X86ISelLowering.cpp revision bd13fb62541136a4891d702feec8b7aba5bf695a
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86MCTargetExpr.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Support/raw_ostream.h"
51using namespace llvm;
52
53STATISTIC(NumTailCalls, "Number of tail calls");
54
55static cl::opt<bool>
56DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
57
58// Disable16Bit - 16-bit operations typically have a larger encoding than
59// corresponding 32-bit instructions, and 16-bit code is slow on some
60// processors. This is an experimental flag to disable 16-bit operations
61// (which forces them to be Legalized to 32-bit operations).
62static cl::opt<bool>
63Disable16Bit("disable-16bit", cl::Hidden,
64             cl::desc("Disable use of 16-bit instructions"));
65
66// Forward declarations.
67static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
68                       SDValue V2);
69
70static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
71  switch (TM.getSubtarget<X86Subtarget>().TargetType) {
72  default: llvm_unreachable("unknown subtarget type");
73  case X86Subtarget::isDarwin:
74    if (TM.getSubtarget<X86Subtarget>().is64Bit())
75      return new X8664_MachoTargetObjectFile();
76    return new X8632_MachoTargetObjectFile();
77  case X86Subtarget::isELF:
78    return new TargetLoweringObjectFileELF();
79  case X86Subtarget::isMingw:
80  case X86Subtarget::isCygwin:
81  case X86Subtarget::isWindows:
82    return new TargetLoweringObjectFileCOFF();
83  }
84
85}
86
87X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
88  : TargetLowering(TM, createTLOF(TM)) {
89  Subtarget = &TM.getSubtarget<X86Subtarget>();
90  X86ScalarSSEf64 = Subtarget->hasSSE2();
91  X86ScalarSSEf32 = Subtarget->hasSSE1();
92  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
93
94  RegInfo = TM.getRegisterInfo();
95  TD = getTargetData();
96
97  // Set up the TargetLowering object.
98
99  // X86 is weird, it always uses i8 for shift amounts and setcc results.
100  setShiftAmountType(MVT::i8);
101  setBooleanContents(ZeroOrOneBooleanContent);
102  setSchedulingPreference(SchedulingForRegPressure);
103  setStackPointerRegisterToSaveRestore(X86StackPtr);
104
105  if (Subtarget->isTargetDarwin()) {
106    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
107    setUseUnderscoreSetJmp(false);
108    setUseUnderscoreLongJmp(false);
109  } else if (Subtarget->isTargetMingw()) {
110    // MS runtime is weird: it exports _setjmp, but longjmp!
111    setUseUnderscoreSetJmp(true);
112    setUseUnderscoreLongJmp(false);
113  } else {
114    setUseUnderscoreSetJmp(true);
115    setUseUnderscoreLongJmp(true);
116  }
117
118  // Set up the register classes.
119  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
120  if (!Disable16Bit)
121    addRegisterClass(MVT::i16, X86::GR16RegisterClass);
122  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
123  if (Subtarget->is64Bit())
124    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
125
126  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
127
128  // We don't accept any truncstore of integer registers.
129  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
130  if (!Disable16Bit)
131    setTruncStoreAction(MVT::i64, MVT::i16, Expand);
132  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
133  if (!Disable16Bit)
134    setTruncStoreAction(MVT::i32, MVT::i16, Expand);
135  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
136  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
137
138  // SETOEQ and SETUNE require checking two conditions.
139  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
140  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
141  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
142  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
145
146  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
147  // operation.
148  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
149  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
150  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
151
152  if (Subtarget->is64Bit()) {
153    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
154    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
155  } else if (!UseSoftFloat) {
156    if (X86ScalarSSEf64) {
157      // We have an impenetrably clever algorithm for ui64->double only.
158      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
159    }
160    // We have an algorithm for SSE2, and we turn this into a 64-bit
161    // FILD for other targets.
162    setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Custom);
163  }
164
165  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
166  // this operation.
167  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
168  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
169
170  if (!UseSoftFloat) {
171    // SSE has no i16 to fp conversion, only i32
172    if (X86ScalarSSEf32) {
173      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
174      // f32 and f64 cases are Legal, f80 case is not
175      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
176    } else {
177      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
178      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
179    }
180  } else {
181    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
182    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
183  }
184
185  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
186  // are Legal, f80 is custom lowered.
187  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
188  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
189
190  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
191  // this operation.
192  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
193  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
194
195  if (X86ScalarSSEf32) {
196    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
197    // f32 and f64 cases are Legal, f80 case is not
198    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
199  } else {
200    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
201    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
202  }
203
204  // Handle FP_TO_UINT by promoting the destination to a larger signed
205  // conversion.
206  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
207  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
208  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
209
210  if (Subtarget->is64Bit()) {
211    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
212    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
213  } else if (!UseSoftFloat) {
214    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
215      // Expand FP_TO_UINT into a select.
216      // FIXME: We would like to use a Custom expander here eventually to do
217      // the optimal thing for SSE vs. the default expansion in the legalizer.
218      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
219    else
220      // With SSE3 we can use fisttpll to convert to a signed i64; without
221      // SSE, we're stuck with a fistpll.
222      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
223  }
224
225  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
226  if (!X86ScalarSSEf64) {
227    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
228    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
229  }
230
231  // Scalar integer divide and remainder are lowered to use operations that
232  // produce two results, to match the available instructions. This exposes
233  // the two-result form to trivial CSE, which is able to combine x/y and x%y
234  // into a single instruction.
235  //
236  // Scalar integer multiply-high is also lowered to use two-result
237  // operations, to match the available instructions. However, plain multiply
238  // (low) operations are left as Legal, as there are single-result
239  // instructions for this in x86. Using the two-result multiply instructions
240  // when both high and low results are needed must be arranged by dagcombine.
241  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
242  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
243  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
244  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
245  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
246  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
247  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
248  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
249  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
250  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
251  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
252  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
253  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
254  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
255  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
256  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
257  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
258  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
259  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
260  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
261  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
262  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
263  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
264  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
265
266  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
267  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
268  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
269  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
270  if (Subtarget->is64Bit())
271    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
272  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
273  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
274  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
275  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
276  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
277  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
278  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
279  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
280
281  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
285  if (Disable16Bit) {
286    setOperationAction(ISD::CTTZ           , MVT::i16  , Expand);
287    setOperationAction(ISD::CTLZ           , MVT::i16  , Expand);
288  } else {
289    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
291  }
292  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
293  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
294  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
295  if (Subtarget->is64Bit()) {
296    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
297    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
298    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
299  }
300
301  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
302  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
303
304  // These should be promoted to a larger select which is supported.
305  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
306  // X86 wants to expand cmov itself.
307  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
308  if (Disable16Bit)
309    setOperationAction(ISD::SELECT        , MVT::i16  , Expand);
310  else
311    setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
312  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
313  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
314  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
315  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
316  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
317  if (Disable16Bit)
318    setOperationAction(ISD::SETCC         , MVT::i16  , Expand);
319  else
320    setOperationAction(ISD::SETCC         , MVT::i16  , Custom);
321  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
322  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
323  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
324  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
325  if (Subtarget->is64Bit()) {
326    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
327    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
328  }
329  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
330
331  // Darwin ABI issue.
332  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
333  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
334  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
335  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
336  if (Subtarget->is64Bit())
337    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
338  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
339  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
340  if (Subtarget->is64Bit()) {
341    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
342    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
343    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
344    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
345    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
346  }
347  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
348  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
349  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
350  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
351  if (Subtarget->is64Bit()) {
352    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
353    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
354    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
355  }
356
357  if (Subtarget->hasSSE1())
358    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
359
360  if (!Subtarget->hasSSE2())
361    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
362
363  // Expand certain atomics
364  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
365  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
366  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
368
369  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
370  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
371  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
373
374  if (!Subtarget->is64Bit()) {
375    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
376    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
377    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
378    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
382  }
383
384  // FIXME - use subtarget debug flags
385  if (!Subtarget->isTargetDarwin() &&
386      !Subtarget->isTargetELF() &&
387      !Subtarget->isTargetCygMing()) {
388    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
389  }
390
391  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
392  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
393  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
394  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
395  if (Subtarget->is64Bit()) {
396    setExceptionPointerRegister(X86::RAX);
397    setExceptionSelectorRegister(X86::RDX);
398  } else {
399    setExceptionPointerRegister(X86::EAX);
400    setExceptionSelectorRegister(X86::EDX);
401  }
402  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
403  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
404
405  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
406
407  setOperationAction(ISD::TRAP, MVT::Other, Legal);
408
409  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
410  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
411  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
412  if (Subtarget->is64Bit()) {
413    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
414    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
415  } else {
416    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
417    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
418  }
419
420  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
421  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
422  if (Subtarget->is64Bit())
423    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
424  if (Subtarget->isTargetCygMing())
425    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
426  else
427    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
428
429  if (!UseSoftFloat && X86ScalarSSEf64) {
430    // f32 and f64 use SSE.
431    // Set up the FP register classes.
432    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
433    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
434
435    // Use ANDPD to simulate FABS.
436    setOperationAction(ISD::FABS , MVT::f64, Custom);
437    setOperationAction(ISD::FABS , MVT::f32, Custom);
438
439    // Use XORP to simulate FNEG.
440    setOperationAction(ISD::FNEG , MVT::f64, Custom);
441    setOperationAction(ISD::FNEG , MVT::f32, Custom);
442
443    // Use ANDPD and ORPD to simulate FCOPYSIGN.
444    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
445    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
446
447    // We don't support sin/cos/fmod
448    setOperationAction(ISD::FSIN , MVT::f64, Expand);
449    setOperationAction(ISD::FCOS , MVT::f64, Expand);
450    setOperationAction(ISD::FSIN , MVT::f32, Expand);
451    setOperationAction(ISD::FCOS , MVT::f32, Expand);
452
453    // Expand FP immediates into loads from the stack, except for the special
454    // cases we handle.
455    addLegalFPImmediate(APFloat(+0.0)); // xorpd
456    addLegalFPImmediate(APFloat(+0.0f)); // xorps
457  } else if (!UseSoftFloat && X86ScalarSSEf32) {
458    // Use SSE for f32, x87 for f64.
459    // Set up the FP register classes.
460    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
461    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
462
463    // Use ANDPS to simulate FABS.
464    setOperationAction(ISD::FABS , MVT::f32, Custom);
465
466    // Use XORP to simulate FNEG.
467    setOperationAction(ISD::FNEG , MVT::f32, Custom);
468
469    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
470
471    // Use ANDPS and ORPS to simulate FCOPYSIGN.
472    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
473    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
474
475    // We don't support sin/cos/fmod
476    setOperationAction(ISD::FSIN , MVT::f32, Expand);
477    setOperationAction(ISD::FCOS , MVT::f32, Expand);
478
479    // Special cases we handle for FP constants.
480    addLegalFPImmediate(APFloat(+0.0f)); // xorps
481    addLegalFPImmediate(APFloat(+0.0)); // FLD0
482    addLegalFPImmediate(APFloat(+1.0)); // FLD1
483    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
484    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
485
486    if (!UnsafeFPMath) {
487      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
488      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
489    }
490  } else if (!UseSoftFloat) {
491    // f32 and f64 in x87.
492    // Set up the FP register classes.
493    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
494    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
495
496    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
497    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
498    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
499    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
500
501    if (!UnsafeFPMath) {
502      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
503      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
504    }
505    addLegalFPImmediate(APFloat(+0.0)); // FLD0
506    addLegalFPImmediate(APFloat(+1.0)); // FLD1
507    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
508    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
509    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
510    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
511    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
512    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
513  }
514
515  // Long double always uses X87.
516  if (!UseSoftFloat) {
517    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
518    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
519    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
520    {
521      bool ignored;
522      APFloat TmpFlt(+0.0);
523      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
524                     &ignored);
525      addLegalFPImmediate(TmpFlt);  // FLD0
526      TmpFlt.changeSign();
527      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
528      APFloat TmpFlt2(+1.0);
529      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
530                      &ignored);
531      addLegalFPImmediate(TmpFlt2);  // FLD1
532      TmpFlt2.changeSign();
533      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
534    }
535
536    if (!UnsafeFPMath) {
537      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
538      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
539    }
540  }
541
542  // Always use a library call for pow.
543  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
544  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
545  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
546
547  setOperationAction(ISD::FLOG, MVT::f80, Expand);
548  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
549  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
550  setOperationAction(ISD::FEXP, MVT::f80, Expand);
551  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
552
553  // First set operation action for all vector types to either promote
554  // (for widening) or expand (for scalarization). Then we will selectively
555  // turn on ones that can be effectively codegen'd.
556  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
557       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
558    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
573    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
574    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
607    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
610    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
611    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
612         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
613      setTruncStoreAction((MVT::SimpleValueType)VT,
614                          (MVT::SimpleValueType)InnerVT, Expand);
615    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
616    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
617    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
618  }
619
620  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
621  // with -msoft-float, disable use of MMX as well.
622  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
623    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
624    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
625    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
626    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
627    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
628
629    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
630    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
631    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
632    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
633
634    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
635    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
636    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
637    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
638
639    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
640    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
641
642    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
643    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
644    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
645    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
646    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
647    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
648    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
649
650    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
651    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
652    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
653    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
654    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
655    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
656    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
657
658    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
659    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
660    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
661    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
662    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
663    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
664    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
665
666    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
667    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
668    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
669    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
670    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
671    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
672    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
673    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
674    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
675
676    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
677    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
678    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
679    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
680    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
681
682    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
683    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
684    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
685    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
686
687    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
688    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
689    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
690    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
691
692    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
693
694    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
695    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
696    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
697    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
698    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
699    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
700    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
701  }
702
703  if (!UseSoftFloat && Subtarget->hasSSE1()) {
704    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
705
706    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
707    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
708    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
709    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
710    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
711    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
712    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
713    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
714    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
715    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
716    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
717    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
718  }
719
720  if (!UseSoftFloat && Subtarget->hasSSE2()) {
721    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
722
723    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
724    // registers cannot be used even for integer operations.
725    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
726    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
727    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
728    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
729
730    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
731    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
732    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
733    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
734    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
735    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
736    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
737    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
738    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
739    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
740    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
741    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
742    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
743    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
744    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
745    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
746
747    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
748    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
749    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
750    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
751
752    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
753    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
754    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
755    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
756    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
757
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
759    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
760    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
761    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
762    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
763
764    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
765    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
766      EVT VT = (MVT::SimpleValueType)i;
767      // Do not attempt to custom lower non-power-of-2 vectors
768      if (!isPowerOf2_32(VT.getVectorNumElements()))
769        continue;
770      // Do not attempt to custom lower non-128-bit vectors
771      if (!VT.is128BitVector())
772        continue;
773      setOperationAction(ISD::BUILD_VECTOR,
774                         VT.getSimpleVT().SimpleTy, Custom);
775      setOperationAction(ISD::VECTOR_SHUFFLE,
776                         VT.getSimpleVT().SimpleTy, Custom);
777      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
778                         VT.getSimpleVT().SimpleTy, Custom);
779    }
780
781    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
782    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
783    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
784    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
785    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
786    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
787
788    if (Subtarget->is64Bit()) {
789      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
790      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
791    }
792
793    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
794    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
795      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
796      EVT VT = SVT;
797
798      // Do not attempt to promote non-128-bit vectors
799      if (!VT.is128BitVector()) {
800        continue;
801      }
802      setOperationAction(ISD::AND,    SVT, Promote);
803      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
804      setOperationAction(ISD::OR,     SVT, Promote);
805      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
806      setOperationAction(ISD::XOR,    SVT, Promote);
807      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
808      setOperationAction(ISD::LOAD,   SVT, Promote);
809      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
810      setOperationAction(ISD::SELECT, SVT, Promote);
811      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
812    }
813
814    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
815
816    // Custom lower v2i64 and v2f64 selects.
817    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
818    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
819    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
820    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
821
822    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
823    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
824    if (!DisableMMX && Subtarget->hasMMX()) {
825      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
826      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
827    }
828  }
829
830  if (Subtarget->hasSSE41()) {
831    // FIXME: Do we need to handle scalar-to-vector here?
832    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
833
834    // i8 and i16 vectors are custom , because the source register and source
835    // source memory operand types are not the same width.  f32 vectors are
836    // custom since the immediate controlling the insert encodes additional
837    // information.
838    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
839    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
840    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
841    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
842
843    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
844    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
845    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
847
848    if (Subtarget->is64Bit()) {
849      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
850      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
851    }
852  }
853
854  if (Subtarget->hasSSE42()) {
855    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
856  }
857
858  if (!UseSoftFloat && Subtarget->hasAVX()) {
859    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
860    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
861    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
862    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
863
864    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
865    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
866    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
867    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
868    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
869    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
870    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
871    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
872    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
873    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
874    //setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
875    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
876    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
877    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
878    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
879
880    // Operations to consider commented out -v16i16 v32i8
881    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
882    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
883    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
884    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
885    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
886    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
887    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
888    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
889    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
890    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
891    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
892    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
893    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
894    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
895
896    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
897    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
898    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
899    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
900
901    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
902    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
903    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
904    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
905    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
906
907    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
908    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
909    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
910    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
912    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
913
914#if 0
915    // Not sure we want to do this since there are no 256-bit integer
916    // operations in AVX
917
918    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
919    // This includes 256-bit vectors
920    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
921      EVT VT = (MVT::SimpleValueType)i;
922
923      // Do not attempt to custom lower non-power-of-2 vectors
924      if (!isPowerOf2_32(VT.getVectorNumElements()))
925        continue;
926
927      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
928      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
929      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
930    }
931
932    if (Subtarget->is64Bit()) {
933      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
934      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
935    }
936#endif
937
938#if 0
939    // Not sure we want to do this since there are no 256-bit integer
940    // operations in AVX
941
942    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
943    // Including 256-bit vectors
944    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
945      EVT VT = (MVT::SimpleValueType)i;
946
947      if (!VT.is256BitVector()) {
948        continue;
949      }
950      setOperationAction(ISD::AND,    VT, Promote);
951      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
952      setOperationAction(ISD::OR,     VT, Promote);
953      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
954      setOperationAction(ISD::XOR,    VT, Promote);
955      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
956      setOperationAction(ISD::LOAD,   VT, Promote);
957      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
958      setOperationAction(ISD::SELECT, VT, Promote);
959      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
960    }
961
962    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
963#endif
964  }
965
966  // We want to custom lower some of our intrinsics.
967  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
968
969  // Add/Sub/Mul with overflow operations are custom lowered.
970  setOperationAction(ISD::SADDO, MVT::i32, Custom);
971  setOperationAction(ISD::SADDO, MVT::i64, Custom);
972  setOperationAction(ISD::UADDO, MVT::i32, Custom);
973  setOperationAction(ISD::UADDO, MVT::i64, Custom);
974  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
975  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
976  setOperationAction(ISD::USUBO, MVT::i32, Custom);
977  setOperationAction(ISD::USUBO, MVT::i64, Custom);
978  setOperationAction(ISD::SMULO, MVT::i32, Custom);
979  setOperationAction(ISD::SMULO, MVT::i64, Custom);
980
981  if (!Subtarget->is64Bit()) {
982    // These libcalls are not available in 32-bit.
983    setLibcallName(RTLIB::SHL_I128, 0);
984    setLibcallName(RTLIB::SRL_I128, 0);
985    setLibcallName(RTLIB::SRA_I128, 0);
986  }
987
988  // We have target-specific dag combine patterns for the following nodes:
989  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
990  setTargetDAGCombine(ISD::BUILD_VECTOR);
991  setTargetDAGCombine(ISD::SELECT);
992  setTargetDAGCombine(ISD::SHL);
993  setTargetDAGCombine(ISD::SRA);
994  setTargetDAGCombine(ISD::SRL);
995  setTargetDAGCombine(ISD::OR);
996  setTargetDAGCombine(ISD::STORE);
997  setTargetDAGCombine(ISD::MEMBARRIER);
998  setTargetDAGCombine(ISD::ZERO_EXTEND);
999  if (Subtarget->is64Bit())
1000    setTargetDAGCombine(ISD::MUL);
1001
1002  computeRegisterProperties();
1003
1004  // FIXME: These should be based on subtarget info. Plus, the values should
1005  // be smaller when we are in optimizing for size mode.
1006  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1007  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
1008  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1009  setPrefLoopAlignment(16);
1010  benefitFromCodePlacementOpt = true;
1011}
1012
1013
1014MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1015  return MVT::i8;
1016}
1017
1018
1019/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1020/// the desired ByVal argument alignment.
1021static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1022  if (MaxAlign == 16)
1023    return;
1024  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1025    if (VTy->getBitWidth() == 128)
1026      MaxAlign = 16;
1027  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1028    unsigned EltAlign = 0;
1029    getMaxByValAlign(ATy->getElementType(), EltAlign);
1030    if (EltAlign > MaxAlign)
1031      MaxAlign = EltAlign;
1032  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1033    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1034      unsigned EltAlign = 0;
1035      getMaxByValAlign(STy->getElementType(i), EltAlign);
1036      if (EltAlign > MaxAlign)
1037        MaxAlign = EltAlign;
1038      if (MaxAlign == 16)
1039        break;
1040    }
1041  }
1042  return;
1043}
1044
1045/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1046/// function arguments in the caller parameter area. For X86, aggregates
1047/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1048/// are at 4-byte boundaries.
1049unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1050  if (Subtarget->is64Bit()) {
1051    // Max of 8 and alignment of type.
1052    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1053    if (TyAlign > 8)
1054      return TyAlign;
1055    return 8;
1056  }
1057
1058  unsigned Align = 4;
1059  if (Subtarget->hasSSE1())
1060    getMaxByValAlign(Ty, Align);
1061  return Align;
1062}
1063
1064/// getOptimalMemOpType - Returns the target specific optimal type for load
1065/// and store operations as a result of memset, memcpy, and memmove
1066/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
1067/// determining it.
1068EVT
1069X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
1070                                       bool isSrcConst, bool isSrcStr,
1071                                       SelectionDAG &DAG) const {
1072  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1073  // linux.  This is because the stack realignment code can't handle certain
1074  // cases like PR2962.  This should be removed when PR2962 is fixed.
1075  const Function *F = DAG.getMachineFunction().getFunction();
1076  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
1077  if (!NoImplicitFloatOps && Subtarget->getStackAlignment() >= 16) {
1078    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
1079      return MVT::v4i32;
1080    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
1081      return MVT::v4f32;
1082  }
1083  if (Subtarget->is64Bit() && Size >= 8)
1084    return MVT::i64;
1085  return MVT::i32;
1086}
1087
1088/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1089/// current function.  The returned value is a member of the
1090/// MachineJumpTableInfo::JTEntryKind enum.
1091unsigned X86TargetLowering::getJumpTableEncoding() const {
1092  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1093  // symbol.
1094  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1095      Subtarget->isPICStyleGOT())
1096    return MachineJumpTableInfo::EK_Custom32;
1097
1098  // Otherwise, use the normal jump table encoding heuristics.
1099  return TargetLowering::getJumpTableEncoding();
1100}
1101
1102/// getPICBaseSymbol - Return the X86-32 PIC base.
1103MCSymbol *
1104X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1105                                    MCContext &Ctx) const {
1106  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1107  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1108                               Twine(MF->getFunctionNumber())+"$pb");
1109}
1110
1111
1112const MCExpr *
1113X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1114                                             const MachineBasicBlock *MBB,
1115                                             unsigned uid,MCContext &Ctx) const{
1116  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1117         Subtarget->isPICStyleGOT());
1118  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1119  // entries.
1120  return X86MCTargetExpr::Create(MBB->getSymbol(Ctx),
1121                                 X86MCTargetExpr::GOTOFF, Ctx);
1122}
1123
1124/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1125/// jumptable.
1126SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1127                                                    SelectionDAG &DAG) const {
1128  if (!Subtarget->is64Bit())
1129    // This doesn't have DebugLoc associated with it, but is not really the
1130    // same as a Register.
1131    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc::getUnknownLoc(),
1132                       getPointerTy());
1133  return Table;
1134}
1135
1136/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1137/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1138/// MCExpr.
1139const MCExpr *X86TargetLowering::
1140getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1141                             MCContext &Ctx) const {
1142  // X86-64 uses RIP relative addressing based on the jump table label.
1143  if (Subtarget->isPICStyleRIPRel())
1144    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1145
1146  // Otherwise, the reference is relative to the PIC base.
1147  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1148}
1149
1150/// getFunctionAlignment - Return the Log2 alignment of this function.
1151unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1152  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1153}
1154
1155//===----------------------------------------------------------------------===//
1156//               Return Value Calling Convention Implementation
1157//===----------------------------------------------------------------------===//
1158
1159#include "X86GenCallingConv.inc"
1160
1161bool
1162X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1163                        const SmallVectorImpl<EVT> &OutTys,
1164                        const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
1165                        SelectionDAG &DAG) {
1166  SmallVector<CCValAssign, 16> RVLocs;
1167  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1168                 RVLocs, *DAG.getContext());
1169  return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
1170}
1171
1172SDValue
1173X86TargetLowering::LowerReturn(SDValue Chain,
1174                               CallingConv::ID CallConv, bool isVarArg,
1175                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1176                               DebugLoc dl, SelectionDAG &DAG) {
1177
1178  SmallVector<CCValAssign, 16> RVLocs;
1179  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1180                 RVLocs, *DAG.getContext());
1181  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1182
1183  // Add the regs to the liveout set for the function.
1184  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1185  for (unsigned i = 0; i != RVLocs.size(); ++i)
1186    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1187      MRI.addLiveOut(RVLocs[i].getLocReg());
1188
1189  SDValue Flag;
1190
1191  SmallVector<SDValue, 6> RetOps;
1192  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1193  // Operand #1 = Bytes To Pop
1194  RetOps.push_back(DAG.getTargetConstant(getBytesToPopOnReturn(), MVT::i16));
1195
1196  // Copy the result values into the output registers.
1197  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1198    CCValAssign &VA = RVLocs[i];
1199    assert(VA.isRegLoc() && "Can only return in registers!");
1200    SDValue ValToCopy = Outs[i].Val;
1201
1202    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1203    // the RET instruction and handled by the FP Stackifier.
1204    if (VA.getLocReg() == X86::ST0 ||
1205        VA.getLocReg() == X86::ST1) {
1206      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1207      // change the value to the FP stack register class.
1208      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1209        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1210      RetOps.push_back(ValToCopy);
1211      // Don't emit a copytoreg.
1212      continue;
1213    }
1214
1215    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1216    // which is returned in RAX / RDX.
1217    if (Subtarget->is64Bit()) {
1218      EVT ValVT = ValToCopy.getValueType();
1219      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1220        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1221        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
1222          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
1223      }
1224    }
1225
1226    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1227    Flag = Chain.getValue(1);
1228  }
1229
1230  // The x86-64 ABI for returning structs by value requires that we copy
1231  // the sret argument into %rax for the return. We saved the argument into
1232  // a virtual register in the entry block, so now we copy the value out
1233  // and into %rax.
1234  if (Subtarget->is64Bit() &&
1235      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1236    MachineFunction &MF = DAG.getMachineFunction();
1237    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1238    unsigned Reg = FuncInfo->getSRetReturnReg();
1239    if (!Reg) {
1240      Reg = MRI.createVirtualRegister(getRegClassFor(MVT::i64));
1241      FuncInfo->setSRetReturnReg(Reg);
1242    }
1243    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1244
1245    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1246    Flag = Chain.getValue(1);
1247
1248    // RAX now acts like a return value.
1249    MRI.addLiveOut(X86::RAX);
1250  }
1251
1252  RetOps[0] = Chain;  // Update chain.
1253
1254  // Add the flag if we have it.
1255  if (Flag.getNode())
1256    RetOps.push_back(Flag);
1257
1258  return DAG.getNode(X86ISD::RET_FLAG, dl,
1259                     MVT::Other, &RetOps[0], RetOps.size());
1260}
1261
1262/// LowerCallResult - Lower the result values of a call into the
1263/// appropriate copies out of appropriate physical registers.
1264///
1265SDValue
1266X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1267                                   CallingConv::ID CallConv, bool isVarArg,
1268                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1269                                   DebugLoc dl, SelectionDAG &DAG,
1270                                   SmallVectorImpl<SDValue> &InVals) {
1271
1272  // Assign locations to each value returned by this call.
1273  SmallVector<CCValAssign, 16> RVLocs;
1274  bool Is64Bit = Subtarget->is64Bit();
1275  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1276                 RVLocs, *DAG.getContext());
1277  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1278
1279  // Copy all of the result registers out of their specified physreg.
1280  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1281    CCValAssign &VA = RVLocs[i];
1282    EVT CopyVT = VA.getValVT();
1283
1284    // If this is x86-64, and we disabled SSE, we can't return FP values
1285    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1286        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1287      llvm_report_error("SSE register return with SSE disabled");
1288    }
1289
1290    // If this is a call to a function that returns an fp value on the floating
1291    // point stack, but where we prefer to use the value in xmm registers, copy
1292    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1293    if ((VA.getLocReg() == X86::ST0 ||
1294         VA.getLocReg() == X86::ST1) &&
1295        isScalarFPTypeInSSEReg(VA.getValVT())) {
1296      CopyVT = MVT::f80;
1297    }
1298
1299    SDValue Val;
1300    if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1301      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1302      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1303        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1304                                   MVT::v2i64, InFlag).getValue(1);
1305        Val = Chain.getValue(0);
1306        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1307                          Val, DAG.getConstant(0, MVT::i64));
1308      } else {
1309        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1310                                   MVT::i64, InFlag).getValue(1);
1311        Val = Chain.getValue(0);
1312      }
1313      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1314    } else {
1315      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1316                                 CopyVT, InFlag).getValue(1);
1317      Val = Chain.getValue(0);
1318    }
1319    InFlag = Chain.getValue(2);
1320
1321    if (CopyVT != VA.getValVT()) {
1322      // Round the F80 the right size, which also moves to the appropriate xmm
1323      // register.
1324      Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1325                        // This truncation won't change the value.
1326                        DAG.getIntPtrConstant(1));
1327    }
1328
1329    InVals.push_back(Val);
1330  }
1331
1332  return Chain;
1333}
1334
1335
1336//===----------------------------------------------------------------------===//
1337//                C & StdCall & Fast Calling Convention implementation
1338//===----------------------------------------------------------------------===//
1339//  StdCall calling convention seems to be standard for many Windows' API
1340//  routines and around. It differs from C calling convention just a little:
1341//  callee should clean up the stack, not caller. Symbols should be also
1342//  decorated in some fancy way :) It doesn't support any vector arguments.
1343//  For info on fast calling convention see Fast Calling Convention (tail call)
1344//  implementation LowerX86_32FastCCCallTo.
1345
1346/// CallIsStructReturn - Determines whether a call uses struct return
1347/// semantics.
1348static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1349  if (Outs.empty())
1350    return false;
1351
1352  return Outs[0].Flags.isSRet();
1353}
1354
1355/// ArgsAreStructReturn - Determines whether a function uses struct
1356/// return semantics.
1357static bool
1358ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1359  if (Ins.empty())
1360    return false;
1361
1362  return Ins[0].Flags.isSRet();
1363}
1364
1365/// IsCalleePop - Determines whether the callee is required to pop its
1366/// own arguments. Callee pop is necessary to support tail calls.
1367bool X86TargetLowering::IsCalleePop(bool IsVarArg, CallingConv::ID CallingConv){
1368  if (IsVarArg)
1369    return false;
1370
1371  switch (CallingConv) {
1372  default:
1373    return false;
1374  case CallingConv::X86_StdCall:
1375    return !Subtarget->is64Bit();
1376  case CallingConv::X86_FastCall:
1377    return !Subtarget->is64Bit();
1378  case CallingConv::Fast:
1379    return GuaranteedTailCallOpt;
1380  }
1381}
1382
1383/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1384/// given CallingConvention value.
1385CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1386  if (Subtarget->is64Bit()) {
1387    if (Subtarget->isTargetWin64())
1388      return CC_X86_Win64_C;
1389    else
1390      return CC_X86_64_C;
1391  }
1392
1393  if (CC == CallingConv::X86_FastCall)
1394    return CC_X86_32_FastCall;
1395  else if (CC == CallingConv::Fast)
1396    return CC_X86_32_FastCC;
1397  else
1398    return CC_X86_32_C;
1399}
1400
1401/// NameDecorationForCallConv - Selects the appropriate decoration to
1402/// apply to a MachineFunction containing a given calling convention.
1403NameDecorationStyle
1404X86TargetLowering::NameDecorationForCallConv(CallingConv::ID CallConv) {
1405  if (CallConv == CallingConv::X86_FastCall)
1406    return FastCall;
1407  else if (CallConv == CallingConv::X86_StdCall)
1408    return StdCall;
1409  return None;
1410}
1411
1412
1413/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1414/// by "Src" to address "Dst" with size and alignment information specified by
1415/// the specific parameter attribute. The copy will be passed as a byval
1416/// function parameter.
1417static SDValue
1418CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1419                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1420                          DebugLoc dl) {
1421  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1422  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1423                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1424}
1425
1426/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1427/// a tailcall target by changing its ABI.
1428static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1429  return GuaranteedTailCallOpt && CC == CallingConv::Fast;
1430}
1431
1432SDValue
1433X86TargetLowering::LowerMemArgument(SDValue Chain,
1434                                    CallingConv::ID CallConv,
1435                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1436                                    DebugLoc dl, SelectionDAG &DAG,
1437                                    const CCValAssign &VA,
1438                                    MachineFrameInfo *MFI,
1439                                    unsigned i) {
1440  // Create the nodes corresponding to a load from this parameter slot.
1441  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1442  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1443  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1444  EVT ValVT;
1445
1446  // If value is passed by pointer we have address passed instead of the value
1447  // itself.
1448  if (VA.getLocInfo() == CCValAssign::Indirect)
1449    ValVT = VA.getLocVT();
1450  else
1451    ValVT = VA.getValVT();
1452
1453  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1454  // changed with more analysis.
1455  // In case of tail call optimization mark all arguments mutable. Since they
1456  // could be overwritten by lowering of arguments in case of a tail call.
1457  if (Flags.isByVal()) {
1458    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1459                                    VA.getLocMemOffset(), isImmutable, false);
1460    return DAG.getFrameIndex(FI, getPointerTy());
1461  } else {
1462    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1463                                    VA.getLocMemOffset(), isImmutable, false);
1464    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1465    return DAG.getLoad(ValVT, dl, Chain, FIN,
1466                       PseudoSourceValue::getFixedStack(FI), 0);
1467  }
1468}
1469
1470SDValue
1471X86TargetLowering::LowerFormalArguments(SDValue Chain,
1472                                        CallingConv::ID CallConv,
1473                                        bool isVarArg,
1474                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1475                                        DebugLoc dl,
1476                                        SelectionDAG &DAG,
1477                                        SmallVectorImpl<SDValue> &InVals) {
1478
1479  MachineFunction &MF = DAG.getMachineFunction();
1480  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1481
1482  const Function* Fn = MF.getFunction();
1483  if (Fn->hasExternalLinkage() &&
1484      Subtarget->isTargetCygMing() &&
1485      Fn->getName() == "main")
1486    FuncInfo->setForceFramePointer(true);
1487
1488  // Decorate the function name.
1489  FuncInfo->setDecorationStyle(NameDecorationForCallConv(CallConv));
1490
1491  MachineFrameInfo *MFI = MF.getFrameInfo();
1492  bool Is64Bit = Subtarget->is64Bit();
1493  bool IsWin64 = Subtarget->isTargetWin64();
1494
1495  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1496         "Var args not supported with calling convention fastcc");
1497
1498  // Assign locations to all of the incoming arguments.
1499  SmallVector<CCValAssign, 16> ArgLocs;
1500  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1501                 ArgLocs, *DAG.getContext());
1502  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1503
1504  unsigned LastVal = ~0U;
1505  SDValue ArgValue;
1506  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1507    CCValAssign &VA = ArgLocs[i];
1508    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1509    // places.
1510    assert(VA.getValNo() != LastVal &&
1511           "Don't support value assigned to multiple locs yet");
1512    LastVal = VA.getValNo();
1513
1514    if (VA.isRegLoc()) {
1515      EVT RegVT = VA.getLocVT();
1516      TargetRegisterClass *RC = NULL;
1517      if (RegVT == MVT::i32)
1518        RC = X86::GR32RegisterClass;
1519      else if (Is64Bit && RegVT == MVT::i64)
1520        RC = X86::GR64RegisterClass;
1521      else if (RegVT == MVT::f32)
1522        RC = X86::FR32RegisterClass;
1523      else if (RegVT == MVT::f64)
1524        RC = X86::FR64RegisterClass;
1525      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1526        RC = X86::VR128RegisterClass;
1527      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1528        RC = X86::VR64RegisterClass;
1529      else
1530        llvm_unreachable("Unknown argument type!");
1531
1532      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1533      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1534
1535      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1536      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1537      // right size.
1538      if (VA.getLocInfo() == CCValAssign::SExt)
1539        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1540                               DAG.getValueType(VA.getValVT()));
1541      else if (VA.getLocInfo() == CCValAssign::ZExt)
1542        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1543                               DAG.getValueType(VA.getValVT()));
1544      else if (VA.getLocInfo() == CCValAssign::BCvt)
1545        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1546
1547      if (VA.isExtInLoc()) {
1548        // Handle MMX values passed in XMM regs.
1549        if (RegVT.isVector()) {
1550          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1551                                 ArgValue, DAG.getConstant(0, MVT::i64));
1552          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1553        } else
1554          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1555      }
1556    } else {
1557      assert(VA.isMemLoc());
1558      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1559    }
1560
1561    // If value is passed via pointer - do a load.
1562    if (VA.getLocInfo() == CCValAssign::Indirect)
1563      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0);
1564
1565    InVals.push_back(ArgValue);
1566  }
1567
1568  // The x86-64 ABI for returning structs by value requires that we copy
1569  // the sret argument into %rax for the return. Save the argument into
1570  // a virtual register so that we can access it from the return points.
1571  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1572    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1573    unsigned Reg = FuncInfo->getSRetReturnReg();
1574    if (!Reg) {
1575      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1576      FuncInfo->setSRetReturnReg(Reg);
1577    }
1578    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1579    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1580  }
1581
1582  unsigned StackSize = CCInfo.getNextStackOffset();
1583  // Align stack specially for tail calls.
1584  if (FuncIsMadeTailCallSafe(CallConv))
1585    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1586
1587  // If the function takes variable number of arguments, make a frame index for
1588  // the start of the first vararg value... for expansion of llvm.va_start.
1589  if (isVarArg) {
1590    if (Is64Bit || CallConv != CallingConv::X86_FastCall) {
1591      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize, true, false);
1592    }
1593    if (Is64Bit) {
1594      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1595
1596      // FIXME: We should really autogenerate these arrays
1597      static const unsigned GPR64ArgRegsWin64[] = {
1598        X86::RCX, X86::RDX, X86::R8,  X86::R9
1599      };
1600      static const unsigned XMMArgRegsWin64[] = {
1601        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1602      };
1603      static const unsigned GPR64ArgRegs64Bit[] = {
1604        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1605      };
1606      static const unsigned XMMArgRegs64Bit[] = {
1607        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1608        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1609      };
1610      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1611
1612      if (IsWin64) {
1613        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1614        GPR64ArgRegs = GPR64ArgRegsWin64;
1615        XMMArgRegs = XMMArgRegsWin64;
1616      } else {
1617        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1618        GPR64ArgRegs = GPR64ArgRegs64Bit;
1619        XMMArgRegs = XMMArgRegs64Bit;
1620      }
1621      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1622                                                       TotalNumIntRegs);
1623      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1624                                                       TotalNumXMMRegs);
1625
1626      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1627      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1628             "SSE register cannot be used when SSE is disabled!");
1629      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1630             "SSE register cannot be used when SSE is disabled!");
1631      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1632        // Kernel mode asks for SSE to be disabled, so don't push them
1633        // on the stack.
1634        TotalNumXMMRegs = 0;
1635
1636      // For X86-64, if there are vararg parameters that are passed via
1637      // registers, then we must store them to their spots on the stack so they
1638      // may be loaded by deferencing the result of va_next.
1639      VarArgsGPOffset = NumIntRegs * 8;
1640      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1641      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1642                                                 TotalNumXMMRegs * 16, 16,
1643                                                 false);
1644
1645      // Store the integer parameter registers.
1646      SmallVector<SDValue, 8> MemOps;
1647      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1648      unsigned Offset = VarArgsGPOffset;
1649      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1650        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1651                                  DAG.getIntPtrConstant(Offset));
1652        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1653                                     X86::GR64RegisterClass);
1654        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1655        SDValue Store =
1656          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1657                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
1658                       Offset);
1659        MemOps.push_back(Store);
1660        Offset += 8;
1661      }
1662
1663      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1664        // Now store the XMM (fp + vector) parameter registers.
1665        SmallVector<SDValue, 11> SaveXMMOps;
1666        SaveXMMOps.push_back(Chain);
1667
1668        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1669        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1670        SaveXMMOps.push_back(ALVal);
1671
1672        SaveXMMOps.push_back(DAG.getIntPtrConstant(RegSaveFrameIndex));
1673        SaveXMMOps.push_back(DAG.getIntPtrConstant(VarArgsFPOffset));
1674
1675        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1676          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1677                                       X86::VR128RegisterClass);
1678          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1679          SaveXMMOps.push_back(Val);
1680        }
1681        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1682                                     MVT::Other,
1683                                     &SaveXMMOps[0], SaveXMMOps.size()));
1684      }
1685
1686      if (!MemOps.empty())
1687        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1688                            &MemOps[0], MemOps.size());
1689    }
1690  }
1691
1692  // Some CCs need callee pop.
1693  if (IsCalleePop(isVarArg, CallConv)) {
1694    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1695  } else {
1696    BytesToPopOnReturn  = 0; // Callee pops nothing.
1697    // If this is an sret function, the return should pop the hidden pointer.
1698    if (!Is64Bit && CallConv != CallingConv::Fast && ArgsAreStructReturn(Ins))
1699      BytesToPopOnReturn = 4;
1700  }
1701
1702  if (!Is64Bit) {
1703    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1704    if (CallConv == CallingConv::X86_FastCall)
1705      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1706  }
1707
1708  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1709
1710  return Chain;
1711}
1712
1713SDValue
1714X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1715                                    SDValue StackPtr, SDValue Arg,
1716                                    DebugLoc dl, SelectionDAG &DAG,
1717                                    const CCValAssign &VA,
1718                                    ISD::ArgFlagsTy Flags) {
1719  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1720  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1721  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1722  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1723  if (Flags.isByVal()) {
1724    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1725  }
1726  return DAG.getStore(Chain, dl, Arg, PtrOff,
1727                      PseudoSourceValue::getStack(), LocMemOffset);
1728}
1729
1730/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1731/// optimization is performed and it is required.
1732SDValue
1733X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1734                                           SDValue &OutRetAddr, SDValue Chain,
1735                                           bool IsTailCall, bool Is64Bit,
1736                                           int FPDiff, DebugLoc dl) {
1737  // Adjust the Return address stack slot.
1738  EVT VT = getPointerTy();
1739  OutRetAddr = getReturnAddressFrameIndex(DAG);
1740
1741  // Load the "old" Return address.
1742  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0);
1743  return SDValue(OutRetAddr.getNode(), 1);
1744}
1745
1746/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1747/// optimization is performed and it is required (FPDiff!=0).
1748static SDValue
1749EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1750                         SDValue Chain, SDValue RetAddrFrIdx,
1751                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1752  // Store the return address to the appropriate stack slot.
1753  if (!FPDiff) return Chain;
1754  // Calculate the new stack slot for the return address.
1755  int SlotSize = Is64Bit ? 8 : 4;
1756  int NewReturnAddrFI =
1757    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, true,false);
1758  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1759  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1760  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1761                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1762  return Chain;
1763}
1764
1765SDValue
1766X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1767                             CallingConv::ID CallConv, bool isVarArg,
1768                             bool &isTailCall,
1769                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1770                             const SmallVectorImpl<ISD::InputArg> &Ins,
1771                             DebugLoc dl, SelectionDAG &DAG,
1772                             SmallVectorImpl<SDValue> &InVals) {
1773  MachineFunction &MF = DAG.getMachineFunction();
1774  bool Is64Bit        = Subtarget->is64Bit();
1775  bool IsStructRet    = CallIsStructReturn(Outs);
1776  bool IsSibcall      = false;
1777
1778  if (isTailCall) {
1779    // Check if it's really possible to do a tail call.
1780    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
1781                                                   Outs, Ins, DAG);
1782
1783    // Sibcalls are automatically detected tailcalls which do not require
1784    // ABI changes.
1785    if (!GuaranteedTailCallOpt && isTailCall)
1786      IsSibcall = true;
1787
1788    if (isTailCall)
1789      ++NumTailCalls;
1790  }
1791
1792  assert(!(isVarArg && CallConv == CallingConv::Fast) &&
1793         "Var args not supported with calling convention fastcc");
1794
1795  // Analyze operands of the call, assigning locations to each operand.
1796  SmallVector<CCValAssign, 16> ArgLocs;
1797  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1798                 ArgLocs, *DAG.getContext());
1799  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1800
1801  // Get a count of how many bytes are to be pushed on the stack.
1802  unsigned NumBytes = CCInfo.getNextStackOffset();
1803  if (IsSibcall)
1804    // This is a sibcall. The memory operands are available in caller's
1805    // own caller's stack.
1806    NumBytes = 0;
1807  else if (GuaranteedTailCallOpt && CallConv == CallingConv::Fast)
1808    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1809
1810  int FPDiff = 0;
1811  if (isTailCall && !IsSibcall) {
1812    // Lower arguments at fp - stackoffset + fpdiff.
1813    unsigned NumBytesCallerPushed =
1814      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1815    FPDiff = NumBytesCallerPushed - NumBytes;
1816
1817    // Set the delta of movement of the returnaddr stackslot.
1818    // But only set if delta is greater than previous delta.
1819    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1820      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1821  }
1822
1823  if (!IsSibcall)
1824    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1825
1826  SDValue RetAddrFrIdx;
1827  // Load return adress for tail calls.
1828  if (isTailCall && FPDiff)
1829    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1830                                    Is64Bit, FPDiff, dl);
1831
1832  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1833  SmallVector<SDValue, 8> MemOpChains;
1834  SDValue StackPtr;
1835
1836  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1837  // of tail call optimization arguments are handle later.
1838  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1839    CCValAssign &VA = ArgLocs[i];
1840    EVT RegVT = VA.getLocVT();
1841    SDValue Arg = Outs[i].Val;
1842    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1843    bool isByVal = Flags.isByVal();
1844
1845    // Promote the value if needed.
1846    switch (VA.getLocInfo()) {
1847    default: llvm_unreachable("Unknown loc info!");
1848    case CCValAssign::Full: break;
1849    case CCValAssign::SExt:
1850      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1851      break;
1852    case CCValAssign::ZExt:
1853      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1854      break;
1855    case CCValAssign::AExt:
1856      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1857        // Special case: passing MMX values in XMM registers.
1858        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1859        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1860        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1861      } else
1862        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1863      break;
1864    case CCValAssign::BCvt:
1865      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1866      break;
1867    case CCValAssign::Indirect: {
1868      // Store the argument.
1869      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1870      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1871      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1872                           PseudoSourceValue::getFixedStack(FI), 0);
1873      Arg = SpillSlot;
1874      break;
1875    }
1876    }
1877
1878    if (VA.isRegLoc()) {
1879      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1880    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1881      assert(VA.isMemLoc());
1882      if (StackPtr.getNode() == 0)
1883        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1884      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1885                                             dl, DAG, VA, Flags));
1886    }
1887  }
1888
1889  if (!MemOpChains.empty())
1890    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1891                        &MemOpChains[0], MemOpChains.size());
1892
1893  // Build a sequence of copy-to-reg nodes chained together with token chain
1894  // and flag operands which copy the outgoing args into registers.
1895  SDValue InFlag;
1896  // Tail call byval lowering might overwrite argument registers so in case of
1897  // tail call optimization the copies to registers are lowered later.
1898  if (!isTailCall)
1899    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1900      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1901                               RegsToPass[i].second, InFlag);
1902      InFlag = Chain.getValue(1);
1903    }
1904
1905  if (Subtarget->isPICStyleGOT()) {
1906    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1907    // GOT pointer.
1908    if (!isTailCall) {
1909      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1910                               DAG.getNode(X86ISD::GlobalBaseReg,
1911                                           DebugLoc::getUnknownLoc(),
1912                                           getPointerTy()),
1913                               InFlag);
1914      InFlag = Chain.getValue(1);
1915    } else {
1916      // If we are tail calling and generating PIC/GOT style code load the
1917      // address of the callee into ECX. The value in ecx is used as target of
1918      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1919      // for tail calls on PIC/GOT architectures. Normally we would just put the
1920      // address of GOT into ebx and then call target@PLT. But for tail calls
1921      // ebx would be restored (since ebx is callee saved) before jumping to the
1922      // target@PLT.
1923
1924      // Note: The actual moving to ECX is done further down.
1925      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1926      if (G && !G->getGlobal()->hasHiddenVisibility() &&
1927          !G->getGlobal()->hasProtectedVisibility())
1928        Callee = LowerGlobalAddress(Callee, DAG);
1929      else if (isa<ExternalSymbolSDNode>(Callee))
1930        Callee = LowerExternalSymbol(Callee, DAG);
1931    }
1932  }
1933
1934  if (Is64Bit && isVarArg) {
1935    // From AMD64 ABI document:
1936    // For calls that may call functions that use varargs or stdargs
1937    // (prototype-less calls or calls to functions containing ellipsis (...) in
1938    // the declaration) %al is used as hidden argument to specify the number
1939    // of SSE registers used. The contents of %al do not need to match exactly
1940    // the number of registers, but must be an ubound on the number of SSE
1941    // registers used and is in the range 0 - 8 inclusive.
1942
1943    // FIXME: Verify this on Win64
1944    // Count the number of XMM registers allocated.
1945    static const unsigned XMMArgRegs[] = {
1946      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1947      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1948    };
1949    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1950    assert((Subtarget->hasSSE1() || !NumXMMRegs)
1951           && "SSE registers cannot be used when SSE is disabled");
1952
1953    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
1954                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1955    InFlag = Chain.getValue(1);
1956  }
1957
1958
1959  // For tail calls lower the arguments to the 'real' stack slot.
1960  if (isTailCall) {
1961    // Force all the incoming stack arguments to be loaded from the stack
1962    // before any new outgoing arguments are stored to the stack, because the
1963    // outgoing stack slots may alias the incoming argument stack slots, and
1964    // the alias isn't otherwise explicit. This is slightly more conservative
1965    // than necessary, because it means that each store effectively depends
1966    // on every argument instead of just those arguments it would clobber.
1967    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
1968
1969    SmallVector<SDValue, 8> MemOpChains2;
1970    SDValue FIN;
1971    int FI = 0;
1972    // Do not flag preceeding copytoreg stuff together with the following stuff.
1973    InFlag = SDValue();
1974    if (GuaranteedTailCallOpt) {
1975      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1976        CCValAssign &VA = ArgLocs[i];
1977        if (VA.isRegLoc())
1978          continue;
1979        assert(VA.isMemLoc());
1980        SDValue Arg = Outs[i].Val;
1981        ISD::ArgFlagsTy Flags = Outs[i].Flags;
1982        // Create frame index.
1983        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1984        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1985        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
1986        FIN = DAG.getFrameIndex(FI, getPointerTy());
1987
1988        if (Flags.isByVal()) {
1989          // Copy relative to framepointer.
1990          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1991          if (StackPtr.getNode() == 0)
1992            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
1993                                          getPointerTy());
1994          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
1995
1996          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
1997                                                           ArgChain,
1998                                                           Flags, DAG, dl));
1999        } else {
2000          // Store relative to framepointer.
2001          MemOpChains2.push_back(
2002            DAG.getStore(ArgChain, dl, Arg, FIN,
2003                         PseudoSourceValue::getFixedStack(FI), 0));
2004        }
2005      }
2006    }
2007
2008    if (!MemOpChains2.empty())
2009      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2010                          &MemOpChains2[0], MemOpChains2.size());
2011
2012    // Copy arguments to their registers.
2013    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2014      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2015                               RegsToPass[i].second, InFlag);
2016      InFlag = Chain.getValue(1);
2017    }
2018    InFlag =SDValue();
2019
2020    // Store the return address to the appropriate stack slot.
2021    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2022                                     FPDiff, dl);
2023  }
2024
2025  bool WasGlobalOrExternal = false;
2026  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2027    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2028    // In the 64-bit large code model, we have to make all calls
2029    // through a register, since the call instruction's 32-bit
2030    // pc-relative offset may not be large enough to hold the whole
2031    // address.
2032  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2033    WasGlobalOrExternal = true;
2034    // If the callee is a GlobalAddress node (quite common, every direct call
2035    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2036    // it.
2037
2038    // We should use extra load for direct calls to dllimported functions in
2039    // non-JIT mode.
2040    GlobalValue *GV = G->getGlobal();
2041    if (!GV->hasDLLImportLinkage()) {
2042      unsigned char OpFlags = 0;
2043
2044      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2045      // external symbols most go through the PLT in PIC mode.  If the symbol
2046      // has hidden or protected visibility, or if it is static or local, then
2047      // we don't need to use the PLT - we can directly call it.
2048      if (Subtarget->isTargetELF() &&
2049          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2050          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2051        OpFlags = X86II::MO_PLT;
2052      } else if (Subtarget->isPICStyleStubAny() &&
2053               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2054               Subtarget->getDarwinVers() < 9) {
2055        // PC-relative references to external symbols should go through $stub,
2056        // unless we're building with the leopard linker or later, which
2057        // automatically synthesizes these stubs.
2058        OpFlags = X86II::MO_DARWIN_STUB;
2059      }
2060
2061      Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
2062                                          G->getOffset(), OpFlags);
2063    }
2064  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2065    WasGlobalOrExternal = true;
2066    unsigned char OpFlags = 0;
2067
2068    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2069    // symbols should go through the PLT.
2070    if (Subtarget->isTargetELF() &&
2071        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2072      OpFlags = X86II::MO_PLT;
2073    } else if (Subtarget->isPICStyleStubAny() &&
2074             Subtarget->getDarwinVers() < 9) {
2075      // PC-relative references to external symbols should go through $stub,
2076      // unless we're building with the leopard linker or later, which
2077      // automatically synthesizes these stubs.
2078      OpFlags = X86II::MO_DARWIN_STUB;
2079    }
2080
2081    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2082                                         OpFlags);
2083  }
2084
2085  if (isTailCall && !WasGlobalOrExternal) {
2086    // Force the address into a (call preserved) caller-saved register since
2087    // tailcall must happen after callee-saved registers are poped.
2088    // FIXME: Give it a special register class that contains caller-saved
2089    // register instead?
2090    unsigned TCReg = Is64Bit ? X86::R11 : X86::EAX;
2091    Chain = DAG.getCopyToReg(Chain,  dl,
2092                             DAG.getRegister(TCReg, getPointerTy()),
2093                             Callee,InFlag);
2094    Callee = DAG.getRegister(TCReg, getPointerTy());
2095  }
2096
2097  // Returns a chain & a flag for retval copy to use.
2098  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2099  SmallVector<SDValue, 8> Ops;
2100
2101  if (!IsSibcall && isTailCall) {
2102    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2103                           DAG.getIntPtrConstant(0, true), InFlag);
2104    InFlag = Chain.getValue(1);
2105  }
2106
2107  Ops.push_back(Chain);
2108  Ops.push_back(Callee);
2109
2110  if (isTailCall)
2111    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2112
2113  // Add argument registers to the end of the list so that they are known live
2114  // into the call.
2115  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2116    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2117                                  RegsToPass[i].second.getValueType()));
2118
2119  // Add an implicit use GOT pointer in EBX.
2120  if (!isTailCall && Subtarget->isPICStyleGOT())
2121    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2122
2123  // Add an implicit use of AL for x86 vararg functions.
2124  if (Is64Bit && isVarArg)
2125    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2126
2127  if (InFlag.getNode())
2128    Ops.push_back(InFlag);
2129
2130  if (isTailCall) {
2131    // If this is the first return lowered for this function, add the regs
2132    // to the liveout set for the function.
2133    if (MF.getRegInfo().liveout_empty()) {
2134      SmallVector<CCValAssign, 16> RVLocs;
2135      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2136                     *DAG.getContext());
2137      CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2138      for (unsigned i = 0; i != RVLocs.size(); ++i)
2139        if (RVLocs[i].isRegLoc())
2140          MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2141    }
2142
2143    assert(((Callee.getOpcode() == ISD::Register &&
2144               (cast<RegisterSDNode>(Callee)->getReg() == X86::EAX ||
2145                cast<RegisterSDNode>(Callee)->getReg() == X86::R11)) ||
2146              Callee.getOpcode() == ISD::TargetExternalSymbol ||
2147              Callee.getOpcode() == ISD::TargetGlobalAddress) &&
2148           "Expecting a global address, external symbol, or scratch register");
2149
2150    return DAG.getNode(X86ISD::TC_RETURN, dl,
2151                       NodeTys, &Ops[0], Ops.size());
2152  }
2153
2154  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2155  InFlag = Chain.getValue(1);
2156
2157  // Create the CALLSEQ_END node.
2158  unsigned NumBytesForCalleeToPush;
2159  if (IsCalleePop(isVarArg, CallConv))
2160    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2161  else if (!Is64Bit && CallConv != CallingConv::Fast && IsStructRet)
2162    // If this is a call to a struct-return function, the callee
2163    // pops the hidden struct pointer, so we have to push it back.
2164    // This is common for Darwin/X86, Linux & Mingw32 targets.
2165    NumBytesForCalleeToPush = 4;
2166  else
2167    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2168
2169  // Returns a flag for retval copy to use.
2170  if (!IsSibcall) {
2171    Chain = DAG.getCALLSEQ_END(Chain,
2172                               DAG.getIntPtrConstant(NumBytes, true),
2173                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2174                                                     true),
2175                               InFlag);
2176    InFlag = Chain.getValue(1);
2177  }
2178
2179  // Handle result values, copying them out of physregs into vregs that we
2180  // return.
2181  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2182                         Ins, dl, DAG, InVals);
2183}
2184
2185
2186//===----------------------------------------------------------------------===//
2187//                Fast Calling Convention (tail call) implementation
2188//===----------------------------------------------------------------------===//
2189
2190//  Like std call, callee cleans arguments, convention except that ECX is
2191//  reserved for storing the tail called function address. Only 2 registers are
2192//  free for argument passing (inreg). Tail call optimization is performed
2193//  provided:
2194//                * tailcallopt is enabled
2195//                * caller/callee are fastcc
2196//  On X86_64 architecture with GOT-style position independent code only local
2197//  (within module) calls are supported at the moment.
2198//  To keep the stack aligned according to platform abi the function
2199//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2200//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2201//  If a tail called function callee has more arguments than the caller the
2202//  caller needs to make sure that there is room to move the RETADDR to. This is
2203//  achieved by reserving an area the size of the argument delta right after the
2204//  original REtADDR, but before the saved framepointer or the spilled registers
2205//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2206//  stack layout:
2207//    arg1
2208//    arg2
2209//    RETADDR
2210//    [ new RETADDR
2211//      move area ]
2212//    (possible EBP)
2213//    ESI
2214//    EDI
2215//    local1 ..
2216
2217/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2218/// for a 16 byte align requirement.
2219unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2220                                                        SelectionDAG& DAG) {
2221  MachineFunction &MF = DAG.getMachineFunction();
2222  const TargetMachine &TM = MF.getTarget();
2223  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2224  unsigned StackAlignment = TFI.getStackAlignment();
2225  uint64_t AlignMask = StackAlignment - 1;
2226  int64_t Offset = StackSize;
2227  uint64_t SlotSize = TD->getPointerSize();
2228  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2229    // Number smaller than 12 so just add the difference.
2230    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2231  } else {
2232    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2233    Offset = ((~AlignMask) & Offset) + StackAlignment +
2234      (StackAlignment-SlotSize);
2235  }
2236  return Offset;
2237}
2238
2239/// MatchingStackOffset - Return true if the given stack call argument is
2240/// already available in the same position (relatively) of the caller's
2241/// incoming argument stack.
2242static
2243bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2244                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2245                         const X86InstrInfo *TII) {
2246  int FI;
2247  if (Arg.getOpcode() == ISD::CopyFromReg) {
2248    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2249    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2250      return false;
2251    MachineInstr *Def = MRI->getVRegDef(VR);
2252    if (!Def)
2253      return false;
2254    if (!Flags.isByVal()) {
2255      if (!TII->isLoadFromStackSlot(Def, FI))
2256        return false;
2257    } else {
2258      unsigned Opcode = Def->getOpcode();
2259      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2260          Def->getOperand(1).isFI()) {
2261        FI = Def->getOperand(1).getIndex();
2262        if (MFI->getObjectSize(FI) != Flags.getByValSize())
2263          return false;
2264      } else
2265        return false;
2266    }
2267  } else {
2268    LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg);
2269    if (!Ld)
2270      return false;
2271    SDValue Ptr = Ld->getBasePtr();
2272    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2273    if (!FINode)
2274      return false;
2275    FI = FINode->getIndex();
2276  }
2277
2278  if (!MFI->isFixedObjectIndex(FI))
2279    return false;
2280  return Offset == MFI->getObjectOffset(FI);
2281}
2282
2283/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2284/// for tail call optimization. Targets which want to do tail call
2285/// optimization should implement this function.
2286bool
2287X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2288                                                     CallingConv::ID CalleeCC,
2289                                                     bool isVarArg,
2290                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2291                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2292                                                     SelectionDAG& DAG) const {
2293  if (CalleeCC != CallingConv::Fast &&
2294      CalleeCC != CallingConv::C)
2295    return false;
2296
2297  // If -tailcallopt is specified, make fastcc functions tail-callable.
2298  const Function *CallerF = DAG.getMachineFunction().getFunction();
2299  if (GuaranteedTailCallOpt) {
2300    if (CalleeCC == CallingConv::Fast &&
2301        CallerF->getCallingConv() == CalleeCC)
2302      return true;
2303    return false;
2304  }
2305
2306  // Look for obvious safe cases to perform tail call optimization that does not
2307  // requite ABI changes. This is what gcc calls sibcall.
2308
2309  // Do not tail call optimize vararg calls for now.
2310  if (isVarArg)
2311    return false;
2312
2313  // If the callee takes no arguments then go on to check the results of the
2314  // call.
2315  if (!Outs.empty()) {
2316    // Check if stack adjustment is needed. For now, do not do this if any
2317    // argument is passed on the stack.
2318    SmallVector<CCValAssign, 16> ArgLocs;
2319    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2320                   ArgLocs, *DAG.getContext());
2321    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2322    if (CCInfo.getNextStackOffset()) {
2323      MachineFunction &MF = DAG.getMachineFunction();
2324      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2325        return false;
2326      if (Subtarget->isTargetWin64())
2327        // Win64 ABI has additional complications.
2328        return false;
2329
2330      // Check if the arguments are already laid out in the right way as
2331      // the caller's fixed stack objects.
2332      MachineFrameInfo *MFI = MF.getFrameInfo();
2333      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2334      const X86InstrInfo *TII =
2335        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2336      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2337        CCValAssign &VA = ArgLocs[i];
2338        EVT RegVT = VA.getLocVT();
2339        SDValue Arg = Outs[i].Val;
2340        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2341        if (VA.getLocInfo() == CCValAssign::Indirect)
2342          return false;
2343        if (!VA.isRegLoc()) {
2344          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2345                                   MFI, MRI, TII))
2346            return false;
2347        }
2348      }
2349    }
2350  }
2351
2352  return true;
2353}
2354
2355FastISel *
2356X86TargetLowering::createFastISel(MachineFunction &mf, MachineModuleInfo *mmo,
2357                            DwarfWriter *dw,
2358                            DenseMap<const Value *, unsigned> &vm,
2359                            DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
2360                            DenseMap<const AllocaInst *, int> &am
2361#ifndef NDEBUG
2362                          , SmallSet<Instruction*, 8> &cil
2363#endif
2364                                  ) {
2365  return X86::createFastISel(mf, mmo, dw, vm, bm, am
2366#ifndef NDEBUG
2367                             , cil
2368#endif
2369                             );
2370}
2371
2372
2373//===----------------------------------------------------------------------===//
2374//                           Other Lowering Hooks
2375//===----------------------------------------------------------------------===//
2376
2377
2378SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
2379  MachineFunction &MF = DAG.getMachineFunction();
2380  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2381  int ReturnAddrIndex = FuncInfo->getRAIndex();
2382
2383  if (ReturnAddrIndex == 0) {
2384    // Set up a frame object for the return address.
2385    uint64_t SlotSize = TD->getPointerSize();
2386    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2387                                                           true, false);
2388    FuncInfo->setRAIndex(ReturnAddrIndex);
2389  }
2390
2391  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2392}
2393
2394
2395bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2396                                       bool hasSymbolicDisplacement) {
2397  // Offset should fit into 32 bit immediate field.
2398  if (!isInt32(Offset))
2399    return false;
2400
2401  // If we don't have a symbolic displacement - we don't have any extra
2402  // restrictions.
2403  if (!hasSymbolicDisplacement)
2404    return true;
2405
2406  // FIXME: Some tweaks might be needed for medium code model.
2407  if (M != CodeModel::Small && M != CodeModel::Kernel)
2408    return false;
2409
2410  // For small code model we assume that latest object is 16MB before end of 31
2411  // bits boundary. We may also accept pretty large negative constants knowing
2412  // that all objects are in the positive half of address space.
2413  if (M == CodeModel::Small && Offset < 16*1024*1024)
2414    return true;
2415
2416  // For kernel code model we know that all object resist in the negative half
2417  // of 32bits address space. We may not accept negative offsets, since they may
2418  // be just off and we may accept pretty large positive ones.
2419  if (M == CodeModel::Kernel && Offset > 0)
2420    return true;
2421
2422  return false;
2423}
2424
2425/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2426/// specific condition code, returning the condition code and the LHS/RHS of the
2427/// comparison to make.
2428static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2429                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2430  if (!isFP) {
2431    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2432      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2433        // X > -1   -> X == 0, jump !sign.
2434        RHS = DAG.getConstant(0, RHS.getValueType());
2435        return X86::COND_NS;
2436      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2437        // X < 0   -> X == 0, jump on sign.
2438        return X86::COND_S;
2439      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2440        // X < 1   -> X <= 0
2441        RHS = DAG.getConstant(0, RHS.getValueType());
2442        return X86::COND_LE;
2443      }
2444    }
2445
2446    switch (SetCCOpcode) {
2447    default: llvm_unreachable("Invalid integer condition!");
2448    case ISD::SETEQ:  return X86::COND_E;
2449    case ISD::SETGT:  return X86::COND_G;
2450    case ISD::SETGE:  return X86::COND_GE;
2451    case ISD::SETLT:  return X86::COND_L;
2452    case ISD::SETLE:  return X86::COND_LE;
2453    case ISD::SETNE:  return X86::COND_NE;
2454    case ISD::SETULT: return X86::COND_B;
2455    case ISD::SETUGT: return X86::COND_A;
2456    case ISD::SETULE: return X86::COND_BE;
2457    case ISD::SETUGE: return X86::COND_AE;
2458    }
2459  }
2460
2461  // First determine if it is required or is profitable to flip the operands.
2462
2463  // If LHS is a foldable load, but RHS is not, flip the condition.
2464  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2465      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2466    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2467    std::swap(LHS, RHS);
2468  }
2469
2470  switch (SetCCOpcode) {
2471  default: break;
2472  case ISD::SETOLT:
2473  case ISD::SETOLE:
2474  case ISD::SETUGT:
2475  case ISD::SETUGE:
2476    std::swap(LHS, RHS);
2477    break;
2478  }
2479
2480  // On a floating point condition, the flags are set as follows:
2481  // ZF  PF  CF   op
2482  //  0 | 0 | 0 | X > Y
2483  //  0 | 0 | 1 | X < Y
2484  //  1 | 0 | 0 | X == Y
2485  //  1 | 1 | 1 | unordered
2486  switch (SetCCOpcode) {
2487  default: llvm_unreachable("Condcode should be pre-legalized away");
2488  case ISD::SETUEQ:
2489  case ISD::SETEQ:   return X86::COND_E;
2490  case ISD::SETOLT:              // flipped
2491  case ISD::SETOGT:
2492  case ISD::SETGT:   return X86::COND_A;
2493  case ISD::SETOLE:              // flipped
2494  case ISD::SETOGE:
2495  case ISD::SETGE:   return X86::COND_AE;
2496  case ISD::SETUGT:              // flipped
2497  case ISD::SETULT:
2498  case ISD::SETLT:   return X86::COND_B;
2499  case ISD::SETUGE:              // flipped
2500  case ISD::SETULE:
2501  case ISD::SETLE:   return X86::COND_BE;
2502  case ISD::SETONE:
2503  case ISD::SETNE:   return X86::COND_NE;
2504  case ISD::SETUO:   return X86::COND_P;
2505  case ISD::SETO:    return X86::COND_NP;
2506  case ISD::SETOEQ:
2507  case ISD::SETUNE:  return X86::COND_INVALID;
2508  }
2509}
2510
2511/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2512/// code. Current x86 isa includes the following FP cmov instructions:
2513/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2514static bool hasFPCMov(unsigned X86CC) {
2515  switch (X86CC) {
2516  default:
2517    return false;
2518  case X86::COND_B:
2519  case X86::COND_BE:
2520  case X86::COND_E:
2521  case X86::COND_P:
2522  case X86::COND_A:
2523  case X86::COND_AE:
2524  case X86::COND_NE:
2525  case X86::COND_NP:
2526    return true;
2527  }
2528}
2529
2530/// isFPImmLegal - Returns true if the target can instruction select the
2531/// specified FP immediate natively. If false, the legalizer will
2532/// materialize the FP immediate as a load from a constant pool.
2533bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2534  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2535    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2536      return true;
2537  }
2538  return false;
2539}
2540
2541/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2542/// the specified range (L, H].
2543static bool isUndefOrInRange(int Val, int Low, int Hi) {
2544  return (Val < 0) || (Val >= Low && Val < Hi);
2545}
2546
2547/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2548/// specified value.
2549static bool isUndefOrEqual(int Val, int CmpVal) {
2550  if (Val < 0 || Val == CmpVal)
2551    return true;
2552  return false;
2553}
2554
2555/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2556/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2557/// the second operand.
2558static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2559  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2560    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2561  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2562    return (Mask[0] < 2 && Mask[1] < 2);
2563  return false;
2564}
2565
2566bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2567  SmallVector<int, 8> M;
2568  N->getMask(M);
2569  return ::isPSHUFDMask(M, N->getValueType(0));
2570}
2571
2572/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2573/// is suitable for input to PSHUFHW.
2574static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2575  if (VT != MVT::v8i16)
2576    return false;
2577
2578  // Lower quadword copied in order or undef.
2579  for (int i = 0; i != 4; ++i)
2580    if (Mask[i] >= 0 && Mask[i] != i)
2581      return false;
2582
2583  // Upper quadword shuffled.
2584  for (int i = 4; i != 8; ++i)
2585    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2586      return false;
2587
2588  return true;
2589}
2590
2591bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2592  SmallVector<int, 8> M;
2593  N->getMask(M);
2594  return ::isPSHUFHWMask(M, N->getValueType(0));
2595}
2596
2597/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2598/// is suitable for input to PSHUFLW.
2599static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2600  if (VT != MVT::v8i16)
2601    return false;
2602
2603  // Upper quadword copied in order.
2604  for (int i = 4; i != 8; ++i)
2605    if (Mask[i] >= 0 && Mask[i] != i)
2606      return false;
2607
2608  // Lower quadword shuffled.
2609  for (int i = 0; i != 4; ++i)
2610    if (Mask[i] >= 4)
2611      return false;
2612
2613  return true;
2614}
2615
2616bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2617  SmallVector<int, 8> M;
2618  N->getMask(M);
2619  return ::isPSHUFLWMask(M, N->getValueType(0));
2620}
2621
2622/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2623/// is suitable for input to PALIGNR.
2624static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2625                          bool hasSSSE3) {
2626  int i, e = VT.getVectorNumElements();
2627
2628  // Do not handle v2i64 / v2f64 shuffles with palignr.
2629  if (e < 4 || !hasSSSE3)
2630    return false;
2631
2632  for (i = 0; i != e; ++i)
2633    if (Mask[i] >= 0)
2634      break;
2635
2636  // All undef, not a palignr.
2637  if (i == e)
2638    return false;
2639
2640  // Determine if it's ok to perform a palignr with only the LHS, since we
2641  // don't have access to the actual shuffle elements to see if RHS is undef.
2642  bool Unary = Mask[i] < (int)e;
2643  bool NeedsUnary = false;
2644
2645  int s = Mask[i] - i;
2646
2647  // Check the rest of the elements to see if they are consecutive.
2648  for (++i; i != e; ++i) {
2649    int m = Mask[i];
2650    if (m < 0)
2651      continue;
2652
2653    Unary = Unary && (m < (int)e);
2654    NeedsUnary = NeedsUnary || (m < s);
2655
2656    if (NeedsUnary && !Unary)
2657      return false;
2658    if (Unary && m != ((s+i) & (e-1)))
2659      return false;
2660    if (!Unary && m != (s+i))
2661      return false;
2662  }
2663  return true;
2664}
2665
2666bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2667  SmallVector<int, 8> M;
2668  N->getMask(M);
2669  return ::isPALIGNRMask(M, N->getValueType(0), true);
2670}
2671
2672/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2673/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2674static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2675  int NumElems = VT.getVectorNumElements();
2676  if (NumElems != 2 && NumElems != 4)
2677    return false;
2678
2679  int Half = NumElems / 2;
2680  for (int i = 0; i < Half; ++i)
2681    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2682      return false;
2683  for (int i = Half; i < NumElems; ++i)
2684    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2685      return false;
2686
2687  return true;
2688}
2689
2690bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2691  SmallVector<int, 8> M;
2692  N->getMask(M);
2693  return ::isSHUFPMask(M, N->getValueType(0));
2694}
2695
2696/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2697/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2698/// half elements to come from vector 1 (which would equal the dest.) and
2699/// the upper half to come from vector 2.
2700static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2701  int NumElems = VT.getVectorNumElements();
2702
2703  if (NumElems != 2 && NumElems != 4)
2704    return false;
2705
2706  int Half = NumElems / 2;
2707  for (int i = 0; i < Half; ++i)
2708    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2709      return false;
2710  for (int i = Half; i < NumElems; ++i)
2711    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2712      return false;
2713  return true;
2714}
2715
2716static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2717  SmallVector<int, 8> M;
2718  N->getMask(M);
2719  return isCommutedSHUFPMask(M, N->getValueType(0));
2720}
2721
2722/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2723/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2724bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2725  if (N->getValueType(0).getVectorNumElements() != 4)
2726    return false;
2727
2728  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2729  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2730         isUndefOrEqual(N->getMaskElt(1), 7) &&
2731         isUndefOrEqual(N->getMaskElt(2), 2) &&
2732         isUndefOrEqual(N->getMaskElt(3), 3);
2733}
2734
2735/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2736/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2737/// <2, 3, 2, 3>
2738bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2739  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2740
2741  if (NumElems != 4)
2742    return false;
2743
2744  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2745  isUndefOrEqual(N->getMaskElt(1), 3) &&
2746  isUndefOrEqual(N->getMaskElt(2), 2) &&
2747  isUndefOrEqual(N->getMaskElt(3), 3);
2748}
2749
2750/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2751/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2752bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2753  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2754
2755  if (NumElems != 2 && NumElems != 4)
2756    return false;
2757
2758  for (unsigned i = 0; i < NumElems/2; ++i)
2759    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2760      return false;
2761
2762  for (unsigned i = NumElems/2; i < NumElems; ++i)
2763    if (!isUndefOrEqual(N->getMaskElt(i), i))
2764      return false;
2765
2766  return true;
2767}
2768
2769/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2770/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2771bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2772  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2773
2774  if (NumElems != 2 && NumElems != 4)
2775    return false;
2776
2777  for (unsigned i = 0; i < NumElems/2; ++i)
2778    if (!isUndefOrEqual(N->getMaskElt(i), i))
2779      return false;
2780
2781  for (unsigned i = 0; i < NumElems/2; ++i)
2782    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
2783      return false;
2784
2785  return true;
2786}
2787
2788/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2789/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2790static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2791                         bool V2IsSplat = false) {
2792  int NumElts = VT.getVectorNumElements();
2793  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2794    return false;
2795
2796  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2797    int BitI  = Mask[i];
2798    int BitI1 = Mask[i+1];
2799    if (!isUndefOrEqual(BitI, j))
2800      return false;
2801    if (V2IsSplat) {
2802      if (!isUndefOrEqual(BitI1, NumElts))
2803        return false;
2804    } else {
2805      if (!isUndefOrEqual(BitI1, j + NumElts))
2806        return false;
2807    }
2808  }
2809  return true;
2810}
2811
2812bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2813  SmallVector<int, 8> M;
2814  N->getMask(M);
2815  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
2816}
2817
2818/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2819/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2820static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
2821                         bool V2IsSplat = false) {
2822  int NumElts = VT.getVectorNumElements();
2823  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2824    return false;
2825
2826  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
2827    int BitI  = Mask[i];
2828    int BitI1 = Mask[i+1];
2829    if (!isUndefOrEqual(BitI, j + NumElts/2))
2830      return false;
2831    if (V2IsSplat) {
2832      if (isUndefOrEqual(BitI1, NumElts))
2833        return false;
2834    } else {
2835      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2836        return false;
2837    }
2838  }
2839  return true;
2840}
2841
2842bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
2843  SmallVector<int, 8> M;
2844  N->getMask(M);
2845  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
2846}
2847
2848/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2849/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2850/// <0, 0, 1, 1>
2851static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2852  int NumElems = VT.getVectorNumElements();
2853  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2854    return false;
2855
2856  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
2857    int BitI  = Mask[i];
2858    int BitI1 = Mask[i+1];
2859    if (!isUndefOrEqual(BitI, j))
2860      return false;
2861    if (!isUndefOrEqual(BitI1, j))
2862      return false;
2863  }
2864  return true;
2865}
2866
2867bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
2868  SmallVector<int, 8> M;
2869  N->getMask(M);
2870  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
2871}
2872
2873/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2874/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2875/// <2, 2, 3, 3>
2876static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
2877  int NumElems = VT.getVectorNumElements();
2878  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2879    return false;
2880
2881  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2882    int BitI  = Mask[i];
2883    int BitI1 = Mask[i+1];
2884    if (!isUndefOrEqual(BitI, j))
2885      return false;
2886    if (!isUndefOrEqual(BitI1, j))
2887      return false;
2888  }
2889  return true;
2890}
2891
2892bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
2893  SmallVector<int, 8> M;
2894  N->getMask(M);
2895  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
2896}
2897
2898/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2899/// specifies a shuffle of elements that is suitable for input to MOVSS,
2900/// MOVSD, and MOVD, i.e. setting the lowest element.
2901static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2902  if (VT.getVectorElementType().getSizeInBits() < 32)
2903    return false;
2904
2905  int NumElts = VT.getVectorNumElements();
2906
2907  if (!isUndefOrEqual(Mask[0], NumElts))
2908    return false;
2909
2910  for (int i = 1; i < NumElts; ++i)
2911    if (!isUndefOrEqual(Mask[i], i))
2912      return false;
2913
2914  return true;
2915}
2916
2917bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
2918  SmallVector<int, 8> M;
2919  N->getMask(M);
2920  return ::isMOVLMask(M, N->getValueType(0));
2921}
2922
2923/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2924/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2925/// element of vector 2 and the other elements to come from vector 1 in order.
2926static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
2927                               bool V2IsSplat = false, bool V2IsUndef = false) {
2928  int NumOps = VT.getVectorNumElements();
2929  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2930    return false;
2931
2932  if (!isUndefOrEqual(Mask[0], 0))
2933    return false;
2934
2935  for (int i = 1; i < NumOps; ++i)
2936    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
2937          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
2938          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
2939      return false;
2940
2941  return true;
2942}
2943
2944static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
2945                           bool V2IsUndef = false) {
2946  SmallVector<int, 8> M;
2947  N->getMask(M);
2948  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
2949}
2950
2951/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2952/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2953bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
2954  if (N->getValueType(0).getVectorNumElements() != 4)
2955    return false;
2956
2957  // Expect 1, 1, 3, 3
2958  for (unsigned i = 0; i < 2; ++i) {
2959    int Elt = N->getMaskElt(i);
2960    if (Elt >= 0 && Elt != 1)
2961      return false;
2962  }
2963
2964  bool HasHi = false;
2965  for (unsigned i = 2; i < 4; ++i) {
2966    int Elt = N->getMaskElt(i);
2967    if (Elt >= 0 && Elt != 3)
2968      return false;
2969    if (Elt == 3)
2970      HasHi = true;
2971  }
2972  // Don't use movshdup if it can be done with a shufps.
2973  // FIXME: verify that matching u, u, 3, 3 is what we want.
2974  return HasHi;
2975}
2976
2977/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2978/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2979bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
2980  if (N->getValueType(0).getVectorNumElements() != 4)
2981    return false;
2982
2983  // Expect 0, 0, 2, 2
2984  for (unsigned i = 0; i < 2; ++i)
2985    if (N->getMaskElt(i) > 0)
2986      return false;
2987
2988  bool HasHi = false;
2989  for (unsigned i = 2; i < 4; ++i) {
2990    int Elt = N->getMaskElt(i);
2991    if (Elt >= 0 && Elt != 2)
2992      return false;
2993    if (Elt == 2)
2994      HasHi = true;
2995  }
2996  // Don't use movsldup if it can be done with a shufps.
2997  return HasHi;
2998}
2999
3000/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3001/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3002bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3003  int e = N->getValueType(0).getVectorNumElements() / 2;
3004
3005  for (int i = 0; i < e; ++i)
3006    if (!isUndefOrEqual(N->getMaskElt(i), i))
3007      return false;
3008  for (int i = 0; i < e; ++i)
3009    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3010      return false;
3011  return true;
3012}
3013
3014/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3015/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3016unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3017  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3018  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3019
3020  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3021  unsigned Mask = 0;
3022  for (int i = 0; i < NumOperands; ++i) {
3023    int Val = SVOp->getMaskElt(NumOperands-i-1);
3024    if (Val < 0) Val = 0;
3025    if (Val >= NumOperands) Val -= NumOperands;
3026    Mask |= Val;
3027    if (i != NumOperands - 1)
3028      Mask <<= Shift;
3029  }
3030  return Mask;
3031}
3032
3033/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3034/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3035unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3036  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3037  unsigned Mask = 0;
3038  // 8 nodes, but we only care about the last 4.
3039  for (unsigned i = 7; i >= 4; --i) {
3040    int Val = SVOp->getMaskElt(i);
3041    if (Val >= 0)
3042      Mask |= (Val - 4);
3043    if (i != 4)
3044      Mask <<= 2;
3045  }
3046  return Mask;
3047}
3048
3049/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3050/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3051unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3052  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3053  unsigned Mask = 0;
3054  // 8 nodes, but we only care about the first 4.
3055  for (int i = 3; i >= 0; --i) {
3056    int Val = SVOp->getMaskElt(i);
3057    if (Val >= 0)
3058      Mask |= Val;
3059    if (i != 0)
3060      Mask <<= 2;
3061  }
3062  return Mask;
3063}
3064
3065/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3066/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3067unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3068  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3069  EVT VVT = N->getValueType(0);
3070  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3071  int Val = 0;
3072
3073  unsigned i, e;
3074  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3075    Val = SVOp->getMaskElt(i);
3076    if (Val >= 0)
3077      break;
3078  }
3079  return (Val - i) * EltSize;
3080}
3081
3082/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3083/// constant +0.0.
3084bool X86::isZeroNode(SDValue Elt) {
3085  return ((isa<ConstantSDNode>(Elt) &&
3086           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
3087          (isa<ConstantFPSDNode>(Elt) &&
3088           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3089}
3090
3091/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3092/// their permute mask.
3093static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3094                                    SelectionDAG &DAG) {
3095  EVT VT = SVOp->getValueType(0);
3096  unsigned NumElems = VT.getVectorNumElements();
3097  SmallVector<int, 8> MaskVec;
3098
3099  for (unsigned i = 0; i != NumElems; ++i) {
3100    int idx = SVOp->getMaskElt(i);
3101    if (idx < 0)
3102      MaskVec.push_back(idx);
3103    else if (idx < (int)NumElems)
3104      MaskVec.push_back(idx + NumElems);
3105    else
3106      MaskVec.push_back(idx - NumElems);
3107  }
3108  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3109                              SVOp->getOperand(0), &MaskVec[0]);
3110}
3111
3112/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3113/// the two vector operands have swapped position.
3114static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3115  unsigned NumElems = VT.getVectorNumElements();
3116  for (unsigned i = 0; i != NumElems; ++i) {
3117    int idx = Mask[i];
3118    if (idx < 0)
3119      continue;
3120    else if (idx < (int)NumElems)
3121      Mask[i] = idx + NumElems;
3122    else
3123      Mask[i] = idx - NumElems;
3124  }
3125}
3126
3127/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3128/// match movhlps. The lower half elements should come from upper half of
3129/// V1 (and in order), and the upper half elements should come from the upper
3130/// half of V2 (and in order).
3131static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3132  if (Op->getValueType(0).getVectorNumElements() != 4)
3133    return false;
3134  for (unsigned i = 0, e = 2; i != e; ++i)
3135    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3136      return false;
3137  for (unsigned i = 2; i != 4; ++i)
3138    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3139      return false;
3140  return true;
3141}
3142
3143/// isScalarLoadToVector - Returns true if the node is a scalar load that
3144/// is promoted to a vector. It also returns the LoadSDNode by reference if
3145/// required.
3146static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3147  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3148    return false;
3149  N = N->getOperand(0).getNode();
3150  if (!ISD::isNON_EXTLoad(N))
3151    return false;
3152  if (LD)
3153    *LD = cast<LoadSDNode>(N);
3154  return true;
3155}
3156
3157/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3158/// match movlp{s|d}. The lower half elements should come from lower half of
3159/// V1 (and in order), and the upper half elements should come from the upper
3160/// half of V2 (and in order). And since V1 will become the source of the
3161/// MOVLP, it must be either a vector load or a scalar load to vector.
3162static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3163                               ShuffleVectorSDNode *Op) {
3164  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3165    return false;
3166  // Is V2 is a vector load, don't do this transformation. We will try to use
3167  // load folding shufps op.
3168  if (ISD::isNON_EXTLoad(V2))
3169    return false;
3170
3171  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3172
3173  if (NumElems != 2 && NumElems != 4)
3174    return false;
3175  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3176    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3177      return false;
3178  for (unsigned i = NumElems/2; i != NumElems; ++i)
3179    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3180      return false;
3181  return true;
3182}
3183
3184/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3185/// all the same.
3186static bool isSplatVector(SDNode *N) {
3187  if (N->getOpcode() != ISD::BUILD_VECTOR)
3188    return false;
3189
3190  SDValue SplatValue = N->getOperand(0);
3191  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3192    if (N->getOperand(i) != SplatValue)
3193      return false;
3194  return true;
3195}
3196
3197/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3198/// to an zero vector.
3199/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3200static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3201  SDValue V1 = N->getOperand(0);
3202  SDValue V2 = N->getOperand(1);
3203  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3204  for (unsigned i = 0; i != NumElems; ++i) {
3205    int Idx = N->getMaskElt(i);
3206    if (Idx >= (int)NumElems) {
3207      unsigned Opc = V2.getOpcode();
3208      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3209        continue;
3210      if (Opc != ISD::BUILD_VECTOR ||
3211          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3212        return false;
3213    } else if (Idx >= 0) {
3214      unsigned Opc = V1.getOpcode();
3215      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3216        continue;
3217      if (Opc != ISD::BUILD_VECTOR ||
3218          !X86::isZeroNode(V1.getOperand(Idx)))
3219        return false;
3220    }
3221  }
3222  return true;
3223}
3224
3225/// getZeroVector - Returns a vector of specified type with all zero elements.
3226///
3227static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3228                             DebugLoc dl) {
3229  assert(VT.isVector() && "Expected a vector type");
3230
3231  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3232  // type.  This ensures they get CSE'd.
3233  SDValue Vec;
3234  if (VT.getSizeInBits() == 64) { // MMX
3235    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3236    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3237  } else if (HasSSE2) {  // SSE2
3238    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3239    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3240  } else { // SSE1
3241    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3242    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3243  }
3244  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3245}
3246
3247/// getOnesVector - Returns a vector of specified type with all bits set.
3248///
3249static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3250  assert(VT.isVector() && "Expected a vector type");
3251
3252  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3253  // type.  This ensures they get CSE'd.
3254  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3255  SDValue Vec;
3256  if (VT.getSizeInBits() == 64)  // MMX
3257    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3258  else                                              // SSE
3259    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3260  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3261}
3262
3263
3264/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3265/// that point to V2 points to its first element.
3266static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3267  EVT VT = SVOp->getValueType(0);
3268  unsigned NumElems = VT.getVectorNumElements();
3269
3270  bool Changed = false;
3271  SmallVector<int, 8> MaskVec;
3272  SVOp->getMask(MaskVec);
3273
3274  for (unsigned i = 0; i != NumElems; ++i) {
3275    if (MaskVec[i] > (int)NumElems) {
3276      MaskVec[i] = NumElems;
3277      Changed = true;
3278    }
3279  }
3280  if (Changed)
3281    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3282                                SVOp->getOperand(1), &MaskVec[0]);
3283  return SDValue(SVOp, 0);
3284}
3285
3286/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3287/// operation of specified width.
3288static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3289                       SDValue V2) {
3290  unsigned NumElems = VT.getVectorNumElements();
3291  SmallVector<int, 8> Mask;
3292  Mask.push_back(NumElems);
3293  for (unsigned i = 1; i != NumElems; ++i)
3294    Mask.push_back(i);
3295  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3296}
3297
3298/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3299static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3300                          SDValue V2) {
3301  unsigned NumElems = VT.getVectorNumElements();
3302  SmallVector<int, 8> Mask;
3303  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3304    Mask.push_back(i);
3305    Mask.push_back(i + NumElems);
3306  }
3307  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3308}
3309
3310/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3311static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3312                          SDValue V2) {
3313  unsigned NumElems = VT.getVectorNumElements();
3314  unsigned Half = NumElems/2;
3315  SmallVector<int, 8> Mask;
3316  for (unsigned i = 0; i != Half; ++i) {
3317    Mask.push_back(i + Half);
3318    Mask.push_back(i + NumElems + Half);
3319  }
3320  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3321}
3322
3323/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
3324static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
3325                            bool HasSSE2) {
3326  if (SV->getValueType(0).getVectorNumElements() <= 4)
3327    return SDValue(SV, 0);
3328
3329  EVT PVT = MVT::v4f32;
3330  EVT VT = SV->getValueType(0);
3331  DebugLoc dl = SV->getDebugLoc();
3332  SDValue V1 = SV->getOperand(0);
3333  int NumElems = VT.getVectorNumElements();
3334  int EltNo = SV->getSplatIndex();
3335
3336  // unpack elements to the correct location
3337  while (NumElems > 4) {
3338    if (EltNo < NumElems/2) {
3339      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3340    } else {
3341      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3342      EltNo -= NumElems/2;
3343    }
3344    NumElems >>= 1;
3345  }
3346
3347  // Perform the splat.
3348  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3349  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3350  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3351  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3352}
3353
3354/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3355/// vector of zero or undef vector.  This produces a shuffle where the low
3356/// element of V2 is swizzled into the zero/undef vector, landing at element
3357/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3358static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3359                                             bool isZero, bool HasSSE2,
3360                                             SelectionDAG &DAG) {
3361  EVT VT = V2.getValueType();
3362  SDValue V1 = isZero
3363    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3364  unsigned NumElems = VT.getVectorNumElements();
3365  SmallVector<int, 16> MaskVec;
3366  for (unsigned i = 0; i != NumElems; ++i)
3367    // If this is the insertion idx, put the low elt of V2 here.
3368    MaskVec.push_back(i == Idx ? NumElems : i);
3369  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3370}
3371
3372/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3373/// a shuffle that is zero.
3374static
3375unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3376                                  bool Low, SelectionDAG &DAG) {
3377  unsigned NumZeros = 0;
3378  for (int i = 0; i < NumElems; ++i) {
3379    unsigned Index = Low ? i : NumElems-i-1;
3380    int Idx = SVOp->getMaskElt(Index);
3381    if (Idx < 0) {
3382      ++NumZeros;
3383      continue;
3384    }
3385    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3386    if (Elt.getNode() && X86::isZeroNode(Elt))
3387      ++NumZeros;
3388    else
3389      break;
3390  }
3391  return NumZeros;
3392}
3393
3394/// isVectorShift - Returns true if the shuffle can be implemented as a
3395/// logical left or right shift of a vector.
3396/// FIXME: split into pslldqi, psrldqi, palignr variants.
3397static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3398                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3399  int NumElems = SVOp->getValueType(0).getVectorNumElements();
3400
3401  isLeft = true;
3402  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3403  if (!NumZeros) {
3404    isLeft = false;
3405    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3406    if (!NumZeros)
3407      return false;
3408  }
3409  bool SeenV1 = false;
3410  bool SeenV2 = false;
3411  for (int i = NumZeros; i < NumElems; ++i) {
3412    int Val = isLeft ? (i - NumZeros) : i;
3413    int Idx = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3414    if (Idx < 0)
3415      continue;
3416    if (Idx < NumElems)
3417      SeenV1 = true;
3418    else {
3419      Idx -= NumElems;
3420      SeenV2 = true;
3421    }
3422    if (Idx != Val)
3423      return false;
3424  }
3425  if (SeenV1 && SeenV2)
3426    return false;
3427
3428  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3429  ShAmt = NumZeros;
3430  return true;
3431}
3432
3433
3434/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3435///
3436static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3437                                       unsigned NumNonZero, unsigned NumZero,
3438                                       SelectionDAG &DAG, TargetLowering &TLI) {
3439  if (NumNonZero > 8)
3440    return SDValue();
3441
3442  DebugLoc dl = Op.getDebugLoc();
3443  SDValue V(0, 0);
3444  bool First = true;
3445  for (unsigned i = 0; i < 16; ++i) {
3446    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3447    if (ThisIsNonZero && First) {
3448      if (NumZero)
3449        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3450      else
3451        V = DAG.getUNDEF(MVT::v8i16);
3452      First = false;
3453    }
3454
3455    if ((i & 1) != 0) {
3456      SDValue ThisElt(0, 0), LastElt(0, 0);
3457      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3458      if (LastIsNonZero) {
3459        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3460                              MVT::i16, Op.getOperand(i-1));
3461      }
3462      if (ThisIsNonZero) {
3463        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3464        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3465                              ThisElt, DAG.getConstant(8, MVT::i8));
3466        if (LastIsNonZero)
3467          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3468      } else
3469        ThisElt = LastElt;
3470
3471      if (ThisElt.getNode())
3472        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3473                        DAG.getIntPtrConstant(i/2));
3474    }
3475  }
3476
3477  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3478}
3479
3480/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3481///
3482static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3483                                       unsigned NumNonZero, unsigned NumZero,
3484                                       SelectionDAG &DAG, TargetLowering &TLI) {
3485  if (NumNonZero > 4)
3486    return SDValue();
3487
3488  DebugLoc dl = Op.getDebugLoc();
3489  SDValue V(0, 0);
3490  bool First = true;
3491  for (unsigned i = 0; i < 8; ++i) {
3492    bool isNonZero = (NonZeros & (1 << i)) != 0;
3493    if (isNonZero) {
3494      if (First) {
3495        if (NumZero)
3496          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3497        else
3498          V = DAG.getUNDEF(MVT::v8i16);
3499        First = false;
3500      }
3501      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3502                      MVT::v8i16, V, Op.getOperand(i),
3503                      DAG.getIntPtrConstant(i));
3504    }
3505  }
3506
3507  return V;
3508}
3509
3510/// getVShift - Return a vector logical shift node.
3511///
3512static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3513                         unsigned NumBits, SelectionDAG &DAG,
3514                         const TargetLowering &TLI, DebugLoc dl) {
3515  bool isMMX = VT.getSizeInBits() == 64;
3516  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3517  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3518  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3519  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3520                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3521                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3522}
3523
3524SDValue
3525X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3526                                          SelectionDAG &DAG) {
3527
3528  // Check if the scalar load can be widened into a vector load. And if
3529  // the address is "base + cst" see if the cst can be "absorbed" into
3530  // the shuffle mask.
3531  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3532    SDValue Ptr = LD->getBasePtr();
3533    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3534      return SDValue();
3535    EVT PVT = LD->getValueType(0);
3536    if (PVT != MVT::i32 && PVT != MVT::f32)
3537      return SDValue();
3538
3539    int FI = -1;
3540    int64_t Offset = 0;
3541    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3542      FI = FINode->getIndex();
3543      Offset = 0;
3544    } else if (Ptr.getOpcode() == ISD::ADD &&
3545               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3546               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3547      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3548      Offset = Ptr.getConstantOperandVal(1);
3549      Ptr = Ptr.getOperand(0);
3550    } else {
3551      return SDValue();
3552    }
3553
3554    SDValue Chain = LD->getChain();
3555    // Make sure the stack object alignment is at least 16.
3556    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3557    if (DAG.InferPtrAlignment(Ptr) < 16) {
3558      if (MFI->isFixedObjectIndex(FI)) {
3559        // Can't change the alignment. FIXME: It's possible to compute
3560        // the exact stack offset and reference FI + adjust offset instead.
3561        // If someone *really* cares about this. That's the way to implement it.
3562        return SDValue();
3563      } else {
3564        MFI->setObjectAlignment(FI, 16);
3565      }
3566    }
3567
3568    // (Offset % 16) must be multiple of 4. Then address is then
3569    // Ptr + (Offset & ~15).
3570    if (Offset < 0)
3571      return SDValue();
3572    if ((Offset % 16) & 3)
3573      return SDValue();
3574    int64_t StartOffset = Offset & ~15;
3575    if (StartOffset)
3576      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3577                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3578
3579    int EltNo = (Offset - StartOffset) >> 2;
3580    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3581    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3582    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0);
3583    // Canonicalize it to a v4i32 shuffle.
3584    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3585    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3586                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3587                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3588  }
3589
3590  return SDValue();
3591}
3592
3593SDValue
3594X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3595  DebugLoc dl = Op.getDebugLoc();
3596  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3597  if (ISD::isBuildVectorAllZeros(Op.getNode())
3598      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3599    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3600    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3601    // eliminated on x86-32 hosts.
3602    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3603      return Op;
3604
3605    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3606      return getOnesVector(Op.getValueType(), DAG, dl);
3607    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3608  }
3609
3610  EVT VT = Op.getValueType();
3611  EVT ExtVT = VT.getVectorElementType();
3612  unsigned EVTBits = ExtVT.getSizeInBits();
3613
3614  unsigned NumElems = Op.getNumOperands();
3615  unsigned NumZero  = 0;
3616  unsigned NumNonZero = 0;
3617  unsigned NonZeros = 0;
3618  bool IsAllConstants = true;
3619  SmallSet<SDValue, 8> Values;
3620  for (unsigned i = 0; i < NumElems; ++i) {
3621    SDValue Elt = Op.getOperand(i);
3622    if (Elt.getOpcode() == ISD::UNDEF)
3623      continue;
3624    Values.insert(Elt);
3625    if (Elt.getOpcode() != ISD::Constant &&
3626        Elt.getOpcode() != ISD::ConstantFP)
3627      IsAllConstants = false;
3628    if (X86::isZeroNode(Elt))
3629      NumZero++;
3630    else {
3631      NonZeros |= (1 << i);
3632      NumNonZero++;
3633    }
3634  }
3635
3636  if (NumNonZero == 0) {
3637    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3638    return DAG.getUNDEF(VT);
3639  }
3640
3641  // Special case for single non-zero, non-undef, element.
3642  if (NumNonZero == 1) {
3643    unsigned Idx = CountTrailingZeros_32(NonZeros);
3644    SDValue Item = Op.getOperand(Idx);
3645
3646    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3647    // the value are obviously zero, truncate the value to i32 and do the
3648    // insertion that way.  Only do this if the value is non-constant or if the
3649    // value is a constant being inserted into element 0.  It is cheaper to do
3650    // a constant pool load than it is to do a movd + shuffle.
3651    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3652        (!IsAllConstants || Idx == 0)) {
3653      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3654        // Handle MMX and SSE both.
3655        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3656        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3657
3658        // Truncate the value (which may itself be a constant) to i32, and
3659        // convert it to a vector with movd (S2V+shuffle to zero extend).
3660        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3661        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3662        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3663                                           Subtarget->hasSSE2(), DAG);
3664
3665        // Now we have our 32-bit value zero extended in the low element of
3666        // a vector.  If Idx != 0, swizzle it into place.
3667        if (Idx != 0) {
3668          SmallVector<int, 4> Mask;
3669          Mask.push_back(Idx);
3670          for (unsigned i = 1; i != VecElts; ++i)
3671            Mask.push_back(i);
3672          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3673                                      DAG.getUNDEF(Item.getValueType()),
3674                                      &Mask[0]);
3675        }
3676        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3677      }
3678    }
3679
3680    // If we have a constant or non-constant insertion into the low element of
3681    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3682    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3683    // depending on what the source datatype is.
3684    if (Idx == 0) {
3685      if (NumZero == 0) {
3686        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3687      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3688          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3689        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3690        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3691        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3692                                           DAG);
3693      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3694        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3695        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3696        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3697        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3698                                           Subtarget->hasSSE2(), DAG);
3699        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
3700      }
3701    }
3702
3703    // Is it a vector logical left shift?
3704    if (NumElems == 2 && Idx == 1 &&
3705        X86::isZeroNode(Op.getOperand(0)) &&
3706        !X86::isZeroNode(Op.getOperand(1))) {
3707      unsigned NumBits = VT.getSizeInBits();
3708      return getVShift(true, VT,
3709                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
3710                                   VT, Op.getOperand(1)),
3711                       NumBits/2, DAG, *this, dl);
3712    }
3713
3714    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3715      return SDValue();
3716
3717    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3718    // is a non-constant being inserted into an element other than the low one,
3719    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3720    // movd/movss) to move this into the low element, then shuffle it into
3721    // place.
3722    if (EVTBits == 32) {
3723      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3724
3725      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3726      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3727                                         Subtarget->hasSSE2(), DAG);
3728      SmallVector<int, 8> MaskVec;
3729      for (unsigned i = 0; i < NumElems; i++)
3730        MaskVec.push_back(i == Idx ? 0 : 1);
3731      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
3732    }
3733  }
3734
3735  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3736  if (Values.size() == 1) {
3737    if (EVTBits == 32) {
3738      // Instead of a shuffle like this:
3739      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
3740      // Check if it's possible to issue this instead.
3741      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
3742      unsigned Idx = CountTrailingZeros_32(NonZeros);
3743      SDValue Item = Op.getOperand(Idx);
3744      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
3745        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
3746    }
3747    return SDValue();
3748  }
3749
3750  // A vector full of immediates; various special cases are already
3751  // handled, so this is best done with a single constant-pool load.
3752  if (IsAllConstants)
3753    return SDValue();
3754
3755  // Let legalizer expand 2-wide build_vectors.
3756  if (EVTBits == 64) {
3757    if (NumNonZero == 1) {
3758      // One half is zero or undef.
3759      unsigned Idx = CountTrailingZeros_32(NonZeros);
3760      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
3761                                 Op.getOperand(Idx));
3762      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3763                                         Subtarget->hasSSE2(), DAG);
3764    }
3765    return SDValue();
3766  }
3767
3768  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3769  if (EVTBits == 8 && NumElems == 16) {
3770    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3771                                        *this);
3772    if (V.getNode()) return V;
3773  }
3774
3775  if (EVTBits == 16 && NumElems == 8) {
3776    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3777                                        *this);
3778    if (V.getNode()) return V;
3779  }
3780
3781  // If element VT is == 32 bits, turn it into a number of shuffles.
3782  SmallVector<SDValue, 8> V;
3783  V.resize(NumElems);
3784  if (NumElems == 4 && NumZero > 0) {
3785    for (unsigned i = 0; i < 4; ++i) {
3786      bool isZero = !(NonZeros & (1 << i));
3787      if (isZero)
3788        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
3789      else
3790        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3791    }
3792
3793    for (unsigned i = 0; i < 2; ++i) {
3794      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3795        default: break;
3796        case 0:
3797          V[i] = V[i*2];  // Must be a zero vector.
3798          break;
3799        case 1:
3800          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
3801          break;
3802        case 2:
3803          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
3804          break;
3805        case 3:
3806          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
3807          break;
3808      }
3809    }
3810
3811    SmallVector<int, 8> MaskVec;
3812    bool Reverse = (NonZeros & 0x3) == 2;
3813    for (unsigned i = 0; i < 2; ++i)
3814      MaskVec.push_back(Reverse ? 1-i : i);
3815    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3816    for (unsigned i = 0; i < 2; ++i)
3817      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
3818    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
3819  }
3820
3821  if (Values.size() > 2) {
3822    // If we have SSE 4.1, Expand into a number of inserts unless the number of
3823    // values to be inserted is equal to the number of elements, in which case
3824    // use the unpack code below in the hopes of matching the consecutive elts
3825    // load merge pattern for shuffles.
3826    // FIXME: We could probably just check that here directly.
3827    if (Values.size() < NumElems && VT.getSizeInBits() == 128 &&
3828        getSubtarget()->hasSSE41()) {
3829      V[0] = DAG.getUNDEF(VT);
3830      for (unsigned i = 0; i < NumElems; ++i)
3831        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
3832          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
3833                             Op.getOperand(i), DAG.getIntPtrConstant(i));
3834      return V[0];
3835    }
3836    // Expand into a number of unpckl*.
3837    // e.g. for v4f32
3838    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3839    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3840    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3841    for (unsigned i = 0; i < NumElems; ++i)
3842      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
3843    NumElems >>= 1;
3844    while (NumElems != 0) {
3845      for (unsigned i = 0; i < NumElems; ++i)
3846        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
3847      NumElems >>= 1;
3848    }
3849    return V[0];
3850  }
3851
3852  return SDValue();
3853}
3854
3855SDValue
3856X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
3857  // We support concatenate two MMX registers and place them in a MMX
3858  // register.  This is better than doing a stack convert.
3859  DebugLoc dl = Op.getDebugLoc();
3860  EVT ResVT = Op.getValueType();
3861  assert(Op.getNumOperands() == 2);
3862  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
3863         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
3864  int Mask[2];
3865  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
3866  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3867  InVec = Op.getOperand(1);
3868  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
3869    unsigned NumElts = ResVT.getVectorNumElements();
3870    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3871    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
3872                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
3873  } else {
3874    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
3875    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
3876    Mask[0] = 0; Mask[1] = 2;
3877    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
3878  }
3879  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
3880}
3881
3882// v8i16 shuffles - Prefer shuffles in the following order:
3883// 1. [all]   pshuflw, pshufhw, optional move
3884// 2. [ssse3] 1 x pshufb
3885// 3. [ssse3] 2 x pshufb + 1 x por
3886// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
3887static
3888SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
3889                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
3890  SDValue V1 = SVOp->getOperand(0);
3891  SDValue V2 = SVOp->getOperand(1);
3892  DebugLoc dl = SVOp->getDebugLoc();
3893  SmallVector<int, 8> MaskVals;
3894
3895  // Determine if more than 1 of the words in each of the low and high quadwords
3896  // of the result come from the same quadword of one of the two inputs.  Undef
3897  // mask values count as coming from any quadword, for better codegen.
3898  SmallVector<unsigned, 4> LoQuad(4);
3899  SmallVector<unsigned, 4> HiQuad(4);
3900  BitVector InputQuads(4);
3901  for (unsigned i = 0; i < 8; ++i) {
3902    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
3903    int EltIdx = SVOp->getMaskElt(i);
3904    MaskVals.push_back(EltIdx);
3905    if (EltIdx < 0) {
3906      ++Quad[0];
3907      ++Quad[1];
3908      ++Quad[2];
3909      ++Quad[3];
3910      continue;
3911    }
3912    ++Quad[EltIdx / 4];
3913    InputQuads.set(EltIdx / 4);
3914  }
3915
3916  int BestLoQuad = -1;
3917  unsigned MaxQuad = 1;
3918  for (unsigned i = 0; i < 4; ++i) {
3919    if (LoQuad[i] > MaxQuad) {
3920      BestLoQuad = i;
3921      MaxQuad = LoQuad[i];
3922    }
3923  }
3924
3925  int BestHiQuad = -1;
3926  MaxQuad = 1;
3927  for (unsigned i = 0; i < 4; ++i) {
3928    if (HiQuad[i] > MaxQuad) {
3929      BestHiQuad = i;
3930      MaxQuad = HiQuad[i];
3931    }
3932  }
3933
3934  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
3935  // of the two input vectors, shuffle them into one input vector so only a
3936  // single pshufb instruction is necessary. If There are more than 2 input
3937  // quads, disable the next transformation since it does not help SSSE3.
3938  bool V1Used = InputQuads[0] || InputQuads[1];
3939  bool V2Used = InputQuads[2] || InputQuads[3];
3940  if (TLI.getSubtarget()->hasSSSE3()) {
3941    if (InputQuads.count() == 2 && V1Used && V2Used) {
3942      BestLoQuad = InputQuads.find_first();
3943      BestHiQuad = InputQuads.find_next(BestLoQuad);
3944    }
3945    if (InputQuads.count() > 2) {
3946      BestLoQuad = -1;
3947      BestHiQuad = -1;
3948    }
3949  }
3950
3951  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
3952  // the shuffle mask.  If a quad is scored as -1, that means that it contains
3953  // words from all 4 input quadwords.
3954  SDValue NewV;
3955  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
3956    SmallVector<int, 8> MaskV;
3957    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
3958    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
3959    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
3960                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
3961                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
3962    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
3963
3964    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
3965    // source words for the shuffle, to aid later transformations.
3966    bool AllWordsInNewV = true;
3967    bool InOrder[2] = { true, true };
3968    for (unsigned i = 0; i != 8; ++i) {
3969      int idx = MaskVals[i];
3970      if (idx != (int)i)
3971        InOrder[i/4] = false;
3972      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
3973        continue;
3974      AllWordsInNewV = false;
3975      break;
3976    }
3977
3978    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
3979    if (AllWordsInNewV) {
3980      for (int i = 0; i != 8; ++i) {
3981        int idx = MaskVals[i];
3982        if (idx < 0)
3983          continue;
3984        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
3985        if ((idx != i) && idx < 4)
3986          pshufhw = false;
3987        if ((idx != i) && idx > 3)
3988          pshuflw = false;
3989      }
3990      V1 = NewV;
3991      V2Used = false;
3992      BestLoQuad = 0;
3993      BestHiQuad = 1;
3994    }
3995
3996    // If we've eliminated the use of V2, and the new mask is a pshuflw or
3997    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
3998    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
3999      return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4000                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4001    }
4002  }
4003
4004  // If we have SSSE3, and all words of the result are from 1 input vector,
4005  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4006  // is present, fall back to case 4.
4007  if (TLI.getSubtarget()->hasSSSE3()) {
4008    SmallVector<SDValue,16> pshufbMask;
4009
4010    // If we have elements from both input vectors, set the high bit of the
4011    // shuffle mask element to zero out elements that come from V2 in the V1
4012    // mask, and elements that come from V1 in the V2 mask, so that the two
4013    // results can be OR'd together.
4014    bool TwoInputs = V1Used && V2Used;
4015    for (unsigned i = 0; i != 8; ++i) {
4016      int EltIdx = MaskVals[i] * 2;
4017      if (TwoInputs && (EltIdx >= 16)) {
4018        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4019        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4020        continue;
4021      }
4022      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4023      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4024    }
4025    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4026    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4027                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4028                                 MVT::v16i8, &pshufbMask[0], 16));
4029    if (!TwoInputs)
4030      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4031
4032    // Calculate the shuffle mask for the second input, shuffle it, and
4033    // OR it with the first shuffled input.
4034    pshufbMask.clear();
4035    for (unsigned i = 0; i != 8; ++i) {
4036      int EltIdx = MaskVals[i] * 2;
4037      if (EltIdx < 16) {
4038        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4039        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4040        continue;
4041      }
4042      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4043      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4044    }
4045    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4046    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4047                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4048                                 MVT::v16i8, &pshufbMask[0], 16));
4049    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4050    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4051  }
4052
4053  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4054  // and update MaskVals with new element order.
4055  BitVector InOrder(8);
4056  if (BestLoQuad >= 0) {
4057    SmallVector<int, 8> MaskV;
4058    for (int i = 0; i != 4; ++i) {
4059      int idx = MaskVals[i];
4060      if (idx < 0) {
4061        MaskV.push_back(-1);
4062        InOrder.set(i);
4063      } else if ((idx / 4) == BestLoQuad) {
4064        MaskV.push_back(idx & 3);
4065        InOrder.set(i);
4066      } else {
4067        MaskV.push_back(-1);
4068      }
4069    }
4070    for (unsigned i = 4; i != 8; ++i)
4071      MaskV.push_back(i);
4072    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4073                                &MaskV[0]);
4074  }
4075
4076  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4077  // and update MaskVals with the new element order.
4078  if (BestHiQuad >= 0) {
4079    SmallVector<int, 8> MaskV;
4080    for (unsigned i = 0; i != 4; ++i)
4081      MaskV.push_back(i);
4082    for (unsigned i = 4; i != 8; ++i) {
4083      int idx = MaskVals[i];
4084      if (idx < 0) {
4085        MaskV.push_back(-1);
4086        InOrder.set(i);
4087      } else if ((idx / 4) == BestHiQuad) {
4088        MaskV.push_back((idx & 3) + 4);
4089        InOrder.set(i);
4090      } else {
4091        MaskV.push_back(-1);
4092      }
4093    }
4094    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4095                                &MaskV[0]);
4096  }
4097
4098  // In case BestHi & BestLo were both -1, which means each quadword has a word
4099  // from each of the four input quadwords, calculate the InOrder bitvector now
4100  // before falling through to the insert/extract cleanup.
4101  if (BestLoQuad == -1 && BestHiQuad == -1) {
4102    NewV = V1;
4103    for (int i = 0; i != 8; ++i)
4104      if (MaskVals[i] < 0 || MaskVals[i] == i)
4105        InOrder.set(i);
4106  }
4107
4108  // The other elements are put in the right place using pextrw and pinsrw.
4109  for (unsigned i = 0; i != 8; ++i) {
4110    if (InOrder[i])
4111      continue;
4112    int EltIdx = MaskVals[i];
4113    if (EltIdx < 0)
4114      continue;
4115    SDValue ExtOp = (EltIdx < 8)
4116    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4117                  DAG.getIntPtrConstant(EltIdx))
4118    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4119                  DAG.getIntPtrConstant(EltIdx - 8));
4120    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4121                       DAG.getIntPtrConstant(i));
4122  }
4123  return NewV;
4124}
4125
4126// v16i8 shuffles - Prefer shuffles in the following order:
4127// 1. [ssse3] 1 x pshufb
4128// 2. [ssse3] 2 x pshufb + 1 x por
4129// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4130static
4131SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4132                                 SelectionDAG &DAG, X86TargetLowering &TLI) {
4133  SDValue V1 = SVOp->getOperand(0);
4134  SDValue V2 = SVOp->getOperand(1);
4135  DebugLoc dl = SVOp->getDebugLoc();
4136  SmallVector<int, 16> MaskVals;
4137  SVOp->getMask(MaskVals);
4138
4139  // If we have SSSE3, case 1 is generated when all result bytes come from
4140  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4141  // present, fall back to case 3.
4142  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4143  bool V1Only = true;
4144  bool V2Only = true;
4145  for (unsigned i = 0; i < 16; ++i) {
4146    int EltIdx = MaskVals[i];
4147    if (EltIdx < 0)
4148      continue;
4149    if (EltIdx < 16)
4150      V2Only = false;
4151    else
4152      V1Only = false;
4153  }
4154
4155  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4156  if (TLI.getSubtarget()->hasSSSE3()) {
4157    SmallVector<SDValue,16> pshufbMask;
4158
4159    // If all result elements are from one input vector, then only translate
4160    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4161    //
4162    // Otherwise, we have elements from both input vectors, and must zero out
4163    // elements that come from V2 in the first mask, and V1 in the second mask
4164    // so that we can OR them together.
4165    bool TwoInputs = !(V1Only || V2Only);
4166    for (unsigned i = 0; i != 16; ++i) {
4167      int EltIdx = MaskVals[i];
4168      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4169        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4170        continue;
4171      }
4172      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4173    }
4174    // If all the elements are from V2, assign it to V1 and return after
4175    // building the first pshufb.
4176    if (V2Only)
4177      V1 = V2;
4178    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4179                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4180                                 MVT::v16i8, &pshufbMask[0], 16));
4181    if (!TwoInputs)
4182      return V1;
4183
4184    // Calculate the shuffle mask for the second input, shuffle it, and
4185    // OR it with the first shuffled input.
4186    pshufbMask.clear();
4187    for (unsigned i = 0; i != 16; ++i) {
4188      int EltIdx = MaskVals[i];
4189      if (EltIdx < 16) {
4190        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4191        continue;
4192      }
4193      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4194    }
4195    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4196                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4197                                 MVT::v16i8, &pshufbMask[0], 16));
4198    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4199  }
4200
4201  // No SSSE3 - Calculate in place words and then fix all out of place words
4202  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4203  // the 16 different words that comprise the two doublequadword input vectors.
4204  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4205  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4206  SDValue NewV = V2Only ? V2 : V1;
4207  for (int i = 0; i != 8; ++i) {
4208    int Elt0 = MaskVals[i*2];
4209    int Elt1 = MaskVals[i*2+1];
4210
4211    // This word of the result is all undef, skip it.
4212    if (Elt0 < 0 && Elt1 < 0)
4213      continue;
4214
4215    // This word of the result is already in the correct place, skip it.
4216    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4217      continue;
4218    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4219      continue;
4220
4221    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4222    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4223    SDValue InsElt;
4224
4225    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4226    // using a single extract together, load it and store it.
4227    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4228      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4229                           DAG.getIntPtrConstant(Elt1 / 2));
4230      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4231                        DAG.getIntPtrConstant(i));
4232      continue;
4233    }
4234
4235    // If Elt1 is defined, extract it from the appropriate source.  If the
4236    // source byte is not also odd, shift the extracted word left 8 bits
4237    // otherwise clear the bottom 8 bits if we need to do an or.
4238    if (Elt1 >= 0) {
4239      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4240                           DAG.getIntPtrConstant(Elt1 / 2));
4241      if ((Elt1 & 1) == 0)
4242        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4243                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4244      else if (Elt0 >= 0)
4245        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4246                             DAG.getConstant(0xFF00, MVT::i16));
4247    }
4248    // If Elt0 is defined, extract it from the appropriate source.  If the
4249    // source byte is not also even, shift the extracted word right 8 bits. If
4250    // Elt1 was also defined, OR the extracted values together before
4251    // inserting them in the result.
4252    if (Elt0 >= 0) {
4253      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4254                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4255      if ((Elt0 & 1) != 0)
4256        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4257                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4258      else if (Elt1 >= 0)
4259        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4260                             DAG.getConstant(0x00FF, MVT::i16));
4261      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4262                         : InsElt0;
4263    }
4264    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4265                       DAG.getIntPtrConstant(i));
4266  }
4267  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4268}
4269
4270/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4271/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
4272/// done when every pair / quad of shuffle mask elements point to elements in
4273/// the right sequence. e.g.
4274/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4275static
4276SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4277                                 SelectionDAG &DAG,
4278                                 TargetLowering &TLI, DebugLoc dl) {
4279  EVT VT = SVOp->getValueType(0);
4280  SDValue V1 = SVOp->getOperand(0);
4281  SDValue V2 = SVOp->getOperand(1);
4282  unsigned NumElems = VT.getVectorNumElements();
4283  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4284  EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
4285  EVT MaskEltVT = MaskVT.getVectorElementType();
4286  EVT NewVT = MaskVT;
4287  switch (VT.getSimpleVT().SimpleTy) {
4288  default: assert(false && "Unexpected!");
4289  case MVT::v4f32: NewVT = MVT::v2f64; break;
4290  case MVT::v4i32: NewVT = MVT::v2i64; break;
4291  case MVT::v8i16: NewVT = MVT::v4i32; break;
4292  case MVT::v16i8: NewVT = MVT::v4i32; break;
4293  }
4294
4295  if (NewWidth == 2) {
4296    if (VT.isInteger())
4297      NewVT = MVT::v2i64;
4298    else
4299      NewVT = MVT::v2f64;
4300  }
4301  int Scale = NumElems / NewWidth;
4302  SmallVector<int, 8> MaskVec;
4303  for (unsigned i = 0; i < NumElems; i += Scale) {
4304    int StartIdx = -1;
4305    for (int j = 0; j < Scale; ++j) {
4306      int EltIdx = SVOp->getMaskElt(i+j);
4307      if (EltIdx < 0)
4308        continue;
4309      if (StartIdx == -1)
4310        StartIdx = EltIdx - (EltIdx % Scale);
4311      if (EltIdx != StartIdx + j)
4312        return SDValue();
4313    }
4314    if (StartIdx == -1)
4315      MaskVec.push_back(-1);
4316    else
4317      MaskVec.push_back(StartIdx / Scale);
4318  }
4319
4320  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4321  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4322  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4323}
4324
4325/// getVZextMovL - Return a zero-extending vector move low node.
4326///
4327static SDValue getVZextMovL(EVT VT, EVT OpVT,
4328                            SDValue SrcOp, SelectionDAG &DAG,
4329                            const X86Subtarget *Subtarget, DebugLoc dl) {
4330  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4331    LoadSDNode *LD = NULL;
4332    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4333      LD = dyn_cast<LoadSDNode>(SrcOp);
4334    if (!LD) {
4335      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4336      // instead.
4337      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4338      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4339          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4340          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4341          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4342        // PR2108
4343        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4344        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4345                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4346                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4347                                                   OpVT,
4348                                                   SrcOp.getOperand(0)
4349                                                          .getOperand(0))));
4350      }
4351    }
4352  }
4353
4354  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4355                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4356                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4357                                             OpVT, SrcOp)));
4358}
4359
4360/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4361/// shuffles.
4362static SDValue
4363LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4364  SDValue V1 = SVOp->getOperand(0);
4365  SDValue V2 = SVOp->getOperand(1);
4366  DebugLoc dl = SVOp->getDebugLoc();
4367  EVT VT = SVOp->getValueType(0);
4368
4369  SmallVector<std::pair<int, int>, 8> Locs;
4370  Locs.resize(4);
4371  SmallVector<int, 8> Mask1(4U, -1);
4372  SmallVector<int, 8> PermMask;
4373  SVOp->getMask(PermMask);
4374
4375  unsigned NumHi = 0;
4376  unsigned NumLo = 0;
4377  for (unsigned i = 0; i != 4; ++i) {
4378    int Idx = PermMask[i];
4379    if (Idx < 0) {
4380      Locs[i] = std::make_pair(-1, -1);
4381    } else {
4382      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4383      if (Idx < 4) {
4384        Locs[i] = std::make_pair(0, NumLo);
4385        Mask1[NumLo] = Idx;
4386        NumLo++;
4387      } else {
4388        Locs[i] = std::make_pair(1, NumHi);
4389        if (2+NumHi < 4)
4390          Mask1[2+NumHi] = Idx;
4391        NumHi++;
4392      }
4393    }
4394  }
4395
4396  if (NumLo <= 2 && NumHi <= 2) {
4397    // If no more than two elements come from either vector. This can be
4398    // implemented with two shuffles. First shuffle gather the elements.
4399    // The second shuffle, which takes the first shuffle as both of its
4400    // vector operands, put the elements into the right order.
4401    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4402
4403    SmallVector<int, 8> Mask2(4U, -1);
4404
4405    for (unsigned i = 0; i != 4; ++i) {
4406      if (Locs[i].first == -1)
4407        continue;
4408      else {
4409        unsigned Idx = (i < 2) ? 0 : 4;
4410        Idx += Locs[i].first * 2 + Locs[i].second;
4411        Mask2[i] = Idx;
4412      }
4413    }
4414
4415    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4416  } else if (NumLo == 3 || NumHi == 3) {
4417    // Otherwise, we must have three elements from one vector, call it X, and
4418    // one element from the other, call it Y.  First, use a shufps to build an
4419    // intermediate vector with the one element from Y and the element from X
4420    // that will be in the same half in the final destination (the indexes don't
4421    // matter). Then, use a shufps to build the final vector, taking the half
4422    // containing the element from Y from the intermediate, and the other half
4423    // from X.
4424    if (NumHi == 3) {
4425      // Normalize it so the 3 elements come from V1.
4426      CommuteVectorShuffleMask(PermMask, VT);
4427      std::swap(V1, V2);
4428    }
4429
4430    // Find the element from V2.
4431    unsigned HiIndex;
4432    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4433      int Val = PermMask[HiIndex];
4434      if (Val < 0)
4435        continue;
4436      if (Val >= 4)
4437        break;
4438    }
4439
4440    Mask1[0] = PermMask[HiIndex];
4441    Mask1[1] = -1;
4442    Mask1[2] = PermMask[HiIndex^1];
4443    Mask1[3] = -1;
4444    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4445
4446    if (HiIndex >= 2) {
4447      Mask1[0] = PermMask[0];
4448      Mask1[1] = PermMask[1];
4449      Mask1[2] = HiIndex & 1 ? 6 : 4;
4450      Mask1[3] = HiIndex & 1 ? 4 : 6;
4451      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4452    } else {
4453      Mask1[0] = HiIndex & 1 ? 2 : 0;
4454      Mask1[1] = HiIndex & 1 ? 0 : 2;
4455      Mask1[2] = PermMask[2];
4456      Mask1[3] = PermMask[3];
4457      if (Mask1[2] >= 0)
4458        Mask1[2] += 4;
4459      if (Mask1[3] >= 0)
4460        Mask1[3] += 4;
4461      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4462    }
4463  }
4464
4465  // Break it into (shuffle shuffle_hi, shuffle_lo).
4466  Locs.clear();
4467  SmallVector<int,8> LoMask(4U, -1);
4468  SmallVector<int,8> HiMask(4U, -1);
4469
4470  SmallVector<int,8> *MaskPtr = &LoMask;
4471  unsigned MaskIdx = 0;
4472  unsigned LoIdx = 0;
4473  unsigned HiIdx = 2;
4474  for (unsigned i = 0; i != 4; ++i) {
4475    if (i == 2) {
4476      MaskPtr = &HiMask;
4477      MaskIdx = 1;
4478      LoIdx = 0;
4479      HiIdx = 2;
4480    }
4481    int Idx = PermMask[i];
4482    if (Idx < 0) {
4483      Locs[i] = std::make_pair(-1, -1);
4484    } else if (Idx < 4) {
4485      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4486      (*MaskPtr)[LoIdx] = Idx;
4487      LoIdx++;
4488    } else {
4489      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4490      (*MaskPtr)[HiIdx] = Idx;
4491      HiIdx++;
4492    }
4493  }
4494
4495  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4496  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4497  SmallVector<int, 8> MaskOps;
4498  for (unsigned i = 0; i != 4; ++i) {
4499    if (Locs[i].first == -1) {
4500      MaskOps.push_back(-1);
4501    } else {
4502      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4503      MaskOps.push_back(Idx);
4504    }
4505  }
4506  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4507}
4508
4509SDValue
4510X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
4511  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4512  SDValue V1 = Op.getOperand(0);
4513  SDValue V2 = Op.getOperand(1);
4514  EVT VT = Op.getValueType();
4515  DebugLoc dl = Op.getDebugLoc();
4516  unsigned NumElems = VT.getVectorNumElements();
4517  bool isMMX = VT.getSizeInBits() == 64;
4518  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4519  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4520  bool V1IsSplat = false;
4521  bool V2IsSplat = false;
4522
4523  if (isZeroShuffle(SVOp))
4524    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4525
4526  // Promote splats to v4f32.
4527  if (SVOp->isSplat()) {
4528    if (isMMX || NumElems < 4)
4529      return Op;
4530    return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
4531  }
4532
4533  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4534  // do it!
4535  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4536    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4537    if (NewOp.getNode())
4538      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4539                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4540  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4541    // FIXME: Figure out a cleaner way to do this.
4542    // Try to make use of movq to zero out the top part.
4543    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4544      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4545      if (NewOp.getNode()) {
4546        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4547          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4548                              DAG, Subtarget, dl);
4549      }
4550    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4551      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4552      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4553        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4554                            DAG, Subtarget, dl);
4555    }
4556  }
4557
4558  if (X86::isPSHUFDMask(SVOp))
4559    return Op;
4560
4561  // Check if this can be converted into a logical shift.
4562  bool isLeft = false;
4563  unsigned ShAmt = 0;
4564  SDValue ShVal;
4565  bool isShift = getSubtarget()->hasSSE2() &&
4566    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4567  if (isShift && ShVal.hasOneUse()) {
4568    // If the shifted value has multiple uses, it may be cheaper to use
4569    // v_set0 + movlhps or movhlps, etc.
4570    EVT EltVT = VT.getVectorElementType();
4571    ShAmt *= EltVT.getSizeInBits();
4572    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4573  }
4574
4575  if (X86::isMOVLMask(SVOp)) {
4576    if (V1IsUndef)
4577      return V2;
4578    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4579      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4580    if (!isMMX)
4581      return Op;
4582  }
4583
4584  // FIXME: fold these into legal mask.
4585  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4586                 X86::isMOVSLDUPMask(SVOp) ||
4587                 X86::isMOVHLPSMask(SVOp) ||
4588                 X86::isMOVLHPSMask(SVOp) ||
4589                 X86::isMOVLPMask(SVOp)))
4590    return Op;
4591
4592  if (ShouldXformToMOVHLPS(SVOp) ||
4593      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4594    return CommuteVectorShuffle(SVOp, DAG);
4595
4596  if (isShift) {
4597    // No better options. Use a vshl / vsrl.
4598    EVT EltVT = VT.getVectorElementType();
4599    ShAmt *= EltVT.getSizeInBits();
4600    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4601  }
4602
4603  bool Commuted = false;
4604  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4605  // 1,1,1,1 -> v8i16 though.
4606  V1IsSplat = isSplatVector(V1.getNode());
4607  V2IsSplat = isSplatVector(V2.getNode());
4608
4609  // Canonicalize the splat or undef, if present, to be on the RHS.
4610  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4611    Op = CommuteVectorShuffle(SVOp, DAG);
4612    SVOp = cast<ShuffleVectorSDNode>(Op);
4613    V1 = SVOp->getOperand(0);
4614    V2 = SVOp->getOperand(1);
4615    std::swap(V1IsSplat, V2IsSplat);
4616    std::swap(V1IsUndef, V2IsUndef);
4617    Commuted = true;
4618  }
4619
4620  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4621    // Shuffling low element of v1 into undef, just return v1.
4622    if (V2IsUndef)
4623      return V1;
4624    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4625    // the instruction selector will not match, so get a canonical MOVL with
4626    // swapped operands to undo the commute.
4627    return getMOVL(DAG, dl, VT, V2, V1);
4628  }
4629
4630  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4631      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4632      X86::isUNPCKLMask(SVOp) ||
4633      X86::isUNPCKHMask(SVOp))
4634    return Op;
4635
4636  if (V2IsSplat) {
4637    // Normalize mask so all entries that point to V2 points to its first
4638    // element then try to match unpck{h|l} again. If match, return a
4639    // new vector_shuffle with the corrected mask.
4640    SDValue NewMask = NormalizeMask(SVOp, DAG);
4641    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4642    if (NSVOp != SVOp) {
4643      if (X86::isUNPCKLMask(NSVOp, true)) {
4644        return NewMask;
4645      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4646        return NewMask;
4647      }
4648    }
4649  }
4650
4651  if (Commuted) {
4652    // Commute is back and try unpck* again.
4653    // FIXME: this seems wrong.
4654    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
4655    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
4656    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
4657        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
4658        X86::isUNPCKLMask(NewSVOp) ||
4659        X86::isUNPCKHMask(NewSVOp))
4660      return NewOp;
4661  }
4662
4663  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
4664
4665  // Normalize the node to match x86 shuffle ops if needed
4666  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
4667    return CommuteVectorShuffle(SVOp, DAG);
4668
4669  // Check for legal shuffle and return?
4670  SmallVector<int, 16> PermMask;
4671  SVOp->getMask(PermMask);
4672  if (isShuffleMaskLegal(PermMask, VT))
4673    return Op;
4674
4675  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4676  if (VT == MVT::v8i16) {
4677    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
4678    if (NewOp.getNode())
4679      return NewOp;
4680  }
4681
4682  if (VT == MVT::v16i8) {
4683    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
4684    if (NewOp.getNode())
4685      return NewOp;
4686  }
4687
4688  // Handle all 4 wide cases with a number of shuffles except for MMX.
4689  if (NumElems == 4 && !isMMX)
4690    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
4691
4692  return SDValue();
4693}
4694
4695SDValue
4696X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4697                                                SelectionDAG &DAG) {
4698  EVT VT = Op.getValueType();
4699  DebugLoc dl = Op.getDebugLoc();
4700  if (VT.getSizeInBits() == 8) {
4701    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
4702                                    Op.getOperand(0), Op.getOperand(1));
4703    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4704                                    DAG.getValueType(VT));
4705    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4706  } else if (VT.getSizeInBits() == 16) {
4707    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4708    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
4709    if (Idx == 0)
4710      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4711                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4712                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4713                                                 MVT::v4i32,
4714                                                 Op.getOperand(0)),
4715                                     Op.getOperand(1)));
4716    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
4717                                    Op.getOperand(0), Op.getOperand(1));
4718    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
4719                                    DAG.getValueType(VT));
4720    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4721  } else if (VT == MVT::f32) {
4722    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4723    // the result back to FR32 register. It's only worth matching if the
4724    // result has a single use which is a store or a bitcast to i32.  And in
4725    // the case of a store, it's not worth it if the index is a constant 0,
4726    // because a MOVSSmr can be used instead, which is smaller and faster.
4727    if (!Op.hasOneUse())
4728      return SDValue();
4729    SDNode *User = *Op.getNode()->use_begin();
4730    if ((User->getOpcode() != ISD::STORE ||
4731         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4732          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4733        (User->getOpcode() != ISD::BIT_CONVERT ||
4734         User->getValueType(0) != MVT::i32))
4735      return SDValue();
4736    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4737                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
4738                                              Op.getOperand(0)),
4739                                              Op.getOperand(1));
4740    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
4741  } else if (VT == MVT::i32) {
4742    // ExtractPS works with constant index.
4743    if (isa<ConstantSDNode>(Op.getOperand(1)))
4744      return Op;
4745  }
4746  return SDValue();
4747}
4748
4749
4750SDValue
4751X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4752  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4753    return SDValue();
4754
4755  if (Subtarget->hasSSE41()) {
4756    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4757    if (Res.getNode())
4758      return Res;
4759  }
4760
4761  EVT VT = Op.getValueType();
4762  DebugLoc dl = Op.getDebugLoc();
4763  // TODO: handle v16i8.
4764  if (VT.getSizeInBits() == 16) {
4765    SDValue Vec = Op.getOperand(0);
4766    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4767    if (Idx == 0)
4768      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
4769                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
4770                                     DAG.getNode(ISD::BIT_CONVERT, dl,
4771                                                 MVT::v4i32, Vec),
4772                                     Op.getOperand(1)));
4773    // Transform it so it match pextrw which produces a 32-bit result.
4774    EVT EltVT = MVT::i32;
4775    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
4776                                    Op.getOperand(0), Op.getOperand(1));
4777    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
4778                                    DAG.getValueType(VT));
4779    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
4780  } else if (VT.getSizeInBits() == 32) {
4781    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4782    if (Idx == 0)
4783      return Op;
4784
4785    // SHUFPS the element to the lowest double word, then movss.
4786    int Mask[4] = { Idx, -1, -1, -1 };
4787    EVT VVT = Op.getOperand(0).getValueType();
4788    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4789                                       DAG.getUNDEF(VVT), Mask);
4790    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4791                       DAG.getIntPtrConstant(0));
4792  } else if (VT.getSizeInBits() == 64) {
4793    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4794    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4795    //        to match extract_elt for f64.
4796    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4797    if (Idx == 0)
4798      return Op;
4799
4800    // UNPCKHPD the element to the lowest double word, then movsd.
4801    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4802    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4803    int Mask[2] = { 1, -1 };
4804    EVT VVT = Op.getOperand(0).getValueType();
4805    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
4806                                       DAG.getUNDEF(VVT), Mask);
4807    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
4808                       DAG.getIntPtrConstant(0));
4809  }
4810
4811  return SDValue();
4812}
4813
4814SDValue
4815X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4816  EVT VT = Op.getValueType();
4817  EVT EltVT = VT.getVectorElementType();
4818  DebugLoc dl = Op.getDebugLoc();
4819
4820  SDValue N0 = Op.getOperand(0);
4821  SDValue N1 = Op.getOperand(1);
4822  SDValue N2 = Op.getOperand(2);
4823
4824  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
4825      isa<ConstantSDNode>(N2)) {
4826    unsigned Opc = (EltVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4827                                                : X86ISD::PINSRW;
4828    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4829    // argument.
4830    if (N1.getValueType() != MVT::i32)
4831      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4832    if (N2.getValueType() != MVT::i32)
4833      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4834    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
4835  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4836    // Bits [7:6] of the constant are the source select.  This will always be
4837    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4838    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4839    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4840    // Bits [5:4] of the constant are the destination select.  This is the
4841    //  value of the incoming immediate.
4842    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4843    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4844    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4845    // Create this as a scalar to vector..
4846    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
4847    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
4848  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
4849    // PINSR* works with constant index.
4850    return Op;
4851  }
4852  return SDValue();
4853}
4854
4855SDValue
4856X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4857  EVT VT = Op.getValueType();
4858  EVT EltVT = VT.getVectorElementType();
4859
4860  if (Subtarget->hasSSE41())
4861    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4862
4863  if (EltVT == MVT::i8)
4864    return SDValue();
4865
4866  DebugLoc dl = Op.getDebugLoc();
4867  SDValue N0 = Op.getOperand(0);
4868  SDValue N1 = Op.getOperand(1);
4869  SDValue N2 = Op.getOperand(2);
4870
4871  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
4872    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4873    // as its second argument.
4874    if (N1.getValueType() != MVT::i32)
4875      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
4876    if (N2.getValueType() != MVT::i32)
4877      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4878    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
4879  }
4880  return SDValue();
4881}
4882
4883SDValue
4884X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4885  DebugLoc dl = Op.getDebugLoc();
4886  if (Op.getValueType() == MVT::v2f32)
4887    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
4888                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
4889                                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
4890                                               Op.getOperand(0))));
4891
4892  if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
4893    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
4894
4895  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
4896  EVT VT = MVT::v2i32;
4897  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4898  default: break;
4899  case MVT::v16i8:
4900  case MVT::v8i16:
4901    VT = MVT::v4i32;
4902    break;
4903  }
4904  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
4905                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
4906}
4907
4908// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4909// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4910// one of the above mentioned nodes. It has to be wrapped because otherwise
4911// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4912// be used to form addressing mode. These wrapped nodes will be selected
4913// into MOV32ri.
4914SDValue
4915X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4916  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4917
4918  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4919  // global base reg.
4920  unsigned char OpFlag = 0;
4921  unsigned WrapperKind = X86ISD::Wrapper;
4922  CodeModel::Model M = getTargetMachine().getCodeModel();
4923
4924  if (Subtarget->isPICStyleRIPRel() &&
4925      (M == CodeModel::Small || M == CodeModel::Kernel))
4926    WrapperKind = X86ISD::WrapperRIP;
4927  else if (Subtarget->isPICStyleGOT())
4928    OpFlag = X86II::MO_GOTOFF;
4929  else if (Subtarget->isPICStyleStubPIC())
4930    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4931
4932  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
4933                                             CP->getAlignment(),
4934                                             CP->getOffset(), OpFlag);
4935  DebugLoc DL = CP->getDebugLoc();
4936  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4937  // With PIC, the address is actually $g + Offset.
4938  if (OpFlag) {
4939    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4940                         DAG.getNode(X86ISD::GlobalBaseReg,
4941                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4942                         Result);
4943  }
4944
4945  return Result;
4946}
4947
4948SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4949  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4950
4951  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4952  // global base reg.
4953  unsigned char OpFlag = 0;
4954  unsigned WrapperKind = X86ISD::Wrapper;
4955  CodeModel::Model M = getTargetMachine().getCodeModel();
4956
4957  if (Subtarget->isPICStyleRIPRel() &&
4958      (M == CodeModel::Small || M == CodeModel::Kernel))
4959    WrapperKind = X86ISD::WrapperRIP;
4960  else if (Subtarget->isPICStyleGOT())
4961    OpFlag = X86II::MO_GOTOFF;
4962  else if (Subtarget->isPICStyleStubPIC())
4963    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4964
4965  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
4966                                          OpFlag);
4967  DebugLoc DL = JT->getDebugLoc();
4968  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
4969
4970  // With PIC, the address is actually $g + Offset.
4971  if (OpFlag) {
4972    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
4973                         DAG.getNode(X86ISD::GlobalBaseReg,
4974                                     DebugLoc::getUnknownLoc(), getPointerTy()),
4975                         Result);
4976  }
4977
4978  return Result;
4979}
4980
4981SDValue
4982X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4983  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4984
4985  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
4986  // global base reg.
4987  unsigned char OpFlag = 0;
4988  unsigned WrapperKind = X86ISD::Wrapper;
4989  CodeModel::Model M = getTargetMachine().getCodeModel();
4990
4991  if (Subtarget->isPICStyleRIPRel() &&
4992      (M == CodeModel::Small || M == CodeModel::Kernel))
4993    WrapperKind = X86ISD::WrapperRIP;
4994  else if (Subtarget->isPICStyleGOT())
4995    OpFlag = X86II::MO_GOTOFF;
4996  else if (Subtarget->isPICStyleStubPIC())
4997    OpFlag = X86II::MO_PIC_BASE_OFFSET;
4998
4999  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5000
5001  DebugLoc DL = Op.getDebugLoc();
5002  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5003
5004
5005  // With PIC, the address is actually $g + Offset.
5006  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5007      !Subtarget->is64Bit()) {
5008    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5009                         DAG.getNode(X86ISD::GlobalBaseReg,
5010                                     DebugLoc::getUnknownLoc(),
5011                                     getPointerTy()),
5012                         Result);
5013  }
5014
5015  return Result;
5016}
5017
5018SDValue
5019X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
5020  // Create the TargetBlockAddressAddress node.
5021  unsigned char OpFlags =
5022    Subtarget->ClassifyBlockAddressReference();
5023  CodeModel::Model M = getTargetMachine().getCodeModel();
5024  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5025  DebugLoc dl = Op.getDebugLoc();
5026  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5027                                       /*isTarget=*/true, OpFlags);
5028
5029  if (Subtarget->isPICStyleRIPRel() &&
5030      (M == CodeModel::Small || M == CodeModel::Kernel))
5031    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5032  else
5033    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5034
5035  // With PIC, the address is actually $g + Offset.
5036  if (isGlobalRelativeToPICBase(OpFlags)) {
5037    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5038                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5039                         Result);
5040  }
5041
5042  return Result;
5043}
5044
5045SDValue
5046X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5047                                      int64_t Offset,
5048                                      SelectionDAG &DAG) const {
5049  // Create the TargetGlobalAddress node, folding in the constant
5050  // offset if it is legal.
5051  unsigned char OpFlags =
5052    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5053  CodeModel::Model M = getTargetMachine().getCodeModel();
5054  SDValue Result;
5055  if (OpFlags == X86II::MO_NO_FLAG &&
5056      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5057    // A direct static reference to a global.
5058    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
5059    Offset = 0;
5060  } else {
5061    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
5062  }
5063
5064  if (Subtarget->isPICStyleRIPRel() &&
5065      (M == CodeModel::Small || M == CodeModel::Kernel))
5066    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5067  else
5068    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5069
5070  // With PIC, the address is actually $g + Offset.
5071  if (isGlobalRelativeToPICBase(OpFlags)) {
5072    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5073                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5074                         Result);
5075  }
5076
5077  // For globals that require a load from a stub to get the address, emit the
5078  // load.
5079  if (isGlobalStubReference(OpFlags))
5080    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5081                         PseudoSourceValue::getGOT(), 0);
5082
5083  // If there was a non-zero offset that we didn't fold, create an explicit
5084  // addition for it.
5085  if (Offset != 0)
5086    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5087                         DAG.getConstant(Offset, getPointerTy()));
5088
5089  return Result;
5090}
5091
5092SDValue
5093X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
5094  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5095  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5096  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5097}
5098
5099static SDValue
5100GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5101           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5102           unsigned char OperandFlags) {
5103  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5104  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5105  DebugLoc dl = GA->getDebugLoc();
5106  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
5107                                           GA->getValueType(0),
5108                                           GA->getOffset(),
5109                                           OperandFlags);
5110  if (InFlag) {
5111    SDValue Ops[] = { Chain,  TGA, *InFlag };
5112    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5113  } else {
5114    SDValue Ops[]  = { Chain, TGA };
5115    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5116  }
5117
5118  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5119  MFI->setHasCalls(true);
5120
5121  SDValue Flag = Chain.getValue(1);
5122  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5123}
5124
5125// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5126static SDValue
5127LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5128                                const EVT PtrVT) {
5129  SDValue InFlag;
5130  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5131  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5132                                     DAG.getNode(X86ISD::GlobalBaseReg,
5133                                                 DebugLoc::getUnknownLoc(),
5134                                                 PtrVT), InFlag);
5135  InFlag = Chain.getValue(1);
5136
5137  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5138}
5139
5140// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5141static SDValue
5142LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5143                                const EVT PtrVT) {
5144  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5145                    X86::RAX, X86II::MO_TLSGD);
5146}
5147
5148// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5149// "local exec" model.
5150static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5151                                   const EVT PtrVT, TLSModel::Model model,
5152                                   bool is64Bit) {
5153  DebugLoc dl = GA->getDebugLoc();
5154  // Get the Thread Pointer
5155  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5156                             DebugLoc::getUnknownLoc(), PtrVT,
5157                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5158                                             MVT::i32));
5159
5160  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5161                                      NULL, 0);
5162
5163  unsigned char OperandFlags = 0;
5164  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5165  // initialexec.
5166  unsigned WrapperKind = X86ISD::Wrapper;
5167  if (model == TLSModel::LocalExec) {
5168    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5169  } else if (is64Bit) {
5170    assert(model == TLSModel::InitialExec);
5171    OperandFlags = X86II::MO_GOTTPOFF;
5172    WrapperKind = X86ISD::WrapperRIP;
5173  } else {
5174    assert(model == TLSModel::InitialExec);
5175    OperandFlags = X86II::MO_INDNTPOFF;
5176  }
5177
5178  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5179  // exec)
5180  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5181                                           GA->getOffset(), OperandFlags);
5182  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5183
5184  if (model == TLSModel::InitialExec)
5185    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5186                         PseudoSourceValue::getGOT(), 0);
5187
5188  // The address of the thread local variable is the add of the thread
5189  // pointer with the offset of the variable.
5190  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5191}
5192
5193SDValue
5194X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
5195  // TODO: implement the "local dynamic" model
5196  // TODO: implement the "initial exec"model for pic executables
5197  assert(Subtarget->isTargetELF() &&
5198         "TLS not implemented for non-ELF targets");
5199  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5200  const GlobalValue *GV = GA->getGlobal();
5201
5202  // If GV is an alias then use the aliasee for determining
5203  // thread-localness.
5204  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5205    GV = GA->resolveAliasedGlobal(false);
5206
5207  TLSModel::Model model = getTLSModel(GV,
5208                                      getTargetMachine().getRelocationModel());
5209
5210  switch (model) {
5211  case TLSModel::GeneralDynamic:
5212  case TLSModel::LocalDynamic: // not implemented
5213    if (Subtarget->is64Bit())
5214      return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5215    return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5216
5217  case TLSModel::InitialExec:
5218  case TLSModel::LocalExec:
5219    return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5220                               Subtarget->is64Bit());
5221  }
5222
5223  llvm_unreachable("Unreachable");
5224  return SDValue();
5225}
5226
5227
5228/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5229/// take a 2 x i32 value to shift plus a shift amount.
5230SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
5231  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5232  EVT VT = Op.getValueType();
5233  unsigned VTBits = VT.getSizeInBits();
5234  DebugLoc dl = Op.getDebugLoc();
5235  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5236  SDValue ShOpLo = Op.getOperand(0);
5237  SDValue ShOpHi = Op.getOperand(1);
5238  SDValue ShAmt  = Op.getOperand(2);
5239  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5240                                     DAG.getConstant(VTBits - 1, MVT::i8))
5241                       : DAG.getConstant(0, VT);
5242
5243  SDValue Tmp2, Tmp3;
5244  if (Op.getOpcode() == ISD::SHL_PARTS) {
5245    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5246    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5247  } else {
5248    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5249    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5250  }
5251
5252  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5253                                DAG.getConstant(VTBits, MVT::i8));
5254  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, VT,
5255                             AndNode, DAG.getConstant(0, MVT::i8));
5256
5257  SDValue Hi, Lo;
5258  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5259  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5260  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5261
5262  if (Op.getOpcode() == ISD::SHL_PARTS) {
5263    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5264    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5265  } else {
5266    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5267    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5268  }
5269
5270  SDValue Ops[2] = { Lo, Hi };
5271  return DAG.getMergeValues(Ops, 2, dl);
5272}
5273
5274SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5275  EVT SrcVT = Op.getOperand(0).getValueType();
5276
5277  if (SrcVT.isVector()) {
5278    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5279      return Op;
5280    }
5281    return SDValue();
5282  }
5283
5284  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5285         "Unknown SINT_TO_FP to lower!");
5286
5287  // These are really Legal; return the operand so the caller accepts it as
5288  // Legal.
5289  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5290    return Op;
5291  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5292      Subtarget->is64Bit()) {
5293    return Op;
5294  }
5295
5296  DebugLoc dl = Op.getDebugLoc();
5297  unsigned Size = SrcVT.getSizeInBits()/8;
5298  MachineFunction &MF = DAG.getMachineFunction();
5299  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5300  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5301  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5302                               StackSlot,
5303                               PseudoSourceValue::getFixedStack(SSFI), 0);
5304  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5305}
5306
5307SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5308                                     SDValue StackSlot,
5309                                     SelectionDAG &DAG) {
5310  // Build the FILD
5311  DebugLoc dl = Op.getDebugLoc();
5312  SDVTList Tys;
5313  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5314  if (useSSE)
5315    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5316  else
5317    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5318  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5319  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5320                               Tys, Ops, array_lengthof(Ops));
5321
5322  if (useSSE) {
5323    Chain = Result.getValue(1);
5324    SDValue InFlag = Result.getValue(2);
5325
5326    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5327    // shouldn't be necessary except that RFP cannot be live across
5328    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5329    MachineFunction &MF = DAG.getMachineFunction();
5330    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5331    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5332    Tys = DAG.getVTList(MVT::Other);
5333    SDValue Ops[] = {
5334      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5335    };
5336    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5337    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5338                         PseudoSourceValue::getFixedStack(SSFI), 0);
5339  }
5340
5341  return Result;
5342}
5343
5344// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5345SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) {
5346  // This algorithm is not obvious. Here it is in C code, more or less:
5347  /*
5348    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5349      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5350      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5351
5352      // Copy ints to xmm registers.
5353      __m128i xh = _mm_cvtsi32_si128( hi );
5354      __m128i xl = _mm_cvtsi32_si128( lo );
5355
5356      // Combine into low half of a single xmm register.
5357      __m128i x = _mm_unpacklo_epi32( xh, xl );
5358      __m128d d;
5359      double sd;
5360
5361      // Merge in appropriate exponents to give the integer bits the right
5362      // magnitude.
5363      x = _mm_unpacklo_epi32( x, exp );
5364
5365      // Subtract away the biases to deal with the IEEE-754 double precision
5366      // implicit 1.
5367      d = _mm_sub_pd( (__m128d) x, bias );
5368
5369      // All conversions up to here are exact. The correctly rounded result is
5370      // calculated using the current rounding mode using the following
5371      // horizontal add.
5372      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5373      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5374                                // store doesn't really need to be here (except
5375                                // maybe to zero the other double)
5376      return sd;
5377    }
5378  */
5379
5380  DebugLoc dl = Op.getDebugLoc();
5381  LLVMContext *Context = DAG.getContext();
5382
5383  // Build some magic constants.
5384  std::vector<Constant*> CV0;
5385  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5386  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5387  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5388  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5389  Constant *C0 = ConstantVector::get(CV0);
5390  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5391
5392  std::vector<Constant*> CV1;
5393  CV1.push_back(
5394    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5395  CV1.push_back(
5396    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5397  Constant *C1 = ConstantVector::get(CV1);
5398  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5399
5400  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5401                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5402                                        Op.getOperand(0),
5403                                        DAG.getIntPtrConstant(1)));
5404  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5405                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5406                                        Op.getOperand(0),
5407                                        DAG.getIntPtrConstant(0)));
5408  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5409  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5410                              PseudoSourceValue::getConstantPool(), 0,
5411                              false, 16);
5412  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5413  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5414  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5415                              PseudoSourceValue::getConstantPool(), 0,
5416                              false, 16);
5417  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5418
5419  // Add the halves; easiest way is to swap them into another reg first.
5420  int ShufMask[2] = { 1, -1 };
5421  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5422                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5423  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5424  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5425                     DAG.getIntPtrConstant(0));
5426}
5427
5428// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5429SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) {
5430  DebugLoc dl = Op.getDebugLoc();
5431  // FP constant to bias correct the final result.
5432  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5433                                   MVT::f64);
5434
5435  // Load the 32-bit value into an XMM register.
5436  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5437                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5438                                         Op.getOperand(0),
5439                                         DAG.getIntPtrConstant(0)));
5440
5441  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5442                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5443                     DAG.getIntPtrConstant(0));
5444
5445  // Or the load with the bias.
5446  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5447                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5448                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5449                                                   MVT::v2f64, Load)),
5450                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5451                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5452                                                   MVT::v2f64, Bias)));
5453  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5454                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5455                   DAG.getIntPtrConstant(0));
5456
5457  // Subtract the bias.
5458  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5459
5460  // Handle final rounding.
5461  EVT DestVT = Op.getValueType();
5462
5463  if (DestVT.bitsLT(MVT::f64)) {
5464    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5465                       DAG.getIntPtrConstant(0));
5466  } else if (DestVT.bitsGT(MVT::f64)) {
5467    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5468  }
5469
5470  // Handle final rounding.
5471  return Sub;
5472}
5473
5474SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5475  SDValue N0 = Op.getOperand(0);
5476  DebugLoc dl = Op.getDebugLoc();
5477
5478  // Now not UINT_TO_FP is legal (it's marked custom), dag combiner won't
5479  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5480  // the optimization here.
5481  if (DAG.SignBitIsZero(N0))
5482    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5483
5484  EVT SrcVT = N0.getValueType();
5485  if (SrcVT == MVT::i64) {
5486    // We only handle SSE2 f64 target here; caller can expand the rest.
5487    if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
5488      return SDValue();
5489
5490    return LowerUINT_TO_FP_i64(Op, DAG);
5491  } else if (SrcVT == MVT::i32 && X86ScalarSSEf64) {
5492    return LowerUINT_TO_FP_i32(Op, DAG);
5493  }
5494
5495  assert(SrcVT == MVT::i32 && "Unknown UINT_TO_FP to lower!");
5496
5497  // Make a 64-bit buffer, and use it to build an FILD.
5498  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5499  SDValue WordOff = DAG.getConstant(4, getPointerTy());
5500  SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5501                                   getPointerTy(), StackSlot, WordOff);
5502  SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5503                                StackSlot, NULL, 0);
5504  SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5505                                OffsetSlot, NULL, 0);
5506  return BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5507}
5508
5509std::pair<SDValue,SDValue> X86TargetLowering::
5510FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) {
5511  DebugLoc dl = Op.getDebugLoc();
5512
5513  EVT DstTy = Op.getValueType();
5514
5515  if (!IsSigned) {
5516    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5517    DstTy = MVT::i64;
5518  }
5519
5520  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5521         DstTy.getSimpleVT() >= MVT::i16 &&
5522         "Unknown FP_TO_SINT to lower!");
5523
5524  // These are really Legal.
5525  if (DstTy == MVT::i32 &&
5526      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5527    return std::make_pair(SDValue(), SDValue());
5528  if (Subtarget->is64Bit() &&
5529      DstTy == MVT::i64 &&
5530      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5531    return std::make_pair(SDValue(), SDValue());
5532
5533  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5534  // stack slot.
5535  MachineFunction &MF = DAG.getMachineFunction();
5536  unsigned MemSize = DstTy.getSizeInBits()/8;
5537  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5538  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5539
5540  unsigned Opc;
5541  switch (DstTy.getSimpleVT().SimpleTy) {
5542  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5543  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5544  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5545  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5546  }
5547
5548  SDValue Chain = DAG.getEntryNode();
5549  SDValue Value = Op.getOperand(0);
5550  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5551    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5552    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5553                         PseudoSourceValue::getFixedStack(SSFI), 0);
5554    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
5555    SDValue Ops[] = {
5556      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
5557    };
5558    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
5559    Chain = Value.getValue(1);
5560    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5561    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5562  }
5563
5564  // Build the FP_TO_INT*_IN_MEM
5565  SDValue Ops[] = { Chain, Value, StackSlot };
5566  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
5567
5568  return std::make_pair(FIST, StackSlot);
5569}
5570
5571SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
5572  if (Op.getValueType().isVector()) {
5573    if (Op.getValueType() == MVT::v2i32 &&
5574        Op.getOperand(0).getValueType() == MVT::v2f64) {
5575      return Op;
5576    }
5577    return SDValue();
5578  }
5579
5580  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
5581  SDValue FIST = Vals.first, StackSlot = Vals.second;
5582  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
5583  if (FIST.getNode() == 0) return Op;
5584
5585  // Load the result.
5586  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5587                     FIST, StackSlot, NULL, 0);
5588}
5589
5590SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) {
5591  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
5592  SDValue FIST = Vals.first, StackSlot = Vals.second;
5593  assert(FIST.getNode() && "Unexpected failure");
5594
5595  // Load the result.
5596  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
5597                     FIST, StackSlot, NULL, 0);
5598}
5599
5600SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
5601  LLVMContext *Context = DAG.getContext();
5602  DebugLoc dl = Op.getDebugLoc();
5603  EVT VT = Op.getValueType();
5604  EVT EltVT = VT;
5605  if (VT.isVector())
5606    EltVT = VT.getVectorElementType();
5607  std::vector<Constant*> CV;
5608  if (EltVT == MVT::f64) {
5609    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
5610    CV.push_back(C);
5611    CV.push_back(C);
5612  } else {
5613    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
5614    CV.push_back(C);
5615    CV.push_back(C);
5616    CV.push_back(C);
5617    CV.push_back(C);
5618  }
5619  Constant *C = ConstantVector::get(CV);
5620  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5621  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5622                               PseudoSourceValue::getConstantPool(), 0,
5623                               false, 16);
5624  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
5625}
5626
5627SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
5628  LLVMContext *Context = DAG.getContext();
5629  DebugLoc dl = Op.getDebugLoc();
5630  EVT VT = Op.getValueType();
5631  EVT EltVT = VT;
5632  if (VT.isVector())
5633    EltVT = VT.getVectorElementType();
5634  std::vector<Constant*> CV;
5635  if (EltVT == MVT::f64) {
5636    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
5637    CV.push_back(C);
5638    CV.push_back(C);
5639  } else {
5640    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
5641    CV.push_back(C);
5642    CV.push_back(C);
5643    CV.push_back(C);
5644    CV.push_back(C);
5645  }
5646  Constant *C = ConstantVector::get(CV);
5647  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5648  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5649                               PseudoSourceValue::getConstantPool(), 0,
5650                               false, 16);
5651  if (VT.isVector()) {
5652    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5653                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
5654                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5655                                Op.getOperand(0)),
5656                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
5657  } else {
5658    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
5659  }
5660}
5661
5662SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
5663  LLVMContext *Context = DAG.getContext();
5664  SDValue Op0 = Op.getOperand(0);
5665  SDValue Op1 = Op.getOperand(1);
5666  DebugLoc dl = Op.getDebugLoc();
5667  EVT VT = Op.getValueType();
5668  EVT SrcVT = Op1.getValueType();
5669
5670  // If second operand is smaller, extend it first.
5671  if (SrcVT.bitsLT(VT)) {
5672    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
5673    SrcVT = VT;
5674  }
5675  // And if it is bigger, shrink it first.
5676  if (SrcVT.bitsGT(VT)) {
5677    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
5678    SrcVT = VT;
5679  }
5680
5681  // At this point the operands and the result should have the same
5682  // type, and that won't be f80 since that is not custom lowered.
5683
5684  // First get the sign bit of second operand.
5685  std::vector<Constant*> CV;
5686  if (SrcVT == MVT::f64) {
5687    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
5688    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5689  } else {
5690    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
5691    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5692    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5693    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5694  }
5695  Constant *C = ConstantVector::get(CV);
5696  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5697  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
5698                                PseudoSourceValue::getConstantPool(), 0,
5699                                false, 16);
5700  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
5701
5702  // Shift sign bit right or left if the two operands have different types.
5703  if (SrcVT.bitsGT(VT)) {
5704    // Op0 is MVT::f32, Op1 is MVT::f64.
5705    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
5706    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
5707                          DAG.getConstant(32, MVT::i32));
5708    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
5709    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
5710                          DAG.getIntPtrConstant(0));
5711  }
5712
5713  // Clear first operand sign bit.
5714  CV.clear();
5715  if (VT == MVT::f64) {
5716    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
5717    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
5718  } else {
5719    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
5720    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5721    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5722    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
5723  }
5724  C = ConstantVector::get(CV);
5725  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
5726  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
5727                                PseudoSourceValue::getConstantPool(), 0,
5728                                false, 16);
5729  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
5730
5731  // Or the value with the sign bit.
5732  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
5733}
5734
5735/// Emit nodes that will be selected as "test Op0,Op0", or something
5736/// equivalent.
5737SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
5738                                    SelectionDAG &DAG) {
5739  DebugLoc dl = Op.getDebugLoc();
5740
5741  // CF and OF aren't always set the way we want. Determine which
5742  // of these we need.
5743  bool NeedCF = false;
5744  bool NeedOF = false;
5745  switch (X86CC) {
5746  case X86::COND_A: case X86::COND_AE:
5747  case X86::COND_B: case X86::COND_BE:
5748    NeedCF = true;
5749    break;
5750  case X86::COND_G: case X86::COND_GE:
5751  case X86::COND_L: case X86::COND_LE:
5752  case X86::COND_O: case X86::COND_NO:
5753    NeedOF = true;
5754    break;
5755  default: break;
5756  }
5757
5758  // See if we can use the EFLAGS value from the operand instead of
5759  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
5760  // we prove that the arithmetic won't overflow, we can't use OF or CF.
5761  if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
5762    unsigned Opcode = 0;
5763    unsigned NumOperands = 0;
5764    switch (Op.getNode()->getOpcode()) {
5765    case ISD::ADD:
5766      // Due to an isel shortcoming, be conservative if this add is likely to
5767      // be selected as part of a load-modify-store instruction. When the root
5768      // node in a match is a store, isel doesn't know how to remap non-chain
5769      // non-flag uses of other nodes in the match, such as the ADD in this
5770      // case. This leads to the ADD being left around and reselected, with
5771      // the result being two adds in the output.
5772      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5773           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5774        if (UI->getOpcode() == ISD::STORE)
5775          goto default_case;
5776      if (ConstantSDNode *C =
5777            dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
5778        // An add of one will be selected as an INC.
5779        if (C->getAPIntValue() == 1) {
5780          Opcode = X86ISD::INC;
5781          NumOperands = 1;
5782          break;
5783        }
5784        // An add of negative one (subtract of one) will be selected as a DEC.
5785        if (C->getAPIntValue().isAllOnesValue()) {
5786          Opcode = X86ISD::DEC;
5787          NumOperands = 1;
5788          break;
5789        }
5790      }
5791      // Otherwise use a regular EFLAGS-setting add.
5792      Opcode = X86ISD::ADD;
5793      NumOperands = 2;
5794      break;
5795    case ISD::AND: {
5796      // If the primary and result isn't used, don't bother using X86ISD::AND,
5797      // because a TEST instruction will be better.
5798      bool NonFlagUse = false;
5799      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5800             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
5801        SDNode *User = *UI;
5802        unsigned UOpNo = UI.getOperandNo();
5803        if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
5804          // Look pass truncate.
5805          UOpNo = User->use_begin().getOperandNo();
5806          User = *User->use_begin();
5807        }
5808        if (User->getOpcode() != ISD::BRCOND &&
5809            User->getOpcode() != ISD::SETCC &&
5810            (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
5811          NonFlagUse = true;
5812          break;
5813        }
5814      }
5815      if (!NonFlagUse)
5816        break;
5817    }
5818    // FALL THROUGH
5819    case ISD::SUB:
5820    case ISD::OR:
5821    case ISD::XOR:
5822      // Due to the ISEL shortcoming noted above, be conservative if this op is
5823      // likely to be selected as part of a load-modify-store instruction.
5824      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
5825           UE = Op.getNode()->use_end(); UI != UE; ++UI)
5826        if (UI->getOpcode() == ISD::STORE)
5827          goto default_case;
5828      // Otherwise use a regular EFLAGS-setting instruction.
5829      switch (Op.getNode()->getOpcode()) {
5830      case ISD::SUB: Opcode = X86ISD::SUB; break;
5831      case ISD::OR:  Opcode = X86ISD::OR;  break;
5832      case ISD::XOR: Opcode = X86ISD::XOR; break;
5833      case ISD::AND: Opcode = X86ISD::AND; break;
5834      default: llvm_unreachable("unexpected operator!");
5835      }
5836      NumOperands = 2;
5837      break;
5838    case X86ISD::ADD:
5839    case X86ISD::SUB:
5840    case X86ISD::INC:
5841    case X86ISD::DEC:
5842    case X86ISD::OR:
5843    case X86ISD::XOR:
5844    case X86ISD::AND:
5845      return SDValue(Op.getNode(), 1);
5846    default:
5847    default_case:
5848      break;
5849    }
5850    if (Opcode != 0) {
5851      SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5852      SmallVector<SDValue, 4> Ops;
5853      for (unsigned i = 0; i != NumOperands; ++i)
5854        Ops.push_back(Op.getOperand(i));
5855      SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
5856      DAG.ReplaceAllUsesWith(Op, New);
5857      return SDValue(New.getNode(), 1);
5858    }
5859  }
5860
5861  // Otherwise just emit a CMP with 0, which is the TEST pattern.
5862  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
5863                     DAG.getConstant(0, Op.getValueType()));
5864}
5865
5866/// Emit nodes that will be selected as "cmp Op0,Op1", or something
5867/// equivalent.
5868SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
5869                                   SelectionDAG &DAG) {
5870  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
5871    if (C->getAPIntValue() == 0)
5872      return EmitTest(Op0, X86CC, DAG);
5873
5874  DebugLoc dl = Op0.getDebugLoc();
5875  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
5876}
5877
5878/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
5879/// if it's possible.
5880static SDValue LowerToBT(SDValue Op0, ISD::CondCode CC,
5881                         DebugLoc dl, SelectionDAG &DAG) {
5882  SDValue LHS, RHS;
5883  if (Op0.getOperand(1).getOpcode() == ISD::SHL) {
5884    if (ConstantSDNode *Op010C =
5885        dyn_cast<ConstantSDNode>(Op0.getOperand(1).getOperand(0)))
5886      if (Op010C->getZExtValue() == 1) {
5887        LHS = Op0.getOperand(0);
5888        RHS = Op0.getOperand(1).getOperand(1);
5889      }
5890  } else if (Op0.getOperand(0).getOpcode() == ISD::SHL) {
5891    if (ConstantSDNode *Op000C =
5892        dyn_cast<ConstantSDNode>(Op0.getOperand(0).getOperand(0)))
5893      if (Op000C->getZExtValue() == 1) {
5894        LHS = Op0.getOperand(1);
5895        RHS = Op0.getOperand(0).getOperand(1);
5896      }
5897  } else if (Op0.getOperand(1).getOpcode() == ISD::Constant) {
5898    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op0.getOperand(1));
5899    SDValue AndLHS = Op0.getOperand(0);
5900    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
5901      LHS = AndLHS.getOperand(0);
5902      RHS = AndLHS.getOperand(1);
5903    }
5904  }
5905
5906  if (LHS.getNode()) {
5907    // If LHS is i8, promote it to i16 with any_extend.  There is no i8 BT
5908    // instruction.  Since the shift amount is in-range-or-undefined, we know
5909    // that doing a bittest on the i16 value is ok.  We extend to i32 because
5910    // the encoding for the i16 version is larger than the i32 version.
5911    if (LHS.getValueType() == MVT::i8)
5912      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
5913
5914    // If the operand types disagree, extend the shift amount to match.  Since
5915    // BT ignores high bits (like shifts) we can use anyextend.
5916    if (LHS.getValueType() != RHS.getValueType())
5917      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
5918
5919    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
5920    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
5921    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5922                       DAG.getConstant(Cond, MVT::i8), BT);
5923  }
5924
5925  return SDValue();
5926}
5927
5928SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5929  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5930  SDValue Op0 = Op.getOperand(0);
5931  SDValue Op1 = Op.getOperand(1);
5932  DebugLoc dl = Op.getDebugLoc();
5933  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5934
5935  // Optimize to BT if possible.
5936  // Lower (X & (1 << N)) == 0 to BT(X, N).
5937  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
5938  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
5939  if (Op0.getOpcode() == ISD::AND &&
5940      Op0.hasOneUse() &&
5941      Op1.getOpcode() == ISD::Constant &&
5942      cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
5943      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5944    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
5945    if (NewSetCC.getNode())
5946      return NewSetCC;
5947  }
5948
5949  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5950  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
5951  if (X86CC == X86::COND_INVALID)
5952    return SDValue();
5953
5954  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
5955
5956  // Use sbb x, x to materialize carry bit into a GPR.
5957  if (X86CC == X86::COND_B)
5958    return DAG.getNode(ISD::AND, dl, MVT::i8,
5959                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
5960                                   DAG.getConstant(X86CC, MVT::i8), Cond),
5961                       DAG.getConstant(1, MVT::i8));
5962
5963  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
5964                     DAG.getConstant(X86CC, MVT::i8), Cond);
5965}
5966
5967SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5968  SDValue Cond;
5969  SDValue Op0 = Op.getOperand(0);
5970  SDValue Op1 = Op.getOperand(1);
5971  SDValue CC = Op.getOperand(2);
5972  EVT VT = Op.getValueType();
5973  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5974  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5975  DebugLoc dl = Op.getDebugLoc();
5976
5977  if (isFP) {
5978    unsigned SSECC = 8;
5979    EVT VT0 = Op0.getValueType();
5980    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5981    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5982    bool Swap = false;
5983
5984    switch (SetCCOpcode) {
5985    default: break;
5986    case ISD::SETOEQ:
5987    case ISD::SETEQ:  SSECC = 0; break;
5988    case ISD::SETOGT:
5989    case ISD::SETGT: Swap = true; // Fallthrough
5990    case ISD::SETLT:
5991    case ISD::SETOLT: SSECC = 1; break;
5992    case ISD::SETOGE:
5993    case ISD::SETGE: Swap = true; // Fallthrough
5994    case ISD::SETLE:
5995    case ISD::SETOLE: SSECC = 2; break;
5996    case ISD::SETUO:  SSECC = 3; break;
5997    case ISD::SETUNE:
5998    case ISD::SETNE:  SSECC = 4; break;
5999    case ISD::SETULE: Swap = true;
6000    case ISD::SETUGE: SSECC = 5; break;
6001    case ISD::SETULT: Swap = true;
6002    case ISD::SETUGT: SSECC = 6; break;
6003    case ISD::SETO:   SSECC = 7; break;
6004    }
6005    if (Swap)
6006      std::swap(Op0, Op1);
6007
6008    // In the two special cases we can't handle, emit two comparisons.
6009    if (SSECC == 8) {
6010      if (SetCCOpcode == ISD::SETUEQ) {
6011        SDValue UNORD, EQ;
6012        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6013        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6014        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6015      }
6016      else if (SetCCOpcode == ISD::SETONE) {
6017        SDValue ORD, NEQ;
6018        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6019        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6020        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6021      }
6022      llvm_unreachable("Illegal FP comparison");
6023    }
6024    // Handle all other FP comparisons here.
6025    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6026  }
6027
6028  // We are handling one of the integer comparisons here.  Since SSE only has
6029  // GT and EQ comparisons for integer, swapping operands and multiple
6030  // operations may be required for some comparisons.
6031  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6032  bool Swap = false, Invert = false, FlipSigns = false;
6033
6034  switch (VT.getSimpleVT().SimpleTy) {
6035  default: break;
6036  case MVT::v8i8:
6037  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6038  case MVT::v4i16:
6039  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6040  case MVT::v2i32:
6041  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6042  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6043  }
6044
6045  switch (SetCCOpcode) {
6046  default: break;
6047  case ISD::SETNE:  Invert = true;
6048  case ISD::SETEQ:  Opc = EQOpc; break;
6049  case ISD::SETLT:  Swap = true;
6050  case ISD::SETGT:  Opc = GTOpc; break;
6051  case ISD::SETGE:  Swap = true;
6052  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6053  case ISD::SETULT: Swap = true;
6054  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6055  case ISD::SETUGE: Swap = true;
6056  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6057  }
6058  if (Swap)
6059    std::swap(Op0, Op1);
6060
6061  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6062  // bits of the inputs before performing those operations.
6063  if (FlipSigns) {
6064    EVT EltVT = VT.getVectorElementType();
6065    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6066                                      EltVT);
6067    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6068    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6069                                    SignBits.size());
6070    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6071    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6072  }
6073
6074  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6075
6076  // If the logical-not of the result is required, perform that now.
6077  if (Invert)
6078    Result = DAG.getNOT(dl, Result, VT);
6079
6080  return Result;
6081}
6082
6083// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6084static bool isX86LogicalCmp(SDValue Op) {
6085  unsigned Opc = Op.getNode()->getOpcode();
6086  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6087    return true;
6088  if (Op.getResNo() == 1 &&
6089      (Opc == X86ISD::ADD ||
6090       Opc == X86ISD::SUB ||
6091       Opc == X86ISD::SMUL ||
6092       Opc == X86ISD::UMUL ||
6093       Opc == X86ISD::INC ||
6094       Opc == X86ISD::DEC ||
6095       Opc == X86ISD::OR ||
6096       Opc == X86ISD::XOR ||
6097       Opc == X86ISD::AND))
6098    return true;
6099
6100  return false;
6101}
6102
6103SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
6104  bool addTest = true;
6105  SDValue Cond  = Op.getOperand(0);
6106  DebugLoc dl = Op.getDebugLoc();
6107  SDValue CC;
6108
6109  if (Cond.getOpcode() == ISD::SETCC) {
6110    SDValue NewCond = LowerSETCC(Cond, DAG);
6111    if (NewCond.getNode())
6112      Cond = NewCond;
6113  }
6114
6115  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6116  SDValue Op1 = Op.getOperand(1);
6117  SDValue Op2 = Op.getOperand(2);
6118  if (Cond.getOpcode() == X86ISD::SETCC &&
6119      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6120    SDValue Cmp = Cond.getOperand(1);
6121    if (Cmp.getOpcode() == X86ISD::CMP) {
6122      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6123      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6124      ConstantSDNode *RHSC =
6125        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6126      if (N1C && N1C->isAllOnesValue() &&
6127          N2C && N2C->isNullValue() &&
6128          RHSC && RHSC->isNullValue()) {
6129        SDValue CmpOp0 = Cmp.getOperand(0);
6130        Cmp = DAG.getNode(X86ISD::CMP, dl, CmpOp0.getValueType(),
6131                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6132        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6133                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6134      }
6135    }
6136  }
6137
6138  // Look pass (and (setcc_carry (cmp ...)), 1).
6139  if (Cond.getOpcode() == ISD::AND &&
6140      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6141    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6142    if (C && C->getAPIntValue() == 1)
6143      Cond = Cond.getOperand(0);
6144  }
6145
6146  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6147  // setting operand in place of the X86ISD::SETCC.
6148  if (Cond.getOpcode() == X86ISD::SETCC ||
6149      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6150    CC = Cond.getOperand(0);
6151
6152    SDValue Cmp = Cond.getOperand(1);
6153    unsigned Opc = Cmp.getOpcode();
6154    EVT VT = Op.getValueType();
6155
6156    bool IllegalFPCMov = false;
6157    if (VT.isFloatingPoint() && !VT.isVector() &&
6158        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6159      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6160
6161    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6162        Opc == X86ISD::BT) { // FIXME
6163      Cond = Cmp;
6164      addTest = false;
6165    }
6166  }
6167
6168  if (addTest) {
6169    // Look pass the truncate.
6170    if (Cond.getOpcode() == ISD::TRUNCATE)
6171      Cond = Cond.getOperand(0);
6172
6173    // We know the result of AND is compared against zero. Try to match
6174    // it to BT.
6175    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6176      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6177      if (NewSetCC.getNode()) {
6178        CC = NewSetCC.getOperand(0);
6179        Cond = NewSetCC.getOperand(1);
6180        addTest = false;
6181      }
6182    }
6183  }
6184
6185  if (addTest) {
6186    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6187    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6188  }
6189
6190  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6191  // condition is true.
6192  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6193  SDValue Ops[] = { Op2, Op1, CC, Cond };
6194  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6195}
6196
6197// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6198// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6199// from the AND / OR.
6200static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6201  Opc = Op.getOpcode();
6202  if (Opc != ISD::OR && Opc != ISD::AND)
6203    return false;
6204  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6205          Op.getOperand(0).hasOneUse() &&
6206          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6207          Op.getOperand(1).hasOneUse());
6208}
6209
6210// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6211// 1 and that the SETCC node has a single use.
6212static bool isXor1OfSetCC(SDValue Op) {
6213  if (Op.getOpcode() != ISD::XOR)
6214    return false;
6215  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6216  if (N1C && N1C->getAPIntValue() == 1) {
6217    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6218      Op.getOperand(0).hasOneUse();
6219  }
6220  return false;
6221}
6222
6223SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
6224  bool addTest = true;
6225  SDValue Chain = Op.getOperand(0);
6226  SDValue Cond  = Op.getOperand(1);
6227  SDValue Dest  = Op.getOperand(2);
6228  DebugLoc dl = Op.getDebugLoc();
6229  SDValue CC;
6230
6231  if (Cond.getOpcode() == ISD::SETCC) {
6232    SDValue NewCond = LowerSETCC(Cond, DAG);
6233    if (NewCond.getNode())
6234      Cond = NewCond;
6235  }
6236#if 0
6237  // FIXME: LowerXALUO doesn't handle these!!
6238  else if (Cond.getOpcode() == X86ISD::ADD  ||
6239           Cond.getOpcode() == X86ISD::SUB  ||
6240           Cond.getOpcode() == X86ISD::SMUL ||
6241           Cond.getOpcode() == X86ISD::UMUL)
6242    Cond = LowerXALUO(Cond, DAG);
6243#endif
6244
6245  // Look pass (and (setcc_carry (cmp ...)), 1).
6246  if (Cond.getOpcode() == ISD::AND &&
6247      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6248    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6249    if (C && C->getAPIntValue() == 1)
6250      Cond = Cond.getOperand(0);
6251  }
6252
6253  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6254  // setting operand in place of the X86ISD::SETCC.
6255  if (Cond.getOpcode() == X86ISD::SETCC ||
6256      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6257    CC = Cond.getOperand(0);
6258
6259    SDValue Cmp = Cond.getOperand(1);
6260    unsigned Opc = Cmp.getOpcode();
6261    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6262    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6263      Cond = Cmp;
6264      addTest = false;
6265    } else {
6266      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6267      default: break;
6268      case X86::COND_O:
6269      case X86::COND_B:
6270        // These can only come from an arithmetic instruction with overflow,
6271        // e.g. SADDO, UADDO.
6272        Cond = Cond.getNode()->getOperand(1);
6273        addTest = false;
6274        break;
6275      }
6276    }
6277  } else {
6278    unsigned CondOpc;
6279    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6280      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6281      if (CondOpc == ISD::OR) {
6282        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6283        // two branches instead of an explicit OR instruction with a
6284        // separate test.
6285        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6286            isX86LogicalCmp(Cmp)) {
6287          CC = Cond.getOperand(0).getOperand(0);
6288          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6289                              Chain, Dest, CC, Cmp);
6290          CC = Cond.getOperand(1).getOperand(0);
6291          Cond = Cmp;
6292          addTest = false;
6293        }
6294      } else { // ISD::AND
6295        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6296        // two branches instead of an explicit AND instruction with a
6297        // separate test. However, we only do this if this block doesn't
6298        // have a fall-through edge, because this requires an explicit
6299        // jmp when the condition is false.
6300        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6301            isX86LogicalCmp(Cmp) &&
6302            Op.getNode()->hasOneUse()) {
6303          X86::CondCode CCode =
6304            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6305          CCode = X86::GetOppositeBranchCondition(CCode);
6306          CC = DAG.getConstant(CCode, MVT::i8);
6307          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
6308          // Look for an unconditional branch following this conditional branch.
6309          // We need this because we need to reverse the successors in order
6310          // to implement FCMP_OEQ.
6311          if (User.getOpcode() == ISD::BR) {
6312            SDValue FalseBB = User.getOperand(1);
6313            SDValue NewBR =
6314              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
6315            assert(NewBR == User);
6316            Dest = FalseBB;
6317
6318            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6319                                Chain, Dest, CC, Cmp);
6320            X86::CondCode CCode =
6321              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6322            CCode = X86::GetOppositeBranchCondition(CCode);
6323            CC = DAG.getConstant(CCode, MVT::i8);
6324            Cond = Cmp;
6325            addTest = false;
6326          }
6327        }
6328      }
6329    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6330      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6331      // It should be transformed during dag combiner except when the condition
6332      // is set by a arithmetics with overflow node.
6333      X86::CondCode CCode =
6334        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6335      CCode = X86::GetOppositeBranchCondition(CCode);
6336      CC = DAG.getConstant(CCode, MVT::i8);
6337      Cond = Cond.getOperand(0).getOperand(1);
6338      addTest = false;
6339    }
6340  }
6341
6342  if (addTest) {
6343    // Look pass the truncate.
6344    if (Cond.getOpcode() == ISD::TRUNCATE)
6345      Cond = Cond.getOperand(0);
6346
6347    // We know the result of AND is compared against zero. Try to match
6348    // it to BT.
6349    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6350      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6351      if (NewSetCC.getNode()) {
6352        CC = NewSetCC.getOperand(0);
6353        Cond = NewSetCC.getOperand(1);
6354        addTest = false;
6355      }
6356    }
6357  }
6358
6359  if (addTest) {
6360    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6361    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6362  }
6363  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6364                     Chain, Dest, CC, Cond);
6365}
6366
6367
6368// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6369// Calls to _alloca is needed to probe the stack when allocating more than 4k
6370// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6371// that the guard pages used by the OS virtual memory manager are allocated in
6372// correct sequence.
6373SDValue
6374X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6375                                           SelectionDAG &DAG) {
6376  assert(Subtarget->isTargetCygMing() &&
6377         "This should be used only on Cygwin/Mingw targets");
6378  DebugLoc dl = Op.getDebugLoc();
6379
6380  // Get the inputs.
6381  SDValue Chain = Op.getOperand(0);
6382  SDValue Size  = Op.getOperand(1);
6383  // FIXME: Ensure alignment here
6384
6385  SDValue Flag;
6386
6387  EVT IntPtr = getPointerTy();
6388  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6389
6390  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
6391
6392  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6393  Flag = Chain.getValue(1);
6394
6395  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6396  SDValue Ops[] = { Chain,
6397                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
6398                      DAG.getRegister(X86::EAX, IntPtr),
6399                      DAG.getRegister(X86StackPtr, SPTy),
6400                      Flag };
6401  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops, 5);
6402  Flag = Chain.getValue(1);
6403
6404  Chain = DAG.getCALLSEQ_END(Chain,
6405                             DAG.getIntPtrConstant(0, true),
6406                             DAG.getIntPtrConstant(0, true),
6407                             Flag);
6408
6409  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6410
6411  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6412  return DAG.getMergeValues(Ops1, 2, dl);
6413}
6414
6415SDValue
6416X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
6417                                           SDValue Chain,
6418                                           SDValue Dst, SDValue Src,
6419                                           SDValue Size, unsigned Align,
6420                                           const Value *DstSV,
6421                                           uint64_t DstSVOff) {
6422  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6423
6424  // If not DWORD aligned or size is more than the threshold, call the library.
6425  // The libc version is likely to be faster for these cases. It can use the
6426  // address value and run time information about the CPU.
6427  if ((Align & 3) != 0 ||
6428      !ConstantSize ||
6429      ConstantSize->getZExtValue() >
6430        getSubtarget()->getMaxInlineSizeThreshold()) {
6431    SDValue InFlag(0, 0);
6432
6433    // Check to see if there is a specialized entry-point for memory zeroing.
6434    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
6435
6436    if (const char *bzeroEntry =  V &&
6437        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
6438      EVT IntPtr = getPointerTy();
6439      const Type *IntPtrTy = TD->getIntPtrType(*DAG.getContext());
6440      TargetLowering::ArgListTy Args;
6441      TargetLowering::ArgListEntry Entry;
6442      Entry.Node = Dst;
6443      Entry.Ty = IntPtrTy;
6444      Args.push_back(Entry);
6445      Entry.Node = Size;
6446      Args.push_back(Entry);
6447      std::pair<SDValue,SDValue> CallResult =
6448        LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
6449                    false, false, false, false,
6450                    0, CallingConv::C, false, /*isReturnValueUsed=*/false,
6451                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG, dl,
6452                    DAG.GetOrdering(Chain.getNode()));
6453      return CallResult.second;
6454    }
6455
6456    // Otherwise have the target-independent code call memset.
6457    return SDValue();
6458  }
6459
6460  uint64_t SizeVal = ConstantSize->getZExtValue();
6461  SDValue InFlag(0, 0);
6462  EVT AVT;
6463  SDValue Count;
6464  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
6465  unsigned BytesLeft = 0;
6466  bool TwoRepStos = false;
6467  if (ValC) {
6468    unsigned ValReg;
6469    uint64_t Val = ValC->getZExtValue() & 255;
6470
6471    // If the value is a constant, then we can potentially use larger sets.
6472    switch (Align & 3) {
6473    case 2:   // WORD aligned
6474      AVT = MVT::i16;
6475      ValReg = X86::AX;
6476      Val = (Val << 8) | Val;
6477      break;
6478    case 0:  // DWORD aligned
6479      AVT = MVT::i32;
6480      ValReg = X86::EAX;
6481      Val = (Val << 8)  | Val;
6482      Val = (Val << 16) | Val;
6483      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
6484        AVT = MVT::i64;
6485        ValReg = X86::RAX;
6486        Val = (Val << 32) | Val;
6487      }
6488      break;
6489    default:  // Byte aligned
6490      AVT = MVT::i8;
6491      ValReg = X86::AL;
6492      Count = DAG.getIntPtrConstant(SizeVal);
6493      break;
6494    }
6495
6496    if (AVT.bitsGT(MVT::i8)) {
6497      unsigned UBytes = AVT.getSizeInBits() / 8;
6498      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
6499      BytesLeft = SizeVal % UBytes;
6500    }
6501
6502    Chain  = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
6503                              InFlag);
6504    InFlag = Chain.getValue(1);
6505  } else {
6506    AVT = MVT::i8;
6507    Count  = DAG.getIntPtrConstant(SizeVal);
6508    Chain  = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
6509    InFlag = Chain.getValue(1);
6510  }
6511
6512  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6513                                                              X86::ECX,
6514                            Count, InFlag);
6515  InFlag = Chain.getValue(1);
6516  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6517                                                              X86::EDI,
6518                            Dst, InFlag);
6519  InFlag = Chain.getValue(1);
6520
6521  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6522  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6523  Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6524
6525  if (TwoRepStos) {
6526    InFlag = Chain.getValue(1);
6527    Count  = Size;
6528    EVT CVT = Count.getValueType();
6529    SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
6530                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
6531    Chain  = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
6532                                                             X86::ECX,
6533                              Left, InFlag);
6534    InFlag = Chain.getValue(1);
6535    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6536    SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
6537    Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
6538  } else if (BytesLeft) {
6539    // Handle the last 1 - 7 bytes.
6540    unsigned Offset = SizeVal - BytesLeft;
6541    EVT AddrVT = Dst.getValueType();
6542    EVT SizeVT = Size.getValueType();
6543
6544    Chain = DAG.getMemset(Chain, dl,
6545                          DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
6546                                      DAG.getConstant(Offset, AddrVT)),
6547                          Src,
6548                          DAG.getConstant(BytesLeft, SizeVT),
6549                          Align, DstSV, DstSVOff + Offset);
6550  }
6551
6552  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
6553  return Chain;
6554}
6555
6556SDValue
6557X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
6558                                      SDValue Chain, SDValue Dst, SDValue Src,
6559                                      SDValue Size, unsigned Align,
6560                                      bool AlwaysInline,
6561                                      const Value *DstSV, uint64_t DstSVOff,
6562                                      const Value *SrcSV, uint64_t SrcSVOff) {
6563  // This requires the copy size to be a constant, preferrably
6564  // within a subtarget-specific limit.
6565  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
6566  if (!ConstantSize)
6567    return SDValue();
6568  uint64_t SizeVal = ConstantSize->getZExtValue();
6569  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
6570    return SDValue();
6571
6572  /// If not DWORD aligned, call the library.
6573  if ((Align & 3) != 0)
6574    return SDValue();
6575
6576  // DWORD aligned
6577  EVT AVT = MVT::i32;
6578  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
6579    AVT = MVT::i64;
6580
6581  unsigned UBytes = AVT.getSizeInBits() / 8;
6582  unsigned CountVal = SizeVal / UBytes;
6583  SDValue Count = DAG.getIntPtrConstant(CountVal);
6584  unsigned BytesLeft = SizeVal % UBytes;
6585
6586  SDValue InFlag(0, 0);
6587  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
6588                                                              X86::ECX,
6589                            Count, InFlag);
6590  InFlag = Chain.getValue(1);
6591  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
6592                                                             X86::EDI,
6593                            Dst, InFlag);
6594  InFlag = Chain.getValue(1);
6595  Chain  = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
6596                                                              X86::ESI,
6597                            Src, InFlag);
6598  InFlag = Chain.getValue(1);
6599
6600  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6601  SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
6602  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
6603                                array_lengthof(Ops));
6604
6605  SmallVector<SDValue, 4> Results;
6606  Results.push_back(RepMovs);
6607  if (BytesLeft) {
6608    // Handle the last 1 - 7 bytes.
6609    unsigned Offset = SizeVal - BytesLeft;
6610    EVT DstVT = Dst.getValueType();
6611    EVT SrcVT = Src.getValueType();
6612    EVT SizeVT = Size.getValueType();
6613    Results.push_back(DAG.getMemcpy(Chain, dl,
6614                                    DAG.getNode(ISD::ADD, dl, DstVT, Dst,
6615                                                DAG.getConstant(Offset, DstVT)),
6616                                    DAG.getNode(ISD::ADD, dl, SrcVT, Src,
6617                                                DAG.getConstant(Offset, SrcVT)),
6618                                    DAG.getConstant(BytesLeft, SizeVT),
6619                                    Align, AlwaysInline,
6620                                    DstSV, DstSVOff + Offset,
6621                                    SrcSV, SrcSVOff + Offset));
6622  }
6623
6624  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6625                     &Results[0], Results.size());
6626}
6627
6628SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
6629  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6630  DebugLoc dl = Op.getDebugLoc();
6631
6632  if (!Subtarget->is64Bit()) {
6633    // vastart just stores the address of the VarArgsFrameIndex slot into the
6634    // memory location argument.
6635    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6636    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
6637  }
6638
6639  // __va_list_tag:
6640  //   gp_offset         (0 - 6 * 8)
6641  //   fp_offset         (48 - 48 + 8 * 16)
6642  //   overflow_arg_area (point to parameters coming in memory).
6643  //   reg_save_area
6644  SmallVector<SDValue, 8> MemOps;
6645  SDValue FIN = Op.getOperand(1);
6646  // Store gp_offset
6647  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6648                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
6649                                 FIN, SV, 0);
6650  MemOps.push_back(Store);
6651
6652  // Store fp_offset
6653  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6654                    FIN, DAG.getIntPtrConstant(4));
6655  Store = DAG.getStore(Op.getOperand(0), dl,
6656                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
6657                       FIN, SV, 0);
6658  MemOps.push_back(Store);
6659
6660  // Store ptr to overflow_arg_area
6661  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6662                    FIN, DAG.getIntPtrConstant(4));
6663  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
6664  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0);
6665  MemOps.push_back(Store);
6666
6667  // Store ptr to reg_save_area.
6668  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6669                    FIN, DAG.getIntPtrConstant(8));
6670  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
6671  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0);
6672  MemOps.push_back(Store);
6673  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6674                     &MemOps[0], MemOps.size());
6675}
6676
6677SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
6678  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6679  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6680  SDValue Chain = Op.getOperand(0);
6681  SDValue SrcPtr = Op.getOperand(1);
6682  SDValue SrcSV = Op.getOperand(2);
6683
6684  llvm_report_error("VAArgInst is not yet implemented for x86-64!");
6685  return SDValue();
6686}
6687
6688SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
6689  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6690  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6691  SDValue Chain = Op.getOperand(0);
6692  SDValue DstPtr = Op.getOperand(1);
6693  SDValue SrcPtr = Op.getOperand(2);
6694  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6695  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6696  DebugLoc dl = Op.getDebugLoc();
6697
6698  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6699                       DAG.getIntPtrConstant(24), 8, false,
6700                       DstSV, 0, SrcSV, 0);
6701}
6702
6703SDValue
6704X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
6705  DebugLoc dl = Op.getDebugLoc();
6706  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6707  switch (IntNo) {
6708  default: return SDValue();    // Don't custom lower most intrinsics.
6709  // Comparison intrinsics.
6710  case Intrinsic::x86_sse_comieq_ss:
6711  case Intrinsic::x86_sse_comilt_ss:
6712  case Intrinsic::x86_sse_comile_ss:
6713  case Intrinsic::x86_sse_comigt_ss:
6714  case Intrinsic::x86_sse_comige_ss:
6715  case Intrinsic::x86_sse_comineq_ss:
6716  case Intrinsic::x86_sse_ucomieq_ss:
6717  case Intrinsic::x86_sse_ucomilt_ss:
6718  case Intrinsic::x86_sse_ucomile_ss:
6719  case Intrinsic::x86_sse_ucomigt_ss:
6720  case Intrinsic::x86_sse_ucomige_ss:
6721  case Intrinsic::x86_sse_ucomineq_ss:
6722  case Intrinsic::x86_sse2_comieq_sd:
6723  case Intrinsic::x86_sse2_comilt_sd:
6724  case Intrinsic::x86_sse2_comile_sd:
6725  case Intrinsic::x86_sse2_comigt_sd:
6726  case Intrinsic::x86_sse2_comige_sd:
6727  case Intrinsic::x86_sse2_comineq_sd:
6728  case Intrinsic::x86_sse2_ucomieq_sd:
6729  case Intrinsic::x86_sse2_ucomilt_sd:
6730  case Intrinsic::x86_sse2_ucomile_sd:
6731  case Intrinsic::x86_sse2_ucomigt_sd:
6732  case Intrinsic::x86_sse2_ucomige_sd:
6733  case Intrinsic::x86_sse2_ucomineq_sd: {
6734    unsigned Opc = 0;
6735    ISD::CondCode CC = ISD::SETCC_INVALID;
6736    switch (IntNo) {
6737    default: break;
6738    case Intrinsic::x86_sse_comieq_ss:
6739    case Intrinsic::x86_sse2_comieq_sd:
6740      Opc = X86ISD::COMI;
6741      CC = ISD::SETEQ;
6742      break;
6743    case Intrinsic::x86_sse_comilt_ss:
6744    case Intrinsic::x86_sse2_comilt_sd:
6745      Opc = X86ISD::COMI;
6746      CC = ISD::SETLT;
6747      break;
6748    case Intrinsic::x86_sse_comile_ss:
6749    case Intrinsic::x86_sse2_comile_sd:
6750      Opc = X86ISD::COMI;
6751      CC = ISD::SETLE;
6752      break;
6753    case Intrinsic::x86_sse_comigt_ss:
6754    case Intrinsic::x86_sse2_comigt_sd:
6755      Opc = X86ISD::COMI;
6756      CC = ISD::SETGT;
6757      break;
6758    case Intrinsic::x86_sse_comige_ss:
6759    case Intrinsic::x86_sse2_comige_sd:
6760      Opc = X86ISD::COMI;
6761      CC = ISD::SETGE;
6762      break;
6763    case Intrinsic::x86_sse_comineq_ss:
6764    case Intrinsic::x86_sse2_comineq_sd:
6765      Opc = X86ISD::COMI;
6766      CC = ISD::SETNE;
6767      break;
6768    case Intrinsic::x86_sse_ucomieq_ss:
6769    case Intrinsic::x86_sse2_ucomieq_sd:
6770      Opc = X86ISD::UCOMI;
6771      CC = ISD::SETEQ;
6772      break;
6773    case Intrinsic::x86_sse_ucomilt_ss:
6774    case Intrinsic::x86_sse2_ucomilt_sd:
6775      Opc = X86ISD::UCOMI;
6776      CC = ISD::SETLT;
6777      break;
6778    case Intrinsic::x86_sse_ucomile_ss:
6779    case Intrinsic::x86_sse2_ucomile_sd:
6780      Opc = X86ISD::UCOMI;
6781      CC = ISD::SETLE;
6782      break;
6783    case Intrinsic::x86_sse_ucomigt_ss:
6784    case Intrinsic::x86_sse2_ucomigt_sd:
6785      Opc = X86ISD::UCOMI;
6786      CC = ISD::SETGT;
6787      break;
6788    case Intrinsic::x86_sse_ucomige_ss:
6789    case Intrinsic::x86_sse2_ucomige_sd:
6790      Opc = X86ISD::UCOMI;
6791      CC = ISD::SETGE;
6792      break;
6793    case Intrinsic::x86_sse_ucomineq_ss:
6794    case Intrinsic::x86_sse2_ucomineq_sd:
6795      Opc = X86ISD::UCOMI;
6796      CC = ISD::SETNE;
6797      break;
6798    }
6799
6800    SDValue LHS = Op.getOperand(1);
6801    SDValue RHS = Op.getOperand(2);
6802    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
6803    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
6804    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
6805    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6806                                DAG.getConstant(X86CC, MVT::i8), Cond);
6807    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6808  }
6809  // ptest intrinsics. The intrinsic these come from are designed to return
6810  // an integer value, not just an instruction so lower it to the ptest
6811  // pattern and a setcc for the result.
6812  case Intrinsic::x86_sse41_ptestz:
6813  case Intrinsic::x86_sse41_ptestc:
6814  case Intrinsic::x86_sse41_ptestnzc:{
6815    unsigned X86CC = 0;
6816    switch (IntNo) {
6817    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
6818    case Intrinsic::x86_sse41_ptestz:
6819      // ZF = 1
6820      X86CC = X86::COND_E;
6821      break;
6822    case Intrinsic::x86_sse41_ptestc:
6823      // CF = 1
6824      X86CC = X86::COND_B;
6825      break;
6826    case Intrinsic::x86_sse41_ptestnzc:
6827      // ZF and CF = 0
6828      X86CC = X86::COND_A;
6829      break;
6830    }
6831
6832    SDValue LHS = Op.getOperand(1);
6833    SDValue RHS = Op.getOperand(2);
6834    SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
6835    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
6836    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
6837    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
6838  }
6839
6840  // Fix vector shift instructions where the last operand is a non-immediate
6841  // i32 value.
6842  case Intrinsic::x86_sse2_pslli_w:
6843  case Intrinsic::x86_sse2_pslli_d:
6844  case Intrinsic::x86_sse2_pslli_q:
6845  case Intrinsic::x86_sse2_psrli_w:
6846  case Intrinsic::x86_sse2_psrli_d:
6847  case Intrinsic::x86_sse2_psrli_q:
6848  case Intrinsic::x86_sse2_psrai_w:
6849  case Intrinsic::x86_sse2_psrai_d:
6850  case Intrinsic::x86_mmx_pslli_w:
6851  case Intrinsic::x86_mmx_pslli_d:
6852  case Intrinsic::x86_mmx_pslli_q:
6853  case Intrinsic::x86_mmx_psrli_w:
6854  case Intrinsic::x86_mmx_psrli_d:
6855  case Intrinsic::x86_mmx_psrli_q:
6856  case Intrinsic::x86_mmx_psrai_w:
6857  case Intrinsic::x86_mmx_psrai_d: {
6858    SDValue ShAmt = Op.getOperand(2);
6859    if (isa<ConstantSDNode>(ShAmt))
6860      return SDValue();
6861
6862    unsigned NewIntNo = 0;
6863    EVT ShAmtVT = MVT::v4i32;
6864    switch (IntNo) {
6865    case Intrinsic::x86_sse2_pslli_w:
6866      NewIntNo = Intrinsic::x86_sse2_psll_w;
6867      break;
6868    case Intrinsic::x86_sse2_pslli_d:
6869      NewIntNo = Intrinsic::x86_sse2_psll_d;
6870      break;
6871    case Intrinsic::x86_sse2_pslli_q:
6872      NewIntNo = Intrinsic::x86_sse2_psll_q;
6873      break;
6874    case Intrinsic::x86_sse2_psrli_w:
6875      NewIntNo = Intrinsic::x86_sse2_psrl_w;
6876      break;
6877    case Intrinsic::x86_sse2_psrli_d:
6878      NewIntNo = Intrinsic::x86_sse2_psrl_d;
6879      break;
6880    case Intrinsic::x86_sse2_psrli_q:
6881      NewIntNo = Intrinsic::x86_sse2_psrl_q;
6882      break;
6883    case Intrinsic::x86_sse2_psrai_w:
6884      NewIntNo = Intrinsic::x86_sse2_psra_w;
6885      break;
6886    case Intrinsic::x86_sse2_psrai_d:
6887      NewIntNo = Intrinsic::x86_sse2_psra_d;
6888      break;
6889    default: {
6890      ShAmtVT = MVT::v2i32;
6891      switch (IntNo) {
6892      case Intrinsic::x86_mmx_pslli_w:
6893        NewIntNo = Intrinsic::x86_mmx_psll_w;
6894        break;
6895      case Intrinsic::x86_mmx_pslli_d:
6896        NewIntNo = Intrinsic::x86_mmx_psll_d;
6897        break;
6898      case Intrinsic::x86_mmx_pslli_q:
6899        NewIntNo = Intrinsic::x86_mmx_psll_q;
6900        break;
6901      case Intrinsic::x86_mmx_psrli_w:
6902        NewIntNo = Intrinsic::x86_mmx_psrl_w;
6903        break;
6904      case Intrinsic::x86_mmx_psrli_d:
6905        NewIntNo = Intrinsic::x86_mmx_psrl_d;
6906        break;
6907      case Intrinsic::x86_mmx_psrli_q:
6908        NewIntNo = Intrinsic::x86_mmx_psrl_q;
6909        break;
6910      case Intrinsic::x86_mmx_psrai_w:
6911        NewIntNo = Intrinsic::x86_mmx_psra_w;
6912        break;
6913      case Intrinsic::x86_mmx_psrai_d:
6914        NewIntNo = Intrinsic::x86_mmx_psra_d;
6915        break;
6916      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6917      }
6918      break;
6919    }
6920    }
6921
6922    // The vector shift intrinsics with scalars uses 32b shift amounts but
6923    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
6924    // to be zero.
6925    SDValue ShOps[4];
6926    ShOps[0] = ShAmt;
6927    ShOps[1] = DAG.getConstant(0, MVT::i32);
6928    if (ShAmtVT == MVT::v4i32) {
6929      ShOps[2] = DAG.getUNDEF(MVT::i32);
6930      ShOps[3] = DAG.getUNDEF(MVT::i32);
6931      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
6932    } else {
6933      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
6934    }
6935
6936    EVT VT = Op.getValueType();
6937    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
6938    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
6939                       DAG.getConstant(NewIntNo, MVT::i32),
6940                       Op.getOperand(1), ShAmt);
6941  }
6942  }
6943}
6944
6945SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
6946  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6947  DebugLoc dl = Op.getDebugLoc();
6948
6949  if (Depth > 0) {
6950    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6951    SDValue Offset =
6952      DAG.getConstant(TD->getPointerSize(),
6953                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
6954    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6955                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6956                                   FrameAddr, Offset),
6957                       NULL, 0);
6958  }
6959
6960  // Just load the return address.
6961  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
6962  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6963                     RetAddrFI, NULL, 0);
6964}
6965
6966SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
6967  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6968  MFI->setFrameAddressIsTaken(true);
6969  EVT VT = Op.getValueType();
6970  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
6971  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6972  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
6973  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6974  while (Depth--)
6975    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0);
6976  return FrameAddr;
6977}
6978
6979SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
6980                                                     SelectionDAG &DAG) {
6981  return DAG.getIntPtrConstant(2*TD->getPointerSize());
6982}
6983
6984SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
6985{
6986  MachineFunction &MF = DAG.getMachineFunction();
6987  SDValue Chain     = Op.getOperand(0);
6988  SDValue Offset    = Op.getOperand(1);
6989  SDValue Handler   = Op.getOperand(2);
6990  DebugLoc dl       = Op.getDebugLoc();
6991
6992  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
6993                                  getPointerTy());
6994  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
6995
6996  SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
6997                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
6998  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
6999  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0);
7000  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7001  MF.getRegInfo().addLiveOut(StoreAddrReg);
7002
7003  return DAG.getNode(X86ISD::EH_RETURN, dl,
7004                     MVT::Other,
7005                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7006}
7007
7008SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7009                                             SelectionDAG &DAG) {
7010  SDValue Root = Op.getOperand(0);
7011  SDValue Trmp = Op.getOperand(1); // trampoline
7012  SDValue FPtr = Op.getOperand(2); // nested function
7013  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7014  DebugLoc dl  = Op.getDebugLoc();
7015
7016  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7017
7018  if (Subtarget->is64Bit()) {
7019    SDValue OutChains[6];
7020
7021    // Large code-model.
7022    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7023    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7024
7025    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7026    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7027
7028    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7029
7030    // Load the pointer to the nested function into R11.
7031    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7032    SDValue Addr = Trmp;
7033    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7034                                Addr, TrmpAddr, 0);
7035
7036    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7037                       DAG.getConstant(2, MVT::i64));
7038    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, false, 2);
7039
7040    // Load the 'nest' parameter value into R10.
7041    // R10 is specified in X86CallingConv.td
7042    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7043    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7044                       DAG.getConstant(10, MVT::i64));
7045    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7046                                Addr, TrmpAddr, 10);
7047
7048    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7049                       DAG.getConstant(12, MVT::i64));
7050    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, false, 2);
7051
7052    // Jump to the nested function.
7053    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7054    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7055                       DAG.getConstant(20, MVT::i64));
7056    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7057                                Addr, TrmpAddr, 20);
7058
7059    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7060    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7061                       DAG.getConstant(22, MVT::i64));
7062    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7063                                TrmpAddr, 22);
7064
7065    SDValue Ops[] =
7066      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7067    return DAG.getMergeValues(Ops, 2, dl);
7068  } else {
7069    const Function *Func =
7070      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7071    CallingConv::ID CC = Func->getCallingConv();
7072    unsigned NestReg;
7073
7074    switch (CC) {
7075    default:
7076      llvm_unreachable("Unsupported calling convention");
7077    case CallingConv::C:
7078    case CallingConv::X86_StdCall: {
7079      // Pass 'nest' parameter in ECX.
7080      // Must be kept in sync with X86CallingConv.td
7081      NestReg = X86::ECX;
7082
7083      // Check that ECX wasn't needed by an 'inreg' parameter.
7084      const FunctionType *FTy = Func->getFunctionType();
7085      const AttrListPtr &Attrs = Func->getAttributes();
7086
7087      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7088        unsigned InRegCount = 0;
7089        unsigned Idx = 1;
7090
7091        for (FunctionType::param_iterator I = FTy->param_begin(),
7092             E = FTy->param_end(); I != E; ++I, ++Idx)
7093          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7094            // FIXME: should only count parameters that are lowered to integers.
7095            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7096
7097        if (InRegCount > 2) {
7098          llvm_report_error("Nest register in use - reduce number of inreg parameters!");
7099        }
7100      }
7101      break;
7102    }
7103    case CallingConv::X86_FastCall:
7104    case CallingConv::Fast:
7105      // Pass 'nest' parameter in EAX.
7106      // Must be kept in sync with X86CallingConv.td
7107      NestReg = X86::EAX;
7108      break;
7109    }
7110
7111    SDValue OutChains[4];
7112    SDValue Addr, Disp;
7113
7114    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7115                       DAG.getConstant(10, MVT::i32));
7116    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7117
7118    // This is storing the opcode for MOV32ri.
7119    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7120    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7121    OutChains[0] = DAG.getStore(Root, dl,
7122                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7123                                Trmp, TrmpAddr, 0);
7124
7125    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7126                       DAG.getConstant(1, MVT::i32));
7127    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, false, 1);
7128
7129    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7130    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7131                       DAG.getConstant(5, MVT::i32));
7132    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7133                                TrmpAddr, 5, false, 1);
7134
7135    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7136                       DAG.getConstant(6, MVT::i32));
7137    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, false, 1);
7138
7139    SDValue Ops[] =
7140      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7141    return DAG.getMergeValues(Ops, 2, dl);
7142  }
7143}
7144
7145SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
7146  /*
7147   The rounding mode is in bits 11:10 of FPSR, and has the following
7148   settings:
7149     00 Round to nearest
7150     01 Round to -inf
7151     10 Round to +inf
7152     11 Round to 0
7153
7154  FLT_ROUNDS, on the other hand, expects the following:
7155    -1 Undefined
7156     0 Round to 0
7157     1 Round to nearest
7158     2 Round to +inf
7159     3 Round to -inf
7160
7161  To perform the conversion, we do:
7162    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7163  */
7164
7165  MachineFunction &MF = DAG.getMachineFunction();
7166  const TargetMachine &TM = MF.getTarget();
7167  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7168  unsigned StackAlignment = TFI.getStackAlignment();
7169  EVT VT = Op.getValueType();
7170  DebugLoc dl = Op.getDebugLoc();
7171
7172  // Save FP Control Word to stack slot
7173  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7174  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7175
7176  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7177                              DAG.getEntryNode(), StackSlot);
7178
7179  // Load FP Control Word from stack slot
7180  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0);
7181
7182  // Transform as necessary
7183  SDValue CWD1 =
7184    DAG.getNode(ISD::SRL, dl, MVT::i16,
7185                DAG.getNode(ISD::AND, dl, MVT::i16,
7186                            CWD, DAG.getConstant(0x800, MVT::i16)),
7187                DAG.getConstant(11, MVT::i8));
7188  SDValue CWD2 =
7189    DAG.getNode(ISD::SRL, dl, MVT::i16,
7190                DAG.getNode(ISD::AND, dl, MVT::i16,
7191                            CWD, DAG.getConstant(0x400, MVT::i16)),
7192                DAG.getConstant(9, MVT::i8));
7193
7194  SDValue RetVal =
7195    DAG.getNode(ISD::AND, dl, MVT::i16,
7196                DAG.getNode(ISD::ADD, dl, MVT::i16,
7197                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7198                            DAG.getConstant(1, MVT::i16)),
7199                DAG.getConstant(3, MVT::i16));
7200
7201
7202  return DAG.getNode((VT.getSizeInBits() < 16 ?
7203                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7204}
7205
7206SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
7207  EVT VT = Op.getValueType();
7208  EVT OpVT = VT;
7209  unsigned NumBits = VT.getSizeInBits();
7210  DebugLoc dl = Op.getDebugLoc();
7211
7212  Op = Op.getOperand(0);
7213  if (VT == MVT::i8) {
7214    // Zero extend to i32 since there is not an i8 bsr.
7215    OpVT = MVT::i32;
7216    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7217  }
7218
7219  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7220  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7221  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7222
7223  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7224  SDValue Ops[] = {
7225    Op,
7226    DAG.getConstant(NumBits+NumBits-1, OpVT),
7227    DAG.getConstant(X86::COND_E, MVT::i8),
7228    Op.getValue(1)
7229  };
7230  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7231
7232  // Finally xor with NumBits-1.
7233  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7234
7235  if (VT == MVT::i8)
7236    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7237  return Op;
7238}
7239
7240SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
7241  EVT VT = Op.getValueType();
7242  EVT OpVT = VT;
7243  unsigned NumBits = VT.getSizeInBits();
7244  DebugLoc dl = Op.getDebugLoc();
7245
7246  Op = Op.getOperand(0);
7247  if (VT == MVT::i8) {
7248    OpVT = MVT::i32;
7249    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7250  }
7251
7252  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7253  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7254  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7255
7256  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7257  SDValue Ops[] = {
7258    Op,
7259    DAG.getConstant(NumBits, OpVT),
7260    DAG.getConstant(X86::COND_E, MVT::i8),
7261    Op.getValue(1)
7262  };
7263  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7264
7265  if (VT == MVT::i8)
7266    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7267  return Op;
7268}
7269
7270SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
7271  EVT VT = Op.getValueType();
7272  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7273  DebugLoc dl = Op.getDebugLoc();
7274
7275  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7276  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7277  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7278  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7279  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7280  //
7281  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7282  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7283  //  return AloBlo + AloBhi + AhiBlo;
7284
7285  SDValue A = Op.getOperand(0);
7286  SDValue B = Op.getOperand(1);
7287
7288  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7289                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7290                       A, DAG.getConstant(32, MVT::i32));
7291  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7292                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7293                       B, DAG.getConstant(32, MVT::i32));
7294  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7295                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7296                       A, B);
7297  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7298                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7299                       A, Bhi);
7300  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7301                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7302                       Ahi, B);
7303  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7304                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7305                       AloBhi, DAG.getConstant(32, MVT::i32));
7306  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7307                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7308                       AhiBlo, DAG.getConstant(32, MVT::i32));
7309  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7310  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7311  return Res;
7312}
7313
7314
7315SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
7316  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7317  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7318  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7319  // has only one use.
7320  SDNode *N = Op.getNode();
7321  SDValue LHS = N->getOperand(0);
7322  SDValue RHS = N->getOperand(1);
7323  unsigned BaseOp = 0;
7324  unsigned Cond = 0;
7325  DebugLoc dl = Op.getDebugLoc();
7326
7327  switch (Op.getOpcode()) {
7328  default: llvm_unreachable("Unknown ovf instruction!");
7329  case ISD::SADDO:
7330    // A subtract of one will be selected as a INC. Note that INC doesn't
7331    // set CF, so we can't do this for UADDO.
7332    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7333      if (C->getAPIntValue() == 1) {
7334        BaseOp = X86ISD::INC;
7335        Cond = X86::COND_O;
7336        break;
7337      }
7338    BaseOp = X86ISD::ADD;
7339    Cond = X86::COND_O;
7340    break;
7341  case ISD::UADDO:
7342    BaseOp = X86ISD::ADD;
7343    Cond = X86::COND_B;
7344    break;
7345  case ISD::SSUBO:
7346    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7347    // set CF, so we can't do this for USUBO.
7348    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7349      if (C->getAPIntValue() == 1) {
7350        BaseOp = X86ISD::DEC;
7351        Cond = X86::COND_O;
7352        break;
7353      }
7354    BaseOp = X86ISD::SUB;
7355    Cond = X86::COND_O;
7356    break;
7357  case ISD::USUBO:
7358    BaseOp = X86ISD::SUB;
7359    Cond = X86::COND_B;
7360    break;
7361  case ISD::SMULO:
7362    BaseOp = X86ISD::SMUL;
7363    Cond = X86::COND_O;
7364    break;
7365  case ISD::UMULO:
7366    BaseOp = X86ISD::UMUL;
7367    Cond = X86::COND_B;
7368    break;
7369  }
7370
7371  // Also sets EFLAGS.
7372  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7373  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7374
7375  SDValue SetCC =
7376    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7377                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7378
7379  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7380  return Sum;
7381}
7382
7383SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
7384  EVT T = Op.getValueType();
7385  DebugLoc dl = Op.getDebugLoc();
7386  unsigned Reg = 0;
7387  unsigned size = 0;
7388  switch(T.getSimpleVT().SimpleTy) {
7389  default:
7390    assert(false && "Invalid value type!");
7391  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7392  case MVT::i16: Reg = X86::AX;  size = 2; break;
7393  case MVT::i32: Reg = X86::EAX; size = 4; break;
7394  case MVT::i64:
7395    assert(Subtarget->is64Bit() && "Node not type legal!");
7396    Reg = X86::RAX; size = 8;
7397    break;
7398  }
7399  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7400                                    Op.getOperand(2), SDValue());
7401  SDValue Ops[] = { cpIn.getValue(0),
7402                    Op.getOperand(1),
7403                    Op.getOperand(3),
7404                    DAG.getTargetConstant(size, MVT::i8),
7405                    cpIn.getValue(1) };
7406  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7407  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7408  SDValue cpOut =
7409    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7410  return cpOut;
7411}
7412
7413SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7414                                                 SelectionDAG &DAG) {
7415  assert(Subtarget->is64Bit() && "Result not type legalized?");
7416  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7417  SDValue TheChain = Op.getOperand(0);
7418  DebugLoc dl = Op.getDebugLoc();
7419  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7420  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7421  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7422                                   rax.getValue(2));
7423  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7424                            DAG.getConstant(32, MVT::i8));
7425  SDValue Ops[] = {
7426    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7427    rdx.getValue(1)
7428  };
7429  return DAG.getMergeValues(Ops, 2, dl);
7430}
7431
7432SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
7433  SDNode *Node = Op.getNode();
7434  DebugLoc dl = Node->getDebugLoc();
7435  EVT T = Node->getValueType(0);
7436  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7437                              DAG.getConstant(0, T), Node->getOperand(2));
7438  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7439                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7440                       Node->getOperand(0),
7441                       Node->getOperand(1), negOp,
7442                       cast<AtomicSDNode>(Node)->getSrcValue(),
7443                       cast<AtomicSDNode>(Node)->getAlignment());
7444}
7445
7446/// LowerOperation - Provide custom lowering hooks for some operations.
7447///
7448SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
7449  switch (Op.getOpcode()) {
7450  default: llvm_unreachable("Should not custom lower this!");
7451  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7452  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7453  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7454  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7455  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7456  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7457  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7458  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7459  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7460  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7461  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7462  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7463  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7464  case ISD::SHL_PARTS:
7465  case ISD::SRA_PARTS:
7466  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7467  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7468  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7469  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7470  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7471  case ISD::FABS:               return LowerFABS(Op, DAG);
7472  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7473  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7474  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7475  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7476  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7477  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7478  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7479  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7480  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7481  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7482  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7483  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7484  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7485  case ISD::FRAME_TO_ARGS_OFFSET:
7486                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7487  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7488  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7489  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7490  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7491  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7492  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7493  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7494  case ISD::SADDO:
7495  case ISD::UADDO:
7496  case ISD::SSUBO:
7497  case ISD::USUBO:
7498  case ISD::SMULO:
7499  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7500  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7501  }
7502}
7503
7504void X86TargetLowering::
7505ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7506                        SelectionDAG &DAG, unsigned NewOp) {
7507  EVT T = Node->getValueType(0);
7508  DebugLoc dl = Node->getDebugLoc();
7509  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7510
7511  SDValue Chain = Node->getOperand(0);
7512  SDValue In1 = Node->getOperand(1);
7513  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7514                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7515  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7516                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7517  SDValue Ops[] = { Chain, In1, In2L, In2H };
7518  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7519  SDValue Result =
7520    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7521                            cast<MemSDNode>(Node)->getMemOperand());
7522  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7523  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7524  Results.push_back(Result.getValue(2));
7525}
7526
7527/// ReplaceNodeResults - Replace a node with an illegal result type
7528/// with a new node built out of custom code.
7529void X86TargetLowering::ReplaceNodeResults(SDNode *N,
7530                                           SmallVectorImpl<SDValue>&Results,
7531                                           SelectionDAG &DAG) {
7532  DebugLoc dl = N->getDebugLoc();
7533  switch (N->getOpcode()) {
7534  default:
7535    assert(false && "Do not know how to custom type legalize this operation!");
7536    return;
7537  case ISD::FP_TO_SINT: {
7538    std::pair<SDValue,SDValue> Vals =
7539        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
7540    SDValue FIST = Vals.first, StackSlot = Vals.second;
7541    if (FIST.getNode() != 0) {
7542      EVT VT = N->getValueType(0);
7543      // Return a load from the stack slot.
7544      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0));
7545    }
7546    return;
7547  }
7548  case ISD::READCYCLECOUNTER: {
7549    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7550    SDValue TheChain = N->getOperand(0);
7551    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7552    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
7553                                     rd.getValue(1));
7554    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
7555                                     eax.getValue(2));
7556    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
7557    SDValue Ops[] = { eax, edx };
7558    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
7559    Results.push_back(edx.getValue(1));
7560    return;
7561  }
7562  case ISD::ATOMIC_CMP_SWAP: {
7563    EVT T = N->getValueType(0);
7564    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
7565    SDValue cpInL, cpInH;
7566    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7567                        DAG.getConstant(0, MVT::i32));
7568    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
7569                        DAG.getConstant(1, MVT::i32));
7570    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
7571    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
7572                             cpInL.getValue(1));
7573    SDValue swapInL, swapInH;
7574    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7575                          DAG.getConstant(0, MVT::i32));
7576    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
7577                          DAG.getConstant(1, MVT::i32));
7578    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
7579                               cpInH.getValue(1));
7580    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
7581                               swapInL.getValue(1));
7582    SDValue Ops[] = { swapInH.getValue(0),
7583                      N->getOperand(1),
7584                      swapInH.getValue(1) };
7585    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7586    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
7587    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
7588                                        MVT::i32, Result.getValue(1));
7589    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
7590                                        MVT::i32, cpOutL.getValue(2));
7591    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
7592    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7593    Results.push_back(cpOutH.getValue(1));
7594    return;
7595  }
7596  case ISD::ATOMIC_LOAD_ADD:
7597    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
7598    return;
7599  case ISD::ATOMIC_LOAD_AND:
7600    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
7601    return;
7602  case ISD::ATOMIC_LOAD_NAND:
7603    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
7604    return;
7605  case ISD::ATOMIC_LOAD_OR:
7606    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
7607    return;
7608  case ISD::ATOMIC_LOAD_SUB:
7609    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
7610    return;
7611  case ISD::ATOMIC_LOAD_XOR:
7612    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
7613    return;
7614  case ISD::ATOMIC_SWAP:
7615    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
7616    return;
7617  }
7618}
7619
7620const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
7621  switch (Opcode) {
7622  default: return NULL;
7623  case X86ISD::BSF:                return "X86ISD::BSF";
7624  case X86ISD::BSR:                return "X86ISD::BSR";
7625  case X86ISD::SHLD:               return "X86ISD::SHLD";
7626  case X86ISD::SHRD:               return "X86ISD::SHRD";
7627  case X86ISD::FAND:               return "X86ISD::FAND";
7628  case X86ISD::FOR:                return "X86ISD::FOR";
7629  case X86ISD::FXOR:               return "X86ISD::FXOR";
7630  case X86ISD::FSRL:               return "X86ISD::FSRL";
7631  case X86ISD::FILD:               return "X86ISD::FILD";
7632  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
7633  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
7634  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
7635  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
7636  case X86ISD::FLD:                return "X86ISD::FLD";
7637  case X86ISD::FST:                return "X86ISD::FST";
7638  case X86ISD::CALL:               return "X86ISD::CALL";
7639  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
7640  case X86ISD::BT:                 return "X86ISD::BT";
7641  case X86ISD::CMP:                return "X86ISD::CMP";
7642  case X86ISD::COMI:               return "X86ISD::COMI";
7643  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
7644  case X86ISD::SETCC:              return "X86ISD::SETCC";
7645  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
7646  case X86ISD::CMOV:               return "X86ISD::CMOV";
7647  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
7648  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
7649  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
7650  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
7651  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
7652  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
7653  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
7654  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
7655  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
7656  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
7657  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
7658  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
7659  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
7660  case X86ISD::FMAX:               return "X86ISD::FMAX";
7661  case X86ISD::FMIN:               return "X86ISD::FMIN";
7662  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
7663  case X86ISD::FRCP:               return "X86ISD::FRCP";
7664  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
7665  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
7666  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
7667  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
7668  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
7669  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
7670  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
7671  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
7672  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
7673  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
7674  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
7675  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
7676  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
7677  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
7678  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
7679  case X86ISD::VSHL:               return "X86ISD::VSHL";
7680  case X86ISD::VSRL:               return "X86ISD::VSRL";
7681  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
7682  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
7683  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
7684  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
7685  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
7686  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
7687  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
7688  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
7689  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
7690  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
7691  case X86ISD::ADD:                return "X86ISD::ADD";
7692  case X86ISD::SUB:                return "X86ISD::SUB";
7693  case X86ISD::SMUL:               return "X86ISD::SMUL";
7694  case X86ISD::UMUL:               return "X86ISD::UMUL";
7695  case X86ISD::INC:                return "X86ISD::INC";
7696  case X86ISD::DEC:                return "X86ISD::DEC";
7697  case X86ISD::OR:                 return "X86ISD::OR";
7698  case X86ISD::XOR:                return "X86ISD::XOR";
7699  case X86ISD::AND:                return "X86ISD::AND";
7700  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
7701  case X86ISD::PTEST:              return "X86ISD::PTEST";
7702  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
7703  }
7704}
7705
7706// isLegalAddressingMode - Return true if the addressing mode represented
7707// by AM is legal for this target, for a load/store of the specified type.
7708bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
7709                                              const Type *Ty) const {
7710  // X86 supports extremely general addressing modes.
7711  CodeModel::Model M = getTargetMachine().getCodeModel();
7712
7713  // X86 allows a sign-extended 32-bit immediate field as a displacement.
7714  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
7715    return false;
7716
7717  if (AM.BaseGV) {
7718    unsigned GVFlags =
7719      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
7720
7721    // If a reference to this global requires an extra load, we can't fold it.
7722    if (isGlobalStubReference(GVFlags))
7723      return false;
7724
7725    // If BaseGV requires a register for the PIC base, we cannot also have a
7726    // BaseReg specified.
7727    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
7728      return false;
7729
7730    // If lower 4G is not available, then we must use rip-relative addressing.
7731    if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
7732      return false;
7733  }
7734
7735  switch (AM.Scale) {
7736  case 0:
7737  case 1:
7738  case 2:
7739  case 4:
7740  case 8:
7741    // These scales always work.
7742    break;
7743  case 3:
7744  case 5:
7745  case 9:
7746    // These scales are formed with basereg+scalereg.  Only accept if there is
7747    // no basereg yet.
7748    if (AM.HasBaseReg)
7749      return false;
7750    break;
7751  default:  // Other stuff never works.
7752    return false;
7753  }
7754
7755  return true;
7756}
7757
7758
7759bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
7760  if (!Ty1->isInteger() || !Ty2->isInteger())
7761    return false;
7762  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
7763  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
7764  if (NumBits1 <= NumBits2)
7765    return false;
7766  return Subtarget->is64Bit() || NumBits1 < 64;
7767}
7768
7769bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
7770  if (!VT1.isInteger() || !VT2.isInteger())
7771    return false;
7772  unsigned NumBits1 = VT1.getSizeInBits();
7773  unsigned NumBits2 = VT2.getSizeInBits();
7774  if (NumBits1 <= NumBits2)
7775    return false;
7776  return Subtarget->is64Bit() || NumBits1 < 64;
7777}
7778
7779bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
7780  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7781  return Ty1->isInteger(32) && Ty2->isInteger(64) && Subtarget->is64Bit();
7782}
7783
7784bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
7785  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
7786  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
7787}
7788
7789bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
7790  // i16 instructions are longer (0x66 prefix) and potentially slower.
7791  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
7792}
7793
7794/// isShuffleMaskLegal - Targets can use this to indicate that they only
7795/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7796/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7797/// are assumed to be legal.
7798bool
7799X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
7800                                      EVT VT) const {
7801  // Only do shuffles on 128-bit vector types for now.
7802  if (VT.getSizeInBits() == 64)
7803    return false;
7804
7805  // FIXME: pshufb, blends, shifts.
7806  return (VT.getVectorNumElements() == 2 ||
7807          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7808          isMOVLMask(M, VT) ||
7809          isSHUFPMask(M, VT) ||
7810          isPSHUFDMask(M, VT) ||
7811          isPSHUFHWMask(M, VT) ||
7812          isPSHUFLWMask(M, VT) ||
7813          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
7814          isUNPCKLMask(M, VT) ||
7815          isUNPCKHMask(M, VT) ||
7816          isUNPCKL_v_undef_Mask(M, VT) ||
7817          isUNPCKH_v_undef_Mask(M, VT));
7818}
7819
7820bool
7821X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
7822                                          EVT VT) const {
7823  unsigned NumElts = VT.getVectorNumElements();
7824  // FIXME: This collection of masks seems suspect.
7825  if (NumElts == 2)
7826    return true;
7827  if (NumElts == 4 && VT.getSizeInBits() == 128) {
7828    return (isMOVLMask(Mask, VT)  ||
7829            isCommutedMOVLMask(Mask, VT, true) ||
7830            isSHUFPMask(Mask, VT) ||
7831            isCommutedSHUFPMask(Mask, VT));
7832  }
7833  return false;
7834}
7835
7836//===----------------------------------------------------------------------===//
7837//                           X86 Scheduler Hooks
7838//===----------------------------------------------------------------------===//
7839
7840// private utility function
7841MachineBasicBlock *
7842X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
7843                                                       MachineBasicBlock *MBB,
7844                                                       unsigned regOpc,
7845                                                       unsigned immOpc,
7846                                                       unsigned LoadOpc,
7847                                                       unsigned CXchgOpc,
7848                                                       unsigned copyOpc,
7849                                                       unsigned notOpc,
7850                                                       unsigned EAXreg,
7851                                                       TargetRegisterClass *RC,
7852                                                       bool invSrc) const {
7853  // For the atomic bitwise operator, we generate
7854  //   thisMBB:
7855  //   newMBB:
7856  //     ld  t1 = [bitinstr.addr]
7857  //     op  t2 = t1, [bitinstr.val]
7858  //     mov EAX = t1
7859  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
7860  //     bz  newMBB
7861  //     fallthrough -->nextMBB
7862  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7863  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7864  MachineFunction::iterator MBBIter = MBB;
7865  ++MBBIter;
7866
7867  /// First build the CFG
7868  MachineFunction *F = MBB->getParent();
7869  MachineBasicBlock *thisMBB = MBB;
7870  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7871  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7872  F->insert(MBBIter, newMBB);
7873  F->insert(MBBIter, nextMBB);
7874
7875  // Move all successors to thisMBB to nextMBB
7876  nextMBB->transferSuccessors(thisMBB);
7877
7878  // Update thisMBB to fall through to newMBB
7879  thisMBB->addSuccessor(newMBB);
7880
7881  // newMBB jumps to itself and fall through to nextMBB
7882  newMBB->addSuccessor(nextMBB);
7883  newMBB->addSuccessor(newMBB);
7884
7885  // Insert instructions into newMBB based on incoming instruction
7886  assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
7887         "unexpected number of operands");
7888  DebugLoc dl = bInstr->getDebugLoc();
7889  MachineOperand& destOper = bInstr->getOperand(0);
7890  MachineOperand* argOpers[2 + X86AddrNumOperands];
7891  int numArgs = bInstr->getNumOperands() - 1;
7892  for (int i=0; i < numArgs; ++i)
7893    argOpers[i] = &bInstr->getOperand(i+1);
7894
7895  // x86 address has 4 operands: base, index, scale, and displacement
7896  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
7897  int valArgIndx = lastAddrIndx + 1;
7898
7899  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
7900  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
7901  for (int i=0; i <= lastAddrIndx; ++i)
7902    (*MIB).addOperand(*argOpers[i]);
7903
7904  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
7905  if (invSrc) {
7906    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
7907  }
7908  else
7909    tt = t1;
7910
7911  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
7912  assert((argOpers[valArgIndx]->isReg() ||
7913          argOpers[valArgIndx]->isImm()) &&
7914         "invalid operand");
7915  if (argOpers[valArgIndx]->isReg())
7916    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
7917  else
7918    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
7919  MIB.addReg(tt);
7920  (*MIB).addOperand(*argOpers[valArgIndx]);
7921
7922  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
7923  MIB.addReg(t1);
7924
7925  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
7926  for (int i=0; i <= lastAddrIndx; ++i)
7927    (*MIB).addOperand(*argOpers[i]);
7928  MIB.addReg(t2);
7929  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
7930  (*MIB).setMemRefs(bInstr->memoperands_begin(),
7931                    bInstr->memoperands_end());
7932
7933  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
7934  MIB.addReg(EAXreg);
7935
7936  // insert branch
7937  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
7938
7939  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
7940  return nextMBB;
7941}
7942
7943// private utility function:  64 bit atomics on 32 bit host.
7944MachineBasicBlock *
7945X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
7946                                                       MachineBasicBlock *MBB,
7947                                                       unsigned regOpcL,
7948                                                       unsigned regOpcH,
7949                                                       unsigned immOpcL,
7950                                                       unsigned immOpcH,
7951                                                       bool invSrc) const {
7952  // For the atomic bitwise operator, we generate
7953  //   thisMBB (instructions are in pairs, except cmpxchg8b)
7954  //     ld t1,t2 = [bitinstr.addr]
7955  //   newMBB:
7956  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
7957  //     op  t5, t6 <- out1, out2, [bitinstr.val]
7958  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
7959  //     mov ECX, EBX <- t5, t6
7960  //     mov EAX, EDX <- t1, t2
7961  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
7962  //     mov t3, t4 <- EAX, EDX
7963  //     bz  newMBB
7964  //     result in out1, out2
7965  //     fallthrough -->nextMBB
7966
7967  const TargetRegisterClass *RC = X86::GR32RegisterClass;
7968  const unsigned LoadOpc = X86::MOV32rm;
7969  const unsigned copyOpc = X86::MOV32rr;
7970  const unsigned NotOpc = X86::NOT32r;
7971  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7972  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
7973  MachineFunction::iterator MBBIter = MBB;
7974  ++MBBIter;
7975
7976  /// First build the CFG
7977  MachineFunction *F = MBB->getParent();
7978  MachineBasicBlock *thisMBB = MBB;
7979  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
7980  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
7981  F->insert(MBBIter, newMBB);
7982  F->insert(MBBIter, nextMBB);
7983
7984  // Move all successors to thisMBB to nextMBB
7985  nextMBB->transferSuccessors(thisMBB);
7986
7987  // Update thisMBB to fall through to newMBB
7988  thisMBB->addSuccessor(newMBB);
7989
7990  // newMBB jumps to itself and fall through to nextMBB
7991  newMBB->addSuccessor(nextMBB);
7992  newMBB->addSuccessor(newMBB);
7993
7994  DebugLoc dl = bInstr->getDebugLoc();
7995  // Insert instructions into newMBB based on incoming instruction
7996  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
7997  assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
7998         "unexpected number of operands");
7999  MachineOperand& dest1Oper = bInstr->getOperand(0);
8000  MachineOperand& dest2Oper = bInstr->getOperand(1);
8001  MachineOperand* argOpers[2 + X86AddrNumOperands];
8002  for (int i=0; i < 2 + X86AddrNumOperands; ++i)
8003    argOpers[i] = &bInstr->getOperand(i+2);
8004
8005  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8006  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8007
8008  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8009  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8010  for (int i=0; i <= lastAddrIndx; ++i)
8011    (*MIB).addOperand(*argOpers[i]);
8012  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8013  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8014  // add 4 to displacement.
8015  for (int i=0; i <= lastAddrIndx-2; ++i)
8016    (*MIB).addOperand(*argOpers[i]);
8017  MachineOperand newOp3 = *(argOpers[3]);
8018  if (newOp3.isImm())
8019    newOp3.setImm(newOp3.getImm()+4);
8020  else
8021    newOp3.setOffset(newOp3.getOffset()+4);
8022  (*MIB).addOperand(newOp3);
8023  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8024
8025  // t3/4 are defined later, at the bottom of the loop
8026  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8027  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8028  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8029    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8030  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8031    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8032
8033  // The subsequent operations should be using the destination registers of
8034  //the PHI instructions.
8035  if (invSrc) {
8036    t1 = F->getRegInfo().createVirtualRegister(RC);
8037    t2 = F->getRegInfo().createVirtualRegister(RC);
8038    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8039    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8040  } else {
8041    t1 = dest1Oper.getReg();
8042    t2 = dest2Oper.getReg();
8043  }
8044
8045  int valArgIndx = lastAddrIndx + 1;
8046  assert((argOpers[valArgIndx]->isReg() ||
8047          argOpers[valArgIndx]->isImm()) &&
8048         "invalid operand");
8049  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8050  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8051  if (argOpers[valArgIndx]->isReg())
8052    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8053  else
8054    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8055  if (regOpcL != X86::MOV32rr)
8056    MIB.addReg(t1);
8057  (*MIB).addOperand(*argOpers[valArgIndx]);
8058  assert(argOpers[valArgIndx + 1]->isReg() ==
8059         argOpers[valArgIndx]->isReg());
8060  assert(argOpers[valArgIndx + 1]->isImm() ==
8061         argOpers[valArgIndx]->isImm());
8062  if (argOpers[valArgIndx + 1]->isReg())
8063    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8064  else
8065    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8066  if (regOpcH != X86::MOV32rr)
8067    MIB.addReg(t2);
8068  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8069
8070  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
8071  MIB.addReg(t1);
8072  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
8073  MIB.addReg(t2);
8074
8075  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
8076  MIB.addReg(t5);
8077  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
8078  MIB.addReg(t6);
8079
8080  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8081  for (int i=0; i <= lastAddrIndx; ++i)
8082    (*MIB).addOperand(*argOpers[i]);
8083
8084  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8085  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8086                    bInstr->memoperands_end());
8087
8088  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
8089  MIB.addReg(X86::EAX);
8090  MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
8091  MIB.addReg(X86::EDX);
8092
8093  // insert branch
8094  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8095
8096  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
8097  return nextMBB;
8098}
8099
8100// private utility function
8101MachineBasicBlock *
8102X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8103                                                      MachineBasicBlock *MBB,
8104                                                      unsigned cmovOpc) const {
8105  // For the atomic min/max operator, we generate
8106  //   thisMBB:
8107  //   newMBB:
8108  //     ld t1 = [min/max.addr]
8109  //     mov t2 = [min/max.val]
8110  //     cmp  t1, t2
8111  //     cmov[cond] t2 = t1
8112  //     mov EAX = t1
8113  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8114  //     bz   newMBB
8115  //     fallthrough -->nextMBB
8116  //
8117  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8118  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8119  MachineFunction::iterator MBBIter = MBB;
8120  ++MBBIter;
8121
8122  /// First build the CFG
8123  MachineFunction *F = MBB->getParent();
8124  MachineBasicBlock *thisMBB = MBB;
8125  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8126  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8127  F->insert(MBBIter, newMBB);
8128  F->insert(MBBIter, nextMBB);
8129
8130  // Move all successors of thisMBB to nextMBB
8131  nextMBB->transferSuccessors(thisMBB);
8132
8133  // Update thisMBB to fall through to newMBB
8134  thisMBB->addSuccessor(newMBB);
8135
8136  // newMBB jumps to newMBB and fall through to nextMBB
8137  newMBB->addSuccessor(nextMBB);
8138  newMBB->addSuccessor(newMBB);
8139
8140  DebugLoc dl = mInstr->getDebugLoc();
8141  // Insert instructions into newMBB based on incoming instruction
8142  assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
8143         "unexpected number of operands");
8144  MachineOperand& destOper = mInstr->getOperand(0);
8145  MachineOperand* argOpers[2 + X86AddrNumOperands];
8146  int numArgs = mInstr->getNumOperands() - 1;
8147  for (int i=0; i < numArgs; ++i)
8148    argOpers[i] = &mInstr->getOperand(i+1);
8149
8150  // x86 address has 4 operands: base, index, scale, and displacement
8151  int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
8152  int valArgIndx = lastAddrIndx + 1;
8153
8154  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8155  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8156  for (int i=0; i <= lastAddrIndx; ++i)
8157    (*MIB).addOperand(*argOpers[i]);
8158
8159  // We only support register and immediate values
8160  assert((argOpers[valArgIndx]->isReg() ||
8161          argOpers[valArgIndx]->isImm()) &&
8162         "invalid operand");
8163
8164  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8165  if (argOpers[valArgIndx]->isReg())
8166    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8167  else
8168    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8169  (*MIB).addOperand(*argOpers[valArgIndx]);
8170
8171  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
8172  MIB.addReg(t1);
8173
8174  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8175  MIB.addReg(t1);
8176  MIB.addReg(t2);
8177
8178  // Generate movc
8179  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8180  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8181  MIB.addReg(t2);
8182  MIB.addReg(t1);
8183
8184  // Cmp and exchange if none has modified the memory location
8185  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8186  for (int i=0; i <= lastAddrIndx; ++i)
8187    (*MIB).addOperand(*argOpers[i]);
8188  MIB.addReg(t3);
8189  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8190  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8191                    mInstr->memoperands_end());
8192
8193  MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
8194  MIB.addReg(X86::EAX);
8195
8196  // insert branch
8197  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8198
8199  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
8200  return nextMBB;
8201}
8202
8203// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8204// all of this code can be replaced with that in the .td file.
8205MachineBasicBlock *
8206X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8207                            unsigned numArgs, bool memArg) const {
8208
8209  MachineFunction *F = BB->getParent();
8210  DebugLoc dl = MI->getDebugLoc();
8211  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8212
8213  unsigned Opc;
8214  if (memArg)
8215    Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8216  else
8217    Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8218
8219  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8220
8221  for (unsigned i = 0; i < numArgs; ++i) {
8222    MachineOperand &Op = MI->getOperand(i+1);
8223
8224    if (!(Op.isReg() && Op.isImplicit()))
8225      MIB.addOperand(Op);
8226  }
8227
8228  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8229    .addReg(X86::XMM0);
8230
8231  F->DeleteMachineInstr(MI);
8232
8233  return BB;
8234}
8235
8236MachineBasicBlock *
8237X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8238                                                 MachineInstr *MI,
8239                                                 MachineBasicBlock *MBB) const {
8240  // Emit code to save XMM registers to the stack. The ABI says that the
8241  // number of registers to save is given in %al, so it's theoretically
8242  // possible to do an indirect jump trick to avoid saving all of them,
8243  // however this code takes a simpler approach and just executes all
8244  // of the stores if %al is non-zero. It's less code, and it's probably
8245  // easier on the hardware branch predictor, and stores aren't all that
8246  // expensive anyway.
8247
8248  // Create the new basic blocks. One block contains all the XMM stores,
8249  // and one block is the final destination regardless of whether any
8250  // stores were performed.
8251  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8252  MachineFunction *F = MBB->getParent();
8253  MachineFunction::iterator MBBIter = MBB;
8254  ++MBBIter;
8255  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8256  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8257  F->insert(MBBIter, XMMSaveMBB);
8258  F->insert(MBBIter, EndMBB);
8259
8260  // Set up the CFG.
8261  // Move any original successors of MBB to the end block.
8262  EndMBB->transferSuccessors(MBB);
8263  // The original block will now fall through to the XMM save block.
8264  MBB->addSuccessor(XMMSaveMBB);
8265  // The XMMSaveMBB will fall through to the end block.
8266  XMMSaveMBB->addSuccessor(EndMBB);
8267
8268  // Now add the instructions.
8269  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8270  DebugLoc DL = MI->getDebugLoc();
8271
8272  unsigned CountReg = MI->getOperand(0).getReg();
8273  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8274  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8275
8276  if (!Subtarget->isTargetWin64()) {
8277    // If %al is 0, branch around the XMM save block.
8278    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8279    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8280    MBB->addSuccessor(EndMBB);
8281  }
8282
8283  // In the XMM save block, save all the XMM argument registers.
8284  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8285    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8286    MachineMemOperand *MMO =
8287      F->getMachineMemOperand(
8288        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8289        MachineMemOperand::MOStore, Offset,
8290        /*Size=*/16, /*Align=*/16);
8291    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8292      .addFrameIndex(RegSaveFrameIndex)
8293      .addImm(/*Scale=*/1)
8294      .addReg(/*IndexReg=*/0)
8295      .addImm(/*Disp=*/Offset)
8296      .addReg(/*Segment=*/0)
8297      .addReg(MI->getOperand(i).getReg())
8298      .addMemOperand(MMO);
8299  }
8300
8301  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8302
8303  return EndMBB;
8304}
8305
8306MachineBasicBlock *
8307X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8308                                     MachineBasicBlock *BB,
8309                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8310  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8311  DebugLoc DL = MI->getDebugLoc();
8312
8313  // To "insert" a SELECT_CC instruction, we actually have to insert the
8314  // diamond control-flow pattern.  The incoming instruction knows the
8315  // destination vreg to set, the condition code register to branch on, the
8316  // true/false values to select between, and a branch opcode to use.
8317  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8318  MachineFunction::iterator It = BB;
8319  ++It;
8320
8321  //  thisMBB:
8322  //  ...
8323  //   TrueVal = ...
8324  //   cmpTY ccX, r1, r2
8325  //   bCC copy1MBB
8326  //   fallthrough --> copy0MBB
8327  MachineBasicBlock *thisMBB = BB;
8328  MachineFunction *F = BB->getParent();
8329  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8330  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8331  unsigned Opc =
8332    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8333  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8334  F->insert(It, copy0MBB);
8335  F->insert(It, sinkMBB);
8336  // Update machine-CFG edges by first adding all successors of the current
8337  // block to the new block which will contain the Phi node for the select.
8338  // Also inform sdisel of the edge changes.
8339  for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
8340         E = BB->succ_end(); I != E; ++I) {
8341    EM->insert(std::make_pair(*I, sinkMBB));
8342    sinkMBB->addSuccessor(*I);
8343  }
8344  // Next, remove all successors of the current block, and add the true
8345  // and fallthrough blocks as its successors.
8346  while (!BB->succ_empty())
8347    BB->removeSuccessor(BB->succ_begin());
8348  // Add the true and fallthrough blocks as its successors.
8349  BB->addSuccessor(copy0MBB);
8350  BB->addSuccessor(sinkMBB);
8351
8352  //  copy0MBB:
8353  //   %FalseValue = ...
8354  //   # fallthrough to sinkMBB
8355  BB = copy0MBB;
8356
8357  // Update machine-CFG edges
8358  BB->addSuccessor(sinkMBB);
8359
8360  //  sinkMBB:
8361  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8362  //  ...
8363  BB = sinkMBB;
8364  BuildMI(BB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
8365    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8366    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8367
8368  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8369  return BB;
8370}
8371
8372
8373MachineBasicBlock *
8374X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8375                                               MachineBasicBlock *BB,
8376                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
8377  switch (MI->getOpcode()) {
8378  default: assert(false && "Unexpected instr type to insert");
8379  case X86::CMOV_GR8:
8380  case X86::CMOV_V1I64:
8381  case X86::CMOV_FR32:
8382  case X86::CMOV_FR64:
8383  case X86::CMOV_V4F32:
8384  case X86::CMOV_V2F64:
8385  case X86::CMOV_V2I64:
8386    return EmitLoweredSelect(MI, BB, EM);
8387
8388  case X86::FP32_TO_INT16_IN_MEM:
8389  case X86::FP32_TO_INT32_IN_MEM:
8390  case X86::FP32_TO_INT64_IN_MEM:
8391  case X86::FP64_TO_INT16_IN_MEM:
8392  case X86::FP64_TO_INT32_IN_MEM:
8393  case X86::FP64_TO_INT64_IN_MEM:
8394  case X86::FP80_TO_INT16_IN_MEM:
8395  case X86::FP80_TO_INT32_IN_MEM:
8396  case X86::FP80_TO_INT64_IN_MEM: {
8397    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8398    DebugLoc DL = MI->getDebugLoc();
8399
8400    // Change the floating point control register to use "round towards zero"
8401    // mode when truncating to an integer value.
8402    MachineFunction *F = BB->getParent();
8403    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
8404    addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
8405
8406    // Load the old value of the high byte of the control word...
8407    unsigned OldCW =
8408      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
8409    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
8410                      CWFrameIdx);
8411
8412    // Set the high part to be round to zero...
8413    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
8414      .addImm(0xC7F);
8415
8416    // Reload the modified control word now...
8417    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8418
8419    // Restore the memory image of control word to original value
8420    addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
8421      .addReg(OldCW);
8422
8423    // Get the X86 opcode to use.
8424    unsigned Opc;
8425    switch (MI->getOpcode()) {
8426    default: llvm_unreachable("illegal opcode!");
8427    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
8428    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
8429    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
8430    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
8431    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
8432    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
8433    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
8434    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
8435    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
8436    }
8437
8438    X86AddressMode AM;
8439    MachineOperand &Op = MI->getOperand(0);
8440    if (Op.isReg()) {
8441      AM.BaseType = X86AddressMode::RegBase;
8442      AM.Base.Reg = Op.getReg();
8443    } else {
8444      AM.BaseType = X86AddressMode::FrameIndexBase;
8445      AM.Base.FrameIndex = Op.getIndex();
8446    }
8447    Op = MI->getOperand(1);
8448    if (Op.isImm())
8449      AM.Scale = Op.getImm();
8450    Op = MI->getOperand(2);
8451    if (Op.isImm())
8452      AM.IndexReg = Op.getImm();
8453    Op = MI->getOperand(3);
8454    if (Op.isGlobal()) {
8455      AM.GV = Op.getGlobal();
8456    } else {
8457      AM.Disp = Op.getImm();
8458    }
8459    addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
8460                      .addReg(MI->getOperand(X86AddrNumOperands).getReg());
8461
8462    // Reload the original control word now.
8463    addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
8464
8465    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
8466    return BB;
8467  }
8468    // String/text processing lowering.
8469  case X86::PCMPISTRM128REG:
8470    return EmitPCMP(MI, BB, 3, false /* in-mem */);
8471  case X86::PCMPISTRM128MEM:
8472    return EmitPCMP(MI, BB, 3, true /* in-mem */);
8473  case X86::PCMPESTRM128REG:
8474    return EmitPCMP(MI, BB, 5, false /* in mem */);
8475  case X86::PCMPESTRM128MEM:
8476    return EmitPCMP(MI, BB, 5, true /* in mem */);
8477
8478    // Atomic Lowering.
8479  case X86::ATOMAND32:
8480    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8481                                               X86::AND32ri, X86::MOV32rm,
8482                                               X86::LCMPXCHG32, X86::MOV32rr,
8483                                               X86::NOT32r, X86::EAX,
8484                                               X86::GR32RegisterClass);
8485  case X86::ATOMOR32:
8486    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
8487                                               X86::OR32ri, X86::MOV32rm,
8488                                               X86::LCMPXCHG32, X86::MOV32rr,
8489                                               X86::NOT32r, X86::EAX,
8490                                               X86::GR32RegisterClass);
8491  case X86::ATOMXOR32:
8492    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
8493                                               X86::XOR32ri, X86::MOV32rm,
8494                                               X86::LCMPXCHG32, X86::MOV32rr,
8495                                               X86::NOT32r, X86::EAX,
8496                                               X86::GR32RegisterClass);
8497  case X86::ATOMNAND32:
8498    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
8499                                               X86::AND32ri, X86::MOV32rm,
8500                                               X86::LCMPXCHG32, X86::MOV32rr,
8501                                               X86::NOT32r, X86::EAX,
8502                                               X86::GR32RegisterClass, true);
8503  case X86::ATOMMIN32:
8504    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
8505  case X86::ATOMMAX32:
8506    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
8507  case X86::ATOMUMIN32:
8508    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
8509  case X86::ATOMUMAX32:
8510    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
8511
8512  case X86::ATOMAND16:
8513    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8514                                               X86::AND16ri, X86::MOV16rm,
8515                                               X86::LCMPXCHG16, X86::MOV16rr,
8516                                               X86::NOT16r, X86::AX,
8517                                               X86::GR16RegisterClass);
8518  case X86::ATOMOR16:
8519    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
8520                                               X86::OR16ri, X86::MOV16rm,
8521                                               X86::LCMPXCHG16, X86::MOV16rr,
8522                                               X86::NOT16r, X86::AX,
8523                                               X86::GR16RegisterClass);
8524  case X86::ATOMXOR16:
8525    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
8526                                               X86::XOR16ri, X86::MOV16rm,
8527                                               X86::LCMPXCHG16, X86::MOV16rr,
8528                                               X86::NOT16r, X86::AX,
8529                                               X86::GR16RegisterClass);
8530  case X86::ATOMNAND16:
8531    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
8532                                               X86::AND16ri, X86::MOV16rm,
8533                                               X86::LCMPXCHG16, X86::MOV16rr,
8534                                               X86::NOT16r, X86::AX,
8535                                               X86::GR16RegisterClass, true);
8536  case X86::ATOMMIN16:
8537    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
8538  case X86::ATOMMAX16:
8539    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
8540  case X86::ATOMUMIN16:
8541    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
8542  case X86::ATOMUMAX16:
8543    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
8544
8545  case X86::ATOMAND8:
8546    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8547                                               X86::AND8ri, X86::MOV8rm,
8548                                               X86::LCMPXCHG8, X86::MOV8rr,
8549                                               X86::NOT8r, X86::AL,
8550                                               X86::GR8RegisterClass);
8551  case X86::ATOMOR8:
8552    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
8553                                               X86::OR8ri, X86::MOV8rm,
8554                                               X86::LCMPXCHG8, X86::MOV8rr,
8555                                               X86::NOT8r, X86::AL,
8556                                               X86::GR8RegisterClass);
8557  case X86::ATOMXOR8:
8558    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
8559                                               X86::XOR8ri, X86::MOV8rm,
8560                                               X86::LCMPXCHG8, X86::MOV8rr,
8561                                               X86::NOT8r, X86::AL,
8562                                               X86::GR8RegisterClass);
8563  case X86::ATOMNAND8:
8564    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
8565                                               X86::AND8ri, X86::MOV8rm,
8566                                               X86::LCMPXCHG8, X86::MOV8rr,
8567                                               X86::NOT8r, X86::AL,
8568                                               X86::GR8RegisterClass, true);
8569  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
8570  // This group is for 64-bit host.
8571  case X86::ATOMAND64:
8572    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8573                                               X86::AND64ri32, X86::MOV64rm,
8574                                               X86::LCMPXCHG64, X86::MOV64rr,
8575                                               X86::NOT64r, X86::RAX,
8576                                               X86::GR64RegisterClass);
8577  case X86::ATOMOR64:
8578    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
8579                                               X86::OR64ri32, X86::MOV64rm,
8580                                               X86::LCMPXCHG64, X86::MOV64rr,
8581                                               X86::NOT64r, X86::RAX,
8582                                               X86::GR64RegisterClass);
8583  case X86::ATOMXOR64:
8584    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
8585                                               X86::XOR64ri32, X86::MOV64rm,
8586                                               X86::LCMPXCHG64, X86::MOV64rr,
8587                                               X86::NOT64r, X86::RAX,
8588                                               X86::GR64RegisterClass);
8589  case X86::ATOMNAND64:
8590    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
8591                                               X86::AND64ri32, X86::MOV64rm,
8592                                               X86::LCMPXCHG64, X86::MOV64rr,
8593                                               X86::NOT64r, X86::RAX,
8594                                               X86::GR64RegisterClass, true);
8595  case X86::ATOMMIN64:
8596    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
8597  case X86::ATOMMAX64:
8598    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
8599  case X86::ATOMUMIN64:
8600    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
8601  case X86::ATOMUMAX64:
8602    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
8603
8604  // This group does 64-bit operations on a 32-bit host.
8605  case X86::ATOMAND6432:
8606    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8607                                               X86::AND32rr, X86::AND32rr,
8608                                               X86::AND32ri, X86::AND32ri,
8609                                               false);
8610  case X86::ATOMOR6432:
8611    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8612                                               X86::OR32rr, X86::OR32rr,
8613                                               X86::OR32ri, X86::OR32ri,
8614                                               false);
8615  case X86::ATOMXOR6432:
8616    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8617                                               X86::XOR32rr, X86::XOR32rr,
8618                                               X86::XOR32ri, X86::XOR32ri,
8619                                               false);
8620  case X86::ATOMNAND6432:
8621    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8622                                               X86::AND32rr, X86::AND32rr,
8623                                               X86::AND32ri, X86::AND32ri,
8624                                               true);
8625  case X86::ATOMADD6432:
8626    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8627                                               X86::ADD32rr, X86::ADC32rr,
8628                                               X86::ADD32ri, X86::ADC32ri,
8629                                               false);
8630  case X86::ATOMSUB6432:
8631    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8632                                               X86::SUB32rr, X86::SBB32rr,
8633                                               X86::SUB32ri, X86::SBB32ri,
8634                                               false);
8635  case X86::ATOMSWAP6432:
8636    return EmitAtomicBit6432WithCustomInserter(MI, BB,
8637                                               X86::MOV32rr, X86::MOV32rr,
8638                                               X86::MOV32ri, X86::MOV32ri,
8639                                               false);
8640  case X86::VASTART_SAVE_XMM_REGS:
8641    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
8642  }
8643}
8644
8645//===----------------------------------------------------------------------===//
8646//                           X86 Optimization Hooks
8647//===----------------------------------------------------------------------===//
8648
8649void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
8650                                                       const APInt &Mask,
8651                                                       APInt &KnownZero,
8652                                                       APInt &KnownOne,
8653                                                       const SelectionDAG &DAG,
8654                                                       unsigned Depth) const {
8655  unsigned Opc = Op.getOpcode();
8656  assert((Opc >= ISD::BUILTIN_OP_END ||
8657          Opc == ISD::INTRINSIC_WO_CHAIN ||
8658          Opc == ISD::INTRINSIC_W_CHAIN ||
8659          Opc == ISD::INTRINSIC_VOID) &&
8660         "Should use MaskedValueIsZero if you don't know whether Op"
8661         " is a target node!");
8662
8663  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
8664  switch (Opc) {
8665  default: break;
8666  case X86ISD::ADD:
8667  case X86ISD::SUB:
8668  case X86ISD::SMUL:
8669  case X86ISD::UMUL:
8670  case X86ISD::INC:
8671  case X86ISD::DEC:
8672  case X86ISD::OR:
8673  case X86ISD::XOR:
8674  case X86ISD::AND:
8675    // These nodes' second result is a boolean.
8676    if (Op.getResNo() == 0)
8677      break;
8678    // Fallthrough
8679  case X86ISD::SETCC:
8680    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
8681                                       Mask.getBitWidth() - 1);
8682    break;
8683  }
8684}
8685
8686/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
8687/// node is a GlobalAddress + offset.
8688bool X86TargetLowering::isGAPlusOffset(SDNode *N,
8689                                       GlobalValue* &GA, int64_t &Offset) const{
8690  if (N->getOpcode() == X86ISD::Wrapper) {
8691    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
8692      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
8693      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
8694      return true;
8695    }
8696  }
8697  return TargetLowering::isGAPlusOffset(N, GA, Offset);
8698}
8699
8700static bool EltsFromConsecutiveLoads(ShuffleVectorSDNode *N, unsigned NumElems,
8701                                     EVT EltVT, LoadSDNode *&LDBase,
8702                                     unsigned &LastLoadedElt,
8703                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
8704                                     const TargetLowering &TLI) {
8705  LDBase = NULL;
8706  LastLoadedElt = -1U;
8707  for (unsigned i = 0; i < NumElems; ++i) {
8708    if (N->getMaskElt(i) < 0) {
8709      if (!LDBase)
8710        return false;
8711      continue;
8712    }
8713
8714    SDValue Elt = DAG.getShuffleScalarElt(N, i);
8715    if (!Elt.getNode() ||
8716        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
8717      return false;
8718    if (!LDBase) {
8719      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
8720        return false;
8721      LDBase = cast<LoadSDNode>(Elt.getNode());
8722      LastLoadedElt = i;
8723      continue;
8724    }
8725    if (Elt.getOpcode() == ISD::UNDEF)
8726      continue;
8727
8728    LoadSDNode *LD = cast<LoadSDNode>(Elt);
8729    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
8730      return false;
8731    LastLoadedElt = i;
8732  }
8733  return true;
8734}
8735
8736/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
8737/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
8738/// if the load addresses are consecutive, non-overlapping, and in the right
8739/// order.  In the case of v2i64, it will see if it can rewrite the
8740/// shuffle to be an appropriate build vector so it can take advantage of
8741// performBuildVectorCombine.
8742static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
8743                                     const TargetLowering &TLI) {
8744  DebugLoc dl = N->getDebugLoc();
8745  EVT VT = N->getValueType(0);
8746  EVT EltVT = VT.getVectorElementType();
8747  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
8748  unsigned NumElems = VT.getVectorNumElements();
8749
8750  if (VT.getSizeInBits() != 128)
8751    return SDValue();
8752
8753  // Try to combine a vector_shuffle into a 128-bit load.
8754  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8755  LoadSDNode *LD = NULL;
8756  unsigned LastLoadedElt;
8757  if (!EltsFromConsecutiveLoads(SVN, NumElems, EltVT, LD, LastLoadedElt, DAG,
8758                                MFI, TLI))
8759    return SDValue();
8760
8761  if (LastLoadedElt == NumElems - 1) {
8762    if (DAG.InferPtrAlignment(LD->getBasePtr()) >= 16)
8763      return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8764                         LD->getSrcValue(), LD->getSrcValueOffset(),
8765                         LD->isVolatile());
8766    return DAG.getLoad(VT, dl, LD->getChain(), LD->getBasePtr(),
8767                       LD->getSrcValue(), LD->getSrcValueOffset(),
8768                       LD->isVolatile(), LD->getAlignment());
8769  } else if (NumElems == 4 && LastLoadedElt == 1) {
8770    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
8771    SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
8772    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
8773    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
8774  }
8775  return SDValue();
8776}
8777
8778/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
8779static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
8780                                    const X86Subtarget *Subtarget) {
8781  DebugLoc DL = N->getDebugLoc();
8782  SDValue Cond = N->getOperand(0);
8783  // Get the LHS/RHS of the select.
8784  SDValue LHS = N->getOperand(1);
8785  SDValue RHS = N->getOperand(2);
8786
8787  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
8788  // instructions have the peculiarity that if either operand is a NaN,
8789  // they chose what we call the RHS operand (and as such are not symmetric).
8790  // It happens that this matches the semantics of the common C idiom
8791  // x<y?x:y and related forms, so we can recognize these cases.
8792  if (Subtarget->hasSSE2() &&
8793      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
8794      Cond.getOpcode() == ISD::SETCC) {
8795    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
8796
8797    unsigned Opcode = 0;
8798    // Check for x CC y ? x : y.
8799    if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
8800      switch (CC) {
8801      default: break;
8802      case ISD::SETULT:
8803        // This can be a min if we can prove that at least one of the operands
8804        // is not a nan.
8805        if (!FiniteOnlyFPMath()) {
8806          if (DAG.isKnownNeverNaN(RHS)) {
8807            // Put the potential NaN in the RHS so that SSE will preserve it.
8808            std::swap(LHS, RHS);
8809          } else if (!DAG.isKnownNeverNaN(LHS))
8810            break;
8811        }
8812        Opcode = X86ISD::FMIN;
8813        break;
8814      case ISD::SETOLE:
8815        // This can be a min if we can prove that at least one of the operands
8816        // is not a nan.
8817        if (!FiniteOnlyFPMath()) {
8818          if (DAG.isKnownNeverNaN(LHS)) {
8819            // Put the potential NaN in the RHS so that SSE will preserve it.
8820            std::swap(LHS, RHS);
8821          } else if (!DAG.isKnownNeverNaN(RHS))
8822            break;
8823        }
8824        Opcode = X86ISD::FMIN;
8825        break;
8826      case ISD::SETULE:
8827        // This can be a min, but if either operand is a NaN we need it to
8828        // preserve the original LHS.
8829        std::swap(LHS, RHS);
8830      case ISD::SETOLT:
8831      case ISD::SETLT:
8832      case ISD::SETLE:
8833        Opcode = X86ISD::FMIN;
8834        break;
8835
8836      case ISD::SETOGE:
8837        // This can be a max if we can prove that at least one of the operands
8838        // is not a nan.
8839        if (!FiniteOnlyFPMath()) {
8840          if (DAG.isKnownNeverNaN(LHS)) {
8841            // Put the potential NaN in the RHS so that SSE will preserve it.
8842            std::swap(LHS, RHS);
8843          } else if (!DAG.isKnownNeverNaN(RHS))
8844            break;
8845        }
8846        Opcode = X86ISD::FMAX;
8847        break;
8848      case ISD::SETUGT:
8849        // This can be a max if we can prove that at least one of the operands
8850        // is not a nan.
8851        if (!FiniteOnlyFPMath()) {
8852          if (DAG.isKnownNeverNaN(RHS)) {
8853            // Put the potential NaN in the RHS so that SSE will preserve it.
8854            std::swap(LHS, RHS);
8855          } else if (!DAG.isKnownNeverNaN(LHS))
8856            break;
8857        }
8858        Opcode = X86ISD::FMAX;
8859        break;
8860      case ISD::SETUGE:
8861        // This can be a max, but if either operand is a NaN we need it to
8862        // preserve the original LHS.
8863        std::swap(LHS, RHS);
8864      case ISD::SETOGT:
8865      case ISD::SETGT:
8866      case ISD::SETGE:
8867        Opcode = X86ISD::FMAX;
8868        break;
8869      }
8870    // Check for x CC y ? y : x -- a min/max with reversed arms.
8871    } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
8872      switch (CC) {
8873      default: break;
8874      case ISD::SETOGE:
8875        // This can be a min if we can prove that at least one of the operands
8876        // is not a nan.
8877        if (!FiniteOnlyFPMath()) {
8878          if (DAG.isKnownNeverNaN(RHS)) {
8879            // Put the potential NaN in the RHS so that SSE will preserve it.
8880            std::swap(LHS, RHS);
8881          } else if (!DAG.isKnownNeverNaN(LHS))
8882            break;
8883        }
8884        Opcode = X86ISD::FMIN;
8885        break;
8886      case ISD::SETUGT:
8887        // This can be a min if we can prove that at least one of the operands
8888        // is not a nan.
8889        if (!FiniteOnlyFPMath()) {
8890          if (DAG.isKnownNeverNaN(LHS)) {
8891            // Put the potential NaN in the RHS so that SSE will preserve it.
8892            std::swap(LHS, RHS);
8893          } else if (!DAG.isKnownNeverNaN(RHS))
8894            break;
8895        }
8896        Opcode = X86ISD::FMIN;
8897        break;
8898      case ISD::SETUGE:
8899        // This can be a min, but if either operand is a NaN we need it to
8900        // preserve the original LHS.
8901        std::swap(LHS, RHS);
8902      case ISD::SETOGT:
8903      case ISD::SETGT:
8904      case ISD::SETGE:
8905        Opcode = X86ISD::FMIN;
8906        break;
8907
8908      case ISD::SETULT:
8909        // This can be a max if we can prove that at least one of the operands
8910        // is not a nan.
8911        if (!FiniteOnlyFPMath()) {
8912          if (DAG.isKnownNeverNaN(LHS)) {
8913            // Put the potential NaN in the RHS so that SSE will preserve it.
8914            std::swap(LHS, RHS);
8915          } else if (!DAG.isKnownNeverNaN(RHS))
8916            break;
8917        }
8918        Opcode = X86ISD::FMAX;
8919        break;
8920      case ISD::SETOLE:
8921        // This can be a max if we can prove that at least one of the operands
8922        // is not a nan.
8923        if (!FiniteOnlyFPMath()) {
8924          if (DAG.isKnownNeverNaN(RHS)) {
8925            // Put the potential NaN in the RHS so that SSE will preserve it.
8926            std::swap(LHS, RHS);
8927          } else if (!DAG.isKnownNeverNaN(LHS))
8928            break;
8929        }
8930        Opcode = X86ISD::FMAX;
8931        break;
8932      case ISD::SETULE:
8933        // This can be a max, but if either operand is a NaN we need it to
8934        // preserve the original LHS.
8935        std::swap(LHS, RHS);
8936      case ISD::SETOLT:
8937      case ISD::SETLT:
8938      case ISD::SETLE:
8939        Opcode = X86ISD::FMAX;
8940        break;
8941      }
8942    }
8943
8944    if (Opcode)
8945      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
8946  }
8947
8948  // If this is a select between two integer constants, try to do some
8949  // optimizations.
8950  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
8951    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
8952      // Don't do this for crazy integer types.
8953      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
8954        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
8955        // so that TrueC (the true value) is larger than FalseC.
8956        bool NeedsCondInvert = false;
8957
8958        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
8959            // Efficiently invertible.
8960            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
8961             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
8962              isa<ConstantSDNode>(Cond.getOperand(1))))) {
8963          NeedsCondInvert = true;
8964          std::swap(TrueC, FalseC);
8965        }
8966
8967        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
8968        if (FalseC->getAPIntValue() == 0 &&
8969            TrueC->getAPIntValue().isPowerOf2()) {
8970          if (NeedsCondInvert) // Invert the condition if needed.
8971            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8972                               DAG.getConstant(1, Cond.getValueType()));
8973
8974          // Zero extend the condition if needed.
8975          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
8976
8977          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
8978          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
8979                             DAG.getConstant(ShAmt, MVT::i8));
8980        }
8981
8982        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
8983        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
8984          if (NeedsCondInvert) // Invert the condition if needed.
8985            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
8986                               DAG.getConstant(1, Cond.getValueType()));
8987
8988          // Zero extend the condition if needed.
8989          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
8990                             FalseC->getValueType(0), Cond);
8991          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
8992                             SDValue(FalseC, 0));
8993        }
8994
8995        // Optimize cases that will turn into an LEA instruction.  This requires
8996        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
8997        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
8998          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
8999          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9000
9001          bool isFastMultiplier = false;
9002          if (Diff < 10) {
9003            switch ((unsigned char)Diff) {
9004              default: break;
9005              case 1:  // result = add base, cond
9006              case 2:  // result = lea base(    , cond*2)
9007              case 3:  // result = lea base(cond, cond*2)
9008              case 4:  // result = lea base(    , cond*4)
9009              case 5:  // result = lea base(cond, cond*4)
9010              case 8:  // result = lea base(    , cond*8)
9011              case 9:  // result = lea base(cond, cond*8)
9012                isFastMultiplier = true;
9013                break;
9014            }
9015          }
9016
9017          if (isFastMultiplier) {
9018            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9019            if (NeedsCondInvert) // Invert the condition if needed.
9020              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9021                                 DAG.getConstant(1, Cond.getValueType()));
9022
9023            // Zero extend the condition if needed.
9024            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9025                               Cond);
9026            // Scale the condition by the difference.
9027            if (Diff != 1)
9028              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9029                                 DAG.getConstant(Diff, Cond.getValueType()));
9030
9031            // Add the base if non-zero.
9032            if (FalseC->getAPIntValue() != 0)
9033              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9034                                 SDValue(FalseC, 0));
9035            return Cond;
9036          }
9037        }
9038      }
9039  }
9040
9041  return SDValue();
9042}
9043
9044/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9045static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9046                                  TargetLowering::DAGCombinerInfo &DCI) {
9047  DebugLoc DL = N->getDebugLoc();
9048
9049  // If the flag operand isn't dead, don't touch this CMOV.
9050  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9051    return SDValue();
9052
9053  // If this is a select between two integer constants, try to do some
9054  // optimizations.  Note that the operands are ordered the opposite of SELECT
9055  // operands.
9056  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9057    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9058      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9059      // larger than FalseC (the false value).
9060      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9061
9062      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9063        CC = X86::GetOppositeBranchCondition(CC);
9064        std::swap(TrueC, FalseC);
9065      }
9066
9067      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9068      // This is efficient for any integer data type (including i8/i16) and
9069      // shift amount.
9070      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9071        SDValue Cond = N->getOperand(3);
9072        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9073                           DAG.getConstant(CC, MVT::i8), Cond);
9074
9075        // Zero extend the condition if needed.
9076        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9077
9078        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9079        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9080                           DAG.getConstant(ShAmt, MVT::i8));
9081        if (N->getNumValues() == 2)  // Dead flag value?
9082          return DCI.CombineTo(N, Cond, SDValue());
9083        return Cond;
9084      }
9085
9086      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9087      // for any integer data type, including i8/i16.
9088      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9089        SDValue Cond = N->getOperand(3);
9090        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9091                           DAG.getConstant(CC, MVT::i8), Cond);
9092
9093        // Zero extend the condition if needed.
9094        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9095                           FalseC->getValueType(0), Cond);
9096        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9097                           SDValue(FalseC, 0));
9098
9099        if (N->getNumValues() == 2)  // Dead flag value?
9100          return DCI.CombineTo(N, Cond, SDValue());
9101        return Cond;
9102      }
9103
9104      // Optimize cases that will turn into an LEA instruction.  This requires
9105      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9106      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9107        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9108        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9109
9110        bool isFastMultiplier = false;
9111        if (Diff < 10) {
9112          switch ((unsigned char)Diff) {
9113          default: break;
9114          case 1:  // result = add base, cond
9115          case 2:  // result = lea base(    , cond*2)
9116          case 3:  // result = lea base(cond, cond*2)
9117          case 4:  // result = lea base(    , cond*4)
9118          case 5:  // result = lea base(cond, cond*4)
9119          case 8:  // result = lea base(    , cond*8)
9120          case 9:  // result = lea base(cond, cond*8)
9121            isFastMultiplier = true;
9122            break;
9123          }
9124        }
9125
9126        if (isFastMultiplier) {
9127          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9128          SDValue Cond = N->getOperand(3);
9129          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9130                             DAG.getConstant(CC, MVT::i8), Cond);
9131          // Zero extend the condition if needed.
9132          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9133                             Cond);
9134          // Scale the condition by the difference.
9135          if (Diff != 1)
9136            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9137                               DAG.getConstant(Diff, Cond.getValueType()));
9138
9139          // Add the base if non-zero.
9140          if (FalseC->getAPIntValue() != 0)
9141            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9142                               SDValue(FalseC, 0));
9143          if (N->getNumValues() == 2)  // Dead flag value?
9144            return DCI.CombineTo(N, Cond, SDValue());
9145          return Cond;
9146        }
9147      }
9148    }
9149  }
9150  return SDValue();
9151}
9152
9153
9154/// PerformMulCombine - Optimize a single multiply with constant into two
9155/// in order to implement it with two cheaper instructions, e.g.
9156/// LEA + SHL, LEA + LEA.
9157static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9158                                 TargetLowering::DAGCombinerInfo &DCI) {
9159  if (DAG.getMachineFunction().
9160      getFunction()->hasFnAttr(Attribute::OptimizeForSize))
9161    return SDValue();
9162
9163  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9164    return SDValue();
9165
9166  EVT VT = N->getValueType(0);
9167  if (VT != MVT::i64)
9168    return SDValue();
9169
9170  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9171  if (!C)
9172    return SDValue();
9173  uint64_t MulAmt = C->getZExtValue();
9174  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9175    return SDValue();
9176
9177  uint64_t MulAmt1 = 0;
9178  uint64_t MulAmt2 = 0;
9179  if ((MulAmt % 9) == 0) {
9180    MulAmt1 = 9;
9181    MulAmt2 = MulAmt / 9;
9182  } else if ((MulAmt % 5) == 0) {
9183    MulAmt1 = 5;
9184    MulAmt2 = MulAmt / 5;
9185  } else if ((MulAmt % 3) == 0) {
9186    MulAmt1 = 3;
9187    MulAmt2 = MulAmt / 3;
9188  }
9189  if (MulAmt2 &&
9190      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9191    DebugLoc DL = N->getDebugLoc();
9192
9193    if (isPowerOf2_64(MulAmt2) &&
9194        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9195      // If second multiplifer is pow2, issue it first. We want the multiply by
9196      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9197      // is an add.
9198      std::swap(MulAmt1, MulAmt2);
9199
9200    SDValue NewMul;
9201    if (isPowerOf2_64(MulAmt1))
9202      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9203                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9204    else
9205      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9206                           DAG.getConstant(MulAmt1, VT));
9207
9208    if (isPowerOf2_64(MulAmt2))
9209      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9210                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9211    else
9212      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9213                           DAG.getConstant(MulAmt2, VT));
9214
9215    // Do not add new nodes to DAG combiner worklist.
9216    DCI.CombineTo(N, NewMul, false);
9217  }
9218  return SDValue();
9219}
9220
9221static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9222  SDValue N0 = N->getOperand(0);
9223  SDValue N1 = N->getOperand(1);
9224  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9225  EVT VT = N0.getValueType();
9226
9227  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9228  // since the result of setcc_c is all zero's or all ones.
9229  if (N1C && N0.getOpcode() == ISD::AND &&
9230      N0.getOperand(1).getOpcode() == ISD::Constant) {
9231    SDValue N00 = N0.getOperand(0);
9232    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9233        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9234          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9235         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9236      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9237      APInt ShAmt = N1C->getAPIntValue();
9238      Mask = Mask.shl(ShAmt);
9239      if (Mask != 0)
9240        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9241                           N00, DAG.getConstant(Mask, VT));
9242    }
9243  }
9244
9245  return SDValue();
9246}
9247
9248/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9249///                       when possible.
9250static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9251                                   const X86Subtarget *Subtarget) {
9252  EVT VT = N->getValueType(0);
9253  if (!VT.isVector() && VT.isInteger() &&
9254      N->getOpcode() == ISD::SHL)
9255    return PerformSHLCombine(N, DAG);
9256
9257  // On X86 with SSE2 support, we can transform this to a vector shift if
9258  // all elements are shifted by the same amount.  We can't do this in legalize
9259  // because the a constant vector is typically transformed to a constant pool
9260  // so we have no knowledge of the shift amount.
9261  if (!Subtarget->hasSSE2())
9262    return SDValue();
9263
9264  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9265    return SDValue();
9266
9267  SDValue ShAmtOp = N->getOperand(1);
9268  EVT EltVT = VT.getVectorElementType();
9269  DebugLoc DL = N->getDebugLoc();
9270  SDValue BaseShAmt = SDValue();
9271  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9272    unsigned NumElts = VT.getVectorNumElements();
9273    unsigned i = 0;
9274    for (; i != NumElts; ++i) {
9275      SDValue Arg = ShAmtOp.getOperand(i);
9276      if (Arg.getOpcode() == ISD::UNDEF) continue;
9277      BaseShAmt = Arg;
9278      break;
9279    }
9280    for (; i != NumElts; ++i) {
9281      SDValue Arg = ShAmtOp.getOperand(i);
9282      if (Arg.getOpcode() == ISD::UNDEF) continue;
9283      if (Arg != BaseShAmt) {
9284        return SDValue();
9285      }
9286    }
9287  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9288             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9289    SDValue InVec = ShAmtOp.getOperand(0);
9290    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9291      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9292      unsigned i = 0;
9293      for (; i != NumElts; ++i) {
9294        SDValue Arg = InVec.getOperand(i);
9295        if (Arg.getOpcode() == ISD::UNDEF) continue;
9296        BaseShAmt = Arg;
9297        break;
9298      }
9299    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9300       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9301         unsigned SplatIdx = cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9302         if (C->getZExtValue() == SplatIdx)
9303           BaseShAmt = InVec.getOperand(1);
9304       }
9305    }
9306    if (BaseShAmt.getNode() == 0)
9307      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9308                              DAG.getIntPtrConstant(0));
9309  } else
9310    return SDValue();
9311
9312  // The shift amount is an i32.
9313  if (EltVT.bitsGT(MVT::i32))
9314    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9315  else if (EltVT.bitsLT(MVT::i32))
9316    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9317
9318  // The shift amount is identical so we can do a vector shift.
9319  SDValue  ValOp = N->getOperand(0);
9320  switch (N->getOpcode()) {
9321  default:
9322    llvm_unreachable("Unknown shift opcode!");
9323    break;
9324  case ISD::SHL:
9325    if (VT == MVT::v2i64)
9326      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9327                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9328                         ValOp, BaseShAmt);
9329    if (VT == MVT::v4i32)
9330      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9331                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9332                         ValOp, BaseShAmt);
9333    if (VT == MVT::v8i16)
9334      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9335                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9336                         ValOp, BaseShAmt);
9337    break;
9338  case ISD::SRA:
9339    if (VT == MVT::v4i32)
9340      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9341                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9342                         ValOp, BaseShAmt);
9343    if (VT == MVT::v8i16)
9344      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9345                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9346                         ValOp, BaseShAmt);
9347    break;
9348  case ISD::SRL:
9349    if (VT == MVT::v2i64)
9350      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9351                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9352                         ValOp, BaseShAmt);
9353    if (VT == MVT::v4i32)
9354      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9355                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9356                         ValOp, BaseShAmt);
9357    if (VT ==  MVT::v8i16)
9358      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9359                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9360                         ValOp, BaseShAmt);
9361    break;
9362  }
9363  return SDValue();
9364}
9365
9366static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
9367                                const X86Subtarget *Subtarget) {
9368  EVT VT = N->getValueType(0);
9369  if (VT != MVT::i64 || !Subtarget->is64Bit())
9370    return SDValue();
9371
9372  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
9373  SDValue N0 = N->getOperand(0);
9374  SDValue N1 = N->getOperand(1);
9375  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
9376    std::swap(N0, N1);
9377  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
9378    return SDValue();
9379
9380  SDValue ShAmt0 = N0.getOperand(1);
9381  if (ShAmt0.getValueType() != MVT::i8)
9382    return SDValue();
9383  SDValue ShAmt1 = N1.getOperand(1);
9384  if (ShAmt1.getValueType() != MVT::i8)
9385    return SDValue();
9386  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
9387    ShAmt0 = ShAmt0.getOperand(0);
9388  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
9389    ShAmt1 = ShAmt1.getOperand(0);
9390
9391  DebugLoc DL = N->getDebugLoc();
9392  unsigned Opc = X86ISD::SHLD;
9393  SDValue Op0 = N0.getOperand(0);
9394  SDValue Op1 = N1.getOperand(0);
9395  if (ShAmt0.getOpcode() == ISD::SUB) {
9396    Opc = X86ISD::SHRD;
9397    std::swap(Op0, Op1);
9398    std::swap(ShAmt0, ShAmt1);
9399  }
9400
9401  if (ShAmt1.getOpcode() == ISD::SUB) {
9402    SDValue Sum = ShAmt1.getOperand(0);
9403    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
9404      if (SumC->getSExtValue() == 64 &&
9405          ShAmt1.getOperand(1) == ShAmt0)
9406        return DAG.getNode(Opc, DL, VT,
9407                           Op0, Op1,
9408                           DAG.getNode(ISD::TRUNCATE, DL,
9409                                       MVT::i8, ShAmt0));
9410    }
9411  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
9412    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
9413    if (ShAmt0C &&
9414        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == 64)
9415      return DAG.getNode(Opc, DL, VT,
9416                         N0.getOperand(0), N1.getOperand(0),
9417                         DAG.getNode(ISD::TRUNCATE, DL,
9418                                       MVT::i8, ShAmt0));
9419  }
9420
9421  return SDValue();
9422}
9423
9424/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
9425static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
9426                                   const X86Subtarget *Subtarget) {
9427  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
9428  // the FP state in cases where an emms may be missing.
9429  // A preferable solution to the general problem is to figure out the right
9430  // places to insert EMMS.  This qualifies as a quick hack.
9431
9432  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
9433  StoreSDNode *St = cast<StoreSDNode>(N);
9434  EVT VT = St->getValue().getValueType();
9435  if (VT.getSizeInBits() != 64)
9436    return SDValue();
9437
9438  const Function *F = DAG.getMachineFunction().getFunction();
9439  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
9440  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
9441    && Subtarget->hasSSE2();
9442  if ((VT.isVector() ||
9443       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
9444      isa<LoadSDNode>(St->getValue()) &&
9445      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
9446      St->getChain().hasOneUse() && !St->isVolatile()) {
9447    SDNode* LdVal = St->getValue().getNode();
9448    LoadSDNode *Ld = 0;
9449    int TokenFactorIndex = -1;
9450    SmallVector<SDValue, 8> Ops;
9451    SDNode* ChainVal = St->getChain().getNode();
9452    // Must be a store of a load.  We currently handle two cases:  the load
9453    // is a direct child, and it's under an intervening TokenFactor.  It is
9454    // possible to dig deeper under nested TokenFactors.
9455    if (ChainVal == LdVal)
9456      Ld = cast<LoadSDNode>(St->getChain());
9457    else if (St->getValue().hasOneUse() &&
9458             ChainVal->getOpcode() == ISD::TokenFactor) {
9459      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
9460        if (ChainVal->getOperand(i).getNode() == LdVal) {
9461          TokenFactorIndex = i;
9462          Ld = cast<LoadSDNode>(St->getValue());
9463        } else
9464          Ops.push_back(ChainVal->getOperand(i));
9465      }
9466    }
9467
9468    if (!Ld || !ISD::isNormalLoad(Ld))
9469      return SDValue();
9470
9471    // If this is not the MMX case, i.e. we are just turning i64 load/store
9472    // into f64 load/store, avoid the transformation if there are multiple
9473    // uses of the loaded value.
9474    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
9475      return SDValue();
9476
9477    DebugLoc LdDL = Ld->getDebugLoc();
9478    DebugLoc StDL = N->getDebugLoc();
9479    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
9480    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
9481    // pair instead.
9482    if (Subtarget->is64Bit() || F64IsLegal) {
9483      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
9484      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
9485                                  Ld->getBasePtr(), Ld->getSrcValue(),
9486                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
9487                                  Ld->getAlignment());
9488      SDValue NewChain = NewLd.getValue(1);
9489      if (TokenFactorIndex != -1) {
9490        Ops.push_back(NewChain);
9491        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9492                               Ops.size());
9493      }
9494      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
9495                          St->getSrcValue(), St->getSrcValueOffset(),
9496                          St->isVolatile(), St->getAlignment());
9497    }
9498
9499    // Otherwise, lower to two pairs of 32-bit loads / stores.
9500    SDValue LoAddr = Ld->getBasePtr();
9501    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
9502                                 DAG.getConstant(4, MVT::i32));
9503
9504    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
9505                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
9506                               Ld->isVolatile(), Ld->getAlignment());
9507    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
9508                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
9509                               Ld->isVolatile(),
9510                               MinAlign(Ld->getAlignment(), 4));
9511
9512    SDValue NewChain = LoLd.getValue(1);
9513    if (TokenFactorIndex != -1) {
9514      Ops.push_back(LoLd);
9515      Ops.push_back(HiLd);
9516      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
9517                             Ops.size());
9518    }
9519
9520    LoAddr = St->getBasePtr();
9521    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
9522                         DAG.getConstant(4, MVT::i32));
9523
9524    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
9525                                St->getSrcValue(), St->getSrcValueOffset(),
9526                                St->isVolatile(), St->getAlignment());
9527    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
9528                                St->getSrcValue(),
9529                                St->getSrcValueOffset() + 4,
9530                                St->isVolatile(),
9531                                MinAlign(St->getAlignment(), 4));
9532    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
9533  }
9534  return SDValue();
9535}
9536
9537/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
9538/// X86ISD::FXOR nodes.
9539static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
9540  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
9541  // F[X]OR(0.0, x) -> x
9542  // F[X]OR(x, 0.0) -> x
9543  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9544    if (C->getValueAPF().isPosZero())
9545      return N->getOperand(1);
9546  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9547    if (C->getValueAPF().isPosZero())
9548      return N->getOperand(0);
9549  return SDValue();
9550}
9551
9552/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
9553static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
9554  // FAND(0.0, x) -> 0.0
9555  // FAND(x, 0.0) -> 0.0
9556  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
9557    if (C->getValueAPF().isPosZero())
9558      return N->getOperand(0);
9559  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
9560    if (C->getValueAPF().isPosZero())
9561      return N->getOperand(1);
9562  return SDValue();
9563}
9564
9565static SDValue PerformBTCombine(SDNode *N,
9566                                SelectionDAG &DAG,
9567                                TargetLowering::DAGCombinerInfo &DCI) {
9568  // BT ignores high bits in the bit index operand.
9569  SDValue Op1 = N->getOperand(1);
9570  if (Op1.hasOneUse()) {
9571    unsigned BitWidth = Op1.getValueSizeInBits();
9572    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
9573    APInt KnownZero, KnownOne;
9574    TargetLowering::TargetLoweringOpt TLO(DAG);
9575    TargetLowering &TLI = DAG.getTargetLoweringInfo();
9576    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
9577        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
9578      DCI.CommitTargetLoweringOpt(TLO);
9579  }
9580  return SDValue();
9581}
9582
9583static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
9584  SDValue Op = N->getOperand(0);
9585  if (Op.getOpcode() == ISD::BIT_CONVERT)
9586    Op = Op.getOperand(0);
9587  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
9588  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
9589      VT.getVectorElementType().getSizeInBits() ==
9590      OpVT.getVectorElementType().getSizeInBits()) {
9591    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
9592  }
9593  return SDValue();
9594}
9595
9596// On X86 and X86-64, atomic operations are lowered to locked instructions.
9597// Locked instructions, in turn, have implicit fence semantics (all memory
9598// operations are flushed before issuing the locked instruction, and the
9599// are not buffered), so we can fold away the common pattern of
9600// fence-atomic-fence.
9601static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
9602  SDValue atomic = N->getOperand(0);
9603  switch (atomic.getOpcode()) {
9604    case ISD::ATOMIC_CMP_SWAP:
9605    case ISD::ATOMIC_SWAP:
9606    case ISD::ATOMIC_LOAD_ADD:
9607    case ISD::ATOMIC_LOAD_SUB:
9608    case ISD::ATOMIC_LOAD_AND:
9609    case ISD::ATOMIC_LOAD_OR:
9610    case ISD::ATOMIC_LOAD_XOR:
9611    case ISD::ATOMIC_LOAD_NAND:
9612    case ISD::ATOMIC_LOAD_MIN:
9613    case ISD::ATOMIC_LOAD_MAX:
9614    case ISD::ATOMIC_LOAD_UMIN:
9615    case ISD::ATOMIC_LOAD_UMAX:
9616      break;
9617    default:
9618      return SDValue();
9619  }
9620
9621  SDValue fence = atomic.getOperand(0);
9622  if (fence.getOpcode() != ISD::MEMBARRIER)
9623    return SDValue();
9624
9625  switch (atomic.getOpcode()) {
9626    case ISD::ATOMIC_CMP_SWAP:
9627      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9628                                    atomic.getOperand(1), atomic.getOperand(2),
9629                                    atomic.getOperand(3));
9630    case ISD::ATOMIC_SWAP:
9631    case ISD::ATOMIC_LOAD_ADD:
9632    case ISD::ATOMIC_LOAD_SUB:
9633    case ISD::ATOMIC_LOAD_AND:
9634    case ISD::ATOMIC_LOAD_OR:
9635    case ISD::ATOMIC_LOAD_XOR:
9636    case ISD::ATOMIC_LOAD_NAND:
9637    case ISD::ATOMIC_LOAD_MIN:
9638    case ISD::ATOMIC_LOAD_MAX:
9639    case ISD::ATOMIC_LOAD_UMIN:
9640    case ISD::ATOMIC_LOAD_UMAX:
9641      return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
9642                                    atomic.getOperand(1), atomic.getOperand(2));
9643    default:
9644      return SDValue();
9645  }
9646}
9647
9648static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
9649  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
9650  //           (and (i32 x86isd::setcc_carry), 1)
9651  // This eliminates the zext. This transformation is necessary because
9652  // ISD::SETCC is always legalized to i8.
9653  DebugLoc dl = N->getDebugLoc();
9654  SDValue N0 = N->getOperand(0);
9655  EVT VT = N->getValueType(0);
9656  if (N0.getOpcode() == ISD::AND &&
9657      N0.hasOneUse() &&
9658      N0.getOperand(0).hasOneUse()) {
9659    SDValue N00 = N0.getOperand(0);
9660    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
9661      return SDValue();
9662    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
9663    if (!C || C->getZExtValue() != 1)
9664      return SDValue();
9665    return DAG.getNode(ISD::AND, dl, VT,
9666                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
9667                                   N00.getOperand(0), N00.getOperand(1)),
9668                       DAG.getConstant(1, VT));
9669  }
9670
9671  return SDValue();
9672}
9673
9674SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
9675                                             DAGCombinerInfo &DCI) const {
9676  SelectionDAG &DAG = DCI.DAG;
9677  switch (N->getOpcode()) {
9678  default: break;
9679  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
9680  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
9681  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
9682  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
9683  case ISD::SHL:
9684  case ISD::SRA:
9685  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
9686  case ISD::OR:             return PerformOrCombine(N, DAG, Subtarget);
9687  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
9688  case X86ISD::FXOR:
9689  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
9690  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
9691  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
9692  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
9693  case ISD::MEMBARRIER:     return PerformMEMBARRIERCombine(N, DAG);
9694  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
9695  }
9696
9697  return SDValue();
9698}
9699
9700//===----------------------------------------------------------------------===//
9701//                           X86 Inline Assembly Support
9702//===----------------------------------------------------------------------===//
9703
9704static bool LowerToBSwap(CallInst *CI) {
9705  // FIXME: this should verify that we are targetting a 486 or better.  If not,
9706  // we will turn this bswap into something that will be lowered to logical ops
9707  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
9708  // so don't worry about this.
9709
9710  // Verify this is a simple bswap.
9711  if (CI->getNumOperands() != 2 ||
9712      CI->getType() != CI->getOperand(1)->getType() ||
9713      !CI->getType()->isInteger())
9714    return false;
9715
9716  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
9717  if (!Ty || Ty->getBitWidth() % 16 != 0)
9718    return false;
9719
9720  // Okay, we can do this xform, do so now.
9721  const Type *Tys[] = { Ty };
9722  Module *M = CI->getParent()->getParent()->getParent();
9723  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
9724
9725  Value *Op = CI->getOperand(1);
9726  Op = CallInst::Create(Int, Op, CI->getName(), CI);
9727
9728  CI->replaceAllUsesWith(Op);
9729  CI->eraseFromParent();
9730  return true;
9731}
9732
9733bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
9734  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
9735  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
9736
9737  std::string AsmStr = IA->getAsmString();
9738
9739  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
9740  SmallVector<StringRef, 4> AsmPieces;
9741  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
9742
9743  switch (AsmPieces.size()) {
9744  default: return false;
9745  case 1:
9746    AsmStr = AsmPieces[0];
9747    AsmPieces.clear();
9748    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
9749
9750    // bswap $0
9751    if (AsmPieces.size() == 2 &&
9752        (AsmPieces[0] == "bswap" ||
9753         AsmPieces[0] == "bswapq" ||
9754         AsmPieces[0] == "bswapl") &&
9755        (AsmPieces[1] == "$0" ||
9756         AsmPieces[1] == "${0:q}")) {
9757      // No need to check constraints, nothing other than the equivalent of
9758      // "=r,0" would be valid here.
9759      return LowerToBSwap(CI);
9760    }
9761    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
9762    if (CI->getType()->isInteger(16) &&
9763        AsmPieces.size() == 3 &&
9764        AsmPieces[0] == "rorw" &&
9765        AsmPieces[1] == "$$8," &&
9766        AsmPieces[2] == "${0:w}" &&
9767        IA->getConstraintString() == "=r,0,~{dirflag},~{fpsr},~{flags},~{cc}") {
9768      return LowerToBSwap(CI);
9769    }
9770    break;
9771  case 3:
9772    if (CI->getType()->isInteger(64) &&
9773        Constraints.size() >= 2 &&
9774        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
9775        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
9776      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
9777      SmallVector<StringRef, 4> Words;
9778      SplitString(AsmPieces[0], Words, " \t");
9779      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
9780        Words.clear();
9781        SplitString(AsmPieces[1], Words, " \t");
9782        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
9783          Words.clear();
9784          SplitString(AsmPieces[2], Words, " \t,");
9785          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
9786              Words[2] == "%edx") {
9787            return LowerToBSwap(CI);
9788          }
9789        }
9790      }
9791    }
9792    break;
9793  }
9794  return false;
9795}
9796
9797
9798
9799/// getConstraintType - Given a constraint letter, return the type of
9800/// constraint it is for this target.
9801X86TargetLowering::ConstraintType
9802X86TargetLowering::getConstraintType(const std::string &Constraint) const {
9803  if (Constraint.size() == 1) {
9804    switch (Constraint[0]) {
9805    case 'A':
9806      return C_Register;
9807    case 'f':
9808    case 'r':
9809    case 'R':
9810    case 'l':
9811    case 'q':
9812    case 'Q':
9813    case 'x':
9814    case 'y':
9815    case 'Y':
9816      return C_RegisterClass;
9817    case 'e':
9818    case 'Z':
9819      return C_Other;
9820    default:
9821      break;
9822    }
9823  }
9824  return TargetLowering::getConstraintType(Constraint);
9825}
9826
9827/// LowerXConstraint - try to replace an X constraint, which matches anything,
9828/// with another that has more specific requirements based on the type of the
9829/// corresponding operand.
9830const char *X86TargetLowering::
9831LowerXConstraint(EVT ConstraintVT) const {
9832  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
9833  // 'f' like normal targets.
9834  if (ConstraintVT.isFloatingPoint()) {
9835    if (Subtarget->hasSSE2())
9836      return "Y";
9837    if (Subtarget->hasSSE1())
9838      return "x";
9839  }
9840
9841  return TargetLowering::LowerXConstraint(ConstraintVT);
9842}
9843
9844/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
9845/// vector.  If it is invalid, don't add anything to Ops.
9846void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
9847                                                     char Constraint,
9848                                                     bool hasMemory,
9849                                                     std::vector<SDValue>&Ops,
9850                                                     SelectionDAG &DAG) const {
9851  SDValue Result(0, 0);
9852
9853  switch (Constraint) {
9854  default: break;
9855  case 'I':
9856    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9857      if (C->getZExtValue() <= 31) {
9858        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9859        break;
9860      }
9861    }
9862    return;
9863  case 'J':
9864    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9865      if (C->getZExtValue() <= 63) {
9866        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9867        break;
9868      }
9869    }
9870    return;
9871  case 'K':
9872    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9873      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
9874        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9875        break;
9876      }
9877    }
9878    return;
9879  case 'N':
9880    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9881      if (C->getZExtValue() <= 255) {
9882        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9883        break;
9884      }
9885    }
9886    return;
9887  case 'e': {
9888    // 32-bit signed value
9889    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9890      const ConstantInt *CI = C->getConstantIntValue();
9891      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9892                                  C->getSExtValue())) {
9893        // Widen to 64 bits here to get it sign extended.
9894        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
9895        break;
9896      }
9897    // FIXME gcc accepts some relocatable values here too, but only in certain
9898    // memory models; it's complicated.
9899    }
9900    return;
9901  }
9902  case 'Z': {
9903    // 32-bit unsigned value
9904    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
9905      const ConstantInt *CI = C->getConstantIntValue();
9906      if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
9907                                  C->getZExtValue())) {
9908        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
9909        break;
9910      }
9911    }
9912    // FIXME gcc accepts some relocatable values here too, but only in certain
9913    // memory models; it's complicated.
9914    return;
9915  }
9916  case 'i': {
9917    // Literal immediates are always ok.
9918    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
9919      // Widen to 64 bits here to get it sign extended.
9920      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
9921      break;
9922    }
9923
9924    // If we are in non-pic codegen mode, we allow the address of a global (with
9925    // an optional displacement) to be used with 'i'.
9926    GlobalAddressSDNode *GA = 0;
9927    int64_t Offset = 0;
9928
9929    // Match either (GA), (GA+C), (GA+C1+C2), etc.
9930    while (1) {
9931      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
9932        Offset += GA->getOffset();
9933        break;
9934      } else if (Op.getOpcode() == ISD::ADD) {
9935        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9936          Offset += C->getZExtValue();
9937          Op = Op.getOperand(0);
9938          continue;
9939        }
9940      } else if (Op.getOpcode() == ISD::SUB) {
9941        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
9942          Offset += -C->getZExtValue();
9943          Op = Op.getOperand(0);
9944          continue;
9945        }
9946      }
9947
9948      // Otherwise, this isn't something we can handle, reject it.
9949      return;
9950    }
9951
9952    GlobalValue *GV = GA->getGlobal();
9953    // If we require an extra load to get this address, as in PIC mode, we
9954    // can't accept it.
9955    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
9956                                                        getTargetMachine())))
9957      return;
9958
9959    if (hasMemory)
9960      Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
9961    else
9962      Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
9963    Result = Op;
9964    break;
9965  }
9966  }
9967
9968  if (Result.getNode()) {
9969    Ops.push_back(Result);
9970    return;
9971  }
9972  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
9973                                                      Ops, DAG);
9974}
9975
9976std::vector<unsigned> X86TargetLowering::
9977getRegClassForInlineAsmConstraint(const std::string &Constraint,
9978                                  EVT VT) const {
9979  if (Constraint.size() == 1) {
9980    // FIXME: not handling fp-stack yet!
9981    switch (Constraint[0]) {      // GCC X86 Constraint Letters
9982    default: break;  // Unknown constraint letter
9983    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
9984      if (Subtarget->is64Bit()) {
9985        if (VT == MVT::i32)
9986          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
9987                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
9988                                       X86::R10D,X86::R11D,X86::R12D,
9989                                       X86::R13D,X86::R14D,X86::R15D,
9990                                       X86::EBP, X86::ESP, 0);
9991        else if (VT == MVT::i16)
9992          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
9993                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
9994                                       X86::R10W,X86::R11W,X86::R12W,
9995                                       X86::R13W,X86::R14W,X86::R15W,
9996                                       X86::BP,  X86::SP, 0);
9997        else if (VT == MVT::i8)
9998          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
9999                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10000                                       X86::R10B,X86::R11B,X86::R12B,
10001                                       X86::R13B,X86::R14B,X86::R15B,
10002                                       X86::BPL, X86::SPL, 0);
10003
10004        else if (VT == MVT::i64)
10005          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10006                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10007                                       X86::R10, X86::R11, X86::R12,
10008                                       X86::R13, X86::R14, X86::R15,
10009                                       X86::RBP, X86::RSP, 0);
10010
10011        break;
10012      }
10013      // 32-bit fallthrough
10014    case 'Q':   // Q_REGS
10015      if (VT == MVT::i32)
10016        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10017      else if (VT == MVT::i16)
10018        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10019      else if (VT == MVT::i8)
10020        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10021      else if (VT == MVT::i64)
10022        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10023      break;
10024    }
10025  }
10026
10027  return std::vector<unsigned>();
10028}
10029
10030std::pair<unsigned, const TargetRegisterClass*>
10031X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10032                                                EVT VT) const {
10033  // First, see if this is a constraint that directly corresponds to an LLVM
10034  // register class.
10035  if (Constraint.size() == 1) {
10036    // GCC Constraint Letters
10037    switch (Constraint[0]) {
10038    default: break;
10039    case 'r':   // GENERAL_REGS
10040    case 'l':   // INDEX_REGS
10041      if (VT == MVT::i8)
10042        return std::make_pair(0U, X86::GR8RegisterClass);
10043      if (VT == MVT::i16)
10044        return std::make_pair(0U, X86::GR16RegisterClass);
10045      if (VT == MVT::i32 || !Subtarget->is64Bit())
10046        return std::make_pair(0U, X86::GR32RegisterClass);
10047      return std::make_pair(0U, X86::GR64RegisterClass);
10048    case 'R':   // LEGACY_REGS
10049      if (VT == MVT::i8)
10050        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10051      if (VT == MVT::i16)
10052        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10053      if (VT == MVT::i32 || !Subtarget->is64Bit())
10054        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10055      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10056    case 'f':  // FP Stack registers.
10057      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10058      // value to the correct fpstack register class.
10059      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10060        return std::make_pair(0U, X86::RFP32RegisterClass);
10061      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10062        return std::make_pair(0U, X86::RFP64RegisterClass);
10063      return std::make_pair(0U, X86::RFP80RegisterClass);
10064    case 'y':   // MMX_REGS if MMX allowed.
10065      if (!Subtarget->hasMMX()) break;
10066      return std::make_pair(0U, X86::VR64RegisterClass);
10067    case 'Y':   // SSE_REGS if SSE2 allowed
10068      if (!Subtarget->hasSSE2()) break;
10069      // FALL THROUGH.
10070    case 'x':   // SSE_REGS if SSE1 allowed
10071      if (!Subtarget->hasSSE1()) break;
10072
10073      switch (VT.getSimpleVT().SimpleTy) {
10074      default: break;
10075      // Scalar SSE types.
10076      case MVT::f32:
10077      case MVT::i32:
10078        return std::make_pair(0U, X86::FR32RegisterClass);
10079      case MVT::f64:
10080      case MVT::i64:
10081        return std::make_pair(0U, X86::FR64RegisterClass);
10082      // Vector types.
10083      case MVT::v16i8:
10084      case MVT::v8i16:
10085      case MVT::v4i32:
10086      case MVT::v2i64:
10087      case MVT::v4f32:
10088      case MVT::v2f64:
10089        return std::make_pair(0U, X86::VR128RegisterClass);
10090      }
10091      break;
10092    }
10093  }
10094
10095  // Use the default implementation in TargetLowering to convert the register
10096  // constraint into a member of a register class.
10097  std::pair<unsigned, const TargetRegisterClass*> Res;
10098  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10099
10100  // Not found as a standard register?
10101  if (Res.second == 0) {
10102    // Map st(0) -> st(7) -> ST0
10103    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10104        tolower(Constraint[1]) == 's' &&
10105        tolower(Constraint[2]) == 't' &&
10106        Constraint[3] == '(' &&
10107        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10108        Constraint[5] == ')' &&
10109        Constraint[6] == '}') {
10110
10111      Res.first = X86::ST0+Constraint[4]-'0';
10112      Res.second = X86::RFP80RegisterClass;
10113      return Res;
10114    }
10115
10116    // GCC allows "st(0)" to be called just plain "st".
10117    if (StringRef("{st}").equals_lower(Constraint)) {
10118      Res.first = X86::ST0;
10119      Res.second = X86::RFP80RegisterClass;
10120      return Res;
10121    }
10122
10123    // flags -> EFLAGS
10124    if (StringRef("{flags}").equals_lower(Constraint)) {
10125      Res.first = X86::EFLAGS;
10126      Res.second = X86::CCRRegisterClass;
10127      return Res;
10128    }
10129
10130    // 'A' means EAX + EDX.
10131    if (Constraint == "A") {
10132      Res.first = X86::EAX;
10133      Res.second = X86::GR32_ADRegisterClass;
10134      return Res;
10135    }
10136    return Res;
10137  }
10138
10139  // Otherwise, check to see if this is a register class of the wrong value
10140  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10141  // turn into {ax},{dx}.
10142  if (Res.second->hasType(VT))
10143    return Res;   // Correct type already, nothing to do.
10144
10145  // All of the single-register GCC register classes map their values onto
10146  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10147  // really want an 8-bit or 32-bit register, map to the appropriate register
10148  // class and return the appropriate register.
10149  if (Res.second == X86::GR16RegisterClass) {
10150    if (VT == MVT::i8) {
10151      unsigned DestReg = 0;
10152      switch (Res.first) {
10153      default: break;
10154      case X86::AX: DestReg = X86::AL; break;
10155      case X86::DX: DestReg = X86::DL; break;
10156      case X86::CX: DestReg = X86::CL; break;
10157      case X86::BX: DestReg = X86::BL; break;
10158      }
10159      if (DestReg) {
10160        Res.first = DestReg;
10161        Res.second = X86::GR8RegisterClass;
10162      }
10163    } else if (VT == MVT::i32) {
10164      unsigned DestReg = 0;
10165      switch (Res.first) {
10166      default: break;
10167      case X86::AX: DestReg = X86::EAX; break;
10168      case X86::DX: DestReg = X86::EDX; break;
10169      case X86::CX: DestReg = X86::ECX; break;
10170      case X86::BX: DestReg = X86::EBX; break;
10171      case X86::SI: DestReg = X86::ESI; break;
10172      case X86::DI: DestReg = X86::EDI; break;
10173      case X86::BP: DestReg = X86::EBP; break;
10174      case X86::SP: DestReg = X86::ESP; break;
10175      }
10176      if (DestReg) {
10177        Res.first = DestReg;
10178        Res.second = X86::GR32RegisterClass;
10179      }
10180    } else if (VT == MVT::i64) {
10181      unsigned DestReg = 0;
10182      switch (Res.first) {
10183      default: break;
10184      case X86::AX: DestReg = X86::RAX; break;
10185      case X86::DX: DestReg = X86::RDX; break;
10186      case X86::CX: DestReg = X86::RCX; break;
10187      case X86::BX: DestReg = X86::RBX; break;
10188      case X86::SI: DestReg = X86::RSI; break;
10189      case X86::DI: DestReg = X86::RDI; break;
10190      case X86::BP: DestReg = X86::RBP; break;
10191      case X86::SP: DestReg = X86::RSP; break;
10192      }
10193      if (DestReg) {
10194        Res.first = DestReg;
10195        Res.second = X86::GR64RegisterClass;
10196      }
10197    }
10198  } else if (Res.second == X86::FR32RegisterClass ||
10199             Res.second == X86::FR64RegisterClass ||
10200             Res.second == X86::VR128RegisterClass) {
10201    // Handle references to XMM physical registers that got mapped into the
10202    // wrong class.  This can happen with constraints like {xmm0} where the
10203    // target independent register mapper will just pick the first match it can
10204    // find, ignoring the required type.
10205    if (VT == MVT::f32)
10206      Res.second = X86::FR32RegisterClass;
10207    else if (VT == MVT::f64)
10208      Res.second = X86::FR64RegisterClass;
10209    else if (X86::VR128RegisterClass->hasType(VT))
10210      Res.second = X86::VR128RegisterClass;
10211  }
10212
10213  return Res;
10214}
10215
10216//===----------------------------------------------------------------------===//
10217//                           X86 Widen vector type
10218//===----------------------------------------------------------------------===//
10219
10220/// getWidenVectorType: given a vector type, returns the type to widen
10221/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
10222/// If there is no vector type that we want to widen to, returns MVT::Other
10223/// When and where to widen is target dependent based on the cost of
10224/// scalarizing vs using the wider vector type.
10225
10226EVT X86TargetLowering::getWidenVectorType(EVT VT) const {
10227  assert(VT.isVector());
10228  if (isTypeLegal(VT))
10229    return VT;
10230
10231  // TODO: In computeRegisterProperty, we can compute the list of legal vector
10232  //       type based on element type.  This would speed up our search (though
10233  //       it may not be worth it since the size of the list is relatively
10234  //       small).
10235  EVT EltVT = VT.getVectorElementType();
10236  unsigned NElts = VT.getVectorNumElements();
10237
10238  // On X86, it make sense to widen any vector wider than 1
10239  if (NElts <= 1)
10240    return MVT::Other;
10241
10242  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
10243       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
10244    EVT SVT = (MVT::SimpleValueType)nVT;
10245
10246    if (isTypeLegal(SVT) &&
10247        SVT.getVectorElementType() == EltVT &&
10248        SVT.getVectorNumElements() > NElts)
10249      return SVT;
10250  }
10251  return MVT::Other;
10252}
10253