X86ISelLowering.cpp revision bb0a9489e00d93e3944da0c7458f46e9ccb32c9f
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
65
66  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
67
68  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
69    if (is64Bit) return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
72    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
73    return new X8632_ELFTargetObjectFile(TM);
74  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
75    return new TargetLoweringObjectFileCOFF();
76  }
77  llvm_unreachable("unknown subtarget type");
78}
79
80X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
81  : TargetLowering(TM, createTLOF(TM)) {
82  Subtarget = &TM.getSubtarget<X86Subtarget>();
83  X86ScalarSSEf64 = Subtarget->hasSSE2();
84  X86ScalarSSEf32 = Subtarget->hasSSE1();
85  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
86
87  RegInfo = TM.getRegisterInfo();
88  TD = getTargetData();
89
90  // Set up the TargetLowering object.
91
92  // X86 is weird, it always uses i8 for shift amounts and setcc results.
93  setShiftAmountType(MVT::i8);
94  setBooleanContents(ZeroOrOneBooleanContent);
95  setSchedulingPreference(Sched::RegPressure);
96  setStackPointerRegisterToSaveRestore(X86StackPtr);
97
98  if (Subtarget->isTargetDarwin()) {
99    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
100    setUseUnderscoreSetJmp(false);
101    setUseUnderscoreLongJmp(false);
102  } else if (Subtarget->isTargetMingw()) {
103    // MS runtime is weird: it exports _setjmp, but longjmp!
104    setUseUnderscoreSetJmp(true);
105    setUseUnderscoreLongJmp(false);
106  } else {
107    setUseUnderscoreSetJmp(true);
108    setUseUnderscoreLongJmp(true);
109  }
110
111  // Set up the register classes.
112  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
113  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
124  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
125  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
126  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
127
128  // SETOEQ and SETUNE require checking two conditions.
129  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
130  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
132  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
135
136  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
137  // operation.
138  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
145  } else if (!UseSoftFloat) {
146    // We have an algorithm for SSE2->double, and we turn this into a
147    // 64-bit FILD followed by conditional FADD for other targets.
148    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
149    // We have an algorithm for SSE2, and we turn this into a 64-bit
150    // FILD for other targets.
151    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
152  }
153
154  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
155  // this operation.
156  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
158
159  if (!UseSoftFloat) {
160    // SSE has no i16 to fp conversion, only i32
161    if (X86ScalarSSEf32) {
162      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
163      // f32 and f64 cases are Legal, f80 case is not
164      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
165    } else {
166      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    }
169  } else {
170    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
172  }
173
174  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
175  // are Legal, f80 is custom lowered.
176  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
177  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
178
179  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
180  // this operation.
181  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
183
184  if (X86ScalarSSEf32) {
185    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
186    // f32 and f64 cases are Legal, f80 case is not
187    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
188  } else {
189    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  }
192
193  // Handle FP_TO_UINT by promoting the destination to a larger signed
194  // conversion.
195  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
198
199  if (Subtarget->is64Bit()) {
200    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
202  } else if (!UseSoftFloat) {
203    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
204      // Expand FP_TO_UINT into a select.
205      // FIXME: We would like to use a Custom expander here eventually to do
206      // the optimal thing for SSE vs. the default expansion in the legalizer.
207      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
208    else
209      // With SSE3 we can use fisttpll to convert to a signed i64; without
210      // SSE, we're stuck with a fistpll.
211      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
212  }
213
214  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
215  if (!X86ScalarSSEf64) {
216    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
217    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
218    if (Subtarget->is64Bit()) {
219      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
220      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
221      if (Subtarget->hasMMX() && !DisableMMX)
222        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
223      else
224        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
225    }
226  }
227
228  // Scalar integer divide and remainder are lowered to use operations that
229  // produce two results, to match the available instructions. This exposes
230  // the two-result form to trivial CSE, which is able to combine x/y and x%y
231  // into a single instruction.
232  //
233  // Scalar integer multiply-high is also lowered to use two-result
234  // operations, to match the available instructions. However, plain multiply
235  // (low) operations are left as Legal, as there are single-result
236  // instructions for this in x86. Using the two-result multiply instructions
237  // when both high and low results are needed must be arranged by dagcombine.
238  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
242  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
243  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
244  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
248  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
249  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
262
263  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
264  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
265  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
266  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
267  if (Subtarget->is64Bit())
268    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
269  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
270  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
272  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
273  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
274  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
276  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
277
278  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
279  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
280  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
281  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
301  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
305  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
306  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
313    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
314  }
315  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
316
317  // Darwin ABI issue.
318  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
319  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
320  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
321  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
322  if (Subtarget->is64Bit())
323    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
324  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
325  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
328    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
329    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
330    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
331    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
332  }
333  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
334  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
335  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
336  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
339    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
340    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
341  }
342
343  if (Subtarget->hasSSE1())
344    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
345
346  // We may not have a libcall for MEMBARRIER so we should lower this.
347  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
348
349  // On X86 and X86-64, atomic operations are lowered to locked instructions.
350  // Locked instructions, in turn, have implicit fence semantics (all memory
351  // operations are flushed before issuing the locked instruction, and they
352  // are not buffered), so we can fold away the common pattern of
353  // fence-atomic-fence.
354  setShouldFoldAtomicFences(true);
355
356  // Expand certain atomics
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
361
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
366
367  if (!Subtarget->is64Bit()) {
368    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
375  }
376
377  // FIXME - use subtarget debug flags
378  if (!Subtarget->isTargetDarwin() &&
379      !Subtarget->isTargetELF() &&
380      !Subtarget->isTargetCygMing()) {
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
600    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
605         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
606      setTruncStoreAction((MVT::SimpleValueType)VT,
607                          (MVT::SimpleValueType)InnerVT, Expand);
608    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
609    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
611  }
612
613  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
614  // with -msoft-float, disable use of MMX as well.
615  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
616    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
617    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
618    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
619
620    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
621
622    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
625    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
628    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
629    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
630    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
631
632    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
633    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
634
635    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
636    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
637    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
638    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
639    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
640    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
641    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
642
643    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
646    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
648    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
650
651    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
654    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
656    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
658
659    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
662    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
664    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
666
667    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
668    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
669    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
670    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
671
672    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
675    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
676
677    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
678    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
679    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
680
681    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
682
683    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
684    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
685    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
686    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
689    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
690
691    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
692      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
693      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
694      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
695      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
696    }
697  }
698
699  if (!UseSoftFloat && Subtarget->hasSSE1()) {
700    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
701
702    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
708    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
709    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
711    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
712    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
713    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
714  }
715
716  if (!UseSoftFloat && Subtarget->hasSSE2()) {
717    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
718
719    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
720    // registers cannot be used even for integer operations.
721    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
722    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
723    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
724    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
725
726    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
727    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
728    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
729    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
730    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
731    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
732    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
733    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
734    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
736    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
738    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
739    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
740    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
741    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
742
743    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
744    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
745    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
746    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
747
748    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
749    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
750    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
751    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
752    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
753
754    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
755    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
756    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
757    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
759
760    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
761    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
762      EVT VT = (MVT::SimpleValueType)i;
763      // Do not attempt to custom lower non-power-of-2 vectors
764      if (!isPowerOf2_32(VT.getVectorNumElements()))
765        continue;
766      // Do not attempt to custom lower non-128-bit vectors
767      if (!VT.is128BitVector())
768        continue;
769      setOperationAction(ISD::BUILD_VECTOR,
770                         VT.getSimpleVT().SimpleTy, Custom);
771      setOperationAction(ISD::VECTOR_SHUFFLE,
772                         VT.getSimpleVT().SimpleTy, Custom);
773      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
774                         VT.getSimpleVT().SimpleTy, Custom);
775    }
776
777    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
778    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
779    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
780    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
781    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
782    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
783
784    if (Subtarget->is64Bit()) {
785      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
786      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
787    }
788
789    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
790    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
791      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
792      EVT VT = SVT;
793
794      // Do not attempt to promote non-128-bit vectors
795      if (!VT.is128BitVector())
796        continue;
797
798      setOperationAction(ISD::AND,    SVT, Promote);
799      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
800      setOperationAction(ISD::OR,     SVT, Promote);
801      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
802      setOperationAction(ISD::XOR,    SVT, Promote);
803      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
804      setOperationAction(ISD::LOAD,   SVT, Promote);
805      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
806      setOperationAction(ISD::SELECT, SVT, Promote);
807      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
808    }
809
810    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
811
812    // Custom lower v2i64 and v2f64 selects.
813    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
814    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
815    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
816    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
817
818    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
819    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
820    if (!DisableMMX && Subtarget->hasMMX()) {
821      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
822      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
823    }
824  }
825
826  if (Subtarget->hasSSE41()) {
827    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
828    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
829    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
830    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
831    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
832    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
833    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
834    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
835    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
836    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
837
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // Can turn SHL into an integer multiply.
842    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
843    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
844
845    // i8 and i16 vectors are custom , because the source register and source
846    // source memory operand types are not the same width.  f32 vectors are
847    // custom since the immediate controlling the insert encodes additional
848    // information.
849    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
850    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
851    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
852    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
853
854    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
856    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
857    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
858
859    if (Subtarget->is64Bit()) {
860      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
861      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
862    }
863  }
864
865  if (Subtarget->hasSSE42()) {
866    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
867  }
868
869  if (!UseSoftFloat && Subtarget->hasAVX()) {
870    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
871    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
872    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
873    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
874    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
875
876    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
877    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
879    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
880    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
887    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
888    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
889    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
890    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
891
892    // Operations to consider commented out -v16i16 v32i8
893    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
894    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
895    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
896    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
897    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
898    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
899    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
900    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
901    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
902    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
903    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
904    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
905    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
906    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
907
908    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
909    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
910    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
911    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
912
913    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
914    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
915    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
916    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
918
919    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
920    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
921    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
922    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
923    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
925
926#if 0
927    // Not sure we want to do this since there are no 256-bit integer
928    // operations in AVX
929
930    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
931    // This includes 256-bit vectors
932    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
933      EVT VT = (MVT::SimpleValueType)i;
934
935      // Do not attempt to custom lower non-power-of-2 vectors
936      if (!isPowerOf2_32(VT.getVectorNumElements()))
937        continue;
938
939      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
940      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
942    }
943
944    if (Subtarget->is64Bit()) {
945      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
946      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
947    }
948#endif
949
950#if 0
951    // Not sure we want to do this since there are no 256-bit integer
952    // operations in AVX
953
954    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
955    // Including 256-bit vectors
956    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
957      EVT VT = (MVT::SimpleValueType)i;
958
959      if (!VT.is256BitVector()) {
960        continue;
961      }
962      setOperationAction(ISD::AND,    VT, Promote);
963      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
964      setOperationAction(ISD::OR,     VT, Promote);
965      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
966      setOperationAction(ISD::XOR,    VT, Promote);
967      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
968      setOperationAction(ISD::LOAD,   VT, Promote);
969      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
970      setOperationAction(ISD::SELECT, VT, Promote);
971      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
972    }
973
974    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
975#endif
976  }
977
978  // We want to custom lower some of our intrinsics.
979  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
980
981  // Add/Sub/Mul with overflow operations are custom lowered.
982  setOperationAction(ISD::SADDO, MVT::i32, Custom);
983  setOperationAction(ISD::UADDO, MVT::i32, Custom);
984  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
985  setOperationAction(ISD::USUBO, MVT::i32, Custom);
986  setOperationAction(ISD::SMULO, MVT::i32, Custom);
987
988  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
989  // handle type legalization for these operations here.
990  //
991  // FIXME: We really should do custom legalization for addition and
992  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
993  // than generic legalization for 64-bit multiplication-with-overflow, though.
994  if (Subtarget->is64Bit()) {
995    setOperationAction(ISD::SADDO, MVT::i64, Custom);
996    setOperationAction(ISD::UADDO, MVT::i64, Custom);
997    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
998    setOperationAction(ISD::USUBO, MVT::i64, Custom);
999    setOperationAction(ISD::SMULO, MVT::i64, Custom);
1000  }
1001
1002  if (!Subtarget->is64Bit()) {
1003    // These libcalls are not available in 32-bit.
1004    setLibcallName(RTLIB::SHL_I128, 0);
1005    setLibcallName(RTLIB::SRL_I128, 0);
1006    setLibcallName(RTLIB::SRA_I128, 0);
1007  }
1008
1009  // We have target-specific dag combine patterns for the following nodes:
1010  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1011  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1012  setTargetDAGCombine(ISD::BUILD_VECTOR);
1013  setTargetDAGCombine(ISD::SELECT);
1014  setTargetDAGCombine(ISD::SHL);
1015  setTargetDAGCombine(ISD::SRA);
1016  setTargetDAGCombine(ISD::SRL);
1017  setTargetDAGCombine(ISD::OR);
1018  setTargetDAGCombine(ISD::STORE);
1019  setTargetDAGCombine(ISD::ZERO_EXTEND);
1020  if (Subtarget->is64Bit())
1021    setTargetDAGCombine(ISD::MUL);
1022
1023  computeRegisterProperties();
1024
1025  // FIXME: These should be based on subtarget info. Plus, the values should
1026  // be smaller when we are in optimizing for size mode.
1027  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1028  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1029  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1030  setPrefLoopAlignment(16);
1031  benefitFromCodePlacementOpt = true;
1032}
1033
1034
1035MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1036  return MVT::i8;
1037}
1038
1039
1040/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1041/// the desired ByVal argument alignment.
1042static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1043  if (MaxAlign == 16)
1044    return;
1045  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1046    if (VTy->getBitWidth() == 128)
1047      MaxAlign = 16;
1048  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1049    unsigned EltAlign = 0;
1050    getMaxByValAlign(ATy->getElementType(), EltAlign);
1051    if (EltAlign > MaxAlign)
1052      MaxAlign = EltAlign;
1053  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1054    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1055      unsigned EltAlign = 0;
1056      getMaxByValAlign(STy->getElementType(i), EltAlign);
1057      if (EltAlign > MaxAlign)
1058        MaxAlign = EltAlign;
1059      if (MaxAlign == 16)
1060        break;
1061    }
1062  }
1063  return;
1064}
1065
1066/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1067/// function arguments in the caller parameter area. For X86, aggregates
1068/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1069/// are at 4-byte boundaries.
1070unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1071  if (Subtarget->is64Bit()) {
1072    // Max of 8 and alignment of type.
1073    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1074    if (TyAlign > 8)
1075      return TyAlign;
1076    return 8;
1077  }
1078
1079  unsigned Align = 4;
1080  if (Subtarget->hasSSE1())
1081    getMaxByValAlign(Ty, Align);
1082  return Align;
1083}
1084
1085/// getOptimalMemOpType - Returns the target specific optimal type for load
1086/// and store operations as a result of memset, memcpy, and memmove
1087/// lowering. If DstAlign is zero that means it's safe to destination
1088/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1089/// means there isn't a need to check it against alignment requirement,
1090/// probably because the source does not need to be loaded. If
1091/// 'NonScalarIntSafe' is true, that means it's safe to return a
1092/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1093/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1094/// constant so it does not need to be loaded.
1095/// It returns EVT::Other if the type should be determined using generic
1096/// target-independent logic.
1097EVT
1098X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1099                                       unsigned DstAlign, unsigned SrcAlign,
1100                                       bool NonScalarIntSafe,
1101                                       bool MemcpyStrSrc,
1102                                       MachineFunction &MF) const {
1103  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1104  // linux.  This is because the stack realignment code can't handle certain
1105  // cases like PR2962.  This should be removed when PR2962 is fixed.
1106  const Function *F = MF.getFunction();
1107  if (NonScalarIntSafe &&
1108      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1109    if (Size >= 16 &&
1110        (Subtarget->isUnalignedMemAccessFast() ||
1111         ((DstAlign == 0 || DstAlign >= 16) &&
1112          (SrcAlign == 0 || SrcAlign >= 16))) &&
1113        Subtarget->getStackAlignment() >= 16) {
1114      if (Subtarget->hasSSE2())
1115        return MVT::v4i32;
1116      if (Subtarget->hasSSE1())
1117        return MVT::v4f32;
1118    } else if (!MemcpyStrSrc && Size >= 8 &&
1119               !Subtarget->is64Bit() &&
1120               Subtarget->getStackAlignment() >= 8 &&
1121               Subtarget->hasSSE2()) {
1122      // Do not use f64 to lower memcpy if source is string constant. It's
1123      // better to use i32 to avoid the loads.
1124      return MVT::f64;
1125    }
1126  }
1127  if (Subtarget->is64Bit() && Size >= 8)
1128    return MVT::i64;
1129  return MVT::i32;
1130}
1131
1132/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1133/// current function.  The returned value is a member of the
1134/// MachineJumpTableInfo::JTEntryKind enum.
1135unsigned X86TargetLowering::getJumpTableEncoding() const {
1136  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1137  // symbol.
1138  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1139      Subtarget->isPICStyleGOT())
1140    return MachineJumpTableInfo::EK_Custom32;
1141
1142  // Otherwise, use the normal jump table encoding heuristics.
1143  return TargetLowering::getJumpTableEncoding();
1144}
1145
1146/// getPICBaseSymbol - Return the X86-32 PIC base.
1147MCSymbol *
1148X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1149                                    MCContext &Ctx) const {
1150  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1151  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1152                               Twine(MF->getFunctionNumber())+"$pb");
1153}
1154
1155
1156const MCExpr *
1157X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1158                                             const MachineBasicBlock *MBB,
1159                                             unsigned uid,MCContext &Ctx) const{
1160  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1161         Subtarget->isPICStyleGOT());
1162  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1163  // entries.
1164  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1165                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1166}
1167
1168/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1169/// jumptable.
1170SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1171                                                    SelectionDAG &DAG) const {
1172  if (!Subtarget->is64Bit())
1173    // This doesn't have DebugLoc associated with it, but is not really the
1174    // same as a Register.
1175    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1176  return Table;
1177}
1178
1179/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1180/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1181/// MCExpr.
1182const MCExpr *X86TargetLowering::
1183getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1184                             MCContext &Ctx) const {
1185  // X86-64 uses RIP relative addressing based on the jump table label.
1186  if (Subtarget->isPICStyleRIPRel())
1187    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1188
1189  // Otherwise, the reference is relative to the PIC base.
1190  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1191}
1192
1193/// getFunctionAlignment - Return the Log2 alignment of this function.
1194unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1195  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1196}
1197
1198std::pair<const TargetRegisterClass*, uint8_t>
1199X86TargetLowering::findRepresentativeClass(EVT VT) const{
1200  const TargetRegisterClass *RRC = 0;
1201  uint8_t Cost = 1;
1202  switch (VT.getSimpleVT().SimpleTy) {
1203  default:
1204    return TargetLowering::findRepresentativeClass(VT);
1205  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1206    RRC = (Subtarget->is64Bit()
1207           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1208    break;
1209  case MVT::v8i8: case MVT::v4i16:
1210  case MVT::v2i32: case MVT::v1i64:
1211    RRC = X86::VR64RegisterClass;
1212    break;
1213  case MVT::f32: case MVT::f64:
1214  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1215  case MVT::v4f32: case MVT::v2f64:
1216  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1217  case MVT::v4f64:
1218    RRC = X86::VR128RegisterClass;
1219    break;
1220  }
1221  return std::make_pair(RRC, Cost);
1222}
1223
1224unsigned
1225X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1226                                       MachineFunction &MF) const {
1227  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1228  switch (RC->getID()) {
1229  default:
1230    return 0;
1231  case X86::GR32RegClassID:
1232    return 4 - FPDiff;
1233  case X86::GR64RegClassID:
1234    return 8 - FPDiff;
1235  case X86::VR128RegClassID:
1236    return Subtarget->is64Bit() ? 10 : 4;
1237  case X86::VR64RegClassID:
1238    return 4;
1239  }
1240}
1241
1242bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1243                                               unsigned &Offset) const {
1244  if (!Subtarget->isTargetLinux())
1245    return false;
1246
1247  if (Subtarget->is64Bit()) {
1248    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1249    Offset = 0x28;
1250    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1251      AddressSpace = 256;
1252    else
1253      AddressSpace = 257;
1254  } else {
1255    // %gs:0x14 on i386
1256    Offset = 0x14;
1257    AddressSpace = 256;
1258  }
1259  return true;
1260}
1261
1262
1263//===----------------------------------------------------------------------===//
1264//               Return Value Calling Convention Implementation
1265//===----------------------------------------------------------------------===//
1266
1267#include "X86GenCallingConv.inc"
1268
1269bool
1270X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1271                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1272                        LLVMContext &Context) const {
1273  SmallVector<CCValAssign, 16> RVLocs;
1274  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1275                 RVLocs, Context);
1276  return CCInfo.CheckReturn(Outs, RetCC_X86);
1277}
1278
1279SDValue
1280X86TargetLowering::LowerReturn(SDValue Chain,
1281                               CallingConv::ID CallConv, bool isVarArg,
1282                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1283                               const SmallVectorImpl<SDValue> &OutVals,
1284                               DebugLoc dl, SelectionDAG &DAG) const {
1285  MachineFunction &MF = DAG.getMachineFunction();
1286  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1287
1288  SmallVector<CCValAssign, 16> RVLocs;
1289  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1290                 RVLocs, *DAG.getContext());
1291  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1292
1293  // Add the regs to the liveout set for the function.
1294  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1295  for (unsigned i = 0; i != RVLocs.size(); ++i)
1296    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1297      MRI.addLiveOut(RVLocs[i].getLocReg());
1298
1299  SDValue Flag;
1300
1301  SmallVector<SDValue, 6> RetOps;
1302  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1303  // Operand #1 = Bytes To Pop
1304  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1305                   MVT::i16));
1306
1307  // Copy the result values into the output registers.
1308  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1309    CCValAssign &VA = RVLocs[i];
1310    assert(VA.isRegLoc() && "Can only return in registers!");
1311    SDValue ValToCopy = OutVals[i];
1312    EVT ValVT = ValToCopy.getValueType();
1313
1314    // If this is x86-64, and we disabled SSE, we can't return FP values
1315    if ((ValVT == MVT::f32 || ValVT == MVT::f64) &&
1316        (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1317      report_fatal_error("SSE register return with SSE disabled");
1318    }
1319    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1320    // llvm-gcc has never done it right and no one has noticed, so this
1321    // should be OK for now.
1322    if (ValVT == MVT::f64 &&
1323        (Subtarget->is64Bit() && !Subtarget->hasSSE2())) {
1324      report_fatal_error("SSE2 register return with SSE2 disabled");
1325    }
1326
1327    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1328    // the RET instruction and handled by the FP Stackifier.
1329    if (VA.getLocReg() == X86::ST0 ||
1330        VA.getLocReg() == X86::ST1) {
1331      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1332      // change the value to the FP stack register class.
1333      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1334        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1335      RetOps.push_back(ValToCopy);
1336      // Don't emit a copytoreg.
1337      continue;
1338    }
1339
1340    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1341    // which is returned in RAX / RDX.
1342    if (Subtarget->is64Bit()) {
1343      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1344        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1345        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1346          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1347                                  ValToCopy);
1348      }
1349    }
1350
1351    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1352    Flag = Chain.getValue(1);
1353  }
1354
1355  // The x86-64 ABI for returning structs by value requires that we copy
1356  // the sret argument into %rax for the return. We saved the argument into
1357  // a virtual register in the entry block, so now we copy the value out
1358  // and into %rax.
1359  if (Subtarget->is64Bit() &&
1360      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1361    MachineFunction &MF = DAG.getMachineFunction();
1362    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1363    unsigned Reg = FuncInfo->getSRetReturnReg();
1364    assert(Reg &&
1365           "SRetReturnReg should have been set in LowerFormalArguments().");
1366    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1367
1368    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1369    Flag = Chain.getValue(1);
1370
1371    // RAX now acts like a return value.
1372    MRI.addLiveOut(X86::RAX);
1373  }
1374
1375  RetOps[0] = Chain;  // Update chain.
1376
1377  // Add the flag if we have it.
1378  if (Flag.getNode())
1379    RetOps.push_back(Flag);
1380
1381  return DAG.getNode(X86ISD::RET_FLAG, dl,
1382                     MVT::Other, &RetOps[0], RetOps.size());
1383}
1384
1385/// LowerCallResult - Lower the result values of a call into the
1386/// appropriate copies out of appropriate physical registers.
1387///
1388SDValue
1389X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1390                                   CallingConv::ID CallConv, bool isVarArg,
1391                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1392                                   DebugLoc dl, SelectionDAG &DAG,
1393                                   SmallVectorImpl<SDValue> &InVals) const {
1394
1395  // Assign locations to each value returned by this call.
1396  SmallVector<CCValAssign, 16> RVLocs;
1397  bool Is64Bit = Subtarget->is64Bit();
1398  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1399                 RVLocs, *DAG.getContext());
1400  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1401
1402  // Copy all of the result registers out of their specified physreg.
1403  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1404    CCValAssign &VA = RVLocs[i];
1405    EVT CopyVT = VA.getValVT();
1406
1407    // If this is x86-64, and we disabled SSE, we can't return FP values
1408    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1409        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1410      report_fatal_error("SSE register return with SSE disabled");
1411    }
1412
1413    SDValue Val;
1414
1415    // If this is a call to a function that returns an fp value on the floating
1416    // point stack, we must guarantee the the value is popped from the stack, so
1417    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1418    // if the return value is not used. We use the FpGET_ST0 instructions
1419    // instead.
1420    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1421      // If we prefer to use the value in xmm registers, copy it out as f80 and
1422      // use a truncate to move it from fp stack reg to xmm reg.
1423      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1424      bool isST0 = VA.getLocReg() == X86::ST0;
1425      unsigned Opc = 0;
1426      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1427      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1428      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1429      SDValue Ops[] = { Chain, InFlag };
1430      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1431                                         Ops, 2), 1);
1432      Val = Chain.getValue(0);
1433
1434      // Round the f80 to the right size, which also moves it to the appropriate
1435      // xmm register.
1436      if (CopyVT != VA.getValVT())
1437        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1438                          // This truncation won't change the value.
1439                          DAG.getIntPtrConstant(1));
1440    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1441      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1442      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1443        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1444                                   MVT::v2i64, InFlag).getValue(1);
1445        Val = Chain.getValue(0);
1446        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1447                          Val, DAG.getConstant(0, MVT::i64));
1448      } else {
1449        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1450                                   MVT::i64, InFlag).getValue(1);
1451        Val = Chain.getValue(0);
1452      }
1453      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1454    } else {
1455      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1456                                 CopyVT, InFlag).getValue(1);
1457      Val = Chain.getValue(0);
1458    }
1459    InFlag = Chain.getValue(2);
1460    InVals.push_back(Val);
1461  }
1462
1463  return Chain;
1464}
1465
1466
1467//===----------------------------------------------------------------------===//
1468//                C & StdCall & Fast Calling Convention implementation
1469//===----------------------------------------------------------------------===//
1470//  StdCall calling convention seems to be standard for many Windows' API
1471//  routines and around. It differs from C calling convention just a little:
1472//  callee should clean up the stack, not caller. Symbols should be also
1473//  decorated in some fancy way :) It doesn't support any vector arguments.
1474//  For info on fast calling convention see Fast Calling Convention (tail call)
1475//  implementation LowerX86_32FastCCCallTo.
1476
1477/// CallIsStructReturn - Determines whether a call uses struct return
1478/// semantics.
1479static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1480  if (Outs.empty())
1481    return false;
1482
1483  return Outs[0].Flags.isSRet();
1484}
1485
1486/// ArgsAreStructReturn - Determines whether a function uses struct
1487/// return semantics.
1488static bool
1489ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1490  if (Ins.empty())
1491    return false;
1492
1493  return Ins[0].Flags.isSRet();
1494}
1495
1496/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1497/// given CallingConvention value.
1498CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1499  if (Subtarget->is64Bit()) {
1500    if (CC == CallingConv::GHC)
1501      return CC_X86_64_GHC;
1502    else if (Subtarget->isTargetWin64())
1503      return CC_X86_Win64_C;
1504    else
1505      return CC_X86_64_C;
1506  }
1507
1508  if (CC == CallingConv::X86_FastCall)
1509    return CC_X86_32_FastCall;
1510  else if (CC == CallingConv::X86_ThisCall)
1511    return CC_X86_32_ThisCall;
1512  else if (CC == CallingConv::Fast)
1513    return CC_X86_32_FastCC;
1514  else if (CC == CallingConv::GHC)
1515    return CC_X86_32_GHC;
1516  else
1517    return CC_X86_32_C;
1518}
1519
1520/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1521/// by "Src" to address "Dst" with size and alignment information specified by
1522/// the specific parameter attribute. The copy will be passed as a byval
1523/// function parameter.
1524static SDValue
1525CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1526                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1527                          DebugLoc dl) {
1528  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1529  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1530                       /*isVolatile*/false, /*AlwaysInline=*/true,
1531                       NULL, 0, NULL, 0);
1532}
1533
1534/// IsTailCallConvention - Return true if the calling convention is one that
1535/// supports tail call optimization.
1536static bool IsTailCallConvention(CallingConv::ID CC) {
1537  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1538}
1539
1540/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1541/// a tailcall target by changing its ABI.
1542static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1543  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1544}
1545
1546SDValue
1547X86TargetLowering::LowerMemArgument(SDValue Chain,
1548                                    CallingConv::ID CallConv,
1549                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1550                                    DebugLoc dl, SelectionDAG &DAG,
1551                                    const CCValAssign &VA,
1552                                    MachineFrameInfo *MFI,
1553                                    unsigned i) const {
1554  // Create the nodes corresponding to a load from this parameter slot.
1555  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1556  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1557  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1558  EVT ValVT;
1559
1560  // If value is passed by pointer we have address passed instead of the value
1561  // itself.
1562  if (VA.getLocInfo() == CCValAssign::Indirect)
1563    ValVT = VA.getLocVT();
1564  else
1565    ValVT = VA.getValVT();
1566
1567  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1568  // changed with more analysis.
1569  // In case of tail call optimization mark all arguments mutable. Since they
1570  // could be overwritten by lowering of arguments in case of a tail call.
1571  if (Flags.isByVal()) {
1572    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1573                                    VA.getLocMemOffset(), isImmutable);
1574    return DAG.getFrameIndex(FI, getPointerTy());
1575  } else {
1576    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1577                                    VA.getLocMemOffset(), isImmutable);
1578    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1579    return DAG.getLoad(ValVT, dl, Chain, FIN,
1580                       PseudoSourceValue::getFixedStack(FI), 0,
1581                       false, false, 0);
1582  }
1583}
1584
1585SDValue
1586X86TargetLowering::LowerFormalArguments(SDValue Chain,
1587                                        CallingConv::ID CallConv,
1588                                        bool isVarArg,
1589                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1590                                        DebugLoc dl,
1591                                        SelectionDAG &DAG,
1592                                        SmallVectorImpl<SDValue> &InVals)
1593                                          const {
1594  MachineFunction &MF = DAG.getMachineFunction();
1595  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1596
1597  const Function* Fn = MF.getFunction();
1598  if (Fn->hasExternalLinkage() &&
1599      Subtarget->isTargetCygMing() &&
1600      Fn->getName() == "main")
1601    FuncInfo->setForceFramePointer(true);
1602
1603  MachineFrameInfo *MFI = MF.getFrameInfo();
1604  bool Is64Bit = Subtarget->is64Bit();
1605  bool IsWin64 = Subtarget->isTargetWin64();
1606
1607  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1608         "Var args not supported with calling convention fastcc or ghc");
1609
1610  // Assign locations to all of the incoming arguments.
1611  SmallVector<CCValAssign, 16> ArgLocs;
1612  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1613                 ArgLocs, *DAG.getContext());
1614  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1615
1616  unsigned LastVal = ~0U;
1617  SDValue ArgValue;
1618  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1619    CCValAssign &VA = ArgLocs[i];
1620    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1621    // places.
1622    assert(VA.getValNo() != LastVal &&
1623           "Don't support value assigned to multiple locs yet");
1624    LastVal = VA.getValNo();
1625
1626    if (VA.isRegLoc()) {
1627      EVT RegVT = VA.getLocVT();
1628      TargetRegisterClass *RC = NULL;
1629      if (RegVT == MVT::i32)
1630        RC = X86::GR32RegisterClass;
1631      else if (Is64Bit && RegVT == MVT::i64)
1632        RC = X86::GR64RegisterClass;
1633      else if (RegVT == MVT::f32)
1634        RC = X86::FR32RegisterClass;
1635      else if (RegVT == MVT::f64)
1636        RC = X86::FR64RegisterClass;
1637      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1638        RC = X86::VR256RegisterClass;
1639      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1640        RC = X86::VR128RegisterClass;
1641      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1642        RC = X86::VR64RegisterClass;
1643      else
1644        llvm_unreachable("Unknown argument type!");
1645
1646      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1647      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1648
1649      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1650      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1651      // right size.
1652      if (VA.getLocInfo() == CCValAssign::SExt)
1653        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1654                               DAG.getValueType(VA.getValVT()));
1655      else if (VA.getLocInfo() == CCValAssign::ZExt)
1656        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1657                               DAG.getValueType(VA.getValVT()));
1658      else if (VA.getLocInfo() == CCValAssign::BCvt)
1659        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1660
1661      if (VA.isExtInLoc()) {
1662        // Handle MMX values passed in XMM regs.
1663        if (RegVT.isVector()) {
1664          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1665                                 ArgValue, DAG.getConstant(0, MVT::i64));
1666          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1667        } else
1668          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1669      }
1670    } else {
1671      assert(VA.isMemLoc());
1672      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1673    }
1674
1675    // If value is passed via pointer - do a load.
1676    if (VA.getLocInfo() == CCValAssign::Indirect)
1677      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1678                             false, false, 0);
1679
1680    InVals.push_back(ArgValue);
1681  }
1682
1683  // The x86-64 ABI for returning structs by value requires that we copy
1684  // the sret argument into %rax for the return. Save the argument into
1685  // a virtual register so that we can access it from the return points.
1686  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1687    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1688    unsigned Reg = FuncInfo->getSRetReturnReg();
1689    if (!Reg) {
1690      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1691      FuncInfo->setSRetReturnReg(Reg);
1692    }
1693    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1694    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1695  }
1696
1697  unsigned StackSize = CCInfo.getNextStackOffset();
1698  // Align stack specially for tail calls.
1699  if (FuncIsMadeTailCallSafe(CallConv))
1700    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1701
1702  // If the function takes variable number of arguments, make a frame index for
1703  // the start of the first vararg value... for expansion of llvm.va_start.
1704  if (isVarArg) {
1705    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1706                    CallConv != CallingConv::X86_ThisCall)) {
1707      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1708    }
1709    if (Is64Bit) {
1710      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1711
1712      // FIXME: We should really autogenerate these arrays
1713      static const unsigned GPR64ArgRegsWin64[] = {
1714        X86::RCX, X86::RDX, X86::R8,  X86::R9
1715      };
1716      static const unsigned XMMArgRegsWin64[] = {
1717        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1718      };
1719      static const unsigned GPR64ArgRegs64Bit[] = {
1720        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1721      };
1722      static const unsigned XMMArgRegs64Bit[] = {
1723        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1724        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1725      };
1726      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1727
1728      if (IsWin64) {
1729        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1730        GPR64ArgRegs = GPR64ArgRegsWin64;
1731        XMMArgRegs = XMMArgRegsWin64;
1732      } else {
1733        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1734        GPR64ArgRegs = GPR64ArgRegs64Bit;
1735        XMMArgRegs = XMMArgRegs64Bit;
1736      }
1737      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1738                                                       TotalNumIntRegs);
1739      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1740                                                       TotalNumXMMRegs);
1741
1742      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1743      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1744             "SSE register cannot be used when SSE is disabled!");
1745      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1746             "SSE register cannot be used when SSE is disabled!");
1747      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1748        // Kernel mode asks for SSE to be disabled, so don't push them
1749        // on the stack.
1750        TotalNumXMMRegs = 0;
1751
1752      // For X86-64, if there are vararg parameters that are passed via
1753      // registers, then we must store them to their spots on the stack so they
1754      // may be loaded by deferencing the result of va_next.
1755      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1756      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1757      FuncInfo->setRegSaveFrameIndex(
1758        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1759                               false));
1760
1761      // Store the integer parameter registers.
1762      SmallVector<SDValue, 8> MemOps;
1763      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1764                                        getPointerTy());
1765      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1766      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1767        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1768                                  DAG.getIntPtrConstant(Offset));
1769        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1770                                     X86::GR64RegisterClass);
1771        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1772        SDValue Store =
1773          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1774                       PseudoSourceValue::getFixedStack(
1775                         FuncInfo->getRegSaveFrameIndex()),
1776                       Offset, false, false, 0);
1777        MemOps.push_back(Store);
1778        Offset += 8;
1779      }
1780
1781      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1782        // Now store the XMM (fp + vector) parameter registers.
1783        SmallVector<SDValue, 11> SaveXMMOps;
1784        SaveXMMOps.push_back(Chain);
1785
1786        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1787        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1788        SaveXMMOps.push_back(ALVal);
1789
1790        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1791                               FuncInfo->getRegSaveFrameIndex()));
1792        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1793                               FuncInfo->getVarArgsFPOffset()));
1794
1795        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1796          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1797                                       X86::VR128RegisterClass);
1798          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1799          SaveXMMOps.push_back(Val);
1800        }
1801        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1802                                     MVT::Other,
1803                                     &SaveXMMOps[0], SaveXMMOps.size()));
1804      }
1805
1806      if (!MemOps.empty())
1807        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1808                            &MemOps[0], MemOps.size());
1809    }
1810  }
1811
1812  // Some CCs need callee pop.
1813  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1814    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1815  } else {
1816    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1817    // If this is an sret function, the return should pop the hidden pointer.
1818    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1819      FuncInfo->setBytesToPopOnReturn(4);
1820  }
1821
1822  if (!Is64Bit) {
1823    // RegSaveFrameIndex is X86-64 only.
1824    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1825    if (CallConv == CallingConv::X86_FastCall ||
1826        CallConv == CallingConv::X86_ThisCall)
1827      // fastcc functions can't have varargs.
1828      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1829  }
1830
1831  return Chain;
1832}
1833
1834SDValue
1835X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1836                                    SDValue StackPtr, SDValue Arg,
1837                                    DebugLoc dl, SelectionDAG &DAG,
1838                                    const CCValAssign &VA,
1839                                    ISD::ArgFlagsTy Flags) const {
1840  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1841  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1842  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1843  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1844  if (Flags.isByVal()) {
1845    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1846  }
1847  return DAG.getStore(Chain, dl, Arg, PtrOff,
1848                      PseudoSourceValue::getStack(), LocMemOffset,
1849                      false, false, 0);
1850}
1851
1852/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1853/// optimization is performed and it is required.
1854SDValue
1855X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1856                                           SDValue &OutRetAddr, SDValue Chain,
1857                                           bool IsTailCall, bool Is64Bit,
1858                                           int FPDiff, DebugLoc dl) const {
1859  // Adjust the Return address stack slot.
1860  EVT VT = getPointerTy();
1861  OutRetAddr = getReturnAddressFrameIndex(DAG);
1862
1863  // Load the "old" Return address.
1864  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1865  return SDValue(OutRetAddr.getNode(), 1);
1866}
1867
1868/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1869/// optimization is performed and it is required (FPDiff!=0).
1870static SDValue
1871EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1872                         SDValue Chain, SDValue RetAddrFrIdx,
1873                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1874  // Store the return address to the appropriate stack slot.
1875  if (!FPDiff) return Chain;
1876  // Calculate the new stack slot for the return address.
1877  int SlotSize = Is64Bit ? 8 : 4;
1878  int NewReturnAddrFI =
1879    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1880  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1881  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1882  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1883                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1884                       false, false, 0);
1885  return Chain;
1886}
1887
1888SDValue
1889X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1890                             CallingConv::ID CallConv, bool isVarArg,
1891                             bool &isTailCall,
1892                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1893                             const SmallVectorImpl<SDValue> &OutVals,
1894                             const SmallVectorImpl<ISD::InputArg> &Ins,
1895                             DebugLoc dl, SelectionDAG &DAG,
1896                             SmallVectorImpl<SDValue> &InVals) const {
1897  MachineFunction &MF = DAG.getMachineFunction();
1898  bool Is64Bit        = Subtarget->is64Bit();
1899  bool IsStructRet    = CallIsStructReturn(Outs);
1900  bool IsSibcall      = false;
1901
1902  if (isTailCall) {
1903    // Check if it's really possible to do a tail call.
1904    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1905                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1906                                                   Outs, OutVals, Ins, DAG);
1907
1908    // Sibcalls are automatically detected tailcalls which do not require
1909    // ABI changes.
1910    if (!GuaranteedTailCallOpt && isTailCall)
1911      IsSibcall = true;
1912
1913    if (isTailCall)
1914      ++NumTailCalls;
1915  }
1916
1917  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1918         "Var args not supported with calling convention fastcc or ghc");
1919
1920  // Analyze operands of the call, assigning locations to each operand.
1921  SmallVector<CCValAssign, 16> ArgLocs;
1922  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1923                 ArgLocs, *DAG.getContext());
1924  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1925
1926  // Get a count of how many bytes are to be pushed on the stack.
1927  unsigned NumBytes = CCInfo.getNextStackOffset();
1928  if (IsSibcall)
1929    // This is a sibcall. The memory operands are available in caller's
1930    // own caller's stack.
1931    NumBytes = 0;
1932  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1933    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1934
1935  int FPDiff = 0;
1936  if (isTailCall && !IsSibcall) {
1937    // Lower arguments at fp - stackoffset + fpdiff.
1938    unsigned NumBytesCallerPushed =
1939      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1940    FPDiff = NumBytesCallerPushed - NumBytes;
1941
1942    // Set the delta of movement of the returnaddr stackslot.
1943    // But only set if delta is greater than previous delta.
1944    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1945      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1946  }
1947
1948  if (!IsSibcall)
1949    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1950
1951  SDValue RetAddrFrIdx;
1952  // Load return adress for tail calls.
1953  if (isTailCall && FPDiff)
1954    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1955                                    Is64Bit, FPDiff, dl);
1956
1957  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1958  SmallVector<SDValue, 8> MemOpChains;
1959  SDValue StackPtr;
1960
1961  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1962  // of tail call optimization arguments are handle later.
1963  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1964    CCValAssign &VA = ArgLocs[i];
1965    EVT RegVT = VA.getLocVT();
1966    SDValue Arg = OutVals[i];
1967    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1968    bool isByVal = Flags.isByVal();
1969
1970    // Promote the value if needed.
1971    switch (VA.getLocInfo()) {
1972    default: llvm_unreachable("Unknown loc info!");
1973    case CCValAssign::Full: break;
1974    case CCValAssign::SExt:
1975      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1976      break;
1977    case CCValAssign::ZExt:
1978      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1979      break;
1980    case CCValAssign::AExt:
1981      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1982        // Special case: passing MMX values in XMM registers.
1983        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1984        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1985        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1986      } else
1987        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1988      break;
1989    case CCValAssign::BCvt:
1990      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1991      break;
1992    case CCValAssign::Indirect: {
1993      // Store the argument.
1994      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1995      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1996      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1997                           PseudoSourceValue::getFixedStack(FI), 0,
1998                           false, false, 0);
1999      Arg = SpillSlot;
2000      break;
2001    }
2002    }
2003
2004    if (VA.isRegLoc()) {
2005      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2006    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2007      assert(VA.isMemLoc());
2008      if (StackPtr.getNode() == 0)
2009        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2010      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2011                                             dl, DAG, VA, Flags));
2012    }
2013  }
2014
2015  if (!MemOpChains.empty())
2016    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2017                        &MemOpChains[0], MemOpChains.size());
2018
2019  // Build a sequence of copy-to-reg nodes chained together with token chain
2020  // and flag operands which copy the outgoing args into registers.
2021  SDValue InFlag;
2022  // Tail call byval lowering might overwrite argument registers so in case of
2023  // tail call optimization the copies to registers are lowered later.
2024  if (!isTailCall)
2025    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2026      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2027                               RegsToPass[i].second, InFlag);
2028      InFlag = Chain.getValue(1);
2029    }
2030
2031  if (Subtarget->isPICStyleGOT()) {
2032    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2033    // GOT pointer.
2034    if (!isTailCall) {
2035      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2036                               DAG.getNode(X86ISD::GlobalBaseReg,
2037                                           DebugLoc(), getPointerTy()),
2038                               InFlag);
2039      InFlag = Chain.getValue(1);
2040    } else {
2041      // If we are tail calling and generating PIC/GOT style code load the
2042      // address of the callee into ECX. The value in ecx is used as target of
2043      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2044      // for tail calls on PIC/GOT architectures. Normally we would just put the
2045      // address of GOT into ebx and then call target@PLT. But for tail calls
2046      // ebx would be restored (since ebx is callee saved) before jumping to the
2047      // target@PLT.
2048
2049      // Note: The actual moving to ECX is done further down.
2050      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2051      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2052          !G->getGlobal()->hasProtectedVisibility())
2053        Callee = LowerGlobalAddress(Callee, DAG);
2054      else if (isa<ExternalSymbolSDNode>(Callee))
2055        Callee = LowerExternalSymbol(Callee, DAG);
2056    }
2057  }
2058
2059  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2060    // From AMD64 ABI document:
2061    // For calls that may call functions that use varargs or stdargs
2062    // (prototype-less calls or calls to functions containing ellipsis (...) in
2063    // the declaration) %al is used as hidden argument to specify the number
2064    // of SSE registers used. The contents of %al do not need to match exactly
2065    // the number of registers, but must be an ubound on the number of SSE
2066    // registers used and is in the range 0 - 8 inclusive.
2067
2068    // Count the number of XMM registers allocated.
2069    static const unsigned XMMArgRegs[] = {
2070      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2071      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2072    };
2073    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2074    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2075           && "SSE registers cannot be used when SSE is disabled");
2076
2077    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2078                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2079    InFlag = Chain.getValue(1);
2080  }
2081
2082
2083  // For tail calls lower the arguments to the 'real' stack slot.
2084  if (isTailCall) {
2085    // Force all the incoming stack arguments to be loaded from the stack
2086    // before any new outgoing arguments are stored to the stack, because the
2087    // outgoing stack slots may alias the incoming argument stack slots, and
2088    // the alias isn't otherwise explicit. This is slightly more conservative
2089    // than necessary, because it means that each store effectively depends
2090    // on every argument instead of just those arguments it would clobber.
2091    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2092
2093    SmallVector<SDValue, 8> MemOpChains2;
2094    SDValue FIN;
2095    int FI = 0;
2096    // Do not flag preceeding copytoreg stuff together with the following stuff.
2097    InFlag = SDValue();
2098    if (GuaranteedTailCallOpt) {
2099      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2100        CCValAssign &VA = ArgLocs[i];
2101        if (VA.isRegLoc())
2102          continue;
2103        assert(VA.isMemLoc());
2104        SDValue Arg = OutVals[i];
2105        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2106        // Create frame index.
2107        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2108        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2109        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2110        FIN = DAG.getFrameIndex(FI, getPointerTy());
2111
2112        if (Flags.isByVal()) {
2113          // Copy relative to framepointer.
2114          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2115          if (StackPtr.getNode() == 0)
2116            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2117                                          getPointerTy());
2118          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2119
2120          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2121                                                           ArgChain,
2122                                                           Flags, DAG, dl));
2123        } else {
2124          // Store relative to framepointer.
2125          MemOpChains2.push_back(
2126            DAG.getStore(ArgChain, dl, Arg, FIN,
2127                         PseudoSourceValue::getFixedStack(FI), 0,
2128                         false, false, 0));
2129        }
2130      }
2131    }
2132
2133    if (!MemOpChains2.empty())
2134      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2135                          &MemOpChains2[0], MemOpChains2.size());
2136
2137    // Copy arguments to their registers.
2138    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2139      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2140                               RegsToPass[i].second, InFlag);
2141      InFlag = Chain.getValue(1);
2142    }
2143    InFlag =SDValue();
2144
2145    // Store the return address to the appropriate stack slot.
2146    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2147                                     FPDiff, dl);
2148  }
2149
2150  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2151    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2152    // In the 64-bit large code model, we have to make all calls
2153    // through a register, since the call instruction's 32-bit
2154    // pc-relative offset may not be large enough to hold the whole
2155    // address.
2156  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2157    // If the callee is a GlobalAddress node (quite common, every direct call
2158    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2159    // it.
2160
2161    // We should use extra load for direct calls to dllimported functions in
2162    // non-JIT mode.
2163    const GlobalValue *GV = G->getGlobal();
2164    if (!GV->hasDLLImportLinkage()) {
2165      unsigned char OpFlags = 0;
2166
2167      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2168      // external symbols most go through the PLT in PIC mode.  If the symbol
2169      // has hidden or protected visibility, or if it is static or local, then
2170      // we don't need to use the PLT - we can directly call it.
2171      if (Subtarget->isTargetELF() &&
2172          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2173          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2174        OpFlags = X86II::MO_PLT;
2175      } else if (Subtarget->isPICStyleStubAny() &&
2176               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2177               Subtarget->getDarwinVers() < 9) {
2178        // PC-relative references to external symbols should go through $stub,
2179        // unless we're building with the leopard linker or later, which
2180        // automatically synthesizes these stubs.
2181        OpFlags = X86II::MO_DARWIN_STUB;
2182      }
2183
2184      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2185                                          G->getOffset(), OpFlags);
2186    }
2187  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2188    unsigned char OpFlags = 0;
2189
2190    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2191    // symbols should go through the PLT.
2192    if (Subtarget->isTargetELF() &&
2193        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2194      OpFlags = X86II::MO_PLT;
2195    } else if (Subtarget->isPICStyleStubAny() &&
2196             Subtarget->getDarwinVers() < 9) {
2197      // PC-relative references to external symbols should go through $stub,
2198      // unless we're building with the leopard linker or later, which
2199      // automatically synthesizes these stubs.
2200      OpFlags = X86II::MO_DARWIN_STUB;
2201    }
2202
2203    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2204                                         OpFlags);
2205  }
2206
2207  // Returns a chain & a flag for retval copy to use.
2208  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2209  SmallVector<SDValue, 8> Ops;
2210
2211  if (!IsSibcall && isTailCall) {
2212    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2213                           DAG.getIntPtrConstant(0, true), InFlag);
2214    InFlag = Chain.getValue(1);
2215  }
2216
2217  Ops.push_back(Chain);
2218  Ops.push_back(Callee);
2219
2220  if (isTailCall)
2221    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2222
2223  // Add argument registers to the end of the list so that they are known live
2224  // into the call.
2225  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2226    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2227                                  RegsToPass[i].second.getValueType()));
2228
2229  // Add an implicit use GOT pointer in EBX.
2230  if (!isTailCall && Subtarget->isPICStyleGOT())
2231    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2232
2233  // Add an implicit use of AL for x86 vararg functions.
2234  if (Is64Bit && isVarArg)
2235    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2236
2237  if (InFlag.getNode())
2238    Ops.push_back(InFlag);
2239
2240  if (isTailCall) {
2241    // We used to do:
2242    //// If this is the first return lowered for this function, add the regs
2243    //// to the liveout set for the function.
2244    // This isn't right, although it's probably harmless on x86; liveouts
2245    // should be computed from returns not tail calls.  Consider a void
2246    // function making a tail call to a function returning int.
2247    return DAG.getNode(X86ISD::TC_RETURN, dl,
2248                       NodeTys, &Ops[0], Ops.size());
2249  }
2250
2251  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2252  InFlag = Chain.getValue(1);
2253
2254  // Create the CALLSEQ_END node.
2255  unsigned NumBytesForCalleeToPush;
2256  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2257    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2258  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2259    // If this is a call to a struct-return function, the callee
2260    // pops the hidden struct pointer, so we have to push it back.
2261    // This is common for Darwin/X86, Linux & Mingw32 targets.
2262    NumBytesForCalleeToPush = 4;
2263  else
2264    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2265
2266  // Returns a flag for retval copy to use.
2267  if (!IsSibcall) {
2268    Chain = DAG.getCALLSEQ_END(Chain,
2269                               DAG.getIntPtrConstant(NumBytes, true),
2270                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2271                                                     true),
2272                               InFlag);
2273    InFlag = Chain.getValue(1);
2274  }
2275
2276  // Handle result values, copying them out of physregs into vregs that we
2277  // return.
2278  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2279                         Ins, dl, DAG, InVals);
2280}
2281
2282
2283//===----------------------------------------------------------------------===//
2284//                Fast Calling Convention (tail call) implementation
2285//===----------------------------------------------------------------------===//
2286
2287//  Like std call, callee cleans arguments, convention except that ECX is
2288//  reserved for storing the tail called function address. Only 2 registers are
2289//  free for argument passing (inreg). Tail call optimization is performed
2290//  provided:
2291//                * tailcallopt is enabled
2292//                * caller/callee are fastcc
2293//  On X86_64 architecture with GOT-style position independent code only local
2294//  (within module) calls are supported at the moment.
2295//  To keep the stack aligned according to platform abi the function
2296//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2297//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2298//  If a tail called function callee has more arguments than the caller the
2299//  caller needs to make sure that there is room to move the RETADDR to. This is
2300//  achieved by reserving an area the size of the argument delta right after the
2301//  original REtADDR, but before the saved framepointer or the spilled registers
2302//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2303//  stack layout:
2304//    arg1
2305//    arg2
2306//    RETADDR
2307//    [ new RETADDR
2308//      move area ]
2309//    (possible EBP)
2310//    ESI
2311//    EDI
2312//    local1 ..
2313
2314/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2315/// for a 16 byte align requirement.
2316unsigned
2317X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2318                                               SelectionDAG& DAG) const {
2319  MachineFunction &MF = DAG.getMachineFunction();
2320  const TargetMachine &TM = MF.getTarget();
2321  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2322  unsigned StackAlignment = TFI.getStackAlignment();
2323  uint64_t AlignMask = StackAlignment - 1;
2324  int64_t Offset = StackSize;
2325  uint64_t SlotSize = TD->getPointerSize();
2326  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2327    // Number smaller than 12 so just add the difference.
2328    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2329  } else {
2330    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2331    Offset = ((~AlignMask) & Offset) + StackAlignment +
2332      (StackAlignment-SlotSize);
2333  }
2334  return Offset;
2335}
2336
2337/// MatchingStackOffset - Return true if the given stack call argument is
2338/// already available in the same position (relatively) of the caller's
2339/// incoming argument stack.
2340static
2341bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2342                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2343                         const X86InstrInfo *TII) {
2344  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2345  int FI = INT_MAX;
2346  if (Arg.getOpcode() == ISD::CopyFromReg) {
2347    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2348    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2349      return false;
2350    MachineInstr *Def = MRI->getVRegDef(VR);
2351    if (!Def)
2352      return false;
2353    if (!Flags.isByVal()) {
2354      if (!TII->isLoadFromStackSlot(Def, FI))
2355        return false;
2356    } else {
2357      unsigned Opcode = Def->getOpcode();
2358      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2359          Def->getOperand(1).isFI()) {
2360        FI = Def->getOperand(1).getIndex();
2361        Bytes = Flags.getByValSize();
2362      } else
2363        return false;
2364    }
2365  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2366    if (Flags.isByVal())
2367      // ByVal argument is passed in as a pointer but it's now being
2368      // dereferenced. e.g.
2369      // define @foo(%struct.X* %A) {
2370      //   tail call @bar(%struct.X* byval %A)
2371      // }
2372      return false;
2373    SDValue Ptr = Ld->getBasePtr();
2374    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2375    if (!FINode)
2376      return false;
2377    FI = FINode->getIndex();
2378  } else
2379    return false;
2380
2381  assert(FI != INT_MAX);
2382  if (!MFI->isFixedObjectIndex(FI))
2383    return false;
2384  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2385}
2386
2387/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2388/// for tail call optimization. Targets which want to do tail call
2389/// optimization should implement this function.
2390bool
2391X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2392                                                     CallingConv::ID CalleeCC,
2393                                                     bool isVarArg,
2394                                                     bool isCalleeStructRet,
2395                                                     bool isCallerStructRet,
2396                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2397                                    const SmallVectorImpl<SDValue> &OutVals,
2398                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2399                                                     SelectionDAG& DAG) const {
2400  if (!IsTailCallConvention(CalleeCC) &&
2401      CalleeCC != CallingConv::C)
2402    return false;
2403
2404  // If -tailcallopt is specified, make fastcc functions tail-callable.
2405  const MachineFunction &MF = DAG.getMachineFunction();
2406  const Function *CallerF = DAG.getMachineFunction().getFunction();
2407  CallingConv::ID CallerCC = CallerF->getCallingConv();
2408  bool CCMatch = CallerCC == CalleeCC;
2409
2410  if (GuaranteedTailCallOpt) {
2411    if (IsTailCallConvention(CalleeCC) && CCMatch)
2412      return true;
2413    return false;
2414  }
2415
2416  // Look for obvious safe cases to perform tail call optimization that do not
2417  // require ABI changes. This is what gcc calls sibcall.
2418
2419  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2420  // emit a special epilogue.
2421  if (RegInfo->needsStackRealignment(MF))
2422    return false;
2423
2424  // Do not sibcall optimize vararg calls unless the call site is not passing
2425  // any arguments.
2426  if (isVarArg && !Outs.empty())
2427    return false;
2428
2429  // Also avoid sibcall optimization if either caller or callee uses struct
2430  // return semantics.
2431  if (isCalleeStructRet || isCallerStructRet)
2432    return false;
2433
2434  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2435  // Therefore if it's not used by the call it is not safe to optimize this into
2436  // a sibcall.
2437  bool Unused = false;
2438  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2439    if (!Ins[i].Used) {
2440      Unused = true;
2441      break;
2442    }
2443  }
2444  if (Unused) {
2445    SmallVector<CCValAssign, 16> RVLocs;
2446    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2447                   RVLocs, *DAG.getContext());
2448    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2449    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2450      CCValAssign &VA = RVLocs[i];
2451      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2452        return false;
2453    }
2454  }
2455
2456  // If the calling conventions do not match, then we'd better make sure the
2457  // results are returned in the same way as what the caller expects.
2458  if (!CCMatch) {
2459    SmallVector<CCValAssign, 16> RVLocs1;
2460    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2461                    RVLocs1, *DAG.getContext());
2462    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2463
2464    SmallVector<CCValAssign, 16> RVLocs2;
2465    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2466                    RVLocs2, *DAG.getContext());
2467    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2468
2469    if (RVLocs1.size() != RVLocs2.size())
2470      return false;
2471    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2472      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2473        return false;
2474      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2475        return false;
2476      if (RVLocs1[i].isRegLoc()) {
2477        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2478          return false;
2479      } else {
2480        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2481          return false;
2482      }
2483    }
2484  }
2485
2486  // If the callee takes no arguments then go on to check the results of the
2487  // call.
2488  if (!Outs.empty()) {
2489    // Check if stack adjustment is needed. For now, do not do this if any
2490    // argument is passed on the stack.
2491    SmallVector<CCValAssign, 16> ArgLocs;
2492    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2493                   ArgLocs, *DAG.getContext());
2494    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2495    if (CCInfo.getNextStackOffset()) {
2496      MachineFunction &MF = DAG.getMachineFunction();
2497      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2498        return false;
2499      if (Subtarget->isTargetWin64())
2500        // Win64 ABI has additional complications.
2501        return false;
2502
2503      // Check if the arguments are already laid out in the right way as
2504      // the caller's fixed stack objects.
2505      MachineFrameInfo *MFI = MF.getFrameInfo();
2506      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2507      const X86InstrInfo *TII =
2508        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2509      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2510        CCValAssign &VA = ArgLocs[i];
2511        SDValue Arg = OutVals[i];
2512        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2513        if (VA.getLocInfo() == CCValAssign::Indirect)
2514          return false;
2515        if (!VA.isRegLoc()) {
2516          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2517                                   MFI, MRI, TII))
2518            return false;
2519        }
2520      }
2521    }
2522
2523    // If the tailcall address may be in a register, then make sure it's
2524    // possible to register allocate for it. In 32-bit, the call address can
2525    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2526    // callee-saved registers are restored. These happen to be the same
2527    // registers used to pass 'inreg' arguments so watch out for those.
2528    if (!Subtarget->is64Bit() &&
2529        !isa<GlobalAddressSDNode>(Callee) &&
2530        !isa<ExternalSymbolSDNode>(Callee)) {
2531      unsigned NumInRegs = 0;
2532      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2533        CCValAssign &VA = ArgLocs[i];
2534        if (!VA.isRegLoc())
2535          continue;
2536        unsigned Reg = VA.getLocReg();
2537        switch (Reg) {
2538        default: break;
2539        case X86::EAX: case X86::EDX: case X86::ECX:
2540          if (++NumInRegs == 3)
2541            return false;
2542          break;
2543        }
2544      }
2545    }
2546  }
2547
2548  return true;
2549}
2550
2551FastISel *
2552X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2553  return X86::createFastISel(funcInfo);
2554}
2555
2556
2557//===----------------------------------------------------------------------===//
2558//                           Other Lowering Hooks
2559//===----------------------------------------------------------------------===//
2560
2561
2562SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2563  MachineFunction &MF = DAG.getMachineFunction();
2564  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2565  int ReturnAddrIndex = FuncInfo->getRAIndex();
2566
2567  if (ReturnAddrIndex == 0) {
2568    // Set up a frame object for the return address.
2569    uint64_t SlotSize = TD->getPointerSize();
2570    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2571                                                           false);
2572    FuncInfo->setRAIndex(ReturnAddrIndex);
2573  }
2574
2575  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2576}
2577
2578
2579bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2580                                       bool hasSymbolicDisplacement) {
2581  // Offset should fit into 32 bit immediate field.
2582  if (!isInt<32>(Offset))
2583    return false;
2584
2585  // If we don't have a symbolic displacement - we don't have any extra
2586  // restrictions.
2587  if (!hasSymbolicDisplacement)
2588    return true;
2589
2590  // FIXME: Some tweaks might be needed for medium code model.
2591  if (M != CodeModel::Small && M != CodeModel::Kernel)
2592    return false;
2593
2594  // For small code model we assume that latest object is 16MB before end of 31
2595  // bits boundary. We may also accept pretty large negative constants knowing
2596  // that all objects are in the positive half of address space.
2597  if (M == CodeModel::Small && Offset < 16*1024*1024)
2598    return true;
2599
2600  // For kernel code model we know that all object resist in the negative half
2601  // of 32bits address space. We may not accept negative offsets, since they may
2602  // be just off and we may accept pretty large positive ones.
2603  if (M == CodeModel::Kernel && Offset > 0)
2604    return true;
2605
2606  return false;
2607}
2608
2609/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2610/// specific condition code, returning the condition code and the LHS/RHS of the
2611/// comparison to make.
2612static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2613                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2614  if (!isFP) {
2615    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2616      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2617        // X > -1   -> X == 0, jump !sign.
2618        RHS = DAG.getConstant(0, RHS.getValueType());
2619        return X86::COND_NS;
2620      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2621        // X < 0   -> X == 0, jump on sign.
2622        return X86::COND_S;
2623      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2624        // X < 1   -> X <= 0
2625        RHS = DAG.getConstant(0, RHS.getValueType());
2626        return X86::COND_LE;
2627      }
2628    }
2629
2630    switch (SetCCOpcode) {
2631    default: llvm_unreachable("Invalid integer condition!");
2632    case ISD::SETEQ:  return X86::COND_E;
2633    case ISD::SETGT:  return X86::COND_G;
2634    case ISD::SETGE:  return X86::COND_GE;
2635    case ISD::SETLT:  return X86::COND_L;
2636    case ISD::SETLE:  return X86::COND_LE;
2637    case ISD::SETNE:  return X86::COND_NE;
2638    case ISD::SETULT: return X86::COND_B;
2639    case ISD::SETUGT: return X86::COND_A;
2640    case ISD::SETULE: return X86::COND_BE;
2641    case ISD::SETUGE: return X86::COND_AE;
2642    }
2643  }
2644
2645  // First determine if it is required or is profitable to flip the operands.
2646
2647  // If LHS is a foldable load, but RHS is not, flip the condition.
2648  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2649      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2650    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2651    std::swap(LHS, RHS);
2652  }
2653
2654  switch (SetCCOpcode) {
2655  default: break;
2656  case ISD::SETOLT:
2657  case ISD::SETOLE:
2658  case ISD::SETUGT:
2659  case ISD::SETUGE:
2660    std::swap(LHS, RHS);
2661    break;
2662  }
2663
2664  // On a floating point condition, the flags are set as follows:
2665  // ZF  PF  CF   op
2666  //  0 | 0 | 0 | X > Y
2667  //  0 | 0 | 1 | X < Y
2668  //  1 | 0 | 0 | X == Y
2669  //  1 | 1 | 1 | unordered
2670  switch (SetCCOpcode) {
2671  default: llvm_unreachable("Condcode should be pre-legalized away");
2672  case ISD::SETUEQ:
2673  case ISD::SETEQ:   return X86::COND_E;
2674  case ISD::SETOLT:              // flipped
2675  case ISD::SETOGT:
2676  case ISD::SETGT:   return X86::COND_A;
2677  case ISD::SETOLE:              // flipped
2678  case ISD::SETOGE:
2679  case ISD::SETGE:   return X86::COND_AE;
2680  case ISD::SETUGT:              // flipped
2681  case ISD::SETULT:
2682  case ISD::SETLT:   return X86::COND_B;
2683  case ISD::SETUGE:              // flipped
2684  case ISD::SETULE:
2685  case ISD::SETLE:   return X86::COND_BE;
2686  case ISD::SETONE:
2687  case ISD::SETNE:   return X86::COND_NE;
2688  case ISD::SETUO:   return X86::COND_P;
2689  case ISD::SETO:    return X86::COND_NP;
2690  case ISD::SETOEQ:
2691  case ISD::SETUNE:  return X86::COND_INVALID;
2692  }
2693}
2694
2695/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2696/// code. Current x86 isa includes the following FP cmov instructions:
2697/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2698static bool hasFPCMov(unsigned X86CC) {
2699  switch (X86CC) {
2700  default:
2701    return false;
2702  case X86::COND_B:
2703  case X86::COND_BE:
2704  case X86::COND_E:
2705  case X86::COND_P:
2706  case X86::COND_A:
2707  case X86::COND_AE:
2708  case X86::COND_NE:
2709  case X86::COND_NP:
2710    return true;
2711  }
2712}
2713
2714/// isFPImmLegal - Returns true if the target can instruction select the
2715/// specified FP immediate natively. If false, the legalizer will
2716/// materialize the FP immediate as a load from a constant pool.
2717bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2718  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2719    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2720      return true;
2721  }
2722  return false;
2723}
2724
2725/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2726/// the specified range (L, H].
2727static bool isUndefOrInRange(int Val, int Low, int Hi) {
2728  return (Val < 0) || (Val >= Low && Val < Hi);
2729}
2730
2731/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2732/// specified value.
2733static bool isUndefOrEqual(int Val, int CmpVal) {
2734  if (Val < 0 || Val == CmpVal)
2735    return true;
2736  return false;
2737}
2738
2739/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2740/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2741/// the second operand.
2742static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2743  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2744    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2745  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2746    return (Mask[0] < 2 && Mask[1] < 2);
2747  return false;
2748}
2749
2750bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2751  SmallVector<int, 8> M;
2752  N->getMask(M);
2753  return ::isPSHUFDMask(M, N->getValueType(0));
2754}
2755
2756/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2757/// is suitable for input to PSHUFHW.
2758static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2759  if (VT != MVT::v8i16)
2760    return false;
2761
2762  // Lower quadword copied in order or undef.
2763  for (int i = 0; i != 4; ++i)
2764    if (Mask[i] >= 0 && Mask[i] != i)
2765      return false;
2766
2767  // Upper quadword shuffled.
2768  for (int i = 4; i != 8; ++i)
2769    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2770      return false;
2771
2772  return true;
2773}
2774
2775bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2776  SmallVector<int, 8> M;
2777  N->getMask(M);
2778  return ::isPSHUFHWMask(M, N->getValueType(0));
2779}
2780
2781/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2782/// is suitable for input to PSHUFLW.
2783static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2784  if (VT != MVT::v8i16)
2785    return false;
2786
2787  // Upper quadword copied in order.
2788  for (int i = 4; i != 8; ++i)
2789    if (Mask[i] >= 0 && Mask[i] != i)
2790      return false;
2791
2792  // Lower quadword shuffled.
2793  for (int i = 0; i != 4; ++i)
2794    if (Mask[i] >= 4)
2795      return false;
2796
2797  return true;
2798}
2799
2800bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2801  SmallVector<int, 8> M;
2802  N->getMask(M);
2803  return ::isPSHUFLWMask(M, N->getValueType(0));
2804}
2805
2806/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2807/// is suitable for input to PALIGNR.
2808static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2809                          bool hasSSSE3) {
2810  int i, e = VT.getVectorNumElements();
2811
2812  // Do not handle v2i64 / v2f64 shuffles with palignr.
2813  if (e < 4 || !hasSSSE3)
2814    return false;
2815
2816  for (i = 0; i != e; ++i)
2817    if (Mask[i] >= 0)
2818      break;
2819
2820  // All undef, not a palignr.
2821  if (i == e)
2822    return false;
2823
2824  // Determine if it's ok to perform a palignr with only the LHS, since we
2825  // don't have access to the actual shuffle elements to see if RHS is undef.
2826  bool Unary = Mask[i] < (int)e;
2827  bool NeedsUnary = false;
2828
2829  int s = Mask[i] - i;
2830
2831  // Check the rest of the elements to see if they are consecutive.
2832  for (++i; i != e; ++i) {
2833    int m = Mask[i];
2834    if (m < 0)
2835      continue;
2836
2837    Unary = Unary && (m < (int)e);
2838    NeedsUnary = NeedsUnary || (m < s);
2839
2840    if (NeedsUnary && !Unary)
2841      return false;
2842    if (Unary && m != ((s+i) & (e-1)))
2843      return false;
2844    if (!Unary && m != (s+i))
2845      return false;
2846  }
2847  return true;
2848}
2849
2850bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2851  SmallVector<int, 8> M;
2852  N->getMask(M);
2853  return ::isPALIGNRMask(M, N->getValueType(0), true);
2854}
2855
2856/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2857/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2858static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2859  int NumElems = VT.getVectorNumElements();
2860  if (NumElems != 2 && NumElems != 4)
2861    return false;
2862
2863  int Half = NumElems / 2;
2864  for (int i = 0; i < Half; ++i)
2865    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2866      return false;
2867  for (int i = Half; i < NumElems; ++i)
2868    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2869      return false;
2870
2871  return true;
2872}
2873
2874bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2875  SmallVector<int, 8> M;
2876  N->getMask(M);
2877  return ::isSHUFPMask(M, N->getValueType(0));
2878}
2879
2880/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2881/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2882/// half elements to come from vector 1 (which would equal the dest.) and
2883/// the upper half to come from vector 2.
2884static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2885  int NumElems = VT.getVectorNumElements();
2886
2887  if (NumElems != 2 && NumElems != 4)
2888    return false;
2889
2890  int Half = NumElems / 2;
2891  for (int i = 0; i < Half; ++i)
2892    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2893      return false;
2894  for (int i = Half; i < NumElems; ++i)
2895    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2896      return false;
2897  return true;
2898}
2899
2900static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2901  SmallVector<int, 8> M;
2902  N->getMask(M);
2903  return isCommutedSHUFPMask(M, N->getValueType(0));
2904}
2905
2906/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2907/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2908bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2909  if (N->getValueType(0).getVectorNumElements() != 4)
2910    return false;
2911
2912  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2913  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2914         isUndefOrEqual(N->getMaskElt(1), 7) &&
2915         isUndefOrEqual(N->getMaskElt(2), 2) &&
2916         isUndefOrEqual(N->getMaskElt(3), 3);
2917}
2918
2919/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2920/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2921/// <2, 3, 2, 3>
2922bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2923  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2924
2925  if (NumElems != 4)
2926    return false;
2927
2928  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2929  isUndefOrEqual(N->getMaskElt(1), 3) &&
2930  isUndefOrEqual(N->getMaskElt(2), 2) &&
2931  isUndefOrEqual(N->getMaskElt(3), 3);
2932}
2933
2934/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2935/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2936bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2937  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2938
2939  if (NumElems != 2 && NumElems != 4)
2940    return false;
2941
2942  for (unsigned i = 0; i < NumElems/2; ++i)
2943    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2944      return false;
2945
2946  for (unsigned i = NumElems/2; i < NumElems; ++i)
2947    if (!isUndefOrEqual(N->getMaskElt(i), i))
2948      return false;
2949
2950  return true;
2951}
2952
2953/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2954/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2955bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2956  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2957
2958  if (NumElems != 2 && NumElems != 4)
2959    return false;
2960
2961  for (unsigned i = 0; i < NumElems/2; ++i)
2962    if (!isUndefOrEqual(N->getMaskElt(i), i))
2963      return false;
2964
2965  for (unsigned i = 0; i < NumElems/2; ++i)
2966    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2967      return false;
2968
2969  return true;
2970}
2971
2972/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2973/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2974static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2975                         bool V2IsSplat = false) {
2976  int NumElts = VT.getVectorNumElements();
2977  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2978    return false;
2979
2980  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2981    int BitI  = Mask[i];
2982    int BitI1 = Mask[i+1];
2983    if (!isUndefOrEqual(BitI, j))
2984      return false;
2985    if (V2IsSplat) {
2986      if (!isUndefOrEqual(BitI1, NumElts))
2987        return false;
2988    } else {
2989      if (!isUndefOrEqual(BitI1, j + NumElts))
2990        return false;
2991    }
2992  }
2993  return true;
2994}
2995
2996bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2997  SmallVector<int, 8> M;
2998  N->getMask(M);
2999  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3000}
3001
3002/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3003/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3004static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3005                         bool V2IsSplat = false) {
3006  int NumElts = VT.getVectorNumElements();
3007  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3008    return false;
3009
3010  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3011    int BitI  = Mask[i];
3012    int BitI1 = Mask[i+1];
3013    if (!isUndefOrEqual(BitI, j + NumElts/2))
3014      return false;
3015    if (V2IsSplat) {
3016      if (isUndefOrEqual(BitI1, NumElts))
3017        return false;
3018    } else {
3019      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3020        return false;
3021    }
3022  }
3023  return true;
3024}
3025
3026bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3027  SmallVector<int, 8> M;
3028  N->getMask(M);
3029  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3030}
3031
3032/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3033/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3034/// <0, 0, 1, 1>
3035static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3036  int NumElems = VT.getVectorNumElements();
3037  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3038    return false;
3039
3040  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3041    int BitI  = Mask[i];
3042    int BitI1 = Mask[i+1];
3043    if (!isUndefOrEqual(BitI, j))
3044      return false;
3045    if (!isUndefOrEqual(BitI1, j))
3046      return false;
3047  }
3048  return true;
3049}
3050
3051bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3052  SmallVector<int, 8> M;
3053  N->getMask(M);
3054  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3055}
3056
3057/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3058/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3059/// <2, 2, 3, 3>
3060static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3061  int NumElems = VT.getVectorNumElements();
3062  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3063    return false;
3064
3065  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3066    int BitI  = Mask[i];
3067    int BitI1 = Mask[i+1];
3068    if (!isUndefOrEqual(BitI, j))
3069      return false;
3070    if (!isUndefOrEqual(BitI1, j))
3071      return false;
3072  }
3073  return true;
3074}
3075
3076bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3077  SmallVector<int, 8> M;
3078  N->getMask(M);
3079  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3080}
3081
3082/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3083/// specifies a shuffle of elements that is suitable for input to MOVSS,
3084/// MOVSD, and MOVD, i.e. setting the lowest element.
3085static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3086  if (VT.getVectorElementType().getSizeInBits() < 32)
3087    return false;
3088
3089  int NumElts = VT.getVectorNumElements();
3090
3091  if (!isUndefOrEqual(Mask[0], NumElts))
3092    return false;
3093
3094  for (int i = 1; i < NumElts; ++i)
3095    if (!isUndefOrEqual(Mask[i], i))
3096      return false;
3097
3098  return true;
3099}
3100
3101bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3102  SmallVector<int, 8> M;
3103  N->getMask(M);
3104  return ::isMOVLMask(M, N->getValueType(0));
3105}
3106
3107/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3108/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3109/// element of vector 2 and the other elements to come from vector 1 in order.
3110static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3111                               bool V2IsSplat = false, bool V2IsUndef = false) {
3112  int NumOps = VT.getVectorNumElements();
3113  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3114    return false;
3115
3116  if (!isUndefOrEqual(Mask[0], 0))
3117    return false;
3118
3119  for (int i = 1; i < NumOps; ++i)
3120    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3121          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3122          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3123      return false;
3124
3125  return true;
3126}
3127
3128static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3129                           bool V2IsUndef = false) {
3130  SmallVector<int, 8> M;
3131  N->getMask(M);
3132  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3133}
3134
3135/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3136/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3137bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3138  if (N->getValueType(0).getVectorNumElements() != 4)
3139    return false;
3140
3141  // Expect 1, 1, 3, 3
3142  for (unsigned i = 0; i < 2; ++i) {
3143    int Elt = N->getMaskElt(i);
3144    if (Elt >= 0 && Elt != 1)
3145      return false;
3146  }
3147
3148  bool HasHi = false;
3149  for (unsigned i = 2; i < 4; ++i) {
3150    int Elt = N->getMaskElt(i);
3151    if (Elt >= 0 && Elt != 3)
3152      return false;
3153    if (Elt == 3)
3154      HasHi = true;
3155  }
3156  // Don't use movshdup if it can be done with a shufps.
3157  // FIXME: verify that matching u, u, 3, 3 is what we want.
3158  return HasHi;
3159}
3160
3161/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3162/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3163bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3164  if (N->getValueType(0).getVectorNumElements() != 4)
3165    return false;
3166
3167  // Expect 0, 0, 2, 2
3168  for (unsigned i = 0; i < 2; ++i)
3169    if (N->getMaskElt(i) > 0)
3170      return false;
3171
3172  bool HasHi = false;
3173  for (unsigned i = 2; i < 4; ++i) {
3174    int Elt = N->getMaskElt(i);
3175    if (Elt >= 0 && Elt != 2)
3176      return false;
3177    if (Elt == 2)
3178      HasHi = true;
3179  }
3180  // Don't use movsldup if it can be done with a shufps.
3181  return HasHi;
3182}
3183
3184/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3185/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3186bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3187  int e = N->getValueType(0).getVectorNumElements() / 2;
3188
3189  for (int i = 0; i < e; ++i)
3190    if (!isUndefOrEqual(N->getMaskElt(i), i))
3191      return false;
3192  for (int i = 0; i < e; ++i)
3193    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3194      return false;
3195  return true;
3196}
3197
3198/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3199/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3200unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3201  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3202  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3203
3204  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3205  unsigned Mask = 0;
3206  for (int i = 0; i < NumOperands; ++i) {
3207    int Val = SVOp->getMaskElt(NumOperands-i-1);
3208    if (Val < 0) Val = 0;
3209    if (Val >= NumOperands) Val -= NumOperands;
3210    Mask |= Val;
3211    if (i != NumOperands - 1)
3212      Mask <<= Shift;
3213  }
3214  return Mask;
3215}
3216
3217/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3218/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3219unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3220  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3221  unsigned Mask = 0;
3222  // 8 nodes, but we only care about the last 4.
3223  for (unsigned i = 7; i >= 4; --i) {
3224    int Val = SVOp->getMaskElt(i);
3225    if (Val >= 0)
3226      Mask |= (Val - 4);
3227    if (i != 4)
3228      Mask <<= 2;
3229  }
3230  return Mask;
3231}
3232
3233/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3234/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3235unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3236  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3237  unsigned Mask = 0;
3238  // 8 nodes, but we only care about the first 4.
3239  for (int i = 3; i >= 0; --i) {
3240    int Val = SVOp->getMaskElt(i);
3241    if (Val >= 0)
3242      Mask |= Val;
3243    if (i != 0)
3244      Mask <<= 2;
3245  }
3246  return Mask;
3247}
3248
3249/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3250/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3251unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3252  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3253  EVT VVT = N->getValueType(0);
3254  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3255  int Val = 0;
3256
3257  unsigned i, e;
3258  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3259    Val = SVOp->getMaskElt(i);
3260    if (Val >= 0)
3261      break;
3262  }
3263  return (Val - i) * EltSize;
3264}
3265
3266/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3267/// constant +0.0.
3268bool X86::isZeroNode(SDValue Elt) {
3269  return ((isa<ConstantSDNode>(Elt) &&
3270           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3271          (isa<ConstantFPSDNode>(Elt) &&
3272           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3273}
3274
3275/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3276/// their permute mask.
3277static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3278                                    SelectionDAG &DAG) {
3279  EVT VT = SVOp->getValueType(0);
3280  unsigned NumElems = VT.getVectorNumElements();
3281  SmallVector<int, 8> MaskVec;
3282
3283  for (unsigned i = 0; i != NumElems; ++i) {
3284    int idx = SVOp->getMaskElt(i);
3285    if (idx < 0)
3286      MaskVec.push_back(idx);
3287    else if (idx < (int)NumElems)
3288      MaskVec.push_back(idx + NumElems);
3289    else
3290      MaskVec.push_back(idx - NumElems);
3291  }
3292  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3293                              SVOp->getOperand(0), &MaskVec[0]);
3294}
3295
3296/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3297/// the two vector operands have swapped position.
3298static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3299  unsigned NumElems = VT.getVectorNumElements();
3300  for (unsigned i = 0; i != NumElems; ++i) {
3301    int idx = Mask[i];
3302    if (idx < 0)
3303      continue;
3304    else if (idx < (int)NumElems)
3305      Mask[i] = idx + NumElems;
3306    else
3307      Mask[i] = idx - NumElems;
3308  }
3309}
3310
3311/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3312/// match movhlps. The lower half elements should come from upper half of
3313/// V1 (and in order), and the upper half elements should come from the upper
3314/// half of V2 (and in order).
3315static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3316  if (Op->getValueType(0).getVectorNumElements() != 4)
3317    return false;
3318  for (unsigned i = 0, e = 2; i != e; ++i)
3319    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3320      return false;
3321  for (unsigned i = 2; i != 4; ++i)
3322    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3323      return false;
3324  return true;
3325}
3326
3327/// isScalarLoadToVector - Returns true if the node is a scalar load that
3328/// is promoted to a vector. It also returns the LoadSDNode by reference if
3329/// required.
3330static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3331  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3332    return false;
3333  N = N->getOperand(0).getNode();
3334  if (!ISD::isNON_EXTLoad(N))
3335    return false;
3336  if (LD)
3337    *LD = cast<LoadSDNode>(N);
3338  return true;
3339}
3340
3341/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3342/// match movlp{s|d}. The lower half elements should come from lower half of
3343/// V1 (and in order), and the upper half elements should come from the upper
3344/// half of V2 (and in order). And since V1 will become the source of the
3345/// MOVLP, it must be either a vector load or a scalar load to vector.
3346static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3347                               ShuffleVectorSDNode *Op) {
3348  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3349    return false;
3350  // Is V2 is a vector load, don't do this transformation. We will try to use
3351  // load folding shufps op.
3352  if (ISD::isNON_EXTLoad(V2))
3353    return false;
3354
3355  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3356
3357  if (NumElems != 2 && NumElems != 4)
3358    return false;
3359  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3360    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3361      return false;
3362  for (unsigned i = NumElems/2; i != NumElems; ++i)
3363    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3364      return false;
3365  return true;
3366}
3367
3368/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3369/// all the same.
3370static bool isSplatVector(SDNode *N) {
3371  if (N->getOpcode() != ISD::BUILD_VECTOR)
3372    return false;
3373
3374  SDValue SplatValue = N->getOperand(0);
3375  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3376    if (N->getOperand(i) != SplatValue)
3377      return false;
3378  return true;
3379}
3380
3381/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3382/// to an zero vector.
3383/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3384static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3385  SDValue V1 = N->getOperand(0);
3386  SDValue V2 = N->getOperand(1);
3387  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3388  for (unsigned i = 0; i != NumElems; ++i) {
3389    int Idx = N->getMaskElt(i);
3390    if (Idx >= (int)NumElems) {
3391      unsigned Opc = V2.getOpcode();
3392      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3393        continue;
3394      if (Opc != ISD::BUILD_VECTOR ||
3395          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3396        return false;
3397    } else if (Idx >= 0) {
3398      unsigned Opc = V1.getOpcode();
3399      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3400        continue;
3401      if (Opc != ISD::BUILD_VECTOR ||
3402          !X86::isZeroNode(V1.getOperand(Idx)))
3403        return false;
3404    }
3405  }
3406  return true;
3407}
3408
3409/// getZeroVector - Returns a vector of specified type with all zero elements.
3410///
3411static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3412                             DebugLoc dl) {
3413  assert(VT.isVector() && "Expected a vector type");
3414
3415  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted
3416  // to their dest type. This ensures they get CSE'd.
3417  SDValue Vec;
3418  if (VT.getSizeInBits() == 64) { // MMX
3419    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3420    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3421  } else if (VT.getSizeInBits() == 128) {
3422    if (HasSSE2) {  // SSE2
3423      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3424      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3425    } else { // SSE1
3426      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3427      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3428    }
3429  } else if (VT.getSizeInBits() == 256) { // AVX
3430    // 256-bit logic and arithmetic instructions in AVX are
3431    // all floating-point, no support for integer ops. Default
3432    // to emitting fp zeroed vectors then.
3433    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3434    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3435    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3436  }
3437  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3438}
3439
3440/// getOnesVector - Returns a vector of specified type with all bits set.
3441///
3442static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3443  assert(VT.isVector() && "Expected a vector type");
3444
3445  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3446  // type.  This ensures they get CSE'd.
3447  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3448  SDValue Vec;
3449  if (VT.getSizeInBits() == 64) // MMX
3450    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3451  else // SSE
3452    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3453  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3454}
3455
3456
3457/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3458/// that point to V2 points to its first element.
3459static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3460  EVT VT = SVOp->getValueType(0);
3461  unsigned NumElems = VT.getVectorNumElements();
3462
3463  bool Changed = false;
3464  SmallVector<int, 8> MaskVec;
3465  SVOp->getMask(MaskVec);
3466
3467  for (unsigned i = 0; i != NumElems; ++i) {
3468    if (MaskVec[i] > (int)NumElems) {
3469      MaskVec[i] = NumElems;
3470      Changed = true;
3471    }
3472  }
3473  if (Changed)
3474    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3475                                SVOp->getOperand(1), &MaskVec[0]);
3476  return SDValue(SVOp, 0);
3477}
3478
3479/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3480/// operation of specified width.
3481static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3482                       SDValue V2) {
3483  unsigned NumElems = VT.getVectorNumElements();
3484  SmallVector<int, 8> Mask;
3485  Mask.push_back(NumElems);
3486  for (unsigned i = 1; i != NumElems; ++i)
3487    Mask.push_back(i);
3488  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3489}
3490
3491/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3492static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3493                          SDValue V2) {
3494  unsigned NumElems = VT.getVectorNumElements();
3495  SmallVector<int, 8> Mask;
3496  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3497    Mask.push_back(i);
3498    Mask.push_back(i + NumElems);
3499  }
3500  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3501}
3502
3503/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3504static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3505                          SDValue V2) {
3506  unsigned NumElems = VT.getVectorNumElements();
3507  unsigned Half = NumElems/2;
3508  SmallVector<int, 8> Mask;
3509  for (unsigned i = 0; i != Half; ++i) {
3510    Mask.push_back(i + Half);
3511    Mask.push_back(i + NumElems + Half);
3512  }
3513  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3514}
3515
3516/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3517static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3518  if (SV->getValueType(0).getVectorNumElements() <= 4)
3519    return SDValue(SV, 0);
3520
3521  EVT PVT = MVT::v4f32;
3522  EVT VT = SV->getValueType(0);
3523  DebugLoc dl = SV->getDebugLoc();
3524  SDValue V1 = SV->getOperand(0);
3525  int NumElems = VT.getVectorNumElements();
3526  int EltNo = SV->getSplatIndex();
3527
3528  // unpack elements to the correct location
3529  while (NumElems > 4) {
3530    if (EltNo < NumElems/2) {
3531      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3532    } else {
3533      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3534      EltNo -= NumElems/2;
3535    }
3536    NumElems >>= 1;
3537  }
3538
3539  // Perform the splat.
3540  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3541  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3542  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3543  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3544}
3545
3546/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3547/// vector of zero or undef vector.  This produces a shuffle where the low
3548/// element of V2 is swizzled into the zero/undef vector, landing at element
3549/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3550static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3551                                             bool isZero, bool HasSSE2,
3552                                             SelectionDAG &DAG) {
3553  EVT VT = V2.getValueType();
3554  SDValue V1 = isZero
3555    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3556  unsigned NumElems = VT.getVectorNumElements();
3557  SmallVector<int, 16> MaskVec;
3558  for (unsigned i = 0; i != NumElems; ++i)
3559    // If this is the insertion idx, put the low elt of V2 here.
3560    MaskVec.push_back(i == Idx ? NumElems : i);
3561  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3562}
3563
3564/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3565/// a shuffle that is zero.
3566static
3567unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3568                                  bool Low, SelectionDAG &DAG) {
3569  unsigned NumZeros = 0;
3570  for (int i = 0; i < NumElems; ++i) {
3571    unsigned Index = Low ? i : NumElems-i-1;
3572    int Idx = SVOp->getMaskElt(Index);
3573    if (Idx < 0) {
3574      ++NumZeros;
3575      continue;
3576    }
3577    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3578    if (Elt.getNode() && X86::isZeroNode(Elt))
3579      ++NumZeros;
3580    else
3581      break;
3582  }
3583  return NumZeros;
3584}
3585
3586/// isVectorShift - Returns true if the shuffle can be implemented as a
3587/// logical left or right shift of a vector.
3588/// FIXME: split into pslldqi, psrldqi, palignr variants.
3589static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3590                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3591  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3592
3593  isLeft = true;
3594  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3595  if (!NumZeros) {
3596    isLeft = false;
3597    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3598    if (!NumZeros)
3599      return false;
3600  }
3601  bool SeenV1 = false;
3602  bool SeenV2 = false;
3603  for (unsigned i = NumZeros; i < NumElems; ++i) {
3604    unsigned Val = isLeft ? (i - NumZeros) : i;
3605    int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3606    if (Idx_ < 0)
3607      continue;
3608    unsigned Idx = (unsigned) Idx_;
3609    if (Idx < NumElems)
3610      SeenV1 = true;
3611    else {
3612      Idx -= NumElems;
3613      SeenV2 = true;
3614    }
3615    if (Idx != Val)
3616      return false;
3617  }
3618  if (SeenV1 && SeenV2)
3619    return false;
3620
3621  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3622  ShAmt = NumZeros;
3623  return true;
3624}
3625
3626
3627/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3628///
3629static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3630                                       unsigned NumNonZero, unsigned NumZero,
3631                                       SelectionDAG &DAG,
3632                                       const TargetLowering &TLI) {
3633  if (NumNonZero > 8)
3634    return SDValue();
3635
3636  DebugLoc dl = Op.getDebugLoc();
3637  SDValue V(0, 0);
3638  bool First = true;
3639  for (unsigned i = 0; i < 16; ++i) {
3640    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3641    if (ThisIsNonZero && First) {
3642      if (NumZero)
3643        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3644      else
3645        V = DAG.getUNDEF(MVT::v8i16);
3646      First = false;
3647    }
3648
3649    if ((i & 1) != 0) {
3650      SDValue ThisElt(0, 0), LastElt(0, 0);
3651      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3652      if (LastIsNonZero) {
3653        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3654                              MVT::i16, Op.getOperand(i-1));
3655      }
3656      if (ThisIsNonZero) {
3657        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3658        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3659                              ThisElt, DAG.getConstant(8, MVT::i8));
3660        if (LastIsNonZero)
3661          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3662      } else
3663        ThisElt = LastElt;
3664
3665      if (ThisElt.getNode())
3666        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3667                        DAG.getIntPtrConstant(i/2));
3668    }
3669  }
3670
3671  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3672}
3673
3674/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3675///
3676static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3677                                     unsigned NumNonZero, unsigned NumZero,
3678                                     SelectionDAG &DAG,
3679                                     const TargetLowering &TLI) {
3680  if (NumNonZero > 4)
3681    return SDValue();
3682
3683  DebugLoc dl = Op.getDebugLoc();
3684  SDValue V(0, 0);
3685  bool First = true;
3686  for (unsigned i = 0; i < 8; ++i) {
3687    bool isNonZero = (NonZeros & (1 << i)) != 0;
3688    if (isNonZero) {
3689      if (First) {
3690        if (NumZero)
3691          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3692        else
3693          V = DAG.getUNDEF(MVT::v8i16);
3694        First = false;
3695      }
3696      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3697                      MVT::v8i16, V, Op.getOperand(i),
3698                      DAG.getIntPtrConstant(i));
3699    }
3700  }
3701
3702  return V;
3703}
3704
3705/// getVShift - Return a vector logical shift node.
3706///
3707static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3708                         unsigned NumBits, SelectionDAG &DAG,
3709                         const TargetLowering &TLI, DebugLoc dl) {
3710  bool isMMX = VT.getSizeInBits() == 64;
3711  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3712  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3713  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3714  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3715                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3716                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3717}
3718
3719SDValue
3720X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3721                                          SelectionDAG &DAG) const {
3722
3723  // Check if the scalar load can be widened into a vector load. And if
3724  // the address is "base + cst" see if the cst can be "absorbed" into
3725  // the shuffle mask.
3726  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3727    SDValue Ptr = LD->getBasePtr();
3728    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3729      return SDValue();
3730    EVT PVT = LD->getValueType(0);
3731    if (PVT != MVT::i32 && PVT != MVT::f32)
3732      return SDValue();
3733
3734    int FI = -1;
3735    int64_t Offset = 0;
3736    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3737      FI = FINode->getIndex();
3738      Offset = 0;
3739    } else if (Ptr.getOpcode() == ISD::ADD &&
3740               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3741               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3742      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3743      Offset = Ptr.getConstantOperandVal(1);
3744      Ptr = Ptr.getOperand(0);
3745    } else {
3746      return SDValue();
3747    }
3748
3749    SDValue Chain = LD->getChain();
3750    // Make sure the stack object alignment is at least 16.
3751    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3752    if (DAG.InferPtrAlignment(Ptr) < 16) {
3753      if (MFI->isFixedObjectIndex(FI)) {
3754        // Can't change the alignment. FIXME: It's possible to compute
3755        // the exact stack offset and reference FI + adjust offset instead.
3756        // If someone *really* cares about this. That's the way to implement it.
3757        return SDValue();
3758      } else {
3759        MFI->setObjectAlignment(FI, 16);
3760      }
3761    }
3762
3763    // (Offset % 16) must be multiple of 4. Then address is then
3764    // Ptr + (Offset & ~15).
3765    if (Offset < 0)
3766      return SDValue();
3767    if ((Offset % 16) & 3)
3768      return SDValue();
3769    int64_t StartOffset = Offset & ~15;
3770    if (StartOffset)
3771      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3772                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3773
3774    int EltNo = (Offset - StartOffset) >> 2;
3775    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3776    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3777    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3778                             false, false, 0);
3779    // Canonicalize it to a v4i32 shuffle.
3780    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3781    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3782                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3783                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3784  }
3785
3786  return SDValue();
3787}
3788
3789/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3790/// vector of type 'VT', see if the elements can be replaced by a single large
3791/// load which has the same value as a build_vector whose operands are 'elts'.
3792///
3793/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3794///
3795/// FIXME: we'd also like to handle the case where the last elements are zero
3796/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3797/// There's even a handy isZeroNode for that purpose.
3798static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3799                                        DebugLoc &dl, SelectionDAG &DAG) {
3800  EVT EltVT = VT.getVectorElementType();
3801  unsigned NumElems = Elts.size();
3802
3803  LoadSDNode *LDBase = NULL;
3804  unsigned LastLoadedElt = -1U;
3805
3806  // For each element in the initializer, see if we've found a load or an undef.
3807  // If we don't find an initial load element, or later load elements are
3808  // non-consecutive, bail out.
3809  for (unsigned i = 0; i < NumElems; ++i) {
3810    SDValue Elt = Elts[i];
3811
3812    if (!Elt.getNode() ||
3813        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3814      return SDValue();
3815    if (!LDBase) {
3816      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3817        return SDValue();
3818      LDBase = cast<LoadSDNode>(Elt.getNode());
3819      LastLoadedElt = i;
3820      continue;
3821    }
3822    if (Elt.getOpcode() == ISD::UNDEF)
3823      continue;
3824
3825    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3826    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3827      return SDValue();
3828    LastLoadedElt = i;
3829  }
3830
3831  // If we have found an entire vector of loads and undefs, then return a large
3832  // load of the entire vector width starting at the base pointer.  If we found
3833  // consecutive loads for the low half, generate a vzext_load node.
3834  if (LastLoadedElt == NumElems - 1) {
3835    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3836      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3837                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3838                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3839    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3840                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3841                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3842                       LDBase->getAlignment());
3843  } else if (NumElems == 4 && LastLoadedElt == 1) {
3844    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3845    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3846    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3847    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3848  }
3849  return SDValue();
3850}
3851
3852SDValue
3853X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
3854  DebugLoc dl = Op.getDebugLoc();
3855  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1 and
3856  // all one's are handled with pcmpeqd. In AVX, zero's are handled with
3857  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
3858  // is present, so AllOnes is ignored.
3859  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
3860      (Op.getValueType().getSizeInBits() != 256 &&
3861       ISD::isBuildVectorAllOnes(Op.getNode()))) {
3862    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3863    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3864    // eliminated on x86-32 hosts.
3865    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3866      return Op;
3867
3868    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3869      return getOnesVector(Op.getValueType(), DAG, dl);
3870    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3871  }
3872
3873  EVT VT = Op.getValueType();
3874  EVT ExtVT = VT.getVectorElementType();
3875  unsigned EVTBits = ExtVT.getSizeInBits();
3876
3877  unsigned NumElems = Op.getNumOperands();
3878  unsigned NumZero  = 0;
3879  unsigned NumNonZero = 0;
3880  unsigned NonZeros = 0;
3881  bool IsAllConstants = true;
3882  SmallSet<SDValue, 8> Values;
3883  for (unsigned i = 0; i < NumElems; ++i) {
3884    SDValue Elt = Op.getOperand(i);
3885    if (Elt.getOpcode() == ISD::UNDEF)
3886      continue;
3887    Values.insert(Elt);
3888    if (Elt.getOpcode() != ISD::Constant &&
3889        Elt.getOpcode() != ISD::ConstantFP)
3890      IsAllConstants = false;
3891    if (X86::isZeroNode(Elt))
3892      NumZero++;
3893    else {
3894      NonZeros |= (1 << i);
3895      NumNonZero++;
3896    }
3897  }
3898
3899  if (NumNonZero == 0) {
3900    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3901    return DAG.getUNDEF(VT);
3902  }
3903
3904  // Special case for single non-zero, non-undef, element.
3905  if (NumNonZero == 1) {
3906    unsigned Idx = CountTrailingZeros_32(NonZeros);
3907    SDValue Item = Op.getOperand(Idx);
3908
3909    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3910    // the value are obviously zero, truncate the value to i32 and do the
3911    // insertion that way.  Only do this if the value is non-constant or if the
3912    // value is a constant being inserted into element 0.  It is cheaper to do
3913    // a constant pool load than it is to do a movd + shuffle.
3914    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3915        (!IsAllConstants || Idx == 0)) {
3916      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3917        // Handle MMX and SSE both.
3918        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3919        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3920
3921        // Truncate the value (which may itself be a constant) to i32, and
3922        // convert it to a vector with movd (S2V+shuffle to zero extend).
3923        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3924        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3925        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3926                                           Subtarget->hasSSE2(), DAG);
3927
3928        // Now we have our 32-bit value zero extended in the low element of
3929        // a vector.  If Idx != 0, swizzle it into place.
3930        if (Idx != 0) {
3931          SmallVector<int, 4> Mask;
3932          Mask.push_back(Idx);
3933          for (unsigned i = 1; i != VecElts; ++i)
3934            Mask.push_back(i);
3935          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3936                                      DAG.getUNDEF(Item.getValueType()),
3937                                      &Mask[0]);
3938        }
3939        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3940      }
3941    }
3942
3943    // If we have a constant or non-constant insertion into the low element of
3944    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3945    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3946    // depending on what the source datatype is.
3947    if (Idx == 0) {
3948      if (NumZero == 0) {
3949        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3950      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3951          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3952        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3953        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3954        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3955                                           DAG);
3956      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3957        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3958        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3959        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3960        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3961                                           Subtarget->hasSSE2(), DAG);
3962        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3963      }
3964    }
3965
3966    // Is it a vector logical left shift?
3967    if (NumElems == 2 && Idx == 1 &&
3968        X86::isZeroNode(Op.getOperand(0)) &&
3969        !X86::isZeroNode(Op.getOperand(1))) {
3970      unsigned NumBits = VT.getSizeInBits();
3971      return getVShift(true, VT,
3972                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3973                                   VT, Op.getOperand(1)),
3974                       NumBits/2, DAG, *this, dl);
3975    }
3976
3977    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3978      return SDValue();
3979
3980    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3981    // is a non-constant being inserted into an element other than the low one,
3982    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3983    // movd/movss) to move this into the low element, then shuffle it into
3984    // place.
3985    if (EVTBits == 32) {
3986      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3987
3988      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3989      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3990                                         Subtarget->hasSSE2(), DAG);
3991      SmallVector<int, 8> MaskVec;
3992      for (unsigned i = 0; i < NumElems; i++)
3993        MaskVec.push_back(i == Idx ? 0 : 1);
3994      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3995    }
3996  }
3997
3998  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3999  if (Values.size() == 1) {
4000    if (EVTBits == 32) {
4001      // Instead of a shuffle like this:
4002      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4003      // Check if it's possible to issue this instead.
4004      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4005      unsigned Idx = CountTrailingZeros_32(NonZeros);
4006      SDValue Item = Op.getOperand(Idx);
4007      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4008        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4009    }
4010    return SDValue();
4011  }
4012
4013  // A vector full of immediates; various special cases are already
4014  // handled, so this is best done with a single constant-pool load.
4015  if (IsAllConstants)
4016    return SDValue();
4017
4018  // Let legalizer expand 2-wide build_vectors.
4019  if (EVTBits == 64) {
4020    if (NumNonZero == 1) {
4021      // One half is zero or undef.
4022      unsigned Idx = CountTrailingZeros_32(NonZeros);
4023      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4024                                 Op.getOperand(Idx));
4025      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4026                                         Subtarget->hasSSE2(), DAG);
4027    }
4028    return SDValue();
4029  }
4030
4031  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4032  if (EVTBits == 8 && NumElems == 16) {
4033    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4034                                        *this);
4035    if (V.getNode()) return V;
4036  }
4037
4038  if (EVTBits == 16 && NumElems == 8) {
4039    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4040                                        *this);
4041    if (V.getNode()) return V;
4042  }
4043
4044  // If element VT is == 32 bits, turn it into a number of shuffles.
4045  SmallVector<SDValue, 8> V;
4046  V.resize(NumElems);
4047  if (NumElems == 4 && NumZero > 0) {
4048    for (unsigned i = 0; i < 4; ++i) {
4049      bool isZero = !(NonZeros & (1 << i));
4050      if (isZero)
4051        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4052      else
4053        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4054    }
4055
4056    for (unsigned i = 0; i < 2; ++i) {
4057      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4058        default: break;
4059        case 0:
4060          V[i] = V[i*2];  // Must be a zero vector.
4061          break;
4062        case 1:
4063          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4064          break;
4065        case 2:
4066          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4067          break;
4068        case 3:
4069          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4070          break;
4071      }
4072    }
4073
4074    SmallVector<int, 8> MaskVec;
4075    bool Reverse = (NonZeros & 0x3) == 2;
4076    for (unsigned i = 0; i < 2; ++i)
4077      MaskVec.push_back(Reverse ? 1-i : i);
4078    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4079    for (unsigned i = 0; i < 2; ++i)
4080      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4081    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4082  }
4083
4084  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4085    // Check for a build vector of consecutive loads.
4086    for (unsigned i = 0; i < NumElems; ++i)
4087      V[i] = Op.getOperand(i);
4088
4089    // Check for elements which are consecutive loads.
4090    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4091    if (LD.getNode())
4092      return LD;
4093
4094    // For SSE 4.1, use inserts into undef.
4095    if (getSubtarget()->hasSSE41()) {
4096      V[0] = DAG.getUNDEF(VT);
4097      for (unsigned i = 0; i < NumElems; ++i)
4098        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4099          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
4100                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4101      return V[0];
4102    }
4103
4104    // Otherwise, expand into a number of unpckl*
4105    // e.g. for v4f32
4106    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4107    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4108    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4109    for (unsigned i = 0; i < NumElems; ++i)
4110      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4111    NumElems >>= 1;
4112    while (NumElems != 0) {
4113      for (unsigned i = 0; i < NumElems; ++i)
4114        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
4115      NumElems >>= 1;
4116    }
4117    return V[0];
4118  }
4119  return SDValue();
4120}
4121
4122SDValue
4123X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4124  // We support concatenate two MMX registers and place them in a MMX
4125  // register.  This is better than doing a stack convert.
4126  DebugLoc dl = Op.getDebugLoc();
4127  EVT ResVT = Op.getValueType();
4128  assert(Op.getNumOperands() == 2);
4129  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4130         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4131  int Mask[2];
4132  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4133  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4134  InVec = Op.getOperand(1);
4135  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4136    unsigned NumElts = ResVT.getVectorNumElements();
4137    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4138    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4139                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4140  } else {
4141    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4142    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4143    Mask[0] = 0; Mask[1] = 2;
4144    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4145  }
4146  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4147}
4148
4149// v8i16 shuffles - Prefer shuffles in the following order:
4150// 1. [all]   pshuflw, pshufhw, optional move
4151// 2. [ssse3] 1 x pshufb
4152// 3. [ssse3] 2 x pshufb + 1 x por
4153// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4154static
4155SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
4156                                 SelectionDAG &DAG,
4157                                 const X86TargetLowering &TLI) {
4158  SDValue V1 = SVOp->getOperand(0);
4159  SDValue V2 = SVOp->getOperand(1);
4160  DebugLoc dl = SVOp->getDebugLoc();
4161  SmallVector<int, 8> MaskVals;
4162
4163  // Determine if more than 1 of the words in each of the low and high quadwords
4164  // of the result come from the same quadword of one of the two inputs.  Undef
4165  // mask values count as coming from any quadword, for better codegen.
4166  SmallVector<unsigned, 4> LoQuad(4);
4167  SmallVector<unsigned, 4> HiQuad(4);
4168  BitVector InputQuads(4);
4169  for (unsigned i = 0; i < 8; ++i) {
4170    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4171    int EltIdx = SVOp->getMaskElt(i);
4172    MaskVals.push_back(EltIdx);
4173    if (EltIdx < 0) {
4174      ++Quad[0];
4175      ++Quad[1];
4176      ++Quad[2];
4177      ++Quad[3];
4178      continue;
4179    }
4180    ++Quad[EltIdx / 4];
4181    InputQuads.set(EltIdx / 4);
4182  }
4183
4184  int BestLoQuad = -1;
4185  unsigned MaxQuad = 1;
4186  for (unsigned i = 0; i < 4; ++i) {
4187    if (LoQuad[i] > MaxQuad) {
4188      BestLoQuad = i;
4189      MaxQuad = LoQuad[i];
4190    }
4191  }
4192
4193  int BestHiQuad = -1;
4194  MaxQuad = 1;
4195  for (unsigned i = 0; i < 4; ++i) {
4196    if (HiQuad[i] > MaxQuad) {
4197      BestHiQuad = i;
4198      MaxQuad = HiQuad[i];
4199    }
4200  }
4201
4202  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4203  // of the two input vectors, shuffle them into one input vector so only a
4204  // single pshufb instruction is necessary. If There are more than 2 input
4205  // quads, disable the next transformation since it does not help SSSE3.
4206  bool V1Used = InputQuads[0] || InputQuads[1];
4207  bool V2Used = InputQuads[2] || InputQuads[3];
4208  if (TLI.getSubtarget()->hasSSSE3()) {
4209    if (InputQuads.count() == 2 && V1Used && V2Used) {
4210      BestLoQuad = InputQuads.find_first();
4211      BestHiQuad = InputQuads.find_next(BestLoQuad);
4212    }
4213    if (InputQuads.count() > 2) {
4214      BestLoQuad = -1;
4215      BestHiQuad = -1;
4216    }
4217  }
4218
4219  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4220  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4221  // words from all 4 input quadwords.
4222  SDValue NewV;
4223  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4224    SmallVector<int, 8> MaskV;
4225    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4226    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4227    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4228                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4229                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4230    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4231
4232    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4233    // source words for the shuffle, to aid later transformations.
4234    bool AllWordsInNewV = true;
4235    bool InOrder[2] = { true, true };
4236    for (unsigned i = 0; i != 8; ++i) {
4237      int idx = MaskVals[i];
4238      if (idx != (int)i)
4239        InOrder[i/4] = false;
4240      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4241        continue;
4242      AllWordsInNewV = false;
4243      break;
4244    }
4245
4246    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4247    if (AllWordsInNewV) {
4248      for (int i = 0; i != 8; ++i) {
4249        int idx = MaskVals[i];
4250        if (idx < 0)
4251          continue;
4252        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4253        if ((idx != i) && idx < 4)
4254          pshufhw = false;
4255        if ((idx != i) && idx > 3)
4256          pshuflw = false;
4257      }
4258      V1 = NewV;
4259      V2Used = false;
4260      BestLoQuad = 0;
4261      BestHiQuad = 1;
4262    }
4263
4264    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4265    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4266    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4267      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4268                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4269    }
4270  }
4271
4272  // If we have SSSE3, and all words of the result are from 1 input vector,
4273  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4274  // is present, fall back to case 4.
4275  if (TLI.getSubtarget()->hasSSSE3()) {
4276    SmallVector<SDValue,16> pshufbMask;
4277
4278    // If we have elements from both input vectors, set the high bit of the
4279    // shuffle mask element to zero out elements that come from V2 in the V1
4280    // mask, and elements that come from V1 in the V2 mask, so that the two
4281    // results can be OR'd together.
4282    bool TwoInputs = V1Used && V2Used;
4283    for (unsigned i = 0; i != 8; ++i) {
4284      int EltIdx = MaskVals[i] * 2;
4285      if (TwoInputs && (EltIdx >= 16)) {
4286        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4287        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4288        continue;
4289      }
4290      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4291      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4292    }
4293    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4294    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4295                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4296                                 MVT::v16i8, &pshufbMask[0], 16));
4297    if (!TwoInputs)
4298      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4299
4300    // Calculate the shuffle mask for the second input, shuffle it, and
4301    // OR it with the first shuffled input.
4302    pshufbMask.clear();
4303    for (unsigned i = 0; i != 8; ++i) {
4304      int EltIdx = MaskVals[i] * 2;
4305      if (EltIdx < 16) {
4306        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4307        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4308        continue;
4309      }
4310      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4311      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4312    }
4313    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4314    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4315                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4316                                 MVT::v16i8, &pshufbMask[0], 16));
4317    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4318    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4319  }
4320
4321  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4322  // and update MaskVals with new element order.
4323  BitVector InOrder(8);
4324  if (BestLoQuad >= 0) {
4325    SmallVector<int, 8> MaskV;
4326    for (int i = 0; i != 4; ++i) {
4327      int idx = MaskVals[i];
4328      if (idx < 0) {
4329        MaskV.push_back(-1);
4330        InOrder.set(i);
4331      } else if ((idx / 4) == BestLoQuad) {
4332        MaskV.push_back(idx & 3);
4333        InOrder.set(i);
4334      } else {
4335        MaskV.push_back(-1);
4336      }
4337    }
4338    for (unsigned i = 4; i != 8; ++i)
4339      MaskV.push_back(i);
4340    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4341                                &MaskV[0]);
4342  }
4343
4344  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4345  // and update MaskVals with the new element order.
4346  if (BestHiQuad >= 0) {
4347    SmallVector<int, 8> MaskV;
4348    for (unsigned i = 0; i != 4; ++i)
4349      MaskV.push_back(i);
4350    for (unsigned i = 4; i != 8; ++i) {
4351      int idx = MaskVals[i];
4352      if (idx < 0) {
4353        MaskV.push_back(-1);
4354        InOrder.set(i);
4355      } else if ((idx / 4) == BestHiQuad) {
4356        MaskV.push_back((idx & 3) + 4);
4357        InOrder.set(i);
4358      } else {
4359        MaskV.push_back(-1);
4360      }
4361    }
4362    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4363                                &MaskV[0]);
4364  }
4365
4366  // In case BestHi & BestLo were both -1, which means each quadword has a word
4367  // from each of the four input quadwords, calculate the InOrder bitvector now
4368  // before falling through to the insert/extract cleanup.
4369  if (BestLoQuad == -1 && BestHiQuad == -1) {
4370    NewV = V1;
4371    for (int i = 0; i != 8; ++i)
4372      if (MaskVals[i] < 0 || MaskVals[i] == i)
4373        InOrder.set(i);
4374  }
4375
4376  // The other elements are put in the right place using pextrw and pinsrw.
4377  for (unsigned i = 0; i != 8; ++i) {
4378    if (InOrder[i])
4379      continue;
4380    int EltIdx = MaskVals[i];
4381    if (EltIdx < 0)
4382      continue;
4383    SDValue ExtOp = (EltIdx < 8)
4384    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4385                  DAG.getIntPtrConstant(EltIdx))
4386    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4387                  DAG.getIntPtrConstant(EltIdx - 8));
4388    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4389                       DAG.getIntPtrConstant(i));
4390  }
4391  return NewV;
4392}
4393
4394// v16i8 shuffles - Prefer shuffles in the following order:
4395// 1. [ssse3] 1 x pshufb
4396// 2. [ssse3] 2 x pshufb + 1 x por
4397// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4398static
4399SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4400                                 SelectionDAG &DAG,
4401                                 const X86TargetLowering &TLI) {
4402  SDValue V1 = SVOp->getOperand(0);
4403  SDValue V2 = SVOp->getOperand(1);
4404  DebugLoc dl = SVOp->getDebugLoc();
4405  SmallVector<int, 16> MaskVals;
4406  SVOp->getMask(MaskVals);
4407
4408  // If we have SSSE3, case 1 is generated when all result bytes come from
4409  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4410  // present, fall back to case 3.
4411  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4412  bool V1Only = true;
4413  bool V2Only = true;
4414  for (unsigned i = 0; i < 16; ++i) {
4415    int EltIdx = MaskVals[i];
4416    if (EltIdx < 0)
4417      continue;
4418    if (EltIdx < 16)
4419      V2Only = false;
4420    else
4421      V1Only = false;
4422  }
4423
4424  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4425  if (TLI.getSubtarget()->hasSSSE3()) {
4426    SmallVector<SDValue,16> pshufbMask;
4427
4428    // If all result elements are from one input vector, then only translate
4429    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4430    //
4431    // Otherwise, we have elements from both input vectors, and must zero out
4432    // elements that come from V2 in the first mask, and V1 in the second mask
4433    // so that we can OR them together.
4434    bool TwoInputs = !(V1Only || V2Only);
4435    for (unsigned i = 0; i != 16; ++i) {
4436      int EltIdx = MaskVals[i];
4437      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4438        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4439        continue;
4440      }
4441      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4442    }
4443    // If all the elements are from V2, assign it to V1 and return after
4444    // building the first pshufb.
4445    if (V2Only)
4446      V1 = V2;
4447    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4448                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4449                                 MVT::v16i8, &pshufbMask[0], 16));
4450    if (!TwoInputs)
4451      return V1;
4452
4453    // Calculate the shuffle mask for the second input, shuffle it, and
4454    // OR it with the first shuffled input.
4455    pshufbMask.clear();
4456    for (unsigned i = 0; i != 16; ++i) {
4457      int EltIdx = MaskVals[i];
4458      if (EltIdx < 16) {
4459        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4460        continue;
4461      }
4462      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4463    }
4464    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4465                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4466                                 MVT::v16i8, &pshufbMask[0], 16));
4467    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4468  }
4469
4470  // No SSSE3 - Calculate in place words and then fix all out of place words
4471  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4472  // the 16 different words that comprise the two doublequadword input vectors.
4473  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4474  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4475  SDValue NewV = V2Only ? V2 : V1;
4476  for (int i = 0; i != 8; ++i) {
4477    int Elt0 = MaskVals[i*2];
4478    int Elt1 = MaskVals[i*2+1];
4479
4480    // This word of the result is all undef, skip it.
4481    if (Elt0 < 0 && Elt1 < 0)
4482      continue;
4483
4484    // This word of the result is already in the correct place, skip it.
4485    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4486      continue;
4487    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4488      continue;
4489
4490    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4491    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4492    SDValue InsElt;
4493
4494    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4495    // using a single extract together, load it and store it.
4496    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4497      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4498                           DAG.getIntPtrConstant(Elt1 / 2));
4499      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4500                        DAG.getIntPtrConstant(i));
4501      continue;
4502    }
4503
4504    // If Elt1 is defined, extract it from the appropriate source.  If the
4505    // source byte is not also odd, shift the extracted word left 8 bits
4506    // otherwise clear the bottom 8 bits if we need to do an or.
4507    if (Elt1 >= 0) {
4508      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4509                           DAG.getIntPtrConstant(Elt1 / 2));
4510      if ((Elt1 & 1) == 0)
4511        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4512                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4513      else if (Elt0 >= 0)
4514        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4515                             DAG.getConstant(0xFF00, MVT::i16));
4516    }
4517    // If Elt0 is defined, extract it from the appropriate source.  If the
4518    // source byte is not also even, shift the extracted word right 8 bits. If
4519    // Elt1 was also defined, OR the extracted values together before
4520    // inserting them in the result.
4521    if (Elt0 >= 0) {
4522      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4523                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4524      if ((Elt0 & 1) != 0)
4525        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4526                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4527      else if (Elt1 >= 0)
4528        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4529                             DAG.getConstant(0x00FF, MVT::i16));
4530      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4531                         : InsElt0;
4532    }
4533    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4534                       DAG.getIntPtrConstant(i));
4535  }
4536  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4537}
4538
4539/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4540/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be
4541/// done when every pair / quad of shuffle mask elements point to elements in
4542/// the right sequence. e.g.
4543/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4544static
4545SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4546                                 SelectionDAG &DAG,
4547                                 const TargetLowering &TLI, DebugLoc dl) {
4548  EVT VT = SVOp->getValueType(0);
4549  SDValue V1 = SVOp->getOperand(0);
4550  SDValue V2 = SVOp->getOperand(1);
4551  unsigned NumElems = VT.getVectorNumElements();
4552  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4553  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4554  EVT NewVT = MaskVT;
4555  switch (VT.getSimpleVT().SimpleTy) {
4556  default: assert(false && "Unexpected!");
4557  case MVT::v4f32: NewVT = MVT::v2f64; break;
4558  case MVT::v4i32: NewVT = MVT::v2i64; break;
4559  case MVT::v8i16: NewVT = MVT::v4i32; break;
4560  case MVT::v16i8: NewVT = MVT::v4i32; break;
4561  }
4562
4563  if (NewWidth == 2) {
4564    if (VT.isInteger())
4565      NewVT = MVT::v2i64;
4566    else
4567      NewVT = MVT::v2f64;
4568  }
4569  int Scale = NumElems / NewWidth;
4570  SmallVector<int, 8> MaskVec;
4571  for (unsigned i = 0; i < NumElems; i += Scale) {
4572    int StartIdx = -1;
4573    for (int j = 0; j < Scale; ++j) {
4574      int EltIdx = SVOp->getMaskElt(i+j);
4575      if (EltIdx < 0)
4576        continue;
4577      if (StartIdx == -1)
4578        StartIdx = EltIdx - (EltIdx % Scale);
4579      if (EltIdx != StartIdx + j)
4580        return SDValue();
4581    }
4582    if (StartIdx == -1)
4583      MaskVec.push_back(-1);
4584    else
4585      MaskVec.push_back(StartIdx / Scale);
4586  }
4587
4588  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4589  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4590  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4591}
4592
4593/// getVZextMovL - Return a zero-extending vector move low node.
4594///
4595static SDValue getVZextMovL(EVT VT, EVT OpVT,
4596                            SDValue SrcOp, SelectionDAG &DAG,
4597                            const X86Subtarget *Subtarget, DebugLoc dl) {
4598  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4599    LoadSDNode *LD = NULL;
4600    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4601      LD = dyn_cast<LoadSDNode>(SrcOp);
4602    if (!LD) {
4603      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4604      // instead.
4605      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4606      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4607          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4608          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4609          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4610        // PR2108
4611        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4612        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4613                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4614                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4615                                                   OpVT,
4616                                                   SrcOp.getOperand(0)
4617                                                          .getOperand(0))));
4618      }
4619    }
4620  }
4621
4622  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4623                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4624                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4625                                             OpVT, SrcOp)));
4626}
4627
4628/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4629/// shuffles.
4630static SDValue
4631LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4632  SDValue V1 = SVOp->getOperand(0);
4633  SDValue V2 = SVOp->getOperand(1);
4634  DebugLoc dl = SVOp->getDebugLoc();
4635  EVT VT = SVOp->getValueType(0);
4636
4637  SmallVector<std::pair<int, int>, 8> Locs;
4638  Locs.resize(4);
4639  SmallVector<int, 8> Mask1(4U, -1);
4640  SmallVector<int, 8> PermMask;
4641  SVOp->getMask(PermMask);
4642
4643  unsigned NumHi = 0;
4644  unsigned NumLo = 0;
4645  for (unsigned i = 0; i != 4; ++i) {
4646    int Idx = PermMask[i];
4647    if (Idx < 0) {
4648      Locs[i] = std::make_pair(-1, -1);
4649    } else {
4650      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4651      if (Idx < 4) {
4652        Locs[i] = std::make_pair(0, NumLo);
4653        Mask1[NumLo] = Idx;
4654        NumLo++;
4655      } else {
4656        Locs[i] = std::make_pair(1, NumHi);
4657        if (2+NumHi < 4)
4658          Mask1[2+NumHi] = Idx;
4659        NumHi++;
4660      }
4661    }
4662  }
4663
4664  if (NumLo <= 2 && NumHi <= 2) {
4665    // If no more than two elements come from either vector. This can be
4666    // implemented with two shuffles. First shuffle gather the elements.
4667    // The second shuffle, which takes the first shuffle as both of its
4668    // vector operands, put the elements into the right order.
4669    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4670
4671    SmallVector<int, 8> Mask2(4U, -1);
4672
4673    for (unsigned i = 0; i != 4; ++i) {
4674      if (Locs[i].first == -1)
4675        continue;
4676      else {
4677        unsigned Idx = (i < 2) ? 0 : 4;
4678        Idx += Locs[i].first * 2 + Locs[i].second;
4679        Mask2[i] = Idx;
4680      }
4681    }
4682
4683    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4684  } else if (NumLo == 3 || NumHi == 3) {
4685    // Otherwise, we must have three elements from one vector, call it X, and
4686    // one element from the other, call it Y.  First, use a shufps to build an
4687    // intermediate vector with the one element from Y and the element from X
4688    // that will be in the same half in the final destination (the indexes don't
4689    // matter). Then, use a shufps to build the final vector, taking the half
4690    // containing the element from Y from the intermediate, and the other half
4691    // from X.
4692    if (NumHi == 3) {
4693      // Normalize it so the 3 elements come from V1.
4694      CommuteVectorShuffleMask(PermMask, VT);
4695      std::swap(V1, V2);
4696    }
4697
4698    // Find the element from V2.
4699    unsigned HiIndex;
4700    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4701      int Val = PermMask[HiIndex];
4702      if (Val < 0)
4703        continue;
4704      if (Val >= 4)
4705        break;
4706    }
4707
4708    Mask1[0] = PermMask[HiIndex];
4709    Mask1[1] = -1;
4710    Mask1[2] = PermMask[HiIndex^1];
4711    Mask1[3] = -1;
4712    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4713
4714    if (HiIndex >= 2) {
4715      Mask1[0] = PermMask[0];
4716      Mask1[1] = PermMask[1];
4717      Mask1[2] = HiIndex & 1 ? 6 : 4;
4718      Mask1[3] = HiIndex & 1 ? 4 : 6;
4719      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4720    } else {
4721      Mask1[0] = HiIndex & 1 ? 2 : 0;
4722      Mask1[1] = HiIndex & 1 ? 0 : 2;
4723      Mask1[2] = PermMask[2];
4724      Mask1[3] = PermMask[3];
4725      if (Mask1[2] >= 0)
4726        Mask1[2] += 4;
4727      if (Mask1[3] >= 0)
4728        Mask1[3] += 4;
4729      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4730    }
4731  }
4732
4733  // Break it into (shuffle shuffle_hi, shuffle_lo).
4734  Locs.clear();
4735  SmallVector<int,8> LoMask(4U, -1);
4736  SmallVector<int,8> HiMask(4U, -1);
4737
4738  SmallVector<int,8> *MaskPtr = &LoMask;
4739  unsigned MaskIdx = 0;
4740  unsigned LoIdx = 0;
4741  unsigned HiIdx = 2;
4742  for (unsigned i = 0; i != 4; ++i) {
4743    if (i == 2) {
4744      MaskPtr = &HiMask;
4745      MaskIdx = 1;
4746      LoIdx = 0;
4747      HiIdx = 2;
4748    }
4749    int Idx = PermMask[i];
4750    if (Idx < 0) {
4751      Locs[i] = std::make_pair(-1, -1);
4752    } else if (Idx < 4) {
4753      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4754      (*MaskPtr)[LoIdx] = Idx;
4755      LoIdx++;
4756    } else {
4757      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4758      (*MaskPtr)[HiIdx] = Idx;
4759      HiIdx++;
4760    }
4761  }
4762
4763  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4764  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4765  SmallVector<int, 8> MaskOps;
4766  for (unsigned i = 0; i != 4; ++i) {
4767    if (Locs[i].first == -1) {
4768      MaskOps.push_back(-1);
4769    } else {
4770      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4771      MaskOps.push_back(Idx);
4772    }
4773  }
4774  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4775}
4776
4777SDValue
4778X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
4779  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4780  SDValue V1 = Op.getOperand(0);
4781  SDValue V2 = Op.getOperand(1);
4782  EVT VT = Op.getValueType();
4783  DebugLoc dl = Op.getDebugLoc();
4784  unsigned NumElems = VT.getVectorNumElements();
4785  bool isMMX = VT.getSizeInBits() == 64;
4786  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4787  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4788  bool V1IsSplat = false;
4789  bool V2IsSplat = false;
4790
4791  if (isZeroShuffle(SVOp))
4792    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4793
4794  // Promote splats to v4f32.
4795  if (SVOp->isSplat()) {
4796    if (isMMX || NumElems < 4)
4797      return Op;
4798    return PromoteSplat(SVOp, DAG);
4799  }
4800
4801  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4802  // do it!
4803  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4804    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4805    if (NewOp.getNode())
4806      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4807                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4808  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4809    // FIXME: Figure out a cleaner way to do this.
4810    // Try to make use of movq to zero out the top part.
4811    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4812      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4813      if (NewOp.getNode()) {
4814        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4815          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4816                              DAG, Subtarget, dl);
4817      }
4818    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4819      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4820      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4821        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4822                            DAG, Subtarget, dl);
4823    }
4824  }
4825
4826  if (X86::isPSHUFDMask(SVOp))
4827    return Op;
4828
4829  // Check if this can be converted into a logical shift.
4830  bool isLeft = false;
4831  unsigned ShAmt = 0;
4832  SDValue ShVal;
4833  bool isShift = getSubtarget()->hasSSE2() &&
4834    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4835  if (isShift && ShVal.hasOneUse()) {
4836    // If the shifted value has multiple uses, it may be cheaper to use
4837    // v_set0 + movlhps or movhlps, etc.
4838    EVT EltVT = VT.getVectorElementType();
4839    ShAmt *= EltVT.getSizeInBits();
4840    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4841  }
4842
4843  if (X86::isMOVLMask(SVOp)) {
4844    if (V1IsUndef)
4845      return V2;
4846    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4847      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4848    if (!isMMX)
4849      return Op;
4850  }
4851
4852  // FIXME: fold these into legal mask.
4853  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4854                 X86::isMOVSLDUPMask(SVOp) ||
4855                 X86::isMOVHLPSMask(SVOp) ||
4856                 X86::isMOVLHPSMask(SVOp) ||
4857                 X86::isMOVLPMask(SVOp)))
4858    return Op;
4859
4860  if (ShouldXformToMOVHLPS(SVOp) ||
4861      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4862    return CommuteVectorShuffle(SVOp, DAG);
4863
4864  if (isShift) {
4865    // No better options. Use a vshl / vsrl.
4866    EVT EltVT = VT.getVectorElementType();
4867    ShAmt *= EltVT.getSizeInBits();
4868    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4869  }
4870
4871  bool Commuted = false;
4872  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4873  // 1,1,1,1 -> v8i16 though.
4874  V1IsSplat = isSplatVector(V1.getNode());
4875  V2IsSplat = isSplatVector(V2.getNode());
4876
4877  // Canonicalize the splat or undef, if present, to be on the RHS.
4878  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4879    Op = CommuteVectorShuffle(SVOp, DAG);
4880    SVOp = cast<ShuffleVectorSDNode>(Op);
4881    V1 = SVOp->getOperand(0);
4882    V2 = SVOp->getOperand(1);
4883    std::swap(V1IsSplat, V2IsSplat);
4884    std::swap(V1IsUndef, V2IsUndef);
4885    Commuted = true;
4886  }
4887
4888  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4889    // Shuffling low element of v1 into undef, just return v1.
4890    if (V2IsUndef)
4891      return V1;
4892    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4893    // the instruction selector will not match, so get a canonical MOVL with
4894    // swapped operands to undo the commute.
4895    return getMOVL(DAG, dl, VT, V2, V1);
4896  }
4897
4898  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4899      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4900      X86::isUNPCKLMask(SVOp) ||
4901      X86::isUNPCKHMask(SVOp))
4902    return Op;
4903
4904  if (V2IsSplat) {
4905    // Normalize mask so all entries that point to V2 points to its first
4906    // element then try to match unpck{h|l} again. If match, return a
4907    // new vector_shuffle with the corrected mask.
4908    SDValue NewMask = NormalizeMask(SVOp, DAG);
4909    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4910    if (NSVOp != SVOp) {
4911      if (X86::isUNPCKLMask(NSVOp, true)) {
4912        return NewMask;
4913      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4914        return NewMask;
4915      }
4916    }
4917  }
4918
4919  if (Commuted) {
4920    // Commute is back and try unpck* again.
4921    // FIXME: this seems wrong.
4922    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4923    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4924    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4925        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4926        X86::isUNPCKLMask(NewSVOp) ||
4927        X86::isUNPCKHMask(NewSVOp))
4928      return NewOp;
4929  }
4930
4931  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4932
4933  // Normalize the node to match x86 shuffle ops if needed
4934  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4935    return CommuteVectorShuffle(SVOp, DAG);
4936
4937  // Check for legal shuffle and return?
4938  SmallVector<int, 16> PermMask;
4939  SVOp->getMask(PermMask);
4940  if (isShuffleMaskLegal(PermMask, VT))
4941    return Op;
4942
4943  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4944  if (VT == MVT::v8i16) {
4945    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4946    if (NewOp.getNode())
4947      return NewOp;
4948  }
4949
4950  if (VT == MVT::v16i8) {
4951    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4952    if (NewOp.getNode())
4953      return NewOp;
4954  }
4955
4956  // Handle all 4 wide cases with a number of shuffles except for MMX.
4957  if (NumElems == 4 && !isMMX)
4958    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4959
4960  return SDValue();
4961}
4962
4963SDValue
4964X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4965                                                SelectionDAG &DAG) const {
4966  EVT VT = Op.getValueType();
4967  DebugLoc dl = Op.getDebugLoc();
4968  if (VT.getSizeInBits() == 8) {
4969    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4970                                    Op.getOperand(0), Op.getOperand(1));
4971    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4972                                    DAG.getValueType(VT));
4973    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4974  } else if (VT.getSizeInBits() == 16) {
4975    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4976    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4977    if (Idx == 0)
4978      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4979                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4980                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4981                                                 MVT::v4i32,
4982                                                 Op.getOperand(0)),
4983                                     Op.getOperand(1)));
4984    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4985                                    Op.getOperand(0), Op.getOperand(1));
4986    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4987                                    DAG.getValueType(VT));
4988    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4989  } else if (VT == MVT::f32) {
4990    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4991    // the result back to FR32 register. It's only worth matching if the
4992    // result has a single use which is a store or a bitcast to i32.  And in
4993    // the case of a store, it's not worth it if the index is a constant 0,
4994    // because a MOVSSmr can be used instead, which is smaller and faster.
4995    if (!Op.hasOneUse())
4996      return SDValue();
4997    SDNode *User = *Op.getNode()->use_begin();
4998    if ((User->getOpcode() != ISD::STORE ||
4999         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5000          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5001        (User->getOpcode() != ISD::BIT_CONVERT ||
5002         User->getValueType(0) != MVT::i32))
5003      return SDValue();
5004    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5005                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5006                                              Op.getOperand(0)),
5007                                              Op.getOperand(1));
5008    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5009  } else if (VT == MVT::i32) {
5010    // ExtractPS works with constant index.
5011    if (isa<ConstantSDNode>(Op.getOperand(1)))
5012      return Op;
5013  }
5014  return SDValue();
5015}
5016
5017
5018SDValue
5019X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5020                                           SelectionDAG &DAG) const {
5021  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5022    return SDValue();
5023
5024  if (Subtarget->hasSSE41()) {
5025    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5026    if (Res.getNode())
5027      return Res;
5028  }
5029
5030  EVT VT = Op.getValueType();
5031  DebugLoc dl = Op.getDebugLoc();
5032  // TODO: handle v16i8.
5033  if (VT.getSizeInBits() == 16) {
5034    SDValue Vec = Op.getOperand(0);
5035    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5036    if (Idx == 0)
5037      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5038                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5039                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5040                                                 MVT::v4i32, Vec),
5041                                     Op.getOperand(1)));
5042    // Transform it so it match pextrw which produces a 32-bit result.
5043    EVT EltVT = MVT::i32;
5044    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5045                                    Op.getOperand(0), Op.getOperand(1));
5046    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5047                                    DAG.getValueType(VT));
5048    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5049  } else if (VT.getSizeInBits() == 32) {
5050    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5051    if (Idx == 0)
5052      return Op;
5053
5054    // SHUFPS the element to the lowest double word, then movss.
5055    int Mask[4] = { Idx, -1, -1, -1 };
5056    EVT VVT = Op.getOperand(0).getValueType();
5057    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5058                                       DAG.getUNDEF(VVT), Mask);
5059    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5060                       DAG.getIntPtrConstant(0));
5061  } else if (VT.getSizeInBits() == 64) {
5062    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5063    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5064    //        to match extract_elt for f64.
5065    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5066    if (Idx == 0)
5067      return Op;
5068
5069    // UNPCKHPD the element to the lowest double word, then movsd.
5070    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5071    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5072    int Mask[2] = { 1, -1 };
5073    EVT VVT = Op.getOperand(0).getValueType();
5074    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5075                                       DAG.getUNDEF(VVT), Mask);
5076    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5077                       DAG.getIntPtrConstant(0));
5078  }
5079
5080  return SDValue();
5081}
5082
5083SDValue
5084X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5085                                               SelectionDAG &DAG) const {
5086  EVT VT = Op.getValueType();
5087  EVT EltVT = VT.getVectorElementType();
5088  DebugLoc dl = Op.getDebugLoc();
5089
5090  SDValue N0 = Op.getOperand(0);
5091  SDValue N1 = Op.getOperand(1);
5092  SDValue N2 = Op.getOperand(2);
5093
5094  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5095      isa<ConstantSDNode>(N2)) {
5096    unsigned Opc;
5097    if (VT == MVT::v8i16)
5098      Opc = X86ISD::PINSRW;
5099    else if (VT == MVT::v4i16)
5100      Opc = X86ISD::MMX_PINSRW;
5101    else if (VT == MVT::v16i8)
5102      Opc = X86ISD::PINSRB;
5103    else
5104      Opc = X86ISD::PINSRB;
5105
5106    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5107    // argument.
5108    if (N1.getValueType() != MVT::i32)
5109      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5110    if (N2.getValueType() != MVT::i32)
5111      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5112    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5113  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5114    // Bits [7:6] of the constant are the source select.  This will always be
5115    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5116    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5117    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5118    // Bits [5:4] of the constant are the destination select.  This is the
5119    //  value of the incoming immediate.
5120    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5121    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5122    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5123    // Create this as a scalar to vector..
5124    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5125    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5126  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5127    // PINSR* works with constant index.
5128    return Op;
5129  }
5130  return SDValue();
5131}
5132
5133SDValue
5134X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5135  EVT VT = Op.getValueType();
5136  EVT EltVT = VT.getVectorElementType();
5137
5138  if (Subtarget->hasSSE41())
5139    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5140
5141  if (EltVT == MVT::i8)
5142    return SDValue();
5143
5144  DebugLoc dl = Op.getDebugLoc();
5145  SDValue N0 = Op.getOperand(0);
5146  SDValue N1 = Op.getOperand(1);
5147  SDValue N2 = Op.getOperand(2);
5148
5149  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5150    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5151    // as its second argument.
5152    if (N1.getValueType() != MVT::i32)
5153      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5154    if (N2.getValueType() != MVT::i32)
5155      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5156    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5157                       dl, VT, N0, N1, N2);
5158  }
5159  return SDValue();
5160}
5161
5162SDValue
5163X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5164  DebugLoc dl = Op.getDebugLoc();
5165
5166  if (Op.getValueType() == MVT::v1i64 &&
5167      Op.getOperand(0).getValueType() == MVT::i64)
5168    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5169
5170  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5171  EVT VT = MVT::v2i32;
5172  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5173  default: break;
5174  case MVT::v16i8:
5175  case MVT::v8i16:
5176    VT = MVT::v4i32;
5177    break;
5178  }
5179  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5180                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5181}
5182
5183// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5184// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5185// one of the above mentioned nodes. It has to be wrapped because otherwise
5186// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5187// be used to form addressing mode. These wrapped nodes will be selected
5188// into MOV32ri.
5189SDValue
5190X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5191  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5192
5193  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5194  // global base reg.
5195  unsigned char OpFlag = 0;
5196  unsigned WrapperKind = X86ISD::Wrapper;
5197  CodeModel::Model M = getTargetMachine().getCodeModel();
5198
5199  if (Subtarget->isPICStyleRIPRel() &&
5200      (M == CodeModel::Small || M == CodeModel::Kernel))
5201    WrapperKind = X86ISD::WrapperRIP;
5202  else if (Subtarget->isPICStyleGOT())
5203    OpFlag = X86II::MO_GOTOFF;
5204  else if (Subtarget->isPICStyleStubPIC())
5205    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5206
5207  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5208                                             CP->getAlignment(),
5209                                             CP->getOffset(), OpFlag);
5210  DebugLoc DL = CP->getDebugLoc();
5211  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5212  // With PIC, the address is actually $g + Offset.
5213  if (OpFlag) {
5214    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5215                         DAG.getNode(X86ISD::GlobalBaseReg,
5216                                     DebugLoc(), getPointerTy()),
5217                         Result);
5218  }
5219
5220  return Result;
5221}
5222
5223SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5224  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5225
5226  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5227  // global base reg.
5228  unsigned char OpFlag = 0;
5229  unsigned WrapperKind = X86ISD::Wrapper;
5230  CodeModel::Model M = getTargetMachine().getCodeModel();
5231
5232  if (Subtarget->isPICStyleRIPRel() &&
5233      (M == CodeModel::Small || M == CodeModel::Kernel))
5234    WrapperKind = X86ISD::WrapperRIP;
5235  else if (Subtarget->isPICStyleGOT())
5236    OpFlag = X86II::MO_GOTOFF;
5237  else if (Subtarget->isPICStyleStubPIC())
5238    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5239
5240  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5241                                          OpFlag);
5242  DebugLoc DL = JT->getDebugLoc();
5243  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5244
5245  // With PIC, the address is actually $g + Offset.
5246  if (OpFlag) {
5247    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5248                         DAG.getNode(X86ISD::GlobalBaseReg,
5249                                     DebugLoc(), getPointerTy()),
5250                         Result);
5251  }
5252
5253  return Result;
5254}
5255
5256SDValue
5257X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5258  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5259
5260  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5261  // global base reg.
5262  unsigned char OpFlag = 0;
5263  unsigned WrapperKind = X86ISD::Wrapper;
5264  CodeModel::Model M = getTargetMachine().getCodeModel();
5265
5266  if (Subtarget->isPICStyleRIPRel() &&
5267      (M == CodeModel::Small || M == CodeModel::Kernel))
5268    WrapperKind = X86ISD::WrapperRIP;
5269  else if (Subtarget->isPICStyleGOT())
5270    OpFlag = X86II::MO_GOTOFF;
5271  else if (Subtarget->isPICStyleStubPIC())
5272    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5273
5274  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5275
5276  DebugLoc DL = Op.getDebugLoc();
5277  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5278
5279
5280  // With PIC, the address is actually $g + Offset.
5281  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5282      !Subtarget->is64Bit()) {
5283    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5284                         DAG.getNode(X86ISD::GlobalBaseReg,
5285                                     DebugLoc(), getPointerTy()),
5286                         Result);
5287  }
5288
5289  return Result;
5290}
5291
5292SDValue
5293X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5294  // Create the TargetBlockAddressAddress node.
5295  unsigned char OpFlags =
5296    Subtarget->ClassifyBlockAddressReference();
5297  CodeModel::Model M = getTargetMachine().getCodeModel();
5298  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5299  DebugLoc dl = Op.getDebugLoc();
5300  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5301                                       /*isTarget=*/true, OpFlags);
5302
5303  if (Subtarget->isPICStyleRIPRel() &&
5304      (M == CodeModel::Small || M == CodeModel::Kernel))
5305    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5306  else
5307    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5308
5309  // With PIC, the address is actually $g + Offset.
5310  if (isGlobalRelativeToPICBase(OpFlags)) {
5311    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5312                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5313                         Result);
5314  }
5315
5316  return Result;
5317}
5318
5319SDValue
5320X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5321                                      int64_t Offset,
5322                                      SelectionDAG &DAG) const {
5323  // Create the TargetGlobalAddress node, folding in the constant
5324  // offset if it is legal.
5325  unsigned char OpFlags =
5326    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5327  CodeModel::Model M = getTargetMachine().getCodeModel();
5328  SDValue Result;
5329  if (OpFlags == X86II::MO_NO_FLAG &&
5330      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5331    // A direct static reference to a global.
5332    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5333    Offset = 0;
5334  } else {
5335    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5336  }
5337
5338  if (Subtarget->isPICStyleRIPRel() &&
5339      (M == CodeModel::Small || M == CodeModel::Kernel))
5340    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5341  else
5342    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5343
5344  // With PIC, the address is actually $g + Offset.
5345  if (isGlobalRelativeToPICBase(OpFlags)) {
5346    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5347                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5348                         Result);
5349  }
5350
5351  // For globals that require a load from a stub to get the address, emit the
5352  // load.
5353  if (isGlobalStubReference(OpFlags))
5354    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5355                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5356
5357  // If there was a non-zero offset that we didn't fold, create an explicit
5358  // addition for it.
5359  if (Offset != 0)
5360    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5361                         DAG.getConstant(Offset, getPointerTy()));
5362
5363  return Result;
5364}
5365
5366SDValue
5367X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5368  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5369  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5370  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5371}
5372
5373static SDValue
5374GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5375           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5376           unsigned char OperandFlags) {
5377  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5378  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5379  DebugLoc dl = GA->getDebugLoc();
5380  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5381                                           GA->getValueType(0),
5382                                           GA->getOffset(),
5383                                           OperandFlags);
5384  if (InFlag) {
5385    SDValue Ops[] = { Chain,  TGA, *InFlag };
5386    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5387  } else {
5388    SDValue Ops[]  = { Chain, TGA };
5389    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5390  }
5391
5392  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5393  MFI->setAdjustsStack(true);
5394
5395  SDValue Flag = Chain.getValue(1);
5396  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5397}
5398
5399// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5400static SDValue
5401LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5402                                const EVT PtrVT) {
5403  SDValue InFlag;
5404  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5405  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5406                                     DAG.getNode(X86ISD::GlobalBaseReg,
5407                                                 DebugLoc(), PtrVT), InFlag);
5408  InFlag = Chain.getValue(1);
5409
5410  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5411}
5412
5413// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5414static SDValue
5415LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5416                                const EVT PtrVT) {
5417  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5418                    X86::RAX, X86II::MO_TLSGD);
5419}
5420
5421// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5422// "local exec" model.
5423static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5424                                   const EVT PtrVT, TLSModel::Model model,
5425                                   bool is64Bit) {
5426  DebugLoc dl = GA->getDebugLoc();
5427  // Get the Thread Pointer
5428  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5429                             DebugLoc(), PtrVT,
5430                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5431                                             MVT::i32));
5432
5433  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5434                                      NULL, 0, false, false, 0);
5435
5436  unsigned char OperandFlags = 0;
5437  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5438  // initialexec.
5439  unsigned WrapperKind = X86ISD::Wrapper;
5440  if (model == TLSModel::LocalExec) {
5441    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5442  } else if (is64Bit) {
5443    assert(model == TLSModel::InitialExec);
5444    OperandFlags = X86II::MO_GOTTPOFF;
5445    WrapperKind = X86ISD::WrapperRIP;
5446  } else {
5447    assert(model == TLSModel::InitialExec);
5448    OperandFlags = X86II::MO_INDNTPOFF;
5449  }
5450
5451  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5452  // exec)
5453  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5454                                           GA->getValueType(0),
5455                                           GA->getOffset(), OperandFlags);
5456  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5457
5458  if (model == TLSModel::InitialExec)
5459    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5460                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5461
5462  // The address of the thread local variable is the add of the thread
5463  // pointer with the offset of the variable.
5464  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5465}
5466
5467SDValue
5468X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5469
5470  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5471  const GlobalValue *GV = GA->getGlobal();
5472
5473  if (Subtarget->isTargetELF()) {
5474    // TODO: implement the "local dynamic" model
5475    // TODO: implement the "initial exec"model for pic executables
5476
5477    // If GV is an alias then use the aliasee for determining
5478    // thread-localness.
5479    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5480      GV = GA->resolveAliasedGlobal(false);
5481
5482    TLSModel::Model model
5483      = getTLSModel(GV, getTargetMachine().getRelocationModel());
5484
5485    switch (model) {
5486      case TLSModel::GeneralDynamic:
5487      case TLSModel::LocalDynamic: // not implemented
5488        if (Subtarget->is64Bit())
5489          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5490        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5491
5492      case TLSModel::InitialExec:
5493      case TLSModel::LocalExec:
5494        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5495                                   Subtarget->is64Bit());
5496    }
5497  } else if (Subtarget->isTargetDarwin()) {
5498    // Darwin only has one model of TLS.  Lower to that.
5499    unsigned char OpFlag = 0;
5500    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
5501                           X86ISD::WrapperRIP : X86ISD::Wrapper;
5502
5503    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5504    // global base reg.
5505    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
5506                  !Subtarget->is64Bit();
5507    if (PIC32)
5508      OpFlag = X86II::MO_TLVP_PIC_BASE;
5509    else
5510      OpFlag = X86II::MO_TLVP;
5511    DebugLoc DL = Op.getDebugLoc();
5512    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
5513                                                getPointerTy(),
5514                                                GA->getOffset(), OpFlag);
5515    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5516
5517    // With PIC32, the address is actually $g + Offset.
5518    if (PIC32)
5519      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5520                           DAG.getNode(X86ISD::GlobalBaseReg,
5521                                       DebugLoc(), getPointerTy()),
5522                           Offset);
5523
5524    // Lowering the machine isd will make sure everything is in the right
5525    // location.
5526    SDValue Args[] = { Offset };
5527    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
5528
5529    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
5530    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5531    MFI->setAdjustsStack(true);
5532
5533    // And our return value (tls address) is in the standard call return value
5534    // location.
5535    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
5536    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
5537  }
5538
5539  assert(false &&
5540         "TLS not implemented for this target.");
5541
5542  llvm_unreachable("Unreachable");
5543  return SDValue();
5544}
5545
5546
5547/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5548/// take a 2 x i32 value to shift plus a shift amount.
5549SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5550  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5551  EVT VT = Op.getValueType();
5552  unsigned VTBits = VT.getSizeInBits();
5553  DebugLoc dl = Op.getDebugLoc();
5554  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5555  SDValue ShOpLo = Op.getOperand(0);
5556  SDValue ShOpHi = Op.getOperand(1);
5557  SDValue ShAmt  = Op.getOperand(2);
5558  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5559                                     DAG.getConstant(VTBits - 1, MVT::i8))
5560                       : DAG.getConstant(0, VT);
5561
5562  SDValue Tmp2, Tmp3;
5563  if (Op.getOpcode() == ISD::SHL_PARTS) {
5564    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5565    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5566  } else {
5567    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5568    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5569  }
5570
5571  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5572                                DAG.getConstant(VTBits, MVT::i8));
5573  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5574                             AndNode, DAG.getConstant(0, MVT::i8));
5575
5576  SDValue Hi, Lo;
5577  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5578  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5579  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5580
5581  if (Op.getOpcode() == ISD::SHL_PARTS) {
5582    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5583    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5584  } else {
5585    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5586    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5587  }
5588
5589  SDValue Ops[2] = { Lo, Hi };
5590  return DAG.getMergeValues(Ops, 2, dl);
5591}
5592
5593SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
5594                                           SelectionDAG &DAG) const {
5595  EVT SrcVT = Op.getOperand(0).getValueType();
5596
5597  if (SrcVT.isVector()) {
5598    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5599      return Op;
5600    }
5601    return SDValue();
5602  }
5603
5604  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5605         "Unknown SINT_TO_FP to lower!");
5606
5607  // These are really Legal; return the operand so the caller accepts it as
5608  // Legal.
5609  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5610    return Op;
5611  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5612      Subtarget->is64Bit()) {
5613    return Op;
5614  }
5615
5616  DebugLoc dl = Op.getDebugLoc();
5617  unsigned Size = SrcVT.getSizeInBits()/8;
5618  MachineFunction &MF = DAG.getMachineFunction();
5619  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5620  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5621  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5622                               StackSlot,
5623                               PseudoSourceValue::getFixedStack(SSFI), 0,
5624                               false, false, 0);
5625  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5626}
5627
5628SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5629                                     SDValue StackSlot,
5630                                     SelectionDAG &DAG) const {
5631  // Build the FILD
5632  DebugLoc dl = Op.getDebugLoc();
5633  SDVTList Tys;
5634  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5635  if (useSSE)
5636    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5637  else
5638    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5639  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5640  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5641                               Tys, Ops, array_lengthof(Ops));
5642
5643  if (useSSE) {
5644    Chain = Result.getValue(1);
5645    SDValue InFlag = Result.getValue(2);
5646
5647    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5648    // shouldn't be necessary except that RFP cannot be live across
5649    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5650    MachineFunction &MF = DAG.getMachineFunction();
5651    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5652    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5653    Tys = DAG.getVTList(MVT::Other);
5654    SDValue Ops[] = {
5655      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5656    };
5657    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5658    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5659                         PseudoSourceValue::getFixedStack(SSFI), 0,
5660                         false, false, 0);
5661  }
5662
5663  return Result;
5664}
5665
5666// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5667SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
5668                                               SelectionDAG &DAG) const {
5669  // This algorithm is not obvious. Here it is in C code, more or less:
5670  /*
5671    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5672      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5673      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5674
5675      // Copy ints to xmm registers.
5676      __m128i xh = _mm_cvtsi32_si128( hi );
5677      __m128i xl = _mm_cvtsi32_si128( lo );
5678
5679      // Combine into low half of a single xmm register.
5680      __m128i x = _mm_unpacklo_epi32( xh, xl );
5681      __m128d d;
5682      double sd;
5683
5684      // Merge in appropriate exponents to give the integer bits the right
5685      // magnitude.
5686      x = _mm_unpacklo_epi32( x, exp );
5687
5688      // Subtract away the biases to deal with the IEEE-754 double precision
5689      // implicit 1.
5690      d = _mm_sub_pd( (__m128d) x, bias );
5691
5692      // All conversions up to here are exact. The correctly rounded result is
5693      // calculated using the current rounding mode using the following
5694      // horizontal add.
5695      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5696      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5697                                // store doesn't really need to be here (except
5698                                // maybe to zero the other double)
5699      return sd;
5700    }
5701  */
5702
5703  DebugLoc dl = Op.getDebugLoc();
5704  LLVMContext *Context = DAG.getContext();
5705
5706  // Build some magic constants.
5707  std::vector<Constant*> CV0;
5708  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5709  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5710  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5711  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5712  Constant *C0 = ConstantVector::get(CV0);
5713  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5714
5715  std::vector<Constant*> CV1;
5716  CV1.push_back(
5717    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5718  CV1.push_back(
5719    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5720  Constant *C1 = ConstantVector::get(CV1);
5721  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5722
5723  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5724                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5725                                        Op.getOperand(0),
5726                                        DAG.getIntPtrConstant(1)));
5727  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5728                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5729                                        Op.getOperand(0),
5730                                        DAG.getIntPtrConstant(0)));
5731  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5732  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5733                              PseudoSourceValue::getConstantPool(), 0,
5734                              false, false, 16);
5735  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5736  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5737  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5738                              PseudoSourceValue::getConstantPool(), 0,
5739                              false, false, 16);
5740  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5741
5742  // Add the halves; easiest way is to swap them into another reg first.
5743  int ShufMask[2] = { 1, -1 };
5744  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5745                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5746  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5747  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5748                     DAG.getIntPtrConstant(0));
5749}
5750
5751// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5752SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
5753                                               SelectionDAG &DAG) const {
5754  DebugLoc dl = Op.getDebugLoc();
5755  // FP constant to bias correct the final result.
5756  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5757                                   MVT::f64);
5758
5759  // Load the 32-bit value into an XMM register.
5760  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5761                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5762                                         Op.getOperand(0),
5763                                         DAG.getIntPtrConstant(0)));
5764
5765  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5766                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5767                     DAG.getIntPtrConstant(0));
5768
5769  // Or the load with the bias.
5770  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5771                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5772                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5773                                                   MVT::v2f64, Load)),
5774                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5775                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5776                                                   MVT::v2f64, Bias)));
5777  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5778                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5779                   DAG.getIntPtrConstant(0));
5780
5781  // Subtract the bias.
5782  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5783
5784  // Handle final rounding.
5785  EVT DestVT = Op.getValueType();
5786
5787  if (DestVT.bitsLT(MVT::f64)) {
5788    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5789                       DAG.getIntPtrConstant(0));
5790  } else if (DestVT.bitsGT(MVT::f64)) {
5791    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5792  }
5793
5794  // Handle final rounding.
5795  return Sub;
5796}
5797
5798SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
5799                                           SelectionDAG &DAG) const {
5800  SDValue N0 = Op.getOperand(0);
5801  DebugLoc dl = Op.getDebugLoc();
5802
5803  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
5804  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5805  // the optimization here.
5806  if (DAG.SignBitIsZero(N0))
5807    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5808
5809  EVT SrcVT = N0.getValueType();
5810  EVT DstVT = Op.getValueType();
5811  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
5812    return LowerUINT_TO_FP_i64(Op, DAG);
5813  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
5814    return LowerUINT_TO_FP_i32(Op, DAG);
5815
5816  // Make a 64-bit buffer, and use it to build an FILD.
5817  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5818  if (SrcVT == MVT::i32) {
5819    SDValue WordOff = DAG.getConstant(4, getPointerTy());
5820    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5821                                     getPointerTy(), StackSlot, WordOff);
5822    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5823                                  StackSlot, NULL, 0, false, false, 0);
5824    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5825                                  OffsetSlot, NULL, 0, false, false, 0);
5826    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5827    return Fild;
5828  }
5829
5830  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
5831  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5832                                StackSlot, NULL, 0, false, false, 0);
5833  // For i64 source, we need to add the appropriate power of 2 if the input
5834  // was negative.  This is the same as the optimization in
5835  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
5836  // we must be careful to do the computation in x87 extended precision, not
5837  // in SSE. (The generic code can't know it's OK to do this, or how to.)
5838  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
5839  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
5840  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
5841
5842  APInt FF(32, 0x5F800000ULL);
5843
5844  // Check whether the sign bit is set.
5845  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
5846                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
5847                                 ISD::SETLT);
5848
5849  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
5850  SDValue FudgePtr = DAG.getConstantPool(
5851                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
5852                                         getPointerTy());
5853
5854  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
5855  SDValue Zero = DAG.getIntPtrConstant(0);
5856  SDValue Four = DAG.getIntPtrConstant(4);
5857  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
5858                               Zero, Four);
5859  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
5860
5861  // Load the value out, extending it from f32 to f80.
5862  // FIXME: Avoid the extend by constructing the right constant pool?
5863  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
5864                                 FudgePtr, PseudoSourceValue::getConstantPool(),
5865                                 0, MVT::f32, false, false, 4);
5866  // Extend everything to 80 bits to force it to be done on x87.
5867  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
5868  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
5869}
5870
5871std::pair<SDValue,SDValue> X86TargetLowering::
5872FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
5873  DebugLoc dl = Op.getDebugLoc();
5874
5875  EVT DstTy = Op.getValueType();
5876
5877  if (!IsSigned) {
5878    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5879    DstTy = MVT::i64;
5880  }
5881
5882  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5883         DstTy.getSimpleVT() >= MVT::i16 &&
5884         "Unknown FP_TO_SINT to lower!");
5885
5886  // These are really Legal.
5887  if (DstTy == MVT::i32 &&
5888      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5889    return std::make_pair(SDValue(), SDValue());
5890  if (Subtarget->is64Bit() &&
5891      DstTy == MVT::i64 &&
5892      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5893    return std::make_pair(SDValue(), SDValue());
5894
5895  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5896  // stack slot.
5897  MachineFunction &MF = DAG.getMachineFunction();
5898  unsigned MemSize = DstTy.getSizeInBits()/8;
5899  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5900  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5901
5902  unsigned Opc;
5903  switch (DstTy.getSimpleVT().SimpleTy) {
5904  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5905  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5906  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5907  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5908  }
5909
5910  SDValue Chain = DAG.getEntryNode();
5911  SDValue Value = Op.getOperand(0);
5912  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5913    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5914    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5915                         PseudoSourceValue::getFixedStack(SSFI), 0,
5916                         false, false, 0);
5917    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5918    SDValue Ops[] = {
5919      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5920    };
5921    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5922    Chain = Value.getValue(1);
5923    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5924    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5925  }
5926
5927  // Build the FP_TO_INT*_IN_MEM
5928  SDValue Ops[] = { Chain, Value, StackSlot };
5929  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5930
5931  return std::make_pair(FIST, StackSlot);
5932}
5933
5934SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
5935                                           SelectionDAG &DAG) const {
5936  if (Op.getValueType().isVector()) {
5937    if (Op.getValueType() == MVT::v2i32 &&
5938        Op.getOperand(0).getValueType() == MVT::v2f64) {
5939      return Op;
5940    }
5941    return SDValue();
5942  }
5943
5944  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5945  SDValue FIST = Vals.first, StackSlot = Vals.second;
5946  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5947  if (FIST.getNode() == 0) return Op;
5948
5949  // Load the result.
5950  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5951                     FIST, StackSlot, NULL, 0, false, false, 0);
5952}
5953
5954SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
5955                                           SelectionDAG &DAG) const {
5956  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5957  SDValue FIST = Vals.first, StackSlot = Vals.second;
5958  assert(FIST.getNode() && "Unexpected failure");
5959
5960  // Load the result.
5961  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5962                     FIST, StackSlot, NULL, 0, false, false, 0);
5963}
5964
5965SDValue X86TargetLowering::LowerFABS(SDValue Op,
5966                                     SelectionDAG &DAG) const {
5967  LLVMContext *Context = DAG.getContext();
5968  DebugLoc dl = Op.getDebugLoc();
5969  EVT VT = Op.getValueType();
5970  EVT EltVT = VT;
5971  if (VT.isVector())
5972    EltVT = VT.getVectorElementType();
5973  std::vector<Constant*> CV;
5974  if (EltVT == MVT::f64) {
5975    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5976    CV.push_back(C);
5977    CV.push_back(C);
5978  } else {
5979    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5980    CV.push_back(C);
5981    CV.push_back(C);
5982    CV.push_back(C);
5983    CV.push_back(C);
5984  }
5985  Constant *C = ConstantVector::get(CV);
5986  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5987  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5988                             PseudoSourceValue::getConstantPool(), 0,
5989                             false, false, 16);
5990  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5991}
5992
5993SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
5994  LLVMContext *Context = DAG.getContext();
5995  DebugLoc dl = Op.getDebugLoc();
5996  EVT VT = Op.getValueType();
5997  EVT EltVT = VT;
5998  if (VT.isVector())
5999    EltVT = VT.getVectorElementType();
6000  std::vector<Constant*> CV;
6001  if (EltVT == MVT::f64) {
6002    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6003    CV.push_back(C);
6004    CV.push_back(C);
6005  } else {
6006    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6007    CV.push_back(C);
6008    CV.push_back(C);
6009    CV.push_back(C);
6010    CV.push_back(C);
6011  }
6012  Constant *C = ConstantVector::get(CV);
6013  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6014  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6015                             PseudoSourceValue::getConstantPool(), 0,
6016                             false, false, 16);
6017  if (VT.isVector()) {
6018    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6019                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6020                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6021                                Op.getOperand(0)),
6022                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6023  } else {
6024    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6025  }
6026}
6027
6028SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6029  LLVMContext *Context = DAG.getContext();
6030  SDValue Op0 = Op.getOperand(0);
6031  SDValue Op1 = Op.getOperand(1);
6032  DebugLoc dl = Op.getDebugLoc();
6033  EVT VT = Op.getValueType();
6034  EVT SrcVT = Op1.getValueType();
6035
6036  // If second operand is smaller, extend it first.
6037  if (SrcVT.bitsLT(VT)) {
6038    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6039    SrcVT = VT;
6040  }
6041  // And if it is bigger, shrink it first.
6042  if (SrcVT.bitsGT(VT)) {
6043    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6044    SrcVT = VT;
6045  }
6046
6047  // At this point the operands and the result should have the same
6048  // type, and that won't be f80 since that is not custom lowered.
6049
6050  // First get the sign bit of second operand.
6051  std::vector<Constant*> CV;
6052  if (SrcVT == MVT::f64) {
6053    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6054    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6055  } else {
6056    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6057    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6058    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6059    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6060  }
6061  Constant *C = ConstantVector::get(CV);
6062  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6063  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6064                              PseudoSourceValue::getConstantPool(), 0,
6065                              false, false, 16);
6066  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6067
6068  // Shift sign bit right or left if the two operands have different types.
6069  if (SrcVT.bitsGT(VT)) {
6070    // Op0 is MVT::f32, Op1 is MVT::f64.
6071    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6072    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6073                          DAG.getConstant(32, MVT::i32));
6074    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6075    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6076                          DAG.getIntPtrConstant(0));
6077  }
6078
6079  // Clear first operand sign bit.
6080  CV.clear();
6081  if (VT == MVT::f64) {
6082    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6083    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6084  } else {
6085    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6086    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6087    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6088    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6089  }
6090  C = ConstantVector::get(CV);
6091  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6092  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6093                              PseudoSourceValue::getConstantPool(), 0,
6094                              false, false, 16);
6095  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6096
6097  // Or the value with the sign bit.
6098  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6099}
6100
6101/// Emit nodes that will be selected as "test Op0,Op0", or something
6102/// equivalent.
6103SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6104                                    SelectionDAG &DAG) const {
6105  DebugLoc dl = Op.getDebugLoc();
6106
6107  // CF and OF aren't always set the way we want. Determine which
6108  // of these we need.
6109  bool NeedCF = false;
6110  bool NeedOF = false;
6111  switch (X86CC) {
6112  default: break;
6113  case X86::COND_A: case X86::COND_AE:
6114  case X86::COND_B: case X86::COND_BE:
6115    NeedCF = true;
6116    break;
6117  case X86::COND_G: case X86::COND_GE:
6118  case X86::COND_L: case X86::COND_LE:
6119  case X86::COND_O: case X86::COND_NO:
6120    NeedOF = true;
6121    break;
6122  }
6123
6124  // See if we can use the EFLAGS value from the operand instead of
6125  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6126  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6127  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6128    // Emit a CMP with 0, which is the TEST pattern.
6129    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6130                       DAG.getConstant(0, Op.getValueType()));
6131
6132  unsigned Opcode = 0;
6133  unsigned NumOperands = 0;
6134  switch (Op.getNode()->getOpcode()) {
6135  case ISD::ADD:
6136    // Due to an isel shortcoming, be conservative if this add is likely to be
6137    // selected as part of a load-modify-store instruction. When the root node
6138    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6139    // uses of other nodes in the match, such as the ADD in this case. This
6140    // leads to the ADD being left around and reselected, with the result being
6141    // two adds in the output.  Alas, even if none our users are stores, that
6142    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6143    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6144    // climbing the DAG back to the root, and it doesn't seem to be worth the
6145    // effort.
6146    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6147           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6148      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6149        goto default_case;
6150
6151    if (ConstantSDNode *C =
6152        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6153      // An add of one will be selected as an INC.
6154      if (C->getAPIntValue() == 1) {
6155        Opcode = X86ISD::INC;
6156        NumOperands = 1;
6157        break;
6158      }
6159
6160      // An add of negative one (subtract of one) will be selected as a DEC.
6161      if (C->getAPIntValue().isAllOnesValue()) {
6162        Opcode = X86ISD::DEC;
6163        NumOperands = 1;
6164        break;
6165      }
6166    }
6167
6168    // Otherwise use a regular EFLAGS-setting add.
6169    Opcode = X86ISD::ADD;
6170    NumOperands = 2;
6171    break;
6172  case ISD::AND: {
6173    // If the primary and result isn't used, don't bother using X86ISD::AND,
6174    // because a TEST instruction will be better.
6175    bool NonFlagUse = false;
6176    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6177           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6178      SDNode *User = *UI;
6179      unsigned UOpNo = UI.getOperandNo();
6180      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6181        // Look pass truncate.
6182        UOpNo = User->use_begin().getOperandNo();
6183        User = *User->use_begin();
6184      }
6185
6186      if (User->getOpcode() != ISD::BRCOND &&
6187          User->getOpcode() != ISD::SETCC &&
6188          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6189        NonFlagUse = true;
6190        break;
6191      }
6192    }
6193
6194    if (!NonFlagUse)
6195      break;
6196  }
6197    // FALL THROUGH
6198  case ISD::SUB:
6199  case ISD::OR:
6200  case ISD::XOR:
6201    // Due to the ISEL shortcoming noted above, be conservative if this op is
6202    // likely to be selected as part of a load-modify-store instruction.
6203    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6204           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6205      if (UI->getOpcode() == ISD::STORE)
6206        goto default_case;
6207
6208    // Otherwise use a regular EFLAGS-setting instruction.
6209    switch (Op.getNode()->getOpcode()) {
6210    default: llvm_unreachable("unexpected operator!");
6211    case ISD::SUB: Opcode = X86ISD::SUB; break;
6212    case ISD::OR:  Opcode = X86ISD::OR;  break;
6213    case ISD::XOR: Opcode = X86ISD::XOR; break;
6214    case ISD::AND: Opcode = X86ISD::AND; break;
6215    }
6216
6217    NumOperands = 2;
6218    break;
6219  case X86ISD::ADD:
6220  case X86ISD::SUB:
6221  case X86ISD::INC:
6222  case X86ISD::DEC:
6223  case X86ISD::OR:
6224  case X86ISD::XOR:
6225  case X86ISD::AND:
6226    return SDValue(Op.getNode(), 1);
6227  default:
6228  default_case:
6229    break;
6230  }
6231
6232  if (Opcode == 0)
6233    // Emit a CMP with 0, which is the TEST pattern.
6234    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6235                       DAG.getConstant(0, Op.getValueType()));
6236
6237  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6238  SmallVector<SDValue, 4> Ops;
6239  for (unsigned i = 0; i != NumOperands; ++i)
6240    Ops.push_back(Op.getOperand(i));
6241
6242  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6243  DAG.ReplaceAllUsesWith(Op, New);
6244  return SDValue(New.getNode(), 1);
6245}
6246
6247/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6248/// equivalent.
6249SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6250                                   SelectionDAG &DAG) const {
6251  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6252    if (C->getAPIntValue() == 0)
6253      return EmitTest(Op0, X86CC, DAG);
6254
6255  DebugLoc dl = Op0.getDebugLoc();
6256  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6257}
6258
6259/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6260/// if it's possible.
6261SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6262                                     DebugLoc dl, SelectionDAG &DAG) const {
6263  SDValue Op0 = And.getOperand(0);
6264  SDValue Op1 = And.getOperand(1);
6265  if (Op0.getOpcode() == ISD::TRUNCATE)
6266    Op0 = Op0.getOperand(0);
6267  if (Op1.getOpcode() == ISD::TRUNCATE)
6268    Op1 = Op1.getOperand(0);
6269
6270  SDValue LHS, RHS;
6271  if (Op1.getOpcode() == ISD::SHL)
6272    std::swap(Op0, Op1);
6273  if (Op0.getOpcode() == ISD::SHL) {
6274    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6275      if (And00C->getZExtValue() == 1) {
6276        // If we looked past a truncate, check that it's only truncating away
6277        // known zeros.
6278        unsigned BitWidth = Op0.getValueSizeInBits();
6279        unsigned AndBitWidth = And.getValueSizeInBits();
6280        if (BitWidth > AndBitWidth) {
6281          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6282          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6283          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6284            return SDValue();
6285        }
6286        LHS = Op1;
6287        RHS = Op0.getOperand(1);
6288      }
6289  } else if (Op1.getOpcode() == ISD::Constant) {
6290    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6291    SDValue AndLHS = Op0;
6292    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6293      LHS = AndLHS.getOperand(0);
6294      RHS = AndLHS.getOperand(1);
6295    }
6296  }
6297
6298  if (LHS.getNode()) {
6299    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6300    // instruction.  Since the shift amount is in-range-or-undefined, we know
6301    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6302    // the encoding for the i16 version is larger than the i32 version.
6303    // Also promote i16 to i32 for performance / code size reason.
6304    if (LHS.getValueType() == MVT::i8 ||
6305        LHS.getValueType() == MVT::i16)
6306      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6307
6308    // If the operand types disagree, extend the shift amount to match.  Since
6309    // BT ignores high bits (like shifts) we can use anyextend.
6310    if (LHS.getValueType() != RHS.getValueType())
6311      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6312
6313    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6314    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6315    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6316                       DAG.getConstant(Cond, MVT::i8), BT);
6317  }
6318
6319  return SDValue();
6320}
6321
6322SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6323  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6324  SDValue Op0 = Op.getOperand(0);
6325  SDValue Op1 = Op.getOperand(1);
6326  DebugLoc dl = Op.getDebugLoc();
6327  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6328
6329  // Optimize to BT if possible.
6330  // Lower (X & (1 << N)) == 0 to BT(X, N).
6331  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6332  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6333  if (Op0.getOpcode() == ISD::AND &&
6334      Op0.hasOneUse() &&
6335      Op1.getOpcode() == ISD::Constant &&
6336      cast<ConstantSDNode>(Op1)->isNullValue() &&
6337      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6338    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6339    if (NewSetCC.getNode())
6340      return NewSetCC;
6341  }
6342
6343  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6344  if (Op0.getOpcode() == X86ISD::SETCC &&
6345      Op1.getOpcode() == ISD::Constant &&
6346      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6347       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6348      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6349    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6350    bool Invert = (CC == ISD::SETNE) ^
6351      cast<ConstantSDNode>(Op1)->isNullValue();
6352    if (Invert)
6353      CCode = X86::GetOppositeBranchCondition(CCode);
6354    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6355                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6356  }
6357
6358  bool isFP = Op1.getValueType().isFloatingPoint();
6359  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6360  if (X86CC == X86::COND_INVALID)
6361    return SDValue();
6362
6363  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6364
6365  // Use sbb x, x to materialize carry bit into a GPR.
6366  if (X86CC == X86::COND_B)
6367    return DAG.getNode(ISD::AND, dl, MVT::i8,
6368                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6369                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6370                       DAG.getConstant(1, MVT::i8));
6371
6372  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6373                     DAG.getConstant(X86CC, MVT::i8), Cond);
6374}
6375
6376SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6377  SDValue Cond;
6378  SDValue Op0 = Op.getOperand(0);
6379  SDValue Op1 = Op.getOperand(1);
6380  SDValue CC = Op.getOperand(2);
6381  EVT VT = Op.getValueType();
6382  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6383  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6384  DebugLoc dl = Op.getDebugLoc();
6385
6386  if (isFP) {
6387    unsigned SSECC = 8;
6388    EVT VT0 = Op0.getValueType();
6389    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6390    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6391    bool Swap = false;
6392
6393    switch (SetCCOpcode) {
6394    default: break;
6395    case ISD::SETOEQ:
6396    case ISD::SETEQ:  SSECC = 0; break;
6397    case ISD::SETOGT:
6398    case ISD::SETGT: Swap = true; // Fallthrough
6399    case ISD::SETLT:
6400    case ISD::SETOLT: SSECC = 1; break;
6401    case ISD::SETOGE:
6402    case ISD::SETGE: Swap = true; // Fallthrough
6403    case ISD::SETLE:
6404    case ISD::SETOLE: SSECC = 2; break;
6405    case ISD::SETUO:  SSECC = 3; break;
6406    case ISD::SETUNE:
6407    case ISD::SETNE:  SSECC = 4; break;
6408    case ISD::SETULE: Swap = true;
6409    case ISD::SETUGE: SSECC = 5; break;
6410    case ISD::SETULT: Swap = true;
6411    case ISD::SETUGT: SSECC = 6; break;
6412    case ISD::SETO:   SSECC = 7; break;
6413    }
6414    if (Swap)
6415      std::swap(Op0, Op1);
6416
6417    // In the two special cases we can't handle, emit two comparisons.
6418    if (SSECC == 8) {
6419      if (SetCCOpcode == ISD::SETUEQ) {
6420        SDValue UNORD, EQ;
6421        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6422        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6423        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6424      }
6425      else if (SetCCOpcode == ISD::SETONE) {
6426        SDValue ORD, NEQ;
6427        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6428        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6429        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6430      }
6431      llvm_unreachable("Illegal FP comparison");
6432    }
6433    // Handle all other FP comparisons here.
6434    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6435  }
6436
6437  // We are handling one of the integer comparisons here.  Since SSE only has
6438  // GT and EQ comparisons for integer, swapping operands and multiple
6439  // operations may be required for some comparisons.
6440  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6441  bool Swap = false, Invert = false, FlipSigns = false;
6442
6443  switch (VT.getSimpleVT().SimpleTy) {
6444  default: break;
6445  case MVT::v8i8:
6446  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6447  case MVT::v4i16:
6448  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6449  case MVT::v2i32:
6450  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6451  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6452  }
6453
6454  switch (SetCCOpcode) {
6455  default: break;
6456  case ISD::SETNE:  Invert = true;
6457  case ISD::SETEQ:  Opc = EQOpc; break;
6458  case ISD::SETLT:  Swap = true;
6459  case ISD::SETGT:  Opc = GTOpc; break;
6460  case ISD::SETGE:  Swap = true;
6461  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6462  case ISD::SETULT: Swap = true;
6463  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6464  case ISD::SETUGE: Swap = true;
6465  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6466  }
6467  if (Swap)
6468    std::swap(Op0, Op1);
6469
6470  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6471  // bits of the inputs before performing those operations.
6472  if (FlipSigns) {
6473    EVT EltVT = VT.getVectorElementType();
6474    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6475                                      EltVT);
6476    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6477    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6478                                    SignBits.size());
6479    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6480    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6481  }
6482
6483  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6484
6485  // If the logical-not of the result is required, perform that now.
6486  if (Invert)
6487    Result = DAG.getNOT(dl, Result, VT);
6488
6489  return Result;
6490}
6491
6492// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6493static bool isX86LogicalCmp(SDValue Op) {
6494  unsigned Opc = Op.getNode()->getOpcode();
6495  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6496    return true;
6497  if (Op.getResNo() == 1 &&
6498      (Opc == X86ISD::ADD ||
6499       Opc == X86ISD::SUB ||
6500       Opc == X86ISD::SMUL ||
6501       Opc == X86ISD::UMUL ||
6502       Opc == X86ISD::INC ||
6503       Opc == X86ISD::DEC ||
6504       Opc == X86ISD::OR ||
6505       Opc == X86ISD::XOR ||
6506       Opc == X86ISD::AND))
6507    return true;
6508
6509  return false;
6510}
6511
6512SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6513  bool addTest = true;
6514  SDValue Cond  = Op.getOperand(0);
6515  DebugLoc dl = Op.getDebugLoc();
6516  SDValue CC;
6517
6518  if (Cond.getOpcode() == ISD::SETCC) {
6519    SDValue NewCond = LowerSETCC(Cond, DAG);
6520    if (NewCond.getNode())
6521      Cond = NewCond;
6522  }
6523
6524  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6525  SDValue Op1 = Op.getOperand(1);
6526  SDValue Op2 = Op.getOperand(2);
6527  if (Cond.getOpcode() == X86ISD::SETCC &&
6528      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6529    SDValue Cmp = Cond.getOperand(1);
6530    if (Cmp.getOpcode() == X86ISD::CMP) {
6531      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6532      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6533      ConstantSDNode *RHSC =
6534        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6535      if (N1C && N1C->isAllOnesValue() &&
6536          N2C && N2C->isNullValue() &&
6537          RHSC && RHSC->isNullValue()) {
6538        SDValue CmpOp0 = Cmp.getOperand(0);
6539        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6540                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6541        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6542                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6543      }
6544    }
6545  }
6546
6547  // Look pass (and (setcc_carry (cmp ...)), 1).
6548  if (Cond.getOpcode() == ISD::AND &&
6549      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6550    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6551    if (C && C->getAPIntValue() == 1)
6552      Cond = Cond.getOperand(0);
6553  }
6554
6555  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6556  // setting operand in place of the X86ISD::SETCC.
6557  if (Cond.getOpcode() == X86ISD::SETCC ||
6558      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6559    CC = Cond.getOperand(0);
6560
6561    SDValue Cmp = Cond.getOperand(1);
6562    unsigned Opc = Cmp.getOpcode();
6563    EVT VT = Op.getValueType();
6564
6565    bool IllegalFPCMov = false;
6566    if (VT.isFloatingPoint() && !VT.isVector() &&
6567        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6568      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6569
6570    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6571        Opc == X86ISD::BT) { // FIXME
6572      Cond = Cmp;
6573      addTest = false;
6574    }
6575  }
6576
6577  if (addTest) {
6578    // Look pass the truncate.
6579    if (Cond.getOpcode() == ISD::TRUNCATE)
6580      Cond = Cond.getOperand(0);
6581
6582    // We know the result of AND is compared against zero. Try to match
6583    // it to BT.
6584    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6585      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6586      if (NewSetCC.getNode()) {
6587        CC = NewSetCC.getOperand(0);
6588        Cond = NewSetCC.getOperand(1);
6589        addTest = false;
6590      }
6591    }
6592  }
6593
6594  if (addTest) {
6595    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6596    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6597  }
6598
6599  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6600  // condition is true.
6601  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6602  SDValue Ops[] = { Op2, Op1, CC, Cond };
6603  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6604}
6605
6606// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6607// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6608// from the AND / OR.
6609static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6610  Opc = Op.getOpcode();
6611  if (Opc != ISD::OR && Opc != ISD::AND)
6612    return false;
6613  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6614          Op.getOperand(0).hasOneUse() &&
6615          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6616          Op.getOperand(1).hasOneUse());
6617}
6618
6619// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6620// 1 and that the SETCC node has a single use.
6621static bool isXor1OfSetCC(SDValue Op) {
6622  if (Op.getOpcode() != ISD::XOR)
6623    return false;
6624  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6625  if (N1C && N1C->getAPIntValue() == 1) {
6626    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6627      Op.getOperand(0).hasOneUse();
6628  }
6629  return false;
6630}
6631
6632SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
6633  bool addTest = true;
6634  SDValue Chain = Op.getOperand(0);
6635  SDValue Cond  = Op.getOperand(1);
6636  SDValue Dest  = Op.getOperand(2);
6637  DebugLoc dl = Op.getDebugLoc();
6638  SDValue CC;
6639
6640  if (Cond.getOpcode() == ISD::SETCC) {
6641    SDValue NewCond = LowerSETCC(Cond, DAG);
6642    if (NewCond.getNode())
6643      Cond = NewCond;
6644  }
6645#if 0
6646  // FIXME: LowerXALUO doesn't handle these!!
6647  else if (Cond.getOpcode() == X86ISD::ADD  ||
6648           Cond.getOpcode() == X86ISD::SUB  ||
6649           Cond.getOpcode() == X86ISD::SMUL ||
6650           Cond.getOpcode() == X86ISD::UMUL)
6651    Cond = LowerXALUO(Cond, DAG);
6652#endif
6653
6654  // Look pass (and (setcc_carry (cmp ...)), 1).
6655  if (Cond.getOpcode() == ISD::AND &&
6656      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6657    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6658    if (C && C->getAPIntValue() == 1)
6659      Cond = Cond.getOperand(0);
6660  }
6661
6662  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6663  // setting operand in place of the X86ISD::SETCC.
6664  if (Cond.getOpcode() == X86ISD::SETCC ||
6665      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6666    CC = Cond.getOperand(0);
6667
6668    SDValue Cmp = Cond.getOperand(1);
6669    unsigned Opc = Cmp.getOpcode();
6670    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6671    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6672      Cond = Cmp;
6673      addTest = false;
6674    } else {
6675      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6676      default: break;
6677      case X86::COND_O:
6678      case X86::COND_B:
6679        // These can only come from an arithmetic instruction with overflow,
6680        // e.g. SADDO, UADDO.
6681        Cond = Cond.getNode()->getOperand(1);
6682        addTest = false;
6683        break;
6684      }
6685    }
6686  } else {
6687    unsigned CondOpc;
6688    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6689      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6690      if (CondOpc == ISD::OR) {
6691        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6692        // two branches instead of an explicit OR instruction with a
6693        // separate test.
6694        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6695            isX86LogicalCmp(Cmp)) {
6696          CC = Cond.getOperand(0).getOperand(0);
6697          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6698                              Chain, Dest, CC, Cmp);
6699          CC = Cond.getOperand(1).getOperand(0);
6700          Cond = Cmp;
6701          addTest = false;
6702        }
6703      } else { // ISD::AND
6704        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6705        // two branches instead of an explicit AND instruction with a
6706        // separate test. However, we only do this if this block doesn't
6707        // have a fall-through edge, because this requires an explicit
6708        // jmp when the condition is false.
6709        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6710            isX86LogicalCmp(Cmp) &&
6711            Op.getNode()->hasOneUse()) {
6712          X86::CondCode CCode =
6713            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6714          CCode = X86::GetOppositeBranchCondition(CCode);
6715          CC = DAG.getConstant(CCode, MVT::i8);
6716          SDNode *User = *Op.getNode()->use_begin();
6717          // Look for an unconditional branch following this conditional branch.
6718          // We need this because we need to reverse the successors in order
6719          // to implement FCMP_OEQ.
6720          if (User->getOpcode() == ISD::BR) {
6721            SDValue FalseBB = User->getOperand(1);
6722            SDNode *NewBR =
6723              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
6724            assert(NewBR == User);
6725            (void)NewBR;
6726            Dest = FalseBB;
6727
6728            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6729                                Chain, Dest, CC, Cmp);
6730            X86::CondCode CCode =
6731              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6732            CCode = X86::GetOppositeBranchCondition(CCode);
6733            CC = DAG.getConstant(CCode, MVT::i8);
6734            Cond = Cmp;
6735            addTest = false;
6736          }
6737        }
6738      }
6739    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6740      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6741      // It should be transformed during dag combiner except when the condition
6742      // is set by a arithmetics with overflow node.
6743      X86::CondCode CCode =
6744        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6745      CCode = X86::GetOppositeBranchCondition(CCode);
6746      CC = DAG.getConstant(CCode, MVT::i8);
6747      Cond = Cond.getOperand(0).getOperand(1);
6748      addTest = false;
6749    }
6750  }
6751
6752  if (addTest) {
6753    // Look pass the truncate.
6754    if (Cond.getOpcode() == ISD::TRUNCATE)
6755      Cond = Cond.getOperand(0);
6756
6757    // We know the result of AND is compared against zero. Try to match
6758    // it to BT.
6759    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6760      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6761      if (NewSetCC.getNode()) {
6762        CC = NewSetCC.getOperand(0);
6763        Cond = NewSetCC.getOperand(1);
6764        addTest = false;
6765      }
6766    }
6767  }
6768
6769  if (addTest) {
6770    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6771    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6772  }
6773  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6774                     Chain, Dest, CC, Cond);
6775}
6776
6777
6778// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6779// Calls to _alloca is needed to probe the stack when allocating more than 4k
6780// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6781// that the guard pages used by the OS virtual memory manager are allocated in
6782// correct sequence.
6783SDValue
6784X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6785                                           SelectionDAG &DAG) const {
6786  assert(Subtarget->isTargetCygMing() &&
6787         "This should be used only on Cygwin/Mingw targets");
6788  DebugLoc dl = Op.getDebugLoc();
6789
6790  // Get the inputs.
6791  SDValue Chain = Op.getOperand(0);
6792  SDValue Size  = Op.getOperand(1);
6793  // FIXME: Ensure alignment here
6794
6795  SDValue Flag;
6796
6797  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6798
6799  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6800  Flag = Chain.getValue(1);
6801
6802  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6803
6804  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6805  Flag = Chain.getValue(1);
6806
6807  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6808
6809  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6810  return DAG.getMergeValues(Ops1, 2, dl);
6811}
6812
6813SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
6814  MachineFunction &MF = DAG.getMachineFunction();
6815  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
6816
6817  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6818  DebugLoc dl = Op.getDebugLoc();
6819
6820  if (!Subtarget->is64Bit()) {
6821    // vastart just stores the address of the VarArgsFrameIndex slot into the
6822    // memory location argument.
6823    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6824                                   getPointerTy());
6825    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6826                        false, false, 0);
6827  }
6828
6829  // __va_list_tag:
6830  //   gp_offset         (0 - 6 * 8)
6831  //   fp_offset         (48 - 48 + 8 * 16)
6832  //   overflow_arg_area (point to parameters coming in memory).
6833  //   reg_save_area
6834  SmallVector<SDValue, 8> MemOps;
6835  SDValue FIN = Op.getOperand(1);
6836  // Store gp_offset
6837  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6838                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
6839                                               MVT::i32),
6840                               FIN, SV, 0, false, false, 0);
6841  MemOps.push_back(Store);
6842
6843  // Store fp_offset
6844  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6845                    FIN, DAG.getIntPtrConstant(4));
6846  Store = DAG.getStore(Op.getOperand(0), dl,
6847                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
6848                                       MVT::i32),
6849                       FIN, SV, 4, false, false, 0);
6850  MemOps.push_back(Store);
6851
6852  // Store ptr to overflow_arg_area
6853  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6854                    FIN, DAG.getIntPtrConstant(4));
6855  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6856                                    getPointerTy());
6857  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8,
6858                       false, false, 0);
6859  MemOps.push_back(Store);
6860
6861  // Store ptr to reg_save_area.
6862  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6863                    FIN, DAG.getIntPtrConstant(8));
6864  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
6865                                    getPointerTy());
6866  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16,
6867                       false, false, 0);
6868  MemOps.push_back(Store);
6869  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6870                     &MemOps[0], MemOps.size());
6871}
6872
6873SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
6874  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6875  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6876
6877  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
6878  return SDValue();
6879}
6880
6881SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
6882  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6883  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6884  SDValue Chain = Op.getOperand(0);
6885  SDValue DstPtr = Op.getOperand(1);
6886  SDValue SrcPtr = Op.getOperand(2);
6887  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6888  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6889  DebugLoc dl = Op.getDebugLoc();
6890
6891  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6892                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
6893                       false, DstSV, 0, SrcSV, 0);
6894}
6895
6896SDValue
6897X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
6898  DebugLoc dl = Op.getDebugLoc();
6899  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6900  switch (IntNo) {
6901  default: return SDValue();    // Don't custom lower most intrinsics.
6902  // Comparison intrinsics.
6903  case Intrinsic::x86_sse_comieq_ss:
6904  case Intrinsic::x86_sse_comilt_ss:
6905  case Intrinsic::x86_sse_comile_ss:
6906  case Intrinsic::x86_sse_comigt_ss:
6907  case Intrinsic::x86_sse_comige_ss:
6908  case Intrinsic::x86_sse_comineq_ss:
6909  case Intrinsic::x86_sse_ucomieq_ss:
6910  case Intrinsic::x86_sse_ucomilt_ss:
6911  case Intrinsic::x86_sse_ucomile_ss:
6912  case Intrinsic::x86_sse_ucomigt_ss:
6913  case Intrinsic::x86_sse_ucomige_ss:
6914  case Intrinsic::x86_sse_ucomineq_ss:
6915  case Intrinsic::x86_sse2_comieq_sd:
6916  case Intrinsic::x86_sse2_comilt_sd:
6917  case Intrinsic::x86_sse2_comile_sd:
6918  case Intrinsic::x86_sse2_comigt_sd:
6919  case Intrinsic::x86_sse2_comige_sd:
6920  case Intrinsic::x86_sse2_comineq_sd:
6921  case Intrinsic::x86_sse2_ucomieq_sd:
6922  case Intrinsic::x86_sse2_ucomilt_sd:
6923  case Intrinsic::x86_sse2_ucomile_sd:
6924  case Intrinsic::x86_sse2_ucomigt_sd:
6925  case Intrinsic::x86_sse2_ucomige_sd:
6926  case Intrinsic::x86_sse2_ucomineq_sd: {
6927    unsigned Opc = 0;
6928    ISD::CondCode CC = ISD::SETCC_INVALID;
6929    switch (IntNo) {
6930    default: break;
6931    case Intrinsic::x86_sse_comieq_ss:
6932    case Intrinsic::x86_sse2_comieq_sd:
6933      Opc = X86ISD::COMI;
6934      CC = ISD::SETEQ;
6935      break;
6936    case Intrinsic::x86_sse_comilt_ss:
6937    case Intrinsic::x86_sse2_comilt_sd:
6938      Opc = X86ISD::COMI;
6939      CC = ISD::SETLT;
6940      break;
6941    case Intrinsic::x86_sse_comile_ss:
6942    case Intrinsic::x86_sse2_comile_sd:
6943      Opc = X86ISD::COMI;
6944      CC = ISD::SETLE;
6945      break;
6946    case Intrinsic::x86_sse_comigt_ss:
6947    case Intrinsic::x86_sse2_comigt_sd:
6948      Opc = X86ISD::COMI;
6949      CC = ISD::SETGT;
6950      break;
6951    case Intrinsic::x86_sse_comige_ss:
6952    case Intrinsic::x86_sse2_comige_sd:
6953      Opc = X86ISD::COMI;
6954      CC = ISD::SETGE;
6955      break;
6956    case Intrinsic::x86_sse_comineq_ss:
6957    case Intrinsic::x86_sse2_comineq_sd:
6958      Opc = X86ISD::COMI;
6959      CC = ISD::SETNE;
6960      break;
6961    case Intrinsic::x86_sse_ucomieq_ss:
6962    case Intrinsic::x86_sse2_ucomieq_sd:
6963      Opc = X86ISD::UCOMI;
6964      CC = ISD::SETEQ;
6965      break;
6966    case Intrinsic::x86_sse_ucomilt_ss:
6967    case Intrinsic::x86_sse2_ucomilt_sd:
6968      Opc = X86ISD::UCOMI;
6969      CC = ISD::SETLT;
6970      break;
6971    case Intrinsic::x86_sse_ucomile_ss:
6972    case Intrinsic::x86_sse2_ucomile_sd:
6973      Opc = X86ISD::UCOMI;
6974      CC = ISD::SETLE;
6975      break;
6976    case Intrinsic::x86_sse_ucomigt_ss:
6977    case Intrinsic::x86_sse2_ucomigt_sd:
6978      Opc = X86ISD::UCOMI;
6979      CC = ISD::SETGT;
6980      break;
6981    case Intrinsic::x86_sse_ucomige_ss:
6982    case Intrinsic::x86_sse2_ucomige_sd:
6983      Opc = X86ISD::UCOMI;
6984      CC = ISD::SETGE;
6985      break;
6986    case Intrinsic::x86_sse_ucomineq_ss:
6987    case Intrinsic::x86_sse2_ucomineq_sd:
6988      Opc = X86ISD::UCOMI;
6989      CC = ISD::SETNE;
6990      break;
6991    }
6992
6993    SDValue LHS = Op.getOperand(1);
6994    SDValue RHS = Op.getOperand(2);
6995    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6996    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6997    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6998    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6999                                DAG.getConstant(X86CC, MVT::i8), Cond);
7000    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7001  }
7002  // ptest and testp intrinsics. The intrinsic these come from are designed to
7003  // return an integer value, not just an instruction so lower it to the ptest
7004  // or testp pattern and a setcc for the result.
7005  case Intrinsic::x86_sse41_ptestz:
7006  case Intrinsic::x86_sse41_ptestc:
7007  case Intrinsic::x86_sse41_ptestnzc:
7008  case Intrinsic::x86_avx_ptestz_256:
7009  case Intrinsic::x86_avx_ptestc_256:
7010  case Intrinsic::x86_avx_ptestnzc_256:
7011  case Intrinsic::x86_avx_vtestz_ps:
7012  case Intrinsic::x86_avx_vtestc_ps:
7013  case Intrinsic::x86_avx_vtestnzc_ps:
7014  case Intrinsic::x86_avx_vtestz_pd:
7015  case Intrinsic::x86_avx_vtestc_pd:
7016  case Intrinsic::x86_avx_vtestnzc_pd:
7017  case Intrinsic::x86_avx_vtestz_ps_256:
7018  case Intrinsic::x86_avx_vtestc_ps_256:
7019  case Intrinsic::x86_avx_vtestnzc_ps_256:
7020  case Intrinsic::x86_avx_vtestz_pd_256:
7021  case Intrinsic::x86_avx_vtestc_pd_256:
7022  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7023    bool IsTestPacked = false;
7024    unsigned X86CC = 0;
7025    switch (IntNo) {
7026    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7027    case Intrinsic::x86_avx_vtestz_ps:
7028    case Intrinsic::x86_avx_vtestz_pd:
7029    case Intrinsic::x86_avx_vtestz_ps_256:
7030    case Intrinsic::x86_avx_vtestz_pd_256:
7031      IsTestPacked = true; // Fallthrough
7032    case Intrinsic::x86_sse41_ptestz:
7033    case Intrinsic::x86_avx_ptestz_256:
7034      // ZF = 1
7035      X86CC = X86::COND_E;
7036      break;
7037    case Intrinsic::x86_avx_vtestc_ps:
7038    case Intrinsic::x86_avx_vtestc_pd:
7039    case Intrinsic::x86_avx_vtestc_ps_256:
7040    case Intrinsic::x86_avx_vtestc_pd_256:
7041      IsTestPacked = true; // Fallthrough
7042    case Intrinsic::x86_sse41_ptestc:
7043    case Intrinsic::x86_avx_ptestc_256:
7044      // CF = 1
7045      X86CC = X86::COND_B;
7046      break;
7047    case Intrinsic::x86_avx_vtestnzc_ps:
7048    case Intrinsic::x86_avx_vtestnzc_pd:
7049    case Intrinsic::x86_avx_vtestnzc_ps_256:
7050    case Intrinsic::x86_avx_vtestnzc_pd_256:
7051      IsTestPacked = true; // Fallthrough
7052    case Intrinsic::x86_sse41_ptestnzc:
7053    case Intrinsic::x86_avx_ptestnzc_256:
7054      // ZF and CF = 0
7055      X86CC = X86::COND_A;
7056      break;
7057    }
7058
7059    SDValue LHS = Op.getOperand(1);
7060    SDValue RHS = Op.getOperand(2);
7061    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7062    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7063    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7064    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7065    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7066  }
7067
7068  // Fix vector shift instructions where the last operand is a non-immediate
7069  // i32 value.
7070  case Intrinsic::x86_sse2_pslli_w:
7071  case Intrinsic::x86_sse2_pslli_d:
7072  case Intrinsic::x86_sse2_pslli_q:
7073  case Intrinsic::x86_sse2_psrli_w:
7074  case Intrinsic::x86_sse2_psrli_d:
7075  case Intrinsic::x86_sse2_psrli_q:
7076  case Intrinsic::x86_sse2_psrai_w:
7077  case Intrinsic::x86_sse2_psrai_d:
7078  case Intrinsic::x86_mmx_pslli_w:
7079  case Intrinsic::x86_mmx_pslli_d:
7080  case Intrinsic::x86_mmx_pslli_q:
7081  case Intrinsic::x86_mmx_psrli_w:
7082  case Intrinsic::x86_mmx_psrli_d:
7083  case Intrinsic::x86_mmx_psrli_q:
7084  case Intrinsic::x86_mmx_psrai_w:
7085  case Intrinsic::x86_mmx_psrai_d: {
7086    SDValue ShAmt = Op.getOperand(2);
7087    if (isa<ConstantSDNode>(ShAmt))
7088      return SDValue();
7089
7090    unsigned NewIntNo = 0;
7091    EVT ShAmtVT = MVT::v4i32;
7092    switch (IntNo) {
7093    case Intrinsic::x86_sse2_pslli_w:
7094      NewIntNo = Intrinsic::x86_sse2_psll_w;
7095      break;
7096    case Intrinsic::x86_sse2_pslli_d:
7097      NewIntNo = Intrinsic::x86_sse2_psll_d;
7098      break;
7099    case Intrinsic::x86_sse2_pslli_q:
7100      NewIntNo = Intrinsic::x86_sse2_psll_q;
7101      break;
7102    case Intrinsic::x86_sse2_psrli_w:
7103      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7104      break;
7105    case Intrinsic::x86_sse2_psrli_d:
7106      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7107      break;
7108    case Intrinsic::x86_sse2_psrli_q:
7109      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7110      break;
7111    case Intrinsic::x86_sse2_psrai_w:
7112      NewIntNo = Intrinsic::x86_sse2_psra_w;
7113      break;
7114    case Intrinsic::x86_sse2_psrai_d:
7115      NewIntNo = Intrinsic::x86_sse2_psra_d;
7116      break;
7117    default: {
7118      ShAmtVT = MVT::v2i32;
7119      switch (IntNo) {
7120      case Intrinsic::x86_mmx_pslli_w:
7121        NewIntNo = Intrinsic::x86_mmx_psll_w;
7122        break;
7123      case Intrinsic::x86_mmx_pslli_d:
7124        NewIntNo = Intrinsic::x86_mmx_psll_d;
7125        break;
7126      case Intrinsic::x86_mmx_pslli_q:
7127        NewIntNo = Intrinsic::x86_mmx_psll_q;
7128        break;
7129      case Intrinsic::x86_mmx_psrli_w:
7130        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7131        break;
7132      case Intrinsic::x86_mmx_psrli_d:
7133        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7134        break;
7135      case Intrinsic::x86_mmx_psrli_q:
7136        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7137        break;
7138      case Intrinsic::x86_mmx_psrai_w:
7139        NewIntNo = Intrinsic::x86_mmx_psra_w;
7140        break;
7141      case Intrinsic::x86_mmx_psrai_d:
7142        NewIntNo = Intrinsic::x86_mmx_psra_d;
7143        break;
7144      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7145      }
7146      break;
7147    }
7148    }
7149
7150    // The vector shift intrinsics with scalars uses 32b shift amounts but
7151    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7152    // to be zero.
7153    SDValue ShOps[4];
7154    ShOps[0] = ShAmt;
7155    ShOps[1] = DAG.getConstant(0, MVT::i32);
7156    if (ShAmtVT == MVT::v4i32) {
7157      ShOps[2] = DAG.getUNDEF(MVT::i32);
7158      ShOps[3] = DAG.getUNDEF(MVT::i32);
7159      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7160    } else {
7161      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7162    }
7163
7164    EVT VT = Op.getValueType();
7165    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7166    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7167                       DAG.getConstant(NewIntNo, MVT::i32),
7168                       Op.getOperand(1), ShAmt);
7169  }
7170  }
7171}
7172
7173SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7174                                           SelectionDAG &DAG) const {
7175  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7176  MFI->setReturnAddressIsTaken(true);
7177
7178  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7179  DebugLoc dl = Op.getDebugLoc();
7180
7181  if (Depth > 0) {
7182    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7183    SDValue Offset =
7184      DAG.getConstant(TD->getPointerSize(),
7185                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7186    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7187                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7188                                   FrameAddr, Offset),
7189                       NULL, 0, false, false, 0);
7190  }
7191
7192  // Just load the return address.
7193  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7194  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7195                     RetAddrFI, NULL, 0, false, false, 0);
7196}
7197
7198SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7199  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7200  MFI->setFrameAddressIsTaken(true);
7201
7202  EVT VT = Op.getValueType();
7203  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7204  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7205  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7206  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7207  while (Depth--)
7208    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7209                            false, false, 0);
7210  return FrameAddr;
7211}
7212
7213SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7214                                                     SelectionDAG &DAG) const {
7215  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7216}
7217
7218SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7219  MachineFunction &MF = DAG.getMachineFunction();
7220  SDValue Chain     = Op.getOperand(0);
7221  SDValue Offset    = Op.getOperand(1);
7222  SDValue Handler   = Op.getOperand(2);
7223  DebugLoc dl       = Op.getDebugLoc();
7224
7225  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7226                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7227                                     getPointerTy());
7228  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7229
7230  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7231                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7232  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7233  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7234  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7235  MF.getRegInfo().addLiveOut(StoreAddrReg);
7236
7237  return DAG.getNode(X86ISD::EH_RETURN, dl,
7238                     MVT::Other,
7239                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7240}
7241
7242SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7243                                             SelectionDAG &DAG) const {
7244  SDValue Root = Op.getOperand(0);
7245  SDValue Trmp = Op.getOperand(1); // trampoline
7246  SDValue FPtr = Op.getOperand(2); // nested function
7247  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7248  DebugLoc dl  = Op.getDebugLoc();
7249
7250  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7251
7252  if (Subtarget->is64Bit()) {
7253    SDValue OutChains[6];
7254
7255    // Large code-model.
7256    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7257    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7258
7259    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7260    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7261
7262    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7263
7264    // Load the pointer to the nested function into R11.
7265    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7266    SDValue Addr = Trmp;
7267    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7268                                Addr, TrmpAddr, 0, false, false, 0);
7269
7270    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7271                       DAG.getConstant(2, MVT::i64));
7272    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7273                                false, false, 2);
7274
7275    // Load the 'nest' parameter value into R10.
7276    // R10 is specified in X86CallingConv.td
7277    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7278    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7279                       DAG.getConstant(10, MVT::i64));
7280    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7281                                Addr, TrmpAddr, 10, false, false, 0);
7282
7283    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7284                       DAG.getConstant(12, MVT::i64));
7285    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7286                                false, false, 2);
7287
7288    // Jump to the nested function.
7289    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7290    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7291                       DAG.getConstant(20, MVT::i64));
7292    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7293                                Addr, TrmpAddr, 20, false, false, 0);
7294
7295    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7296    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7297                       DAG.getConstant(22, MVT::i64));
7298    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7299                                TrmpAddr, 22, false, false, 0);
7300
7301    SDValue Ops[] =
7302      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7303    return DAG.getMergeValues(Ops, 2, dl);
7304  } else {
7305    const Function *Func =
7306      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7307    CallingConv::ID CC = Func->getCallingConv();
7308    unsigned NestReg;
7309
7310    switch (CC) {
7311    default:
7312      llvm_unreachable("Unsupported calling convention");
7313    case CallingConv::C:
7314    case CallingConv::X86_StdCall: {
7315      // Pass 'nest' parameter in ECX.
7316      // Must be kept in sync with X86CallingConv.td
7317      NestReg = X86::ECX;
7318
7319      // Check that ECX wasn't needed by an 'inreg' parameter.
7320      const FunctionType *FTy = Func->getFunctionType();
7321      const AttrListPtr &Attrs = Func->getAttributes();
7322
7323      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7324        unsigned InRegCount = 0;
7325        unsigned Idx = 1;
7326
7327        for (FunctionType::param_iterator I = FTy->param_begin(),
7328             E = FTy->param_end(); I != E; ++I, ++Idx)
7329          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7330            // FIXME: should only count parameters that are lowered to integers.
7331            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7332
7333        if (InRegCount > 2) {
7334          report_fatal_error("Nest register in use - reduce number of inreg"
7335                             " parameters!");
7336        }
7337      }
7338      break;
7339    }
7340    case CallingConv::X86_FastCall:
7341    case CallingConv::X86_ThisCall:
7342    case CallingConv::Fast:
7343      // Pass 'nest' parameter in EAX.
7344      // Must be kept in sync with X86CallingConv.td
7345      NestReg = X86::EAX;
7346      break;
7347    }
7348
7349    SDValue OutChains[4];
7350    SDValue Addr, Disp;
7351
7352    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7353                       DAG.getConstant(10, MVT::i32));
7354    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7355
7356    // This is storing the opcode for MOV32ri.
7357    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7358    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7359    OutChains[0] = DAG.getStore(Root, dl,
7360                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7361                                Trmp, TrmpAddr, 0, false, false, 0);
7362
7363    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7364                       DAG.getConstant(1, MVT::i32));
7365    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7366                                false, false, 1);
7367
7368    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7369    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7370                       DAG.getConstant(5, MVT::i32));
7371    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7372                                TrmpAddr, 5, false, false, 1);
7373
7374    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7375                       DAG.getConstant(6, MVT::i32));
7376    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7377                                false, false, 1);
7378
7379    SDValue Ops[] =
7380      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7381    return DAG.getMergeValues(Ops, 2, dl);
7382  }
7383}
7384
7385SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7386                                            SelectionDAG &DAG) const {
7387  /*
7388   The rounding mode is in bits 11:10 of FPSR, and has the following
7389   settings:
7390     00 Round to nearest
7391     01 Round to -inf
7392     10 Round to +inf
7393     11 Round to 0
7394
7395  FLT_ROUNDS, on the other hand, expects the following:
7396    -1 Undefined
7397     0 Round to 0
7398     1 Round to nearest
7399     2 Round to +inf
7400     3 Round to -inf
7401
7402  To perform the conversion, we do:
7403    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7404  */
7405
7406  MachineFunction &MF = DAG.getMachineFunction();
7407  const TargetMachine &TM = MF.getTarget();
7408  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7409  unsigned StackAlignment = TFI.getStackAlignment();
7410  EVT VT = Op.getValueType();
7411  DebugLoc dl = Op.getDebugLoc();
7412
7413  // Save FP Control Word to stack slot
7414  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7415  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7416
7417  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7418                              DAG.getEntryNode(), StackSlot);
7419
7420  // Load FP Control Word from stack slot
7421  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7422                            false, false, 0);
7423
7424  // Transform as necessary
7425  SDValue CWD1 =
7426    DAG.getNode(ISD::SRL, dl, MVT::i16,
7427                DAG.getNode(ISD::AND, dl, MVT::i16,
7428                            CWD, DAG.getConstant(0x800, MVT::i16)),
7429                DAG.getConstant(11, MVT::i8));
7430  SDValue CWD2 =
7431    DAG.getNode(ISD::SRL, dl, MVT::i16,
7432                DAG.getNode(ISD::AND, dl, MVT::i16,
7433                            CWD, DAG.getConstant(0x400, MVT::i16)),
7434                DAG.getConstant(9, MVT::i8));
7435
7436  SDValue RetVal =
7437    DAG.getNode(ISD::AND, dl, MVT::i16,
7438                DAG.getNode(ISD::ADD, dl, MVT::i16,
7439                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7440                            DAG.getConstant(1, MVT::i16)),
7441                DAG.getConstant(3, MVT::i16));
7442
7443
7444  return DAG.getNode((VT.getSizeInBits() < 16 ?
7445                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7446}
7447
7448SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7449  EVT VT = Op.getValueType();
7450  EVT OpVT = VT;
7451  unsigned NumBits = VT.getSizeInBits();
7452  DebugLoc dl = Op.getDebugLoc();
7453
7454  Op = Op.getOperand(0);
7455  if (VT == MVT::i8) {
7456    // Zero extend to i32 since there is not an i8 bsr.
7457    OpVT = MVT::i32;
7458    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7459  }
7460
7461  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7462  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7463  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7464
7465  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7466  SDValue Ops[] = {
7467    Op,
7468    DAG.getConstant(NumBits+NumBits-1, OpVT),
7469    DAG.getConstant(X86::COND_E, MVT::i8),
7470    Op.getValue(1)
7471  };
7472  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7473
7474  // Finally xor with NumBits-1.
7475  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7476
7477  if (VT == MVT::i8)
7478    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7479  return Op;
7480}
7481
7482SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7483  EVT VT = Op.getValueType();
7484  EVT OpVT = VT;
7485  unsigned NumBits = VT.getSizeInBits();
7486  DebugLoc dl = Op.getDebugLoc();
7487
7488  Op = Op.getOperand(0);
7489  if (VT == MVT::i8) {
7490    OpVT = MVT::i32;
7491    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7492  }
7493
7494  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7495  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7496  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7497
7498  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7499  SDValue Ops[] = {
7500    Op,
7501    DAG.getConstant(NumBits, OpVT),
7502    DAG.getConstant(X86::COND_E, MVT::i8),
7503    Op.getValue(1)
7504  };
7505  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7506
7507  if (VT == MVT::i8)
7508    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7509  return Op;
7510}
7511
7512SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7513  EVT VT = Op.getValueType();
7514  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7515  DebugLoc dl = Op.getDebugLoc();
7516
7517  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7518  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7519  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7520  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7521  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7522  //
7523  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7524  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7525  //  return AloBlo + AloBhi + AhiBlo;
7526
7527  SDValue A = Op.getOperand(0);
7528  SDValue B = Op.getOperand(1);
7529
7530  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7531                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7532                       A, DAG.getConstant(32, MVT::i32));
7533  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7534                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7535                       B, DAG.getConstant(32, MVT::i32));
7536  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7537                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7538                       A, B);
7539  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7540                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7541                       A, Bhi);
7542  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7543                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7544                       Ahi, B);
7545  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7546                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7547                       AloBhi, DAG.getConstant(32, MVT::i32));
7548  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7549                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7550                       AhiBlo, DAG.getConstant(32, MVT::i32));
7551  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7552  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7553  return Res;
7554}
7555
7556SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
7557  EVT VT = Op.getValueType();
7558  DebugLoc dl = Op.getDebugLoc();
7559  SDValue R = Op.getOperand(0);
7560
7561  LLVMContext *Context = DAG.getContext();
7562
7563  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
7564
7565  if (VT == MVT::v4i32) {
7566    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7567                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
7568                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
7569
7570    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
7571
7572    std::vector<Constant*> CV(4, CI);
7573    Constant *C = ConstantVector::get(CV);
7574    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7575    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7576                                 PseudoSourceValue::getConstantPool(), 0,
7577                                 false, false, 16);
7578
7579    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
7580    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
7581    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
7582    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
7583  }
7584  if (VT == MVT::v16i8) {
7585    // a = a << 5;
7586    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7587                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
7588                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
7589
7590    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
7591    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
7592
7593    std::vector<Constant*> CVM1(16, CM1);
7594    std::vector<Constant*> CVM2(16, CM2);
7595    Constant *C = ConstantVector::get(CVM1);
7596    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7597    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7598                            PseudoSourceValue::getConstantPool(), 0,
7599                            false, false, 16);
7600
7601    // r = pblendv(r, psllw(r & (char16)15, 4), a);
7602    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7603    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7604                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7605                    DAG.getConstant(4, MVT::i32));
7606    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7607                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7608                    R, M, Op);
7609    // a += a
7610    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7611
7612    C = ConstantVector::get(CVM2);
7613    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7614    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7615                    PseudoSourceValue::getConstantPool(), 0, false, false, 16);
7616
7617    // r = pblendv(r, psllw(r & (char16)63, 2), a);
7618    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7619    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7620                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7621                    DAG.getConstant(2, MVT::i32));
7622    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7623                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7624                    R, M, Op);
7625    // a += a
7626    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7627
7628    // return pblendv(r, r+r, a);
7629    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7630                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7631                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
7632    return R;
7633  }
7634  return SDValue();
7635}
7636
7637SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
7638  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7639  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7640  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7641  // has only one use.
7642  SDNode *N = Op.getNode();
7643  SDValue LHS = N->getOperand(0);
7644  SDValue RHS = N->getOperand(1);
7645  unsigned BaseOp = 0;
7646  unsigned Cond = 0;
7647  DebugLoc dl = Op.getDebugLoc();
7648
7649  switch (Op.getOpcode()) {
7650  default: llvm_unreachable("Unknown ovf instruction!");
7651  case ISD::SADDO:
7652    // A subtract of one will be selected as a INC. Note that INC doesn't
7653    // set CF, so we can't do this for UADDO.
7654    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7655      if (C->getAPIntValue() == 1) {
7656        BaseOp = X86ISD::INC;
7657        Cond = X86::COND_O;
7658        break;
7659      }
7660    BaseOp = X86ISD::ADD;
7661    Cond = X86::COND_O;
7662    break;
7663  case ISD::UADDO:
7664    BaseOp = X86ISD::ADD;
7665    Cond = X86::COND_B;
7666    break;
7667  case ISD::SSUBO:
7668    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7669    // set CF, so we can't do this for USUBO.
7670    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7671      if (C->getAPIntValue() == 1) {
7672        BaseOp = X86ISD::DEC;
7673        Cond = X86::COND_O;
7674        break;
7675      }
7676    BaseOp = X86ISD::SUB;
7677    Cond = X86::COND_O;
7678    break;
7679  case ISD::USUBO:
7680    BaseOp = X86ISD::SUB;
7681    Cond = X86::COND_B;
7682    break;
7683  case ISD::SMULO:
7684    BaseOp = X86ISD::SMUL;
7685    Cond = X86::COND_O;
7686    break;
7687  case ISD::UMULO:
7688    BaseOp = X86ISD::UMUL;
7689    Cond = X86::COND_B;
7690    break;
7691  }
7692
7693  // Also sets EFLAGS.
7694  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7695  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7696
7697  SDValue SetCC =
7698    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7699                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7700
7701  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7702  return Sum;
7703}
7704
7705SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
7706  DebugLoc dl = Op.getDebugLoc();
7707
7708  if (!Subtarget->hasSSE2()) {
7709    SDValue Zero = DAG.getConstant(0,
7710                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7711    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
7712                       Zero);
7713  }
7714
7715  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7716  if(!isDev)
7717    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
7718  else {
7719    unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7720    unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7721    unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7722    unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
7723
7724    // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
7725    if (!Op1 && !Op2 && !Op3 && Op4)
7726      return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
7727
7728    // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
7729    if (Op1 && !Op2 && !Op3 && !Op4)
7730      return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
7731
7732    // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
7733    //           (MFENCE)>;
7734    return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
7735  }
7736}
7737
7738SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7739  EVT T = Op.getValueType();
7740  DebugLoc dl = Op.getDebugLoc();
7741  unsigned Reg = 0;
7742  unsigned size = 0;
7743  switch(T.getSimpleVT().SimpleTy) {
7744  default:
7745    assert(false && "Invalid value type!");
7746  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7747  case MVT::i16: Reg = X86::AX;  size = 2; break;
7748  case MVT::i32: Reg = X86::EAX; size = 4; break;
7749  case MVT::i64:
7750    assert(Subtarget->is64Bit() && "Node not type legal!");
7751    Reg = X86::RAX; size = 8;
7752    break;
7753  }
7754  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7755                                    Op.getOperand(2), SDValue());
7756  SDValue Ops[] = { cpIn.getValue(0),
7757                    Op.getOperand(1),
7758                    Op.getOperand(3),
7759                    DAG.getTargetConstant(size, MVT::i8),
7760                    cpIn.getValue(1) };
7761  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7762  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7763  SDValue cpOut =
7764    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7765  return cpOut;
7766}
7767
7768SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7769                                                 SelectionDAG &DAG) const {
7770  assert(Subtarget->is64Bit() && "Result not type legalized?");
7771  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7772  SDValue TheChain = Op.getOperand(0);
7773  DebugLoc dl = Op.getDebugLoc();
7774  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7775  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7776  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7777                                   rax.getValue(2));
7778  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7779                            DAG.getConstant(32, MVT::i8));
7780  SDValue Ops[] = {
7781    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7782    rdx.getValue(1)
7783  };
7784  return DAG.getMergeValues(Ops, 2, dl);
7785}
7786
7787SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
7788                                            SelectionDAG &DAG) const {
7789  EVT SrcVT = Op.getOperand(0).getValueType();
7790  EVT DstVT = Op.getValueType();
7791  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
7792          Subtarget->hasMMX() && !DisableMMX) &&
7793         "Unexpected custom BIT_CONVERT");
7794  assert((DstVT == MVT::i64 ||
7795          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
7796         "Unexpected custom BIT_CONVERT");
7797  // i64 <=> MMX conversions are Legal.
7798  if (SrcVT==MVT::i64 && DstVT.isVector())
7799    return Op;
7800  if (DstVT==MVT::i64 && SrcVT.isVector())
7801    return Op;
7802  // MMX <=> MMX conversions are Legal.
7803  if (SrcVT.isVector() && DstVT.isVector())
7804    return Op;
7805  // All other conversions need to be expanded.
7806  return SDValue();
7807}
7808SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
7809  SDNode *Node = Op.getNode();
7810  DebugLoc dl = Node->getDebugLoc();
7811  EVT T = Node->getValueType(0);
7812  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7813                              DAG.getConstant(0, T), Node->getOperand(2));
7814  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7815                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7816                       Node->getOperand(0),
7817                       Node->getOperand(1), negOp,
7818                       cast<AtomicSDNode>(Node)->getSrcValue(),
7819                       cast<AtomicSDNode>(Node)->getAlignment());
7820}
7821
7822/// LowerOperation - Provide custom lowering hooks for some operations.
7823///
7824SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7825  switch (Op.getOpcode()) {
7826  default: llvm_unreachable("Should not custom lower this!");
7827  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
7828  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7829  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7830  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7831  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7832  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7833  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7834  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7835  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7836  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7837  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7838  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7839  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7840  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7841  case ISD::SHL_PARTS:
7842  case ISD::SRA_PARTS:
7843  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7844  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7845  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7846  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7847  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7848  case ISD::FABS:               return LowerFABS(Op, DAG);
7849  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7850  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7851  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7852  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7853  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7854  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7855  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7856  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7857  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7858  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7859  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7860  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7861  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7862  case ISD::FRAME_TO_ARGS_OFFSET:
7863                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7864  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7865  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7866  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7867  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7868  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7869  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7870  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7871  case ISD::SHL:                return LowerSHL(Op, DAG);
7872  case ISD::SADDO:
7873  case ISD::UADDO:
7874  case ISD::SSUBO:
7875  case ISD::USUBO:
7876  case ISD::SMULO:
7877  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7878  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7879  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
7880  }
7881}
7882
7883void X86TargetLowering::
7884ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7885                        SelectionDAG &DAG, unsigned NewOp) const {
7886  EVT T = Node->getValueType(0);
7887  DebugLoc dl = Node->getDebugLoc();
7888  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7889
7890  SDValue Chain = Node->getOperand(0);
7891  SDValue In1 = Node->getOperand(1);
7892  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7893                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7894  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7895                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7896  SDValue Ops[] = { Chain, In1, In2L, In2H };
7897  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7898  SDValue Result =
7899    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7900                            cast<MemSDNode>(Node)->getMemOperand());
7901  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7902  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7903  Results.push_back(Result.getValue(2));
7904}
7905
7906/// ReplaceNodeResults - Replace a node with an illegal result type
7907/// with a new node built out of custom code.
7908void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7909                                           SmallVectorImpl<SDValue>&Results,
7910                                           SelectionDAG &DAG) const {
7911  DebugLoc dl = N->getDebugLoc();
7912  switch (N->getOpcode()) {
7913  default:
7914    assert(false && "Do not know how to custom type legalize this operation!");
7915    return;
7916  case ISD::FP_TO_SINT: {
7917    std::pair<SDValue,SDValue> Vals =
7918        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7919    SDValue FIST = Vals.first, StackSlot = Vals.second;
7920    if (FIST.getNode() != 0) {
7921      EVT VT = N->getValueType(0);
7922      // Return a load from the stack slot.
7923      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
7924                                    false, false, 0));
7925    }
7926    return;
7927  }
7928  case ISD::READCYCLECOUNTER: {
7929    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7930    SDValue TheChain = N->getOperand(0);
7931    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7932    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7933                                     rd.getValue(1));
7934    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7935                                     eax.getValue(2));
7936    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7937    SDValue Ops[] = { eax, edx };
7938    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7939    Results.push_back(edx.getValue(1));
7940    return;
7941  }
7942  case ISD::ATOMIC_CMP_SWAP: {
7943    EVT T = N->getValueType(0);
7944    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7945    SDValue cpInL, cpInH;
7946    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7947                        DAG.getConstant(0, MVT::i32));
7948    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7949                        DAG.getConstant(1, MVT::i32));
7950    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7951    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7952                             cpInL.getValue(1));
7953    SDValue swapInL, swapInH;
7954    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7955                          DAG.getConstant(0, MVT::i32));
7956    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7957                          DAG.getConstant(1, MVT::i32));
7958    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7959                               cpInH.getValue(1));
7960    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7961                               swapInL.getValue(1));
7962    SDValue Ops[] = { swapInH.getValue(0),
7963                      N->getOperand(1),
7964                      swapInH.getValue(1) };
7965    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7966    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7967    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7968                                        MVT::i32, Result.getValue(1));
7969    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7970                                        MVT::i32, cpOutL.getValue(2));
7971    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7972    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7973    Results.push_back(cpOutH.getValue(1));
7974    return;
7975  }
7976  case ISD::ATOMIC_LOAD_ADD:
7977    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7978    return;
7979  case ISD::ATOMIC_LOAD_AND:
7980    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7981    return;
7982  case ISD::ATOMIC_LOAD_NAND:
7983    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7984    return;
7985  case ISD::ATOMIC_LOAD_OR:
7986    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7987    return;
7988  case ISD::ATOMIC_LOAD_SUB:
7989    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7990    return;
7991  case ISD::ATOMIC_LOAD_XOR:
7992    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7993    return;
7994  case ISD::ATOMIC_SWAP:
7995    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7996    return;
7997  }
7998}
7999
8000const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8001  switch (Opcode) {
8002  default: return NULL;
8003  case X86ISD::BSF:                return "X86ISD::BSF";
8004  case X86ISD::BSR:                return "X86ISD::BSR";
8005  case X86ISD::SHLD:               return "X86ISD::SHLD";
8006  case X86ISD::SHRD:               return "X86ISD::SHRD";
8007  case X86ISD::FAND:               return "X86ISD::FAND";
8008  case X86ISD::FOR:                return "X86ISD::FOR";
8009  case X86ISD::FXOR:               return "X86ISD::FXOR";
8010  case X86ISD::FSRL:               return "X86ISD::FSRL";
8011  case X86ISD::FILD:               return "X86ISD::FILD";
8012  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8013  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8014  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8015  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8016  case X86ISD::FLD:                return "X86ISD::FLD";
8017  case X86ISD::FST:                return "X86ISD::FST";
8018  case X86ISD::CALL:               return "X86ISD::CALL";
8019  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8020  case X86ISD::BT:                 return "X86ISD::BT";
8021  case X86ISD::CMP:                return "X86ISD::CMP";
8022  case X86ISD::COMI:               return "X86ISD::COMI";
8023  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8024  case X86ISD::SETCC:              return "X86ISD::SETCC";
8025  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8026  case X86ISD::CMOV:               return "X86ISD::CMOV";
8027  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8028  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8029  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8030  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8031  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8032  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8033  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8034  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8035  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8036  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8037  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8038  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8039  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
8040  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8041  case X86ISD::FMAX:               return "X86ISD::FMAX";
8042  case X86ISD::FMIN:               return "X86ISD::FMIN";
8043  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8044  case X86ISD::FRCP:               return "X86ISD::FRCP";
8045  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8046  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8047  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
8048  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8049  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8050  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8051  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8052  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8053  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8054  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8055  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8056  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8057  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8058  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8059  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8060  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8061  case X86ISD::VSHL:               return "X86ISD::VSHL";
8062  case X86ISD::VSRL:               return "X86ISD::VSRL";
8063  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8064  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8065  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8066  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8067  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8068  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8069  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8070  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8071  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8072  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8073  case X86ISD::ADD:                return "X86ISD::ADD";
8074  case X86ISD::SUB:                return "X86ISD::SUB";
8075  case X86ISD::SMUL:               return "X86ISD::SMUL";
8076  case X86ISD::UMUL:               return "X86ISD::UMUL";
8077  case X86ISD::INC:                return "X86ISD::INC";
8078  case X86ISD::DEC:                return "X86ISD::DEC";
8079  case X86ISD::OR:                 return "X86ISD::OR";
8080  case X86ISD::XOR:                return "X86ISD::XOR";
8081  case X86ISD::AND:                return "X86ISD::AND";
8082  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8083  case X86ISD::PTEST:              return "X86ISD::PTEST";
8084  case X86ISD::TESTP:              return "X86ISD::TESTP";
8085  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8086  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
8087  }
8088}
8089
8090// isLegalAddressingMode - Return true if the addressing mode represented
8091// by AM is legal for this target, for a load/store of the specified type.
8092bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8093                                              const Type *Ty) const {
8094  // X86 supports extremely general addressing modes.
8095  CodeModel::Model M = getTargetMachine().getCodeModel();
8096
8097  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8098  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8099    return false;
8100
8101  if (AM.BaseGV) {
8102    unsigned GVFlags =
8103      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8104
8105    // If a reference to this global requires an extra load, we can't fold it.
8106    if (isGlobalStubReference(GVFlags))
8107      return false;
8108
8109    // If BaseGV requires a register for the PIC base, we cannot also have a
8110    // BaseReg specified.
8111    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8112      return false;
8113
8114    // If lower 4G is not available, then we must use rip-relative addressing.
8115    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8116      return false;
8117  }
8118
8119  switch (AM.Scale) {
8120  case 0:
8121  case 1:
8122  case 2:
8123  case 4:
8124  case 8:
8125    // These scales always work.
8126    break;
8127  case 3:
8128  case 5:
8129  case 9:
8130    // These scales are formed with basereg+scalereg.  Only accept if there is
8131    // no basereg yet.
8132    if (AM.HasBaseReg)
8133      return false;
8134    break;
8135  default:  // Other stuff never works.
8136    return false;
8137  }
8138
8139  return true;
8140}
8141
8142
8143bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8144  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8145    return false;
8146  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8147  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8148  if (NumBits1 <= NumBits2)
8149    return false;
8150  return true;
8151}
8152
8153bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8154  if (!VT1.isInteger() || !VT2.isInteger())
8155    return false;
8156  unsigned NumBits1 = VT1.getSizeInBits();
8157  unsigned NumBits2 = VT2.getSizeInBits();
8158  if (NumBits1 <= NumBits2)
8159    return false;
8160  return true;
8161}
8162
8163bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8164  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8165  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8166}
8167
8168bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8169  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8170  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8171}
8172
8173bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8174  // i16 instructions are longer (0x66 prefix) and potentially slower.
8175  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8176}
8177
8178/// isShuffleMaskLegal - Targets can use this to indicate that they only
8179/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8180/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8181/// are assumed to be legal.
8182bool
8183X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8184                                      EVT VT) const {
8185  // Very little shuffling can be done for 64-bit vectors right now.
8186  if (VT.getSizeInBits() == 64)
8187    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8188
8189  // FIXME: pshufb, blends, shifts.
8190  return (VT.getVectorNumElements() == 2 ||
8191          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8192          isMOVLMask(M, VT) ||
8193          isSHUFPMask(M, VT) ||
8194          isPSHUFDMask(M, VT) ||
8195          isPSHUFHWMask(M, VT) ||
8196          isPSHUFLWMask(M, VT) ||
8197          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8198          isUNPCKLMask(M, VT) ||
8199          isUNPCKHMask(M, VT) ||
8200          isUNPCKL_v_undef_Mask(M, VT) ||
8201          isUNPCKH_v_undef_Mask(M, VT));
8202}
8203
8204bool
8205X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8206                                          EVT VT) const {
8207  unsigned NumElts = VT.getVectorNumElements();
8208  // FIXME: This collection of masks seems suspect.
8209  if (NumElts == 2)
8210    return true;
8211  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8212    return (isMOVLMask(Mask, VT)  ||
8213            isCommutedMOVLMask(Mask, VT, true) ||
8214            isSHUFPMask(Mask, VT) ||
8215            isCommutedSHUFPMask(Mask, VT));
8216  }
8217  return false;
8218}
8219
8220//===----------------------------------------------------------------------===//
8221//                           X86 Scheduler Hooks
8222//===----------------------------------------------------------------------===//
8223
8224// private utility function
8225MachineBasicBlock *
8226X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8227                                                       MachineBasicBlock *MBB,
8228                                                       unsigned regOpc,
8229                                                       unsigned immOpc,
8230                                                       unsigned LoadOpc,
8231                                                       unsigned CXchgOpc,
8232                                                       unsigned notOpc,
8233                                                       unsigned EAXreg,
8234                                                       TargetRegisterClass *RC,
8235                                                       bool invSrc) const {
8236  // For the atomic bitwise operator, we generate
8237  //   thisMBB:
8238  //   newMBB:
8239  //     ld  t1 = [bitinstr.addr]
8240  //     op  t2 = t1, [bitinstr.val]
8241  //     mov EAX = t1
8242  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8243  //     bz  newMBB
8244  //     fallthrough -->nextMBB
8245  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8246  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8247  MachineFunction::iterator MBBIter = MBB;
8248  ++MBBIter;
8249
8250  /// First build the CFG
8251  MachineFunction *F = MBB->getParent();
8252  MachineBasicBlock *thisMBB = MBB;
8253  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8254  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8255  F->insert(MBBIter, newMBB);
8256  F->insert(MBBIter, nextMBB);
8257
8258  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8259  nextMBB->splice(nextMBB->begin(), thisMBB,
8260                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8261                  thisMBB->end());
8262  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8263
8264  // Update thisMBB to fall through to newMBB
8265  thisMBB->addSuccessor(newMBB);
8266
8267  // newMBB jumps to itself and fall through to nextMBB
8268  newMBB->addSuccessor(nextMBB);
8269  newMBB->addSuccessor(newMBB);
8270
8271  // Insert instructions into newMBB based on incoming instruction
8272  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8273         "unexpected number of operands");
8274  DebugLoc dl = bInstr->getDebugLoc();
8275  MachineOperand& destOper = bInstr->getOperand(0);
8276  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8277  int numArgs = bInstr->getNumOperands() - 1;
8278  for (int i=0; i < numArgs; ++i)
8279    argOpers[i] = &bInstr->getOperand(i+1);
8280
8281  // x86 address has 4 operands: base, index, scale, and displacement
8282  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8283  int valArgIndx = lastAddrIndx + 1;
8284
8285  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8286  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8287  for (int i=0; i <= lastAddrIndx; ++i)
8288    (*MIB).addOperand(*argOpers[i]);
8289
8290  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8291  if (invSrc) {
8292    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8293  }
8294  else
8295    tt = t1;
8296
8297  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8298  assert((argOpers[valArgIndx]->isReg() ||
8299          argOpers[valArgIndx]->isImm()) &&
8300         "invalid operand");
8301  if (argOpers[valArgIndx]->isReg())
8302    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8303  else
8304    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8305  MIB.addReg(tt);
8306  (*MIB).addOperand(*argOpers[valArgIndx]);
8307
8308  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
8309  MIB.addReg(t1);
8310
8311  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8312  for (int i=0; i <= lastAddrIndx; ++i)
8313    (*MIB).addOperand(*argOpers[i]);
8314  MIB.addReg(t2);
8315  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8316  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8317                    bInstr->memoperands_end());
8318
8319  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8320  MIB.addReg(EAXreg);
8321
8322  // insert branch
8323  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8324
8325  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8326  return nextMBB;
8327}
8328
8329// private utility function:  64 bit atomics on 32 bit host.
8330MachineBasicBlock *
8331X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8332                                                       MachineBasicBlock *MBB,
8333                                                       unsigned regOpcL,
8334                                                       unsigned regOpcH,
8335                                                       unsigned immOpcL,
8336                                                       unsigned immOpcH,
8337                                                       bool invSrc) const {
8338  // For the atomic bitwise operator, we generate
8339  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8340  //     ld t1,t2 = [bitinstr.addr]
8341  //   newMBB:
8342  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8343  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8344  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8345  //     mov ECX, EBX <- t5, t6
8346  //     mov EAX, EDX <- t1, t2
8347  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8348  //     mov t3, t4 <- EAX, EDX
8349  //     bz  newMBB
8350  //     result in out1, out2
8351  //     fallthrough -->nextMBB
8352
8353  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8354  const unsigned LoadOpc = X86::MOV32rm;
8355  const unsigned NotOpc = X86::NOT32r;
8356  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8357  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8358  MachineFunction::iterator MBBIter = MBB;
8359  ++MBBIter;
8360
8361  /// First build the CFG
8362  MachineFunction *F = MBB->getParent();
8363  MachineBasicBlock *thisMBB = MBB;
8364  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8365  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8366  F->insert(MBBIter, newMBB);
8367  F->insert(MBBIter, nextMBB);
8368
8369  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8370  nextMBB->splice(nextMBB->begin(), thisMBB,
8371                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8372                  thisMBB->end());
8373  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8374
8375  // Update thisMBB to fall through to newMBB
8376  thisMBB->addSuccessor(newMBB);
8377
8378  // newMBB jumps to itself and fall through to nextMBB
8379  newMBB->addSuccessor(nextMBB);
8380  newMBB->addSuccessor(newMBB);
8381
8382  DebugLoc dl = bInstr->getDebugLoc();
8383  // Insert instructions into newMBB based on incoming instruction
8384  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8385  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
8386         "unexpected number of operands");
8387  MachineOperand& dest1Oper = bInstr->getOperand(0);
8388  MachineOperand& dest2Oper = bInstr->getOperand(1);
8389  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8390  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
8391    argOpers[i] = &bInstr->getOperand(i+2);
8392
8393    // We use some of the operands multiple times, so conservatively just
8394    // clear any kill flags that might be present.
8395    if (argOpers[i]->isReg() && argOpers[i]->isUse())
8396      argOpers[i]->setIsKill(false);
8397  }
8398
8399  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8400  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8401
8402  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8403  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8404  for (int i=0; i <= lastAddrIndx; ++i)
8405    (*MIB).addOperand(*argOpers[i]);
8406  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8407  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8408  // add 4 to displacement.
8409  for (int i=0; i <= lastAddrIndx-2; ++i)
8410    (*MIB).addOperand(*argOpers[i]);
8411  MachineOperand newOp3 = *(argOpers[3]);
8412  if (newOp3.isImm())
8413    newOp3.setImm(newOp3.getImm()+4);
8414  else
8415    newOp3.setOffset(newOp3.getOffset()+4);
8416  (*MIB).addOperand(newOp3);
8417  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8418
8419  // t3/4 are defined later, at the bottom of the loop
8420  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8421  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8422  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8423    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8424  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8425    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8426
8427  // The subsequent operations should be using the destination registers of
8428  //the PHI instructions.
8429  if (invSrc) {
8430    t1 = F->getRegInfo().createVirtualRegister(RC);
8431    t2 = F->getRegInfo().createVirtualRegister(RC);
8432    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8433    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8434  } else {
8435    t1 = dest1Oper.getReg();
8436    t2 = dest2Oper.getReg();
8437  }
8438
8439  int valArgIndx = lastAddrIndx + 1;
8440  assert((argOpers[valArgIndx]->isReg() ||
8441          argOpers[valArgIndx]->isImm()) &&
8442         "invalid operand");
8443  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8444  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8445  if (argOpers[valArgIndx]->isReg())
8446    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8447  else
8448    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8449  if (regOpcL != X86::MOV32rr)
8450    MIB.addReg(t1);
8451  (*MIB).addOperand(*argOpers[valArgIndx]);
8452  assert(argOpers[valArgIndx + 1]->isReg() ==
8453         argOpers[valArgIndx]->isReg());
8454  assert(argOpers[valArgIndx + 1]->isImm() ==
8455         argOpers[valArgIndx]->isImm());
8456  if (argOpers[valArgIndx + 1]->isReg())
8457    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8458  else
8459    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8460  if (regOpcH != X86::MOV32rr)
8461    MIB.addReg(t2);
8462  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8463
8464  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8465  MIB.addReg(t1);
8466  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
8467  MIB.addReg(t2);
8468
8469  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
8470  MIB.addReg(t5);
8471  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
8472  MIB.addReg(t6);
8473
8474  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8475  for (int i=0; i <= lastAddrIndx; ++i)
8476    (*MIB).addOperand(*argOpers[i]);
8477
8478  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8479  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8480                    bInstr->memoperands_end());
8481
8482  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
8483  MIB.addReg(X86::EAX);
8484  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
8485  MIB.addReg(X86::EDX);
8486
8487  // insert branch
8488  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8489
8490  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8491  return nextMBB;
8492}
8493
8494// private utility function
8495MachineBasicBlock *
8496X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8497                                                      MachineBasicBlock *MBB,
8498                                                      unsigned cmovOpc) const {
8499  // For the atomic min/max operator, we generate
8500  //   thisMBB:
8501  //   newMBB:
8502  //     ld t1 = [min/max.addr]
8503  //     mov t2 = [min/max.val]
8504  //     cmp  t1, t2
8505  //     cmov[cond] t2 = t1
8506  //     mov EAX = t1
8507  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8508  //     bz   newMBB
8509  //     fallthrough -->nextMBB
8510  //
8511  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8512  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8513  MachineFunction::iterator MBBIter = MBB;
8514  ++MBBIter;
8515
8516  /// First build the CFG
8517  MachineFunction *F = MBB->getParent();
8518  MachineBasicBlock *thisMBB = MBB;
8519  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8520  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8521  F->insert(MBBIter, newMBB);
8522  F->insert(MBBIter, nextMBB);
8523
8524  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8525  nextMBB->splice(nextMBB->begin(), thisMBB,
8526                  llvm::next(MachineBasicBlock::iterator(mInstr)),
8527                  thisMBB->end());
8528  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8529
8530  // Update thisMBB to fall through to newMBB
8531  thisMBB->addSuccessor(newMBB);
8532
8533  // newMBB jumps to newMBB and fall through to nextMBB
8534  newMBB->addSuccessor(nextMBB);
8535  newMBB->addSuccessor(newMBB);
8536
8537  DebugLoc dl = mInstr->getDebugLoc();
8538  // Insert instructions into newMBB based on incoming instruction
8539  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8540         "unexpected number of operands");
8541  MachineOperand& destOper = mInstr->getOperand(0);
8542  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8543  int numArgs = mInstr->getNumOperands() - 1;
8544  for (int i=0; i < numArgs; ++i)
8545    argOpers[i] = &mInstr->getOperand(i+1);
8546
8547  // x86 address has 4 operands: base, index, scale, and displacement
8548  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8549  int valArgIndx = lastAddrIndx + 1;
8550
8551  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8552  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8553  for (int i=0; i <= lastAddrIndx; ++i)
8554    (*MIB).addOperand(*argOpers[i]);
8555
8556  // We only support register and immediate values
8557  assert((argOpers[valArgIndx]->isReg() ||
8558          argOpers[valArgIndx]->isImm()) &&
8559         "invalid operand");
8560
8561  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8562  if (argOpers[valArgIndx]->isReg())
8563    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
8564  else
8565    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8566  (*MIB).addOperand(*argOpers[valArgIndx]);
8567
8568  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8569  MIB.addReg(t1);
8570
8571  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8572  MIB.addReg(t1);
8573  MIB.addReg(t2);
8574
8575  // Generate movc
8576  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8577  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8578  MIB.addReg(t2);
8579  MIB.addReg(t1);
8580
8581  // Cmp and exchange if none has modified the memory location
8582  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8583  for (int i=0; i <= lastAddrIndx; ++i)
8584    (*MIB).addOperand(*argOpers[i]);
8585  MIB.addReg(t3);
8586  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8587  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8588                    mInstr->memoperands_end());
8589
8590  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8591  MIB.addReg(X86::EAX);
8592
8593  // insert branch
8594  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8595
8596  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
8597  return nextMBB;
8598}
8599
8600// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8601// or XMM0_V32I8 in AVX all of this code can be replaced with that
8602// in the .td file.
8603MachineBasicBlock *
8604X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8605                            unsigned numArgs, bool memArg) const {
8606
8607  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
8608         "Target must have SSE4.2 or AVX features enabled");
8609
8610  DebugLoc dl = MI->getDebugLoc();
8611  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8612
8613  unsigned Opc;
8614
8615  if (!Subtarget->hasAVX()) {
8616    if (memArg)
8617      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8618    else
8619      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8620  } else {
8621    if (memArg)
8622      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
8623    else
8624      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
8625  }
8626
8627  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8628
8629  for (unsigned i = 0; i < numArgs; ++i) {
8630    MachineOperand &Op = MI->getOperand(i+1);
8631
8632    if (!(Op.isReg() && Op.isImplicit()))
8633      MIB.addOperand(Op);
8634  }
8635
8636  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8637    .addReg(X86::XMM0);
8638
8639  MI->eraseFromParent();
8640
8641  return BB;
8642}
8643
8644MachineBasicBlock *
8645X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8646                                                 MachineInstr *MI,
8647                                                 MachineBasicBlock *MBB) const {
8648  // Emit code to save XMM registers to the stack. The ABI says that the
8649  // number of registers to save is given in %al, so it's theoretically
8650  // possible to do an indirect jump trick to avoid saving all of them,
8651  // however this code takes a simpler approach and just executes all
8652  // of the stores if %al is non-zero. It's less code, and it's probably
8653  // easier on the hardware branch predictor, and stores aren't all that
8654  // expensive anyway.
8655
8656  // Create the new basic blocks. One block contains all the XMM stores,
8657  // and one block is the final destination regardless of whether any
8658  // stores were performed.
8659  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8660  MachineFunction *F = MBB->getParent();
8661  MachineFunction::iterator MBBIter = MBB;
8662  ++MBBIter;
8663  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8664  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8665  F->insert(MBBIter, XMMSaveMBB);
8666  F->insert(MBBIter, EndMBB);
8667
8668  // Transfer the remainder of MBB and its successor edges to EndMBB.
8669  EndMBB->splice(EndMBB->begin(), MBB,
8670                 llvm::next(MachineBasicBlock::iterator(MI)),
8671                 MBB->end());
8672  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
8673
8674  // The original block will now fall through to the XMM save block.
8675  MBB->addSuccessor(XMMSaveMBB);
8676  // The XMMSaveMBB will fall through to the end block.
8677  XMMSaveMBB->addSuccessor(EndMBB);
8678
8679  // Now add the instructions.
8680  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8681  DebugLoc DL = MI->getDebugLoc();
8682
8683  unsigned CountReg = MI->getOperand(0).getReg();
8684  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8685  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8686
8687  if (!Subtarget->isTargetWin64()) {
8688    // If %al is 0, branch around the XMM save block.
8689    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8690    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8691    MBB->addSuccessor(EndMBB);
8692  }
8693
8694  // In the XMM save block, save all the XMM argument registers.
8695  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8696    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8697    MachineMemOperand *MMO =
8698      F->getMachineMemOperand(
8699        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8700        MachineMemOperand::MOStore, Offset,
8701        /*Size=*/16, /*Align=*/16);
8702    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8703      .addFrameIndex(RegSaveFrameIndex)
8704      .addImm(/*Scale=*/1)
8705      .addReg(/*IndexReg=*/0)
8706      .addImm(/*Disp=*/Offset)
8707      .addReg(/*Segment=*/0)
8708      .addReg(MI->getOperand(i).getReg())
8709      .addMemOperand(MMO);
8710  }
8711
8712  MI->eraseFromParent();   // The pseudo instruction is gone now.
8713
8714  return EndMBB;
8715}
8716
8717MachineBasicBlock *
8718X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8719                                     MachineBasicBlock *BB) const {
8720  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8721  DebugLoc DL = MI->getDebugLoc();
8722
8723  // To "insert" a SELECT_CC instruction, we actually have to insert the
8724  // diamond control-flow pattern.  The incoming instruction knows the
8725  // destination vreg to set, the condition code register to branch on, the
8726  // true/false values to select between, and a branch opcode to use.
8727  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8728  MachineFunction::iterator It = BB;
8729  ++It;
8730
8731  //  thisMBB:
8732  //  ...
8733  //   TrueVal = ...
8734  //   cmpTY ccX, r1, r2
8735  //   bCC copy1MBB
8736  //   fallthrough --> copy0MBB
8737  MachineBasicBlock *thisMBB = BB;
8738  MachineFunction *F = BB->getParent();
8739  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8740  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8741  F->insert(It, copy0MBB);
8742  F->insert(It, sinkMBB);
8743
8744  // If the EFLAGS register isn't dead in the terminator, then claim that it's
8745  // live into the sink and copy blocks.
8746  const MachineFunction *MF = BB->getParent();
8747  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
8748  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
8749
8750  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
8751    const MachineOperand &MO = MI->getOperand(I);
8752    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
8753    unsigned Reg = MO.getReg();
8754    if (Reg != X86::EFLAGS) continue;
8755    copy0MBB->addLiveIn(Reg);
8756    sinkMBB->addLiveIn(Reg);
8757  }
8758
8759  // Transfer the remainder of BB and its successor edges to sinkMBB.
8760  sinkMBB->splice(sinkMBB->begin(), BB,
8761                  llvm::next(MachineBasicBlock::iterator(MI)),
8762                  BB->end());
8763  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8764
8765  // Add the true and fallthrough blocks as its successors.
8766  BB->addSuccessor(copy0MBB);
8767  BB->addSuccessor(sinkMBB);
8768
8769  // Create the conditional branch instruction.
8770  unsigned Opc =
8771    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8772  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8773
8774  //  copy0MBB:
8775  //   %FalseValue = ...
8776  //   # fallthrough to sinkMBB
8777  copy0MBB->addSuccessor(sinkMBB);
8778
8779  //  sinkMBB:
8780  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8781  //  ...
8782  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8783          TII->get(X86::PHI), MI->getOperand(0).getReg())
8784    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8785    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8786
8787  MI->eraseFromParent();   // The pseudo instruction is gone now.
8788  return sinkMBB;
8789}
8790
8791MachineBasicBlock *
8792X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8793                                          MachineBasicBlock *BB) const {
8794  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8795  DebugLoc DL = MI->getDebugLoc();
8796
8797  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8798  // non-trivial part is impdef of ESP.
8799  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8800  // mingw-w64.
8801
8802  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
8803    .addExternalSymbol("_alloca")
8804    .addReg(X86::EAX, RegState::Implicit)
8805    .addReg(X86::ESP, RegState::Implicit)
8806    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8807    .addReg(X86::ESP, RegState::Define | RegState::Implicit);
8808
8809  MI->eraseFromParent();   // The pseudo instruction is gone now.
8810  return BB;
8811}
8812
8813MachineBasicBlock *
8814X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
8815                                      MachineBasicBlock *BB) const {
8816  // This is pretty easy.  We're taking the value that we received from
8817  // our load from the relocation, sticking it in either RDI (x86-64)
8818  // or EAX and doing an indirect call.  The return value will then
8819  // be in the normal return register.
8820  const X86InstrInfo *TII
8821    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
8822  DebugLoc DL = MI->getDebugLoc();
8823  MachineFunction *F = BB->getParent();
8824
8825  assert(MI->getOperand(3).isGlobal() && "This should be a global");
8826
8827  if (Subtarget->is64Bit()) {
8828    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8829                                      TII->get(X86::MOV64rm), X86::RDI)
8830    .addReg(X86::RIP)
8831    .addImm(0).addReg(0)
8832    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8833                      MI->getOperand(3).getTargetFlags())
8834    .addReg(0);
8835    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
8836    addDirectMem(MIB, X86::RDI);
8837  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
8838    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8839                                      TII->get(X86::MOV32rm), X86::EAX)
8840    .addReg(0)
8841    .addImm(0).addReg(0)
8842    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8843                      MI->getOperand(3).getTargetFlags())
8844    .addReg(0);
8845    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8846    addDirectMem(MIB, X86::EAX);
8847  } else {
8848    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8849                                      TII->get(X86::MOV32rm), X86::EAX)
8850    .addReg(TII->getGlobalBaseReg(F))
8851    .addImm(0).addReg(0)
8852    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8853                      MI->getOperand(3).getTargetFlags())
8854    .addReg(0);
8855    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8856    addDirectMem(MIB, X86::EAX);
8857  }
8858
8859  MI->eraseFromParent(); // The pseudo instruction is gone now.
8860  return BB;
8861}
8862
8863MachineBasicBlock *
8864X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8865                                               MachineBasicBlock *BB) const {
8866  switch (MI->getOpcode()) {
8867  default: assert(false && "Unexpected instr type to insert");
8868  case X86::MINGW_ALLOCA:
8869    return EmitLoweredMingwAlloca(MI, BB);
8870  case X86::TLSCall_32:
8871  case X86::TLSCall_64:
8872    return EmitLoweredTLSCall(MI, BB);
8873  case X86::CMOV_GR8:
8874  case X86::CMOV_V1I64:
8875  case X86::CMOV_FR32:
8876  case X86::CMOV_FR64:
8877  case X86::CMOV_V4F32:
8878  case X86::CMOV_V2F64:
8879  case X86::CMOV_V2I64:
8880  case X86::CMOV_GR16:
8881  case X86::CMOV_GR32:
8882  case X86::CMOV_RFP32:
8883  case X86::CMOV_RFP64:
8884  case X86::CMOV_RFP80:
8885    return EmitLoweredSelect(MI, BB);
8886
8887  case X86::FP32_TO_INT16_IN_MEM:
8888  case X86::FP32_TO_INT32_IN_MEM:
8889  case X86::FP32_TO_INT64_IN_MEM:
8890  case X86::FP64_TO_INT16_IN_MEM:
8891  case X86::FP64_TO_INT32_IN_MEM:
8892  case X86::FP64_TO_INT64_IN_MEM:
8893  case X86::FP80_TO_INT16_IN_MEM:
8894  case X86::FP80_TO_INT32_IN_MEM:
8895  case X86::FP80_TO_INT64_IN_MEM: {
8896    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8897    DebugLoc DL = MI->getDebugLoc();
8898
8899    // Change the floating point control register to use "round towards zero"
8900    // mode when truncating to an integer value.
8901    MachineFunction *F = BB->getParent();
8902    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8903    addFrameReference(BuildMI(*BB, MI, DL,
8904                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
8905
8906    // Load the old value of the high byte of the control word...
8907    unsigned OldCW =
8908      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8909    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
8910                      CWFrameIdx);
8911
8912    // Set the high part to be round to zero...
8913    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8914      .addImm(0xC7F);
8915
8916    // Reload the modified control word now...
8917    addFrameReference(BuildMI(*BB, MI, DL,
8918                              TII->get(X86::FLDCW16m)), CWFrameIdx);
8919
8920    // Restore the memory image of control word to original value
8921    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8922      .addReg(OldCW);
8923
8924    // Get the X86 opcode to use.
8925    unsigned Opc;
8926    switch (MI->getOpcode()) {
8927    default: llvm_unreachable("illegal opcode!");
8928    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8929    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8930    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8931    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8932    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8933    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8934    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8935    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8936    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8937    }
8938
8939    X86AddressMode AM;
8940    MachineOperand &Op = MI->getOperand(0);
8941    if (Op.isReg()) {
8942      AM.BaseType = X86AddressMode::RegBase;
8943      AM.Base.Reg = Op.getReg();
8944    } else {
8945      AM.BaseType = X86AddressMode::FrameIndexBase;
8946      AM.Base.FrameIndex = Op.getIndex();
8947    }
8948    Op = MI->getOperand(1);
8949    if (Op.isImm())
8950      AM.Scale = Op.getImm();
8951    Op = MI->getOperand(2);
8952    if (Op.isImm())
8953      AM.IndexReg = Op.getImm();
8954    Op = MI->getOperand(3);
8955    if (Op.isGlobal()) {
8956      AM.GV = Op.getGlobal();
8957    } else {
8958      AM.Disp = Op.getImm();
8959    }
8960    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
8961                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
8962
8963    // Reload the original control word now.
8964    addFrameReference(BuildMI(*BB, MI, DL,
8965                              TII->get(X86::FLDCW16m)), CWFrameIdx);
8966
8967    MI->eraseFromParent();   // The pseudo instruction is gone now.
8968    return BB;
8969  }
8970    // String/text processing lowering.
8971  case X86::PCMPISTRM128REG:
8972  case X86::VPCMPISTRM128REG:
8973    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8974  case X86::PCMPISTRM128MEM:
8975  case X86::VPCMPISTRM128MEM:
8976    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8977  case X86::PCMPESTRM128REG:
8978  case X86::VPCMPESTRM128REG:
8979    return EmitPCMP(MI, BB, 5, false /* in mem */);
8980  case X86::PCMPESTRM128MEM:
8981  case X86::VPCMPESTRM128MEM:
8982    return EmitPCMP(MI, BB, 5, true /* in mem */);
8983
8984    // Atomic Lowering.
8985  case X86::ATOMAND32:
8986    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8987                                               X86::AND32ri, X86::MOV32rm,
8988                                               X86::LCMPXCHG32,
8989                                               X86::NOT32r, X86::EAX,
8990                                               X86::GR32RegisterClass);
8991  case X86::ATOMOR32:
8992    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8993                                               X86::OR32ri, X86::MOV32rm,
8994                                               X86::LCMPXCHG32,
8995                                               X86::NOT32r, X86::EAX,
8996                                               X86::GR32RegisterClass);
8997  case X86::ATOMXOR32:
8998    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8999                                               X86::XOR32ri, X86::MOV32rm,
9000                                               X86::LCMPXCHG32,
9001                                               X86::NOT32r, X86::EAX,
9002                                               X86::GR32RegisterClass);
9003  case X86::ATOMNAND32:
9004    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9005                                               X86::AND32ri, X86::MOV32rm,
9006                                               X86::LCMPXCHG32,
9007                                               X86::NOT32r, X86::EAX,
9008                                               X86::GR32RegisterClass, true);
9009  case X86::ATOMMIN32:
9010    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
9011  case X86::ATOMMAX32:
9012    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
9013  case X86::ATOMUMIN32:
9014    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
9015  case X86::ATOMUMAX32:
9016    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
9017
9018  case X86::ATOMAND16:
9019    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9020                                               X86::AND16ri, X86::MOV16rm,
9021                                               X86::LCMPXCHG16,
9022                                               X86::NOT16r, X86::AX,
9023                                               X86::GR16RegisterClass);
9024  case X86::ATOMOR16:
9025    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
9026                                               X86::OR16ri, X86::MOV16rm,
9027                                               X86::LCMPXCHG16,
9028                                               X86::NOT16r, X86::AX,
9029                                               X86::GR16RegisterClass);
9030  case X86::ATOMXOR16:
9031    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
9032                                               X86::XOR16ri, X86::MOV16rm,
9033                                               X86::LCMPXCHG16,
9034                                               X86::NOT16r, X86::AX,
9035                                               X86::GR16RegisterClass);
9036  case X86::ATOMNAND16:
9037    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9038                                               X86::AND16ri, X86::MOV16rm,
9039                                               X86::LCMPXCHG16,
9040                                               X86::NOT16r, X86::AX,
9041                                               X86::GR16RegisterClass, true);
9042  case X86::ATOMMIN16:
9043    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
9044  case X86::ATOMMAX16:
9045    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
9046  case X86::ATOMUMIN16:
9047    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
9048  case X86::ATOMUMAX16:
9049    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
9050
9051  case X86::ATOMAND8:
9052    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9053                                               X86::AND8ri, X86::MOV8rm,
9054                                               X86::LCMPXCHG8,
9055                                               X86::NOT8r, X86::AL,
9056                                               X86::GR8RegisterClass);
9057  case X86::ATOMOR8:
9058    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
9059                                               X86::OR8ri, X86::MOV8rm,
9060                                               X86::LCMPXCHG8,
9061                                               X86::NOT8r, X86::AL,
9062                                               X86::GR8RegisterClass);
9063  case X86::ATOMXOR8:
9064    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
9065                                               X86::XOR8ri, X86::MOV8rm,
9066                                               X86::LCMPXCHG8,
9067                                               X86::NOT8r, X86::AL,
9068                                               X86::GR8RegisterClass);
9069  case X86::ATOMNAND8:
9070    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9071                                               X86::AND8ri, X86::MOV8rm,
9072                                               X86::LCMPXCHG8,
9073                                               X86::NOT8r, X86::AL,
9074                                               X86::GR8RegisterClass, true);
9075  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
9076  // This group is for 64-bit host.
9077  case X86::ATOMAND64:
9078    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9079                                               X86::AND64ri32, X86::MOV64rm,
9080                                               X86::LCMPXCHG64,
9081                                               X86::NOT64r, X86::RAX,
9082                                               X86::GR64RegisterClass);
9083  case X86::ATOMOR64:
9084    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
9085                                               X86::OR64ri32, X86::MOV64rm,
9086                                               X86::LCMPXCHG64,
9087                                               X86::NOT64r, X86::RAX,
9088                                               X86::GR64RegisterClass);
9089  case X86::ATOMXOR64:
9090    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
9091                                               X86::XOR64ri32, X86::MOV64rm,
9092                                               X86::LCMPXCHG64,
9093                                               X86::NOT64r, X86::RAX,
9094                                               X86::GR64RegisterClass);
9095  case X86::ATOMNAND64:
9096    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9097                                               X86::AND64ri32, X86::MOV64rm,
9098                                               X86::LCMPXCHG64,
9099                                               X86::NOT64r, X86::RAX,
9100                                               X86::GR64RegisterClass, true);
9101  case X86::ATOMMIN64:
9102    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
9103  case X86::ATOMMAX64:
9104    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
9105  case X86::ATOMUMIN64:
9106    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
9107  case X86::ATOMUMAX64:
9108    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
9109
9110  // This group does 64-bit operations on a 32-bit host.
9111  case X86::ATOMAND6432:
9112    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9113                                               X86::AND32rr, X86::AND32rr,
9114                                               X86::AND32ri, X86::AND32ri,
9115                                               false);
9116  case X86::ATOMOR6432:
9117    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9118                                               X86::OR32rr, X86::OR32rr,
9119                                               X86::OR32ri, X86::OR32ri,
9120                                               false);
9121  case X86::ATOMXOR6432:
9122    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9123                                               X86::XOR32rr, X86::XOR32rr,
9124                                               X86::XOR32ri, X86::XOR32ri,
9125                                               false);
9126  case X86::ATOMNAND6432:
9127    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9128                                               X86::AND32rr, X86::AND32rr,
9129                                               X86::AND32ri, X86::AND32ri,
9130                                               true);
9131  case X86::ATOMADD6432:
9132    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9133                                               X86::ADD32rr, X86::ADC32rr,
9134                                               X86::ADD32ri, X86::ADC32ri,
9135                                               false);
9136  case X86::ATOMSUB6432:
9137    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9138                                               X86::SUB32rr, X86::SBB32rr,
9139                                               X86::SUB32ri, X86::SBB32ri,
9140                                               false);
9141  case X86::ATOMSWAP6432:
9142    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9143                                               X86::MOV32rr, X86::MOV32rr,
9144                                               X86::MOV32ri, X86::MOV32ri,
9145                                               false);
9146  case X86::VASTART_SAVE_XMM_REGS:
9147    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
9148  }
9149}
9150
9151//===----------------------------------------------------------------------===//
9152//                           X86 Optimization Hooks
9153//===----------------------------------------------------------------------===//
9154
9155void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9156                                                       const APInt &Mask,
9157                                                       APInt &KnownZero,
9158                                                       APInt &KnownOne,
9159                                                       const SelectionDAG &DAG,
9160                                                       unsigned Depth) const {
9161  unsigned Opc = Op.getOpcode();
9162  assert((Opc >= ISD::BUILTIN_OP_END ||
9163          Opc == ISD::INTRINSIC_WO_CHAIN ||
9164          Opc == ISD::INTRINSIC_W_CHAIN ||
9165          Opc == ISD::INTRINSIC_VOID) &&
9166         "Should use MaskedValueIsZero if you don't know whether Op"
9167         " is a target node!");
9168
9169  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
9170  switch (Opc) {
9171  default: break;
9172  case X86ISD::ADD:
9173  case X86ISD::SUB:
9174  case X86ISD::SMUL:
9175  case X86ISD::UMUL:
9176  case X86ISD::INC:
9177  case X86ISD::DEC:
9178  case X86ISD::OR:
9179  case X86ISD::XOR:
9180  case X86ISD::AND:
9181    // These nodes' second result is a boolean.
9182    if (Op.getResNo() == 0)
9183      break;
9184    // Fallthrough
9185  case X86ISD::SETCC:
9186    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
9187                                       Mask.getBitWidth() - 1);
9188    break;
9189  }
9190}
9191
9192/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
9193/// node is a GlobalAddress + offset.
9194bool X86TargetLowering::isGAPlusOffset(SDNode *N,
9195                                       const GlobalValue* &GA,
9196                                       int64_t &Offset) const {
9197  if (N->getOpcode() == X86ISD::Wrapper) {
9198    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
9199      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9200      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9201      return true;
9202    }
9203  }
9204  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9205}
9206
9207/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9208/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9209/// if the load addresses are consecutive, non-overlapping, and in the right
9210/// order.
9211static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9212                                     const TargetLowering &TLI) {
9213  DebugLoc dl = N->getDebugLoc();
9214  EVT VT = N->getValueType(0);
9215  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9216
9217  if (VT.getSizeInBits() != 128)
9218    return SDValue();
9219
9220  SmallVector<SDValue, 16> Elts;
9221  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9222    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
9223
9224  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9225}
9226
9227/// PerformShuffleCombine - Detect vector gather/scatter index generation
9228/// and convert it from being a bunch of shuffles and extracts to a simple
9229/// store and scalar loads to extract the elements.
9230static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9231                                                const TargetLowering &TLI) {
9232  SDValue InputVector = N->getOperand(0);
9233
9234  // Only operate on vectors of 4 elements, where the alternative shuffling
9235  // gets to be more expensive.
9236  if (InputVector.getValueType() != MVT::v4i32)
9237    return SDValue();
9238
9239  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9240  // single use which is a sign-extend or zero-extend, and all elements are
9241  // used.
9242  SmallVector<SDNode *, 4> Uses;
9243  unsigned ExtractedElements = 0;
9244  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9245       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9246    if (UI.getUse().getResNo() != InputVector.getResNo())
9247      return SDValue();
9248
9249    SDNode *Extract = *UI;
9250    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9251      return SDValue();
9252
9253    if (Extract->getValueType(0) != MVT::i32)
9254      return SDValue();
9255    if (!Extract->hasOneUse())
9256      return SDValue();
9257    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9258        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9259      return SDValue();
9260    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9261      return SDValue();
9262
9263    // Record which element was extracted.
9264    ExtractedElements |=
9265      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9266
9267    Uses.push_back(Extract);
9268  }
9269
9270  // If not all the elements were used, this may not be worthwhile.
9271  if (ExtractedElements != 15)
9272    return SDValue();
9273
9274  // Ok, we've now decided to do the transformation.
9275  DebugLoc dl = InputVector.getDebugLoc();
9276
9277  // Store the value to a temporary stack slot.
9278  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9279  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL,
9280                            0, false, false, 0);
9281
9282  // Replace each use (extract) with a load of the appropriate element.
9283  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9284       UE = Uses.end(); UI != UE; ++UI) {
9285    SDNode *Extract = *UI;
9286
9287    // Compute the element's address.
9288    SDValue Idx = Extract->getOperand(1);
9289    unsigned EltSize =
9290        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9291    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9292    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9293
9294    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
9295                                     OffsetVal, StackPtr);
9296
9297    // Load the scalar.
9298    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
9299                                     ScalarAddr, NULL, 0, false, false, 0);
9300
9301    // Replace the exact with the load.
9302    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9303  }
9304
9305  // The replacement was made in place; don't return anything.
9306  return SDValue();
9307}
9308
9309/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9310static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9311                                    const X86Subtarget *Subtarget) {
9312  DebugLoc DL = N->getDebugLoc();
9313  SDValue Cond = N->getOperand(0);
9314  // Get the LHS/RHS of the select.
9315  SDValue LHS = N->getOperand(1);
9316  SDValue RHS = N->getOperand(2);
9317
9318  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9319  // instructions match the semantics of the common C idiom x<y?x:y but not
9320  // x<=y?x:y, because of how they handle negative zero (which can be
9321  // ignored in unsafe-math mode).
9322  if (Subtarget->hasSSE2() &&
9323      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9324      Cond.getOpcode() == ISD::SETCC) {
9325    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9326
9327    unsigned Opcode = 0;
9328    // Check for x CC y ? x : y.
9329    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9330        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9331      switch (CC) {
9332      default: break;
9333      case ISD::SETULT:
9334        // Converting this to a min would handle NaNs incorrectly, and swapping
9335        // the operands would cause it to handle comparisons between positive
9336        // and negative zero incorrectly.
9337        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9338          if (!UnsafeFPMath &&
9339              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9340            break;
9341          std::swap(LHS, RHS);
9342        }
9343        Opcode = X86ISD::FMIN;
9344        break;
9345      case ISD::SETOLE:
9346        // Converting this to a min would handle comparisons between positive
9347        // and negative zero incorrectly.
9348        if (!UnsafeFPMath &&
9349            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9350          break;
9351        Opcode = X86ISD::FMIN;
9352        break;
9353      case ISD::SETULE:
9354        // Converting this to a min would handle both negative zeros and NaNs
9355        // incorrectly, but we can swap the operands to fix both.
9356        std::swap(LHS, RHS);
9357      case ISD::SETOLT:
9358      case ISD::SETLT:
9359      case ISD::SETLE:
9360        Opcode = X86ISD::FMIN;
9361        break;
9362
9363      case ISD::SETOGE:
9364        // Converting this to a max would handle comparisons between positive
9365        // and negative zero incorrectly.
9366        if (!UnsafeFPMath &&
9367            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9368          break;
9369        Opcode = X86ISD::FMAX;
9370        break;
9371      case ISD::SETUGT:
9372        // Converting this to a max would handle NaNs incorrectly, and swapping
9373        // the operands would cause it to handle comparisons between positive
9374        // and negative zero incorrectly.
9375        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9376          if (!UnsafeFPMath &&
9377              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9378            break;
9379          std::swap(LHS, RHS);
9380        }
9381        Opcode = X86ISD::FMAX;
9382        break;
9383      case ISD::SETUGE:
9384        // Converting this to a max would handle both negative zeros and NaNs
9385        // incorrectly, but we can swap the operands to fix both.
9386        std::swap(LHS, RHS);
9387      case ISD::SETOGT:
9388      case ISD::SETGT:
9389      case ISD::SETGE:
9390        Opcode = X86ISD::FMAX;
9391        break;
9392      }
9393    // Check for x CC y ? y : x -- a min/max with reversed arms.
9394    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9395               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9396      switch (CC) {
9397      default: break;
9398      case ISD::SETOGE:
9399        // Converting this to a min would handle comparisons between positive
9400        // and negative zero incorrectly, and swapping the operands would
9401        // cause it to handle NaNs incorrectly.
9402        if (!UnsafeFPMath &&
9403            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9404          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9405            break;
9406          std::swap(LHS, RHS);
9407        }
9408        Opcode = X86ISD::FMIN;
9409        break;
9410      case ISD::SETUGT:
9411        // Converting this to a min would handle NaNs incorrectly.
9412        if (!UnsafeFPMath &&
9413            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9414          break;
9415        Opcode = X86ISD::FMIN;
9416        break;
9417      case ISD::SETUGE:
9418        // Converting this to a min would handle both negative zeros and NaNs
9419        // incorrectly, but we can swap the operands to fix both.
9420        std::swap(LHS, RHS);
9421      case ISD::SETOGT:
9422      case ISD::SETGT:
9423      case ISD::SETGE:
9424        Opcode = X86ISD::FMIN;
9425        break;
9426
9427      case ISD::SETULT:
9428        // Converting this to a max would handle NaNs incorrectly.
9429        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9430          break;
9431        Opcode = X86ISD::FMAX;
9432        break;
9433      case ISD::SETOLE:
9434        // Converting this to a max would handle comparisons between positive
9435        // and negative zero incorrectly, and swapping the operands would
9436        // cause it to handle NaNs incorrectly.
9437        if (!UnsafeFPMath &&
9438            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9439          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9440            break;
9441          std::swap(LHS, RHS);
9442        }
9443        Opcode = X86ISD::FMAX;
9444        break;
9445      case ISD::SETULE:
9446        // Converting this to a max would handle both negative zeros and NaNs
9447        // incorrectly, but we can swap the operands to fix both.
9448        std::swap(LHS, RHS);
9449      case ISD::SETOLT:
9450      case ISD::SETLT:
9451      case ISD::SETLE:
9452        Opcode = X86ISD::FMAX;
9453        break;
9454      }
9455    }
9456
9457    if (Opcode)
9458      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9459  }
9460
9461  // If this is a select between two integer constants, try to do some
9462  // optimizations.
9463  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9464    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9465      // Don't do this for crazy integer types.
9466      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9467        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9468        // so that TrueC (the true value) is larger than FalseC.
9469        bool NeedsCondInvert = false;
9470
9471        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9472            // Efficiently invertible.
9473            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9474             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9475              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9476          NeedsCondInvert = true;
9477          std::swap(TrueC, FalseC);
9478        }
9479
9480        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9481        if (FalseC->getAPIntValue() == 0 &&
9482            TrueC->getAPIntValue().isPowerOf2()) {
9483          if (NeedsCondInvert) // Invert the condition if needed.
9484            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9485                               DAG.getConstant(1, Cond.getValueType()));
9486
9487          // Zero extend the condition if needed.
9488          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9489
9490          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9491          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9492                             DAG.getConstant(ShAmt, MVT::i8));
9493        }
9494
9495        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9496        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9497          if (NeedsCondInvert) // Invert the condition if needed.
9498            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9499                               DAG.getConstant(1, Cond.getValueType()));
9500
9501          // Zero extend the condition if needed.
9502          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9503                             FalseC->getValueType(0), Cond);
9504          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9505                             SDValue(FalseC, 0));
9506        }
9507
9508        // Optimize cases that will turn into an LEA instruction.  This requires
9509        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9510        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9511          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9512          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9513
9514          bool isFastMultiplier = false;
9515          if (Diff < 10) {
9516            switch ((unsigned char)Diff) {
9517              default: break;
9518              case 1:  // result = add base, cond
9519              case 2:  // result = lea base(    , cond*2)
9520              case 3:  // result = lea base(cond, cond*2)
9521              case 4:  // result = lea base(    , cond*4)
9522              case 5:  // result = lea base(cond, cond*4)
9523              case 8:  // result = lea base(    , cond*8)
9524              case 9:  // result = lea base(cond, cond*8)
9525                isFastMultiplier = true;
9526                break;
9527            }
9528          }
9529
9530          if (isFastMultiplier) {
9531            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9532            if (NeedsCondInvert) // Invert the condition if needed.
9533              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9534                                 DAG.getConstant(1, Cond.getValueType()));
9535
9536            // Zero extend the condition if needed.
9537            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9538                               Cond);
9539            // Scale the condition by the difference.
9540            if (Diff != 1)
9541              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9542                                 DAG.getConstant(Diff, Cond.getValueType()));
9543
9544            // Add the base if non-zero.
9545            if (FalseC->getAPIntValue() != 0)
9546              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9547                                 SDValue(FalseC, 0));
9548            return Cond;
9549          }
9550        }
9551      }
9552  }
9553
9554  return SDValue();
9555}
9556
9557/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9558static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9559                                  TargetLowering::DAGCombinerInfo &DCI) {
9560  DebugLoc DL = N->getDebugLoc();
9561
9562  // If the flag operand isn't dead, don't touch this CMOV.
9563  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9564    return SDValue();
9565
9566  // If this is a select between two integer constants, try to do some
9567  // optimizations.  Note that the operands are ordered the opposite of SELECT
9568  // operands.
9569  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9570    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9571      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9572      // larger than FalseC (the false value).
9573      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9574
9575      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9576        CC = X86::GetOppositeBranchCondition(CC);
9577        std::swap(TrueC, FalseC);
9578      }
9579
9580      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9581      // This is efficient for any integer data type (including i8/i16) and
9582      // shift amount.
9583      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9584        SDValue Cond = N->getOperand(3);
9585        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9586                           DAG.getConstant(CC, MVT::i8), Cond);
9587
9588        // Zero extend the condition if needed.
9589        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9590
9591        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9592        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9593                           DAG.getConstant(ShAmt, MVT::i8));
9594        if (N->getNumValues() == 2)  // Dead flag value?
9595          return DCI.CombineTo(N, Cond, SDValue());
9596        return Cond;
9597      }
9598
9599      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9600      // for any integer data type, including i8/i16.
9601      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9602        SDValue Cond = N->getOperand(3);
9603        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9604                           DAG.getConstant(CC, MVT::i8), Cond);
9605
9606        // Zero extend the condition if needed.
9607        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9608                           FalseC->getValueType(0), Cond);
9609        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9610                           SDValue(FalseC, 0));
9611
9612        if (N->getNumValues() == 2)  // Dead flag value?
9613          return DCI.CombineTo(N, Cond, SDValue());
9614        return Cond;
9615      }
9616
9617      // Optimize cases that will turn into an LEA instruction.  This requires
9618      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9619      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9620        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9621        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9622
9623        bool isFastMultiplier = false;
9624        if (Diff < 10) {
9625          switch ((unsigned char)Diff) {
9626          default: break;
9627          case 1:  // result = add base, cond
9628          case 2:  // result = lea base(    , cond*2)
9629          case 3:  // result = lea base(cond, cond*2)
9630          case 4:  // result = lea base(    , cond*4)
9631          case 5:  // result = lea base(cond, cond*4)
9632          case 8:  // result = lea base(    , cond*8)
9633          case 9:  // result = lea base(cond, cond*8)
9634            isFastMultiplier = true;
9635            break;
9636          }
9637        }
9638
9639        if (isFastMultiplier) {
9640          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9641          SDValue Cond = N->getOperand(3);
9642          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9643                             DAG.getConstant(CC, MVT::i8), Cond);
9644          // Zero extend the condition if needed.
9645          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9646                             Cond);
9647          // Scale the condition by the difference.
9648          if (Diff != 1)
9649            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9650                               DAG.getConstant(Diff, Cond.getValueType()));
9651
9652          // Add the base if non-zero.
9653          if (FalseC->getAPIntValue() != 0)
9654            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9655                               SDValue(FalseC, 0));
9656          if (N->getNumValues() == 2)  // Dead flag value?
9657            return DCI.CombineTo(N, Cond, SDValue());
9658          return Cond;
9659        }
9660      }
9661    }
9662  }
9663  return SDValue();
9664}
9665
9666
9667/// PerformMulCombine - Optimize a single multiply with constant into two
9668/// in order to implement it with two cheaper instructions, e.g.
9669/// LEA + SHL, LEA + LEA.
9670static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9671                                 TargetLowering::DAGCombinerInfo &DCI) {
9672  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9673    return SDValue();
9674
9675  EVT VT = N->getValueType(0);
9676  if (VT != MVT::i64)
9677    return SDValue();
9678
9679  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9680  if (!C)
9681    return SDValue();
9682  uint64_t MulAmt = C->getZExtValue();
9683  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9684    return SDValue();
9685
9686  uint64_t MulAmt1 = 0;
9687  uint64_t MulAmt2 = 0;
9688  if ((MulAmt % 9) == 0) {
9689    MulAmt1 = 9;
9690    MulAmt2 = MulAmt / 9;
9691  } else if ((MulAmt % 5) == 0) {
9692    MulAmt1 = 5;
9693    MulAmt2 = MulAmt / 5;
9694  } else if ((MulAmt % 3) == 0) {
9695    MulAmt1 = 3;
9696    MulAmt2 = MulAmt / 3;
9697  }
9698  if (MulAmt2 &&
9699      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9700    DebugLoc DL = N->getDebugLoc();
9701
9702    if (isPowerOf2_64(MulAmt2) &&
9703        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9704      // If second multiplifer is pow2, issue it first. We want the multiply by
9705      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9706      // is an add.
9707      std::swap(MulAmt1, MulAmt2);
9708
9709    SDValue NewMul;
9710    if (isPowerOf2_64(MulAmt1))
9711      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9712                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9713    else
9714      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9715                           DAG.getConstant(MulAmt1, VT));
9716
9717    if (isPowerOf2_64(MulAmt2))
9718      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9719                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9720    else
9721      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9722                           DAG.getConstant(MulAmt2, VT));
9723
9724    // Do not add new nodes to DAG combiner worklist.
9725    DCI.CombineTo(N, NewMul, false);
9726  }
9727  return SDValue();
9728}
9729
9730static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9731  SDValue N0 = N->getOperand(0);
9732  SDValue N1 = N->getOperand(1);
9733  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9734  EVT VT = N0.getValueType();
9735
9736  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9737  // since the result of setcc_c is all zero's or all ones.
9738  if (N1C && N0.getOpcode() == ISD::AND &&
9739      N0.getOperand(1).getOpcode() == ISD::Constant) {
9740    SDValue N00 = N0.getOperand(0);
9741    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9742        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9743          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9744         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9745      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9746      APInt ShAmt = N1C->getAPIntValue();
9747      Mask = Mask.shl(ShAmt);
9748      if (Mask != 0)
9749        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9750                           N00, DAG.getConstant(Mask, VT));
9751    }
9752  }
9753
9754  return SDValue();
9755}
9756
9757/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9758///                       when possible.
9759static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9760                                   const X86Subtarget *Subtarget) {
9761  EVT VT = N->getValueType(0);
9762  if (!VT.isVector() && VT.isInteger() &&
9763      N->getOpcode() == ISD::SHL)
9764    return PerformSHLCombine(N, DAG);
9765
9766  // On X86 with SSE2 support, we can transform this to a vector shift if
9767  // all elements are shifted by the same amount.  We can't do this in legalize
9768  // because the a constant vector is typically transformed to a constant pool
9769  // so we have no knowledge of the shift amount.
9770  if (!Subtarget->hasSSE2())
9771    return SDValue();
9772
9773  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9774    return SDValue();
9775
9776  SDValue ShAmtOp = N->getOperand(1);
9777  EVT EltVT = VT.getVectorElementType();
9778  DebugLoc DL = N->getDebugLoc();
9779  SDValue BaseShAmt = SDValue();
9780  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9781    unsigned NumElts = VT.getVectorNumElements();
9782    unsigned i = 0;
9783    for (; i != NumElts; ++i) {
9784      SDValue Arg = ShAmtOp.getOperand(i);
9785      if (Arg.getOpcode() == ISD::UNDEF) continue;
9786      BaseShAmt = Arg;
9787      break;
9788    }
9789    for (; i != NumElts; ++i) {
9790      SDValue Arg = ShAmtOp.getOperand(i);
9791      if (Arg.getOpcode() == ISD::UNDEF) continue;
9792      if (Arg != BaseShAmt) {
9793        return SDValue();
9794      }
9795    }
9796  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9797             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9798    SDValue InVec = ShAmtOp.getOperand(0);
9799    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9800      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9801      unsigned i = 0;
9802      for (; i != NumElts; ++i) {
9803        SDValue Arg = InVec.getOperand(i);
9804        if (Arg.getOpcode() == ISD::UNDEF) continue;
9805        BaseShAmt = Arg;
9806        break;
9807      }
9808    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9809       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9810         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9811         if (C->getZExtValue() == SplatIdx)
9812           BaseShAmt = InVec.getOperand(1);
9813       }
9814    }
9815    if (BaseShAmt.getNode() == 0)
9816      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9817                              DAG.getIntPtrConstant(0));
9818  } else
9819    return SDValue();
9820
9821  // The shift amount is an i32.
9822  if (EltVT.bitsGT(MVT::i32))
9823    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9824  else if (EltVT.bitsLT(MVT::i32))
9825    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9826
9827  // The shift amount is identical so we can do a vector shift.
9828  SDValue  ValOp = N->getOperand(0);
9829  switch (N->getOpcode()) {
9830  default:
9831    llvm_unreachable("Unknown shift opcode!");
9832    break;
9833  case ISD::SHL:
9834    if (VT == MVT::v2i64)
9835      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9836                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9837                         ValOp, BaseShAmt);
9838    if (VT == MVT::v4i32)
9839      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9840                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9841                         ValOp, BaseShAmt);
9842    if (VT == MVT::v8i16)
9843      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9844                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9845                         ValOp, BaseShAmt);
9846    break;
9847  case ISD::SRA:
9848    if (VT == MVT::v4i32)
9849      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9850                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9851                         ValOp, BaseShAmt);
9852    if (VT == MVT::v8i16)
9853      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9854                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9855                         ValOp, BaseShAmt);
9856    break;
9857  case ISD::SRL:
9858    if (VT == MVT::v2i64)
9859      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9860                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9861                         ValOp, BaseShAmt);
9862    if (VT == MVT::v4i32)
9863      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9864                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9865                         ValOp, BaseShAmt);
9866    if (VT ==  MVT::v8i16)
9867      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9868                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9869                         ValOp, BaseShAmt);
9870    break;
9871  }
9872  return SDValue();
9873}
9874
9875static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9876                                TargetLowering::DAGCombinerInfo &DCI,
9877                                const X86Subtarget *Subtarget) {
9878  if (DCI.isBeforeLegalizeOps())
9879    return SDValue();
9880
9881  EVT VT = N->getValueType(0);
9882  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
9883    return SDValue();
9884
9885  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9886  SDValue N0 = N->getOperand(0);
9887  SDValue N1 = N->getOperand(1);
9888  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9889    std::swap(N0, N1);
9890  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9891    return SDValue();
9892  if (!N0.hasOneUse() || !N1.hasOneUse())
9893    return SDValue();
9894
9895  SDValue ShAmt0 = N0.getOperand(1);
9896  if (ShAmt0.getValueType() != MVT::i8)
9897    return SDValue();
9898  SDValue ShAmt1 = N1.getOperand(1);
9899  if (ShAmt1.getValueType() != MVT::i8)
9900    return SDValue();
9901  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9902    ShAmt0 = ShAmt0.getOperand(0);
9903  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9904    ShAmt1 = ShAmt1.getOperand(0);
9905
9906  DebugLoc DL = N->getDebugLoc();
9907  unsigned Opc = X86ISD::SHLD;
9908  SDValue Op0 = N0.getOperand(0);
9909  SDValue Op1 = N1.getOperand(0);
9910  if (ShAmt0.getOpcode() == ISD::SUB) {
9911    Opc = X86ISD::SHRD;
9912    std::swap(Op0, Op1);
9913    std::swap(ShAmt0, ShAmt1);
9914  }
9915
9916  unsigned Bits = VT.getSizeInBits();
9917  if (ShAmt1.getOpcode() == ISD::SUB) {
9918    SDValue Sum = ShAmt1.getOperand(0);
9919    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9920      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
9921      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
9922        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
9923      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
9924        return DAG.getNode(Opc, DL, VT,
9925                           Op0, Op1,
9926                           DAG.getNode(ISD::TRUNCATE, DL,
9927                                       MVT::i8, ShAmt0));
9928    }
9929  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9930    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9931    if (ShAmt0C &&
9932        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
9933      return DAG.getNode(Opc, DL, VT,
9934                         N0.getOperand(0), N1.getOperand(0),
9935                         DAG.getNode(ISD::TRUNCATE, DL,
9936                                       MVT::i8, ShAmt0));
9937  }
9938
9939  return SDValue();
9940}
9941
9942/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9943static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9944                                   const X86Subtarget *Subtarget) {
9945  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9946  // the FP state in cases where an emms may be missing.
9947  // A preferable solution to the general problem is to figure out the right
9948  // places to insert EMMS.  This qualifies as a quick hack.
9949
9950  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9951  StoreSDNode *St = cast<StoreSDNode>(N);
9952  EVT VT = St->getValue().getValueType();
9953  if (VT.getSizeInBits() != 64)
9954    return SDValue();
9955
9956  const Function *F = DAG.getMachineFunction().getFunction();
9957  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9958  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9959    && Subtarget->hasSSE2();
9960  if ((VT.isVector() ||
9961       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9962      isa<LoadSDNode>(St->getValue()) &&
9963      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9964      St->getChain().hasOneUse() && !St->isVolatile()) {
9965    SDNode* LdVal = St->getValue().getNode();
9966    LoadSDNode *Ld = 0;
9967    int TokenFactorIndex = -1;
9968    SmallVector<SDValue, 8> Ops;
9969    SDNode* ChainVal = St->getChain().getNode();
9970    // Must be a store of a load.  We currently handle two cases:  the load
9971    // is a direct child, and it's under an intervening TokenFactor.  It is
9972    // possible to dig deeper under nested TokenFactors.
9973    if (ChainVal == LdVal)
9974      Ld = cast<LoadSDNode>(St->getChain());
9975    else if (St->getValue().hasOneUse() &&
9976             ChainVal->getOpcode() == ISD::TokenFactor) {
9977      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9978        if (ChainVal->getOperand(i).getNode() == LdVal) {
9979          TokenFactorIndex = i;
9980          Ld = cast<LoadSDNode>(St->getValue());
9981        } else
9982          Ops.push_back(ChainVal->getOperand(i));
9983      }
9984    }
9985
9986    if (!Ld || !ISD::isNormalLoad(Ld))
9987      return SDValue();
9988
9989    // If this is not the MMX case, i.e. we are just turning i64 load/store
9990    // into f64 load/store, avoid the transformation if there are multiple
9991    // uses of the loaded value.
9992    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9993      return SDValue();
9994
9995    DebugLoc LdDL = Ld->getDebugLoc();
9996    DebugLoc StDL = N->getDebugLoc();
9997    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9998    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9999    // pair instead.
10000    if (Subtarget->is64Bit() || F64IsLegal) {
10001      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
10002      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
10003                                  Ld->getBasePtr(), Ld->getSrcValue(),
10004                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
10005                                  Ld->isNonTemporal(), Ld->getAlignment());
10006      SDValue NewChain = NewLd.getValue(1);
10007      if (TokenFactorIndex != -1) {
10008        Ops.push_back(NewChain);
10009        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10010                               Ops.size());
10011      }
10012      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
10013                          St->getSrcValue(), St->getSrcValueOffset(),
10014                          St->isVolatile(), St->isNonTemporal(),
10015                          St->getAlignment());
10016    }
10017
10018    // Otherwise, lower to two pairs of 32-bit loads / stores.
10019    SDValue LoAddr = Ld->getBasePtr();
10020    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
10021                                 DAG.getConstant(4, MVT::i32));
10022
10023    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
10024                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
10025                               Ld->isVolatile(), Ld->isNonTemporal(),
10026                               Ld->getAlignment());
10027    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
10028                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
10029                               Ld->isVolatile(), Ld->isNonTemporal(),
10030                               MinAlign(Ld->getAlignment(), 4));
10031
10032    SDValue NewChain = LoLd.getValue(1);
10033    if (TokenFactorIndex != -1) {
10034      Ops.push_back(LoLd);
10035      Ops.push_back(HiLd);
10036      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10037                             Ops.size());
10038    }
10039
10040    LoAddr = St->getBasePtr();
10041    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
10042                         DAG.getConstant(4, MVT::i32));
10043
10044    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
10045                                St->getSrcValue(), St->getSrcValueOffset(),
10046                                St->isVolatile(), St->isNonTemporal(),
10047                                St->getAlignment());
10048    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
10049                                St->getSrcValue(),
10050                                St->getSrcValueOffset() + 4,
10051                                St->isVolatile(),
10052                                St->isNonTemporal(),
10053                                MinAlign(St->getAlignment(), 4));
10054    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
10055  }
10056  return SDValue();
10057}
10058
10059/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
10060/// X86ISD::FXOR nodes.
10061static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
10062  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
10063  // F[X]OR(0.0, x) -> x
10064  // F[X]OR(x, 0.0) -> x
10065  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10066    if (C->getValueAPF().isPosZero())
10067      return N->getOperand(1);
10068  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10069    if (C->getValueAPF().isPosZero())
10070      return N->getOperand(0);
10071  return SDValue();
10072}
10073
10074/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
10075static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
10076  // FAND(0.0, x) -> 0.0
10077  // FAND(x, 0.0) -> 0.0
10078  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10079    if (C->getValueAPF().isPosZero())
10080      return N->getOperand(0);
10081  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10082    if (C->getValueAPF().isPosZero())
10083      return N->getOperand(1);
10084  return SDValue();
10085}
10086
10087static SDValue PerformBTCombine(SDNode *N,
10088                                SelectionDAG &DAG,
10089                                TargetLowering::DAGCombinerInfo &DCI) {
10090  // BT ignores high bits in the bit index operand.
10091  SDValue Op1 = N->getOperand(1);
10092  if (Op1.hasOneUse()) {
10093    unsigned BitWidth = Op1.getValueSizeInBits();
10094    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
10095    APInt KnownZero, KnownOne;
10096    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10097                                          !DCI.isBeforeLegalizeOps());
10098    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10099    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
10100        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
10101      DCI.CommitTargetLoweringOpt(TLO);
10102  }
10103  return SDValue();
10104}
10105
10106static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
10107  SDValue Op = N->getOperand(0);
10108  if (Op.getOpcode() == ISD::BIT_CONVERT)
10109    Op = Op.getOperand(0);
10110  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
10111  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
10112      VT.getVectorElementType().getSizeInBits() ==
10113      OpVT.getVectorElementType().getSizeInBits()) {
10114    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
10115  }
10116  return SDValue();
10117}
10118
10119static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
10120  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
10121  //           (and (i32 x86isd::setcc_carry), 1)
10122  // This eliminates the zext. This transformation is necessary because
10123  // ISD::SETCC is always legalized to i8.
10124  DebugLoc dl = N->getDebugLoc();
10125  SDValue N0 = N->getOperand(0);
10126  EVT VT = N->getValueType(0);
10127  if (N0.getOpcode() == ISD::AND &&
10128      N0.hasOneUse() &&
10129      N0.getOperand(0).hasOneUse()) {
10130    SDValue N00 = N0.getOperand(0);
10131    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
10132      return SDValue();
10133    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10134    if (!C || C->getZExtValue() != 1)
10135      return SDValue();
10136    return DAG.getNode(ISD::AND, dl, VT,
10137                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
10138                                   N00.getOperand(0), N00.getOperand(1)),
10139                       DAG.getConstant(1, VT));
10140  }
10141
10142  return SDValue();
10143}
10144
10145SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
10146                                             DAGCombinerInfo &DCI) const {
10147  SelectionDAG &DAG = DCI.DAG;
10148  switch (N->getOpcode()) {
10149  default: break;
10150  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
10151  case ISD::EXTRACT_VECTOR_ELT:
10152                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
10153  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
10154  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
10155  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
10156  case ISD::SHL:
10157  case ISD::SRA:
10158  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
10159  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
10160  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
10161  case X86ISD::FXOR:
10162  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
10163  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
10164  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
10165  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
10166  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
10167  }
10168
10169  return SDValue();
10170}
10171
10172/// isTypeDesirableForOp - Return true if the target has native support for
10173/// the specified value type and it is 'desirable' to use the type for the
10174/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
10175/// instruction encodings are longer and some i16 instructions are slow.
10176bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
10177  if (!isTypeLegal(VT))
10178    return false;
10179  if (VT != MVT::i16)
10180    return true;
10181
10182  switch (Opc) {
10183  default:
10184    return true;
10185  case ISD::LOAD:
10186  case ISD::SIGN_EXTEND:
10187  case ISD::ZERO_EXTEND:
10188  case ISD::ANY_EXTEND:
10189  case ISD::SHL:
10190  case ISD::SRL:
10191  case ISD::SUB:
10192  case ISD::ADD:
10193  case ISD::MUL:
10194  case ISD::AND:
10195  case ISD::OR:
10196  case ISD::XOR:
10197    return false;
10198  }
10199}
10200
10201static bool MayFoldLoad(SDValue Op) {
10202  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
10203}
10204
10205static bool MayFoldIntoStore(SDValue Op) {
10206  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
10207}
10208
10209/// IsDesirableToPromoteOp - This method query the target whether it is
10210/// beneficial for dag combiner to promote the specified node. If true, it
10211/// should return the desired promotion type by reference.
10212bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10213  EVT VT = Op.getValueType();
10214  if (VT != MVT::i16)
10215    return false;
10216
10217  bool Promote = false;
10218  bool Commute = false;
10219  switch (Op.getOpcode()) {
10220  default: break;
10221  case ISD::LOAD: {
10222    LoadSDNode *LD = cast<LoadSDNode>(Op);
10223    // If the non-extending load has a single use and it's not live out, then it
10224    // might be folded.
10225    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10226                                                     Op.hasOneUse()*/) {
10227      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10228             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10229        // The only case where we'd want to promote LOAD (rather then it being
10230        // promoted as an operand is when it's only use is liveout.
10231        if (UI->getOpcode() != ISD::CopyToReg)
10232          return false;
10233      }
10234    }
10235    Promote = true;
10236    break;
10237  }
10238  case ISD::SIGN_EXTEND:
10239  case ISD::ZERO_EXTEND:
10240  case ISD::ANY_EXTEND:
10241    Promote = true;
10242    break;
10243  case ISD::SHL:
10244  case ISD::SRL: {
10245    SDValue N0 = Op.getOperand(0);
10246    // Look out for (store (shl (load), x)).
10247    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10248      return false;
10249    Promote = true;
10250    break;
10251  }
10252  case ISD::ADD:
10253  case ISD::MUL:
10254  case ISD::AND:
10255  case ISD::OR:
10256  case ISD::XOR:
10257    Commute = true;
10258    // fallthrough
10259  case ISD::SUB: {
10260    SDValue N0 = Op.getOperand(0);
10261    SDValue N1 = Op.getOperand(1);
10262    if (!Commute && MayFoldLoad(N1))
10263      return false;
10264    // Avoid disabling potential load folding opportunities.
10265    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10266      return false;
10267    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10268      return false;
10269    Promote = true;
10270  }
10271  }
10272
10273  PVT = MVT::i32;
10274  return Promote;
10275}
10276
10277//===----------------------------------------------------------------------===//
10278//                           X86 Inline Assembly Support
10279//===----------------------------------------------------------------------===//
10280
10281static bool LowerToBSwap(CallInst *CI) {
10282  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10283  // we will turn this bswap into something that will be lowered to logical ops
10284  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10285  // so don't worry about this.
10286
10287  // Verify this is a simple bswap.
10288  if (CI->getNumArgOperands() != 1 ||
10289      CI->getType() != CI->getArgOperand(0)->getType() ||
10290      !CI->getType()->isIntegerTy())
10291    return false;
10292
10293  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10294  if (!Ty || Ty->getBitWidth() % 16 != 0)
10295    return false;
10296
10297  // Okay, we can do this xform, do so now.
10298  const Type *Tys[] = { Ty };
10299  Module *M = CI->getParent()->getParent()->getParent();
10300  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10301
10302  Value *Op = CI->getArgOperand(0);
10303  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10304
10305  CI->replaceAllUsesWith(Op);
10306  CI->eraseFromParent();
10307  return true;
10308}
10309
10310bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10311  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10312  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10313
10314  std::string AsmStr = IA->getAsmString();
10315
10316  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10317  SmallVector<StringRef, 4> AsmPieces;
10318  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10319
10320  switch (AsmPieces.size()) {
10321  default: return false;
10322  case 1:
10323    AsmStr = AsmPieces[0];
10324    AsmPieces.clear();
10325    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10326
10327    // bswap $0
10328    if (AsmPieces.size() == 2 &&
10329        (AsmPieces[0] == "bswap" ||
10330         AsmPieces[0] == "bswapq" ||
10331         AsmPieces[0] == "bswapl") &&
10332        (AsmPieces[1] == "$0" ||
10333         AsmPieces[1] == "${0:q}")) {
10334      // No need to check constraints, nothing other than the equivalent of
10335      // "=r,0" would be valid here.
10336      return LowerToBSwap(CI);
10337    }
10338    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10339    if (CI->getType()->isIntegerTy(16) &&
10340        AsmPieces.size() == 3 &&
10341        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10342        AsmPieces[1] == "$$8," &&
10343        AsmPieces[2] == "${0:w}" &&
10344        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10345      AsmPieces.clear();
10346      const std::string &Constraints = IA->getConstraintString();
10347      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10348      std::sort(AsmPieces.begin(), AsmPieces.end());
10349      if (AsmPieces.size() == 4 &&
10350          AsmPieces[0] == "~{cc}" &&
10351          AsmPieces[1] == "~{dirflag}" &&
10352          AsmPieces[2] == "~{flags}" &&
10353          AsmPieces[3] == "~{fpsr}") {
10354        return LowerToBSwap(CI);
10355      }
10356    }
10357    break;
10358  case 3:
10359    if (CI->getType()->isIntegerTy(64) &&
10360        Constraints.size() >= 2 &&
10361        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10362        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10363      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10364      SmallVector<StringRef, 4> Words;
10365      SplitString(AsmPieces[0], Words, " \t");
10366      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10367        Words.clear();
10368        SplitString(AsmPieces[1], Words, " \t");
10369        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10370          Words.clear();
10371          SplitString(AsmPieces[2], Words, " \t,");
10372          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10373              Words[2] == "%edx") {
10374            return LowerToBSwap(CI);
10375          }
10376        }
10377      }
10378    }
10379    break;
10380  }
10381  return false;
10382}
10383
10384
10385
10386/// getConstraintType - Given a constraint letter, return the type of
10387/// constraint it is for this target.
10388X86TargetLowering::ConstraintType
10389X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10390  if (Constraint.size() == 1) {
10391    switch (Constraint[0]) {
10392    case 'A':
10393      return C_Register;
10394    case 'f':
10395    case 'r':
10396    case 'R':
10397    case 'l':
10398    case 'q':
10399    case 'Q':
10400    case 'x':
10401    case 'y':
10402    case 'Y':
10403      return C_RegisterClass;
10404    case 'e':
10405    case 'Z':
10406      return C_Other;
10407    default:
10408      break;
10409    }
10410  }
10411  return TargetLowering::getConstraintType(Constraint);
10412}
10413
10414/// LowerXConstraint - try to replace an X constraint, which matches anything,
10415/// with another that has more specific requirements based on the type of the
10416/// corresponding operand.
10417const char *X86TargetLowering::
10418LowerXConstraint(EVT ConstraintVT) const {
10419  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10420  // 'f' like normal targets.
10421  if (ConstraintVT.isFloatingPoint()) {
10422    if (Subtarget->hasSSE2())
10423      return "Y";
10424    if (Subtarget->hasSSE1())
10425      return "x";
10426  }
10427
10428  return TargetLowering::LowerXConstraint(ConstraintVT);
10429}
10430
10431/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10432/// vector.  If it is invalid, don't add anything to Ops.
10433void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10434                                                     char Constraint,
10435                                                     std::vector<SDValue>&Ops,
10436                                                     SelectionDAG &DAG) const {
10437  SDValue Result(0, 0);
10438
10439  switch (Constraint) {
10440  default: break;
10441  case 'I':
10442    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10443      if (C->getZExtValue() <= 31) {
10444        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10445        break;
10446      }
10447    }
10448    return;
10449  case 'J':
10450    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10451      if (C->getZExtValue() <= 63) {
10452        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10453        break;
10454      }
10455    }
10456    return;
10457  case 'K':
10458    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10459      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10460        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10461        break;
10462      }
10463    }
10464    return;
10465  case 'N':
10466    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10467      if (C->getZExtValue() <= 255) {
10468        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10469        break;
10470      }
10471    }
10472    return;
10473  case 'e': {
10474    // 32-bit signed value
10475    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10476      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10477                                           C->getSExtValue())) {
10478        // Widen to 64 bits here to get it sign extended.
10479        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10480        break;
10481      }
10482    // FIXME gcc accepts some relocatable values here too, but only in certain
10483    // memory models; it's complicated.
10484    }
10485    return;
10486  }
10487  case 'Z': {
10488    // 32-bit unsigned value
10489    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10490      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10491                                           C->getZExtValue())) {
10492        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10493        break;
10494      }
10495    }
10496    // FIXME gcc accepts some relocatable values here too, but only in certain
10497    // memory models; it's complicated.
10498    return;
10499  }
10500  case 'i': {
10501    // Literal immediates are always ok.
10502    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10503      // Widen to 64 bits here to get it sign extended.
10504      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10505      break;
10506    }
10507
10508    // In any sort of PIC mode addresses need to be computed at runtime by
10509    // adding in a register or some sort of table lookup.  These can't
10510    // be used as immediates.
10511    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
10512      return;
10513
10514    // If we are in non-pic codegen mode, we allow the address of a global (with
10515    // an optional displacement) to be used with 'i'.
10516    GlobalAddressSDNode *GA = 0;
10517    int64_t Offset = 0;
10518
10519    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10520    while (1) {
10521      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10522        Offset += GA->getOffset();
10523        break;
10524      } else if (Op.getOpcode() == ISD::ADD) {
10525        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10526          Offset += C->getZExtValue();
10527          Op = Op.getOperand(0);
10528          continue;
10529        }
10530      } else if (Op.getOpcode() == ISD::SUB) {
10531        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10532          Offset += -C->getZExtValue();
10533          Op = Op.getOperand(0);
10534          continue;
10535        }
10536      }
10537
10538      // Otherwise, this isn't something we can handle, reject it.
10539      return;
10540    }
10541
10542    const GlobalValue *GV = GA->getGlobal();
10543    // If we require an extra load to get this address, as in PIC mode, we
10544    // can't accept it.
10545    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10546                                                        getTargetMachine())))
10547      return;
10548
10549    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
10550                                        GA->getValueType(0), Offset);
10551    break;
10552  }
10553  }
10554
10555  if (Result.getNode()) {
10556    Ops.push_back(Result);
10557    return;
10558  }
10559  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10560}
10561
10562std::vector<unsigned> X86TargetLowering::
10563getRegClassForInlineAsmConstraint(const std::string &Constraint,
10564                                  EVT VT) const {
10565  if (Constraint.size() == 1) {
10566    // FIXME: not handling fp-stack yet!
10567    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10568    default: break;  // Unknown constraint letter
10569    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10570      if (Subtarget->is64Bit()) {
10571        if (VT == MVT::i32)
10572          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10573                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10574                                       X86::R10D,X86::R11D,X86::R12D,
10575                                       X86::R13D,X86::R14D,X86::R15D,
10576                                       X86::EBP, X86::ESP, 0);
10577        else if (VT == MVT::i16)
10578          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10579                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10580                                       X86::R10W,X86::R11W,X86::R12W,
10581                                       X86::R13W,X86::R14W,X86::R15W,
10582                                       X86::BP,  X86::SP, 0);
10583        else if (VT == MVT::i8)
10584          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10585                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10586                                       X86::R10B,X86::R11B,X86::R12B,
10587                                       X86::R13B,X86::R14B,X86::R15B,
10588                                       X86::BPL, X86::SPL, 0);
10589
10590        else if (VT == MVT::i64)
10591          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10592                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10593                                       X86::R10, X86::R11, X86::R12,
10594                                       X86::R13, X86::R14, X86::R15,
10595                                       X86::RBP, X86::RSP, 0);
10596
10597        break;
10598      }
10599      // 32-bit fallthrough
10600    case 'Q':   // Q_REGS
10601      if (VT == MVT::i32)
10602        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10603      else if (VT == MVT::i16)
10604        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10605      else if (VT == MVT::i8)
10606        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10607      else if (VT == MVT::i64)
10608        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10609      break;
10610    }
10611  }
10612
10613  return std::vector<unsigned>();
10614}
10615
10616std::pair<unsigned, const TargetRegisterClass*>
10617X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10618                                                EVT VT) const {
10619  // First, see if this is a constraint that directly corresponds to an LLVM
10620  // register class.
10621  if (Constraint.size() == 1) {
10622    // GCC Constraint Letters
10623    switch (Constraint[0]) {
10624    default: break;
10625    case 'r':   // GENERAL_REGS
10626    case 'l':   // INDEX_REGS
10627      if (VT == MVT::i8)
10628        return std::make_pair(0U, X86::GR8RegisterClass);
10629      if (VT == MVT::i16)
10630        return std::make_pair(0U, X86::GR16RegisterClass);
10631      if (VT == MVT::i32 || !Subtarget->is64Bit())
10632        return std::make_pair(0U, X86::GR32RegisterClass);
10633      return std::make_pair(0U, X86::GR64RegisterClass);
10634    case 'R':   // LEGACY_REGS
10635      if (VT == MVT::i8)
10636        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10637      if (VT == MVT::i16)
10638        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10639      if (VT == MVT::i32 || !Subtarget->is64Bit())
10640        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10641      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10642    case 'f':  // FP Stack registers.
10643      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10644      // value to the correct fpstack register class.
10645      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10646        return std::make_pair(0U, X86::RFP32RegisterClass);
10647      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10648        return std::make_pair(0U, X86::RFP64RegisterClass);
10649      return std::make_pair(0U, X86::RFP80RegisterClass);
10650    case 'y':   // MMX_REGS if MMX allowed.
10651      if (!Subtarget->hasMMX()) break;
10652      return std::make_pair(0U, X86::VR64RegisterClass);
10653    case 'Y':   // SSE_REGS if SSE2 allowed
10654      if (!Subtarget->hasSSE2()) break;
10655      // FALL THROUGH.
10656    case 'x':   // SSE_REGS if SSE1 allowed
10657      if (!Subtarget->hasSSE1()) break;
10658
10659      switch (VT.getSimpleVT().SimpleTy) {
10660      default: break;
10661      // Scalar SSE types.
10662      case MVT::f32:
10663      case MVT::i32:
10664        return std::make_pair(0U, X86::FR32RegisterClass);
10665      case MVT::f64:
10666      case MVT::i64:
10667        return std::make_pair(0U, X86::FR64RegisterClass);
10668      // Vector types.
10669      case MVT::v16i8:
10670      case MVT::v8i16:
10671      case MVT::v4i32:
10672      case MVT::v2i64:
10673      case MVT::v4f32:
10674      case MVT::v2f64:
10675        return std::make_pair(0U, X86::VR128RegisterClass);
10676      }
10677      break;
10678    }
10679  }
10680
10681  // Use the default implementation in TargetLowering to convert the register
10682  // constraint into a member of a register class.
10683  std::pair<unsigned, const TargetRegisterClass*> Res;
10684  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10685
10686  // Not found as a standard register?
10687  if (Res.second == 0) {
10688    // Map st(0) -> st(7) -> ST0
10689    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10690        tolower(Constraint[1]) == 's' &&
10691        tolower(Constraint[2]) == 't' &&
10692        Constraint[3] == '(' &&
10693        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10694        Constraint[5] == ')' &&
10695        Constraint[6] == '}') {
10696
10697      Res.first = X86::ST0+Constraint[4]-'0';
10698      Res.second = X86::RFP80RegisterClass;
10699      return Res;
10700    }
10701
10702    // GCC allows "st(0)" to be called just plain "st".
10703    if (StringRef("{st}").equals_lower(Constraint)) {
10704      Res.first = X86::ST0;
10705      Res.second = X86::RFP80RegisterClass;
10706      return Res;
10707    }
10708
10709    // flags -> EFLAGS
10710    if (StringRef("{flags}").equals_lower(Constraint)) {
10711      Res.first = X86::EFLAGS;
10712      Res.second = X86::CCRRegisterClass;
10713      return Res;
10714    }
10715
10716    // 'A' means EAX + EDX.
10717    if (Constraint == "A") {
10718      Res.first = X86::EAX;
10719      Res.second = X86::GR32_ADRegisterClass;
10720      return Res;
10721    }
10722    return Res;
10723  }
10724
10725  // Otherwise, check to see if this is a register class of the wrong value
10726  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10727  // turn into {ax},{dx}.
10728  if (Res.second->hasType(VT))
10729    return Res;   // Correct type already, nothing to do.
10730
10731  // All of the single-register GCC register classes map their values onto
10732  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10733  // really want an 8-bit or 32-bit register, map to the appropriate register
10734  // class and return the appropriate register.
10735  if (Res.second == X86::GR16RegisterClass) {
10736    if (VT == MVT::i8) {
10737      unsigned DestReg = 0;
10738      switch (Res.first) {
10739      default: break;
10740      case X86::AX: DestReg = X86::AL; break;
10741      case X86::DX: DestReg = X86::DL; break;
10742      case X86::CX: DestReg = X86::CL; break;
10743      case X86::BX: DestReg = X86::BL; break;
10744      }
10745      if (DestReg) {
10746        Res.first = DestReg;
10747        Res.second = X86::GR8RegisterClass;
10748      }
10749    } else if (VT == MVT::i32) {
10750      unsigned DestReg = 0;
10751      switch (Res.first) {
10752      default: break;
10753      case X86::AX: DestReg = X86::EAX; break;
10754      case X86::DX: DestReg = X86::EDX; break;
10755      case X86::CX: DestReg = X86::ECX; break;
10756      case X86::BX: DestReg = X86::EBX; break;
10757      case X86::SI: DestReg = X86::ESI; break;
10758      case X86::DI: DestReg = X86::EDI; break;
10759      case X86::BP: DestReg = X86::EBP; break;
10760      case X86::SP: DestReg = X86::ESP; break;
10761      }
10762      if (DestReg) {
10763        Res.first = DestReg;
10764        Res.second = X86::GR32RegisterClass;
10765      }
10766    } else if (VT == MVT::i64) {
10767      unsigned DestReg = 0;
10768      switch (Res.first) {
10769      default: break;
10770      case X86::AX: DestReg = X86::RAX; break;
10771      case X86::DX: DestReg = X86::RDX; break;
10772      case X86::CX: DestReg = X86::RCX; break;
10773      case X86::BX: DestReg = X86::RBX; break;
10774      case X86::SI: DestReg = X86::RSI; break;
10775      case X86::DI: DestReg = X86::RDI; break;
10776      case X86::BP: DestReg = X86::RBP; break;
10777      case X86::SP: DestReg = X86::RSP; break;
10778      }
10779      if (DestReg) {
10780        Res.first = DestReg;
10781        Res.second = X86::GR64RegisterClass;
10782      }
10783    }
10784  } else if (Res.second == X86::FR32RegisterClass ||
10785             Res.second == X86::FR64RegisterClass ||
10786             Res.second == X86::VR128RegisterClass) {
10787    // Handle references to XMM physical registers that got mapped into the
10788    // wrong class.  This can happen with constraints like {xmm0} where the
10789    // target independent register mapper will just pick the first match it can
10790    // find, ignoring the required type.
10791    if (VT == MVT::f32)
10792      Res.second = X86::FR32RegisterClass;
10793    else if (VT == MVT::f64)
10794      Res.second = X86::FR64RegisterClass;
10795    else if (X86::VR128RegisterClass->hasType(VT))
10796      Res.second = X86::VR128RegisterClass;
10797  }
10798
10799  return Res;
10800}
10801