boolean value generated by
16622// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
16623// code.
16624//
16625// Simplify the following patterns:
16626// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
16627// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
16628// to (Op EFLAGS Cond)
16629//
16630// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
16631// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
16632// to (Op EFLAGS !Cond)
16633//
16634// where Op could be BRCOND or CMOV.
16635//
16636static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
16637  // Quit if not CMP and SUB with its value result used.
16638  if (Cmp.getOpcode() != X86ISD::CMP &&
16639      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
16640      return SDValue();
16641
16642  // Quit if not used as a boolean value.
16643  if (CC != X86::COND_E && CC != X86::COND_NE)
16644    return SDValue();
16645
16646  // Check CMP operands. One of them should be 0 or 1 and the other should be
16647  // an SetCC or extended from it.
16648  SDValue Op1 = Cmp.getOperand(0);
16649  SDValue Op2 = Cmp.getOperand(1);
16650
16651  SDValue SetCC;
16652  const ConstantSDNode* C = 0;
16653  bool needOppositeCond = (CC == X86::COND_E);
16654  bool checkAgainstTrue = false; // Is it a comparison against 1?
16655
16656  if ((C = dyn_cast<ConstantSDNode>(Op1)))
16657    SetCC = Op2;
16658  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
16659    SetCC = Op1;
16660  else // Quit if all operands are not constants.
16661    return SDValue();
16662
16663  if (C->getZExtValue() == 1) {
16664    needOppositeCond = !needOppositeCond;
16665    checkAgainstTrue = true;
16666  } else if (C->getZExtValue() != 0)
16667    // Quit if the constant is neither 0 or 1.
16668    return SDValue();
16669
16670  bool truncatedToBoolWithAnd = false;
16671  // Skip (zext $x), (trunc $x), or (and $x, 1) node.
16672  while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
16673         SetCC.getOpcode() == ISD::TRUNCATE ||
16674         SetCC.getOpcode() == ISD::AND) {
16675    if (SetCC.getOpcode() == ISD::AND) {
16676      int OpIdx = -1;
16677      ConstantSDNode *CS;
16678      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(0))) &&
16679          CS->getZExtValue() == 1)
16680        OpIdx = 1;
16681      if ((CS = dyn_cast<ConstantSDNode>(SetCC.getOperand(1))) &&
16682          CS->getZExtValue() == 1)
16683        OpIdx = 0;
16684      if (OpIdx == -1)
16685        break;
16686      SetCC = SetCC.getOperand(OpIdx);
16687      truncatedToBoolWithAnd = true;
16688    } else
16689      SetCC = SetCC.getOperand(0);
16690  }
16691
16692  switch (SetCC.getOpcode()) {
16693  case X86ISD::SETCC_CARRY:
16694    // Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
16695    // simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
16696    // i.e. it's a comparison against true but the result of SETCC_CARRY is not
16697    // truncated to i1 using 'and'.
16698    if (checkAgainstTrue && !truncatedToBoolWithAnd)
16699      break;
16700    assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
16701           "Invalid use of SETCC_CARRY!");
16702    // FALL THROUGH
16703  case X86ISD::SETCC:
16704    // Set the condition code or opposite one if necessary.
16705    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
16706    if (needOppositeCond)
16707      CC = X86::GetOppositeBranchCondition(CC);
16708    return SetCC.getOperand(1);
16709  case X86ISD::CMOV: {
16710    // Check whether false/true value has canonical one, i.e. 0 or 1.
16711    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
16712    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
16713    // Quit if true value is not a constant.
16714    if (!TVal)
16715      return SDValue();
16716    // Quit if false value is not a constant.
16717    if (!FVal) {
16718      SDValue Op = SetCC.getOperand(0);
16719      // Skip 'zext' or 'trunc' node.
16720      if (Op.getOpcode() == ISD::ZERO_EXTEND ||
16721          Op.getOpcode() == ISD::TRUNCATE)
16722        Op = Op.getOperand(0);
16723      // A special case for rdrand/rdseed, where 0 is set if false cond is
16724      // found.
16725      if ((Op.getOpcode() != X86ISD::RDRAND &&
16726           Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
16727        return SDValue();
16728    }
16729    // Quit if false value is not the constant 0 or 1.
16730    bool FValIsFalse = true;
16731    if (FVal && FVal->getZExtValue() != 0) {
16732      if (FVal->getZExtValue() != 1)
16733        return SDValue();
16734      // If FVal is 1, opposite cond is needed.
16735      needOppositeCond = !needOppositeCond;
16736      FValIsFalse = false;
16737    }
16738    // Quit if TVal is not the constant opposite of FVal.
16739    if (FValIsFalse && TVal->getZExtValue() != 1)
16740      return SDValue();
16741    if (!FValIsFalse && TVal->getZExtValue() != 0)
16742      return SDValue();
16743    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
16744    if (needOppositeCond)
16745      CC = X86::GetOppositeBranchCondition(CC);
16746    return SetCC.getOperand(3);
16747  }
16748  }
16749
16750  return SDValue();
16751}
16752
16753/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
16754static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
16755                                  TargetLowering::DAGCombinerInfo &DCI,
16756                                  const X86Subtarget *Subtarget) {
16757  SDLoc DL(N);
16758
16759  // If the flag operand isn't dead, don't touch this CMOV.
16760  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
16761    return SDValue();
16762
16763  SDValue FalseOp = N->getOperand(0);
16764  SDValue TrueOp = N->getOperand(1);
16765  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
16766  SDValue Cond = N->getOperand(3);
16767
16768  if (CC == X86::COND_E || CC == X86::COND_NE) {
16769    switch (Cond.getOpcode()) {
16770    default: break;
16771    case X86ISD::BSR:
16772    case X86ISD::BSF:
16773      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
16774      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
16775        return (CC == X86::COND_E) ? FalseOp : TrueOp;
16776    }
16777  }
16778
16779  SDValue Flags;
16780
16781  Flags = checkBoolTestSetCCCombine(Cond, CC);
16782  if (Flags.getNode() &&
16783      // Extra check as FCMOV only supports a subset of X86 cond.
16784      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
16785    SDValue Ops[] = { FalseOp, TrueOp,
16786                      DAG.getConstant(CC, MVT::i8), Flags };
16787    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
16788                       Ops, array_lengthof(Ops));
16789  }
16790
16791  // If this is a select between two integer constants, try to do some
16792  // optimizations.  Note that the operands are ordered the opposite of SELECT
16793  // operands.
16794  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
16795    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
16796      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
16797      // larger than FalseC (the false value).
16798      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
16799        CC = X86::GetOppositeBranchCondition(CC);
16800        std::swap(TrueC, FalseC);
16801        std::swap(TrueOp, FalseOp);
16802      }
16803
16804      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
16805      // This is efficient for any integer data type (including i8/i16) and
16806      // shift amount.
16807      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
16808        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16809                           DAG.getConstant(CC, MVT::i8), Cond);
16810
16811        // Zero extend the condition if needed.
16812        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
16813
16814        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
16815        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
16816                           DAG.getConstant(ShAmt, MVT::i8));
16817        if (N->getNumValues() == 2)  // Dead flag value?
16818          return DCI.CombineTo(N, Cond, SDValue());
16819        return Cond;
16820      }
16821
16822      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
16823      // for any integer data type, including i8/i16.
16824      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
16825        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16826                           DAG.getConstant(CC, MVT::i8), Cond);
16827
16828        // Zero extend the condition if needed.
16829        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
16830                           FalseC->getValueType(0), Cond);
16831        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16832                           SDValue(FalseC, 0));
16833
16834        if (N->getNumValues() == 2)  // Dead flag value?
16835          return DCI.CombineTo(N, Cond, SDValue());
16836        return Cond;
16837      }
16838
16839      // Optimize cases that will turn into an LEA instruction.  This requires
16840      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
16841      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
16842        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
16843        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
16844
16845        bool isFastMultiplier = false;
16846        if (Diff < 10) {
16847          switch ((unsigned char)Diff) {
16848          default: break;
16849          case 1:  // result = add base, cond
16850          case 2:  // result = lea base(    , cond*2)
16851          case 3:  // result = lea base(cond, cond*2)
16852          case 4:  // result = lea base(    , cond*4)
16853          case 5:  // result = lea base(cond, cond*4)
16854          case 8:  // result = lea base(    , cond*8)
16855          case 9:  // result = lea base(cond, cond*8)
16856            isFastMultiplier = true;
16857            break;
16858          }
16859        }
16860
16861        if (isFastMultiplier) {
16862          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
16863          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
16864                             DAG.getConstant(CC, MVT::i8), Cond);
16865          // Zero extend the condition if needed.
16866          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
16867                             Cond);
16868          // Scale the condition by the difference.
16869          if (Diff != 1)
16870            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
16871                               DAG.getConstant(Diff, Cond.getValueType()));
16872
16873          // Add the base if non-zero.
16874          if (FalseC->getAPIntValue() != 0)
16875            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
16876                               SDValue(FalseC, 0));
16877          if (N->getNumValues() == 2)  // Dead flag value?
16878            return DCI.CombineTo(N, Cond, SDValue());
16879          return Cond;
16880        }
16881      }
16882    }
16883  }
16884
16885  // Handle these cases:
16886  //   (select (x != c), e, c) -> select (x != c), e, x),
16887  //   (select (x == c), c, e) -> select (x == c), x, e)
16888  // where the c is an integer constant, and the "select" is the combination
16889  // of CMOV and CMP.
16890  //
16891  // The rationale for this change is that the conditional-move from a constant
16892  // needs two instructions, however, conditional-move from a register needs
16893  // only one instruction.
16894  //
16895  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
16896  //  some instruction-combining opportunities. This opt needs to be
16897  //  postponed as late as possible.
16898  //
16899  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
16900    // the DCI.xxxx conditions are provided to postpone the optimization as
16901    // late as possible.
16902
16903    ConstantSDNode *CmpAgainst = 0;
16904    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
16905        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
16906        !isa<ConstantSDNode>(Cond.getOperand(0))) {
16907
16908      if (CC == X86::COND_NE &&
16909          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
16910        CC = X86::GetOppositeBranchCondition(CC);
16911        std::swap(TrueOp, FalseOp);
16912      }
16913
16914      if (CC == X86::COND_E &&
16915          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
16916        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
16917                          DAG.getConstant(CC, MVT::i8), Cond };
16918        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
16919                           array_lengthof(Ops));
16920      }
16921    }
16922  }
16923
16924  return SDValue();
16925}
16926
16927/// PerformMulCombine - Optimize a single multiply with constant into two
16928/// in order to implement it with two cheaper instructions, e.g.
16929/// LEA + SHL, LEA + LEA.
16930static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
16931                                 TargetLowering::DAGCombinerInfo &DCI) {
16932  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16933    return SDValue();
16934
16935  EVT VT = N->getValueType(0);
16936  if (VT != MVT::i64)
16937    return SDValue();
16938
16939  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
16940  if (!C)
16941    return SDValue();
16942  uint64_t MulAmt = C->getZExtValue();
16943  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
16944    return SDValue();
16945
16946  uint64_t MulAmt1 = 0;
16947  uint64_t MulAmt2 = 0;
16948  if ((MulAmt % 9) == 0) {
16949    MulAmt1 = 9;
16950    MulAmt2 = MulAmt / 9;
16951  } else if ((MulAmt % 5) == 0) {
16952    MulAmt1 = 5;
16953    MulAmt2 = MulAmt / 5;
16954  } else if ((MulAmt % 3) == 0) {
16955    MulAmt1 = 3;
16956    MulAmt2 = MulAmt / 3;
16957  }
16958  if (MulAmt2 &&
16959      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
16960    SDLoc DL(N);
16961
16962    if (isPowerOf2_64(MulAmt2) &&
16963        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
16964      // If second multiplifer is pow2, issue it first. We want the multiply by
16965      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
16966      // is an add.
16967      std::swap(MulAmt1, MulAmt2);
16968
16969    SDValue NewMul;
16970    if (isPowerOf2_64(MulAmt1))
16971      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
16972                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
16973    else
16974      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
16975                           DAG.getConstant(MulAmt1, VT));
16976
16977    if (isPowerOf2_64(MulAmt2))
16978      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
16979                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
16980    else
16981      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
16982                           DAG.getConstant(MulAmt2, VT));
16983
16984    // Do not add new nodes to DAG combiner worklist.
16985    DCI.CombineTo(N, NewMul, false);
16986  }
16987  return SDValue();
16988}
16989
16990static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
16991  SDValue N0 = N->getOperand(0);
16992  SDValue N1 = N->getOperand(1);
16993  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
16994  EVT VT = N0.getValueType();
16995
16996  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
16997  // since the result of setcc_c is all zero's or all ones.
16998  if (VT.isInteger() && !VT.isVector() &&
16999      N1C && N0.getOpcode() == ISD::AND &&
17000      N0.getOperand(1).getOpcode() == ISD::Constant) {
17001    SDValue N00 = N0.getOperand(0);
17002    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
17003        ((N00.getOpcode() == ISD::ANY_EXTEND ||
17004          N00.getOpcode() == ISD::ZERO_EXTEND) &&
17005         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
17006      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
17007      APInt ShAmt = N1C->getAPIntValue();
17008      Mask = Mask.shl(ShAmt);
17009      if (Mask != 0)
17010        return DAG.getNode(ISD::AND, SDLoc(N), VT,
17011                           N00, DAG.getConstant(Mask, VT));
17012    }
17013  }
17014
17015  // Hardware support for vector shifts is sparse which makes us scalarize the
17016  // vector operations in many cases. Also, on sandybridge ADD is faster than
17017  // shl.
17018  // (shl V, 1) -> add V,V
17019  if (isSplatVector(N1.getNode())) {
17020    assert(N0.getValueType().isVector() && "Invalid vector shift type");
17021    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
17022    // We shift all of the values by one. In many cases we do not have
17023    // hardware support for this operation. This is better expressed as an ADD
17024    // of two values.
17025    if (N1C && (1 == N1C->getZExtValue())) {
17026      return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
17027    }
17028  }
17029
17030  return SDValue();
17031}
17032
17033/// \brief Returns a vector of 0s if the node in input is a vector logical
17034/// shift by a constant amount which is known to be bigger than or equal
17035/// to the vector element size in bits.
17036static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
17037                                      const X86Subtarget *Subtarget) {
17038  EVT VT = N->getValueType(0);
17039
17040  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
17041      (!Subtarget->hasInt256() ||
17042       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
17043    return SDValue();
17044
17045  SDValue Amt = N->getOperand(1);
17046  SDLoc DL(N);
17047  if (isSplatVector(Amt.getNode())) {
17048    SDValue SclrAmt = Amt->getOperand(0);
17049    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
17050      APInt ShiftAmt = C->getAPIntValue();
17051      unsigned MaxAmount = VT.getVectorElementType().getSizeInBits();
17052
17053      // SSE2/AVX2 logical shifts always return a vector of 0s
17054      // if the shift amount is bigger than or equal to
17055      // the element size. The constant shift amount will be
17056      // encoded as a 8-bit immediate.
17057      if (ShiftAmt.trunc(8).uge(MaxAmount))
17058        return getZeroVector(VT, Subtarget, DAG, DL);
17059    }
17060  }
17061
17062  return SDValue();
17063}
17064
17065/// PerformShiftCombine - Combine shifts.
17066static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
17067                                   TargetLowering::DAGCombinerInfo &DCI,
17068                                   const X86Subtarget *Subtarget) {
17069  if (N->getOpcode() == ISD::SHL) {
17070    SDValue V = PerformSHLCombine(N, DAG);
17071    if (V.getNode()) return V;
17072  }
17073
17074  if (N->getOpcode() != ISD::SRA) {
17075    // Try to fold this logical shift into a zero vector.
17076    SDValue V = performShiftToAllZeros(N, DAG, Subtarget);
17077    if (V.getNode()) return V;
17078  }
17079
17080  return SDValue();
17081}
17082
17083// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
17084// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
17085// and friends.  Likewise for OR -> CMPNEQSS.
17086static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
17087                            TargetLowering::DAGCombinerInfo &DCI,
17088                            const X86Subtarget *Subtarget) {
17089  unsigned opcode;
17090
17091  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
17092  // we're requiring SSE2 for both.
17093  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
17094    SDValue N0 = N->getOperand(0);
17095    SDValue N1 = N->getOperand(1);
17096    SDValue CMP0 = N0->getOperand(1);
17097    SDValue CMP1 = N1->getOperand(1);
17098    SDLoc DL(N);
17099
17100    // The SETCCs should both refer to the same CMP.
17101    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
17102      return SDValue();
17103
17104    SDValue CMP00 = CMP0->getOperand(0);
17105    SDValue CMP01 = CMP0->getOperand(1);
17106    EVT     VT    = CMP00.getValueType();
17107
17108    if (VT == MVT::f32 || VT == MVT::f64) {
17109      bool ExpectingFlags = false;
17110      // Check for any users that want flags:
17111      for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
17112           !ExpectingFlags && UI != UE; ++UI)
17113        switch (UI->getOpcode()) {
17114        default:
17115        case ISD::BR_CC:
17116        case ISD::BRCOND:
17117        case ISD::SELECT:
17118          ExpectingFlags = true;
17119          break;
17120        case ISD::CopyToReg:
17121        case ISD::SIGN_EXTEND:
17122        case ISD::ZERO_EXTEND:
17123        case ISD::ANY_EXTEND:
17124          break;
17125        }
17126
17127      if (!ExpectingFlags) {
17128        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
17129        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
17130
17131        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
17132          X86::CondCode tmp = cc0;
17133          cc0 = cc1;
17134          cc1 = tmp;
17135        }
17136
17137        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
17138            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
17139          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
17140          X86ISD::NodeType NTOperator = is64BitFP ?
17141            X86ISD::FSETCCsd : X86ISD::FSETCCss;
17142          // FIXME: need symbolic constants for these magic numbers.
17143          // See X86ATTInstPrinter.cpp:printSSECC().
17144          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
17145          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
17146                                              DAG.getConstant(x86cc, MVT::i8));
17147          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
17148                                              OnesOrZeroesF);
17149          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
17150                                      DAG.getConstant(1, MVT::i32));
17151          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
17152          return OneBitOfTruth;
17153        }
17154      }
17155    }
17156  }
17157  return SDValue();
17158}
17159
17160/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
17161/// so it can be folded inside ANDNP.
17162static bool CanFoldXORWithAllOnes(const SDNode *N) {
17163  EVT VT = N->getValueType(0);
17164
17165  // Match direct AllOnes for 128 and 256-bit vectors
17166  if (ISD::isBuildVectorAllOnes(N))
17167    return true;
17168
17169  // Look through a bit convert.
17170  if (N->getOpcode() == ISD::BITCAST)
17171    N = N->getOperand(0).getNode();
17172
17173  // Sometimes the operand may come from a insert_subvector building a 256-bit
17174  // allones vector
17175  if (VT.is256BitVector() &&
17176      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
17177    SDValue V1 = N->getOperand(0);
17178    SDValue V2 = N->getOperand(1);
17179
17180    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
17181        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
17182        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
17183        ISD::isBuildVectorAllOnes(V2.getNode()))
17184      return true;
17185  }
17186
17187  return false;
17188}
17189
17190// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
17191// register. In most cases we actually compare or select YMM-sized registers
17192// and mixing the two types creates horrible code. This method optimizes
17193// some of the transition sequences.
17194static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
17195                                 TargetLowering::DAGCombinerInfo &DCI,
17196                                 const X86Subtarget *Subtarget) {
17197  EVT VT = N->getValueType(0);
17198  if (!VT.is256BitVector())
17199    return SDValue();
17200
17201  assert((N->getOpcode() == ISD::ANY_EXTEND ||
17202          N->getOpcode() == ISD::ZERO_EXTEND ||
17203          N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
17204
17205  SDValue Narrow = N->getOperand(0);
17206  EVT NarrowVT = Narrow->getValueType(0);
17207  if (!NarrowVT.is128BitVector())
17208    return SDValue();
17209
17210  if (Narrow->getOpcode() != ISD::XOR &&
17211      Narrow->getOpcode() != ISD::AND &&
17212      Narrow->getOpcode() != ISD::OR)
17213    return SDValue();
17214
17215  SDValue N0  = Narrow->getOperand(0);
17216  SDValue N1  = Narrow->getOperand(1);
17217  SDLoc DL(Narrow);
17218
17219  // The Left side has to be a trunc.
17220  if (N0.getOpcode() != ISD::TRUNCATE)
17221    return SDValue();
17222
17223  // The type of the truncated inputs.
17224  EVT WideVT = N0->getOperand(0)->getValueType(0);
17225  if (WideVT != VT)
17226    return SDValue();
17227
17228  // The right side has to be a 'trunc' or a constant vector.
17229  bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
17230  bool RHSConst = (isSplatVector(N1.getNode()) &&
17231                   isa<ConstantSDNode>(N1->getOperand(0)));
17232  if (!RHSTrunc && !RHSConst)
17233    return SDValue();
17234
17235  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17236
17237  if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
17238    return SDValue();
17239
17240  // Set N0 and N1 to hold the inputs to the new wide operation.
17241  N0 = N0->getOperand(0);
17242  if (RHSConst) {
17243    N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getScalarType(),
17244                     N1->getOperand(0));
17245    SmallVector<SDValue, 8> C(WideVT.getVectorNumElements(), N1);
17246    N1 = DAG.getNode(ISD::BUILD_VECTOR, DL, WideVT, &C[0], C.size());
17247  } else if (RHSTrunc) {
17248    N1 = N1->getOperand(0);
17249  }
17250
17251  // Generate the wide operation.
17252  SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
17253  unsigned Opcode = N->getOpcode();
17254  switch (Opcode) {
17255  case ISD::ANY_EXTEND:
17256    return Op;
17257  case ISD::ZERO_EXTEND: {
17258    unsigned InBits = NarrowVT.getScalarType().getSizeInBits();
17259    APInt Mask = APInt::getAllOnesValue(InBits);
17260    Mask = Mask.zext(VT.getScalarType().getSizeInBits());
17261    return DAG.getNode(ISD::AND, DL, VT,
17262                       Op, DAG.getConstant(Mask, VT));
17263  }
17264  case ISD::SIGN_EXTEND:
17265    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
17266                       Op, DAG.getValueType(NarrowVT));
17267  default:
17268    llvm_unreachable("Unexpected opcode");
17269  }
17270}
17271
17272static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
17273                                 TargetLowering::DAGCombinerInfo &DCI,
17274                                 const X86Subtarget *Subtarget) {
17275  EVT VT = N->getValueType(0);
17276  if (DCI.isBeforeLegalizeOps())
17277    return SDValue();
17278
17279  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
17280  if (R.getNode())
17281    return R;
17282
17283  // Create BLSI, BLSR, and BZHI instructions
17284  // BLSI is X & (-X)
17285  // BLSR is X & (X-1)
17286  // BZHI is X & ((1 << Y) - 1)
17287  if (VT == MVT::i32 || VT == MVT::i64) {
17288    SDValue N0 = N->getOperand(0);
17289    SDValue N1 = N->getOperand(1);
17290    SDLoc DL(N);
17291
17292    if (Subtarget->hasBMI()) {
17293      // Check LHS for neg
17294      if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
17295          isZero(N0.getOperand(0)))
17296        return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
17297
17298      // Check RHS for neg
17299      if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
17300          isZero(N1.getOperand(0)))
17301        return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
17302
17303      // Check LHS for X-1
17304      if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
17305          isAllOnes(N0.getOperand(1)))
17306        return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
17307
17308      // Check RHS for X-1
17309      if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
17310          isAllOnes(N1.getOperand(1)))
17311        return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
17312    }
17313
17314    if (Subtarget->hasBMI2()) {
17315      // Check for (and (add (shl 1, Y), -1), X)
17316      if (N0.getOpcode() == ISD::ADD && isAllOnes(N0.getOperand(1))) {
17317        SDValue N00 = N0.getOperand(0);
17318        if (N00.getOpcode() == ISD::SHL) {
17319          SDValue N001 = N00.getOperand(1);
17320          assert(N001.getValueType() == MVT::i8 && "unexpected type");
17321          ConstantSDNode *C = dyn_cast<ConstantSDNode>(N00.getOperand(0));
17322          if (C && C->getZExtValue() == 1)
17323            return DAG.getNode(X86ISD::BZHI, DL, VT, N1,
17324                               DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N001));
17325        }
17326      }
17327
17328      // Check for (and X, (add (shl 1, Y), -1))
17329      if (N1.getOpcode() == ISD::ADD && isAllOnes(N1.getOperand(1))) {
17330        SDValue N10 = N1.getOperand(0);
17331        if (N10.getOpcode() == ISD::SHL) {
17332          SDValue N101 = N10.getOperand(1);
17333          assert(N101.getValueType() == MVT::i8 && "unexpected type");
17334          ConstantSDNode *C = dyn_cast<ConstantSDNode>(N10.getOperand(0));
17335          if (C && C->getZExtValue() == 1)
17336            return DAG.getNode(X86ISD::BZHI, DL, VT, N0,
17337                               DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N101));
17338        }
17339      }
17340    }
17341
17342    return SDValue();
17343  }
17344
17345  // Want to form ANDNP nodes:
17346  // 1) In the hopes of then easily combining them with OR and AND nodes
17347  //    to form PBLEND/PSIGN.
17348  // 2) To match ANDN packed intrinsics
17349  if (VT != MVT::v2i64 && VT != MVT::v4i64)
17350    return SDValue();
17351
17352  SDValue N0 = N->getOperand(0);
17353  SDValue N1 = N->getOperand(1);
17354  SDLoc DL(N);
17355
17356  // Check LHS for vnot
17357  if (N0.getOpcode() == ISD::XOR &&
17358      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
17359      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
17360    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
17361
17362  // Check RHS for vnot
17363  if (N1.getOpcode() == ISD::XOR &&
17364      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
17365      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
17366    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
17367
17368  return SDValue();
17369}
17370
17371static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
17372                                TargetLowering::DAGCombinerInfo &DCI,
17373                                const X86Subtarget *Subtarget) {
17374  EVT VT = N->getValueType(0);
17375  if (DCI.isBeforeLegalizeOps())
17376    return SDValue();
17377
17378  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
17379  if (R.getNode())
17380    return R;
17381
17382  SDValue N0 = N->getOperand(0);
17383  SDValue N1 = N->getOperand(1);
17384
17385  // look for psign/blend
17386  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
17387    if (!Subtarget->hasSSSE3() ||
17388        (VT == MVT::v4i64 && !Subtarget->hasInt256()))
17389      return SDValue();
17390
17391    // Canonicalize pandn to RHS
17392    if (N0.getOpcode() == X86ISD::ANDNP)
17393      std::swap(N0, N1);
17394    // or (and (m, y), (pandn m, x))
17395    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
17396      SDValue Mask = N1.getOperand(0);
17397      SDValue X    = N1.getOperand(1);
17398      SDValue Y;
17399      if (N0.getOperand(0) == Mask)
17400        Y = N0.getOperand(1);
17401      if (N0.getOperand(1) == Mask)
17402        Y = N0.getOperand(0);
17403
17404      // Check to see if the mask appeared in both the AND and ANDNP and
17405      if (!Y.getNode())
17406        return SDValue();
17407
17408      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
17409      // Look through mask bitcast.
17410      if (Mask.getOpcode() == ISD::BITCAST)
17411        Mask = Mask.getOperand(0);
17412      if (X.getOpcode() == ISD::BITCAST)
17413        X = X.getOperand(0);
17414      if (Y.getOpcode() == ISD::BITCAST)
17415        Y = Y.getOperand(0);
17416
17417      EVT MaskVT = Mask.getValueType();
17418
17419      // Validate that the Mask operand is a vector sra node.
17420      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
17421      // there is no psrai.b
17422      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
17423      unsigned SraAmt = ~0;
17424      if (Mask.getOpcode() == ISD::SRA) {
17425        SDValue Amt = Mask.getOperand(1);
17426        if (isSplatVector(Amt.getNode())) {
17427          SDValue SclrAmt = Amt->getOperand(0);
17428          if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt))
17429            SraAmt = C->getZExtValue();
17430        }
17431      } else if (Mask.getOpcode() == X86ISD::VSRAI) {
17432        SDValue SraC = Mask.getOperand(1);
17433        SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
17434      }
17435      if ((SraAmt + 1) != EltBits)
17436        return SDValue();
17437
17438      SDLoc DL(N);
17439
17440      // Now we know we at least have a plendvb with the mask val.  See if
17441      // we can form a psignb/w/d.
17442      // psign = x.type == y.type == mask.type && y = sub(0, x);
17443      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
17444          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
17445          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
17446        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
17447               "Unsupported VT for PSIGN");
17448        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
17449        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
17450      }
17451      // PBLENDVB only available on SSE 4.1
17452      if (!Subtarget->hasSSE41())
17453        return SDValue();
17454
17455      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
17456
17457      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
17458      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
17459      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
17460      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
17461      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
17462    }
17463  }
17464
17465  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
17466    return SDValue();
17467
17468  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
17469  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
17470    std::swap(N0, N1);
17471  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
17472    return SDValue();
17473  if (!N0.hasOneUse() || !N1.hasOneUse())
17474    return SDValue();
17475
17476  SDValue ShAmt0 = N0.getOperand(1);
17477  if (ShAmt0.getValueType() != MVT::i8)
17478    return SDValue();
17479  SDValue ShAmt1 = N1.getOperand(1);
17480  if (ShAmt1.getValueType() != MVT::i8)
17481    return SDValue();
17482  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
17483    ShAmt0 = ShAmt0.getOperand(0);
17484  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
17485    ShAmt1 = ShAmt1.getOperand(0);
17486
17487  SDLoc DL(N);
17488  unsigned Opc = X86ISD::SHLD;
17489  SDValue Op0 = N0.getOperand(0);
17490  SDValue Op1 = N1.getOperand(0);
17491  if (ShAmt0.getOpcode() == ISD::SUB) {
17492    Opc = X86ISD::SHRD;
17493    std::swap(Op0, Op1);
17494    std::swap(ShAmt0, ShAmt1);
17495  }
17496
17497  unsigned Bits = VT.getSizeInBits();
17498  if (ShAmt1.getOpcode() == ISD::SUB) {
17499    SDValue Sum = ShAmt1.getOperand(0);
17500    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
17501      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
17502      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
17503        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
17504      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
17505        return DAG.getNode(Opc, DL, VT,
17506                           Op0, Op1,
17507                           DAG.getNode(ISD::TRUNCATE, DL,
17508                                       MVT::i8, ShAmt0));
17509    }
17510  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
17511    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
17512    if (ShAmt0C &&
17513        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
17514      return DAG.getNode(Opc, DL, VT,
17515                         N0.getOperand(0), N1.getOperand(0),
17516                         DAG.getNode(ISD::TRUNCATE, DL,
17517                                       MVT::i8, ShAmt0));
17518  }
17519
17520  return SDValue();
17521}
17522
17523// Generate NEG and CMOV for integer abs.
17524static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
17525  EVT VT = N->getValueType(0);
17526
17527  // Since X86 does not have CMOV for 8-bit integer, we don't convert
17528  // 8-bit integer abs to NEG and CMOV.
17529  if (VT.isInteger() && VT.getSizeInBits() == 8)
17530    return SDValue();
17531
17532  SDValue N0 = N->getOperand(0);
17533  SDValue N1 = N->getOperand(1);
17534  SDLoc DL(N);
17535
17536  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
17537  // and change it to SUB and CMOV.
17538  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
17539      N0.getOpcode() == ISD::ADD &&
17540      N0.getOperand(1) == N1 &&
17541      N1.getOpcode() == ISD::SRA &&
17542      N1.getOperand(0) == N0.getOperand(0))
17543    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
17544      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
17545        // Generate SUB & CMOV.
17546        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
17547                                  DAG.getConstant(0, VT), N0.getOperand(0));
17548
17549        SDValue Ops[] = { N0.getOperand(0), Neg,
17550                          DAG.getConstant(X86::COND_GE, MVT::i8),
17551                          SDValue(Neg.getNode(), 1) };
17552        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
17553                           Ops, array_lengthof(Ops));
17554      }
17555  return SDValue();
17556}
17557
17558// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
17559static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
17560                                 TargetLowering::DAGCombinerInfo &DCI,
17561                                 const X86Subtarget *Subtarget) {
17562  EVT VT = N->getValueType(0);
17563  if (DCI.isBeforeLegalizeOps())
17564    return SDValue();
17565
17566  if (Subtarget->hasCMov()) {
17567    SDValue RV = performIntegerAbsCombine(N, DAG);
17568    if (RV.getNode())
17569      return RV;
17570  }
17571
17572  // Try forming BMI if it is available.
17573  if (!Subtarget->hasBMI())
17574    return SDValue();
17575
17576  if (VT != MVT::i32 && VT != MVT::i64)
17577    return SDValue();
17578
17579  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
17580
17581  // Create BLSMSK instructions by finding X ^ (X-1)
17582  SDValue N0 = N->getOperand(0);
17583  SDValue N1 = N->getOperand(1);
17584  SDLoc DL(N);
17585
17586  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
17587      isAllOnes(N0.getOperand(1)))
17588    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
17589
17590  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
17591      isAllOnes(N1.getOperand(1)))
17592    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
17593
17594  return SDValue();
17595}
17596
17597/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
17598static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
17599                                  TargetLowering::DAGCombinerInfo &DCI,
17600                                  const X86Subtarget *Subtarget) {
17601  LoadSDNode *Ld = cast<LoadSDNode>(N);
17602  EVT RegVT = Ld->getValueType(0);
17603  EVT MemVT = Ld->getMemoryVT();
17604  SDLoc dl(Ld);
17605  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17606  unsigned RegSz = RegVT.getSizeInBits();
17607
17608  // On Sandybridge unaligned 256bit loads are inefficient.
17609  ISD::LoadExtType Ext = Ld->getExtensionType();
17610  unsigned Alignment = Ld->getAlignment();
17611  bool IsAligned = Alignment == 0 || Alignment >= MemVT.getSizeInBits()/8;
17612  if (RegVT.is256BitVector() && !Subtarget->hasInt256() &&
17613      !DCI.isBeforeLegalizeOps() && !IsAligned && Ext == ISD::NON_EXTLOAD) {
17614    unsigned NumElems = RegVT.getVectorNumElements();
17615    if (NumElems < 2)
17616      return SDValue();
17617
17618    SDValue Ptr = Ld->getBasePtr();
17619    SDValue Increment = DAG.getConstant(16, TLI.getPointerTy());
17620
17621    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
17622                                  NumElems/2);
17623    SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
17624                                Ld->getPointerInfo(), Ld->isVolatile(),
17625                                Ld->isNonTemporal(), Ld->isInvariant(),
17626                                Alignment);
17627    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
17628    SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
17629                                Ld->getPointerInfo(), Ld->isVolatile(),
17630                                Ld->isNonTemporal(), Ld->isInvariant(),
17631                                std::min(16U, Alignment));
17632    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
17633                             Load1.getValue(1),
17634                             Load2.getValue(1));
17635
17636    SDValue NewVec = DAG.getUNDEF(RegVT);
17637    NewVec = Insert128BitVector(NewVec, Load1, 0, DAG, dl);
17638    NewVec = Insert128BitVector(NewVec, Load2, NumElems/2, DAG, dl);
17639    return DCI.CombineTo(N, NewVec, TF, true);
17640  }
17641
17642  // If this is a vector EXT Load then attempt to optimize it using a
17643  // shuffle. If SSSE3 is not available we may emit an illegal shuffle but the
17644  // expansion is still better than scalar code.
17645  // We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise we'll
17646  // emit a shuffle and a arithmetic shift.
17647  // TODO: It is possible to support ZExt by zeroing the undef values
17648  // during the shuffle phase or after the shuffle.
17649  if (RegVT.isVector() && RegVT.isInteger() && Subtarget->hasSSE2() &&
17650      (Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)) {
17651    assert(MemVT != RegVT && "Cannot extend to the same type");
17652    assert(MemVT.isVector() && "Must load a vector from memory");
17653
17654    unsigned NumElems = RegVT.getVectorNumElements();
17655    unsigned MemSz = MemVT.getSizeInBits();
17656    assert(RegSz > MemSz && "Register size must be greater than the mem size");
17657
17658    if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget->hasInt256())
17659      return SDValue();
17660
17661    // All sizes must be a power of two.
17662    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
17663      return SDValue();
17664
17665    // Attempt to load the original value using scalar loads.
17666    // Find the largest scalar type that divides the total loaded size.
17667    MVT SclrLoadTy = MVT::i8;
17668    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
17669         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
17670      MVT Tp = (MVT::SimpleValueType)tp;
17671      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
17672        SclrLoadTy = Tp;
17673      }
17674    }
17675
17676    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
17677    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
17678        (64 <= MemSz))
17679      SclrLoadTy = MVT::f64;
17680
17681    // Calculate the number of scalar loads that we need to perform
17682    // in order to load our vector from memory.
17683    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
17684    if (Ext == ISD::SEXTLOAD && NumLoads > 1)
17685      return SDValue();
17686
17687    unsigned loadRegZize = RegSz;
17688    if (Ext == ISD::SEXTLOAD && RegSz == 256)
17689      loadRegZize /= 2;
17690
17691    // Represent our vector as a sequence of elements which are the
17692    // largest scalar that we can load.
17693    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
17694      loadRegZize/SclrLoadTy.getSizeInBits());
17695
17696    // Represent the data using the same element type that is stored in
17697    // memory. In practice, we ''widen'' MemVT.
17698    EVT WideVecVT =
17699          EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
17700                       loadRegZize/MemVT.getScalarType().getSizeInBits());
17701
17702    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
17703      "Invalid vector type");
17704
17705    // We can't shuffle using an illegal type.
17706    if (!TLI.isTypeLegal(WideVecVT))
17707      return SDValue();
17708
17709    SmallVector<SDValue, 8> Chains;
17710    SDValue Ptr = Ld->getBasePtr();
17711    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
17712                                        TLI.getPointerTy());
17713    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
17714
17715    for (unsigned i = 0; i < NumLoads; ++i) {
17716      // Perform a single load.
17717      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
17718                                       Ptr, Ld->getPointerInfo(),
17719                                       Ld->isVolatile(), Ld->isNonTemporal(),
17720                                       Ld->isInvariant(), Ld->getAlignment());
17721      Chains.push_back(ScalarLoad.getValue(1));
17722      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
17723      // another round of DAGCombining.
17724      if (i == 0)
17725        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
17726      else
17727        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
17728                          ScalarLoad, DAG.getIntPtrConstant(i));
17729
17730      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
17731    }
17732
17733    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
17734                               Chains.size());
17735
17736    // Bitcast the loaded value to a vector of the original element type, in
17737    // the size of the target vector type.
17738    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
17739    unsigned SizeRatio = RegSz/MemSz;
17740
17741    if (Ext == ISD::SEXTLOAD) {
17742      // If we have SSE4.1 we can directly emit a VSEXT node.
17743      if (Subtarget->hasSSE41()) {
17744        SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
17745        return DCI.CombineTo(N, Sext, TF, true);
17746      }
17747
17748      // Otherwise we'll shuffle the small elements in the high bits of the
17749      // larger type and perform an arithmetic shift. If the shift is not legal
17750      // it's better to scalarize.
17751      if (!TLI.isOperationLegalOrCustom(ISD::SRA, RegVT))
17752        return SDValue();
17753
17754      // Redistribute the loaded elements into the different locations.
17755      SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
17756      for (unsigned i = 0; i != NumElems; ++i)
17757        ShuffleVec[i*SizeRatio + SizeRatio-1] = i;
17758
17759      SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
17760                                           DAG.getUNDEF(WideVecVT),
17761                                           &ShuffleVec[0]);
17762
17763      Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
17764
17765      // Build the arithmetic shift.
17766      unsigned Amt = RegVT.getVectorElementType().getSizeInBits() -
17767                     MemVT.getVectorElementType().getSizeInBits();
17768      Shuff = DAG.getNode(ISD::SRA, dl, RegVT, Shuff,
17769                          DAG.getConstant(Amt, RegVT));
17770
17771      return DCI.CombineTo(N, Shuff, TF, true);
17772    }
17773
17774    // Redistribute the loaded elements into the different locations.
17775    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
17776    for (unsigned i = 0; i != NumElems; ++i)
17777      ShuffleVec[i*SizeRatio] = i;
17778
17779    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
17780                                         DAG.getUNDEF(WideVecVT),
17781                                         &ShuffleVec[0]);
17782
17783    // Bitcast to the requested type.
17784    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
17785    // Replace the original load with the new sequence
17786    // and return the new chain.
17787    return DCI.CombineTo(N, Shuff, TF, true);
17788  }
17789
17790  return SDValue();
17791}
17792
17793/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
17794static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
17795                                   const X86Subtarget *Subtarget) {
17796  StoreSDNode *St = cast<StoreSDNode>(N);
17797  EVT VT = St->getValue().getValueType();
17798  EVT StVT = St->getMemoryVT();
17799  SDLoc dl(St);
17800  SDValue StoredVal = St->getOperand(1);
17801  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17802
17803  // If we are saving a concatenation of two XMM registers, perform two stores.
17804  // On Sandy Bridge, 256-bit memory operations are executed by two
17805  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
17806  // memory  operation.
17807  unsigned Alignment = St->getAlignment();
17808  bool IsAligned = Alignment == 0 || Alignment >= VT.getSizeInBits()/8;
17809  if (VT.is256BitVector() && !Subtarget->hasInt256() &&
17810      StVT == VT && !IsAligned) {
17811    unsigned NumElems = VT.getVectorNumElements();
17812    if (NumElems < 2)
17813      return SDValue();
17814
17815    SDValue Value0 = Extract128BitVector(StoredVal, 0, DAG, dl);
17816    SDValue Value1 = Extract128BitVector(StoredVal, NumElems/2, DAG, dl);
17817
17818    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
17819    SDValue Ptr0 = St->getBasePtr();
17820    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
17821
17822    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
17823                                St->getPointerInfo(), St->isVolatile(),
17824                                St->isNonTemporal(), Alignment);
17825    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
17826                                St->getPointerInfo(), St->isVolatile(),
17827                                St->isNonTemporal(),
17828                                std::min(16U, Alignment));
17829    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
17830  }
17831
17832  // Optimize trunc store (of multiple scalars) to shuffle and store.
17833  // First, pack all of the elements in one place. Next, store to memory
17834  // in fewer chunks.
17835  if (St->isTruncatingStore() && VT.isVector()) {
17836    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17837    unsigned NumElems = VT.getVectorNumElements();
17838    assert(StVT != VT && "Cannot truncate to the same type");
17839    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
17840    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
17841
17842    // From, To sizes and ElemCount must be pow of two
17843    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
17844    // We are going to use the original vector elt for storing.
17845    // Accumulated smaller vector elements must be a multiple of the store size.
17846    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
17847
17848    unsigned SizeRatio  = FromSz / ToSz;
17849
17850    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
17851
17852    // Create a type on which we perform the shuffle
17853    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
17854            StVT.getScalarType(), NumElems*SizeRatio);
17855
17856    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
17857
17858    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
17859    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
17860    for (unsigned i = 0; i != NumElems; ++i)
17861      ShuffleVec[i] = i * SizeRatio;
17862
17863    // Can't shuffle using an illegal type.
17864    if (!TLI.isTypeLegal(WideVecVT))
17865      return SDValue();
17866
17867    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
17868                                         DAG.getUNDEF(WideVecVT),
17869                                         &ShuffleVec[0]);
17870    // At this point all of the data is stored at the bottom of the
17871    // register. We now need to save it to mem.
17872
17873    // Find the largest store unit
17874    MVT StoreType = MVT::i8;
17875    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
17876         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
17877      MVT Tp = (MVT::SimpleValueType)tp;
17878      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
17879        StoreType = Tp;
17880    }
17881
17882    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
17883    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
17884        (64 <= NumElems * ToSz))
17885      StoreType = MVT::f64;
17886
17887    // Bitcast the original vector into a vector of store-size units
17888    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
17889            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
17890    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
17891    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
17892    SmallVector<SDValue, 8> Chains;
17893    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
17894                                        TLI.getPointerTy());
17895    SDValue Ptr = St->getBasePtr();
17896
17897    // Perform one or more big stores into memory.
17898    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
17899      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
17900                                   StoreType, ShuffWide,
17901                                   DAG.getIntPtrConstant(i));
17902      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
17903                                St->getPointerInfo(), St->isVolatile(),
17904                                St->isNonTemporal(), St->getAlignment());
17905      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
17906      Chains.push_back(Ch);
17907    }
17908
17909    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
17910                               Chains.size());
17911  }
17912
17913  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
17914  // the FP state in cases where an emms may be missing.
17915  // A preferable solution to the general problem is to figure out the right
17916  // places to insert EMMS.  This qualifies as a quick hack.
17917
17918  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
17919  if (VT.getSizeInBits() != 64)
17920    return SDValue();
17921
17922  const Function *F = DAG.getMachineFunction().getFunction();
17923  bool NoImplicitFloatOps = F->getAttributes().
17924    hasAttribute(AttributeSet::FunctionIndex, Attribute::NoImplicitFloat);
17925  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
17926                     && Subtarget->hasSSE2();
17927  if ((VT.isVector() ||
17928       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
17929      isa<LoadSDNode>(St->getValue()) &&
17930      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
17931      St->getChain().hasOneUse() && !St->isVolatile()) {
17932    SDNode* LdVal = St->getValue().getNode();
17933    LoadSDNode *Ld = 0;
17934    int TokenFactorIndex = -1;
17935    SmallVector<SDValue, 8> Ops;
17936    SDNode* ChainVal = St->getChain().getNode();
17937    // Must be a store of a load.  We currently handle two cases:  the load
17938    // is a direct child, and it's under an intervening TokenFactor.  It is
17939    // possible to dig deeper under nested TokenFactors.
17940    if (ChainVal == LdVal)
17941      Ld = cast<LoadSDNode>(St->getChain());
17942    else if (St->getValue().hasOneUse() &&
17943             ChainVal->getOpcode() == ISD::TokenFactor) {
17944      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
17945        if (ChainVal->getOperand(i).getNode() == LdVal) {
17946          TokenFactorIndex = i;
17947          Ld = cast<LoadSDNode>(St->getValue());
17948        } else
17949          Ops.push_back(ChainVal->getOperand(i));
17950      }
17951    }
17952
17953    if (!Ld || !ISD::isNormalLoad(Ld))
17954      return SDValue();
17955
17956    // If this is not the MMX case, i.e. we are just turning i64 load/store
17957    // into f64 load/store, avoid the transformation if there are multiple
17958    // uses of the loaded value.
17959    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
17960      return SDValue();
17961
17962    SDLoc LdDL(Ld);
17963    SDLoc StDL(N);
17964    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
17965    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
17966    // pair instead.
17967    if (Subtarget->is64Bit() || F64IsLegal) {
17968      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
17969      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
17970                                  Ld->getPointerInfo(), Ld->isVolatile(),
17971                                  Ld->isNonTemporal(), Ld->isInvariant(),
17972                                  Ld->getAlignment());
17973      SDValue NewChain = NewLd.getValue(1);
17974      if (TokenFactorIndex != -1) {
17975        Ops.push_back(NewChain);
17976        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
17977                               Ops.size());
17978      }
17979      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
17980                          St->getPointerInfo(),
17981                          St->isVolatile(), St->isNonTemporal(),
17982                          St->getAlignment());
17983    }
17984
17985    // Otherwise, lower to two pairs of 32-bit loads / stores.
17986    SDValue LoAddr = Ld->getBasePtr();
17987    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
17988                                 DAG.getConstant(4, MVT::i32));
17989
17990    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
17991                               Ld->getPointerInfo(),
17992                               Ld->isVolatile(), Ld->isNonTemporal(),
17993                               Ld->isInvariant(), Ld->getAlignment());
17994    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
17995                               Ld->getPointerInfo().getWithOffset(4),
17996                               Ld->isVolatile(), Ld->isNonTemporal(),
17997                               Ld->isInvariant(),
17998                               MinAlign(Ld->getAlignment(), 4));
17999
18000    SDValue NewChain = LoLd.getValue(1);
18001    if (TokenFactorIndex != -1) {
18002      Ops.push_back(LoLd);
18003      Ops.push_back(HiLd);
18004      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
18005                             Ops.size());
18006    }
18007
18008    LoAddr = St->getBasePtr();
18009    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
18010                         DAG.getConstant(4, MVT::i32));
18011
18012    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
18013                                St->getPointerInfo(),
18014                                St->isVolatile(), St->isNonTemporal(),
18015                                St->getAlignment());
18016    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
18017                                St->getPointerInfo().getWithOffset(4),
18018                                St->isVolatile(),
18019                                St->isNonTemporal(),
18020                                MinAlign(St->getAlignment(), 4));
18021    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
18022  }
18023  return SDValue();
18024}
18025
18026/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
18027/// and return the operands for the horizontal operation in LHS and RHS.  A
18028/// horizontal operation performs the binary operation on successive elements
18029/// of its first operand, then on successive elements of its second operand,
18030/// returning the resulting values in a vector.  For example, if
18031///   A = < float a0, float a1, float a2, float a3 >
18032/// and
18033///   B = < float b0, float b1, float b2, float b3 >
18034/// then the result of doing a horizontal operation on A and B is
18035///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
18036/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
18037/// A horizontal-op B, for some already available A and B, and if so then LHS is
18038/// set to A, RHS to B, and the routine returns 'true'.
18039/// Note that the binary operation should have the property that if one of the
18040/// operands is UNDEF then the result is UNDEF.
18041static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
18042  // Look for the following pattern: if
18043  //   A = < float a0, float a1, float a2, float a3 >
18044  //   B = < float b0, float b1, float b2, float b3 >
18045  // and
18046  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
18047  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
18048  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
18049  // which is A horizontal-op B.
18050
18051  // At least one of the operands should be a vector shuffle.
18052  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
18053      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
18054    return false;
18055
18056  MVT VT = LHS.getSimpleValueType();
18057
18058  assert((VT.is128BitVector() || VT.is256BitVector()) &&
18059         "Unsupported vector type for horizontal add/sub");
18060
18061  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
18062  // operate independently on 128-bit lanes.
18063  unsigned NumElts = VT.getVectorNumElements();
18064  unsigned NumLanes = VT.getSizeInBits()/128;
18065  unsigned NumLaneElts = NumElts / NumLanes;
18066  assert((NumLaneElts % 2 == 0) &&
18067         "Vector type should have an even number of elements in each lane");
18068  unsigned HalfLaneElts = NumLaneElts/2;
18069
18070  // View LHS in the form
18071  //   LHS = VECTOR_SHUFFLE A, B, LMask
18072  // If LHS is not a shuffle then pretend it is the shuffle
18073  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
18074  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
18075  // type VT.
18076  SDValue A, B;
18077  SmallVector<int, 16> LMask(NumElts);
18078  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
18079    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
18080      A = LHS.getOperand(0);
18081    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
18082      B = LHS.getOperand(1);
18083    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
18084    std::copy(Mask.begin(), Mask.end(), LMask.begin());
18085  } else {
18086    if (LHS.getOpcode() != ISD::UNDEF)
18087      A = LHS;
18088    for (unsigned i = 0; i != NumElts; ++i)
18089      LMask[i] = i;
18090  }
18091
18092  // Likewise, view RHS in the form
18093  //   RHS = VECTOR_SHUFFLE C, D, RMask
18094  SDValue C, D;
18095  SmallVector<int, 16> RMask(NumElts);
18096  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
18097    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
18098      C = RHS.getOperand(0);
18099    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
18100      D = RHS.getOperand(1);
18101    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
18102    std::copy(Mask.begin(), Mask.end(), RMask.begin());
18103  } else {
18104    if (RHS.getOpcode() != ISD::UNDEF)
18105      C = RHS;
18106    for (unsigned i = 0; i != NumElts; ++i)
18107      RMask[i] = i;
18108  }
18109
18110  // Check that the shuffles are both shuffling the same vectors.
18111  if (!(A == C && B == D) && !(A == D && B == C))
18112    return false;
18113
18114  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
18115  if (!A.getNode() && !B.getNode())
18116    return false;
18117
18118  // If A and B occur in reverse order in RHS, then "swap" them (which means
18119  // rewriting the mask).
18120  if (A != C)
18121    CommuteVectorShuffleMask(RMask, NumElts);
18122
18123  // At this point LHS and RHS are equivalent to
18124  //   LHS = VECTOR_SHUFFLE A, B, LMask
18125  //   RHS = VECTOR_SHUFFLE A, B, RMask
18126  // Check that the masks correspond to performing a horizontal operation.
18127  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
18128    for (unsigned i = 0; i != NumLaneElts; ++i) {
18129      int LIdx = LMask[i+l], RIdx = RMask[i+l];
18130
18131      // Ignore any UNDEF components.
18132      if (LIdx < 0 || RIdx < 0 ||
18133          (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
18134          (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
18135        continue;
18136
18137      // Check that successive elements are being operated on.  If not, this is
18138      // not a horizontal operation.
18139      unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
18140      int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
18141      if (!(LIdx == Index && RIdx == Index + 1) &&
18142          !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
18143        return false;
18144    }
18145  }
18146
18147  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
18148  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
18149  return true;
18150}
18151
18152/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
18153static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
18154                                  const X86Subtarget *Subtarget) {
18155  EVT VT = N->getValueType(0);
18156  SDValue LHS = N->getOperand(0);
18157  SDValue RHS = N->getOperand(1);
18158
18159  // Try to synthesize horizontal adds from adds of shuffles.
18160  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
18161       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
18162      isHorizontalBinOp(LHS, RHS, true))
18163    return DAG.getNode(X86ISD::FHADD, SDLoc(N), VT, LHS, RHS);
18164  return SDValue();
18165}
18166
18167/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
18168static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
18169                                  const X86Subtarget *Subtarget) {
18170  EVT VT = N->getValueType(0);
18171  SDValue LHS = N->getOperand(0);
18172  SDValue RHS = N->getOperand(1);
18173
18174  // Try to synthesize horizontal subs from subs of shuffles.
18175  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
18176       (Subtarget->hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
18177      isHorizontalBinOp(LHS, RHS, false))
18178    return DAG.getNode(X86ISD::FHSUB, SDLoc(N), VT, LHS, RHS);
18179  return SDValue();
18180}
18181
18182/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
18183/// X86ISD::FXOR nodes.
18184static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
18185  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
18186  // F[X]OR(0.0, x) -> x
18187  // F[X]OR(x, 0.0) -> x
18188  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18189    if (C->getValueAPF().isPosZero())
18190      return N->getOperand(1);
18191  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18192    if (C->getValueAPF().isPosZero())
18193      return N->getOperand(0);
18194  return SDValue();
18195}
18196
18197/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
18198/// X86ISD::FMAX nodes.
18199static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
18200  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
18201
18202  // Only perform optimizations if UnsafeMath is used.
18203  if (!DAG.getTarget().Options.UnsafeFPMath)
18204    return SDValue();
18205
18206  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
18207  // into FMINC and FMAXC, which are Commutative operations.
18208  unsigned NewOp = 0;
18209  switch (N->getOpcode()) {
18210    default: llvm_unreachable("unknown opcode");
18211    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
18212    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
18213  }
18214
18215  return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
18216                     N->getOperand(0), N->getOperand(1));
18217}
18218
18219/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
18220static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
18221  // FAND(0.0, x) -> 0.0
18222  // FAND(x, 0.0) -> 0.0
18223  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18224    if (C->getValueAPF().isPosZero())
18225      return N->getOperand(0);
18226  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18227    if (C->getValueAPF().isPosZero())
18228      return N->getOperand(1);
18229  return SDValue();
18230}
18231
18232/// PerformFANDNCombine - Do target-specific dag combines on X86ISD::FANDN nodes
18233static SDValue PerformFANDNCombine(SDNode *N, SelectionDAG &DAG) {
18234  // FANDN(x, 0.0) -> 0.0
18235  // FANDN(0.0, x) -> x
18236  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
18237    if (C->getValueAPF().isPosZero())
18238      return N->getOperand(1);
18239  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
18240    if (C->getValueAPF().isPosZero())
18241      return N->getOperand(1);
18242  return SDValue();
18243}
18244
18245static SDValue PerformBTCombine(SDNode *N,
18246                                SelectionDAG &DAG,
18247                                TargetLowering::DAGCombinerInfo &DCI) {
18248  // BT ignores high bits in the bit index operand.
18249  SDValue Op1 = N->getOperand(1);
18250  if (Op1.hasOneUse()) {
18251    unsigned BitWidth = Op1.getValueSizeInBits();
18252    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
18253    APInt KnownZero, KnownOne;
18254    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
18255                                          !DCI.isBeforeLegalizeOps());
18256    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18257    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
18258        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
18259      DCI.CommitTargetLoweringOpt(TLO);
18260  }
18261  return SDValue();
18262}
18263
18264static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
18265  SDValue Op = N->getOperand(0);
18266  if (Op.getOpcode() == ISD::BITCAST)
18267    Op = Op.getOperand(0);
18268  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
18269  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
18270      VT.getVectorElementType().getSizeInBits() ==
18271      OpVT.getVectorElementType().getSizeInBits()) {
18272    return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
18273  }
18274  return SDValue();
18275}
18276
18277static SDValue PerformSIGN_EXTEND_INREGCombine(SDNode *N, SelectionDAG &DAG,
18278                                               const X86Subtarget *Subtarget) {
18279  EVT VT = N->getValueType(0);
18280  if (!VT.isVector())
18281    return SDValue();
18282
18283  SDValue N0 = N->getOperand(0);
18284  SDValue N1 = N->getOperand(1);
18285  EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
18286  SDLoc dl(N);
18287
18288  // The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
18289  // both SSE and AVX2 since there is no sign-extended shift right
18290  // operation on a vector with 64-bit elements.
18291  //(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
18292  // (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
18293  if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
18294      N0.getOpcode() == ISD::SIGN_EXTEND)) {
18295    SDValue N00 = N0.getOperand(0);
18296
18297    // EXTLOAD has a better solution on AVX2,
18298    // it may be replaced with X86ISD::VSEXT node.
18299    if (N00.getOpcode() == ISD::LOAD && Subtarget->hasInt256())
18300      if (!ISD::isNormalLoad(N00.getNode()))
18301        return SDValue();
18302
18303    if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
18304        SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
18305                                  N00, N1);
18306      return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
18307    }
18308  }
18309  return SDValue();
18310}
18311
18312static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
18313                                  TargetLowering::DAGCombinerInfo &DCI,
18314                                  const X86Subtarget *Subtarget) {
18315  if (!DCI.isBeforeLegalizeOps())
18316    return SDValue();
18317
18318  if (!Subtarget->hasFp256())
18319    return SDValue();
18320
18321  EVT VT = N->getValueType(0);
18322  if (VT.isVector() && VT.getSizeInBits() == 256) {
18323    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
18324    if (R.getNode())
18325      return R;
18326  }
18327
18328  return SDValue();
18329}
18330
18331static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
18332                                 const X86Subtarget* Subtarget) {
18333  SDLoc dl(N);
18334  EVT VT = N->getValueType(0);
18335
18336  // Let legalize expand this if it isn't a legal type yet.
18337  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
18338    return SDValue();
18339
18340  EVT ScalarVT = VT.getScalarType();
18341  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
18342      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
18343    return SDValue();
18344
18345  SDValue A = N->getOperand(0);
18346  SDValue B = N->getOperand(1);
18347  SDValue C = N->getOperand(2);
18348
18349  bool NegA = (A.getOpcode() == ISD::FNEG);
18350  bool NegB = (B.getOpcode() == ISD::FNEG);
18351  bool NegC = (C.getOpcode() == ISD::FNEG);
18352
18353  // Negative multiplication when NegA xor NegB
18354  bool NegMul = (NegA != NegB);
18355  if (NegA)
18356    A = A.getOperand(0);
18357  if (NegB)
18358    B = B.getOperand(0);
18359  if (NegC)
18360    C = C.getOperand(0);
18361
18362  unsigned Opcode;
18363  if (!NegMul)
18364    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
18365  else
18366    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
18367
18368  return DAG.getNode(Opcode, dl, VT, A, B, C);
18369}
18370
18371static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
18372                                  TargetLowering::DAGCombinerInfo &DCI,
18373                                  const X86Subtarget *Subtarget) {
18374  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
18375  //           (and (i32 x86isd::setcc_carry), 1)
18376  // This eliminates the zext. This transformation is necessary because
18377  // ISD::SETCC is always legalized to i8.
18378  SDLoc dl(N);
18379  SDValue N0 = N->getOperand(0);
18380  EVT VT = N->getValueType(0);
18381
18382  if (N0.getOpcode() == ISD::AND &&
18383      N0.hasOneUse() &&
18384      N0.getOperand(0).hasOneUse()) {
18385    SDValue N00 = N0.getOperand(0);
18386    if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
18387      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
18388      if (!C || C->getZExtValue() != 1)
18389        return SDValue();
18390      return DAG.getNode(ISD::AND, dl, VT,
18391                         DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
18392                                     N00.getOperand(0), N00.getOperand(1)),
18393                         DAG.getConstant(1, VT));
18394    }
18395  }
18396
18397  if (VT.is256BitVector()) {
18398    SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget);
18399    if (R.getNode())
18400      return R;
18401  }
18402
18403  return SDValue();
18404}
18405
18406// Optimize x == -y --> x+y == 0
18407//          x != -y --> x+y != 0
18408static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
18409  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
18410  SDValue LHS = N->getOperand(0);
18411  SDValue RHS = N->getOperand(1);
18412
18413  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
18414    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
18415      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
18416        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
18417                                   LHS.getValueType(), RHS, LHS.getOperand(1));
18418        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
18419                            addV, DAG.getConstant(0, addV.getValueType()), CC);
18420      }
18421  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
18422    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
18423      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
18424        SDValue addV = DAG.getNode(ISD::ADD, SDLoc(N),
18425                                   RHS.getValueType(), LHS, RHS.getOperand(1));
18426        return DAG.getSetCC(SDLoc(N), N->getValueType(0),
18427                            addV, DAG.getConstant(0, addV.getValueType()), CC);
18428      }
18429  return SDValue();
18430}
18431
18432// Helper function of PerformSETCCCombine. It is to materialize "setb reg"
18433// as "sbb reg,reg", since it can be extended without zext and produces
18434// an all-ones bit which is more useful than 0/1 in some cases.
18435static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG) {
18436  return DAG.getNode(ISD::AND, DL, MVT::i8,
18437                     DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
18438                                 DAG.getConstant(X86::COND_B, MVT::i8), EFLAGS),
18439                     DAG.getConstant(1, MVT::i8));
18440}
18441
18442// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
18443static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
18444                                   TargetLowering::DAGCombinerInfo &DCI,
18445                                   const X86Subtarget *Subtarget) {
18446  SDLoc DL(N);
18447  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
18448  SDValue EFLAGS = N->getOperand(1);
18449
18450  if (CC == X86::COND_A) {
18451    // Try to convert COND_A into COND_B in an attempt to facilitate
18452    // materializing "setb reg".
18453    //
18454    // Do not flip "e > c", where "c" is a constant, because Cmp instruction
18455    // cannot take an immediate as its first operand.
18456    //
18457    if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
18458        EFLAGS.getValueType().isInteger() &&
18459        !isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
18460      SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
18461                                   EFLAGS.getNode()->getVTList(),
18462                                   EFLAGS.getOperand(1), EFLAGS.getOperand(0));
18463      SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
18464      return MaterializeSETB(DL, NewEFLAGS, DAG);
18465    }
18466  }
18467
18468  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
18469  // a zext and produces an all-ones bit which is more useful than 0/1 in some
18470  // cases.
18471  if (CC == X86::COND_B)
18472    return MaterializeSETB(DL, EFLAGS, DAG);
18473
18474  SDValue Flags;
18475
18476  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
18477  if (Flags.getNode()) {
18478    SDValue Cond = DAG.getConstant(CC, MVT::i8);
18479    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
18480  }
18481
18482  return SDValue();
18483}
18484
18485// Optimize branch condition evaluation.
18486//
18487static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
18488                                    TargetLowering::DAGCombinerInfo &DCI,
18489                                    const X86Subtarget *Subtarget) {
18490  SDLoc DL(N);
18491  SDValue Chain = N->getOperand(0);
18492  SDValue Dest = N->getOperand(1);
18493  SDValue EFLAGS = N->getOperand(3);
18494  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
18495
18496  SDValue Flags;
18497
18498  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
18499  if (Flags.getNode()) {
18500    SDValue Cond = DAG.getConstant(CC, MVT::i8);
18501    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
18502                       Flags);
18503  }
18504
18505  return SDValue();
18506}
18507
18508static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
18509                                        const X86TargetLowering *XTLI) {
18510  SDValue Op0 = N->getOperand(0);
18511  EVT InVT = Op0->getValueType(0);
18512
18513  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
18514  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
18515    SDLoc dl(N);
18516    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
18517    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
18518    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
18519  }
18520
18521  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
18522  // a 32-bit target where SSE doesn't support i64->FP operations.
18523  if (Op0.getOpcode() == ISD::LOAD) {
18524    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
18525    EVT VT = Ld->getValueType(0);
18526    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
18527        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
18528        !XTLI->getSubtarget()->is64Bit() &&
18529        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
18530      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
18531                                          Ld->getChain(), Op0, DAG);
18532      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
18533      return FILDChain;
18534    }
18535  }
18536  return SDValue();
18537}
18538
18539// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
18540static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
18541                                 X86TargetLowering::DAGCombinerInfo &DCI) {
18542  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
18543  // the result is either zero or one (depending on the input carry bit).
18544  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
18545  if (X86::isZeroNode(N->getOperand(0)) &&
18546      X86::isZeroNode(N->getOperand(1)) &&
18547      // We don't have a good way to replace an EFLAGS use, so only do this when
18548      // dead right now.
18549      SDValue(N, 1).use_empty()) {
18550    SDLoc DL(N);
18551    EVT VT = N->getValueType(0);
18552    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
18553    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
18554                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
18555                                           DAG.getConstant(X86::COND_B,MVT::i8),
18556                                           N->getOperand(2)),
18557                               DAG.getConstant(1, VT));
18558    return DCI.CombineTo(N, Res1, CarryOut);
18559  }
18560
18561  return SDValue();
18562}
18563
18564// fold (add Y, (sete  X, 0)) -> adc  0, Y
18565//      (add Y, (setne X, 0)) -> sbb -1, Y
18566//      (sub (sete  X, 0), Y) -> sbb  0, Y
18567//      (sub (setne X, 0), Y) -> adc -1, Y
18568static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
18569  SDLoc DL(N);
18570
18571  // Look through ZExts.
18572  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
18573  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
18574    return SDValue();
18575
18576  SDValue SetCC = Ext.getOperand(0);
18577  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
18578    return SDValue();
18579
18580  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
18581  if (CC != X86::COND_E && CC != X86::COND_NE)
18582    return SDValue();
18583
18584  SDValue Cmp = SetCC.getOperand(1);
18585  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
18586      !X86::isZeroNode(Cmp.getOperand(1)) ||
18587      !Cmp.getOperand(0).getValueType().isInteger())
18588    return SDValue();
18589
18590  SDValue CmpOp0 = Cmp.getOperand(0);
18591  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
18592                               DAG.getConstant(1, CmpOp0.getValueType()));
18593
18594  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
18595  if (CC == X86::COND_NE)
18596    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
18597                       DL, OtherVal.getValueType(), OtherVal,
18598                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
18599  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
18600                     DL, OtherVal.getValueType(), OtherVal,
18601                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
18602}
18603
18604/// PerformADDCombine - Do target-specific dag combines on integer adds.
18605static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
18606                                 const X86Subtarget *Subtarget) {
18607  EVT VT = N->getValueType(0);
18608  SDValue Op0 = N->getOperand(0);
18609  SDValue Op1 = N->getOperand(1);
18610
18611  // Try to synthesize horizontal adds from adds of shuffles.
18612  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
18613       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
18614      isHorizontalBinOp(Op0, Op1, true))
18615    return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
18616
18617  return OptimizeConditionalInDecrement(N, DAG);
18618}
18619
18620static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
18621                                 const X86Subtarget *Subtarget) {
18622  SDValue Op0 = N->getOperand(0);
18623  SDValue Op1 = N->getOperand(1);
18624
18625  // X86 can't encode an immediate LHS of a sub. See if we can push the
18626  // negation into a preceding instruction.
18627  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
18628    // If the RHS of the sub is a XOR with one use and a constant, invert the
18629    // immediate. Then add one to the LHS of the sub so we can turn
18630    // X-Y -> X+~Y+1, saving one register.
18631    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
18632        isa<ConstantSDNode>(Op1.getOperand(1))) {
18633      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
18634      EVT VT = Op0.getValueType();
18635      SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
18636                                   Op1.getOperand(0),
18637                                   DAG.getConstant(~XorC, VT));
18638      return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
18639                         DAG.getConstant(C->getAPIntValue()+1, VT));
18640    }
18641  }
18642
18643  // Try to synthesize horizontal adds from adds of shuffles.
18644  EVT VT = N->getValueType(0);
18645  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
18646       (Subtarget->hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
18647      isHorizontalBinOp(Op0, Op1, true))
18648    return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
18649
18650  return OptimizeConditionalInDecrement(N, DAG);
18651}
18652
18653/// performVZEXTCombine - Performs build vector combines
18654static SDValue performVZEXTCombine(SDNode *N, SelectionDAG &DAG,
18655                                        TargetLowering::DAGCombinerInfo &DCI,
18656                                        const X86Subtarget *Subtarget) {
18657  // (vzext (bitcast (vzext (x)) -> (vzext x)
18658  SDValue In = N->getOperand(0);
18659  while (In.getOpcode() == ISD::BITCAST)
18660    In = In.getOperand(0);
18661
18662  if (In.getOpcode() != X86ISD::VZEXT)
18663    return SDValue();
18664
18665  return DAG.getNode(X86ISD::VZEXT, SDLoc(N), N->getValueType(0),
18666                     In.getOperand(0));
18667}
18668
18669SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
18670                                             DAGCombinerInfo &DCI) const {
18671  SelectionDAG &DAG = DCI.DAG;
18672  switch (N->getOpcode()) {
18673  default: break;
18674  case ISD::EXTRACT_VECTOR_ELT:
18675    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
18676  case ISD::VSELECT:
18677  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
18678  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
18679  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
18680  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
18681  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
18682  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
18683  case ISD::SHL:
18684  case ISD::SRA:
18685  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
18686  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
18687  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
18688  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
18689  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
18690  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
18691  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
18692  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
18693  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
18694  case X86ISD::FXOR:
18695  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
18696  case X86ISD::FMIN:
18697  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
18698  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
18699  case X86ISD::FANDN:       return PerformFANDNCombine(N, DAG);
18700  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
18701  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
18702  case ISD::ANY_EXTEND:
18703  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
18704  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
18705  case ISD::SIGN_EXTEND_INREG: return PerformSIGN_EXTEND_INREGCombine(N, DAG, Subtarget);
18706  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
18707  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
18708  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
18709  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
18710  case X86ISD::VZEXT:       return performVZEXTCombine(N, DAG, DCI, Subtarget);
18711  case X86ISD::SHUFP:       // Handle all target specific shuffles
18712  case X86ISD::PALIGNR:
18713  case X86ISD::UNPCKH:
18714  case X86ISD::UNPCKL:
18715  case X86ISD::MOVHLPS:
18716  case X86ISD::MOVLHPS:
18717  case X86ISD::PSHUFD:
18718  case X86ISD::PSHUFHW:
18719  case X86ISD::PSHUFLW:
18720  case X86ISD::MOVSS:
18721  case X86ISD::MOVSD:
18722  case X86ISD::VPERMILP:
18723  case X86ISD::VPERM2X128:
18724  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
18725  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
18726  }
18727
18728  return SDValue();
18729}
18730
18731/// isTypeDesirableForOp - Return true if the target has native support for
18732/// the specified value type and it is 'desirable' to use the type for the
18733/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
18734/// instruction encodings are longer and some i16 instructions are slow.
18735bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
18736  if (!isTypeLegal(VT))
18737    return false;
18738  if (VT != MVT::i16)
18739    return true;
18740
18741  switch (Opc) {
18742  default:
18743    return true;
18744  case ISD::LOAD:
18745  case ISD::SIGN_EXTEND:
18746  case ISD::ZERO_EXTEND:
18747  case ISD::ANY_EXTEND:
18748  case ISD::SHL:
18749  case ISD::SRL:
18750  case ISD::SUB:
18751  case ISD::ADD:
18752  case ISD::MUL:
18753  case ISD::AND:
18754  case ISD::OR:
18755  case ISD::XOR:
18756    return false;
18757  }
18758}
18759
18760/// IsDesirableToPromoteOp - This method query the target whether it is
18761/// beneficial for dag combiner to promote the specified node. If true, it
18762/// should return the desired promotion type by reference.
18763bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
18764  EVT VT = Op.getValueType();
18765  if (VT != MVT::i16)
18766    return false;
18767
18768  bool Promote = false;
18769  bool Commute = false;
18770  switch (Op.getOpcode()) {
18771  default: break;
18772  case ISD::LOAD: {
18773    LoadSDNode *LD = cast<LoadSDNode>(Op);
18774    // If the non-extending load has a single use and it's not live out, then it
18775    // might be folded.
18776    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
18777                                                     Op.hasOneUse()*/) {
18778      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
18779             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
18780        // The only case where we'd want to promote LOAD (rather then it being
18781        // promoted as an operand is when it's only use is liveout.
18782        if (UI->getOpcode() != ISD::CopyToReg)
18783          return false;
18784      }
18785    }
18786    Promote = true;
18787    break;
18788  }
18789  case ISD::SIGN_EXTEND:
18790  case ISD::ZERO_EXTEND:
18791  case ISD::ANY_EXTEND:
18792    Promote = true;
18793    break;
18794  case ISD::SHL:
18795  case ISD::SRL: {
18796    SDValue N0 = Op.getOperand(0);
18797    // Look out for (store (shl (load), x)).
18798    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
18799      return false;
18800    Promote = true;
18801    break;
18802  }
18803  case ISD::ADD:
18804  case ISD::MUL:
18805  case ISD::AND:
18806  case ISD::OR:
18807  case ISD::XOR:
18808    Commute = true;
18809    // fallthrough
18810  case ISD::SUB: {
18811    SDValue N0 = Op.getOperand(0);
18812    SDValue N1 = Op.getOperand(1);
18813    if (!Commute && MayFoldLoad(N1))
18814      return false;
18815    // Avoid disabling potential load folding opportunities.
18816    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
18817      return false;
18818    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
18819      return false;
18820    Promote = true;
18821  }
18822  }
18823
18824  PVT = MVT::i32;
18825  return Promote;
18826}
18827
18828//===----------------------------------------------------------------------===//
18829//                           X86 Inline Assembly Support
18830//===----------------------------------------------------------------------===//
18831
18832namespace {
18833  // Helper to match a string separated by whitespace.
18834  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
18835    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
18836
18837    for (unsigned i = 0, e = args.size(); i != e; ++i) {
18838      StringRef piece(*args[i]);
18839      if (!s.startswith(piece)) // Check if the piece matches.
18840        return false;
18841
18842      s = s.substr(piece.size());
18843      StringRef::size_type pos = s.find_first_not_of(" \t");
18844      if (pos == 0) // We matched a prefix.
18845        return false;
18846
18847      s = s.substr(pos);
18848    }
18849
18850    return s.empty();
18851  }
18852  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
18853}
18854
18855bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
18856  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
18857
18858  std::string AsmStr = IA->getAsmString();
18859
18860  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
18861  if (!Ty || Ty->getBitWidth() % 16 != 0)
18862    return false;
18863
18864  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
18865  SmallVector<StringRef, 4> AsmPieces;
18866  SplitString(AsmStr, AsmPieces, ";\n");
18867
18868  switch (AsmPieces.size()) {
18869  default: return false;
18870  case 1:
18871    // FIXME: this should verify that we are targeting a 486 or better.  If not,
18872    // we will turn this bswap into something that will be lowered to logical
18873    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
18874    // lower so don't worry about this.
18875    // bswap $0
18876    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
18877        matchAsm(AsmPieces[0], "bswapl", "$0") ||
18878        matchAsm(AsmPieces[0], "bswapq", "$0") ||
18879        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
18880        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
18881        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
18882      // No need to check constraints, nothing other than the equivalent of
18883      // "=r,0" would be valid here.
18884      return IntrinsicLowering::LowerToByteSwap(CI);
18885    }
18886
18887    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
18888    if (CI->getType()->isIntegerTy(16) &&
18889        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
18890        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
18891         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
18892      AsmPieces.clear();
18893      const std::string &ConstraintsStr = IA->getConstraintString();
18894      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
18895      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
18896      if (AsmPieces.size() == 4 &&
18897          AsmPieces[0] == "~{cc}" &&
18898          AsmPieces[1] == "~{dirflag}" &&
18899          AsmPieces[2] == "~{flags}" &&
18900          AsmPieces[3] == "~{fpsr}")
18901      return IntrinsicLowering::LowerToByteSwap(CI);
18902    }
18903    break;
18904  case 3:
18905    if (CI->getType()->isIntegerTy(32) &&
18906        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
18907        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
18908        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
18909        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
18910      AsmPieces.clear();
18911      const std::string &ConstraintsStr = IA->getConstraintString();
18912      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
18913      array_pod_sort(AsmPieces.begin(), AsmPieces.end());
18914      if (AsmPieces.size() == 4 &&
18915          AsmPieces[0] == "~{cc}" &&
18916          AsmPieces[1] == "~{dirflag}" &&
18917          AsmPieces[2] == "~{flags}" &&
18918          AsmPieces[3] == "~{fpsr}")
18919        return IntrinsicLowering::LowerToByteSwap(CI);
18920    }
18921
18922    if (CI->getType()->isIntegerTy(64)) {
18923      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
18924      if (Constraints.size() >= 2 &&
18925          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
18926          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
18927        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
18928        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
18929            matchAsm(AsmPieces[1], "bswap", "%edx") &&
18930            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
18931          return IntrinsicLowering::LowerToByteSwap(CI);
18932      }
18933    }
18934    break;
18935  }
18936  return false;
18937}
18938
18939/// getConstraintType - Given a constraint letter, return the type of
18940/// constraint it is for this target.
18941X86TargetLowering::ConstraintType
18942X86TargetLowering::getConstraintType(const std::string &Constraint) const {
18943  if (Constraint.size() == 1) {
18944    switch (Constraint[0]) {
18945    case 'R':
18946    case 'q':
18947    case 'Q':
18948    case 'f':
18949    case 't':
18950    case 'u':
18951    case 'y':
18952    case 'x':
18953    case 'Y':
18954    case 'l':
18955      return C_RegisterClass;
18956    case 'a':
18957    case 'b':
18958    case 'c':
18959    case 'd':
18960    case 'S':
18961    case 'D':
18962    case 'A':
18963      return C_Register;
18964    case 'I':
18965    case 'J':
18966    case 'K':
18967    case 'L':
18968    case 'M':
18969    case 'N':
18970    case 'G':
18971    case 'C':
18972    case 'e':
18973    case 'Z':
18974      return C_Other;
18975    default:
18976      break;
18977    }
18978  }
18979  return TargetLowering::getConstraintType(Constraint);
18980}
18981
18982/// Examine constraint type and operand type and determine a weight value.
18983/// This object must already have been set up with the operand type
18984/// and the current alternative constraint selected.
18985TargetLowering::ConstraintWeight
18986  X86TargetLowering::getSingleConstraintMatchWeight(
18987    AsmOperandInfo &info, const char *constraint) const {
18988  ConstraintWeight weight = CW_Invalid;
18989  Value *CallOperandVal = info.CallOperandVal;
18990    // If we don't have a value, we can't do a match,
18991    // but allow it at the lowest weight.
18992  if (CallOperandVal == NULL)
18993    return CW_Default;
18994  Type *type = CallOperandVal->getType();
18995  // Look at the constraint type.
18996  switch (*constraint) {
18997  default:
18998    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
18999  case 'R':
19000  case 'q':
19001  case 'Q':
19002  case 'a':
19003  case 'b':
19004  case 'c':
19005  case 'd':
19006  case 'S':
19007  case 'D':
19008  case 'A':
19009    if (CallOperandVal->getType()->isIntegerTy())
19010      weight = CW_SpecificReg;
19011    break;
19012  case 'f':
19013  case 't':
19014  case 'u':
19015    if (type->isFloatingPointTy())
19016      weight = CW_SpecificReg;
19017    break;
19018  case 'y':
19019    if (type->isX86_MMXTy() && Subtarget->hasMMX())
19020      weight = CW_SpecificReg;
19021    break;
19022  case 'x':
19023  case 'Y':
19024    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
19025        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasFp256()))
19026      weight = CW_Register;
19027    break;
19028  case 'I':
19029    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
19030      if (C->getZExtValue() <= 31)
19031        weight = CW_Constant;
19032    }
19033    break;
19034  case 'J':
19035    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19036      if (C->getZExtValue() <= 63)
19037        weight = CW_Constant;
19038    }
19039    break;
19040  case 'K':
19041    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19042      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
19043        weight = CW_Constant;
19044    }
19045    break;
19046  case 'L':
19047    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19048      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
19049        weight = CW_Constant;
19050    }
19051    break;
19052  case 'M':
19053    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19054      if (C->getZExtValue() <= 3)
19055        weight = CW_Constant;
19056    }
19057    break;
19058  case 'N':
19059    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19060      if (C->getZExtValue() <= 0xff)
19061        weight = CW_Constant;
19062    }
19063    break;
19064  case 'G':
19065  case 'C':
19066    if (dyn_cast<ConstantFP>(CallOperandVal)) {
19067      weight = CW_Constant;
19068    }
19069    break;
19070  case 'e':
19071    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19072      if ((C->getSExtValue() >= -0x80000000LL) &&
19073          (C->getSExtValue() <= 0x7fffffffLL))
19074        weight = CW_Constant;
19075    }
19076    break;
19077  case 'Z':
19078    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
19079      if (C->getZExtValue() <= 0xffffffff)
19080        weight = CW_Constant;
19081    }
19082    break;
19083  }
19084  return weight;
19085}
19086
19087/// LowerXConstraint - try to replace an X constraint, which matches anything,
19088/// with another that has more specific requirements based on the type of the
19089/// corresponding operand.
19090const char *X86TargetLowering::
19091LowerXConstraint(EVT ConstraintVT) const {
19092  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
19093  // 'f' like normal targets.
19094  if (ConstraintVT.isFloatingPoint()) {
19095    if (Subtarget->hasSSE2())
19096      return "Y";
19097    if (Subtarget->hasSSE1())
19098      return "x";
19099  }
19100
19101  return TargetLowering::LowerXConstraint(ConstraintVT);
19102}
19103
19104/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
19105/// vector.  If it is invalid, don't add anything to Ops.
19106void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
19107                                                     std::string &Constraint,
19108                                                     std::vector<SDValue>&Ops,
19109                                                     SelectionDAG &DAG) const {
19110  SDValue Result(0, 0);
19111
19112  // Only support length 1 constraints for now.
19113  if (Constraint.length() > 1) return;
19114
19115  char ConstraintLetter = Constraint[0];
19116  switch (ConstraintLetter) {
19117  default: break;
19118  case 'I':
19119    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19120      if (C->getZExtValue() <= 31) {
19121        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19122        break;
19123      }
19124    }
19125    return;
19126  case 'J':
19127    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19128      if (C->getZExtValue() <= 63) {
19129        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19130        break;
19131      }
19132    }
19133    return;
19134  case 'K':
19135    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19136      if (isInt<8>(C->getSExtValue())) {
19137        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19138        break;
19139      }
19140    }
19141    return;
19142  case 'N':
19143    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19144      if (C->getZExtValue() <= 255) {
19145        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19146        break;
19147      }
19148    }
19149    return;
19150  case 'e': {
19151    // 32-bit signed value
19152    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19153      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
19154                                           C->getSExtValue())) {
19155        // Widen to 64 bits here to get it sign extended.
19156        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
19157        break;
19158      }
19159    // FIXME gcc accepts some relocatable values here too, but only in certain
19160    // memory models; it's complicated.
19161    }
19162    return;
19163  }
19164  case 'Z': {
19165    // 32-bit unsigned value
19166    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
19167      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
19168                                           C->getZExtValue())) {
19169        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
19170        break;
19171      }
19172    }
19173    // FIXME gcc accepts some relocatable values here too, but only in certain
19174    // memory models; it's complicated.
19175    return;
19176  }
19177  case 'i': {
19178    // Literal immediates are always ok.
19179    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
19180      // Widen to 64 bits here to get it sign extended.
19181      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
19182      break;
19183    }
19184
19185    // In any sort of PIC mode addresses need to be computed at runtime by
19186    // adding in a register or some sort of table lookup.  These can't
19187    // be used as immediates.
19188    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
19189      return;
19190
19191    // If we are in non-pic codegen mode, we allow the address of a global (with
19192    // an optional displacement) to be used with 'i'.
19193    GlobalAddressSDNode *GA = 0;
19194    int64_t Offset = 0;
19195
19196    // Match either (GA), (GA+C), (GA+C1+C2), etc.
19197    while (1) {
19198      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
19199        Offset += GA->getOffset();
19200        break;
19201      } else if (Op.getOpcode() == ISD::ADD) {
19202        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
19203          Offset += C->getZExtValue();
19204          Op = Op.getOperand(0);
19205          continue;
19206        }
19207      } else if (Op.getOpcode() == ISD::SUB) {
19208        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
19209          Offset += -C->getZExtValue();
19210          Op = Op.getOperand(0);
19211          continue;
19212        }
19213      }
19214
19215      // Otherwise, this isn't something we can handle, reject it.
19216      return;
19217    }
19218
19219    const GlobalValue *GV = GA->getGlobal();
19220    // If we require an extra load to get this address, as in PIC mode, we
19221    // can't accept it.
19222    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
19223                                                        getTargetMachine())))
19224      return;
19225
19226    Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
19227                                        GA->getValueType(0), Offset);
19228    break;
19229  }
19230  }
19231
19232  if (Result.getNode()) {
19233    Ops.push_back(Result);
19234    return;
19235  }
19236  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
19237}
19238
19239std::pair<unsigned, const TargetRegisterClass*>
19240X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
19241                                                MVT VT) const {
19242  // First, see if this is a constraint that directly corresponds to an LLVM
19243  // register class.
19244  if (Constraint.size() == 1) {
19245    // GCC Constraint Letters
19246    switch (Constraint[0]) {
19247    default: break;
19248      // TODO: Slight differences here in allocation order and leaving
19249      // RIP in the class. Do they matter any more here than they do
19250      // in the normal allocation?
19251    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
19252      if (Subtarget->is64Bit()) {
19253        if (VT == MVT::i32 || VT == MVT::f32)
19254          return std::make_pair(0U, &X86::GR32RegClass);
19255        if (VT == MVT::i16)
19256          return std::make_pair(0U, &X86::GR16RegClass);
19257        if (VT == MVT::i8 || VT == MVT::i1)
19258          return std::make_pair(0U, &X86::GR8RegClass);
19259        if (VT == MVT::i64 || VT == MVT::f64)
19260          return std::make_pair(0U, &X86::GR64RegClass);
19261        break;
19262      }
19263      // 32-bit fallthrough
19264    case 'Q':   // Q_REGS
19265      if (VT == MVT::i32 || VT == MVT::f32)
19266        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
19267      if (VT == MVT::i16)
19268        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
19269      if (VT == MVT::i8 || VT == MVT::i1)
19270        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
19271      if (VT == MVT::i64)
19272        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
19273      break;
19274    case 'r':   // GENERAL_REGS
19275    case 'l':   // INDEX_REGS
19276      if (VT == MVT::i8 || VT == MVT::i1)
19277        return std::make_pair(0U, &X86::GR8RegClass);
19278      if (VT == MVT::i16)
19279        return std::make_pair(0U, &X86::GR16RegClass);
19280      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
19281        return std::make_pair(0U, &X86::GR32RegClass);
19282      return std::make_pair(0U, &X86::GR64RegClass);
19283    case 'R':   // LEGACY_REGS
19284      if (VT == MVT::i8 || VT == MVT::i1)
19285        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
19286      if (VT == MVT::i16)
19287        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
19288      if (VT == MVT::i32 || !Subtarget->is64Bit())
19289        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
19290      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
19291    case 'f':  // FP Stack registers.
19292      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
19293      // value to the correct fpstack register class.
19294      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
19295        return std::make_pair(0U, &X86::RFP32RegClass);
19296      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
19297        return std::make_pair(0U, &X86::RFP64RegClass);
19298      return std::make_pair(0U, &X86::RFP80RegClass);
19299    case 'y':   // MMX_REGS if MMX allowed.
19300      if (!Subtarget->hasMMX()) break;
19301      return std::make_pair(0U, &X86::VR64RegClass);
19302    case 'Y':   // SSE_REGS if SSE2 allowed
19303      if (!Subtarget->hasSSE2()) break;
19304      // FALL THROUGH.
19305    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
19306      if (!Subtarget->hasSSE1()) break;
19307
19308      switch (VT.SimpleTy) {
19309      default: break;
19310      // Scalar SSE types.
19311      case MVT::f32:
19312      case MVT::i32:
19313        return std::make_pair(0U, &X86::FR32RegClass);
19314      case MVT::f64:
19315      case MVT::i64:
19316        return std::make_pair(0U, &X86::FR64RegClass);
19317      // Vector types.
19318      case MVT::v16i8:
19319      case MVT::v8i16:
19320      case MVT::v4i32:
19321      case MVT::v2i64:
19322      case MVT::v4f32:
19323      case MVT::v2f64:
19324        return std::make_pair(0U, &X86::VR128RegClass);
19325      // AVX types.
19326      case MVT::v32i8:
19327      case MVT::v16i16:
19328      case MVT::v8i32:
19329      case MVT::v4i64:
19330      case MVT::v8f32:
19331      case MVT::v4f64:
19332        return std::make_pair(0U, &X86::VR256RegClass);
19333      case MVT::v8f64:
19334      case MVT::v16f32:
19335      case MVT::v16i32:
19336      case MVT::v8i64:
19337        return std::make_pair(0U, &X86::VR512RegClass);
19338      }
19339      break;
19340    }
19341  }
19342
19343  // Use the default implementation in TargetLowering to convert the register
19344  // constraint into a member of a register class.
19345  std::pair<unsigned, const TargetRegisterClass*> Res;
19346  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
19347
19348  // Not found as a standard register?
19349  if (Res.second == 0) {
19350    // Map st(0) -> st(7) -> ST0
19351    if (Constraint.size() == 7 && Constraint[0] == '{' &&
19352        tolower(Constraint[1]) == 's' &&
19353        tolower(Constraint[2]) == 't' &&
19354        Constraint[3] == '(' &&
19355        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
19356        Constraint[5] == ')' &&
19357        Constraint[6] == '}') {
19358
19359      Res.first = X86::ST0+Constraint[4]-'0';
19360      Res.second = &X86::RFP80RegClass;
19361      return Res;
19362    }
19363
19364    // GCC allows "st(0)" to be called just plain "st".
19365    if (StringRef("{st}").equals_lower(Constraint)) {
19366      Res.first = X86::ST0;
19367      Res.second = &X86::RFP80RegClass;
19368      return Res;
19369    }
19370
19371    // flags -> EFLAGS
19372    if (StringRef("{flags}").equals_lower(Constraint)) {
19373      Res.first = X86::EFLAGS;
19374      Res.second = &X86::CCRRegClass;
19375      return Res;
19376    }
19377
19378    // 'A' means EAX + EDX.
19379    if (Constraint == "A") {
19380      Res.first = X86::EAX;
19381      Res.second = &X86::GR32_ADRegClass;
19382      return Res;
19383    }
19384    return Res;
19385  }
19386
19387  // Otherwise, check to see if this is a register class of the wrong value
19388  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
19389  // turn into {ax},{dx}.
19390  if (Res.second->hasType(VT))
19391    return Res;   // Correct type already, nothing to do.
19392
19393  // All of the single-register GCC register classes map their values onto
19394  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
19395  // really want an 8-bit or 32-bit register, map to the appropriate register
19396  // class and return the appropriate register.
19397  if (Res.second == &X86::GR16RegClass) {
19398    if (VT == MVT::i8 || VT == MVT::i1) {
19399      unsigned DestReg = 0;
19400      switch (Res.first) {
19401      default: break;
19402      case X86::AX: DestReg = X86::AL; break;
19403      case X86::DX: DestReg = X86::DL; break;
19404      case X86::CX: DestReg = X86::CL; break;
19405      case X86::BX: DestReg = X86::BL; break;
19406      }
19407      if (DestReg) {
19408        Res.first = DestReg;
19409        Res.second = &X86::GR8RegClass;
19410      }
19411    } else if (VT == MVT::i32 || VT == MVT::f32) {
19412      unsigned DestReg = 0;
19413      switch (Res.first) {
19414      default: break;
19415      case X86::AX: DestReg = X86::EAX; break;
19416      case X86::DX: DestReg = X86::EDX; break;
19417      case X86::CX: DestReg = X86::ECX; break;
19418      case X86::BX: DestReg = X86::EBX; break;
19419      case X86::SI: DestReg = X86::ESI; break;
19420      case X86::DI: DestReg = X86::EDI; break;
19421      case X86::BP: DestReg = X86::EBP; break;
19422      case X86::SP: DestReg = X86::ESP; break;
19423      }
19424      if (DestReg) {
19425        Res.first = DestReg;
19426        Res.second = &X86::GR32RegClass;
19427      }
19428    } else if (VT == MVT::i64 || VT == MVT::f64) {
19429      unsigned DestReg = 0;
19430      switch (Res.first) {
19431      default: break;
19432      case X86::AX: DestReg = X86::RAX; break;
19433      case X86::DX: DestReg = X86::RDX; break;
19434      case X86::CX: DestReg = X86::RCX; break;
19435      case X86::BX: DestReg = X86::RBX; break;
19436      case X86::SI: DestReg = X86::RSI; break;
19437      case X86::DI: DestReg = X86::RDI; break;
19438      case X86::BP: DestReg = X86::RBP; break;
19439      case X86::SP: DestReg = X86::RSP; break;
19440      }
19441      if (DestReg) {
19442        Res.first = DestReg;
19443        Res.second = &X86::GR64RegClass;
19444      }
19445    }
19446  } else if (Res.second == &X86::FR32RegClass ||
19447             Res.second == &X86::FR64RegClass ||
19448             Res.second == &X86::VR128RegClass ||
19449             Res.second == &X86::VR256RegClass ||
19450             Res.second == &X86::FR32XRegClass ||
19451             Res.second == &X86::FR64XRegClass ||
19452             Res.second == &X86::VR128XRegClass ||
19453             Res.second == &X86::VR256XRegClass ||
19454             Res.second == &X86::VR512RegClass) {
19455    // Handle references to XMM physical registers that got mapped into the
19456    // wrong class.  This can happen with constraints like {xmm0} where the
19457    // target independent register mapper will just pick the first match it can
19458    // find, ignoring the required type.
19459
19460    if (VT == MVT::f32 || VT == MVT::i32)
19461      Res.second = &X86::FR32RegClass;
19462    else if (VT == MVT::f64 || VT == MVT::i64)
19463      Res.second = &X86::FR64RegClass;
19464    else if (X86::VR128RegClass.hasType(VT))
19465      Res.second = &X86::VR128RegClass;
19466    else if (X86::VR256RegClass.hasType(VT))
19467      Res.second = &X86::VR256RegClass;
19468    else if (X86::VR512RegClass.hasType(VT))
19469      Res.second = &X86::VR512RegClass;
19470  }
19471
19472  return Res;
19473}
19474