X86ISelLowering.cpp revision b8cafe3427a168414400e5dfcbea78996792d2c3
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/PseudoSourceValue.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/ADT/SmallSet.h"
41#include "llvm/ADT/StringExtras.h"
42#include "llvm/ParamAttrsList.h"
43using namespace llvm;
44
45X86TargetLowering::X86TargetLowering(TargetMachine &TM)
46  : TargetLowering(TM) {
47  Subtarget = &TM.getSubtarget<X86Subtarget>();
48  X86ScalarSSEf64 = Subtarget->hasSSE2();
49  X86ScalarSSEf32 = Subtarget->hasSSE1();
50  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
51
52  bool Fast = false;
53
54  RegInfo = TM.getRegisterInfo();
55
56  // Set up the TargetLowering object.
57
58  // X86 is weird, it always uses i8 for shift amounts and setcc results.
59  setShiftAmountType(MVT::i8);
60  setSetCCResultType(MVT::i8);
61  setSetCCResultContents(ZeroOrOneSetCCResult);
62  setSchedulingPreference(SchedulingForRegPressure);
63  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
64  setStackPointerRegisterToSaveRestore(X86StackPtr);
65
66  if (Subtarget->isTargetDarwin()) {
67    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
68    setUseUnderscoreSetJmp(false);
69    setUseUnderscoreLongJmp(false);
70  } else if (Subtarget->isTargetMingw()) {
71    // MS runtime is weird: it exports _setjmp, but longjmp!
72    setUseUnderscoreSetJmp(true);
73    setUseUnderscoreLongJmp(false);
74  } else {
75    setUseUnderscoreSetJmp(true);
76    setUseUnderscoreLongJmp(true);
77  }
78
79  // Set up the register classes.
80  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
81  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
82  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
83  if (Subtarget->is64Bit())
84    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
85
86  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
87
88  // We don't accept any truncstore of integer registers.
89  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
90  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
92  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
93  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
94  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
95
96  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
97  // operation.
98  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
99  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
100  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
101
102  if (Subtarget->is64Bit()) {
103    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
104    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
105  } else {
106    if (X86ScalarSSEf64)
107      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
108      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
109    else
110      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
111  }
112
113  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
114  // this operation.
115  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
116  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
117  // SSE has no i16 to fp conversion, only i32
118  if (X86ScalarSSEf32) {
119    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
120    // f32 and f64 cases are Legal, f80 case is not
121    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
122  } else {
123    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
124    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
125  }
126
127  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
128  // are Legal, f80 is custom lowered.
129  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
130  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
131
132  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
133  // this operation.
134  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
135  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
136
137  if (X86ScalarSSEf32) {
138    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
139    // f32 and f64 cases are Legal, f80 case is not
140    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
141  } else {
142    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
143    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
144  }
145
146  // Handle FP_TO_UINT by promoting the destination to a larger signed
147  // conversion.
148  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
149  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
150  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
151
152  if (Subtarget->is64Bit()) {
153    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
154    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
155  } else {
156    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
157      // Expand FP_TO_UINT into a select.
158      // FIXME: We would like to use a Custom expander here eventually to do
159      // the optimal thing for SSE vs. the default expansion in the legalizer.
160      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
161    else
162      // With SSE3 we can use fisttpll to convert to a signed i64.
163      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
164  }
165
166  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
167  if (!X86ScalarSSEf64) {
168    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
169    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
170  }
171
172  // Scalar integer divide and remainder are lowered to use operations that
173  // produce two results, to match the available instructions. This exposes
174  // the two-result form to trivial CSE, which is able to combine x/y and x%y
175  // into a single instruction.
176  //
177  // Scalar integer multiply-high is also lowered to use two-result
178  // operations, to match the available instructions. However, plain multiply
179  // (low) operations are left as Legal, as there are single-result
180  // instructions for this in x86. Using the two-result multiply instructions
181  // when both high and low results are needed must be arranged by dagcombine.
182  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
183  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
184  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
185  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
186  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
187  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
188  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
189  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
190  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
191  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
192  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
193  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
194  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
195  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
196  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
197  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
198  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
199  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
200  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
201  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
202  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
203  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
204  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
205  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
206
207  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
208  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
209  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
210  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
211  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
212  if (Subtarget->is64Bit())
213    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
214  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
215  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
216  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
217  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
218  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
219  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
220  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
221  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
222
223  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
224  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
225  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
226  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
227  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
228  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
229  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
230  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
231  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
232  if (Subtarget->is64Bit()) {
233    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
234    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
235    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
236  }
237
238  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
239  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
240
241  // These should be promoted to a larger select which is supported.
242  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
243  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
244  // X86 wants to expand cmov itself.
245  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
248  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
249  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
251  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
254  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
255  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
258    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
259  }
260  // X86 ret instruction may pop stack.
261  setOperationAction(ISD::RET             , MVT::Other, Custom);
262  if (!Subtarget->is64Bit())
263    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
264
265  // Darwin ABI issue.
266  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
267  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
268  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
269  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
270  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
271  if (Subtarget->is64Bit()) {
272    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
273    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
274    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
275    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
276  }
277  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
278  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
279  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
280  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
281  if (Subtarget->is64Bit()) {
282    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
283    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
284    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
285  }
286  // X86 wants to expand memset / memcpy itself.
287  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
288  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
289
290  if (!Subtarget->hasSSE1())
291    setOperationAction(ISD::PREFETCH      , MVT::Other, Expand);
292
293  if (!Subtarget->hasSSE2())
294    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
295
296  setOperationAction(ISD::ATOMIC_LCS     , MVT::i8, Custom);
297  setOperationAction(ISD::ATOMIC_LCS     , MVT::i16, Custom);
298  setOperationAction(ISD::ATOMIC_LCS     , MVT::i32, Custom);
299  setOperationAction(ISD::ATOMIC_LCS     , MVT::i64, Custom);
300
301  // Use the default ISD::LOCATION, ISD::DECLARE expansion.
302  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
303  // FIXME - use subtarget debug flags
304  if (!Subtarget->isTargetDarwin() &&
305      !Subtarget->isTargetELF() &&
306      !Subtarget->isTargetCygMing())
307    setOperationAction(ISD::LABEL, MVT::Other, Expand);
308
309  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
310  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
311  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
312  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
313  if (Subtarget->is64Bit()) {
314    // FIXME: Verify
315    setExceptionPointerRegister(X86::RAX);
316    setExceptionSelectorRegister(X86::RDX);
317  } else {
318    setExceptionPointerRegister(X86::EAX);
319    setExceptionSelectorRegister(X86::EDX);
320  }
321  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
322
323  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
324
325  setOperationAction(ISD::TRAP, MVT::Other, Legal);
326
327  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
328  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
329  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
330  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
331  if (Subtarget->is64Bit())
332    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
333  else
334    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
335
336  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
337  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
338  if (Subtarget->is64Bit())
339    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
340  if (Subtarget->isTargetCygMing())
341    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
342  else
343    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
344
345  if (X86ScalarSSEf64) {
346    // f32 and f64 use SSE.
347    // Set up the FP register classes.
348    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
349    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
350
351    // Use ANDPD to simulate FABS.
352    setOperationAction(ISD::FABS , MVT::f64, Custom);
353    setOperationAction(ISD::FABS , MVT::f32, Custom);
354
355    // Use XORP to simulate FNEG.
356    setOperationAction(ISD::FNEG , MVT::f64, Custom);
357    setOperationAction(ISD::FNEG , MVT::f32, Custom);
358
359    // Use ANDPD and ORPD to simulate FCOPYSIGN.
360    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
361    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
362
363    // We don't support sin/cos/fmod
364    setOperationAction(ISD::FSIN , MVT::f64, Expand);
365    setOperationAction(ISD::FCOS , MVT::f64, Expand);
366    setOperationAction(ISD::FSIN , MVT::f32, Expand);
367    setOperationAction(ISD::FCOS , MVT::f32, Expand);
368
369    // Expand FP immediates into loads from the stack, except for the special
370    // cases we handle.
371    addLegalFPImmediate(APFloat(+0.0)); // xorpd
372    addLegalFPImmediate(APFloat(+0.0f)); // xorps
373
374    // Floating truncations from f80 and extensions to f80 go through memory.
375    // If optimizing, we lie about this though and handle it in
376    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
377    if (Fast) {
378      setConvertAction(MVT::f32, MVT::f80, Expand);
379      setConvertAction(MVT::f64, MVT::f80, Expand);
380      setConvertAction(MVT::f80, MVT::f32, Expand);
381      setConvertAction(MVT::f80, MVT::f64, Expand);
382    }
383  } else if (X86ScalarSSEf32) {
384    // Use SSE for f32, x87 for f64.
385    // Set up the FP register classes.
386    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
387    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
388
389    // Use ANDPS to simulate FABS.
390    setOperationAction(ISD::FABS , MVT::f32, Custom);
391
392    // Use XORP to simulate FNEG.
393    setOperationAction(ISD::FNEG , MVT::f32, Custom);
394
395    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
396
397    // Use ANDPS and ORPS to simulate FCOPYSIGN.
398    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
399    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
400
401    // We don't support sin/cos/fmod
402    setOperationAction(ISD::FSIN , MVT::f32, Expand);
403    setOperationAction(ISD::FCOS , MVT::f32, Expand);
404
405    // Special cases we handle for FP constants.
406    addLegalFPImmediate(APFloat(+0.0f)); // xorps
407    addLegalFPImmediate(APFloat(+0.0)); // FLD0
408    addLegalFPImmediate(APFloat(+1.0)); // FLD1
409    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
410    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
411
412    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
413    // this though and handle it in InstructionSelectPreprocess so that
414    // dagcombine2 can hack on these.
415    if (Fast) {
416      setConvertAction(MVT::f32, MVT::f64, Expand);
417      setConvertAction(MVT::f32, MVT::f80, Expand);
418      setConvertAction(MVT::f80, MVT::f32, Expand);
419      setConvertAction(MVT::f64, MVT::f32, Expand);
420      // And x87->x87 truncations also.
421      setConvertAction(MVT::f80, MVT::f64, Expand);
422    }
423
424    if (!UnsafeFPMath) {
425      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
426      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
427    }
428  } else {
429    // f32 and f64 in x87.
430    // Set up the FP register classes.
431    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
432    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
433
434    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
435    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
436    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
437    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
438
439    // Floating truncations go through memory.  If optimizing, we lie about
440    // this though and handle it in InstructionSelectPreprocess so that
441    // dagcombine2 can hack on these.
442    if (Fast) {
443      setConvertAction(MVT::f80, MVT::f32, Expand);
444      setConvertAction(MVT::f64, MVT::f32, Expand);
445      setConvertAction(MVT::f80, MVT::f64, Expand);
446    }
447
448    if (!UnsafeFPMath) {
449      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
450      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
451    }
452    addLegalFPImmediate(APFloat(+0.0)); // FLD0
453    addLegalFPImmediate(APFloat(+1.0)); // FLD1
454    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
455    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
456    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
457    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
458    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
459    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
460  }
461
462  // Long double always uses X87.
463  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
464  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
465  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
466  {
467    APFloat TmpFlt(+0.0);
468    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
469    addLegalFPImmediate(TmpFlt);  // FLD0
470    TmpFlt.changeSign();
471    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
472    APFloat TmpFlt2(+1.0);
473    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
474    addLegalFPImmediate(TmpFlt2);  // FLD1
475    TmpFlt2.changeSign();
476    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
477  }
478
479  if (!UnsafeFPMath) {
480    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
481    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
482  }
483
484  // Always use a library call for pow.
485  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
486  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
487  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
488
489  // First set operation action for all vector types to expand. Then we
490  // will selectively turn on ones that can be effectively codegen'd.
491  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
492       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
493    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
494    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
495    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
496    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
497    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
498    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
499    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
500    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
501    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
502    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
503    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
504    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
505    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
506    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
507    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
508    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
509    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
510    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
511    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
512    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
513    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
514    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
515    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
516    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
517    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
518    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
519    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
520    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
521    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
522    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
523    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
524    setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand);
525    setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand);
526    setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand);
527    setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand);
528    setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand);
529    setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand);
530  }
531
532  if (Subtarget->hasMMX()) {
533    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
534    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
535    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
536    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
537
538    // FIXME: add MMX packed arithmetics
539
540    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
541    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
542    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
543    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
544
545    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
546    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
547    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
548    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
549
550    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
551    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
552
553    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
554    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
555    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
556    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
557    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
558    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
559    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
560
561    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
562    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
563    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
564    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
565    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
566    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
567    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
568
569    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
570    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
571    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
572    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
573    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
574    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
575    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
576
577    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
578    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
579    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
580    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
581    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
582    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
583    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
584
585    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
586    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
587    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
588    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
589
590    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
591    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
592    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
593    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
594
595    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
596    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
597    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
598  }
599
600  if (Subtarget->hasSSE1()) {
601    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
602
603    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
604    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
605    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
606    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
607    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
608    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
609    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
610    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
611    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
612    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
613    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
614  }
615
616  if (Subtarget->hasSSE2()) {
617    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
618    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
619    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
620    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
621    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
622
623    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
624    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
625    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
626    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
627    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
628    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
629    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
630    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
631    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
632    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
633    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
634    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
635    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
636    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
637    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
638
639    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
640    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
641    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
642    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
643    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
644
645    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
646    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
647      // Do not attempt to custom lower non-power-of-2 vectors
648      if (!isPowerOf2_32(MVT::getVectorNumElements(VT)))
649        continue;
650      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
651      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
652      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
653    }
654    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
655    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
656    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
657    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
658    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
659    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
660    if (Subtarget->is64Bit()) {
661      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
662      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
663    }
664
665    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
666    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
667      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
668      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
669      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
670      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
671      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
672      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
673      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
674      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
675      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
676      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
677    }
678
679    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
680
681    // Custom lower v2i64 and v2f64 selects.
682    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
683    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
684    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
685    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
686  }
687
688  if (Subtarget->hasSSE41()) {
689    // FIXME: Do we need to handle scalar-to-vector here?
690    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
691
692    // i8 and i16 vectors are custom , because the source register and source
693    // source memory operand types are not the same width.  f32 vectors are
694    // custom since the immediate controlling the insert encodes additional
695    // information.
696    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
697    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
698    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
699    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
700
701    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
702    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
703    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
704    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
705
706    if (Subtarget->is64Bit()) {
707      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
708      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
709    }
710  }
711
712  // We want to custom lower some of our intrinsics.
713  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
714
715  // We have target-specific dag combine patterns for the following nodes:
716  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
717  setTargetDAGCombine(ISD::SELECT);
718  setTargetDAGCombine(ISD::STORE);
719
720  computeRegisterProperties();
721
722  // FIXME: These should be based on subtarget info. Plus, the values should
723  // be smaller when we are in optimizing for size mode.
724  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
725  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
726  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
727  allowUnalignedMemoryAccesses = true; // x86 supports it!
728  setPrefLoopAlignment(16);
729}
730
731/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
732/// the desired ByVal argument alignment.
733static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
734  if (MaxAlign == 16)
735    return;
736  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
737    if (VTy->getBitWidth() == 128)
738      MaxAlign = 16;
739  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
740    unsigned EltAlign = 0;
741    getMaxByValAlign(ATy->getElementType(), EltAlign);
742    if (EltAlign > MaxAlign)
743      MaxAlign = EltAlign;
744  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
745    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
746      unsigned EltAlign = 0;
747      getMaxByValAlign(STy->getElementType(i), EltAlign);
748      if (EltAlign > MaxAlign)
749        MaxAlign = EltAlign;
750      if (MaxAlign == 16)
751        break;
752    }
753  }
754  return;
755}
756
757/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
758/// function arguments in the caller parameter area. For X86, aggregates
759/// that contain SSE vectors are placed at 16-byte boundaries while the rest
760/// are at 4-byte boundaries.
761unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
762  if (Subtarget->is64Bit())
763    return getTargetData()->getABITypeAlignment(Ty);
764  unsigned Align = 4;
765  if (Subtarget->hasSSE1())
766    getMaxByValAlign(Ty, Align);
767  return Align;
768}
769
770/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
771/// jumptable.
772SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
773                                                      SelectionDAG &DAG) const {
774  if (usesGlobalOffsetTable())
775    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
776  if (!Subtarget->isPICStyleRIPRel())
777    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
778  return Table;
779}
780
781//===----------------------------------------------------------------------===//
782//               Return Value Calling Convention Implementation
783//===----------------------------------------------------------------------===//
784
785#include "X86GenCallingConv.inc"
786
787/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
788/// exists skip possible ISD:TokenFactor.
789static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
790  if (Chain.getOpcode() == X86ISD::TAILCALL) {
791    return Chain;
792  } else if (Chain.getOpcode() == ISD::TokenFactor) {
793    if (Chain.getNumOperands() &&
794        Chain.getOperand(0).getOpcode() == X86ISD::TAILCALL)
795      return Chain.getOperand(0);
796  }
797  return Chain;
798}
799
800/// LowerRET - Lower an ISD::RET node.
801SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
802  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
803
804  SmallVector<CCValAssign, 16> RVLocs;
805  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
806  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
807  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
808  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
809
810  // If this is the first return lowered for this function, add the regs to the
811  // liveout set for the function.
812  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
813    for (unsigned i = 0; i != RVLocs.size(); ++i)
814      if (RVLocs[i].isRegLoc())
815        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
816  }
817  SDOperand Chain = Op.getOperand(0);
818
819  // Handle tail call return.
820  Chain = GetPossiblePreceedingTailCall(Chain);
821  if (Chain.getOpcode() == X86ISD::TAILCALL) {
822    SDOperand TailCall = Chain;
823    SDOperand TargetAddress = TailCall.getOperand(1);
824    SDOperand StackAdjustment = TailCall.getOperand(2);
825    assert(((TargetAddress.getOpcode() == ISD::Register &&
826               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
827                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
828              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
829              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
830             "Expecting an global address, external symbol, or register");
831    assert(StackAdjustment.getOpcode() == ISD::Constant &&
832           "Expecting a const value");
833
834    SmallVector<SDOperand,8> Operands;
835    Operands.push_back(Chain.getOperand(0));
836    Operands.push_back(TargetAddress);
837    Operands.push_back(StackAdjustment);
838    // Copy registers used by the call. Last operand is a flag so it is not
839    // copied.
840    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
841      Operands.push_back(Chain.getOperand(i));
842    }
843    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
844                       Operands.size());
845  }
846
847  // Regular return.
848  SDOperand Flag;
849
850  // Copy the result values into the output registers.
851  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
852      RVLocs[0].getLocReg() != X86::ST0) {
853    for (unsigned i = 0; i != RVLocs.size(); ++i) {
854      CCValAssign &VA = RVLocs[i];
855      assert(VA.isRegLoc() && "Can only return in registers!");
856      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
857                               Flag);
858      Flag = Chain.getValue(1);
859    }
860  } else {
861    // We need to handle a destination of ST0 specially, because it isn't really
862    // a register.
863    SDOperand Value = Op.getOperand(1);
864
865    // an XMM register onto the fp-stack.  Do this with an FP_EXTEND to f80.
866    // This will get legalized into a load/store if it can't get optimized away.
867    if (isScalarFPTypeInSSEReg(RVLocs[0].getValVT()))
868      Value = DAG.getNode(ISD::FP_EXTEND, MVT::f80, Value);
869
870    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
871    SDOperand Ops[] = { Chain, Value };
872    Chain = DAG.getNode(X86ISD::FP_SET_ST0, Tys, Ops, 2);
873    Flag = Chain.getValue(1);
874  }
875
876  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
877  if (Flag.Val)
878    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
879  else
880    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
881}
882
883
884/// LowerCallResult - Lower the result values of an ISD::CALL into the
885/// appropriate copies out of appropriate physical registers.  This assumes that
886/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
887/// being lowered.  The returns a SDNode with the same number of values as the
888/// ISD::CALL.
889SDNode *X86TargetLowering::
890LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
891                unsigned CallingConv, SelectionDAG &DAG) {
892
893  // Assign locations to each value returned by this call.
894  SmallVector<CCValAssign, 16> RVLocs;
895  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
896  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
897  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
898
899  SmallVector<SDOperand, 8> ResultVals;
900
901  // Copy all of the result registers out of their specified physreg.
902  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
903    for (unsigned i = 0; i != RVLocs.size(); ++i) {
904      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
905                                 RVLocs[i].getValVT(), InFlag).getValue(1);
906      InFlag = Chain.getValue(2);
907      ResultVals.push_back(Chain.getValue(0));
908    }
909  } else {
910    // Copies from the FP stack are special, as ST0 isn't a valid register
911    // before the fp stackifier runs.
912
913    // Copy ST0 into an RFP register with FP_GET_RESULT.  If this will end up
914    // in an SSE register, copy it out as F80 and do a truncate, otherwise use
915    // the specified value type.
916    MVT::ValueType GetResultTy = RVLocs[0].getValVT();
917    if (isScalarFPTypeInSSEReg(GetResultTy))
918      GetResultTy = MVT::f80;
919    SDVTList Tys = DAG.getVTList(GetResultTy, MVT::Other, MVT::Flag);
920    SDOperand GROps[] = { Chain, InFlag };
921    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_ST0, Tys, GROps, 2);
922    Chain  = RetVal.getValue(1);
923    InFlag = RetVal.getValue(2);
924
925    // If we want the result in an SSE register, use an FP_TRUNCATE to get it
926    // there.
927    if (GetResultTy != RVLocs[0].getValVT())
928      RetVal = DAG.getNode(ISD::FP_ROUND, RVLocs[0].getValVT(), RetVal,
929                           // This truncation won't change the value.
930                           DAG.getIntPtrConstant(1));
931
932    ResultVals.push_back(RetVal);
933  }
934
935  // Merge everything together with a MERGE_VALUES node.
936  ResultVals.push_back(Chain);
937  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
938                     &ResultVals[0], ResultVals.size()).Val;
939}
940
941/// LowerCallResultToTwo64BitRegs - Lower the result values of an x86-64
942/// ISD::CALL where the results are known to be in two 64-bit registers,
943/// e.g. XMM0 and XMM1. This simplify store the two values back to the
944/// fixed stack slot allocated for StructRet.
945SDNode *X86TargetLowering::
946LowerCallResultToTwo64BitRegs(SDOperand Chain, SDOperand InFlag,
947                              SDNode *TheCall, unsigned Reg1, unsigned Reg2,
948                              MVT::ValueType VT, SelectionDAG &DAG) {
949  SDOperand RetVal1 = DAG.getCopyFromReg(Chain, Reg1, VT, InFlag);
950  Chain = RetVal1.getValue(1);
951  InFlag = RetVal1.getValue(2);
952  SDOperand RetVal2 = DAG.getCopyFromReg(Chain, Reg2, VT, InFlag);
953  Chain = RetVal2.getValue(1);
954  InFlag = RetVal2.getValue(2);
955  SDOperand FIN = TheCall->getOperand(5);
956  Chain = DAG.getStore(Chain, RetVal1, FIN, NULL, 0);
957  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
958  Chain = DAG.getStore(Chain, RetVal2, FIN, NULL, 0);
959  return Chain.Val;
960}
961
962/// LowerCallResultToTwoX87Regs - Lower the result values of an x86-64 ISD::CALL
963/// where the results are known to be in ST0 and ST1.
964SDNode *X86TargetLowering::
965LowerCallResultToTwoX87Regs(SDOperand Chain, SDOperand InFlag,
966                            SDNode *TheCall, SelectionDAG &DAG) {
967  SmallVector<SDOperand, 8> ResultVals;
968  const MVT::ValueType VTs[] = { MVT::f80, MVT::f80, MVT::Other, MVT::Flag };
969  SDVTList Tys = DAG.getVTList(VTs, 4);
970  SDOperand Ops[] = { Chain, InFlag };
971  SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_ST0_ST1, Tys, Ops, 2);
972  Chain = RetVal.getValue(2);
973  SDOperand FIN = TheCall->getOperand(5);
974  Chain = DAG.getStore(Chain, RetVal.getValue(1), FIN, NULL, 0);
975  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(16));
976  Chain = DAG.getStore(Chain, RetVal, FIN, NULL, 0);
977  return Chain.Val;
978}
979
980//===----------------------------------------------------------------------===//
981//                C & StdCall & Fast Calling Convention implementation
982//===----------------------------------------------------------------------===//
983//  StdCall calling convention seems to be standard for many Windows' API
984//  routines and around. It differs from C calling convention just a little:
985//  callee should clean up the stack, not caller. Symbols should be also
986//  decorated in some fancy way :) It doesn't support any vector arguments.
987//  For info on fast calling convention see Fast Calling Convention (tail call)
988//  implementation LowerX86_32FastCCCallTo.
989
990/// AddLiveIn - This helper function adds the specified physical register to the
991/// MachineFunction as a live in value.  It also creates a corresponding virtual
992/// register for it.
993static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
994                          const TargetRegisterClass *RC) {
995  assert(RC->contains(PReg) && "Not the correct regclass!");
996  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
997  MF.getRegInfo().addLiveIn(PReg, VReg);
998  return VReg;
999}
1000
1001/// CallIsStructReturn - Determines whether a CALL node uses struct return
1002/// semantics.
1003static bool CallIsStructReturn(SDOperand Op) {
1004  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1005  if (!NumOps)
1006    return false;
1007
1008  ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(6));
1009  return Flags->getValue() & ISD::ParamFlags::StructReturn;
1010}
1011
1012/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1013/// return semantics.
1014static bool ArgsAreStructReturn(SDOperand Op) {
1015  unsigned NumArgs = Op.Val->getNumValues() - 1;
1016  if (!NumArgs)
1017    return false;
1018
1019  ConstantSDNode *Flags = cast<ConstantSDNode>(Op.getOperand(3));
1020  return Flags->getValue() & ISD::ParamFlags::StructReturn;
1021}
1022
1023/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires the
1024/// callee to pop its own arguments. Callee pop is necessary to support tail
1025/// calls.
1026bool X86TargetLowering::IsCalleePop(SDOperand Op) {
1027  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1028  if (IsVarArg)
1029    return false;
1030
1031  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1032  default:
1033    return false;
1034  case CallingConv::X86_StdCall:
1035    return !Subtarget->is64Bit();
1036  case CallingConv::X86_FastCall:
1037    return !Subtarget->is64Bit();
1038  case CallingConv::Fast:
1039    return PerformTailCallOpt;
1040  }
1041}
1042
1043/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or
1044/// FORMAL_ARGUMENTS node.
1045CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const {
1046  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1047
1048  if (Subtarget->is64Bit()) {
1049    if (CC == CallingConv::Fast && PerformTailCallOpt)
1050      return CC_X86_64_TailCall;
1051    else
1052      return CC_X86_64_C;
1053  }
1054
1055  if (CC == CallingConv::X86_FastCall)
1056    return CC_X86_32_FastCall;
1057  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1058    return CC_X86_32_TailCall;
1059  else
1060    return CC_X86_32_C;
1061}
1062
1063/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1064/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1065NameDecorationStyle
1066X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) {
1067  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1068  if (CC == CallingConv::X86_FastCall)
1069    return FastCall;
1070  else if (CC == CallingConv::X86_StdCall)
1071    return StdCall;
1072  return None;
1073}
1074
1075/// IsPossiblyOverwrittenArgumentOfTailCall - Check if the operand could
1076/// possibly be overwritten when lowering the outgoing arguments in a tail
1077/// call. Currently the implementation of this call is very conservative and
1078/// assumes all arguments sourcing from FORMAL_ARGUMENTS or a CopyFromReg with
1079/// virtual registers would be overwritten by direct lowering.
1080static bool IsPossiblyOverwrittenArgumentOfTailCall(SDOperand Op,
1081                                                    MachineFrameInfo * MFI) {
1082  RegisterSDNode * OpReg = NULL;
1083  FrameIndexSDNode * FrameIdxNode = NULL;
1084  int FrameIdx = 0;
1085  if (Op.getOpcode() == ISD::FORMAL_ARGUMENTS ||
1086      (Op.getOpcode()== ISD::CopyFromReg &&
1087       (OpReg = dyn_cast<RegisterSDNode>(Op.getOperand(1))) &&
1088       (OpReg->getReg() >= TargetRegisterInfo::FirstVirtualRegister)) ||
1089      (Op.getOpcode() == ISD::LOAD &&
1090       (FrameIdxNode = dyn_cast<FrameIndexSDNode>(Op.getOperand(1))) &&
1091       (MFI->isFixedObjectIndex((FrameIdx = FrameIdxNode->getIndex()))) &&
1092       (MFI->getObjectOffset(FrameIdx) >= 0)))
1093    return true;
1094  return false;
1095}
1096
1097/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1098/// in a register before calling.
1099bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1100  return !IsTailCall && !Is64Bit &&
1101    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1102    Subtarget->isPICStyleGOT();
1103}
1104
1105
1106/// CallRequiresFnAddressInReg - Check whether the call requires the function
1107/// address to be loaded in a register.
1108bool
1109X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1110  return !Is64Bit && IsTailCall &&
1111    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1112    Subtarget->isPICStyleGOT();
1113}
1114
1115/// CopyTailCallClobberedArgumentsToVRegs - Create virtual registers for all
1116/// arguments to force loading and guarantee that arguments sourcing from
1117/// incomming parameters are not overwriting each other.
1118static SDOperand
1119CopyTailCallClobberedArgumentsToVRegs(SDOperand Chain,
1120     SmallVector<std::pair<unsigned, SDOperand>, 8> &TailCallClobberedVRegs,
1121                                      SelectionDAG &DAG,
1122                                      MachineFunction &MF,
1123                                      const TargetLowering * TL) {
1124
1125  SDOperand InFlag;
1126  for (unsigned i = 0, e = TailCallClobberedVRegs.size(); i != e; i++) {
1127    SDOperand Arg = TailCallClobberedVRegs[i].second;
1128    unsigned Idx = TailCallClobberedVRegs[i].first;
1129    unsigned VReg =
1130      MF.getRegInfo().
1131      createVirtualRegister(TL->getRegClassFor(Arg.getValueType()));
1132    Chain = DAG.getCopyToReg(Chain, VReg, Arg, InFlag);
1133    InFlag = Chain.getValue(1);
1134    Arg = DAG.getCopyFromReg(Chain, VReg, Arg.getValueType(), InFlag);
1135    TailCallClobberedVRegs[i] = std::make_pair(Idx, Arg);
1136    Chain = Arg.getValue(1);
1137    InFlag = Arg.getValue(2);
1138  }
1139  return Chain;
1140}
1141
1142/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1143/// by "Src" to address "Dst" with size and alignment information specified by
1144/// the specific parameter attribute. The copy will be passed as a byval function
1145/// parameter.
1146static SDOperand
1147CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1148                          ISD::ParamFlags::ParamFlagsTy Flags,
1149                          SelectionDAG &DAG) {
1150  unsigned Align = ISD::ParamFlags::One <<
1151    ((Flags & ISD::ParamFlags::ByValAlign) >> ISD::ParamFlags::ByValAlignOffs);
1152  unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1153    ISD::ParamFlags::ByValSizeOffs;
1154  SDOperand AlignNode    = DAG.getConstant(Align, MVT::i32);
1155  SDOperand SizeNode     = DAG.getConstant(Size, MVT::i32);
1156  SDOperand AlwaysInline = DAG.getConstant(1, MVT::i32);
1157  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, AlignNode, AlwaysInline);
1158}
1159
1160SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
1161                                              const CCValAssign &VA,
1162                                              MachineFrameInfo *MFI,
1163                                              unsigned CC,
1164                                              SDOperand Root, unsigned i) {
1165  // Create the nodes corresponding to a load from this parameter slot.
1166  ISD::ParamFlags::ParamFlagsTy Flags =
1167                cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
1168  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1169  bool isByVal = Flags & ISD::ParamFlags::ByVal;
1170  bool isImmutable = !AlwaysUseMutable && !isByVal;
1171
1172  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1173  // changed with more analysis.
1174  // In case of tail call optimization mark all arguments mutable. Since they
1175  // could be overwritten by lowering of arguments in case of a tail call.
1176  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1177                                  VA.getLocMemOffset(), isImmutable);
1178  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1179  if (isByVal)
1180    return FIN;
1181  return DAG.getLoad(VA.getValVT(), Root, FIN,
1182                     PseudoSourceValue::getFixedStack(), FI);
1183}
1184
1185SDOperand
1186X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
1187  MachineFunction &MF = DAG.getMachineFunction();
1188  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1189
1190  const Function* Fn = MF.getFunction();
1191  if (Fn->hasExternalLinkage() &&
1192      Subtarget->isTargetCygMing() &&
1193      Fn->getName() == "main")
1194    FuncInfo->setForceFramePointer(true);
1195
1196  // Decorate the function name.
1197  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1198
1199  MachineFrameInfo *MFI = MF.getFrameInfo();
1200  SDOperand Root = Op.getOperand(0);
1201  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1202  unsigned CC = MF.getFunction()->getCallingConv();
1203  bool Is64Bit = Subtarget->is64Bit();
1204
1205  assert(!(isVarArg && CC == CallingConv::Fast) &&
1206         "Var args not supported with calling convention fastcc");
1207
1208  // Assign locations to all of the incoming arguments.
1209  SmallVector<CCValAssign, 16> ArgLocs;
1210  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1211  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
1212
1213  SmallVector<SDOperand, 8> ArgValues;
1214  unsigned LastVal = ~0U;
1215  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1216    CCValAssign &VA = ArgLocs[i];
1217    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1218    // places.
1219    assert(VA.getValNo() != LastVal &&
1220           "Don't support value assigned to multiple locs yet");
1221    LastVal = VA.getValNo();
1222
1223    if (VA.isRegLoc()) {
1224      MVT::ValueType RegVT = VA.getLocVT();
1225      TargetRegisterClass *RC;
1226      if (RegVT == MVT::i32)
1227        RC = X86::GR32RegisterClass;
1228      else if (Is64Bit && RegVT == MVT::i64)
1229        RC = X86::GR64RegisterClass;
1230      else if (RegVT == MVT::f32)
1231        RC = X86::FR32RegisterClass;
1232      else if (RegVT == MVT::f64)
1233        RC = X86::FR64RegisterClass;
1234      else {
1235        assert(MVT::isVector(RegVT));
1236        if (Is64Bit && MVT::getSizeInBits(RegVT) == 64) {
1237          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1238          RegVT = MVT::i64;
1239        } else
1240          RC = X86::VR128RegisterClass;
1241      }
1242
1243      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1244      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1245
1246      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1247      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1248      // right size.
1249      if (VA.getLocInfo() == CCValAssign::SExt)
1250        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1251                               DAG.getValueType(VA.getValVT()));
1252      else if (VA.getLocInfo() == CCValAssign::ZExt)
1253        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1254                               DAG.getValueType(VA.getValVT()));
1255
1256      if (VA.getLocInfo() != CCValAssign::Full)
1257        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1258
1259      // Handle MMX values passed in GPRs.
1260      if (Is64Bit && RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1261          MVT::getSizeInBits(RegVT) == 64)
1262        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1263
1264      ArgValues.push_back(ArgValue);
1265    } else {
1266      assert(VA.isMemLoc());
1267      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1268    }
1269  }
1270
1271  unsigned StackSize = CCInfo.getNextStackOffset();
1272  // align stack specially for tail calls
1273  if (CC == CallingConv::Fast)
1274    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1275
1276  // If the function takes variable number of arguments, make a frame index for
1277  // the start of the first vararg value... for expansion of llvm.va_start.
1278  if (isVarArg) {
1279    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1280      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1281    }
1282    if (Is64Bit) {
1283      static const unsigned GPR64ArgRegs[] = {
1284        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1285      };
1286      static const unsigned XMMArgRegs[] = {
1287        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1288        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1289      };
1290
1291      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1292      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1293
1294      // For X86-64, if there are vararg parameters that are passed via
1295      // registers, then we must store them to their spots on the stack so they
1296      // may be loaded by deferencing the result of va_next.
1297      VarArgsGPOffset = NumIntRegs * 8;
1298      VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1299      RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1300
1301      // Store the integer parameter registers.
1302      SmallVector<SDOperand, 8> MemOps;
1303      SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1304      SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1305                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1306      for (; NumIntRegs != 6; ++NumIntRegs) {
1307        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1308                                  X86::GR64RegisterClass);
1309        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1310        SDOperand Store =
1311          DAG.getStore(Val.getValue(1), Val, FIN,
1312                       PseudoSourceValue::getFixedStack(),
1313                       RegSaveFrameIndex);
1314        MemOps.push_back(Store);
1315        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1316                          DAG.getIntPtrConstant(8));
1317      }
1318
1319      // Now store the XMM (fp + vector) parameter registers.
1320      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1321                        DAG.getIntPtrConstant(VarArgsFPOffset));
1322      for (; NumXMMRegs != 8; ++NumXMMRegs) {
1323        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1324                                  X86::VR128RegisterClass);
1325        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1326        SDOperand Store =
1327          DAG.getStore(Val.getValue(1), Val, FIN,
1328                       PseudoSourceValue::getFixedStack(),
1329                       RegSaveFrameIndex);
1330        MemOps.push_back(Store);
1331        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1332                          DAG.getIntPtrConstant(16));
1333      }
1334      if (!MemOps.empty())
1335          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1336                             &MemOps[0], MemOps.size());
1337    }
1338  }
1339
1340  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1341  // arguments and the arguments after the retaddr has been pushed are
1342  // aligned.
1343  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1344      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1345      (StackSize & 7) == 0)
1346    StackSize += 4;
1347
1348  ArgValues.push_back(Root);
1349
1350  // Some CCs need callee pop.
1351  if (IsCalleePop(Op)) {
1352    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1353    BytesCallerReserves = 0;
1354  } else {
1355    BytesToPopOnReturn  = 0; // Callee pops nothing.
1356    // If this is an sret function, the return should pop the hidden pointer.
1357    if (!Is64Bit && ArgsAreStructReturn(Op))
1358      BytesToPopOnReturn = 4;
1359    BytesCallerReserves = StackSize;
1360  }
1361
1362  if (!Is64Bit) {
1363    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1364    if (CC == CallingConv::X86_FastCall)
1365      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1366  }
1367
1368  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1369
1370  // Return the new list of results.
1371  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1372                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1373}
1374
1375SDOperand
1376X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1377                                    const SDOperand &StackPtr,
1378                                    const CCValAssign &VA,
1379                                    SDOperand Chain,
1380                                    SDOperand Arg) {
1381  unsigned LocMemOffset = VA.getLocMemOffset();
1382  SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1383  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1384  SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1385  ISD::ParamFlags::ParamFlagsTy Flags =
1386            cast<ConstantSDNode>(FlagsOp)->getValue();
1387  if (Flags & ISD::ParamFlags::ByVal) {
1388    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1389  }
1390  return DAG.getStore(Chain, Arg, PtrOff,
1391                      PseudoSourceValue::getStack(), LocMemOffset);
1392}
1393
1394/// ClassifyX86_64SRetCallReturn - Classify how to implement a x86-64
1395/// struct return call to the specified function. X86-64 ABI specifies
1396/// some SRet calls are actually returned in registers. Since current
1397/// LLVM cannot represent multi-value calls, they are represent as
1398/// calls where the results are passed in a hidden struct provided by
1399/// the caller. This function examines the type of the struct to
1400/// determine the correct way to implement the call.
1401X86::X86_64SRet
1402X86TargetLowering::ClassifyX86_64SRetCallReturn(const Function *Fn) {
1403  // FIXME: Disabled for now.
1404  return X86::InMemory;
1405
1406  const PointerType *PTy = cast<PointerType>(Fn->arg_begin()->getType());
1407  const Type *RTy = PTy->getElementType();
1408  unsigned Size = getTargetData()->getABITypeSize(RTy);
1409  if (Size != 16 && Size != 32)
1410    return X86::InMemory;
1411
1412  if (Size == 32) {
1413    const StructType *STy = dyn_cast<StructType>(RTy);
1414    if (!STy) return X86::InMemory;
1415    if (STy->getNumElements() == 2 &&
1416        STy->getElementType(0) == Type::X86_FP80Ty &&
1417        STy->getElementType(1) == Type::X86_FP80Ty)
1418      return X86::InX87;
1419  }
1420
1421  bool AllFP = true;
1422  for (Type::subtype_iterator I = RTy->subtype_begin(), E = RTy->subtype_end();
1423       I != E; ++I) {
1424    const Type *STy = I->get();
1425    if (!STy->isFPOrFPVector()) {
1426      AllFP = false;
1427      break;
1428    }
1429  }
1430
1431  if (AllFP)
1432    return X86::InSSE;
1433  return X86::InGPR64;
1434}
1435
1436void X86TargetLowering::X86_64AnalyzeSRetCallOperands(SDNode *TheCall,
1437                                                      CCAssignFn *Fn,
1438                                                      CCState &CCInfo) {
1439  unsigned NumOps = (TheCall->getNumOperands() - 5) / 2;
1440  for (unsigned i = 1; i != NumOps; ++i) {
1441    MVT::ValueType ArgVT = TheCall->getOperand(5+2*i).getValueType();
1442    SDOperand FlagOp = TheCall->getOperand(5+2*i+1);
1443    unsigned ArgFlags =cast<ConstantSDNode>(FlagOp)->getValue();
1444    if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo)) {
1445      cerr << "Call operand #" << i << " has unhandled type "
1446           << MVT::getValueTypeString(ArgVT) << "\n";
1447      abort();
1448    }
1449  }
1450}
1451
1452SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1453  MachineFunction &MF = DAG.getMachineFunction();
1454  MachineFrameInfo * MFI = MF.getFrameInfo();
1455  SDOperand Chain     = Op.getOperand(0);
1456  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1457  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1458  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1459                        && CC == CallingConv::Fast && PerformTailCallOpt;
1460  SDOperand Callee    = Op.getOperand(4);
1461  bool Is64Bit        = Subtarget->is64Bit();
1462  bool IsStructRet    = CallIsStructReturn(Op);
1463
1464  assert(!(isVarArg && CC == CallingConv::Fast) &&
1465         "Var args not supported with calling convention fastcc");
1466
1467  // Analyze operands of the call, assigning locations to each operand.
1468  SmallVector<CCValAssign, 16> ArgLocs;
1469  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1470  CCAssignFn *CCFn = CCAssignFnForNode(Op);
1471
1472  X86::X86_64SRet SRetMethod = X86::InMemory;
1473  if (Is64Bit && IsStructRet)
1474    // FIXME: We can't figure out type of the sret structure for indirect
1475    // calls. We need to copy more information from CallSite to the ISD::CALL
1476    // node.
1477    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1478      SRetMethod =
1479        ClassifyX86_64SRetCallReturn(dyn_cast<Function>(G->getGlobal()));
1480
1481  // UGLY HACK! For x86-64, some 128-bit aggregates are returns in a pair of
1482  // registers. Unfortunately, llvm does not support i128 yet so we pretend it's
1483  // a sret call.
1484  if (SRetMethod != X86::InMemory)
1485    X86_64AnalyzeSRetCallOperands(Op.Val, CCFn, CCInfo);
1486  else
1487    CCInfo.AnalyzeCallOperands(Op.Val, CCFn);
1488
1489  // Get a count of how many bytes are to be pushed on the stack.
1490  unsigned NumBytes = CCInfo.getNextStackOffset();
1491  if (CC == CallingConv::Fast)
1492    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1493
1494  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1495  // arguments and the arguments after the retaddr has been pushed are aligned.
1496  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1497      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1498      (NumBytes & 7) == 0)
1499    NumBytes += 4;
1500
1501  int FPDiff = 0;
1502  if (IsTailCall) {
1503    // Lower arguments at fp - stackoffset + fpdiff.
1504    unsigned NumBytesCallerPushed =
1505      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1506    FPDiff = NumBytesCallerPushed - NumBytes;
1507
1508    // Set the delta of movement of the returnaddr stackslot.
1509    // But only set if delta is greater than previous delta.
1510    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1511      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1512  }
1513
1514  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1515
1516  SDOperand RetAddrFrIdx;
1517  if (IsTailCall) {
1518    // Adjust the Return address stack slot.
1519    if (FPDiff) {
1520      MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32;
1521      RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1522      // Load the "old" Return address.
1523      RetAddrFrIdx =
1524        DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1525      Chain = SDOperand(RetAddrFrIdx.Val, 1);
1526    }
1527  }
1528
1529  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1530  SmallVector<std::pair<unsigned, SDOperand>, 8> TailCallClobberedVRegs;
1531  SmallVector<SDOperand, 8> MemOpChains;
1532
1533  SDOperand StackPtr;
1534
1535  // Walk the register/memloc assignments, inserting copies/loads.  For tail
1536  // calls, remember all arguments for later special lowering.
1537  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1538    CCValAssign &VA = ArgLocs[i];
1539    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1540
1541    // Promote the value if needed.
1542    switch (VA.getLocInfo()) {
1543    default: assert(0 && "Unknown loc info!");
1544    case CCValAssign::Full: break;
1545    case CCValAssign::SExt:
1546      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1547      break;
1548    case CCValAssign::ZExt:
1549      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1550      break;
1551    case CCValAssign::AExt:
1552      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1553      break;
1554    }
1555
1556    if (VA.isRegLoc()) {
1557      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1558    } else {
1559      if (!IsTailCall) {
1560        assert(VA.isMemLoc());
1561        if (StackPtr.Val == 0)
1562          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1563
1564        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1565                                               Arg));
1566      } else if (IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)) {
1567        TailCallClobberedVRegs.push_back(std::make_pair(i,Arg));
1568      }
1569    }
1570  }
1571
1572  if (!MemOpChains.empty())
1573    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1574                        &MemOpChains[0], MemOpChains.size());
1575
1576  // Build a sequence of copy-to-reg nodes chained together with token chain
1577  // and flag operands which copy the outgoing args into registers.
1578  SDOperand InFlag;
1579  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1580    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1581                             InFlag);
1582    InFlag = Chain.getValue(1);
1583  }
1584
1585  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1586  // GOT pointer.
1587  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1588    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1589                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1590                             InFlag);
1591    InFlag = Chain.getValue(1);
1592  }
1593  // If we are tail calling and generating PIC/GOT style code load the address
1594  // of the callee into ecx. The value in ecx is used as target of the tail
1595  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1596  // calls on PIC/GOT architectures. Normally we would just put the address of
1597  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1598  // restored (since ebx is callee saved) before jumping to the target@PLT.
1599  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1600    // Note: The actual moving to ecx is done further down.
1601    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1602    if (G &&  !G->getGlobal()->hasHiddenVisibility() &&
1603        !G->getGlobal()->hasProtectedVisibility())
1604      Callee =  LowerGlobalAddress(Callee, DAG);
1605    else if (isa<ExternalSymbolSDNode>(Callee))
1606      Callee = LowerExternalSymbol(Callee,DAG);
1607  }
1608
1609  if (Is64Bit && isVarArg) {
1610    // From AMD64 ABI document:
1611    // For calls that may call functions that use varargs or stdargs
1612    // (prototype-less calls or calls to functions containing ellipsis (...) in
1613    // the declaration) %al is used as hidden argument to specify the number
1614    // of SSE registers used. The contents of %al do not need to match exactly
1615    // the number of registers, but must be an ubound on the number of SSE
1616    // registers used and is in the range 0 - 8 inclusive.
1617
1618    // Count the number of XMM registers allocated.
1619    static const unsigned XMMArgRegs[] = {
1620      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1621      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1622    };
1623    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1624
1625    Chain = DAG.getCopyToReg(Chain, X86::AL,
1626                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1627    InFlag = Chain.getValue(1);
1628  }
1629
1630
1631  // For tail calls lower the arguments to the 'real' stack slot.
1632  if (IsTailCall) {
1633    SmallVector<SDOperand, 8> MemOpChains2;
1634    SDOperand FIN;
1635    int FI = 0;
1636    // Do not flag preceeding copytoreg stuff together with the following stuff.
1637    InFlag = SDOperand();
1638
1639    Chain = CopyTailCallClobberedArgumentsToVRegs(Chain, TailCallClobberedVRegs,
1640                                                  DAG, MF, this);
1641
1642    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1643      CCValAssign &VA = ArgLocs[i];
1644      if (!VA.isRegLoc()) {
1645        assert(VA.isMemLoc());
1646        SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1647        SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1648        ISD::ParamFlags::ParamFlagsTy Flags =
1649                  cast<ConstantSDNode>(FlagsOp)->getValue();
1650        // Create frame index.
1651        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1652        uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1653        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1654        FIN = DAG.getFrameIndex(FI, MVT::i32);
1655
1656        // Find virtual register for this argument.
1657        bool Found=false;
1658        for (unsigned idx=0, e= TailCallClobberedVRegs.size(); idx < e; idx++)
1659          if (TailCallClobberedVRegs[idx].first==i) {
1660            Arg = TailCallClobberedVRegs[idx].second;
1661            Found=true;
1662            break;
1663          }
1664        assert(IsPossiblyOverwrittenArgumentOfTailCall(Arg, MFI)==false ||
1665          (Found==true && "No corresponding Argument was found"));
1666
1667        if (Flags & ISD::ParamFlags::ByVal) {
1668          // Copy relative to framepointer.
1669          MemOpChains2.push_back(CreateCopyOfByValArgument(Arg, FIN, Chain,
1670                                                           Flags, DAG));
1671        } else {
1672          // Store relative to framepointer.
1673          MemOpChains2.push_back(
1674            DAG.getStore(Chain, Arg, FIN,
1675                         PseudoSourceValue::getFixedStack(), FI));
1676        }
1677      }
1678    }
1679
1680    if (!MemOpChains2.empty())
1681      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1682                          &MemOpChains2[0], MemOpChains2.size());
1683
1684    // Store the return address to the appropriate stack slot.
1685    if (FPDiff) {
1686      // Calculate the new stack slot for the return address.
1687      int SlotSize = Is64Bit ? 8 : 4;
1688      int NewReturnAddrFI =
1689        MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1690      MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32;
1691      SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1692      Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1693                           PseudoSourceValue::getFixedStack(), NewReturnAddrFI);
1694    }
1695  }
1696
1697  // If the callee is a GlobalAddress node (quite common, every direct call is)
1698  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1699  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1700    // We should use extra load for direct calls to dllimported functions in
1701    // non-JIT mode.
1702    if ((IsTailCall || !Is64Bit ||
1703         getTargetMachine().getCodeModel() != CodeModel::Large)
1704        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1705                                           getTargetMachine(), true))
1706      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1707  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1708    if (IsTailCall || !Is64Bit ||
1709        getTargetMachine().getCodeModel() != CodeModel::Large)
1710      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1711  } else if (IsTailCall) {
1712    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1713
1714    Chain = DAG.getCopyToReg(Chain,
1715                             DAG.getRegister(Opc, getPointerTy()),
1716                             Callee,InFlag);
1717    Callee = DAG.getRegister(Opc, getPointerTy());
1718    // Add register as live out.
1719    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1720  }
1721
1722  // Returns a chain & a flag for retval copy to use.
1723  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1724  SmallVector<SDOperand, 8> Ops;
1725
1726  if (IsTailCall) {
1727    Ops.push_back(Chain);
1728    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1729    Ops.push_back(DAG.getIntPtrConstant(0));
1730    if (InFlag.Val)
1731      Ops.push_back(InFlag);
1732    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1733    InFlag = Chain.getValue(1);
1734
1735    // Returns a chain & a flag for retval copy to use.
1736    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1737    Ops.clear();
1738  }
1739
1740  Ops.push_back(Chain);
1741  Ops.push_back(Callee);
1742
1743  if (IsTailCall)
1744    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1745
1746  // Add an implicit use GOT pointer in EBX.
1747  if (!IsTailCall && !Is64Bit &&
1748      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1749      Subtarget->isPICStyleGOT())
1750    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1751
1752  // Add argument registers to the end of the list so that they are known live
1753  // into the call.
1754  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1755    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1756                                  RegsToPass[i].second.getValueType()));
1757
1758  if (InFlag.Val)
1759    Ops.push_back(InFlag);
1760
1761  if (IsTailCall) {
1762    assert(InFlag.Val &&
1763           "Flag must be set. Depend on flag being set in LowerRET");
1764    Chain = DAG.getNode(X86ISD::TAILCALL,
1765                        Op.Val->getVTList(), &Ops[0], Ops.size());
1766
1767    return SDOperand(Chain.Val, Op.ResNo);
1768  }
1769
1770  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1771  InFlag = Chain.getValue(1);
1772
1773  // Create the CALLSEQ_END node.
1774  unsigned NumBytesForCalleeToPush;
1775  if (IsCalleePop(Op))
1776    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1777  else if (!Is64Bit && IsStructRet)
1778    // If this is is a call to a struct-return function, the callee
1779    // pops the hidden struct pointer, so we have to push it back.
1780    // This is common for Darwin/X86, Linux & Mingw32 targets.
1781    NumBytesForCalleeToPush = 4;
1782  else
1783    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1784
1785  // Returns a flag for retval copy to use.
1786  Chain = DAG.getCALLSEQ_END(Chain,
1787                             DAG.getIntPtrConstant(NumBytes),
1788                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1789                             InFlag);
1790  InFlag = Chain.getValue(1);
1791
1792  // Handle result values, copying them out of physregs into vregs that we
1793  // return.
1794  switch (SRetMethod) {
1795  default:
1796    return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1797  case X86::InGPR64:
1798    return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val,
1799                                                   X86::RAX, X86::RDX,
1800                                                   MVT::i64, DAG), Op.ResNo);
1801  case X86::InSSE:
1802    return SDOperand(LowerCallResultToTwo64BitRegs(Chain, InFlag, Op.Val,
1803                                                   X86::XMM0, X86::XMM1,
1804                                                   MVT::f64, DAG), Op.ResNo);
1805  case X86::InX87:
1806    return SDOperand(LowerCallResultToTwoX87Regs(Chain, InFlag, Op.Val, DAG),
1807                     Op.ResNo);
1808  }
1809}
1810
1811
1812//===----------------------------------------------------------------------===//
1813//                Fast Calling Convention (tail call) implementation
1814//===----------------------------------------------------------------------===//
1815
1816//  Like std call, callee cleans arguments, convention except that ECX is
1817//  reserved for storing the tail called function address. Only 2 registers are
1818//  free for argument passing (inreg). Tail call optimization is performed
1819//  provided:
1820//                * tailcallopt is enabled
1821//                * caller/callee are fastcc
1822//  On X86_64 architecture with GOT-style position independent code only local
1823//  (within module) calls are supported at the moment.
1824//  To keep the stack aligned according to platform abi the function
1825//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1826//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1827//  If a tail called function callee has more arguments than the caller the
1828//  caller needs to make sure that there is room to move the RETADDR to. This is
1829//  achieved by reserving an area the size of the argument delta right after the
1830//  original REtADDR, but before the saved framepointer or the spilled registers
1831//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1832//  stack layout:
1833//    arg1
1834//    arg2
1835//    RETADDR
1836//    [ new RETADDR
1837//      move area ]
1838//    (possible EBP)
1839//    ESI
1840//    EDI
1841//    local1 ..
1842
1843/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1844/// for a 16 byte align requirement.
1845unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1846                                                        SelectionDAG& DAG) {
1847  if (PerformTailCallOpt) {
1848    MachineFunction &MF = DAG.getMachineFunction();
1849    const TargetMachine &TM = MF.getTarget();
1850    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1851    unsigned StackAlignment = TFI.getStackAlignment();
1852    uint64_t AlignMask = StackAlignment - 1;
1853    int64_t Offset = StackSize;
1854    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1855    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1856      // Number smaller than 12 so just add the difference.
1857      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1858    } else {
1859      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1860      Offset = ((~AlignMask) & Offset) + StackAlignment +
1861        (StackAlignment-SlotSize);
1862    }
1863    StackSize = Offset;
1864  }
1865  return StackSize;
1866}
1867
1868/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1869/// following the call is a return. A function is eligible if caller/callee
1870/// calling conventions match, currently only fastcc supports tail calls, and
1871/// the function CALL is immediatly followed by a RET.
1872bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1873                                                      SDOperand Ret,
1874                                                      SelectionDAG& DAG) const {
1875  if (!PerformTailCallOpt)
1876    return false;
1877
1878  // Check whether CALL node immediatly preceeds the RET node and whether the
1879  // return uses the result of the node or is a void return.
1880  unsigned NumOps = Ret.getNumOperands();
1881  if ((NumOps == 1 &&
1882       (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1883        Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
1884      (NumOps > 1 &&
1885       Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1886       Ret.getOperand(1) == SDOperand(Call.Val,0))) {
1887    MachineFunction &MF = DAG.getMachineFunction();
1888    unsigned CallerCC = MF.getFunction()->getCallingConv();
1889    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1890    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1891      SDOperand Callee = Call.getOperand(4);
1892      // On x86/32Bit PIC/GOT  tail calls are supported.
1893      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1894          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1895        return true;
1896
1897      // Can only do local tail calls (in same module, hidden or protected) on
1898      // x86_64 PIC/GOT at the moment.
1899      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1900        return G->getGlobal()->hasHiddenVisibility()
1901            || G->getGlobal()->hasProtectedVisibility();
1902    }
1903  }
1904
1905  return false;
1906}
1907
1908//===----------------------------------------------------------------------===//
1909//                           Other Lowering Hooks
1910//===----------------------------------------------------------------------===//
1911
1912
1913SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1914  MachineFunction &MF = DAG.getMachineFunction();
1915  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1916  int ReturnAddrIndex = FuncInfo->getRAIndex();
1917
1918  if (ReturnAddrIndex == 0) {
1919    // Set up a frame object for the return address.
1920    if (Subtarget->is64Bit())
1921      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1922    else
1923      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1924
1925    FuncInfo->setRAIndex(ReturnAddrIndex);
1926  }
1927
1928  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1929}
1930
1931
1932
1933/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1934/// specific condition code. It returns a false if it cannot do a direct
1935/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1936/// needed.
1937static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1938                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1939                           SelectionDAG &DAG) {
1940  X86CC = X86::COND_INVALID;
1941  if (!isFP) {
1942    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1943      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1944        // X > -1   -> X == 0, jump !sign.
1945        RHS = DAG.getConstant(0, RHS.getValueType());
1946        X86CC = X86::COND_NS;
1947        return true;
1948      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1949        // X < 0   -> X == 0, jump on sign.
1950        X86CC = X86::COND_S;
1951        return true;
1952      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1953        // X < 1   -> X <= 0
1954        RHS = DAG.getConstant(0, RHS.getValueType());
1955        X86CC = X86::COND_LE;
1956        return true;
1957      }
1958    }
1959
1960    switch (SetCCOpcode) {
1961    default: break;
1962    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1963    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1964    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1965    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1966    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1967    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1968    case ISD::SETULT: X86CC = X86::COND_B;  break;
1969    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1970    case ISD::SETULE: X86CC = X86::COND_BE; break;
1971    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1972    }
1973  } else {
1974    // On a floating point condition, the flags are set as follows:
1975    // ZF  PF  CF   op
1976    //  0 | 0 | 0 | X > Y
1977    //  0 | 0 | 1 | X < Y
1978    //  1 | 0 | 0 | X == Y
1979    //  1 | 1 | 1 | unordered
1980    bool Flip = false;
1981    switch (SetCCOpcode) {
1982    default: break;
1983    case ISD::SETUEQ:
1984    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1985    case ISD::SETOLT: Flip = true; // Fallthrough
1986    case ISD::SETOGT:
1987    case ISD::SETGT: X86CC = X86::COND_A;  break;
1988    case ISD::SETOLE: Flip = true; // Fallthrough
1989    case ISD::SETOGE:
1990    case ISD::SETGE: X86CC = X86::COND_AE; break;
1991    case ISD::SETUGT: Flip = true; // Fallthrough
1992    case ISD::SETULT:
1993    case ISD::SETLT: X86CC = X86::COND_B;  break;
1994    case ISD::SETUGE: Flip = true; // Fallthrough
1995    case ISD::SETULE:
1996    case ISD::SETLE: X86CC = X86::COND_BE; break;
1997    case ISD::SETONE:
1998    case ISD::SETNE: X86CC = X86::COND_NE; break;
1999    case ISD::SETUO: X86CC = X86::COND_P;  break;
2000    case ISD::SETO:  X86CC = X86::COND_NP; break;
2001    }
2002    if (Flip)
2003      std::swap(LHS, RHS);
2004  }
2005
2006  return X86CC != X86::COND_INVALID;
2007}
2008
2009/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2010/// code. Current x86 isa includes the following FP cmov instructions:
2011/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2012static bool hasFPCMov(unsigned X86CC) {
2013  switch (X86CC) {
2014  default:
2015    return false;
2016  case X86::COND_B:
2017  case X86::COND_BE:
2018  case X86::COND_E:
2019  case X86::COND_P:
2020  case X86::COND_A:
2021  case X86::COND_AE:
2022  case X86::COND_NE:
2023  case X86::COND_NP:
2024    return true;
2025  }
2026}
2027
2028/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2029/// true if Op is undef or if its value falls within the specified range (L, H].
2030static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2031  if (Op.getOpcode() == ISD::UNDEF)
2032    return true;
2033
2034  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2035  return (Val >= Low && Val < Hi);
2036}
2037
2038/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2039/// true if Op is undef or if its value equal to the specified value.
2040static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2041  if (Op.getOpcode() == ISD::UNDEF)
2042    return true;
2043  return cast<ConstantSDNode>(Op)->getValue() == Val;
2044}
2045
2046/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2047/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2048bool X86::isPSHUFDMask(SDNode *N) {
2049  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2050
2051  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2052    return false;
2053
2054  // Check if the value doesn't reference the second vector.
2055  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2056    SDOperand Arg = N->getOperand(i);
2057    if (Arg.getOpcode() == ISD::UNDEF) continue;
2058    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2059    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
2060      return false;
2061  }
2062
2063  return true;
2064}
2065
2066/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2067/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2068bool X86::isPSHUFHWMask(SDNode *N) {
2069  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2070
2071  if (N->getNumOperands() != 8)
2072    return false;
2073
2074  // Lower quadword copied in order.
2075  for (unsigned i = 0; i != 4; ++i) {
2076    SDOperand Arg = N->getOperand(i);
2077    if (Arg.getOpcode() == ISD::UNDEF) continue;
2078    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2079    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2080      return false;
2081  }
2082
2083  // Upper quadword shuffled.
2084  for (unsigned i = 4; i != 8; ++i) {
2085    SDOperand Arg = N->getOperand(i);
2086    if (Arg.getOpcode() == ISD::UNDEF) continue;
2087    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2088    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2089    if (Val < 4 || Val > 7)
2090      return false;
2091  }
2092
2093  return true;
2094}
2095
2096/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2097/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2098bool X86::isPSHUFLWMask(SDNode *N) {
2099  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2100
2101  if (N->getNumOperands() != 8)
2102    return false;
2103
2104  // Upper quadword copied in order.
2105  for (unsigned i = 4; i != 8; ++i)
2106    if (!isUndefOrEqual(N->getOperand(i), i))
2107      return false;
2108
2109  // Lower quadword shuffled.
2110  for (unsigned i = 0; i != 4; ++i)
2111    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2112      return false;
2113
2114  return true;
2115}
2116
2117/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2118/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2119static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2120  if (NumElems != 2 && NumElems != 4) return false;
2121
2122  unsigned Half = NumElems / 2;
2123  for (unsigned i = 0; i < Half; ++i)
2124    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2125      return false;
2126  for (unsigned i = Half; i < NumElems; ++i)
2127    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2128      return false;
2129
2130  return true;
2131}
2132
2133bool X86::isSHUFPMask(SDNode *N) {
2134  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2135  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2136}
2137
2138/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2139/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2140/// half elements to come from vector 1 (which would equal the dest.) and
2141/// the upper half to come from vector 2.
2142static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2143  if (NumOps != 2 && NumOps != 4) return false;
2144
2145  unsigned Half = NumOps / 2;
2146  for (unsigned i = 0; i < Half; ++i)
2147    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2148      return false;
2149  for (unsigned i = Half; i < NumOps; ++i)
2150    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2151      return false;
2152  return true;
2153}
2154
2155static bool isCommutedSHUFP(SDNode *N) {
2156  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2157  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2158}
2159
2160/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2161/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2162bool X86::isMOVHLPSMask(SDNode *N) {
2163  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2164
2165  if (N->getNumOperands() != 4)
2166    return false;
2167
2168  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2169  return isUndefOrEqual(N->getOperand(0), 6) &&
2170         isUndefOrEqual(N->getOperand(1), 7) &&
2171         isUndefOrEqual(N->getOperand(2), 2) &&
2172         isUndefOrEqual(N->getOperand(3), 3);
2173}
2174
2175/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2176/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2177/// <2, 3, 2, 3>
2178bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2179  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2180
2181  if (N->getNumOperands() != 4)
2182    return false;
2183
2184  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2185  return isUndefOrEqual(N->getOperand(0), 2) &&
2186         isUndefOrEqual(N->getOperand(1), 3) &&
2187         isUndefOrEqual(N->getOperand(2), 2) &&
2188         isUndefOrEqual(N->getOperand(3), 3);
2189}
2190
2191/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2192/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2193bool X86::isMOVLPMask(SDNode *N) {
2194  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2195
2196  unsigned NumElems = N->getNumOperands();
2197  if (NumElems != 2 && NumElems != 4)
2198    return false;
2199
2200  for (unsigned i = 0; i < NumElems/2; ++i)
2201    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2202      return false;
2203
2204  for (unsigned i = NumElems/2; i < NumElems; ++i)
2205    if (!isUndefOrEqual(N->getOperand(i), i))
2206      return false;
2207
2208  return true;
2209}
2210
2211/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2212/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2213/// and MOVLHPS.
2214bool X86::isMOVHPMask(SDNode *N) {
2215  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2216
2217  unsigned NumElems = N->getNumOperands();
2218  if (NumElems != 2 && NumElems != 4)
2219    return false;
2220
2221  for (unsigned i = 0; i < NumElems/2; ++i)
2222    if (!isUndefOrEqual(N->getOperand(i), i))
2223      return false;
2224
2225  for (unsigned i = 0; i < NumElems/2; ++i) {
2226    SDOperand Arg = N->getOperand(i + NumElems/2);
2227    if (!isUndefOrEqual(Arg, i + NumElems))
2228      return false;
2229  }
2230
2231  return true;
2232}
2233
2234/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2235/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2236bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2237                         bool V2IsSplat = false) {
2238  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2239    return false;
2240
2241  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2242    SDOperand BitI  = Elts[i];
2243    SDOperand BitI1 = Elts[i+1];
2244    if (!isUndefOrEqual(BitI, j))
2245      return false;
2246    if (V2IsSplat) {
2247      if (isUndefOrEqual(BitI1, NumElts))
2248        return false;
2249    } else {
2250      if (!isUndefOrEqual(BitI1, j + NumElts))
2251        return false;
2252    }
2253  }
2254
2255  return true;
2256}
2257
2258bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2259  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2260  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2261}
2262
2263/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2264/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2265bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2266                         bool V2IsSplat = false) {
2267  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2268    return false;
2269
2270  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2271    SDOperand BitI  = Elts[i];
2272    SDOperand BitI1 = Elts[i+1];
2273    if (!isUndefOrEqual(BitI, j + NumElts/2))
2274      return false;
2275    if (V2IsSplat) {
2276      if (isUndefOrEqual(BitI1, NumElts))
2277        return false;
2278    } else {
2279      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2280        return false;
2281    }
2282  }
2283
2284  return true;
2285}
2286
2287bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2288  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2289  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2290}
2291
2292/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2293/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2294/// <0, 0, 1, 1>
2295bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2296  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2297
2298  unsigned NumElems = N->getNumOperands();
2299  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2300    return false;
2301
2302  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2303    SDOperand BitI  = N->getOperand(i);
2304    SDOperand BitI1 = N->getOperand(i+1);
2305
2306    if (!isUndefOrEqual(BitI, j))
2307      return false;
2308    if (!isUndefOrEqual(BitI1, j))
2309      return false;
2310  }
2311
2312  return true;
2313}
2314
2315/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2316/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2317/// <2, 2, 3, 3>
2318bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2319  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2320
2321  unsigned NumElems = N->getNumOperands();
2322  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2323    return false;
2324
2325  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2326    SDOperand BitI  = N->getOperand(i);
2327    SDOperand BitI1 = N->getOperand(i + 1);
2328
2329    if (!isUndefOrEqual(BitI, j))
2330      return false;
2331    if (!isUndefOrEqual(BitI1, j))
2332      return false;
2333  }
2334
2335  return true;
2336}
2337
2338/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2339/// specifies a shuffle of elements that is suitable for input to MOVSS,
2340/// MOVSD, and MOVD, i.e. setting the lowest element.
2341static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2342  if (NumElts != 2 && NumElts != 4)
2343    return false;
2344
2345  if (!isUndefOrEqual(Elts[0], NumElts))
2346    return false;
2347
2348  for (unsigned i = 1; i < NumElts; ++i) {
2349    if (!isUndefOrEqual(Elts[i], i))
2350      return false;
2351  }
2352
2353  return true;
2354}
2355
2356bool X86::isMOVLMask(SDNode *N) {
2357  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2358  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2359}
2360
2361/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2362/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2363/// element of vector 2 and the other elements to come from vector 1 in order.
2364static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2365                           bool V2IsSplat = false,
2366                           bool V2IsUndef = false) {
2367  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2368    return false;
2369
2370  if (!isUndefOrEqual(Ops[0], 0))
2371    return false;
2372
2373  for (unsigned i = 1; i < NumOps; ++i) {
2374    SDOperand Arg = Ops[i];
2375    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2376          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2377          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2378      return false;
2379  }
2380
2381  return true;
2382}
2383
2384static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2385                           bool V2IsUndef = false) {
2386  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2387  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2388                        V2IsSplat, V2IsUndef);
2389}
2390
2391/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2392/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2393bool X86::isMOVSHDUPMask(SDNode *N) {
2394  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2395
2396  if (N->getNumOperands() != 4)
2397    return false;
2398
2399  // Expect 1, 1, 3, 3
2400  for (unsigned i = 0; i < 2; ++i) {
2401    SDOperand Arg = N->getOperand(i);
2402    if (Arg.getOpcode() == ISD::UNDEF) continue;
2403    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2404    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2405    if (Val != 1) return false;
2406  }
2407
2408  bool HasHi = false;
2409  for (unsigned i = 2; i < 4; ++i) {
2410    SDOperand Arg = N->getOperand(i);
2411    if (Arg.getOpcode() == ISD::UNDEF) continue;
2412    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2413    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2414    if (Val != 3) return false;
2415    HasHi = true;
2416  }
2417
2418  // Don't use movshdup if it can be done with a shufps.
2419  return HasHi;
2420}
2421
2422/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2423/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2424bool X86::isMOVSLDUPMask(SDNode *N) {
2425  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2426
2427  if (N->getNumOperands() != 4)
2428    return false;
2429
2430  // Expect 0, 0, 2, 2
2431  for (unsigned i = 0; i < 2; ++i) {
2432    SDOperand Arg = N->getOperand(i);
2433    if (Arg.getOpcode() == ISD::UNDEF) continue;
2434    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2435    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2436    if (Val != 0) return false;
2437  }
2438
2439  bool HasHi = false;
2440  for (unsigned i = 2; i < 4; ++i) {
2441    SDOperand Arg = N->getOperand(i);
2442    if (Arg.getOpcode() == ISD::UNDEF) continue;
2443    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2444    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2445    if (Val != 2) return false;
2446    HasHi = true;
2447  }
2448
2449  // Don't use movshdup if it can be done with a shufps.
2450  return HasHi;
2451}
2452
2453/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2454/// specifies a identity operation on the LHS or RHS.
2455static bool isIdentityMask(SDNode *N, bool RHS = false) {
2456  unsigned NumElems = N->getNumOperands();
2457  for (unsigned i = 0; i < NumElems; ++i)
2458    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2459      return false;
2460  return true;
2461}
2462
2463/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2464/// a splat of a single element.
2465static bool isSplatMask(SDNode *N) {
2466  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2467
2468  // This is a splat operation if each element of the permute is the same, and
2469  // if the value doesn't reference the second vector.
2470  unsigned NumElems = N->getNumOperands();
2471  SDOperand ElementBase;
2472  unsigned i = 0;
2473  for (; i != NumElems; ++i) {
2474    SDOperand Elt = N->getOperand(i);
2475    if (isa<ConstantSDNode>(Elt)) {
2476      ElementBase = Elt;
2477      break;
2478    }
2479  }
2480
2481  if (!ElementBase.Val)
2482    return false;
2483
2484  for (; i != NumElems; ++i) {
2485    SDOperand Arg = N->getOperand(i);
2486    if (Arg.getOpcode() == ISD::UNDEF) continue;
2487    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2488    if (Arg != ElementBase) return false;
2489  }
2490
2491  // Make sure it is a splat of the first vector operand.
2492  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2493}
2494
2495/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2496/// a splat of a single element and it's a 2 or 4 element mask.
2497bool X86::isSplatMask(SDNode *N) {
2498  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2499
2500  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2501  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2502    return false;
2503  return ::isSplatMask(N);
2504}
2505
2506/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2507/// specifies a splat of zero element.
2508bool X86::isSplatLoMask(SDNode *N) {
2509  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2510
2511  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2512    if (!isUndefOrEqual(N->getOperand(i), 0))
2513      return false;
2514  return true;
2515}
2516
2517/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2518/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2519/// instructions.
2520unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2521  unsigned NumOperands = N->getNumOperands();
2522  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2523  unsigned Mask = 0;
2524  for (unsigned i = 0; i < NumOperands; ++i) {
2525    unsigned Val = 0;
2526    SDOperand Arg = N->getOperand(NumOperands-i-1);
2527    if (Arg.getOpcode() != ISD::UNDEF)
2528      Val = cast<ConstantSDNode>(Arg)->getValue();
2529    if (Val >= NumOperands) Val -= NumOperands;
2530    Mask |= Val;
2531    if (i != NumOperands - 1)
2532      Mask <<= Shift;
2533  }
2534
2535  return Mask;
2536}
2537
2538/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2539/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2540/// instructions.
2541unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2542  unsigned Mask = 0;
2543  // 8 nodes, but we only care about the last 4.
2544  for (unsigned i = 7; i >= 4; --i) {
2545    unsigned Val = 0;
2546    SDOperand Arg = N->getOperand(i);
2547    if (Arg.getOpcode() != ISD::UNDEF)
2548      Val = cast<ConstantSDNode>(Arg)->getValue();
2549    Mask |= (Val - 4);
2550    if (i != 4)
2551      Mask <<= 2;
2552  }
2553
2554  return Mask;
2555}
2556
2557/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2558/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2559/// instructions.
2560unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2561  unsigned Mask = 0;
2562  // 8 nodes, but we only care about the first 4.
2563  for (int i = 3; i >= 0; --i) {
2564    unsigned Val = 0;
2565    SDOperand Arg = N->getOperand(i);
2566    if (Arg.getOpcode() != ISD::UNDEF)
2567      Val = cast<ConstantSDNode>(Arg)->getValue();
2568    Mask |= Val;
2569    if (i != 0)
2570      Mask <<= 2;
2571  }
2572
2573  return Mask;
2574}
2575
2576/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2577/// specifies a 8 element shuffle that can be broken into a pair of
2578/// PSHUFHW and PSHUFLW.
2579static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2580  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2581
2582  if (N->getNumOperands() != 8)
2583    return false;
2584
2585  // Lower quadword shuffled.
2586  for (unsigned i = 0; i != 4; ++i) {
2587    SDOperand Arg = N->getOperand(i);
2588    if (Arg.getOpcode() == ISD::UNDEF) continue;
2589    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2590    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2591    if (Val >= 4)
2592      return false;
2593  }
2594
2595  // Upper quadword shuffled.
2596  for (unsigned i = 4; i != 8; ++i) {
2597    SDOperand Arg = N->getOperand(i);
2598    if (Arg.getOpcode() == ISD::UNDEF) continue;
2599    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2600    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2601    if (Val < 4 || Val > 7)
2602      return false;
2603  }
2604
2605  return true;
2606}
2607
2608/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2609/// values in ther permute mask.
2610static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2611                                      SDOperand &V2, SDOperand &Mask,
2612                                      SelectionDAG &DAG) {
2613  MVT::ValueType VT = Op.getValueType();
2614  MVT::ValueType MaskVT = Mask.getValueType();
2615  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2616  unsigned NumElems = Mask.getNumOperands();
2617  SmallVector<SDOperand, 8> MaskVec;
2618
2619  for (unsigned i = 0; i != NumElems; ++i) {
2620    SDOperand Arg = Mask.getOperand(i);
2621    if (Arg.getOpcode() == ISD::UNDEF) {
2622      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2623      continue;
2624    }
2625    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2626    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2627    if (Val < NumElems)
2628      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2629    else
2630      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2631  }
2632
2633  std::swap(V1, V2);
2634  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2635  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2636}
2637
2638/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2639/// the two vector operands have swapped position.
2640static
2641SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2642  MVT::ValueType MaskVT = Mask.getValueType();
2643  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2644  unsigned NumElems = Mask.getNumOperands();
2645  SmallVector<SDOperand, 8> MaskVec;
2646  for (unsigned i = 0; i != NumElems; ++i) {
2647    SDOperand Arg = Mask.getOperand(i);
2648    if (Arg.getOpcode() == ISD::UNDEF) {
2649      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2650      continue;
2651    }
2652    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2653    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2654    if (Val < NumElems)
2655      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2656    else
2657      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2658  }
2659  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2660}
2661
2662
2663/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2664/// match movhlps. The lower half elements should come from upper half of
2665/// V1 (and in order), and the upper half elements should come from the upper
2666/// half of V2 (and in order).
2667static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2668  unsigned NumElems = Mask->getNumOperands();
2669  if (NumElems != 4)
2670    return false;
2671  for (unsigned i = 0, e = 2; i != e; ++i)
2672    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2673      return false;
2674  for (unsigned i = 2; i != 4; ++i)
2675    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2676      return false;
2677  return true;
2678}
2679
2680/// isScalarLoadToVector - Returns true if the node is a scalar load that
2681/// is promoted to a vector.
2682static inline bool isScalarLoadToVector(SDNode *N) {
2683  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2684    N = N->getOperand(0).Val;
2685    return ISD::isNON_EXTLoad(N);
2686  }
2687  return false;
2688}
2689
2690/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2691/// match movlp{s|d}. The lower half elements should come from lower half of
2692/// V1 (and in order), and the upper half elements should come from the upper
2693/// half of V2 (and in order). And since V1 will become the source of the
2694/// MOVLP, it must be either a vector load or a scalar load to vector.
2695static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2696  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2697    return false;
2698  // Is V2 is a vector load, don't do this transformation. We will try to use
2699  // load folding shufps op.
2700  if (ISD::isNON_EXTLoad(V2))
2701    return false;
2702
2703  unsigned NumElems = Mask->getNumOperands();
2704  if (NumElems != 2 && NumElems != 4)
2705    return false;
2706  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2707    if (!isUndefOrEqual(Mask->getOperand(i), i))
2708      return false;
2709  for (unsigned i = NumElems/2; i != NumElems; ++i)
2710    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2711      return false;
2712  return true;
2713}
2714
2715/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2716/// all the same.
2717static bool isSplatVector(SDNode *N) {
2718  if (N->getOpcode() != ISD::BUILD_VECTOR)
2719    return false;
2720
2721  SDOperand SplatValue = N->getOperand(0);
2722  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2723    if (N->getOperand(i) != SplatValue)
2724      return false;
2725  return true;
2726}
2727
2728/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2729/// to an undef.
2730static bool isUndefShuffle(SDNode *N) {
2731  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2732    return false;
2733
2734  SDOperand V1 = N->getOperand(0);
2735  SDOperand V2 = N->getOperand(1);
2736  SDOperand Mask = N->getOperand(2);
2737  unsigned NumElems = Mask.getNumOperands();
2738  for (unsigned i = 0; i != NumElems; ++i) {
2739    SDOperand Arg = Mask.getOperand(i);
2740    if (Arg.getOpcode() != ISD::UNDEF) {
2741      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2742      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2743        return false;
2744      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2745        return false;
2746    }
2747  }
2748  return true;
2749}
2750
2751/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2752/// constant +0.0.
2753static inline bool isZeroNode(SDOperand Elt) {
2754  return ((isa<ConstantSDNode>(Elt) &&
2755           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2756          (isa<ConstantFPSDNode>(Elt) &&
2757           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2758}
2759
2760/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2761/// to an zero vector.
2762static bool isZeroShuffle(SDNode *N) {
2763  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2764    return false;
2765
2766  SDOperand V1 = N->getOperand(0);
2767  SDOperand V2 = N->getOperand(1);
2768  SDOperand Mask = N->getOperand(2);
2769  unsigned NumElems = Mask.getNumOperands();
2770  for (unsigned i = 0; i != NumElems; ++i) {
2771    SDOperand Arg = Mask.getOperand(i);
2772    if (Arg.getOpcode() == ISD::UNDEF)
2773      continue;
2774
2775    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2776    if (Idx < NumElems) {
2777      unsigned Opc = V1.Val->getOpcode();
2778      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2779        continue;
2780      if (Opc != ISD::BUILD_VECTOR ||
2781          !isZeroNode(V1.Val->getOperand(Idx)))
2782        return false;
2783    } else if (Idx >= NumElems) {
2784      unsigned Opc = V2.Val->getOpcode();
2785      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2786        continue;
2787      if (Opc != ISD::BUILD_VECTOR ||
2788          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2789        return false;
2790    }
2791  }
2792  return true;
2793}
2794
2795/// getZeroVector - Returns a vector of specified type with all zero elements.
2796///
2797static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2798  assert(MVT::isVector(VT) && "Expected a vector type");
2799
2800  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2801  // type.  This ensures they get CSE'd.
2802  SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2803  SDOperand Vec;
2804  if (MVT::getSizeInBits(VT) == 64)  // MMX
2805    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2806  else                                              // SSE
2807    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2808  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2809}
2810
2811/// getOnesVector - Returns a vector of specified type with all bits set.
2812///
2813static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) {
2814  assert(MVT::isVector(VT) && "Expected a vector type");
2815
2816  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2817  // type.  This ensures they get CSE'd.
2818  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2819  SDOperand Vec;
2820  if (MVT::getSizeInBits(VT) == 64)  // MMX
2821    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2822  else                                              // SSE
2823    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2824  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2825}
2826
2827
2828/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2829/// that point to V2 points to its first element.
2830static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2831  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2832
2833  bool Changed = false;
2834  SmallVector<SDOperand, 8> MaskVec;
2835  unsigned NumElems = Mask.getNumOperands();
2836  for (unsigned i = 0; i != NumElems; ++i) {
2837    SDOperand Arg = Mask.getOperand(i);
2838    if (Arg.getOpcode() != ISD::UNDEF) {
2839      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2840      if (Val > NumElems) {
2841        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2842        Changed = true;
2843      }
2844    }
2845    MaskVec.push_back(Arg);
2846  }
2847
2848  if (Changed)
2849    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2850                       &MaskVec[0], MaskVec.size());
2851  return Mask;
2852}
2853
2854/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2855/// operation of specified width.
2856static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2857  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2858  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2859
2860  SmallVector<SDOperand, 8> MaskVec;
2861  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2862  for (unsigned i = 1; i != NumElems; ++i)
2863    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2864  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2865}
2866
2867/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2868/// of specified width.
2869static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2870  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2871  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2872  SmallVector<SDOperand, 8> MaskVec;
2873  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2874    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2875    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2876  }
2877  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2878}
2879
2880/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2881/// of specified width.
2882static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2883  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2884  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2885  unsigned Half = NumElems/2;
2886  SmallVector<SDOperand, 8> MaskVec;
2887  for (unsigned i = 0; i != Half; ++i) {
2888    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2889    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2890  }
2891  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2892}
2893
2894/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2895/// element #0 of a vector with the specified index, leaving the rest of the
2896/// elements in place.
2897static SDOperand getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2898                                   SelectionDAG &DAG) {
2899  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2900  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2901  SmallVector<SDOperand, 8> MaskVec;
2902  // Element #0 of the result gets the elt we are replacing.
2903  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2904  for (unsigned i = 1; i != NumElems; ++i)
2905    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2906  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2907}
2908
2909/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2910///
2911static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2912  SDOperand V1 = Op.getOperand(0);
2913  SDOperand Mask = Op.getOperand(2);
2914  MVT::ValueType VT = Op.getValueType();
2915  unsigned NumElems = Mask.getNumOperands();
2916  Mask = getUnpacklMask(NumElems, DAG);
2917  while (NumElems != 4) {
2918    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2919    NumElems >>= 1;
2920  }
2921  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2922
2923  Mask = getZeroVector(MVT::v4i32, DAG);
2924  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2925                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2926  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2927}
2928
2929/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2930/// vector of zero or undef vector.  This produces a shuffle where the low
2931/// element of V2 is swizzled into the zero/undef vector, landing at element
2932/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2933static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx,
2934                                             bool isZero, SelectionDAG &DAG) {
2935  MVT::ValueType VT = V2.getValueType();
2936  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2937  unsigned NumElems = MVT::getVectorNumElements(V2.getValueType());
2938  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2939  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2940  SmallVector<SDOperand, 16> MaskVec;
2941  for (unsigned i = 0; i != NumElems; ++i)
2942    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2943      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2944    else
2945      MaskVec.push_back(DAG.getConstant(i, EVT));
2946  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2947                               &MaskVec[0], MaskVec.size());
2948  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2949}
2950
2951/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2952///
2953static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2954                                       unsigned NumNonZero, unsigned NumZero,
2955                                       SelectionDAG &DAG, TargetLowering &TLI) {
2956  if (NumNonZero > 8)
2957    return SDOperand();
2958
2959  SDOperand V(0, 0);
2960  bool First = true;
2961  for (unsigned i = 0; i < 16; ++i) {
2962    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2963    if (ThisIsNonZero && First) {
2964      if (NumZero)
2965        V = getZeroVector(MVT::v8i16, DAG);
2966      else
2967        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2968      First = false;
2969    }
2970
2971    if ((i & 1) != 0) {
2972      SDOperand ThisElt(0, 0), LastElt(0, 0);
2973      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2974      if (LastIsNonZero) {
2975        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2976      }
2977      if (ThisIsNonZero) {
2978        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2979        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2980                              ThisElt, DAG.getConstant(8, MVT::i8));
2981        if (LastIsNonZero)
2982          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2983      } else
2984        ThisElt = LastElt;
2985
2986      if (ThisElt.Val)
2987        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2988                        DAG.getIntPtrConstant(i/2));
2989    }
2990  }
2991
2992  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2993}
2994
2995/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2996///
2997static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2998                                       unsigned NumNonZero, unsigned NumZero,
2999                                       SelectionDAG &DAG, TargetLowering &TLI) {
3000  if (NumNonZero > 4)
3001    return SDOperand();
3002
3003  SDOperand V(0, 0);
3004  bool First = true;
3005  for (unsigned i = 0; i < 8; ++i) {
3006    bool isNonZero = (NonZeros & (1 << i)) != 0;
3007    if (isNonZero) {
3008      if (First) {
3009        if (NumZero)
3010          V = getZeroVector(MVT::v8i16, DAG);
3011        else
3012          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3013        First = false;
3014      }
3015      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3016                      DAG.getIntPtrConstant(i));
3017    }
3018  }
3019
3020  return V;
3021}
3022
3023SDOperand
3024X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3025  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3026  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
3027    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3028    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3029    // eliminated on x86-32 hosts.
3030    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3031      return Op;
3032
3033    if (ISD::isBuildVectorAllOnes(Op.Val))
3034      return getOnesVector(Op.getValueType(), DAG);
3035    return getZeroVector(Op.getValueType(), DAG);
3036  }
3037
3038  MVT::ValueType VT = Op.getValueType();
3039  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3040  unsigned EVTBits = MVT::getSizeInBits(EVT);
3041
3042  unsigned NumElems = Op.getNumOperands();
3043  unsigned NumZero  = 0;
3044  unsigned NumNonZero = 0;
3045  unsigned NonZeros = 0;
3046  bool IsAllConstants = true;
3047  SmallSet<SDOperand, 8> Values;
3048  for (unsigned i = 0; i < NumElems; ++i) {
3049    SDOperand Elt = Op.getOperand(i);
3050    if (Elt.getOpcode() == ISD::UNDEF)
3051      continue;
3052    Values.insert(Elt);
3053    if (Elt.getOpcode() != ISD::Constant &&
3054        Elt.getOpcode() != ISD::ConstantFP)
3055      IsAllConstants = false;
3056    if (isZeroNode(Elt))
3057      NumZero++;
3058    else {
3059      NonZeros |= (1 << i);
3060      NumNonZero++;
3061    }
3062  }
3063
3064  if (NumNonZero == 0) {
3065    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3066    return DAG.getNode(ISD::UNDEF, VT);
3067  }
3068
3069  // Special case for single non-zero, non-undef, element.
3070  if (NumNonZero == 1 && NumElems <= 4) {
3071    unsigned Idx = CountTrailingZeros_32(NonZeros);
3072    SDOperand Item = Op.getOperand(Idx);
3073
3074    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3075    // the value are obviously zero, truncate the value to i32 and do the
3076    // insertion that way.  Only do this if the value is non-constant or if the
3077    // value is a constant being inserted into element 0.  It is cheaper to do
3078    // a constant pool load than it is to do a movd + shuffle.
3079    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3080        (!IsAllConstants || Idx == 0)) {
3081      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3082        // Handle MMX and SSE both.
3083        MVT::ValueType VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3084        MVT::ValueType VecElts = VT == MVT::v2i64 ? 4 : 2;
3085
3086        // Truncate the value (which may itself be a constant) to i32, and
3087        // convert it to a vector with movd (S2V+shuffle to zero extend).
3088        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3089        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3090        Item = getShuffleVectorZeroOrUndef(Item, 0, true, DAG);
3091
3092        // Now we have our 32-bit value zero extended in the low element of
3093        // a vector.  If Idx != 0, swizzle it into place.
3094        if (Idx != 0) {
3095          SDOperand Ops[] = {
3096            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3097            getSwapEltZeroMask(VecElts, Idx, DAG)
3098          };
3099          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3100        }
3101        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3102      }
3103    }
3104
3105    // If we have a constant or non-constant insertion into the low element of
3106    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3107    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3108    // depending on what the source datatype is.  Because we can only get here
3109    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3110    if (Idx == 0 &&
3111        // Don't do this for i64 values on x86-32.
3112        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3113      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3114      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3115      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
3116    }
3117
3118    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3119      return SDOperand();
3120
3121    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3122    // is a non-constant being inserted into an element other than the low one,
3123    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3124    // movd/movss) to move this into the low element, then shuffle it into
3125    // place.
3126    if (EVTBits == 32) {
3127      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3128
3129      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3130      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
3131      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3132      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3133      SmallVector<SDOperand, 8> MaskVec;
3134      for (unsigned i = 0; i < NumElems; i++)
3135        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3136      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3137                                   &MaskVec[0], MaskVec.size());
3138      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3139                         DAG.getNode(ISD::UNDEF, VT), Mask);
3140    }
3141  }
3142
3143  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3144  if (Values.size() == 1)
3145    return SDOperand();
3146
3147  // A vector full of immediates; various special cases are already
3148  // handled, so this is best done with a single constant-pool load.
3149  if (IsAllConstants)
3150    return SDOperand();
3151
3152  // Let legalizer expand 2-wide build_vectors.
3153  if (EVTBits == 64)
3154    return SDOperand();
3155
3156  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3157  if (EVTBits == 8 && NumElems == 16) {
3158    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3159                                        *this);
3160    if (V.Val) return V;
3161  }
3162
3163  if (EVTBits == 16 && NumElems == 8) {
3164    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3165                                        *this);
3166    if (V.Val) return V;
3167  }
3168
3169  // If element VT is == 32 bits, turn it into a number of shuffles.
3170  SmallVector<SDOperand, 8> V;
3171  V.resize(NumElems);
3172  if (NumElems == 4 && NumZero > 0) {
3173    for (unsigned i = 0; i < 4; ++i) {
3174      bool isZero = !(NonZeros & (1 << i));
3175      if (isZero)
3176        V[i] = getZeroVector(VT, DAG);
3177      else
3178        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3179    }
3180
3181    for (unsigned i = 0; i < 2; ++i) {
3182      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3183        default: break;
3184        case 0:
3185          V[i] = V[i*2];  // Must be a zero vector.
3186          break;
3187        case 1:
3188          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3189                             getMOVLMask(NumElems, DAG));
3190          break;
3191        case 2:
3192          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3193                             getMOVLMask(NumElems, DAG));
3194          break;
3195        case 3:
3196          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3197                             getUnpacklMask(NumElems, DAG));
3198          break;
3199      }
3200    }
3201
3202    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3203    // clears the upper bits.
3204    // FIXME: we can do the same for v4f32 case when we know both parts of
3205    // the lower half come from scalar_to_vector (loadf32). We should do
3206    // that in post legalizer dag combiner with target specific hooks.
3207    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3208      return V[0];
3209    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3210    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3211    SmallVector<SDOperand, 8> MaskVec;
3212    bool Reverse = (NonZeros & 0x3) == 2;
3213    for (unsigned i = 0; i < 2; ++i)
3214      if (Reverse)
3215        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3216      else
3217        MaskVec.push_back(DAG.getConstant(i, EVT));
3218    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3219    for (unsigned i = 0; i < 2; ++i)
3220      if (Reverse)
3221        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3222      else
3223        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3224    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3225                                     &MaskVec[0], MaskVec.size());
3226    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3227  }
3228
3229  if (Values.size() > 2) {
3230    // Expand into a number of unpckl*.
3231    // e.g. for v4f32
3232    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3233    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3234    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3235    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3236    for (unsigned i = 0; i < NumElems; ++i)
3237      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3238    NumElems >>= 1;
3239    while (NumElems != 0) {
3240      for (unsigned i = 0; i < NumElems; ++i)
3241        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3242                           UnpckMask);
3243      NumElems >>= 1;
3244    }
3245    return V[0];
3246  }
3247
3248  return SDOperand();
3249}
3250
3251static
3252SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3253                                   SDOperand PermMask, SelectionDAG &DAG,
3254                                   TargetLowering &TLI) {
3255  SDOperand NewV;
3256  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8);
3257  MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3258  MVT::ValueType PtrVT = TLI.getPointerTy();
3259  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3260                                     PermMask.Val->op_end());
3261
3262  // First record which half of which vector the low elements come from.
3263  SmallVector<unsigned, 4> LowQuad(4);
3264  for (unsigned i = 0; i < 4; ++i) {
3265    SDOperand Elt = MaskElts[i];
3266    if (Elt.getOpcode() == ISD::UNDEF)
3267      continue;
3268    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3269    int QuadIdx = EltIdx / 4;
3270    ++LowQuad[QuadIdx];
3271  }
3272  int BestLowQuad = -1;
3273  unsigned MaxQuad = 1;
3274  for (unsigned i = 0; i < 4; ++i) {
3275    if (LowQuad[i] > MaxQuad) {
3276      BestLowQuad = i;
3277      MaxQuad = LowQuad[i];
3278    }
3279  }
3280
3281  // Record which half of which vector the high elements come from.
3282  SmallVector<unsigned, 4> HighQuad(4);
3283  for (unsigned i = 4; i < 8; ++i) {
3284    SDOperand Elt = MaskElts[i];
3285    if (Elt.getOpcode() == ISD::UNDEF)
3286      continue;
3287    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3288    int QuadIdx = EltIdx / 4;
3289    ++HighQuad[QuadIdx];
3290  }
3291  int BestHighQuad = -1;
3292  MaxQuad = 1;
3293  for (unsigned i = 0; i < 4; ++i) {
3294    if (HighQuad[i] > MaxQuad) {
3295      BestHighQuad = i;
3296      MaxQuad = HighQuad[i];
3297    }
3298  }
3299
3300  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3301  if (BestLowQuad != -1 || BestHighQuad != -1) {
3302    // First sort the 4 chunks in order using shufpd.
3303    SmallVector<SDOperand, 8> MaskVec;
3304    if (BestLowQuad != -1)
3305      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3306    else
3307      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3308    if (BestHighQuad != -1)
3309      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3310    else
3311      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3312    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3313    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3314                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3315                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3316    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3317
3318    // Now sort high and low parts separately.
3319    BitVector InOrder(8);
3320    if (BestLowQuad != -1) {
3321      // Sort lower half in order using PSHUFLW.
3322      MaskVec.clear();
3323      bool AnyOutOrder = false;
3324      for (unsigned i = 0; i != 4; ++i) {
3325        SDOperand Elt = MaskElts[i];
3326        if (Elt.getOpcode() == ISD::UNDEF) {
3327          MaskVec.push_back(Elt);
3328          InOrder.set(i);
3329        } else {
3330          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3331          if (EltIdx != i)
3332            AnyOutOrder = true;
3333          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3334          // If this element is in the right place after this shuffle, then
3335          // remember it.
3336          if ((int)(EltIdx / 4) == BestLowQuad)
3337            InOrder.set(i);
3338        }
3339      }
3340      if (AnyOutOrder) {
3341        for (unsigned i = 4; i != 8; ++i)
3342          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3343        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3344        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3345      }
3346    }
3347
3348    if (BestHighQuad != -1) {
3349      // Sort high half in order using PSHUFHW if possible.
3350      MaskVec.clear();
3351      for (unsigned i = 0; i != 4; ++i)
3352        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3353      bool AnyOutOrder = false;
3354      for (unsigned i = 4; i != 8; ++i) {
3355        SDOperand Elt = MaskElts[i];
3356        if (Elt.getOpcode() == ISD::UNDEF) {
3357          MaskVec.push_back(Elt);
3358          InOrder.set(i);
3359        } else {
3360          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3361          if (EltIdx != i)
3362            AnyOutOrder = true;
3363          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3364          // If this element is in the right place after this shuffle, then
3365          // remember it.
3366          if ((int)(EltIdx / 4) == BestHighQuad)
3367            InOrder.set(i);
3368        }
3369      }
3370      if (AnyOutOrder) {
3371        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3372        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3373      }
3374    }
3375
3376    // The other elements are put in the right place using pextrw and pinsrw.
3377    for (unsigned i = 0; i != 8; ++i) {
3378      if (InOrder[i])
3379        continue;
3380      SDOperand Elt = MaskElts[i];
3381      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3382      if (EltIdx == i)
3383        continue;
3384      SDOperand ExtOp = (EltIdx < 8)
3385        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3386                      DAG.getConstant(EltIdx, PtrVT))
3387        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3388                      DAG.getConstant(EltIdx - 8, PtrVT));
3389      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3390                         DAG.getConstant(i, PtrVT));
3391    }
3392    return NewV;
3393  }
3394
3395  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3396  ///as few as possible.
3397  // First, let's find out how many elements are already in the right order.
3398  unsigned V1InOrder = 0;
3399  unsigned V1FromV1 = 0;
3400  unsigned V2InOrder = 0;
3401  unsigned V2FromV2 = 0;
3402  SmallVector<SDOperand, 8> V1Elts;
3403  SmallVector<SDOperand, 8> V2Elts;
3404  for (unsigned i = 0; i < 8; ++i) {
3405    SDOperand Elt = MaskElts[i];
3406    if (Elt.getOpcode() == ISD::UNDEF) {
3407      V1Elts.push_back(Elt);
3408      V2Elts.push_back(Elt);
3409      ++V1InOrder;
3410      ++V2InOrder;
3411      continue;
3412    }
3413    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3414    if (EltIdx == i) {
3415      V1Elts.push_back(Elt);
3416      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3417      ++V1InOrder;
3418    } else if (EltIdx == i+8) {
3419      V1Elts.push_back(Elt);
3420      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3421      ++V2InOrder;
3422    } else if (EltIdx < 8) {
3423      V1Elts.push_back(Elt);
3424      ++V1FromV1;
3425    } else {
3426      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3427      ++V2FromV2;
3428    }
3429  }
3430
3431  if (V2InOrder > V1InOrder) {
3432    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3433    std::swap(V1, V2);
3434    std::swap(V1Elts, V2Elts);
3435    std::swap(V1FromV1, V2FromV2);
3436  }
3437
3438  if ((V1FromV1 + V1InOrder) != 8) {
3439    // Some elements are from V2.
3440    if (V1FromV1) {
3441      // If there are elements that are from V1 but out of place,
3442      // then first sort them in place
3443      SmallVector<SDOperand, 8> MaskVec;
3444      for (unsigned i = 0; i < 8; ++i) {
3445        SDOperand Elt = V1Elts[i];
3446        if (Elt.getOpcode() == ISD::UNDEF) {
3447          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3448          continue;
3449        }
3450        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3451        if (EltIdx >= 8)
3452          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3453        else
3454          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3455      }
3456      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3457      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3458    }
3459
3460    NewV = V1;
3461    for (unsigned i = 0; i < 8; ++i) {
3462      SDOperand Elt = V1Elts[i];
3463      if (Elt.getOpcode() == ISD::UNDEF)
3464        continue;
3465      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3466      if (EltIdx < 8)
3467        continue;
3468      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3469                                    DAG.getConstant(EltIdx - 8, PtrVT));
3470      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3471                         DAG.getConstant(i, PtrVT));
3472    }
3473    return NewV;
3474  } else {
3475    // All elements are from V1.
3476    NewV = V1;
3477    for (unsigned i = 0; i < 8; ++i) {
3478      SDOperand Elt = V1Elts[i];
3479      if (Elt.getOpcode() == ISD::UNDEF)
3480        continue;
3481      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3482      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3483                                    DAG.getConstant(EltIdx, PtrVT));
3484      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3485                         DAG.getConstant(i, PtrVT));
3486    }
3487    return NewV;
3488  }
3489}
3490
3491/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3492/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3493/// done when every pair / quad of shuffle mask elements point to elements in
3494/// the right sequence. e.g.
3495/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3496static
3497SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3498                                MVT::ValueType VT,
3499                                SDOperand PermMask, SelectionDAG &DAG,
3500                                TargetLowering &TLI) {
3501  unsigned NumElems = PermMask.getNumOperands();
3502  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3503  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3504  MVT::ValueType NewVT = MaskVT;
3505  switch (VT) {
3506  case MVT::v4f32: NewVT = MVT::v2f64; break;
3507  case MVT::v4i32: NewVT = MVT::v2i64; break;
3508  case MVT::v8i16: NewVT = MVT::v4i32; break;
3509  case MVT::v16i8: NewVT = MVT::v4i32; break;
3510  default: assert(false && "Unexpected!");
3511  }
3512
3513  if (NewWidth == 2) {
3514    if (MVT::isInteger(VT))
3515      NewVT = MVT::v2i64;
3516    else
3517      NewVT = MVT::v2f64;
3518  }
3519  unsigned Scale = NumElems / NewWidth;
3520  SmallVector<SDOperand, 8> MaskVec;
3521  for (unsigned i = 0; i < NumElems; i += Scale) {
3522    unsigned StartIdx = ~0U;
3523    for (unsigned j = 0; j < Scale; ++j) {
3524      SDOperand Elt = PermMask.getOperand(i+j);
3525      if (Elt.getOpcode() == ISD::UNDEF)
3526        continue;
3527      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3528      if (StartIdx == ~0U)
3529        StartIdx = EltIdx - (EltIdx % Scale);
3530      if (EltIdx != StartIdx + j)
3531        return SDOperand();
3532    }
3533    if (StartIdx == ~0U)
3534      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3535    else
3536      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
3537  }
3538
3539  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3540  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3541  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3542                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3543                                 &MaskVec[0], MaskVec.size()));
3544}
3545
3546SDOperand
3547X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3548  SDOperand V1 = Op.getOperand(0);
3549  SDOperand V2 = Op.getOperand(1);
3550  SDOperand PermMask = Op.getOperand(2);
3551  MVT::ValueType VT = Op.getValueType();
3552  unsigned NumElems = PermMask.getNumOperands();
3553  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3554  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3555  bool V1IsSplat = false;
3556  bool V2IsSplat = false;
3557
3558  if (isUndefShuffle(Op.Val))
3559    return DAG.getNode(ISD::UNDEF, VT);
3560
3561  if (isZeroShuffle(Op.Val))
3562    return getZeroVector(VT, DAG);
3563
3564  if (isIdentityMask(PermMask.Val))
3565    return V1;
3566  else if (isIdentityMask(PermMask.Val, true))
3567    return V2;
3568
3569  if (isSplatMask(PermMask.Val)) {
3570    if (NumElems <= 4) return Op;
3571    // Promote it to a v4i32 splat.
3572    return PromoteSplat(Op, DAG);
3573  }
3574
3575  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3576  // do it!
3577  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3578    SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3579    if (NewOp.Val)
3580      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3581  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3582    // FIXME: Figure out a cleaner way to do this.
3583    // Try to make use of movq to zero out the top part.
3584    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3585      SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3586      if (NewOp.Val) {
3587        SDOperand NewV1 = NewOp.getOperand(0);
3588        SDOperand NewV2 = NewOp.getOperand(1);
3589        SDOperand NewMask = NewOp.getOperand(2);
3590        if (isCommutedMOVL(NewMask.Val, true, false)) {
3591          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3592          NewOp = DAG.getNode(ISD::VECTOR_SHUFFLE, NewOp.getValueType(),
3593                              NewV1, NewV2, getMOVLMask(2, DAG));
3594          return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3595        }
3596      }
3597    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3598      SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3599      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3600        return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3601    }
3602  }
3603
3604  if (X86::isMOVLMask(PermMask.Val))
3605    return (V1IsUndef) ? V2 : Op;
3606
3607  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3608      X86::isMOVSLDUPMask(PermMask.Val) ||
3609      X86::isMOVHLPSMask(PermMask.Val) ||
3610      X86::isMOVHPMask(PermMask.Val) ||
3611      X86::isMOVLPMask(PermMask.Val))
3612    return Op;
3613
3614  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3615      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3616    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3617
3618  bool Commuted = false;
3619  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3620  // 1,1,1,1 -> v8i16 though.
3621  V1IsSplat = isSplatVector(V1.Val);
3622  V2IsSplat = isSplatVector(V2.Val);
3623
3624  // Canonicalize the splat or undef, if present, to be on the RHS.
3625  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3626    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3627    std::swap(V1IsSplat, V2IsSplat);
3628    std::swap(V1IsUndef, V2IsUndef);
3629    Commuted = true;
3630  }
3631
3632  // FIXME: Figure out a cleaner way to do this.
3633  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3634    if (V2IsUndef) return V1;
3635    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3636    if (V2IsSplat) {
3637      // V2 is a splat, so the mask may be malformed. That is, it may point
3638      // to any V2 element. The instruction selectior won't like this. Get
3639      // a corrected mask and commute to form a proper MOVS{S|D}.
3640      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3641      if (NewMask.Val != PermMask.Val)
3642        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3643    }
3644    return Op;
3645  }
3646
3647  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3648      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3649      X86::isUNPCKLMask(PermMask.Val) ||
3650      X86::isUNPCKHMask(PermMask.Val))
3651    return Op;
3652
3653  if (V2IsSplat) {
3654    // Normalize mask so all entries that point to V2 points to its first
3655    // element then try to match unpck{h|l} again. If match, return a
3656    // new vector_shuffle with the corrected mask.
3657    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3658    if (NewMask.Val != PermMask.Val) {
3659      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3660        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3661        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3662      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3663        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3664        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3665      }
3666    }
3667  }
3668
3669  // Normalize the node to match x86 shuffle ops if needed
3670  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3671      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3672
3673  if (Commuted) {
3674    // Commute is back and try unpck* again.
3675    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3676    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3677        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3678        X86::isUNPCKLMask(PermMask.Val) ||
3679        X86::isUNPCKHMask(PermMask.Val))
3680      return Op;
3681  }
3682
3683  // If VT is integer, try PSHUF* first, then SHUFP*.
3684  if (MVT::isInteger(VT)) {
3685    // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3686    // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3687    if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3688         X86::isPSHUFDMask(PermMask.Val)) ||
3689        X86::isPSHUFHWMask(PermMask.Val) ||
3690        X86::isPSHUFLWMask(PermMask.Val)) {
3691      if (V2.getOpcode() != ISD::UNDEF)
3692        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3693                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3694      return Op;
3695    }
3696
3697    if (X86::isSHUFPMask(PermMask.Val) &&
3698        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
3699      return Op;
3700  } else {
3701    // Floating point cases in the other order.
3702    if (X86::isSHUFPMask(PermMask.Val))
3703      return Op;
3704    if (X86::isPSHUFDMask(PermMask.Val) ||
3705        X86::isPSHUFHWMask(PermMask.Val) ||
3706        X86::isPSHUFLWMask(PermMask.Val)) {
3707      if (V2.getOpcode() != ISD::UNDEF)
3708        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3709                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3710      return Op;
3711    }
3712  }
3713
3714  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3715  if (VT == MVT::v8i16) {
3716    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3717    if (NewOp.Val)
3718      return NewOp;
3719  }
3720
3721  // Handle all 4 wide cases with a number of shuffles.
3722  if (NumElems == 4 && MVT::getSizeInBits(VT) != 64) {
3723    // Don't do this for MMX.
3724    MVT::ValueType MaskVT = PermMask.getValueType();
3725    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3726    SmallVector<std::pair<int, int>, 8> Locs;
3727    Locs.reserve(NumElems);
3728    SmallVector<SDOperand, 8> Mask1(NumElems,
3729                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3730    SmallVector<SDOperand, 8> Mask2(NumElems,
3731                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3732    unsigned NumHi = 0;
3733    unsigned NumLo = 0;
3734    // If no more than two elements come from either vector. This can be
3735    // implemented with two shuffles. First shuffle gather the elements.
3736    // The second shuffle, which takes the first shuffle as both of its
3737    // vector operands, put the elements into the right order.
3738    for (unsigned i = 0; i != NumElems; ++i) {
3739      SDOperand Elt = PermMask.getOperand(i);
3740      if (Elt.getOpcode() == ISD::UNDEF) {
3741        Locs[i] = std::make_pair(-1, -1);
3742      } else {
3743        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3744        if (Val < NumElems) {
3745          Locs[i] = std::make_pair(0, NumLo);
3746          Mask1[NumLo] = Elt;
3747          NumLo++;
3748        } else {
3749          Locs[i] = std::make_pair(1, NumHi);
3750          if (2+NumHi < NumElems)
3751            Mask1[2+NumHi] = Elt;
3752          NumHi++;
3753        }
3754      }
3755    }
3756    if (NumLo <= 2 && NumHi <= 2) {
3757      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3758                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3759                                   &Mask1[0], Mask1.size()));
3760      for (unsigned i = 0; i != NumElems; ++i) {
3761        if (Locs[i].first == -1)
3762          continue;
3763        else {
3764          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3765          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3766          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3767        }
3768      }
3769
3770      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3771                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3772                                     &Mask2[0], Mask2.size()));
3773    }
3774
3775    // Break it into (shuffle shuffle_hi, shuffle_lo).
3776    Locs.clear();
3777    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3778    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3779    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3780    unsigned MaskIdx = 0;
3781    unsigned LoIdx = 0;
3782    unsigned HiIdx = NumElems/2;
3783    for (unsigned i = 0; i != NumElems; ++i) {
3784      if (i == NumElems/2) {
3785        MaskPtr = &HiMask;
3786        MaskIdx = 1;
3787        LoIdx = 0;
3788        HiIdx = NumElems/2;
3789      }
3790      SDOperand Elt = PermMask.getOperand(i);
3791      if (Elt.getOpcode() == ISD::UNDEF) {
3792        Locs[i] = std::make_pair(-1, -1);
3793      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3794        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3795        (*MaskPtr)[LoIdx] = Elt;
3796        LoIdx++;
3797      } else {
3798        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3799        (*MaskPtr)[HiIdx] = Elt;
3800        HiIdx++;
3801      }
3802    }
3803
3804    SDOperand LoShuffle =
3805      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3806                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3807                              &LoMask[0], LoMask.size()));
3808    SDOperand HiShuffle =
3809      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3810                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3811                              &HiMask[0], HiMask.size()));
3812    SmallVector<SDOperand, 8> MaskOps;
3813    for (unsigned i = 0; i != NumElems; ++i) {
3814      if (Locs[i].first == -1) {
3815        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3816      } else {
3817        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3818        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3819      }
3820    }
3821    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3822                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3823                                   &MaskOps[0], MaskOps.size()));
3824  }
3825
3826  return SDOperand();
3827}
3828
3829SDOperand
3830X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op,
3831                                                SelectionDAG &DAG) {
3832  MVT::ValueType VT = Op.getValueType();
3833  if (MVT::getSizeInBits(VT) == 8) {
3834    SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
3835                                    Op.getOperand(0), Op.getOperand(1));
3836    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3837                                    DAG.getValueType(VT));
3838    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3839  } else if (MVT::getSizeInBits(VT) == 16) {
3840    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
3841                                    Op.getOperand(0), Op.getOperand(1));
3842    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3843                                    DAG.getValueType(VT));
3844    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3845  }
3846  return SDOperand();
3847}
3848
3849
3850SDOperand
3851X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3852  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3853    return SDOperand();
3854
3855  if (Subtarget->hasSSE41())
3856    return LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
3857
3858  MVT::ValueType VT = Op.getValueType();
3859  // TODO: handle v16i8.
3860  if (MVT::getSizeInBits(VT) == 16) {
3861    SDOperand Vec = Op.getOperand(0);
3862    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3863    if (Idx == 0)
3864      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
3865                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3866                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
3867                                     Op.getOperand(1)));
3868    // Transform it so it match pextrw which produces a 32-bit result.
3869    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3870    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3871                                    Op.getOperand(0), Op.getOperand(1));
3872    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3873                                    DAG.getValueType(VT));
3874    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3875  } else if (MVT::getSizeInBits(VT) == 32) {
3876    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3877    if (Idx == 0)
3878      return Op;
3879    // SHUFPS the element to the lowest double word, then movss.
3880    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3881    SmallVector<SDOperand, 8> IdxVec;
3882    IdxVec.
3883      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3884    IdxVec.
3885      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3886    IdxVec.
3887      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3888    IdxVec.
3889      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3890    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3891                                 &IdxVec[0], IdxVec.size());
3892    SDOperand Vec = Op.getOperand(0);
3893    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3894                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3895    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3896                       DAG.getIntPtrConstant(0));
3897  } else if (MVT::getSizeInBits(VT) == 64) {
3898    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
3899    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
3900    //        to match extract_elt for f64.
3901    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3902    if (Idx == 0)
3903      return Op;
3904
3905    // UNPCKHPD the element to the lowest double word, then movsd.
3906    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3907    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3908    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3909    SmallVector<SDOperand, 8> IdxVec;
3910    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3911    IdxVec.
3912      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3913    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3914                                 &IdxVec[0], IdxVec.size());
3915    SDOperand Vec = Op.getOperand(0);
3916    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3917                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3918    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3919                       DAG.getIntPtrConstant(0));
3920  }
3921
3922  return SDOperand();
3923}
3924
3925SDOperand
3926X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){
3927  MVT::ValueType VT = Op.getValueType();
3928  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3929
3930  SDOperand N0 = Op.getOperand(0);
3931  SDOperand N1 = Op.getOperand(1);
3932  SDOperand N2 = Op.getOperand(2);
3933
3934  if ((MVT::getSizeInBits(EVT) == 8) || (MVT::getSizeInBits(EVT) == 16)) {
3935    unsigned Opc = (MVT::getSizeInBits(EVT) == 8) ? X86ISD::PINSRB
3936                                                  : X86ISD::PINSRW;
3937    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
3938    // argument.
3939    if (N1.getValueType() != MVT::i32)
3940      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3941    if (N2.getValueType() != MVT::i32)
3942      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3943    return DAG.getNode(Opc, VT, N0, N1, N2);
3944  } else if (EVT == MVT::f32) {
3945    // Bits [7:6] of the constant are the source select.  This will always be
3946    //  zero here.  The DAG Combiner may combine an extract_elt index into these
3947    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
3948    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
3949    // Bits [5:4] of the constant are the destination select.  This is the
3950    //  value of the incoming immediate.
3951    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
3952    //   combine either bitwise AND or insert of float 0.0 to set these bits.
3953    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4);
3954    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
3955  }
3956  return SDOperand();
3957}
3958
3959SDOperand
3960X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3961  MVT::ValueType VT = Op.getValueType();
3962  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3963
3964  if (Subtarget->hasSSE41())
3965    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
3966
3967  if (EVT == MVT::i8)
3968    return SDOperand();
3969
3970  SDOperand N0 = Op.getOperand(0);
3971  SDOperand N1 = Op.getOperand(1);
3972  SDOperand N2 = Op.getOperand(2);
3973
3974  if (MVT::getSizeInBits(EVT) == 16) {
3975    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3976    // as its second argument.
3977    if (N1.getValueType() != MVT::i32)
3978      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3979    if (N2.getValueType() != MVT::i32)
3980      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3981    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3982  }
3983  return SDOperand();
3984}
3985
3986SDOperand
3987X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3988  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3989  MVT::ValueType VT = MVT::v2i32;
3990  switch (Op.getValueType()) {
3991  default: break;
3992  case MVT::v16i8:
3993  case MVT::v8i16:
3994    VT = MVT::v4i32;
3995    break;
3996  }
3997  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
3998                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
3999}
4000
4001// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4002// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4003// one of the above mentioned nodes. It has to be wrapped because otherwise
4004// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4005// be used to form addressing mode. These wrapped nodes will be selected
4006// into MOV32ri.
4007SDOperand
4008X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
4009  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4010  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
4011                                               getPointerTy(),
4012                                               CP->getAlignment());
4013  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4014  // With PIC, the address is actually $g + Offset.
4015  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4016      !Subtarget->isPICStyleRIPRel()) {
4017    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4018                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4019                         Result);
4020  }
4021
4022  return Result;
4023}
4024
4025SDOperand
4026X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
4027  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4028  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4029  // If it's a debug information descriptor, don't mess with it.
4030  if (DAG.isVerifiedDebugInfoDesc(Op))
4031    return Result;
4032  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4033  // With PIC, the address is actually $g + Offset.
4034  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4035      !Subtarget->isPICStyleRIPRel()) {
4036    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4037                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4038                         Result);
4039  }
4040
4041  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4042  // load the value at address GV, not the value of GV itself. This means that
4043  // the GlobalAddress must be in the base or index register of the address, not
4044  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4045  // The same applies for external symbols during PIC codegen
4046  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4047    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4048                         PseudoSourceValue::getGOT(), 0);
4049
4050  return Result;
4051}
4052
4053// Lower ISD::GlobalTLSAddress using the "general dynamic" model
4054static SDOperand
4055LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4056                              const MVT::ValueType PtrVT) {
4057  SDOperand InFlag;
4058  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4059                                     DAG.getNode(X86ISD::GlobalBaseReg,
4060                                                 PtrVT), InFlag);
4061  InFlag = Chain.getValue(1);
4062
4063  // emit leal symbol@TLSGD(,%ebx,1), %eax
4064  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4065  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4066                                             GA->getValueType(0),
4067                                             GA->getOffset());
4068  SDOperand Ops[] = { Chain,  TGA, InFlag };
4069  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4070  InFlag = Result.getValue(2);
4071  Chain = Result.getValue(1);
4072
4073  // call ___tls_get_addr. This function receives its argument in
4074  // the register EAX.
4075  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4076  InFlag = Chain.getValue(1);
4077
4078  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4079  SDOperand Ops1[] = { Chain,
4080                      DAG.getTargetExternalSymbol("___tls_get_addr",
4081                                                  PtrVT),
4082                      DAG.getRegister(X86::EAX, PtrVT),
4083                      DAG.getRegister(X86::EBX, PtrVT),
4084                      InFlag };
4085  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4086  InFlag = Chain.getValue(1);
4087
4088  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4089}
4090
4091// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4092// "local exec" model.
4093static SDOperand
4094LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4095                         const MVT::ValueType PtrVT) {
4096  // Get the Thread Pointer
4097  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4098  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4099  // exec)
4100  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4101                                             GA->getValueType(0),
4102                                             GA->getOffset());
4103  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4104
4105  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4106    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4107                         PseudoSourceValue::getGOT(), 0);
4108
4109  // The address of the thread local variable is the add of the thread
4110  // pointer with the offset of the variable.
4111  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4112}
4113
4114SDOperand
4115X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
4116  // TODO: implement the "local dynamic" model
4117  // TODO: implement the "initial exec"model for pic executables
4118  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
4119         "TLS not implemented for non-ELF and 64-bit targets");
4120  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4121  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4122  // otherwise use the "Local Exec"TLS Model
4123  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4124    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
4125  else
4126    return LowerToTLSExecModel(GA, DAG, getPointerTy());
4127}
4128
4129SDOperand
4130X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
4131  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4132  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4133  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4134  // With PIC, the address is actually $g + Offset.
4135  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4136      !Subtarget->isPICStyleRIPRel()) {
4137    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4138                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4139                         Result);
4140  }
4141
4142  return Result;
4143}
4144
4145SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4146  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4147  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4148  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4149  // With PIC, the address is actually $g + Offset.
4150  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4151      !Subtarget->isPICStyleRIPRel()) {
4152    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4153                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4154                         Result);
4155  }
4156
4157  return Result;
4158}
4159
4160/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4161/// take a 2 x i32 value to shift plus a shift amount.
4162SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
4163  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4164  MVT::ValueType VT = Op.getValueType();
4165  unsigned VTBits = MVT::getSizeInBits(VT);
4166  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4167  SDOperand ShOpLo = Op.getOperand(0);
4168  SDOperand ShOpHi = Op.getOperand(1);
4169  SDOperand ShAmt  = Op.getOperand(2);
4170  SDOperand Tmp1 = isSRA ?
4171    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4172    DAG.getConstant(0, VT);
4173
4174  SDOperand Tmp2, Tmp3;
4175  if (Op.getOpcode() == ISD::SHL_PARTS) {
4176    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4177    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4178  } else {
4179    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4180    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4181  }
4182
4183  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4184  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4185                                  DAG.getConstant(VTBits, MVT::i8));
4186  SDOperand Cond = DAG.getNode(X86ISD::CMP, VT,
4187                               AndNode, DAG.getConstant(0, MVT::i8));
4188
4189  SDOperand Hi, Lo;
4190  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4191  VTs = DAG.getNodeValueTypes(VT, MVT::Flag);
4192  SmallVector<SDOperand, 4> Ops;
4193  if (Op.getOpcode() == ISD::SHL_PARTS) {
4194    Ops.push_back(Tmp2);
4195    Ops.push_back(Tmp3);
4196    Ops.push_back(CC);
4197    Ops.push_back(Cond);
4198    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4199
4200    Ops.clear();
4201    Ops.push_back(Tmp3);
4202    Ops.push_back(Tmp1);
4203    Ops.push_back(CC);
4204    Ops.push_back(Cond);
4205    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4206  } else {
4207    Ops.push_back(Tmp2);
4208    Ops.push_back(Tmp3);
4209    Ops.push_back(CC);
4210    Ops.push_back(Cond);
4211    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4212
4213    Ops.clear();
4214    Ops.push_back(Tmp3);
4215    Ops.push_back(Tmp1);
4216    Ops.push_back(CC);
4217    Ops.push_back(Cond);
4218    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4219  }
4220
4221  VTs = DAG.getNodeValueTypes(VT, VT);
4222  Ops.clear();
4223  Ops.push_back(Lo);
4224  Ops.push_back(Hi);
4225  return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
4226}
4227
4228SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
4229  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
4230  assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
4231         "Unknown SINT_TO_FP to lower!");
4232
4233  // These are really Legal; caller falls through into that case.
4234  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4235    return SDOperand();
4236  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4237      Subtarget->is64Bit())
4238    return SDOperand();
4239
4240  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
4241  MachineFunction &MF = DAG.getMachineFunction();
4242  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4243  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4244  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4245                                 StackSlot,
4246                                 PseudoSourceValue::getFixedStack(),
4247                                 SSFI);
4248
4249  // Build the FILD
4250  SDVTList Tys;
4251  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4252  if (useSSE)
4253    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4254  else
4255    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4256  SmallVector<SDOperand, 8> Ops;
4257  Ops.push_back(Chain);
4258  Ops.push_back(StackSlot);
4259  Ops.push_back(DAG.getValueType(SrcVT));
4260  SDOperand Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4261                                 Tys, &Ops[0], Ops.size());
4262
4263  if (useSSE) {
4264    Chain = Result.getValue(1);
4265    SDOperand InFlag = Result.getValue(2);
4266
4267    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4268    // shouldn't be necessary except that RFP cannot be live across
4269    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4270    MachineFunction &MF = DAG.getMachineFunction();
4271    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4272    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4273    Tys = DAG.getVTList(MVT::Other);
4274    SmallVector<SDOperand, 8> Ops;
4275    Ops.push_back(Chain);
4276    Ops.push_back(Result);
4277    Ops.push_back(StackSlot);
4278    Ops.push_back(DAG.getValueType(Op.getValueType()));
4279    Ops.push_back(InFlag);
4280    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4281    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4282                         PseudoSourceValue::getFixedStack(), SSFI);
4283  }
4284
4285  return Result;
4286}
4287
4288std::pair<SDOperand,SDOperand> X86TargetLowering::
4289FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
4290  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4291         "Unknown FP_TO_SINT to lower!");
4292
4293  // These are really Legal.
4294  if (Op.getValueType() == MVT::i32 &&
4295      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4296    return std::make_pair(SDOperand(), SDOperand());
4297  if (Subtarget->is64Bit() &&
4298      Op.getValueType() == MVT::i64 &&
4299      Op.getOperand(0).getValueType() != MVT::f80)
4300    return std::make_pair(SDOperand(), SDOperand());
4301
4302  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4303  // stack slot.
4304  MachineFunction &MF = DAG.getMachineFunction();
4305  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4306  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4307  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4308  unsigned Opc;
4309  switch (Op.getValueType()) {
4310  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4311  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4312  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4313  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4314  }
4315
4316  SDOperand Chain = DAG.getEntryNode();
4317  SDOperand Value = Op.getOperand(0);
4318  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4319    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4320    Chain = DAG.getStore(Chain, Value, StackSlot,
4321                         PseudoSourceValue::getFixedStack(), SSFI);
4322    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4323    SDOperand Ops[] = {
4324      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4325    };
4326    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4327    Chain = Value.getValue(1);
4328    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4329    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4330  }
4331
4332  // Build the FP_TO_INT*_IN_MEM
4333  SDOperand Ops[] = { Chain, Value, StackSlot };
4334  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4335
4336  return std::make_pair(FIST, StackSlot);
4337}
4338
4339SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4340  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4341  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4342  if (FIST.Val == 0) return SDOperand();
4343
4344  // Load the result.
4345  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4346}
4347
4348SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4349  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4350  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4351  if (FIST.Val == 0) return 0;
4352
4353  // Return an i64 load from the stack slot.
4354  SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
4355
4356  // Use a MERGE_VALUES node to drop the chain result value.
4357  return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
4358}
4359
4360SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4361  MVT::ValueType VT = Op.getValueType();
4362  MVT::ValueType EltVT = VT;
4363  if (MVT::isVector(VT))
4364    EltVT = MVT::getVectorElementType(VT);
4365  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4366  std::vector<Constant*> CV;
4367  if (EltVT == MVT::f64) {
4368    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
4369    CV.push_back(C);
4370    CV.push_back(C);
4371  } else {
4372    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
4373    CV.push_back(C);
4374    CV.push_back(C);
4375    CV.push_back(C);
4376    CV.push_back(C);
4377  }
4378  Constant *C = ConstantVector::get(CV);
4379  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4380  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4381                               PseudoSourceValue::getConstantPool(), 0,
4382                               false, 16);
4383  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4384}
4385
4386SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4387  MVT::ValueType VT = Op.getValueType();
4388  MVT::ValueType EltVT = VT;
4389  unsigned EltNum = 1;
4390  if (MVT::isVector(VT)) {
4391    EltVT = MVT::getVectorElementType(VT);
4392    EltNum = MVT::getVectorNumElements(VT);
4393  }
4394  const Type *OpNTy =  MVT::getTypeForValueType(EltVT);
4395  std::vector<Constant*> CV;
4396  if (EltVT == MVT::f64) {
4397    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
4398    CV.push_back(C);
4399    CV.push_back(C);
4400  } else {
4401    Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
4402    CV.push_back(C);
4403    CV.push_back(C);
4404    CV.push_back(C);
4405    CV.push_back(C);
4406  }
4407  Constant *C = ConstantVector::get(CV);
4408  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4409  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4410                               PseudoSourceValue::getConstantPool(), 0,
4411                               false, 16);
4412  if (MVT::isVector(VT)) {
4413    return DAG.getNode(ISD::BIT_CONVERT, VT,
4414                       DAG.getNode(ISD::XOR, MVT::v2i64,
4415                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4416                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4417  } else {
4418    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4419  }
4420}
4421
4422SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4423  SDOperand Op0 = Op.getOperand(0);
4424  SDOperand Op1 = Op.getOperand(1);
4425  MVT::ValueType VT = Op.getValueType();
4426  MVT::ValueType SrcVT = Op1.getValueType();
4427  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
4428
4429  // If second operand is smaller, extend it first.
4430  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4431    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4432    SrcVT = VT;
4433    SrcTy = MVT::getTypeForValueType(SrcVT);
4434  }
4435  // And if it is bigger, shrink it first.
4436  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4437    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4438    SrcVT = VT;
4439    SrcTy = MVT::getTypeForValueType(SrcVT);
4440  }
4441
4442  // At this point the operands and the result should have the same
4443  // type, and that won't be f80 since that is not custom lowered.
4444
4445  // First get the sign bit of second operand.
4446  std::vector<Constant*> CV;
4447  if (SrcVT == MVT::f64) {
4448    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4449    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4450  } else {
4451    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4452    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4453    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4454    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4455  }
4456  Constant *C = ConstantVector::get(CV);
4457  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4458  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4459                                PseudoSourceValue::getConstantPool(), 0,
4460                                false, 16);
4461  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4462
4463  // Shift sign bit right or left if the two operands have different types.
4464  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4465    // Op0 is MVT::f32, Op1 is MVT::f64.
4466    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4467    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4468                          DAG.getConstant(32, MVT::i32));
4469    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4470    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4471                          DAG.getIntPtrConstant(0));
4472  }
4473
4474  // Clear first operand sign bit.
4475  CV.clear();
4476  if (VT == MVT::f64) {
4477    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4478    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
4479  } else {
4480    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4481    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4482    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4483    CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4484  }
4485  C = ConstantVector::get(CV);
4486  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4487  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4488                                PseudoSourceValue::getConstantPool(), 0,
4489                                false, 16);
4490  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4491
4492  // Or the value with the sign bit.
4493  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4494}
4495
4496SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4497  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4498  SDOperand Cond;
4499  SDOperand Op0 = Op.getOperand(0);
4500  SDOperand Op1 = Op.getOperand(1);
4501  SDOperand CC = Op.getOperand(2);
4502  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4503  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4504  unsigned X86CC;
4505
4506  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4507                     Op0, Op1, DAG)) {
4508    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4509    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4510                       DAG.getConstant(X86CC, MVT::i8), Cond);
4511  }
4512
4513  assert(isFP && "Illegal integer SetCC!");
4514
4515  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4516  switch (SetCCOpcode) {
4517  default: assert(false && "Illegal floating point SetCC!");
4518  case ISD::SETOEQ: {  // !PF & ZF
4519    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4520                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4521    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4522                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4523    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4524  }
4525  case ISD::SETUNE: {  // PF | !ZF
4526    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4527                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4528    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4529                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4530    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4531  }
4532  }
4533}
4534
4535
4536SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4537  bool addTest = true;
4538  SDOperand Cond  = Op.getOperand(0);
4539  SDOperand CC;
4540
4541  if (Cond.getOpcode() == ISD::SETCC)
4542    Cond = LowerSETCC(Cond, DAG);
4543
4544  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4545  // setting operand in place of the X86ISD::SETCC.
4546  if (Cond.getOpcode() == X86ISD::SETCC) {
4547    CC = Cond.getOperand(0);
4548
4549    SDOperand Cmp = Cond.getOperand(1);
4550    unsigned Opc = Cmp.getOpcode();
4551    MVT::ValueType VT = Op.getValueType();
4552
4553    bool IllegalFPCMov = false;
4554    if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT) &&
4555        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4556      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4557
4558    if ((Opc == X86ISD::CMP ||
4559         Opc == X86ISD::COMI ||
4560         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4561      Cond = Cmp;
4562      addTest = false;
4563    }
4564  }
4565
4566  if (addTest) {
4567    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4568    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4569  }
4570
4571  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4572                                                    MVT::Flag);
4573  SmallVector<SDOperand, 4> Ops;
4574  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4575  // condition is true.
4576  Ops.push_back(Op.getOperand(2));
4577  Ops.push_back(Op.getOperand(1));
4578  Ops.push_back(CC);
4579  Ops.push_back(Cond);
4580  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4581}
4582
4583SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4584  bool addTest = true;
4585  SDOperand Chain = Op.getOperand(0);
4586  SDOperand Cond  = Op.getOperand(1);
4587  SDOperand Dest  = Op.getOperand(2);
4588  SDOperand CC;
4589
4590  if (Cond.getOpcode() == ISD::SETCC)
4591    Cond = LowerSETCC(Cond, DAG);
4592
4593  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4594  // setting operand in place of the X86ISD::SETCC.
4595  if (Cond.getOpcode() == X86ISD::SETCC) {
4596    CC = Cond.getOperand(0);
4597
4598    SDOperand Cmp = Cond.getOperand(1);
4599    unsigned Opc = Cmp.getOpcode();
4600    if (Opc == X86ISD::CMP ||
4601        Opc == X86ISD::COMI ||
4602        Opc == X86ISD::UCOMI) {
4603      Cond = Cmp;
4604      addTest = false;
4605    }
4606  }
4607
4608  if (addTest) {
4609    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4610    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4611  }
4612  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4613                     Chain, Op.getOperand(2), CC, Cond);
4614}
4615
4616
4617// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4618// Calls to _alloca is needed to probe the stack when allocating more than 4k
4619// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4620// that the guard pages used by the OS virtual memory manager are allocated in
4621// correct sequence.
4622SDOperand
4623X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4624                                           SelectionDAG &DAG) {
4625  assert(Subtarget->isTargetCygMing() &&
4626         "This should be used only on Cygwin/Mingw targets");
4627
4628  // Get the inputs.
4629  SDOperand Chain = Op.getOperand(0);
4630  SDOperand Size  = Op.getOperand(1);
4631  // FIXME: Ensure alignment here
4632
4633  SDOperand Flag;
4634
4635  MVT::ValueType IntPtr = getPointerTy();
4636  MVT::ValueType SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
4637
4638  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4639  Flag = Chain.getValue(1);
4640
4641  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4642  SDOperand Ops[] = { Chain,
4643                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4644                      DAG.getRegister(X86::EAX, IntPtr),
4645                      Flag };
4646  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4647  Flag = Chain.getValue(1);
4648
4649  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4650
4651  std::vector<MVT::ValueType> Tys;
4652  Tys.push_back(SPTy);
4653  Tys.push_back(MVT::Other);
4654  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4655  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4656}
4657
4658SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4659  SDOperand InFlag(0, 0);
4660  SDOperand Chain = Op.getOperand(0);
4661  unsigned Align =
4662    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4663  if (Align == 0) Align = 1;
4664
4665  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
4666  // If not DWORD aligned or size is more than the threshold, call memset.
4667  // The libc version is likely to be faster for these cases. It can use the
4668  // address value and run time information about the CPU.
4669  if ((Align & 3) != 0 ||
4670      (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
4671    MVT::ValueType IntPtr = getPointerTy();
4672    const Type *IntPtrTy = getTargetData()->getIntPtrType();
4673    TargetLowering::ArgListTy Args;
4674    TargetLowering::ArgListEntry Entry;
4675    Entry.Node = Op.getOperand(1);
4676    Entry.Ty = IntPtrTy;
4677    Args.push_back(Entry);
4678    // Extend the unsigned i8 argument to be an int value for the call.
4679    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4680    Entry.Ty = IntPtrTy;
4681    Args.push_back(Entry);
4682    Entry.Node = Op.getOperand(3);
4683    Args.push_back(Entry);
4684    std::pair<SDOperand,SDOperand> CallResult =
4685      LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
4686                  false, DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4687    return CallResult.second;
4688  }
4689
4690  MVT::ValueType AVT;
4691  SDOperand Count;
4692  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4693  unsigned BytesLeft = 0;
4694  bool TwoRepStos = false;
4695  if (ValC) {
4696    unsigned ValReg;
4697    uint64_t Val = ValC->getValue() & 255;
4698
4699    // If the value is a constant, then we can potentially use larger sets.
4700    switch (Align & 3) {
4701      case 2:   // WORD aligned
4702        AVT = MVT::i16;
4703        ValReg = X86::AX;
4704        Val = (Val << 8) | Val;
4705        break;
4706      case 0:  // DWORD aligned
4707        AVT = MVT::i32;
4708        ValReg = X86::EAX;
4709        Val = (Val << 8)  | Val;
4710        Val = (Val << 16) | Val;
4711        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
4712          AVT = MVT::i64;
4713          ValReg = X86::RAX;
4714          Val = (Val << 32) | Val;
4715        }
4716        break;
4717      default:  // Byte aligned
4718        AVT = MVT::i8;
4719        ValReg = X86::AL;
4720        Count = Op.getOperand(3);
4721        break;
4722    }
4723
4724    if (AVT > MVT::i8) {
4725      if (I) {
4726        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4727        Count = DAG.getIntPtrConstant(I->getValue() / UBytes);
4728        BytesLeft = I->getValue() % UBytes;
4729      } else {
4730        assert(AVT >= MVT::i32 &&
4731               "Do not use rep;stos if not at least DWORD aligned");
4732        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4733                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4734        TwoRepStos = true;
4735      }
4736    }
4737
4738    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4739                              InFlag);
4740    InFlag = Chain.getValue(1);
4741  } else {
4742    AVT = MVT::i8;
4743    Count  = Op.getOperand(3);
4744    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4745    InFlag = Chain.getValue(1);
4746  }
4747
4748  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4749                            Count, InFlag);
4750  InFlag = Chain.getValue(1);
4751  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4752                            Op.getOperand(1), InFlag);
4753  InFlag = Chain.getValue(1);
4754
4755  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4756  SmallVector<SDOperand, 8> Ops;
4757  Ops.push_back(Chain);
4758  Ops.push_back(DAG.getValueType(AVT));
4759  Ops.push_back(InFlag);
4760  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4761
4762  if (TwoRepStos) {
4763    InFlag = Chain.getValue(1);
4764    Count = Op.getOperand(3);
4765    MVT::ValueType CVT = Count.getValueType();
4766    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4767                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4768    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4769                              Left, InFlag);
4770    InFlag = Chain.getValue(1);
4771    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4772    Ops.clear();
4773    Ops.push_back(Chain);
4774    Ops.push_back(DAG.getValueType(MVT::i8));
4775    Ops.push_back(InFlag);
4776    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4777  } else if (BytesLeft) {
4778    // Issue stores for the last 1 - 7 bytes.
4779    SDOperand Value;
4780    unsigned Val = ValC->getValue() & 255;
4781    unsigned Offset = I->getValue() - BytesLeft;
4782    SDOperand DstAddr = Op.getOperand(1);
4783    MVT::ValueType AddrVT = DstAddr.getValueType();
4784    if (BytesLeft >= 4) {
4785      Val = (Val << 8)  | Val;
4786      Val = (Val << 16) | Val;
4787      Value = DAG.getConstant(Val, MVT::i32);
4788      Chain = DAG.getStore(Chain, Value,
4789                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4790                                       DAG.getConstant(Offset, AddrVT)),
4791                           NULL, 0);
4792      BytesLeft -= 4;
4793      Offset += 4;
4794    }
4795    if (BytesLeft >= 2) {
4796      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4797      Chain = DAG.getStore(Chain, Value,
4798                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4799                                       DAG.getConstant(Offset, AddrVT)),
4800                           NULL, 0);
4801      BytesLeft -= 2;
4802      Offset += 2;
4803    }
4804    if (BytesLeft == 1) {
4805      Value = DAG.getConstant(Val, MVT::i8);
4806      Chain = DAG.getStore(Chain, Value,
4807                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4808                                       DAG.getConstant(Offset, AddrVT)),
4809                           NULL, 0);
4810    }
4811  }
4812
4813  return Chain;
4814}
4815
4816SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4817                                               SDOperand Dest,
4818                                               SDOperand Source,
4819                                               unsigned Size,
4820                                               unsigned Align,
4821                                               SelectionDAG &DAG) {
4822  MVT::ValueType AVT;
4823  unsigned BytesLeft = 0;
4824  switch (Align & 3) {
4825    case 2:   // WORD aligned
4826      AVT = MVT::i16;
4827      break;
4828    case 0:  // DWORD aligned
4829      AVT = MVT::i32;
4830      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
4831        AVT = MVT::i64;
4832      break;
4833    default:  // Byte aligned
4834      AVT = MVT::i8;
4835      break;
4836  }
4837
4838  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4839  SDOperand Count = DAG.getIntPtrConstant(Size / UBytes);
4840  BytesLeft = Size % UBytes;
4841
4842  SDOperand InFlag(0, 0);
4843  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4844                            Count, InFlag);
4845  InFlag = Chain.getValue(1);
4846  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4847                            Dest, InFlag);
4848  InFlag = Chain.getValue(1);
4849  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4850                            Source, InFlag);
4851  InFlag = Chain.getValue(1);
4852
4853  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4854  SmallVector<SDOperand, 8> Ops;
4855  Ops.push_back(Chain);
4856  Ops.push_back(DAG.getValueType(AVT));
4857  Ops.push_back(InFlag);
4858  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4859
4860  if (BytesLeft) {
4861    // Issue loads and stores for the last 1 - 7 bytes.
4862    unsigned Offset = Size - BytesLeft;
4863    SDOperand DstAddr = Dest;
4864    MVT::ValueType DstVT = DstAddr.getValueType();
4865    SDOperand SrcAddr = Source;
4866    MVT::ValueType SrcVT = SrcAddr.getValueType();
4867    SDOperand Value;
4868    if (BytesLeft >= 4) {
4869      Value = DAG.getLoad(MVT::i32, Chain,
4870                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4871                                      DAG.getConstant(Offset, SrcVT)),
4872                          NULL, 0);
4873      Chain = Value.getValue(1);
4874      Chain = DAG.getStore(Chain, Value,
4875                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4876                                       DAG.getConstant(Offset, DstVT)),
4877                           NULL, 0);
4878      BytesLeft -= 4;
4879      Offset += 4;
4880    }
4881    if (BytesLeft >= 2) {
4882      Value = DAG.getLoad(MVT::i16, Chain,
4883                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4884                                      DAG.getConstant(Offset, SrcVT)),
4885                          NULL, 0);
4886      Chain = Value.getValue(1);
4887      Chain = DAG.getStore(Chain, Value,
4888                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4889                                       DAG.getConstant(Offset, DstVT)),
4890                           NULL, 0);
4891      BytesLeft -= 2;
4892      Offset += 2;
4893    }
4894
4895    if (BytesLeft == 1) {
4896      Value = DAG.getLoad(MVT::i8, Chain,
4897                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4898                                      DAG.getConstant(Offset, SrcVT)),
4899                          NULL, 0);
4900      Chain = Value.getValue(1);
4901      Chain = DAG.getStore(Chain, Value,
4902                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
4903                                       DAG.getConstant(Offset, DstVT)),
4904                           NULL, 0);
4905    }
4906  }
4907
4908  return Chain;
4909}
4910
4911/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
4912SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
4913  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4914  SDOperand TheChain = N->getOperand(0);
4915  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
4916  if (Subtarget->is64Bit()) {
4917    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4918    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
4919                                       MVT::i64, rax.getValue(2));
4920    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
4921                                DAG.getConstant(32, MVT::i8));
4922    SDOperand Ops[] = {
4923      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
4924    };
4925
4926    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4927    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4928  }
4929
4930  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4931  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
4932                                       MVT::i32, eax.getValue(2));
4933  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
4934  SDOperand Ops[] = { eax, edx };
4935  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
4936
4937  // Use a MERGE_VALUES to return the value and chain.
4938  Ops[1] = edx.getValue(1);
4939  Tys = DAG.getVTList(MVT::i64, MVT::Other);
4940  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4941}
4942
4943SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4944  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4945
4946  if (!Subtarget->is64Bit()) {
4947    // vastart just stores the address of the VarArgsFrameIndex slot into the
4948    // memory location argument.
4949    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4950    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
4951  }
4952
4953  // __va_list_tag:
4954  //   gp_offset         (0 - 6 * 8)
4955  //   fp_offset         (48 - 48 + 8 * 16)
4956  //   overflow_arg_area (point to parameters coming in memory).
4957  //   reg_save_area
4958  SmallVector<SDOperand, 8> MemOps;
4959  SDOperand FIN = Op.getOperand(1);
4960  // Store gp_offset
4961  SDOperand Store = DAG.getStore(Op.getOperand(0),
4962                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4963                                 FIN, SV, 0);
4964  MemOps.push_back(Store);
4965
4966  // Store fp_offset
4967  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4968  Store = DAG.getStore(Op.getOperand(0),
4969                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4970                       FIN, SV, 0);
4971  MemOps.push_back(Store);
4972
4973  // Store ptr to overflow_arg_area
4974  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4975  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4976  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
4977  MemOps.push_back(Store);
4978
4979  // Store ptr to reg_save_area.
4980  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
4981  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4982  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
4983  MemOps.push_back(Store);
4984  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4985}
4986
4987SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4988  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4989  SDOperand Chain = Op.getOperand(0);
4990  SDOperand DstPtr = Op.getOperand(1);
4991  SDOperand SrcPtr = Op.getOperand(2);
4992  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
4993  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
4994
4995  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr, SrcSV, 0);
4996  Chain = SrcPtr.getValue(1);
4997  for (unsigned i = 0; i < 3; ++i) {
4998    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr, SrcSV, 0);
4999    Chain = Val.getValue(1);
5000    Chain = DAG.getStore(Chain, Val, DstPtr, DstSV, 0);
5001    if (i == 2)
5002      break;
5003    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
5004                         DAG.getIntPtrConstant(8));
5005    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
5006                         DAG.getIntPtrConstant(8));
5007  }
5008  return Chain;
5009}
5010
5011SDOperand
5012X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
5013  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
5014  switch (IntNo) {
5015  default: return SDOperand();    // Don't custom lower most intrinsics.
5016    // Comparison intrinsics.
5017  case Intrinsic::x86_sse_comieq_ss:
5018  case Intrinsic::x86_sse_comilt_ss:
5019  case Intrinsic::x86_sse_comile_ss:
5020  case Intrinsic::x86_sse_comigt_ss:
5021  case Intrinsic::x86_sse_comige_ss:
5022  case Intrinsic::x86_sse_comineq_ss:
5023  case Intrinsic::x86_sse_ucomieq_ss:
5024  case Intrinsic::x86_sse_ucomilt_ss:
5025  case Intrinsic::x86_sse_ucomile_ss:
5026  case Intrinsic::x86_sse_ucomigt_ss:
5027  case Intrinsic::x86_sse_ucomige_ss:
5028  case Intrinsic::x86_sse_ucomineq_ss:
5029  case Intrinsic::x86_sse2_comieq_sd:
5030  case Intrinsic::x86_sse2_comilt_sd:
5031  case Intrinsic::x86_sse2_comile_sd:
5032  case Intrinsic::x86_sse2_comigt_sd:
5033  case Intrinsic::x86_sse2_comige_sd:
5034  case Intrinsic::x86_sse2_comineq_sd:
5035  case Intrinsic::x86_sse2_ucomieq_sd:
5036  case Intrinsic::x86_sse2_ucomilt_sd:
5037  case Intrinsic::x86_sse2_ucomile_sd:
5038  case Intrinsic::x86_sse2_ucomigt_sd:
5039  case Intrinsic::x86_sse2_ucomige_sd:
5040  case Intrinsic::x86_sse2_ucomineq_sd: {
5041    unsigned Opc = 0;
5042    ISD::CondCode CC = ISD::SETCC_INVALID;
5043    switch (IntNo) {
5044    default: break;
5045    case Intrinsic::x86_sse_comieq_ss:
5046    case Intrinsic::x86_sse2_comieq_sd:
5047      Opc = X86ISD::COMI;
5048      CC = ISD::SETEQ;
5049      break;
5050    case Intrinsic::x86_sse_comilt_ss:
5051    case Intrinsic::x86_sse2_comilt_sd:
5052      Opc = X86ISD::COMI;
5053      CC = ISD::SETLT;
5054      break;
5055    case Intrinsic::x86_sse_comile_ss:
5056    case Intrinsic::x86_sse2_comile_sd:
5057      Opc = X86ISD::COMI;
5058      CC = ISD::SETLE;
5059      break;
5060    case Intrinsic::x86_sse_comigt_ss:
5061    case Intrinsic::x86_sse2_comigt_sd:
5062      Opc = X86ISD::COMI;
5063      CC = ISD::SETGT;
5064      break;
5065    case Intrinsic::x86_sse_comige_ss:
5066    case Intrinsic::x86_sse2_comige_sd:
5067      Opc = X86ISD::COMI;
5068      CC = ISD::SETGE;
5069      break;
5070    case Intrinsic::x86_sse_comineq_ss:
5071    case Intrinsic::x86_sse2_comineq_sd:
5072      Opc = X86ISD::COMI;
5073      CC = ISD::SETNE;
5074      break;
5075    case Intrinsic::x86_sse_ucomieq_ss:
5076    case Intrinsic::x86_sse2_ucomieq_sd:
5077      Opc = X86ISD::UCOMI;
5078      CC = ISD::SETEQ;
5079      break;
5080    case Intrinsic::x86_sse_ucomilt_ss:
5081    case Intrinsic::x86_sse2_ucomilt_sd:
5082      Opc = X86ISD::UCOMI;
5083      CC = ISD::SETLT;
5084      break;
5085    case Intrinsic::x86_sse_ucomile_ss:
5086    case Intrinsic::x86_sse2_ucomile_sd:
5087      Opc = X86ISD::UCOMI;
5088      CC = ISD::SETLE;
5089      break;
5090    case Intrinsic::x86_sse_ucomigt_ss:
5091    case Intrinsic::x86_sse2_ucomigt_sd:
5092      Opc = X86ISD::UCOMI;
5093      CC = ISD::SETGT;
5094      break;
5095    case Intrinsic::x86_sse_ucomige_ss:
5096    case Intrinsic::x86_sse2_ucomige_sd:
5097      Opc = X86ISD::UCOMI;
5098      CC = ISD::SETGE;
5099      break;
5100    case Intrinsic::x86_sse_ucomineq_ss:
5101    case Intrinsic::x86_sse2_ucomineq_sd:
5102      Opc = X86ISD::UCOMI;
5103      CC = ISD::SETNE;
5104      break;
5105    }
5106
5107    unsigned X86CC;
5108    SDOperand LHS = Op.getOperand(1);
5109    SDOperand RHS = Op.getOperand(2);
5110    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5111
5112    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5113    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5114                                  DAG.getConstant(X86CC, MVT::i8), Cond);
5115    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
5116  }
5117  }
5118}
5119
5120SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
5121  // Depths > 0 not supported yet!
5122  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5123    return SDOperand();
5124
5125  // Just load the return address
5126  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5127  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5128}
5129
5130SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
5131  // Depths > 0 not supported yet!
5132  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5133    return SDOperand();
5134
5135  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5136  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5137                     DAG.getIntPtrConstant(4));
5138}
5139
5140SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
5141                                                       SelectionDAG &DAG) {
5142  // Is not yet supported on x86-64
5143  if (Subtarget->is64Bit())
5144    return SDOperand();
5145
5146  return DAG.getIntPtrConstant(8);
5147}
5148
5149SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
5150{
5151  assert(!Subtarget->is64Bit() &&
5152         "Lowering of eh_return builtin is not supported yet on x86-64");
5153
5154  MachineFunction &MF = DAG.getMachineFunction();
5155  SDOperand Chain     = Op.getOperand(0);
5156  SDOperand Offset    = Op.getOperand(1);
5157  SDOperand Handler   = Op.getOperand(2);
5158
5159  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5160                                    getPointerTy());
5161
5162  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5163                                    DAG.getIntPtrConstant(-4UL));
5164  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5165  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5166  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5167  MF.getRegInfo().addLiveOut(X86::ECX);
5168
5169  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5170                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5171}
5172
5173SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
5174                                             SelectionDAG &DAG) {
5175  SDOperand Root = Op.getOperand(0);
5176  SDOperand Trmp = Op.getOperand(1); // trampoline
5177  SDOperand FPtr = Op.getOperand(2); // nested function
5178  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
5179
5180  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5181
5182  const X86InstrInfo *TII =
5183    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5184
5185  if (Subtarget->is64Bit()) {
5186    SDOperand OutChains[6];
5187
5188    // Large code-model.
5189
5190    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5191    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5192
5193    const unsigned char N86R10 =
5194      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R10);
5195    const unsigned char N86R11 =
5196      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R11);
5197
5198    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5199
5200    // Load the pointer to the nested function into R11.
5201    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5202    SDOperand Addr = Trmp;
5203    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5204                                TrmpAddr, 0);
5205
5206    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5207    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5208
5209    // Load the 'nest' parameter value into R10.
5210    // R10 is specified in X86CallingConv.td
5211    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5212    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5213    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5214                                TrmpAddr, 10);
5215
5216    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5217    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5218
5219    // Jump to the nested function.
5220    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5221    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5222    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5223                                TrmpAddr, 20);
5224
5225    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5226    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5227    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5228                                TrmpAddr, 22);
5229
5230    SDOperand Ops[] =
5231      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5232    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5233  } else {
5234    const Function *Func =
5235      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5236    unsigned CC = Func->getCallingConv();
5237    unsigned NestReg;
5238
5239    switch (CC) {
5240    default:
5241      assert(0 && "Unsupported calling convention");
5242    case CallingConv::C:
5243    case CallingConv::X86_StdCall: {
5244      // Pass 'nest' parameter in ECX.
5245      // Must be kept in sync with X86CallingConv.td
5246      NestReg = X86::ECX;
5247
5248      // Check that ECX wasn't needed by an 'inreg' parameter.
5249      const FunctionType *FTy = Func->getFunctionType();
5250      const ParamAttrsList *Attrs = Func->getParamAttrs();
5251
5252      if (Attrs && !Func->isVarArg()) {
5253        unsigned InRegCount = 0;
5254        unsigned Idx = 1;
5255
5256        for (FunctionType::param_iterator I = FTy->param_begin(),
5257             E = FTy->param_end(); I != E; ++I, ++Idx)
5258          if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
5259            // FIXME: should only count parameters that are lowered to integers.
5260            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5261
5262        if (InRegCount > 2) {
5263          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5264          abort();
5265        }
5266      }
5267      break;
5268    }
5269    case CallingConv::X86_FastCall:
5270      // Pass 'nest' parameter in EAX.
5271      // Must be kept in sync with X86CallingConv.td
5272      NestReg = X86::EAX;
5273      break;
5274    }
5275
5276    SDOperand OutChains[4];
5277    SDOperand Addr, Disp;
5278
5279    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5280    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5281
5282    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5283    const unsigned char N86Reg =
5284      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg);
5285    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5286                                Trmp, TrmpAddr, 0);
5287
5288    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5289    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
5290
5291    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5292    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5293    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5294                                TrmpAddr, 5, false, 1);
5295
5296    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5297    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
5298
5299    SDOperand Ops[] =
5300      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5301    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5302  }
5303}
5304
5305SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
5306  /*
5307   The rounding mode is in bits 11:10 of FPSR, and has the following
5308   settings:
5309     00 Round to nearest
5310     01 Round to -inf
5311     10 Round to +inf
5312     11 Round to 0
5313
5314  FLT_ROUNDS, on the other hand, expects the following:
5315    -1 Undefined
5316     0 Round to 0
5317     1 Round to nearest
5318     2 Round to +inf
5319     3 Round to -inf
5320
5321  To perform the conversion, we do:
5322    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5323  */
5324
5325  MachineFunction &MF = DAG.getMachineFunction();
5326  const TargetMachine &TM = MF.getTarget();
5327  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5328  unsigned StackAlignment = TFI.getStackAlignment();
5329  MVT::ValueType VT = Op.getValueType();
5330
5331  // Save FP Control Word to stack slot
5332  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5333  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5334
5335  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5336                                DAG.getEntryNode(), StackSlot);
5337
5338  // Load FP Control Word from stack slot
5339  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5340
5341  // Transform as necessary
5342  SDOperand CWD1 =
5343    DAG.getNode(ISD::SRL, MVT::i16,
5344                DAG.getNode(ISD::AND, MVT::i16,
5345                            CWD, DAG.getConstant(0x800, MVT::i16)),
5346                DAG.getConstant(11, MVT::i8));
5347  SDOperand CWD2 =
5348    DAG.getNode(ISD::SRL, MVT::i16,
5349                DAG.getNode(ISD::AND, MVT::i16,
5350                            CWD, DAG.getConstant(0x400, MVT::i16)),
5351                DAG.getConstant(9, MVT::i8));
5352
5353  SDOperand RetVal =
5354    DAG.getNode(ISD::AND, MVT::i16,
5355                DAG.getNode(ISD::ADD, MVT::i16,
5356                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5357                            DAG.getConstant(1, MVT::i16)),
5358                DAG.getConstant(3, MVT::i16));
5359
5360
5361  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
5362                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5363}
5364
5365SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
5366  MVT::ValueType VT = Op.getValueType();
5367  MVT::ValueType OpVT = VT;
5368  unsigned NumBits = MVT::getSizeInBits(VT);
5369
5370  Op = Op.getOperand(0);
5371  if (VT == MVT::i8) {
5372    // Zero extend to i32 since there is not an i8 bsr.
5373    OpVT = MVT::i32;
5374    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5375  }
5376
5377  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5378  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5379  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5380
5381  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5382  SmallVector<SDOperand, 4> Ops;
5383  Ops.push_back(Op);
5384  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5385  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5386  Ops.push_back(Op.getValue(1));
5387  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5388
5389  // Finally xor with NumBits-1.
5390  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5391
5392  if (VT == MVT::i8)
5393    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5394  return Op;
5395}
5396
5397SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
5398  MVT::ValueType VT = Op.getValueType();
5399  MVT::ValueType OpVT = VT;
5400  unsigned NumBits = MVT::getSizeInBits(VT);
5401
5402  Op = Op.getOperand(0);
5403  if (VT == MVT::i8) {
5404    OpVT = MVT::i32;
5405    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5406  }
5407
5408  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5409  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5410  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5411
5412  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5413  SmallVector<SDOperand, 4> Ops;
5414  Ops.push_back(Op);
5415  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5416  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5417  Ops.push_back(Op.getValue(1));
5418  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5419
5420  if (VT == MVT::i8)
5421    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5422  return Op;
5423}
5424
5425SDOperand X86TargetLowering::LowerLCS(SDOperand Op, SelectionDAG &DAG) {
5426  MVT::ValueType T = cast<AtomicSDNode>(Op.Val)->getVT();
5427  unsigned Reg = 0;
5428  unsigned size = 0;
5429  switch(T) {
5430  case MVT::i8:  Reg = X86::AL;  size = 1; break;
5431  case MVT::i16: Reg = X86::AX;  size = 2; break;
5432  case MVT::i32: Reg = X86::EAX; size = 4; break;
5433  case MVT::i64:
5434    if (Subtarget->is64Bit()) {
5435      Reg = X86::RAX; size = 8;
5436    } else //Should go away when LowerType stuff lands
5437      return SDOperand(ExpandATOMIC_LCS(Op.Val, DAG), 0);
5438    break;
5439  };
5440  SDOperand cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
5441                                    Op.getOperand(3), SDOperand());
5442  SDOperand Ops[] = { cpIn.getValue(0),
5443                      Op.getOperand(1),
5444                      Op.getOperand(2),
5445                      DAG.getTargetConstant(size, MVT::i8),
5446                      cpIn.getValue(1) };
5447  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5448  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
5449  SDOperand cpOut =
5450    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
5451  return cpOut;
5452}
5453
5454SDNode* X86TargetLowering::ExpandATOMIC_LCS(SDNode* Op, SelectionDAG &DAG) {
5455  MVT::ValueType T = cast<AtomicSDNode>(Op)->getVT();
5456  assert (T == MVT::i64 && "Only know how to expand i64 CAS");
5457  SDOperand cpInL, cpInH;
5458  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5459                      DAG.getConstant(0, MVT::i32));
5460  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5461                      DAG.getConstant(1, MVT::i32));
5462  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
5463                           cpInL, SDOperand());
5464  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
5465                           cpInH, cpInL.getValue(1));
5466  SDOperand swapInL, swapInH;
5467  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5468                        DAG.getConstant(0, MVT::i32));
5469  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5470                        DAG.getConstant(1, MVT::i32));
5471  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
5472                             swapInL, cpInH.getValue(1));
5473  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
5474                             swapInH, swapInL.getValue(1));
5475  SDOperand Ops[] = { swapInH.getValue(0),
5476                      Op->getOperand(1),
5477                      swapInH.getValue(1)};
5478  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5479  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
5480  SDOperand cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
5481                                        Result.getValue(1));
5482  SDOperand cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
5483                                        cpOutL.getValue(2));
5484  SDOperand OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
5485  SDOperand ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
5486  Tys = DAG.getVTList(MVT::i64, MVT::Other);
5487  return DAG.getNode(ISD::MERGE_VALUES, Tys, ResultVal, cpOutH.getValue(1)).Val;
5488}
5489
5490/// LowerOperation - Provide custom lowering hooks for some operations.
5491///
5492SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5493  switch (Op.getOpcode()) {
5494  default: assert(0 && "Should not custom lower this!");
5495  case ISD::ATOMIC_LCS:         return LowerLCS(Op,DAG);
5496  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5497  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5498  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5499  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5500  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5501  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5502  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5503  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5504  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5505  case ISD::SHL_PARTS:
5506  case ISD::SRA_PARTS:
5507  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5508  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5509  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5510  case ISD::FABS:               return LowerFABS(Op, DAG);
5511  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5512  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5513  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5514  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5515  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5516  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5517  case ISD::CALL:               return LowerCALL(Op, DAG);
5518  case ISD::RET:                return LowerRET(Op, DAG);
5519  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5520  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
5521  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
5522  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5523  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5524  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5525  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5526  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5527  case ISD::FRAME_TO_ARGS_OFFSET:
5528                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5529  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5530  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5531  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5532  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5533  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5534  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5535
5536  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5537  case ISD::READCYCLECOUNTER:
5538    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5539  }
5540}
5541
5542/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5543SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5544  switch (N->getOpcode()) {
5545  default: assert(0 && "Should not custom lower this!");
5546  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5547  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5548  case ISD::ATOMIC_LCS:         return ExpandATOMIC_LCS(N, DAG);
5549  }
5550}
5551
5552const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5553  switch (Opcode) {
5554  default: return NULL;
5555  case X86ISD::BSF:                return "X86ISD::BSF";
5556  case X86ISD::BSR:                return "X86ISD::BSR";
5557  case X86ISD::SHLD:               return "X86ISD::SHLD";
5558  case X86ISD::SHRD:               return "X86ISD::SHRD";
5559  case X86ISD::FAND:               return "X86ISD::FAND";
5560  case X86ISD::FOR:                return "X86ISD::FOR";
5561  case X86ISD::FXOR:               return "X86ISD::FXOR";
5562  case X86ISD::FSRL:               return "X86ISD::FSRL";
5563  case X86ISD::FILD:               return "X86ISD::FILD";
5564  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5565  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5566  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5567  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5568  case X86ISD::FLD:                return "X86ISD::FLD";
5569  case X86ISD::FST:                return "X86ISD::FST";
5570  case X86ISD::FP_GET_ST0:         return "X86ISD::FP_GET_ST0";
5571  case X86ISD::FP_GET_ST0_ST1:     return "X86ISD::FP_GET_ST0_ST1";
5572  case X86ISD::FP_SET_ST0:         return "X86ISD::FP_SET_ST0";
5573  case X86ISD::CALL:               return "X86ISD::CALL";
5574  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5575  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5576  case X86ISD::CMP:                return "X86ISD::CMP";
5577  case X86ISD::COMI:               return "X86ISD::COMI";
5578  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5579  case X86ISD::SETCC:              return "X86ISD::SETCC";
5580  case X86ISD::CMOV:               return "X86ISD::CMOV";
5581  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5582  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5583  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5584  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5585  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5586  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5587  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
5588  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5589  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
5590  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
5591  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5592  case X86ISD::FMAX:               return "X86ISD::FMAX";
5593  case X86ISD::FMIN:               return "X86ISD::FMIN";
5594  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5595  case X86ISD::FRCP:               return "X86ISD::FRCP";
5596  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5597  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5598  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5599  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5600  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
5601  case X86ISD::LCMPXCHG_DAG:       return "x86ISD::LCMPXCHG_DAG";
5602  case X86ISD::LCMPXCHG8_DAG:      return "x86ISD::LCMPXCHG8_DAG";
5603  }
5604}
5605
5606// isLegalAddressingMode - Return true if the addressing mode represented
5607// by AM is legal for this target, for a load/store of the specified type.
5608bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5609                                              const Type *Ty) const {
5610  // X86 supports extremely general addressing modes.
5611
5612  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5613  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5614    return false;
5615
5616  if (AM.BaseGV) {
5617    // We can only fold this if we don't need an extra load.
5618    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5619      return false;
5620
5621    // X86-64 only supports addr of globals in small code model.
5622    if (Subtarget->is64Bit()) {
5623      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5624        return false;
5625      // If lower 4G is not available, then we must use rip-relative addressing.
5626      if (AM.BaseOffs || AM.Scale > 1)
5627        return false;
5628    }
5629  }
5630
5631  switch (AM.Scale) {
5632  case 0:
5633  case 1:
5634  case 2:
5635  case 4:
5636  case 8:
5637    // These scales always work.
5638    break;
5639  case 3:
5640  case 5:
5641  case 9:
5642    // These scales are formed with basereg+scalereg.  Only accept if there is
5643    // no basereg yet.
5644    if (AM.HasBaseReg)
5645      return false;
5646    break;
5647  default:  // Other stuff never works.
5648    return false;
5649  }
5650
5651  return true;
5652}
5653
5654
5655bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5656  if (!Ty1->isInteger() || !Ty2->isInteger())
5657    return false;
5658  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5659  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5660  if (NumBits1 <= NumBits2)
5661    return false;
5662  return Subtarget->is64Bit() || NumBits1 < 64;
5663}
5664
5665bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5666                                       MVT::ValueType VT2) const {
5667  if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5668    return false;
5669  unsigned NumBits1 = MVT::getSizeInBits(VT1);
5670  unsigned NumBits2 = MVT::getSizeInBits(VT2);
5671  if (NumBits1 <= NumBits2)
5672    return false;
5673  return Subtarget->is64Bit() || NumBits1 < 64;
5674}
5675
5676/// isShuffleMaskLegal - Targets can use this to indicate that they only
5677/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5678/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5679/// are assumed to be legal.
5680bool
5681X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5682  // Only do shuffles on 128-bit vector types for now.
5683  if (MVT::getSizeInBits(VT) == 64) return false;
5684  return (Mask.Val->getNumOperands() <= 4 ||
5685          isIdentityMask(Mask.Val) ||
5686          isIdentityMask(Mask.Val, true) ||
5687          isSplatMask(Mask.Val)  ||
5688          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5689          X86::isUNPCKLMask(Mask.Val) ||
5690          X86::isUNPCKHMask(Mask.Val) ||
5691          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5692          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5693}
5694
5695bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5696                                               MVT::ValueType EVT,
5697                                               SelectionDAG &DAG) const {
5698  unsigned NumElts = BVOps.size();
5699  // Only do shuffles on 128-bit vector types for now.
5700  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5701  if (NumElts == 2) return true;
5702  if (NumElts == 4) {
5703    return (isMOVLMask(&BVOps[0], 4)  ||
5704            isCommutedMOVL(&BVOps[0], 4, true) ||
5705            isSHUFPMask(&BVOps[0], 4) ||
5706            isCommutedSHUFP(&BVOps[0], 4));
5707  }
5708  return false;
5709}
5710
5711//===----------------------------------------------------------------------===//
5712//                           X86 Scheduler Hooks
5713//===----------------------------------------------------------------------===//
5714
5715MachineBasicBlock *
5716X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5717                                               MachineBasicBlock *BB) {
5718  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5719  switch (MI->getOpcode()) {
5720  default: assert(false && "Unexpected instr type to insert");
5721  case X86::CMOV_FR32:
5722  case X86::CMOV_FR64:
5723  case X86::CMOV_V4F32:
5724  case X86::CMOV_V2F64:
5725  case X86::CMOV_V2I64: {
5726    // To "insert" a SELECT_CC instruction, we actually have to insert the
5727    // diamond control-flow pattern.  The incoming instruction knows the
5728    // destination vreg to set, the condition code register to branch on, the
5729    // true/false values to select between, and a branch opcode to use.
5730    const BasicBlock *LLVM_BB = BB->getBasicBlock();
5731    ilist<MachineBasicBlock>::iterator It = BB;
5732    ++It;
5733
5734    //  thisMBB:
5735    //  ...
5736    //   TrueVal = ...
5737    //   cmpTY ccX, r1, r2
5738    //   bCC copy1MBB
5739    //   fallthrough --> copy0MBB
5740    MachineBasicBlock *thisMBB = BB;
5741    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5742    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5743    unsigned Opc =
5744      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5745    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5746    MachineFunction *F = BB->getParent();
5747    F->getBasicBlockList().insert(It, copy0MBB);
5748    F->getBasicBlockList().insert(It, sinkMBB);
5749    // Update machine-CFG edges by first adding all successors of the current
5750    // block to the new block which will contain the Phi node for the select.
5751    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5752        e = BB->succ_end(); i != e; ++i)
5753      sinkMBB->addSuccessor(*i);
5754    // Next, remove all successors of the current block, and add the true
5755    // and fallthrough blocks as its successors.
5756    while(!BB->succ_empty())
5757      BB->removeSuccessor(BB->succ_begin());
5758    BB->addSuccessor(copy0MBB);
5759    BB->addSuccessor(sinkMBB);
5760
5761    //  copy0MBB:
5762    //   %FalseValue = ...
5763    //   # fallthrough to sinkMBB
5764    BB = copy0MBB;
5765
5766    // Update machine-CFG edges
5767    BB->addSuccessor(sinkMBB);
5768
5769    //  sinkMBB:
5770    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5771    //  ...
5772    BB = sinkMBB;
5773    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5774      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5775      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5776
5777    delete MI;   // The pseudo instruction is gone now.
5778    return BB;
5779  }
5780
5781  case X86::FP32_TO_INT16_IN_MEM:
5782  case X86::FP32_TO_INT32_IN_MEM:
5783  case X86::FP32_TO_INT64_IN_MEM:
5784  case X86::FP64_TO_INT16_IN_MEM:
5785  case X86::FP64_TO_INT32_IN_MEM:
5786  case X86::FP64_TO_INT64_IN_MEM:
5787  case X86::FP80_TO_INT16_IN_MEM:
5788  case X86::FP80_TO_INT32_IN_MEM:
5789  case X86::FP80_TO_INT64_IN_MEM: {
5790    // Change the floating point control register to use "round towards zero"
5791    // mode when truncating to an integer value.
5792    MachineFunction *F = BB->getParent();
5793    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5794    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5795
5796    // Load the old value of the high byte of the control word...
5797    unsigned OldCW =
5798      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
5799    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5800
5801    // Set the high part to be round to zero...
5802    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5803      .addImm(0xC7F);
5804
5805    // Reload the modified control word now...
5806    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5807
5808    // Restore the memory image of control word to original value
5809    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5810      .addReg(OldCW);
5811
5812    // Get the X86 opcode to use.
5813    unsigned Opc;
5814    switch (MI->getOpcode()) {
5815    default: assert(0 && "illegal opcode!");
5816    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5817    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5818    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5819    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5820    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5821    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
5822    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5823    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5824    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
5825    }
5826
5827    X86AddressMode AM;
5828    MachineOperand &Op = MI->getOperand(0);
5829    if (Op.isRegister()) {
5830      AM.BaseType = X86AddressMode::RegBase;
5831      AM.Base.Reg = Op.getReg();
5832    } else {
5833      AM.BaseType = X86AddressMode::FrameIndexBase;
5834      AM.Base.FrameIndex = Op.getIndex();
5835    }
5836    Op = MI->getOperand(1);
5837    if (Op.isImmediate())
5838      AM.Scale = Op.getImm();
5839    Op = MI->getOperand(2);
5840    if (Op.isImmediate())
5841      AM.IndexReg = Op.getImm();
5842    Op = MI->getOperand(3);
5843    if (Op.isGlobalAddress()) {
5844      AM.GV = Op.getGlobal();
5845    } else {
5846      AM.Disp = Op.getImm();
5847    }
5848    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5849                      .addReg(MI->getOperand(4).getReg());
5850
5851    // Reload the original control word now.
5852    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5853
5854    delete MI;   // The pseudo instruction is gone now.
5855    return BB;
5856  }
5857  }
5858}
5859
5860//===----------------------------------------------------------------------===//
5861//                           X86 Optimization Hooks
5862//===----------------------------------------------------------------------===//
5863
5864void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5865                                                       const APInt &Mask,
5866                                                       APInt &KnownZero,
5867                                                       APInt &KnownOne,
5868                                                       const SelectionDAG &DAG,
5869                                                       unsigned Depth) const {
5870  unsigned Opc = Op.getOpcode();
5871  assert((Opc >= ISD::BUILTIN_OP_END ||
5872          Opc == ISD::INTRINSIC_WO_CHAIN ||
5873          Opc == ISD::INTRINSIC_W_CHAIN ||
5874          Opc == ISD::INTRINSIC_VOID) &&
5875         "Should use MaskedValueIsZero if you don't know whether Op"
5876         " is a target node!");
5877
5878  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
5879  switch (Opc) {
5880  default: break;
5881  case X86ISD::SETCC:
5882    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
5883                                       Mask.getBitWidth() - 1);
5884    break;
5885  }
5886}
5887
5888/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5889/// element of the result of the vector shuffle.
5890static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5891  MVT::ValueType VT = N->getValueType(0);
5892  SDOperand PermMask = N->getOperand(2);
5893  unsigned NumElems = PermMask.getNumOperands();
5894  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5895  i %= NumElems;
5896  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5897    return (i == 0)
5898     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5899  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5900    SDOperand Idx = PermMask.getOperand(i);
5901    if (Idx.getOpcode() == ISD::UNDEF)
5902      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5903    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5904  }
5905  return SDOperand();
5906}
5907
5908/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5909/// node is a GlobalAddress + an offset.
5910static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5911  unsigned Opc = N->getOpcode();
5912  if (Opc == X86ISD::Wrapper) {
5913    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5914      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5915      return true;
5916    }
5917  } else if (Opc == ISD::ADD) {
5918    SDOperand N1 = N->getOperand(0);
5919    SDOperand N2 = N->getOperand(1);
5920    if (isGAPlusOffset(N1.Val, GA, Offset)) {
5921      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5922      if (V) {
5923        Offset += V->getSignExtended();
5924        return true;
5925      }
5926    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5927      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5928      if (V) {
5929        Offset += V->getSignExtended();
5930        return true;
5931      }
5932    }
5933  }
5934  return false;
5935}
5936
5937/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5938/// + Dist * Size.
5939static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5940                              MachineFrameInfo *MFI) {
5941  if (N->getOperand(0).Val != Base->getOperand(0).Val)
5942    return false;
5943
5944  SDOperand Loc = N->getOperand(1);
5945  SDOperand BaseLoc = Base->getOperand(1);
5946  if (Loc.getOpcode() == ISD::FrameIndex) {
5947    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5948      return false;
5949    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5950    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5951    int FS  = MFI->getObjectSize(FI);
5952    int BFS = MFI->getObjectSize(BFI);
5953    if (FS != BFS || FS != Size) return false;
5954    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5955  } else {
5956    GlobalValue *GV1 = NULL;
5957    GlobalValue *GV2 = NULL;
5958    int64_t Offset1 = 0;
5959    int64_t Offset2 = 0;
5960    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5961    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5962    if (isGA1 && isGA2 && GV1 == GV2)
5963      return Offset1 == (Offset2 + Dist*Size);
5964  }
5965
5966  return false;
5967}
5968
5969static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5970                              const X86Subtarget *Subtarget) {
5971  GlobalValue *GV;
5972  int64_t Offset = 0;
5973  if (isGAPlusOffset(Base, GV, Offset))
5974    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5975  // DAG combine handles the stack object case.
5976  return false;
5977}
5978
5979
5980/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5981/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5982/// if the load addresses are consecutive, non-overlapping, and in the right
5983/// order.
5984static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5985                                       const X86Subtarget *Subtarget) {
5986  MachineFunction &MF = DAG.getMachineFunction();
5987  MachineFrameInfo *MFI = MF.getFrameInfo();
5988  MVT::ValueType VT = N->getValueType(0);
5989  MVT::ValueType EVT = MVT::getVectorElementType(VT);
5990  SDOperand PermMask = N->getOperand(2);
5991  int NumElems = (int)PermMask.getNumOperands();
5992  SDNode *Base = NULL;
5993  for (int i = 0; i < NumElems; ++i) {
5994    SDOperand Idx = PermMask.getOperand(i);
5995    if (Idx.getOpcode() == ISD::UNDEF) {
5996      if (!Base) return SDOperand();
5997    } else {
5998      SDOperand Arg =
5999        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
6000      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
6001        return SDOperand();
6002      if (!Base)
6003        Base = Arg.Val;
6004      else if (!isConsecutiveLoad(Arg.Val, Base,
6005                                  i, MVT::getSizeInBits(EVT)/8,MFI))
6006        return SDOperand();
6007    }
6008  }
6009
6010  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
6011  LoadSDNode *LD = cast<LoadSDNode>(Base);
6012  if (isAlign16) {
6013    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6014                       LD->getSrcValueOffset(), LD->isVolatile());
6015  } else {
6016    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6017                       LD->getSrcValueOffset(), LD->isVolatile(),
6018                       LD->getAlignment());
6019  }
6020}
6021
6022/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
6023static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
6024                                      const X86Subtarget *Subtarget) {
6025  SDOperand Cond = N->getOperand(0);
6026
6027  // If we have SSE[12] support, try to form min/max nodes.
6028  if (Subtarget->hasSSE2() &&
6029      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
6030    if (Cond.getOpcode() == ISD::SETCC) {
6031      // Get the LHS/RHS of the select.
6032      SDOperand LHS = N->getOperand(1);
6033      SDOperand RHS = N->getOperand(2);
6034      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
6035
6036      unsigned Opcode = 0;
6037      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
6038        switch (CC) {
6039        default: break;
6040        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
6041        case ISD::SETULE:
6042        case ISD::SETLE:
6043          if (!UnsafeFPMath) break;
6044          // FALL THROUGH.
6045        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
6046        case ISD::SETLT:
6047          Opcode = X86ISD::FMIN;
6048          break;
6049
6050        case ISD::SETOGT: // (X > Y) ? X : Y -> max
6051        case ISD::SETUGT:
6052        case ISD::SETGT:
6053          if (!UnsafeFPMath) break;
6054          // FALL THROUGH.
6055        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
6056        case ISD::SETGE:
6057          Opcode = X86ISD::FMAX;
6058          break;
6059        }
6060      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
6061        switch (CC) {
6062        default: break;
6063        case ISD::SETOGT: // (X > Y) ? Y : X -> min
6064        case ISD::SETUGT:
6065        case ISD::SETGT:
6066          if (!UnsafeFPMath) break;
6067          // FALL THROUGH.
6068        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
6069        case ISD::SETGE:
6070          Opcode = X86ISD::FMIN;
6071          break;
6072
6073        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
6074        case ISD::SETULE:
6075        case ISD::SETLE:
6076          if (!UnsafeFPMath) break;
6077          // FALL THROUGH.
6078        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
6079        case ISD::SETLT:
6080          Opcode = X86ISD::FMAX;
6081          break;
6082        }
6083      }
6084
6085      if (Opcode)
6086        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
6087    }
6088
6089  }
6090
6091  return SDOperand();
6092}
6093
6094/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
6095static SDOperand PerformSTORECombine(StoreSDNode *St, SelectionDAG &DAG,
6096                                     const X86Subtarget *Subtarget) {
6097  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
6098  // the FP state in cases where an emms may be missing.
6099  // A preferable solution to the general problem is to figure out the right
6100  // places to insert EMMS.  This qualifies as a quick hack.
6101  if (MVT::isVector(St->getValue().getValueType()) &&
6102      MVT::getSizeInBits(St->getValue().getValueType()) == 64 &&
6103      isa<LoadSDNode>(St->getValue()) &&
6104      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
6105      St->getChain().hasOneUse() && !St->isVolatile()) {
6106    SDNode* LdVal = St->getValue().Val;
6107    LoadSDNode *Ld = 0;
6108    int TokenFactorIndex = -1;
6109    SmallVector<SDOperand, 8> Ops;
6110    SDNode* ChainVal = St->getChain().Val;
6111    // Must be a store of a load.  We currently handle two cases:  the load
6112    // is a direct child, and it's under an intervening TokenFactor.  It is
6113    // possible to dig deeper under nested TokenFactors.
6114    if (ChainVal == LdVal)
6115      Ld = cast<LoadSDNode>(St->getChain());
6116    else if (St->getValue().hasOneUse() &&
6117             ChainVal->getOpcode() == ISD::TokenFactor) {
6118      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
6119        if (ChainVal->getOperand(i).Val == LdVal) {
6120          TokenFactorIndex = i;
6121          Ld = cast<LoadSDNode>(St->getValue());
6122        } else
6123          Ops.push_back(ChainVal->getOperand(i));
6124      }
6125    }
6126    if (Ld) {
6127      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
6128      if (Subtarget->is64Bit()) {
6129        SDOperand NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
6130                                      Ld->getBasePtr(), Ld->getSrcValue(),
6131                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
6132                                      Ld->getAlignment());
6133        SDOperand NewChain = NewLd.getValue(1);
6134        if (TokenFactorIndex != -1) {
6135          Ops.push_back(NewLd);
6136          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6137                                 Ops.size());
6138        }
6139        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
6140                            St->getSrcValue(), St->getSrcValueOffset(),
6141                            St->isVolatile(), St->getAlignment());
6142      }
6143
6144      // Otherwise, lower to two 32-bit copies.
6145      SDOperand LoAddr = Ld->getBasePtr();
6146      SDOperand HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6147                                     DAG.getConstant(MVT::i32, 4));
6148
6149      SDOperand LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
6150                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
6151                                   Ld->isVolatile(), Ld->getAlignment());
6152      SDOperand HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
6153                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
6154                                   Ld->isVolatile(),
6155                                   MinAlign(Ld->getAlignment(), 4));
6156
6157      SDOperand NewChain = LoLd.getValue(1);
6158      if (TokenFactorIndex != -1) {
6159        Ops.push_back(LoLd);
6160        Ops.push_back(HiLd);
6161        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6162                               Ops.size());
6163      }
6164
6165      LoAddr = St->getBasePtr();
6166      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6167                           DAG.getConstant(MVT::i32, 4));
6168
6169      SDOperand LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
6170                          St->getSrcValue(), St->getSrcValueOffset(),
6171                          St->isVolatile(), St->getAlignment());
6172      SDOperand HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
6173                                    St->getSrcValue(), St->getSrcValueOffset()+4,
6174                                    St->isVolatile(),
6175                                    MinAlign(St->getAlignment(), 4));
6176      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
6177    }
6178  }
6179  return SDOperand();
6180}
6181
6182/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
6183/// X86ISD::FXOR nodes.
6184static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
6185  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
6186  // F[X]OR(0.0, x) -> x
6187  // F[X]OR(x, 0.0) -> x
6188  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6189    if (C->getValueAPF().isPosZero())
6190      return N->getOperand(1);
6191  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6192    if (C->getValueAPF().isPosZero())
6193      return N->getOperand(0);
6194  return SDOperand();
6195}
6196
6197/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
6198static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
6199  // FAND(0.0, x) -> 0.0
6200  // FAND(x, 0.0) -> 0.0
6201  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6202    if (C->getValueAPF().isPosZero())
6203      return N->getOperand(0);
6204  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6205    if (C->getValueAPF().isPosZero())
6206      return N->getOperand(1);
6207  return SDOperand();
6208}
6209
6210
6211SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
6212                                               DAGCombinerInfo &DCI) const {
6213  SelectionDAG &DAG = DCI.DAG;
6214  switch (N->getOpcode()) {
6215  default: break;
6216  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, Subtarget);
6217  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
6218  case ISD::STORE:
6219      return PerformSTORECombine(cast<StoreSDNode>(N), DAG, Subtarget);
6220  case X86ISD::FXOR:
6221  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
6222  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
6223  }
6224
6225  return SDOperand();
6226}
6227
6228//===----------------------------------------------------------------------===//
6229//                           X86 Inline Assembly Support
6230//===----------------------------------------------------------------------===//
6231
6232/// getConstraintType - Given a constraint letter, return the type of
6233/// constraint it is for this target.
6234X86TargetLowering::ConstraintType
6235X86TargetLowering::getConstraintType(const std::string &Constraint) const {
6236  if (Constraint.size() == 1) {
6237    switch (Constraint[0]) {
6238    case 'A':
6239    case 'r':
6240    case 'R':
6241    case 'l':
6242    case 'q':
6243    case 'Q':
6244    case 'x':
6245    case 'Y':
6246      return C_RegisterClass;
6247    default:
6248      break;
6249    }
6250  }
6251  return TargetLowering::getConstraintType(Constraint);
6252}
6253
6254/// LowerXConstraint - try to replace an X constraint, which matches anything,
6255/// with another that has more specific requirements based on the type of the
6256/// corresponding operand.
6257void X86TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT,
6258                                         std::string& s) const {
6259  if (MVT::isFloatingPoint(ConstraintVT)) {
6260    if (Subtarget->hasSSE2())
6261      s = "Y";
6262    else if (Subtarget->hasSSE1())
6263      s = "x";
6264    else
6265      s = "f";
6266  } else
6267    return TargetLowering::lowerXConstraint(ConstraintVT, s);
6268}
6269
6270/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6271/// vector.  If it is invalid, don't add anything to Ops.
6272void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
6273                                                     char Constraint,
6274                                                     std::vector<SDOperand>&Ops,
6275                                                     SelectionDAG &DAG) {
6276  SDOperand Result(0, 0);
6277
6278  switch (Constraint) {
6279  default: break;
6280  case 'I':
6281    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6282      if (C->getValue() <= 31) {
6283        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6284        break;
6285      }
6286    }
6287    return;
6288  case 'N':
6289    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6290      if (C->getValue() <= 255) {
6291        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6292        break;
6293      }
6294    }
6295    return;
6296  case 'i': {
6297    // Literal immediates are always ok.
6298    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
6299      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
6300      break;
6301    }
6302
6303    // If we are in non-pic codegen mode, we allow the address of a global (with
6304    // an optional displacement) to be used with 'i'.
6305    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
6306    int64_t Offset = 0;
6307
6308    // Match either (GA) or (GA+C)
6309    if (GA) {
6310      Offset = GA->getOffset();
6311    } else if (Op.getOpcode() == ISD::ADD) {
6312      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6313      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6314      if (C && GA) {
6315        Offset = GA->getOffset()+C->getValue();
6316      } else {
6317        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6318        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6319        if (C && GA)
6320          Offset = GA->getOffset()+C->getValue();
6321        else
6322          C = 0, GA = 0;
6323      }
6324    }
6325
6326    if (GA) {
6327      // If addressing this global requires a load (e.g. in PIC mode), we can't
6328      // match.
6329      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
6330                                         false))
6331        return;
6332
6333      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
6334                                      Offset);
6335      Result = Op;
6336      break;
6337    }
6338
6339    // Otherwise, not valid for this mode.
6340    return;
6341  }
6342  }
6343
6344  if (Result.Val) {
6345    Ops.push_back(Result);
6346    return;
6347  }
6348  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6349}
6350
6351std::vector<unsigned> X86TargetLowering::
6352getRegClassForInlineAsmConstraint(const std::string &Constraint,
6353                                  MVT::ValueType VT) const {
6354  if (Constraint.size() == 1) {
6355    // FIXME: not handling fp-stack yet!
6356    switch (Constraint[0]) {      // GCC X86 Constraint Letters
6357    default: break;  // Unknown constraint letter
6358    case 'A':   // EAX/EDX
6359      if (VT == MVT::i32 || VT == MVT::i64)
6360        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
6361      break;
6362    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
6363    case 'Q':   // Q_REGS
6364      if (VT == MVT::i32)
6365        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
6366      else if (VT == MVT::i16)
6367        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
6368      else if (VT == MVT::i8)
6369        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
6370      else if (VT == MVT::i64)
6371        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
6372      break;
6373    }
6374  }
6375
6376  return std::vector<unsigned>();
6377}
6378
6379std::pair<unsigned, const TargetRegisterClass*>
6380X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6381                                                MVT::ValueType VT) const {
6382  // First, see if this is a constraint that directly corresponds to an LLVM
6383  // register class.
6384  if (Constraint.size() == 1) {
6385    // GCC Constraint Letters
6386    switch (Constraint[0]) {
6387    default: break;
6388    case 'r':   // GENERAL_REGS
6389    case 'R':   // LEGACY_REGS
6390    case 'l':   // INDEX_REGS
6391      if (VT == MVT::i64 && Subtarget->is64Bit())
6392        return std::make_pair(0U, X86::GR64RegisterClass);
6393      if (VT == MVT::i32)
6394        return std::make_pair(0U, X86::GR32RegisterClass);
6395      else if (VT == MVT::i16)
6396        return std::make_pair(0U, X86::GR16RegisterClass);
6397      else if (VT == MVT::i8)
6398        return std::make_pair(0U, X86::GR8RegisterClass);
6399      break;
6400    case 'y':   // MMX_REGS if MMX allowed.
6401      if (!Subtarget->hasMMX()) break;
6402      return std::make_pair(0U, X86::VR64RegisterClass);
6403      break;
6404    case 'Y':   // SSE_REGS if SSE2 allowed
6405      if (!Subtarget->hasSSE2()) break;
6406      // FALL THROUGH.
6407    case 'x':   // SSE_REGS if SSE1 allowed
6408      if (!Subtarget->hasSSE1()) break;
6409
6410      switch (VT) {
6411      default: break;
6412      // Scalar SSE types.
6413      case MVT::f32:
6414      case MVT::i32:
6415        return std::make_pair(0U, X86::FR32RegisterClass);
6416      case MVT::f64:
6417      case MVT::i64:
6418        return std::make_pair(0U, X86::FR64RegisterClass);
6419      // Vector types.
6420      case MVT::v16i8:
6421      case MVT::v8i16:
6422      case MVT::v4i32:
6423      case MVT::v2i64:
6424      case MVT::v4f32:
6425      case MVT::v2f64:
6426        return std::make_pair(0U, X86::VR128RegisterClass);
6427      }
6428      break;
6429    }
6430  }
6431
6432  // Use the default implementation in TargetLowering to convert the register
6433  // constraint into a member of a register class.
6434  std::pair<unsigned, const TargetRegisterClass*> Res;
6435  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6436
6437  // Not found as a standard register?
6438  if (Res.second == 0) {
6439    // GCC calls "st(0)" just plain "st".
6440    if (StringsEqualNoCase("{st}", Constraint)) {
6441      Res.first = X86::ST0;
6442      Res.second = X86::RFP80RegisterClass;
6443    }
6444
6445    return Res;
6446  }
6447
6448  // Otherwise, check to see if this is a register class of the wrong value
6449  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
6450  // turn into {ax},{dx}.
6451  if (Res.second->hasType(VT))
6452    return Res;   // Correct type already, nothing to do.
6453
6454  // All of the single-register GCC register classes map their values onto
6455  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
6456  // really want an 8-bit or 32-bit register, map to the appropriate register
6457  // class and return the appropriate register.
6458  if (Res.second != X86::GR16RegisterClass)
6459    return Res;
6460
6461  if (VT == MVT::i8) {
6462    unsigned DestReg = 0;
6463    switch (Res.first) {
6464    default: break;
6465    case X86::AX: DestReg = X86::AL; break;
6466    case X86::DX: DestReg = X86::DL; break;
6467    case X86::CX: DestReg = X86::CL; break;
6468    case X86::BX: DestReg = X86::BL; break;
6469    }
6470    if (DestReg) {
6471      Res.first = DestReg;
6472      Res.second = Res.second = X86::GR8RegisterClass;
6473    }
6474  } else if (VT == MVT::i32) {
6475    unsigned DestReg = 0;
6476    switch (Res.first) {
6477    default: break;
6478    case X86::AX: DestReg = X86::EAX; break;
6479    case X86::DX: DestReg = X86::EDX; break;
6480    case X86::CX: DestReg = X86::ECX; break;
6481    case X86::BX: DestReg = X86::EBX; break;
6482    case X86::SI: DestReg = X86::ESI; break;
6483    case X86::DI: DestReg = X86::EDI; break;
6484    case X86::BP: DestReg = X86::EBP; break;
6485    case X86::SP: DestReg = X86::ESP; break;
6486    }
6487    if (DestReg) {
6488      Res.first = DestReg;
6489      Res.second = Res.second = X86::GR32RegisterClass;
6490    }
6491  } else if (VT == MVT::i64) {
6492    unsigned DestReg = 0;
6493    switch (Res.first) {
6494    default: break;
6495    case X86::AX: DestReg = X86::RAX; break;
6496    case X86::DX: DestReg = X86::RDX; break;
6497    case X86::CX: DestReg = X86::RCX; break;
6498    case X86::BX: DestReg = X86::RBX; break;
6499    case X86::SI: DestReg = X86::RSI; break;
6500    case X86::DI: DestReg = X86::RDI; break;
6501    case X86::BP: DestReg = X86::RBP; break;
6502    case X86::SP: DestReg = X86::RSP; break;
6503    }
6504    if (DestReg) {
6505      Res.first = DestReg;
6506      Res.second = Res.second = X86::GR64RegisterClass;
6507    }
6508  }
6509
6510  return Res;
6511}
6512