X86ISelLowering.cpp revision bedcbd433dbbba303df0ced76bec02b01b7b8f4d
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getIntPtrConstant(NormalizedIdxVal);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
162
163  RegInfo = TM.getRegisterInfo();
164  TD = getDataLayout();
165
166  // Set up the TargetLowering object.
167  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
168
169  // X86 is weird, it always uses i8 for shift amounts and setcc results.
170  setBooleanContents(ZeroOrOneBooleanContent);
171  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
172  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
173
174  // For 64-bit since we have so many registers use the ILP scheduler, for
175  // 32-bit code use the register pressure specific scheduling.
176  // For Atom, always use ILP scheduling.
177  if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::ILP);
179  else if (Subtarget->is64Bit())
180    setSchedulingPreference(Sched::ILP);
181  else
182    setSchedulingPreference(Sched::RegPressure);
183  setStackPointerRegisterToSaveRestore(X86StackPtr);
184
185  // Bypass i32 with i8 on Atom when compiling with O2
186  if (Subtarget->hasSlowDivide() && TM.getOptLevel() >= CodeGenOpt::Default)
187    addBypassSlowDiv(32, 8);
188
189  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
190    // Setup Windows compiler runtime calls.
191    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
192    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
193    setLibcallName(RTLIB::SREM_I64, "_allrem");
194    setLibcallName(RTLIB::UREM_I64, "_aullrem");
195    setLibcallName(RTLIB::MUL_I64, "_allmul");
196    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
197    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
198    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
199    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
200    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
201
202    // The _ftol2 runtime function has an unusual calling conv, which
203    // is modeled by a special pseudo-instruction.
204    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
205    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
206    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
207    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, &X86::GR8RegClass);
225  addRegisterClass(MVT::i16, &X86::GR16RegClass);
226  addRegisterClass(MVT::i32, &X86::GR32RegClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, &X86::GR64RegClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
257  } else if (!TM.Options.UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!TM.Options.UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!TM.Options.UseSoftFloat) {
315    // Since AVX is a superset of SSE3, only check for SSE here.
316    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
317      // Expand FP_TO_UINT into a select.
318      // FIXME: We would like to use a Custom expander here eventually to do
319      // the optimal thing for SSE vs. the default expansion in the legalizer.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
321    else
322      // With SSE3 we can use fisttpll to convert to a signed i64; without
323      // SSE, we're stuck with a fistpll.
324      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
325  }
326
327  if (isTargetFTOL()) {
328    // Use the _ftol2 runtime function, which has a pseudo-instruction
329    // to handle its weird calling convention.
330    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
331  }
332
333  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
334  if (!X86ScalarSSEf64) {
335    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
336    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
337    if (Subtarget->is64Bit()) {
338      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
339      // Without SSE, i64->f64 goes through memory.
340      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
341    }
342  }
343
344  // Scalar integer divide and remainder are lowered to use operations that
345  // produce two results, to match the available instructions. This exposes
346  // the two-result form to trivial CSE, which is able to combine x/y and x%y
347  // into a single instruction.
348  //
349  // Scalar integer multiply-high is also lowered to use two-result
350  // operations, to match the available instructions. However, plain multiply
351  // (low) operations are left as Legal, as there are single-result
352  // instructions for this in x86. Using the two-result multiply instructions
353  // when both high and low results are needed must be arranged by dagcombine.
354  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
355    MVT VT = IntVTs[i];
356    setOperationAction(ISD::MULHS, VT, Expand);
357    setOperationAction(ISD::MULHU, VT, Expand);
358    setOperationAction(ISD::SDIV, VT, Expand);
359    setOperationAction(ISD::UDIV, VT, Expand);
360    setOperationAction(ISD::SREM, VT, Expand);
361    setOperationAction(ISD::UREM, VT, Expand);
362
363    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
364    setOperationAction(ISD::ADDC, VT, Custom);
365    setOperationAction(ISD::ADDE, VT, Custom);
366    setOperationAction(ISD::SUBC, VT, Custom);
367    setOperationAction(ISD::SUBE, VT, Custom);
368  }
369
370  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
371  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
372  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
373  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
374  if (Subtarget->is64Bit())
375    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
376  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
377  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
378  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
379  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
380  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
381  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
382  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
383  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
384
385  // Promote the i8 variants and force them on up to i32 which has a shorter
386  // encoding.
387  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
388  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
389  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
390  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
391  if (Subtarget->hasBMI()) {
392    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
393    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
396  } else {
397    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
398    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
399    if (Subtarget->is64Bit())
400      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
401  }
402
403  if (Subtarget->hasLZCNT()) {
404    // When promoting the i8 variants, force them to i32 for a shorter
405    // encoding.
406    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
407    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
408    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
409    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
410    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
411    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
412    if (Subtarget->is64Bit())
413      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
414  } else {
415    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
416    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
417    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
418    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
419    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
420    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
421    if (Subtarget->is64Bit()) {
422      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
423      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
424    }
425  }
426
427  if (Subtarget->hasPOPCNT()) {
428    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
429  } else {
430    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
431    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
432    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
433    if (Subtarget->is64Bit())
434      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
435  }
436
437  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
438  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
439
440  // These should be promoted to a larger select which is supported.
441  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
442  // X86 wants to expand cmov itself.
443  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
444  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
445  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
446  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
447  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
448  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
450  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
451  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
452  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
453  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
454  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
455  if (Subtarget->is64Bit()) {
456    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
457    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
458  }
459  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
460  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intened to support
461  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
462  // support continuation, user-level threading, and etc.. As a result, not
463  // other SjLj exception interfaces are implemented and please don't build
464  // your own exception handling based on them.
465  // LLVM/Clang supports zero-cost DWARF exception handling.
466  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
467  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
468
469  // Darwin ABI issue.
470  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
471  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
472  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
473  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
474  if (Subtarget->is64Bit())
475    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
476  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
477  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
478  if (Subtarget->is64Bit()) {
479    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
480    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
481    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
482    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
483    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
484  }
485  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
486  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
487  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
488  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
489  if (Subtarget->is64Bit()) {
490    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
491    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
492    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
493  }
494
495  if (Subtarget->hasSSE1())
496    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
497
498  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
499  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
500
501  // On X86 and X86-64, atomic operations are lowered to locked instructions.
502  // Locked instructions, in turn, have implicit fence semantics (all memory
503  // operations are flushed before issuing the locked instruction, and they
504  // are not buffered), so we can fold away the common pattern of
505  // fence-atomic-fence.
506  setShouldFoldAtomicFences(true);
507
508  // Expand certain atomics
509  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
510    MVT VT = IntVTs[i];
511    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
512    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
513    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
514  }
515
516  if (!Subtarget->is64Bit()) {
517    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
518    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
519    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
520    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
521    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
522    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
523    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
524    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
525    setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
526    setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
527    setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
528    setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
529  }
530
531  if (Subtarget->hasCmpxchg16b()) {
532    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
533  }
534
535  // FIXME - use subtarget debug flags
536  if (!Subtarget->isTargetDarwin() &&
537      !Subtarget->isTargetELF() &&
538      !Subtarget->isTargetCygMing()) {
539    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
540  }
541
542  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
543  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
544  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
545  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
546  if (Subtarget->is64Bit()) {
547    setExceptionPointerRegister(X86::RAX);
548    setExceptionSelectorRegister(X86::RDX);
549  } else {
550    setExceptionPointerRegister(X86::EAX);
551    setExceptionSelectorRegister(X86::EDX);
552  }
553  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
554  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
555
556  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
557  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
558
559  setOperationAction(ISD::TRAP, MVT::Other, Legal);
560
561  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
562  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
563  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
564  if (Subtarget->is64Bit()) {
565    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
566    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
567  } else {
568    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
569    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
570  }
571
572  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
573  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
574
575  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
576    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
577                       MVT::i64 : MVT::i32, Custom);
578  else if (TM.Options.EnableSegmentedStacks)
579    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
580                       MVT::i64 : MVT::i32, Custom);
581  else
582    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
583                       MVT::i64 : MVT::i32, Expand);
584
585  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
586    // f32 and f64 use SSE.
587    // Set up the FP register classes.
588    addRegisterClass(MVT::f32, &X86::FR32RegClass);
589    addRegisterClass(MVT::f64, &X86::FR64RegClass);
590
591    // Use ANDPD to simulate FABS.
592    setOperationAction(ISD::FABS , MVT::f64, Custom);
593    setOperationAction(ISD::FABS , MVT::f32, Custom);
594
595    // Use XORP to simulate FNEG.
596    setOperationAction(ISD::FNEG , MVT::f64, Custom);
597    setOperationAction(ISD::FNEG , MVT::f32, Custom);
598
599    // Use ANDPD and ORPD to simulate FCOPYSIGN.
600    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
601    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
602
603    // Lower this to FGETSIGNx86 plus an AND.
604    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
605    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
606
607    // We don't support sin/cos/fmod
608    setOperationAction(ISD::FSIN , MVT::f64, Expand);
609    setOperationAction(ISD::FCOS , MVT::f64, Expand);
610    setOperationAction(ISD::FSIN , MVT::f32, Expand);
611    setOperationAction(ISD::FCOS , MVT::f32, Expand);
612
613    // Expand FP immediates into loads from the stack, except for the special
614    // cases we handle.
615    addLegalFPImmediate(APFloat(+0.0)); // xorpd
616    addLegalFPImmediate(APFloat(+0.0f)); // xorps
617  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
618    // Use SSE for f32, x87 for f64.
619    // Set up the FP register classes.
620    addRegisterClass(MVT::f32, &X86::FR32RegClass);
621    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
622
623    // Use ANDPS to simulate FABS.
624    setOperationAction(ISD::FABS , MVT::f32, Custom);
625
626    // Use XORP to simulate FNEG.
627    setOperationAction(ISD::FNEG , MVT::f32, Custom);
628
629    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
630
631    // Use ANDPS and ORPS to simulate FCOPYSIGN.
632    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
633    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
634
635    // We don't support sin/cos/fmod
636    setOperationAction(ISD::FSIN , MVT::f32, Expand);
637    setOperationAction(ISD::FCOS , MVT::f32, Expand);
638
639    // Special cases we handle for FP constants.
640    addLegalFPImmediate(APFloat(+0.0f)); // xorps
641    addLegalFPImmediate(APFloat(+0.0)); // FLD0
642    addLegalFPImmediate(APFloat(+1.0)); // FLD1
643    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
644    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
645
646    if (!TM.Options.UnsafeFPMath) {
647      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
648      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
649    }
650  } else if (!TM.Options.UseSoftFloat) {
651    // f32 and f64 in x87.
652    // Set up the FP register classes.
653    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
654    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
655
656    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
657    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
658    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
659    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
660
661    if (!TM.Options.UnsafeFPMath) {
662      setOperationAction(ISD::FSIN           , MVT::f32  , Expand);
663      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
664      setOperationAction(ISD::FCOS           , MVT::f32  , Expand);
665      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
666    }
667    addLegalFPImmediate(APFloat(+0.0)); // FLD0
668    addLegalFPImmediate(APFloat(+1.0)); // FLD1
669    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
670    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
671    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
672    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
673    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
674    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
675  }
676
677  // We don't support FMA.
678  setOperationAction(ISD::FMA, MVT::f64, Expand);
679  setOperationAction(ISD::FMA, MVT::f32, Expand);
680
681  // Long double always uses X87.
682  if (!TM.Options.UseSoftFloat) {
683    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
684    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
685    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
686    {
687      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
688      addLegalFPImmediate(TmpFlt);  // FLD0
689      TmpFlt.changeSign();
690      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
691
692      bool ignored;
693      APFloat TmpFlt2(+1.0);
694      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
695                      &ignored);
696      addLegalFPImmediate(TmpFlt2);  // FLD1
697      TmpFlt2.changeSign();
698      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
699    }
700
701    if (!TM.Options.UnsafeFPMath) {
702      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
703      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
704    }
705
706    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
707    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
708    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
709    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
710    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
711    setOperationAction(ISD::FMA, MVT::f80, Expand);
712  }
713
714  // Always use a library call for pow.
715  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
716  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
717  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
718
719  setOperationAction(ISD::FLOG, MVT::f80, Expand);
720  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
721  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
722  setOperationAction(ISD::FEXP, MVT::f80, Expand);
723  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
724
725  // First set operation action for all vector types to either promote
726  // (for widening) or expand (for scalarization). Then we will selectively
727  // turn on ones that can be effectively codegen'd.
728  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
729           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
730    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
745    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
747    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
748    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FMA,  (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FFLOOR, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
770    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
771    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
772    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
773    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
774    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
775    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
776    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
777    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
778    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
779    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
780    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
781    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
782    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
783    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
784    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
785    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
786    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
787    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
788    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
789    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
790             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
791      setTruncStoreAction((MVT::SimpleValueType)VT,
792                          (MVT::SimpleValueType)InnerVT, Expand);
793    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
794    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
795    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
796  }
797
798  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
799  // with -msoft-float, disable use of MMX as well.
800  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
801    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
802    // No operations on x86mmx supported, everything uses intrinsics.
803  }
804
805  // MMX-sized vectors (other than x86mmx) are expected to be expanded
806  // into smaller operations.
807  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
808  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
809  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
810  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
811  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
812  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
813  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
814  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
815  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
816  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
817  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
818  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
819  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
820  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
821  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
822  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
823  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
824  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
825  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
826  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
827  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
828  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
829  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
830  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
831  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
832  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
833  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
834  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
835  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
836
837  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
838    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
839
840    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
841    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
842    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
843    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
844    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
845    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
846    setOperationAction(ISD::FABS,               MVT::v4f32, Custom);
847    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
848    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
849    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
850    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
851    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
852  }
853
854  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
855    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
856
857    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
858    // registers cannot be used even for integer operations.
859    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
860    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
861    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
862    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
863
864    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
865    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
866    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
867    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
868    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
869    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
870    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
871    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
872    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
873    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
874    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
875    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
876    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
877    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
878    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
879    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
880    setOperationAction(ISD::FABS,               MVT::v2f64, Custom);
881
882    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
883    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
884    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
885    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
886
887    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
888    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
889    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
890    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
891    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
892
893    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
894    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
895      MVT VT = (MVT::SimpleValueType)i;
896      // Do not attempt to custom lower non-power-of-2 vectors
897      if (!isPowerOf2_32(VT.getVectorNumElements()))
898        continue;
899      // Do not attempt to custom lower non-128-bit vectors
900      if (!VT.is128BitVector())
901        continue;
902      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
903      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
904      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
905    }
906
907    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
908    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
909    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
910    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
912    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
913
914    if (Subtarget->is64Bit()) {
915      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
916      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
917    }
918
919    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
920    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
921      MVT VT = (MVT::SimpleValueType)i;
922
923      // Do not attempt to promote non-128-bit vectors
924      if (!VT.is128BitVector())
925        continue;
926
927      setOperationAction(ISD::AND,    VT, Promote);
928      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
929      setOperationAction(ISD::OR,     VT, Promote);
930      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
931      setOperationAction(ISD::XOR,    VT, Promote);
932      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
933      setOperationAction(ISD::LOAD,   VT, Promote);
934      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
935      setOperationAction(ISD::SELECT, VT, Promote);
936      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
937    }
938
939    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
940
941    // Custom lower v2i64 and v2f64 selects.
942    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
943    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
944    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
945    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
946
947    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
948    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
949
950    setOperationAction(ISD::FP_EXTEND,          MVT::v2f32, Custom);
951    setOperationAction(ISD::FP_ROUND,           MVT::v2f32, Custom);
952
953    setLoadExtAction(ISD::EXTLOAD,              MVT::v2f32, Legal);
954  }
955
956  if (Subtarget->hasSSE41()) {
957    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
958    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
959    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
960    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
961    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
962    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
963    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
964    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
965    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
966    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
967
968    setOperationAction(ISD::FFLOOR,             MVT::v4f32, Legal);
969    setOperationAction(ISD::FFLOOR,             MVT::v2f64, Legal);
970
971    // FIXME: Do we need to handle scalar-to-vector here?
972    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
973
974    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
975    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
976    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
977    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
978    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
979
980    // i8 and i16 vectors are custom , because the source register and source
981    // source memory operand types are not the same width.  f32 vectors are
982    // custom since the immediate controlling the insert encodes additional
983    // information.
984    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
985    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
986    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
987    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
988
989    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
990    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
991    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
992    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
993
994    // FIXME: these should be Legal but thats only for the case where
995    // the index is constant.  For now custom expand to deal with that.
996    if (Subtarget->is64Bit()) {
997      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
998      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
999    }
1000  }
1001
1002  if (Subtarget->hasSSE2()) {
1003    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
1004    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
1005
1006    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
1007    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
1008
1009    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
1010    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
1011
1012    if (Subtarget->hasAVX2()) {
1013      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
1014      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
1015
1016      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
1017      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
1018
1019      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1020    } else {
1021      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1022      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1023
1024      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1025      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1026
1027      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1028    }
1029  }
1030
1031  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1032    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1033    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1034    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1035    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1036    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1037    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1038
1039    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1040    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1041    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1042
1043    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1044    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1045    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1046    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1047    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1048    setOperationAction(ISD::FFLOOR,             MVT::v8f32, Legal);
1049    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1050    setOperationAction(ISD::FABS,               MVT::v8f32, Custom);
1051
1052    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1053    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1054    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1055    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1056    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1057    setOperationAction(ISD::FFLOOR,             MVT::v4f64, Legal);
1058    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1059    setOperationAction(ISD::FABS,               MVT::v4f64, Custom);
1060
1061    setOperationAction(ISD::TRUNCATE,           MVT::v8i16, Custom);
1062
1063    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i16, Custom);
1064
1065    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1066    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1067    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1068
1069    setLoadExtAction(ISD::EXTLOAD,              MVT::v4f32, Legal);
1070
1071    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1072    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1073
1074    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1075    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1076
1077    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1078    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1079
1080    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1081    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1082    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1083    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1084
1085    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1086    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1087    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1088
1089    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1090    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1091    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1092    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1093
1094    if (Subtarget->hasFMA() || Subtarget->hasFMA4()) {
1095      setOperationAction(ISD::FMA,             MVT::v8f32, Custom);
1096      setOperationAction(ISD::FMA,             MVT::v4f64, Custom);
1097      setOperationAction(ISD::FMA,             MVT::v4f32, Custom);
1098      setOperationAction(ISD::FMA,             MVT::v2f64, Custom);
1099      setOperationAction(ISD::FMA,             MVT::f32, Custom);
1100      setOperationAction(ISD::FMA,             MVT::f64, Custom);
1101    }
1102
1103    if (Subtarget->hasAVX2()) {
1104      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1105      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1106      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1107      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1108
1109      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1110      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1111      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1112      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1113
1114      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1116      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1117      // Don't lower v32i8 because there is no 128-bit byte mul
1118
1119      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1120
1121      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1122      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1123
1124      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1125      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1126
1127      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1128    } else {
1129      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1130      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1131      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1132      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1133
1134      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1135      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1136      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1137      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1138
1139      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1140      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1141      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1142      // Don't lower v32i8 because there is no 128-bit byte mul
1143
1144      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1145      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1146
1147      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1148      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1149
1150      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1151    }
1152
1153    // Custom lower several nodes for 256-bit types.
1154    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1155             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1156      MVT VT = (MVT::SimpleValueType)i;
1157
1158      // Extract subvector is special because the value type
1159      // (result) is 128-bit but the source is 256-bit wide.
1160      if (VT.is128BitVector())
1161        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1162
1163      // Do not attempt to custom lower other non-256-bit vectors
1164      if (!VT.is256BitVector())
1165        continue;
1166
1167      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1168      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1169      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1170      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1171      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1172      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1173      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1174    }
1175
1176    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1177    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1178      MVT VT = (MVT::SimpleValueType)i;
1179
1180      // Do not attempt to promote non-256-bit vectors
1181      if (!VT.is256BitVector())
1182        continue;
1183
1184      setOperationAction(ISD::AND,    VT, Promote);
1185      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1186      setOperationAction(ISD::OR,     VT, Promote);
1187      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1188      setOperationAction(ISD::XOR,    VT, Promote);
1189      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1190      setOperationAction(ISD::LOAD,   VT, Promote);
1191      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1192      setOperationAction(ISD::SELECT, VT, Promote);
1193      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1194    }
1195  }
1196
1197  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1198  // of this type with custom code.
1199  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1200           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1201    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1202                       Custom);
1203  }
1204
1205  // We want to custom lower some of our intrinsics.
1206  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1207  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1208
1209
1210  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1211  // handle type legalization for these operations here.
1212  //
1213  // FIXME: We really should do custom legalization for addition and
1214  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1215  // than generic legalization for 64-bit multiplication-with-overflow, though.
1216  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1217    // Add/Sub/Mul with overflow operations are custom lowered.
1218    MVT VT = IntVTs[i];
1219    setOperationAction(ISD::SADDO, VT, Custom);
1220    setOperationAction(ISD::UADDO, VT, Custom);
1221    setOperationAction(ISD::SSUBO, VT, Custom);
1222    setOperationAction(ISD::USUBO, VT, Custom);
1223    setOperationAction(ISD::SMULO, VT, Custom);
1224    setOperationAction(ISD::UMULO, VT, Custom);
1225  }
1226
1227  // There are no 8-bit 3-address imul/mul instructions
1228  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1229  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1230
1231  if (!Subtarget->is64Bit()) {
1232    // These libcalls are not available in 32-bit.
1233    setLibcallName(RTLIB::SHL_I128, 0);
1234    setLibcallName(RTLIB::SRL_I128, 0);
1235    setLibcallName(RTLIB::SRA_I128, 0);
1236  }
1237
1238  // We have target-specific dag combine patterns for the following nodes:
1239  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1240  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1241  setTargetDAGCombine(ISD::VSELECT);
1242  setTargetDAGCombine(ISD::SELECT);
1243  setTargetDAGCombine(ISD::SHL);
1244  setTargetDAGCombine(ISD::SRA);
1245  setTargetDAGCombine(ISD::SRL);
1246  setTargetDAGCombine(ISD::OR);
1247  setTargetDAGCombine(ISD::AND);
1248  setTargetDAGCombine(ISD::ADD);
1249  setTargetDAGCombine(ISD::FADD);
1250  setTargetDAGCombine(ISD::FSUB);
1251  setTargetDAGCombine(ISD::FMA);
1252  setTargetDAGCombine(ISD::SUB);
1253  setTargetDAGCombine(ISD::LOAD);
1254  setTargetDAGCombine(ISD::STORE);
1255  setTargetDAGCombine(ISD::ZERO_EXTEND);
1256  setTargetDAGCombine(ISD::ANY_EXTEND);
1257  setTargetDAGCombine(ISD::SIGN_EXTEND);
1258  setTargetDAGCombine(ISD::TRUNCATE);
1259  setTargetDAGCombine(ISD::UINT_TO_FP);
1260  setTargetDAGCombine(ISD::SINT_TO_FP);
1261  setTargetDAGCombine(ISD::SETCC);
1262  if (Subtarget->is64Bit())
1263    setTargetDAGCombine(ISD::MUL);
1264  setTargetDAGCombine(ISD::XOR);
1265
1266  computeRegisterProperties();
1267
1268  // On Darwin, -Os means optimize for size without hurting performance,
1269  // do not reduce the limit.
1270  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1271  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1272  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1273  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1274  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1275  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1276  setPrefLoopAlignment(4); // 2^4 bytes.
1277  benefitFromCodePlacementOpt = true;
1278
1279  // Predictable cmov don't hurt on atom because it's in-order.
1280  predictableSelectIsExpensive = !Subtarget->isAtom();
1281
1282  setPrefFunctionAlignment(4); // 2^4 bytes.
1283}
1284
1285
1286EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1287  if (!VT.isVector()) return MVT::i8;
1288  return VT.changeVectorElementTypeToInteger();
1289}
1290
1291
1292/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1293/// the desired ByVal argument alignment.
1294static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1295  if (MaxAlign == 16)
1296    return;
1297  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1298    if (VTy->getBitWidth() == 128)
1299      MaxAlign = 16;
1300  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1301    unsigned EltAlign = 0;
1302    getMaxByValAlign(ATy->getElementType(), EltAlign);
1303    if (EltAlign > MaxAlign)
1304      MaxAlign = EltAlign;
1305  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1306    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1307      unsigned EltAlign = 0;
1308      getMaxByValAlign(STy->getElementType(i), EltAlign);
1309      if (EltAlign > MaxAlign)
1310        MaxAlign = EltAlign;
1311      if (MaxAlign == 16)
1312        break;
1313    }
1314  }
1315}
1316
1317/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1318/// function arguments in the caller parameter area. For X86, aggregates
1319/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1320/// are at 4-byte boundaries.
1321unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1322  if (Subtarget->is64Bit()) {
1323    // Max of 8 and alignment of type.
1324    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1325    if (TyAlign > 8)
1326      return TyAlign;
1327    return 8;
1328  }
1329
1330  unsigned Align = 4;
1331  if (Subtarget->hasSSE1())
1332    getMaxByValAlign(Ty, Align);
1333  return Align;
1334}
1335
1336/// getOptimalMemOpType - Returns the target specific optimal type for load
1337/// and store operations as a result of memset, memcpy, and memmove
1338/// lowering. If DstAlign is zero that means it's safe to destination
1339/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1340/// means there isn't a need to check it against alignment requirement,
1341/// probably because the source does not need to be loaded. If
1342/// 'IsZeroVal' is true, that means it's safe to return a
1343/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1344/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1345/// constant so it does not need to be loaded.
1346/// It returns EVT::Other if the type should be determined using generic
1347/// target-independent logic.
1348EVT
1349X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1350                                       unsigned DstAlign, unsigned SrcAlign,
1351                                       bool IsZeroVal,
1352                                       bool MemcpyStrSrc,
1353                                       MachineFunction &MF) const {
1354  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1355  // linux.  This is because the stack realignment code can't handle certain
1356  // cases like PR2962.  This should be removed when PR2962 is fixed.
1357  const Function *F = MF.getFunction();
1358  if (IsZeroVal &&
1359      !F->getFnAttributes().hasAttribute(Attributes::NoImplicitFloat)) {
1360    if (Size >= 16 &&
1361        (Subtarget->isUnalignedMemAccessFast() ||
1362         ((DstAlign == 0 || DstAlign >= 16) &&
1363          (SrcAlign == 0 || SrcAlign >= 16))) &&
1364        Subtarget->getStackAlignment() >= 16) {
1365      if (Subtarget->getStackAlignment() >= 32) {
1366        if (Subtarget->hasAVX2())
1367          return MVT::v8i32;
1368        if (Subtarget->hasAVX())
1369          return MVT::v8f32;
1370      }
1371      if (Subtarget->hasSSE2())
1372        return MVT::v4i32;
1373      if (Subtarget->hasSSE1())
1374        return MVT::v4f32;
1375    } else if (!MemcpyStrSrc && Size >= 8 &&
1376               !Subtarget->is64Bit() &&
1377               Subtarget->getStackAlignment() >= 8 &&
1378               Subtarget->hasSSE2()) {
1379      // Do not use f64 to lower memcpy if source is string constant. It's
1380      // better to use i32 to avoid the loads.
1381      return MVT::f64;
1382    }
1383  }
1384  if (Subtarget->is64Bit() && Size >= 8)
1385    return MVT::i64;
1386  return MVT::i32;
1387}
1388
1389/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1390/// current function.  The returned value is a member of the
1391/// MachineJumpTableInfo::JTEntryKind enum.
1392unsigned X86TargetLowering::getJumpTableEncoding() const {
1393  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1394  // symbol.
1395  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1396      Subtarget->isPICStyleGOT())
1397    return MachineJumpTableInfo::EK_Custom32;
1398
1399  // Otherwise, use the normal jump table encoding heuristics.
1400  return TargetLowering::getJumpTableEncoding();
1401}
1402
1403const MCExpr *
1404X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1405                                             const MachineBasicBlock *MBB,
1406                                             unsigned uid,MCContext &Ctx) const{
1407  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1408         Subtarget->isPICStyleGOT());
1409  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1410  // entries.
1411  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1412                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1413}
1414
1415/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1416/// jumptable.
1417SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1418                                                    SelectionDAG &DAG) const {
1419  if (!Subtarget->is64Bit())
1420    // This doesn't have DebugLoc associated with it, but is not really the
1421    // same as a Register.
1422    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1423  return Table;
1424}
1425
1426/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1427/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1428/// MCExpr.
1429const MCExpr *X86TargetLowering::
1430getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1431                             MCContext &Ctx) const {
1432  // X86-64 uses RIP relative addressing based on the jump table label.
1433  if (Subtarget->isPICStyleRIPRel())
1434    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1435
1436  // Otherwise, the reference is relative to the PIC base.
1437  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1438}
1439
1440// FIXME: Why this routine is here? Move to RegInfo!
1441std::pair<const TargetRegisterClass*, uint8_t>
1442X86TargetLowering::findRepresentativeClass(EVT VT) const{
1443  const TargetRegisterClass *RRC = 0;
1444  uint8_t Cost = 1;
1445  switch (VT.getSimpleVT().SimpleTy) {
1446  default:
1447    return TargetLowering::findRepresentativeClass(VT);
1448  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1449    RRC = Subtarget->is64Bit() ?
1450      (const TargetRegisterClass*)&X86::GR64RegClass :
1451      (const TargetRegisterClass*)&X86::GR32RegClass;
1452    break;
1453  case MVT::x86mmx:
1454    RRC = &X86::VR64RegClass;
1455    break;
1456  case MVT::f32: case MVT::f64:
1457  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1458  case MVT::v4f32: case MVT::v2f64:
1459  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1460  case MVT::v4f64:
1461    RRC = &X86::VR128RegClass;
1462    break;
1463  }
1464  return std::make_pair(RRC, Cost);
1465}
1466
1467bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1468                                               unsigned &Offset) const {
1469  if (!Subtarget->isTargetLinux())
1470    return false;
1471
1472  if (Subtarget->is64Bit()) {
1473    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1474    Offset = 0x28;
1475    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1476      AddressSpace = 256;
1477    else
1478      AddressSpace = 257;
1479  } else {
1480    // %gs:0x14 on i386
1481    Offset = 0x14;
1482    AddressSpace = 256;
1483  }
1484  return true;
1485}
1486
1487
1488//===----------------------------------------------------------------------===//
1489//               Return Value Calling Convention Implementation
1490//===----------------------------------------------------------------------===//
1491
1492#include "X86GenCallingConv.inc"
1493
1494bool
1495X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1496                                  MachineFunction &MF, bool isVarArg,
1497                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1498                        LLVMContext &Context) const {
1499  SmallVector<CCValAssign, 16> RVLocs;
1500  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1501                 RVLocs, Context);
1502  return CCInfo.CheckReturn(Outs, RetCC_X86);
1503}
1504
1505SDValue
1506X86TargetLowering::LowerReturn(SDValue Chain,
1507                               CallingConv::ID CallConv, bool isVarArg,
1508                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1509                               const SmallVectorImpl<SDValue> &OutVals,
1510                               DebugLoc dl, SelectionDAG &DAG) const {
1511  MachineFunction &MF = DAG.getMachineFunction();
1512  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1513
1514  SmallVector<CCValAssign, 16> RVLocs;
1515  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1516                 RVLocs, *DAG.getContext());
1517  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1518
1519  // Add the regs to the liveout set for the function.
1520  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1521  for (unsigned i = 0; i != RVLocs.size(); ++i)
1522    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1523      MRI.addLiveOut(RVLocs[i].getLocReg());
1524
1525  SDValue Flag;
1526
1527  SmallVector<SDValue, 6> RetOps;
1528  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1529  // Operand #1 = Bytes To Pop
1530  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1531                   MVT::i16));
1532
1533  // Copy the result values into the output registers.
1534  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1535    CCValAssign &VA = RVLocs[i];
1536    assert(VA.isRegLoc() && "Can only return in registers!");
1537    SDValue ValToCopy = OutVals[i];
1538    EVT ValVT = ValToCopy.getValueType();
1539
1540    // Promote values to the appropriate types
1541    if (VA.getLocInfo() == CCValAssign::SExt)
1542      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1543    else if (VA.getLocInfo() == CCValAssign::ZExt)
1544      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1545    else if (VA.getLocInfo() == CCValAssign::AExt)
1546      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1547    else if (VA.getLocInfo() == CCValAssign::BCvt)
1548      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1549
1550    // If this is x86-64, and we disabled SSE, we can't return FP values,
1551    // or SSE or MMX vectors.
1552    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1553         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1554          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1555      report_fatal_error("SSE register return with SSE disabled");
1556    }
1557    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1558    // llvm-gcc has never done it right and no one has noticed, so this
1559    // should be OK for now.
1560    if (ValVT == MVT::f64 &&
1561        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1562      report_fatal_error("SSE2 register return with SSE2 disabled");
1563
1564    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1565    // the RET instruction and handled by the FP Stackifier.
1566    if (VA.getLocReg() == X86::ST0 ||
1567        VA.getLocReg() == X86::ST1) {
1568      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1569      // change the value to the FP stack register class.
1570      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1571        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1572      RetOps.push_back(ValToCopy);
1573      // Don't emit a copytoreg.
1574      continue;
1575    }
1576
1577    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1578    // which is returned in RAX / RDX.
1579    if (Subtarget->is64Bit()) {
1580      if (ValVT == MVT::x86mmx) {
1581        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1582          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1583          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1584                                  ValToCopy);
1585          // If we don't have SSE2 available, convert to v4f32 so the generated
1586          // register is legal.
1587          if (!Subtarget->hasSSE2())
1588            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1589        }
1590      }
1591    }
1592
1593    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1594    Flag = Chain.getValue(1);
1595  }
1596
1597  // The x86-64 ABI for returning structs by value requires that we copy
1598  // the sret argument into %rax for the return. We saved the argument into
1599  // a virtual register in the entry block, so now we copy the value out
1600  // and into %rax.
1601  if (Subtarget->is64Bit() &&
1602      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1603    MachineFunction &MF = DAG.getMachineFunction();
1604    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1605    unsigned Reg = FuncInfo->getSRetReturnReg();
1606    assert(Reg &&
1607           "SRetReturnReg should have been set in LowerFormalArguments().");
1608    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1609
1610    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1611    Flag = Chain.getValue(1);
1612
1613    // RAX now acts like a return value.
1614    MRI.addLiveOut(X86::RAX);
1615  }
1616
1617  RetOps[0] = Chain;  // Update chain.
1618
1619  // Add the flag if we have it.
1620  if (Flag.getNode())
1621    RetOps.push_back(Flag);
1622
1623  return DAG.getNode(X86ISD::RET_FLAG, dl,
1624                     MVT::Other, &RetOps[0], RetOps.size());
1625}
1626
1627bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1628  if (N->getNumValues() != 1)
1629    return false;
1630  if (!N->hasNUsesOfValue(1, 0))
1631    return false;
1632
1633  SDValue TCChain = Chain;
1634  SDNode *Copy = *N->use_begin();
1635  if (Copy->getOpcode() == ISD::CopyToReg) {
1636    // If the copy has a glue operand, we conservatively assume it isn't safe to
1637    // perform a tail call.
1638    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1639      return false;
1640    TCChain = Copy->getOperand(0);
1641  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1642    return false;
1643
1644  bool HasRet = false;
1645  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1646       UI != UE; ++UI) {
1647    if (UI->getOpcode() != X86ISD::RET_FLAG)
1648      return false;
1649    HasRet = true;
1650  }
1651
1652  if (!HasRet)
1653    return false;
1654
1655  Chain = TCChain;
1656  return true;
1657}
1658
1659EVT
1660X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1661                                            ISD::NodeType ExtendKind) const {
1662  MVT ReturnMVT;
1663  // TODO: Is this also valid on 32-bit?
1664  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1665    ReturnMVT = MVT::i8;
1666  else
1667    ReturnMVT = MVT::i32;
1668
1669  EVT MinVT = getRegisterType(Context, ReturnMVT);
1670  return VT.bitsLT(MinVT) ? MinVT : VT;
1671}
1672
1673/// LowerCallResult - Lower the result values of a call into the
1674/// appropriate copies out of appropriate physical registers.
1675///
1676SDValue
1677X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1678                                   CallingConv::ID CallConv, bool isVarArg,
1679                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1680                                   DebugLoc dl, SelectionDAG &DAG,
1681                                   SmallVectorImpl<SDValue> &InVals) const {
1682
1683  // Assign locations to each value returned by this call.
1684  SmallVector<CCValAssign, 16> RVLocs;
1685  bool Is64Bit = Subtarget->is64Bit();
1686  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1687                 getTargetMachine(), RVLocs, *DAG.getContext());
1688  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1689
1690  // Copy all of the result registers out of their specified physreg.
1691  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1692    CCValAssign &VA = RVLocs[i];
1693    EVT CopyVT = VA.getValVT();
1694
1695    // If this is x86-64, and we disabled SSE, we can't return FP values
1696    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1697        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1698      report_fatal_error("SSE register return with SSE disabled");
1699    }
1700
1701    SDValue Val;
1702
1703    // If this is a call to a function that returns an fp value on the floating
1704    // point stack, we must guarantee the value is popped from the stack, so
1705    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1706    // if the return value is not used. We use the FpPOP_RETVAL instruction
1707    // instead.
1708    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1709      // If we prefer to use the value in xmm registers, copy it out as f80 and
1710      // use a truncate to move it from fp stack reg to xmm reg.
1711      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1712      SDValue Ops[] = { Chain, InFlag };
1713      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1714                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1715      Val = Chain.getValue(0);
1716
1717      // Round the f80 to the right size, which also moves it to the appropriate
1718      // xmm register.
1719      if (CopyVT != VA.getValVT())
1720        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1721                          // This truncation won't change the value.
1722                          DAG.getIntPtrConstant(1));
1723    } else {
1724      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1725                                 CopyVT, InFlag).getValue(1);
1726      Val = Chain.getValue(0);
1727    }
1728    InFlag = Chain.getValue(2);
1729    InVals.push_back(Val);
1730  }
1731
1732  return Chain;
1733}
1734
1735
1736//===----------------------------------------------------------------------===//
1737//                C & StdCall & Fast Calling Convention implementation
1738//===----------------------------------------------------------------------===//
1739//  StdCall calling convention seems to be standard for many Windows' API
1740//  routines and around. It differs from C calling convention just a little:
1741//  callee should clean up the stack, not caller. Symbols should be also
1742//  decorated in some fancy way :) It doesn't support any vector arguments.
1743//  For info on fast calling convention see Fast Calling Convention (tail call)
1744//  implementation LowerX86_32FastCCCallTo.
1745
1746/// CallIsStructReturn - Determines whether a call uses struct return
1747/// semantics.
1748enum StructReturnType {
1749  NotStructReturn,
1750  RegStructReturn,
1751  StackStructReturn
1752};
1753static StructReturnType
1754callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1755  if (Outs.empty())
1756    return NotStructReturn;
1757
1758  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1759  if (!Flags.isSRet())
1760    return NotStructReturn;
1761  if (Flags.isInReg())
1762    return RegStructReturn;
1763  return StackStructReturn;
1764}
1765
1766/// ArgsAreStructReturn - Determines whether a function uses struct
1767/// return semantics.
1768static StructReturnType
1769argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1770  if (Ins.empty())
1771    return NotStructReturn;
1772
1773  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1774  if (!Flags.isSRet())
1775    return NotStructReturn;
1776  if (Flags.isInReg())
1777    return RegStructReturn;
1778  return StackStructReturn;
1779}
1780
1781/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1782/// by "Src" to address "Dst" with size and alignment information specified by
1783/// the specific parameter attribute. The copy will be passed as a byval
1784/// function parameter.
1785static SDValue
1786CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1787                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1788                          DebugLoc dl) {
1789  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1790
1791  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1792                       /*isVolatile*/false, /*AlwaysInline=*/true,
1793                       MachinePointerInfo(), MachinePointerInfo());
1794}
1795
1796/// IsTailCallConvention - Return true if the calling convention is one that
1797/// supports tail call optimization.
1798static bool IsTailCallConvention(CallingConv::ID CC) {
1799  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1800}
1801
1802bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1803  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1804    return false;
1805
1806  CallSite CS(CI);
1807  CallingConv::ID CalleeCC = CS.getCallingConv();
1808  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1809    return false;
1810
1811  return true;
1812}
1813
1814/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1815/// a tailcall target by changing its ABI.
1816static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1817                                   bool GuaranteedTailCallOpt) {
1818  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1819}
1820
1821SDValue
1822X86TargetLowering::LowerMemArgument(SDValue Chain,
1823                                    CallingConv::ID CallConv,
1824                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1825                                    DebugLoc dl, SelectionDAG &DAG,
1826                                    const CCValAssign &VA,
1827                                    MachineFrameInfo *MFI,
1828                                    unsigned i) const {
1829  // Create the nodes corresponding to a load from this parameter slot.
1830  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1831  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1832                              getTargetMachine().Options.GuaranteedTailCallOpt);
1833  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1834  EVT ValVT;
1835
1836  // If value is passed by pointer we have address passed instead of the value
1837  // itself.
1838  if (VA.getLocInfo() == CCValAssign::Indirect)
1839    ValVT = VA.getLocVT();
1840  else
1841    ValVT = VA.getValVT();
1842
1843  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1844  // changed with more analysis.
1845  // In case of tail call optimization mark all arguments mutable. Since they
1846  // could be overwritten by lowering of arguments in case of a tail call.
1847  if (Flags.isByVal()) {
1848    unsigned Bytes = Flags.getByValSize();
1849    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1850    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1851    return DAG.getFrameIndex(FI, getPointerTy());
1852  } else {
1853    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1854                                    VA.getLocMemOffset(), isImmutable);
1855    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1856    return DAG.getLoad(ValVT, dl, Chain, FIN,
1857                       MachinePointerInfo::getFixedStack(FI),
1858                       false, false, false, 0);
1859  }
1860}
1861
1862SDValue
1863X86TargetLowering::LowerFormalArguments(SDValue Chain,
1864                                        CallingConv::ID CallConv,
1865                                        bool isVarArg,
1866                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1867                                        DebugLoc dl,
1868                                        SelectionDAG &DAG,
1869                                        SmallVectorImpl<SDValue> &InVals)
1870                                          const {
1871  MachineFunction &MF = DAG.getMachineFunction();
1872  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1873
1874  const Function* Fn = MF.getFunction();
1875  if (Fn->hasExternalLinkage() &&
1876      Subtarget->isTargetCygMing() &&
1877      Fn->getName() == "main")
1878    FuncInfo->setForceFramePointer(true);
1879
1880  MachineFrameInfo *MFI = MF.getFrameInfo();
1881  bool Is64Bit = Subtarget->is64Bit();
1882  bool IsWindows = Subtarget->isTargetWindows();
1883  bool IsWin64 = Subtarget->isTargetWin64();
1884
1885  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1886         "Var args not supported with calling convention fastcc or ghc");
1887
1888  // Assign locations to all of the incoming arguments.
1889  SmallVector<CCValAssign, 16> ArgLocs;
1890  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1891                 ArgLocs, *DAG.getContext());
1892
1893  // Allocate shadow area for Win64
1894  if (IsWin64) {
1895    CCInfo.AllocateStack(32, 8);
1896  }
1897
1898  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1899
1900  unsigned LastVal = ~0U;
1901  SDValue ArgValue;
1902  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1903    CCValAssign &VA = ArgLocs[i];
1904    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1905    // places.
1906    assert(VA.getValNo() != LastVal &&
1907           "Don't support value assigned to multiple locs yet");
1908    (void)LastVal;
1909    LastVal = VA.getValNo();
1910
1911    if (VA.isRegLoc()) {
1912      EVT RegVT = VA.getLocVT();
1913      const TargetRegisterClass *RC;
1914      if (RegVT == MVT::i32)
1915        RC = &X86::GR32RegClass;
1916      else if (Is64Bit && RegVT == MVT::i64)
1917        RC = &X86::GR64RegClass;
1918      else if (RegVT == MVT::f32)
1919        RC = &X86::FR32RegClass;
1920      else if (RegVT == MVT::f64)
1921        RC = &X86::FR64RegClass;
1922      else if (RegVT.is256BitVector())
1923        RC = &X86::VR256RegClass;
1924      else if (RegVT.is128BitVector())
1925        RC = &X86::VR128RegClass;
1926      else if (RegVT == MVT::x86mmx)
1927        RC = &X86::VR64RegClass;
1928      else
1929        llvm_unreachable("Unknown argument type!");
1930
1931      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1932      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1933
1934      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1935      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1936      // right size.
1937      if (VA.getLocInfo() == CCValAssign::SExt)
1938        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1939                               DAG.getValueType(VA.getValVT()));
1940      else if (VA.getLocInfo() == CCValAssign::ZExt)
1941        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1942                               DAG.getValueType(VA.getValVT()));
1943      else if (VA.getLocInfo() == CCValAssign::BCvt)
1944        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1945
1946      if (VA.isExtInLoc()) {
1947        // Handle MMX values passed in XMM regs.
1948        if (RegVT.isVector()) {
1949          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1950                                 ArgValue);
1951        } else
1952          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1953      }
1954    } else {
1955      assert(VA.isMemLoc());
1956      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1957    }
1958
1959    // If value is passed via pointer - do a load.
1960    if (VA.getLocInfo() == CCValAssign::Indirect)
1961      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1962                             MachinePointerInfo(), false, false, false, 0);
1963
1964    InVals.push_back(ArgValue);
1965  }
1966
1967  // The x86-64 ABI for returning structs by value requires that we copy
1968  // the sret argument into %rax for the return. Save the argument into
1969  // a virtual register so that we can access it from the return points.
1970  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1971    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1972    unsigned Reg = FuncInfo->getSRetReturnReg();
1973    if (!Reg) {
1974      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1975      FuncInfo->setSRetReturnReg(Reg);
1976    }
1977    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1978    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1979  }
1980
1981  unsigned StackSize = CCInfo.getNextStackOffset();
1982  // Align stack specially for tail calls.
1983  if (FuncIsMadeTailCallSafe(CallConv,
1984                             MF.getTarget().Options.GuaranteedTailCallOpt))
1985    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1986
1987  // If the function takes variable number of arguments, make a frame index for
1988  // the start of the first vararg value... for expansion of llvm.va_start.
1989  if (isVarArg) {
1990    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1991                    CallConv != CallingConv::X86_ThisCall)) {
1992      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1993    }
1994    if (Is64Bit) {
1995      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1996
1997      // FIXME: We should really autogenerate these arrays
1998      static const uint16_t GPR64ArgRegsWin64[] = {
1999        X86::RCX, X86::RDX, X86::R8,  X86::R9
2000      };
2001      static const uint16_t GPR64ArgRegs64Bit[] = {
2002        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
2003      };
2004      static const uint16_t XMMArgRegs64Bit[] = {
2005        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2006        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2007      };
2008      const uint16_t *GPR64ArgRegs;
2009      unsigned NumXMMRegs = 0;
2010
2011      if (IsWin64) {
2012        // The XMM registers which might contain var arg parameters are shadowed
2013        // in their paired GPR.  So we only need to save the GPR to their home
2014        // slots.
2015        TotalNumIntRegs = 4;
2016        GPR64ArgRegs = GPR64ArgRegsWin64;
2017      } else {
2018        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
2019        GPR64ArgRegs = GPR64ArgRegs64Bit;
2020
2021        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
2022                                                TotalNumXMMRegs);
2023      }
2024      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
2025                                                       TotalNumIntRegs);
2026
2027      bool NoImplicitFloatOps = Fn->getFnAttributes().
2028        hasAttribute(Attributes::NoImplicitFloat);
2029      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
2030             "SSE register cannot be used when SSE is disabled!");
2031      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
2032               NoImplicitFloatOps) &&
2033             "SSE register cannot be used when SSE is disabled!");
2034      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
2035          !Subtarget->hasSSE1())
2036        // Kernel mode asks for SSE to be disabled, so don't push them
2037        // on the stack.
2038        TotalNumXMMRegs = 0;
2039
2040      if (IsWin64) {
2041        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2042        // Get to the caller-allocated home save location.  Add 8 to account
2043        // for the return address.
2044        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2045        FuncInfo->setRegSaveFrameIndex(
2046          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2047        // Fixup to set vararg frame on shadow area (4 x i64).
2048        if (NumIntRegs < 4)
2049          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2050      } else {
2051        // For X86-64, if there are vararg parameters that are passed via
2052        // registers, then we must store them to their spots on the stack so
2053        // they may be loaded by deferencing the result of va_next.
2054        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2055        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2056        FuncInfo->setRegSaveFrameIndex(
2057          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2058                               false));
2059      }
2060
2061      // Store the integer parameter registers.
2062      SmallVector<SDValue, 8> MemOps;
2063      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2064                                        getPointerTy());
2065      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2066      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2067        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2068                                  DAG.getIntPtrConstant(Offset));
2069        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2070                                     &X86::GR64RegClass);
2071        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2072        SDValue Store =
2073          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2074                       MachinePointerInfo::getFixedStack(
2075                         FuncInfo->getRegSaveFrameIndex(), Offset),
2076                       false, false, 0);
2077        MemOps.push_back(Store);
2078        Offset += 8;
2079      }
2080
2081      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2082        // Now store the XMM (fp + vector) parameter registers.
2083        SmallVector<SDValue, 11> SaveXMMOps;
2084        SaveXMMOps.push_back(Chain);
2085
2086        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2087        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2088        SaveXMMOps.push_back(ALVal);
2089
2090        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2091                               FuncInfo->getRegSaveFrameIndex()));
2092        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2093                               FuncInfo->getVarArgsFPOffset()));
2094
2095        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2096          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2097                                       &X86::VR128RegClass);
2098          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2099          SaveXMMOps.push_back(Val);
2100        }
2101        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2102                                     MVT::Other,
2103                                     &SaveXMMOps[0], SaveXMMOps.size()));
2104      }
2105
2106      if (!MemOps.empty())
2107        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2108                            &MemOps[0], MemOps.size());
2109    }
2110  }
2111
2112  // Some CCs need callee pop.
2113  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2114                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2115    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2116  } else {
2117    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2118    // If this is an sret function, the return should pop the hidden pointer.
2119    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2120        argsAreStructReturn(Ins) == StackStructReturn)
2121      FuncInfo->setBytesToPopOnReturn(4);
2122  }
2123
2124  if (!Is64Bit) {
2125    // RegSaveFrameIndex is X86-64 only.
2126    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2127    if (CallConv == CallingConv::X86_FastCall ||
2128        CallConv == CallingConv::X86_ThisCall)
2129      // fastcc functions can't have varargs.
2130      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2131  }
2132
2133  FuncInfo->setArgumentStackSize(StackSize);
2134
2135  return Chain;
2136}
2137
2138SDValue
2139X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2140                                    SDValue StackPtr, SDValue Arg,
2141                                    DebugLoc dl, SelectionDAG &DAG,
2142                                    const CCValAssign &VA,
2143                                    ISD::ArgFlagsTy Flags) const {
2144  unsigned LocMemOffset = VA.getLocMemOffset();
2145  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2146  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2147  if (Flags.isByVal())
2148    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2149
2150  return DAG.getStore(Chain, dl, Arg, PtrOff,
2151                      MachinePointerInfo::getStack(LocMemOffset),
2152                      false, false, 0);
2153}
2154
2155/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2156/// optimization is performed and it is required.
2157SDValue
2158X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2159                                           SDValue &OutRetAddr, SDValue Chain,
2160                                           bool IsTailCall, bool Is64Bit,
2161                                           int FPDiff, DebugLoc dl) const {
2162  // Adjust the Return address stack slot.
2163  EVT VT = getPointerTy();
2164  OutRetAddr = getReturnAddressFrameIndex(DAG);
2165
2166  // Load the "old" Return address.
2167  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2168                           false, false, false, 0);
2169  return SDValue(OutRetAddr.getNode(), 1);
2170}
2171
2172/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2173/// optimization is performed and it is required (FPDiff!=0).
2174static SDValue
2175EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2176                         SDValue Chain, SDValue RetAddrFrIdx,
2177                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2178  // Store the return address to the appropriate stack slot.
2179  if (!FPDiff) return Chain;
2180  // Calculate the new stack slot for the return address.
2181  int SlotSize = Is64Bit ? 8 : 4;
2182  int NewReturnAddrFI =
2183    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2184  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2185  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2186  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2187                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2188                       false, false, 0);
2189  return Chain;
2190}
2191
2192SDValue
2193X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2194                             SmallVectorImpl<SDValue> &InVals) const {
2195  SelectionDAG &DAG                     = CLI.DAG;
2196  DebugLoc &dl                          = CLI.DL;
2197  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2198  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2199  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2200  SDValue Chain                         = CLI.Chain;
2201  SDValue Callee                        = CLI.Callee;
2202  CallingConv::ID CallConv              = CLI.CallConv;
2203  bool &isTailCall                      = CLI.IsTailCall;
2204  bool isVarArg                         = CLI.IsVarArg;
2205
2206  MachineFunction &MF = DAG.getMachineFunction();
2207  bool Is64Bit        = Subtarget->is64Bit();
2208  bool IsWin64        = Subtarget->isTargetWin64();
2209  bool IsWindows      = Subtarget->isTargetWindows();
2210  StructReturnType SR = callIsStructReturn(Outs);
2211  bool IsSibcall      = false;
2212
2213  if (MF.getTarget().Options.DisableTailCalls)
2214    isTailCall = false;
2215
2216  if (isTailCall) {
2217    // Check if it's really possible to do a tail call.
2218    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2219                    isVarArg, SR != NotStructReturn,
2220                    MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
2221                    Outs, OutVals, Ins, DAG);
2222
2223    // Sibcalls are automatically detected tailcalls which do not require
2224    // ABI changes.
2225    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2226      IsSibcall = true;
2227
2228    if (isTailCall)
2229      ++NumTailCalls;
2230  }
2231
2232  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2233         "Var args not supported with calling convention fastcc or ghc");
2234
2235  // Analyze operands of the call, assigning locations to each operand.
2236  SmallVector<CCValAssign, 16> ArgLocs;
2237  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2238                 ArgLocs, *DAG.getContext());
2239
2240  // Allocate shadow area for Win64
2241  if (IsWin64) {
2242    CCInfo.AllocateStack(32, 8);
2243  }
2244
2245  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2246
2247  // Get a count of how many bytes are to be pushed on the stack.
2248  unsigned NumBytes = CCInfo.getNextStackOffset();
2249  if (IsSibcall)
2250    // This is a sibcall. The memory operands are available in caller's
2251    // own caller's stack.
2252    NumBytes = 0;
2253  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2254           IsTailCallConvention(CallConv))
2255    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2256
2257  int FPDiff = 0;
2258  if (isTailCall && !IsSibcall) {
2259    // Lower arguments at fp - stackoffset + fpdiff.
2260    unsigned NumBytesCallerPushed =
2261      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2262    FPDiff = NumBytesCallerPushed - NumBytes;
2263
2264    // Set the delta of movement of the returnaddr stackslot.
2265    // But only set if delta is greater than previous delta.
2266    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2267      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2268  }
2269
2270  if (!IsSibcall)
2271    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2272
2273  SDValue RetAddrFrIdx;
2274  // Load return address for tail calls.
2275  if (isTailCall && FPDiff)
2276    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2277                                    Is64Bit, FPDiff, dl);
2278
2279  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2280  SmallVector<SDValue, 8> MemOpChains;
2281  SDValue StackPtr;
2282
2283  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2284  // of tail call optimization arguments are handle later.
2285  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2286    CCValAssign &VA = ArgLocs[i];
2287    EVT RegVT = VA.getLocVT();
2288    SDValue Arg = OutVals[i];
2289    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2290    bool isByVal = Flags.isByVal();
2291
2292    // Promote the value if needed.
2293    switch (VA.getLocInfo()) {
2294    default: llvm_unreachable("Unknown loc info!");
2295    case CCValAssign::Full: break;
2296    case CCValAssign::SExt:
2297      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2298      break;
2299    case CCValAssign::ZExt:
2300      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2301      break;
2302    case CCValAssign::AExt:
2303      if (RegVT.is128BitVector()) {
2304        // Special case: passing MMX values in XMM registers.
2305        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2306        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2307        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2308      } else
2309        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2310      break;
2311    case CCValAssign::BCvt:
2312      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2313      break;
2314    case CCValAssign::Indirect: {
2315      // Store the argument.
2316      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2317      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2318      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2319                           MachinePointerInfo::getFixedStack(FI),
2320                           false, false, 0);
2321      Arg = SpillSlot;
2322      break;
2323    }
2324    }
2325
2326    if (VA.isRegLoc()) {
2327      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2328      if (isVarArg && IsWin64) {
2329        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2330        // shadow reg if callee is a varargs function.
2331        unsigned ShadowReg = 0;
2332        switch (VA.getLocReg()) {
2333        case X86::XMM0: ShadowReg = X86::RCX; break;
2334        case X86::XMM1: ShadowReg = X86::RDX; break;
2335        case X86::XMM2: ShadowReg = X86::R8; break;
2336        case X86::XMM3: ShadowReg = X86::R9; break;
2337        }
2338        if (ShadowReg)
2339          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2340      }
2341    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2342      assert(VA.isMemLoc());
2343      if (StackPtr.getNode() == 0)
2344        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2345      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2346                                             dl, DAG, VA, Flags));
2347    }
2348  }
2349
2350  if (!MemOpChains.empty())
2351    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2352                        &MemOpChains[0], MemOpChains.size());
2353
2354  if (Subtarget->isPICStyleGOT()) {
2355    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2356    // GOT pointer.
2357    if (!isTailCall) {
2358      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2359               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2360    } else {
2361      // If we are tail calling and generating PIC/GOT style code load the
2362      // address of the callee into ECX. The value in ecx is used as target of
2363      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2364      // for tail calls on PIC/GOT architectures. Normally we would just put the
2365      // address of GOT into ebx and then call target@PLT. But for tail calls
2366      // ebx would be restored (since ebx is callee saved) before jumping to the
2367      // target@PLT.
2368
2369      // Note: The actual moving to ECX is done further down.
2370      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2371      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2372          !G->getGlobal()->hasProtectedVisibility())
2373        Callee = LowerGlobalAddress(Callee, DAG);
2374      else if (isa<ExternalSymbolSDNode>(Callee))
2375        Callee = LowerExternalSymbol(Callee, DAG);
2376    }
2377  }
2378
2379  if (Is64Bit && isVarArg && !IsWin64) {
2380    // From AMD64 ABI document:
2381    // For calls that may call functions that use varargs or stdargs
2382    // (prototype-less calls or calls to functions containing ellipsis (...) in
2383    // the declaration) %al is used as hidden argument to specify the number
2384    // of SSE registers used. The contents of %al do not need to match exactly
2385    // the number of registers, but must be an ubound on the number of SSE
2386    // registers used and is in the range 0 - 8 inclusive.
2387
2388    // Count the number of XMM registers allocated.
2389    static const uint16_t XMMArgRegs[] = {
2390      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2391      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2392    };
2393    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2394    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2395           && "SSE registers cannot be used when SSE is disabled");
2396
2397    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2398                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2399  }
2400
2401  // For tail calls lower the arguments to the 'real' stack slot.
2402  if (isTailCall) {
2403    // Force all the incoming stack arguments to be loaded from the stack
2404    // before any new outgoing arguments are stored to the stack, because the
2405    // outgoing stack slots may alias the incoming argument stack slots, and
2406    // the alias isn't otherwise explicit. This is slightly more conservative
2407    // than necessary, because it means that each store effectively depends
2408    // on every argument instead of just those arguments it would clobber.
2409    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2410
2411    SmallVector<SDValue, 8> MemOpChains2;
2412    SDValue FIN;
2413    int FI = 0;
2414    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2415      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2416        CCValAssign &VA = ArgLocs[i];
2417        if (VA.isRegLoc())
2418          continue;
2419        assert(VA.isMemLoc());
2420        SDValue Arg = OutVals[i];
2421        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2422        // Create frame index.
2423        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2424        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2425        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2426        FIN = DAG.getFrameIndex(FI, getPointerTy());
2427
2428        if (Flags.isByVal()) {
2429          // Copy relative to framepointer.
2430          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2431          if (StackPtr.getNode() == 0)
2432            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2433                                          getPointerTy());
2434          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2435
2436          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2437                                                           ArgChain,
2438                                                           Flags, DAG, dl));
2439        } else {
2440          // Store relative to framepointer.
2441          MemOpChains2.push_back(
2442            DAG.getStore(ArgChain, dl, Arg, FIN,
2443                         MachinePointerInfo::getFixedStack(FI),
2444                         false, false, 0));
2445        }
2446      }
2447    }
2448
2449    if (!MemOpChains2.empty())
2450      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2451                          &MemOpChains2[0], MemOpChains2.size());
2452
2453    // Store the return address to the appropriate stack slot.
2454    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2455                                     FPDiff, dl);
2456  }
2457
2458  // Build a sequence of copy-to-reg nodes chained together with token chain
2459  // and flag operands which copy the outgoing args into registers.
2460  SDValue InFlag;
2461  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2462    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2463                             RegsToPass[i].second, InFlag);
2464    InFlag = Chain.getValue(1);
2465  }
2466
2467  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2468    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2469    // In the 64-bit large code model, we have to make all calls
2470    // through a register, since the call instruction's 32-bit
2471    // pc-relative offset may not be large enough to hold the whole
2472    // address.
2473  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2474    // If the callee is a GlobalAddress node (quite common, every direct call
2475    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2476    // it.
2477
2478    // We should use extra load for direct calls to dllimported functions in
2479    // non-JIT mode.
2480    const GlobalValue *GV = G->getGlobal();
2481    if (!GV->hasDLLImportLinkage()) {
2482      unsigned char OpFlags = 0;
2483      bool ExtraLoad = false;
2484      unsigned WrapperKind = ISD::DELETED_NODE;
2485
2486      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2487      // external symbols most go through the PLT in PIC mode.  If the symbol
2488      // has hidden or protected visibility, or if it is static or local, then
2489      // we don't need to use the PLT - we can directly call it.
2490      if (Subtarget->isTargetELF() &&
2491          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2492          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2493        OpFlags = X86II::MO_PLT;
2494      } else if (Subtarget->isPICStyleStubAny() &&
2495                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2496                 (!Subtarget->getTargetTriple().isMacOSX() ||
2497                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2498        // PC-relative references to external symbols should go through $stub,
2499        // unless we're building with the leopard linker or later, which
2500        // automatically synthesizes these stubs.
2501        OpFlags = X86II::MO_DARWIN_STUB;
2502      } else if (Subtarget->isPICStyleRIPRel() &&
2503                 isa<Function>(GV) &&
2504                 cast<Function>(GV)->getFnAttributes().
2505                   hasAttribute(Attributes::NonLazyBind)) {
2506        // If the function is marked as non-lazy, generate an indirect call
2507        // which loads from the GOT directly. This avoids runtime overhead
2508        // at the cost of eager binding (and one extra byte of encoding).
2509        OpFlags = X86II::MO_GOTPCREL;
2510        WrapperKind = X86ISD::WrapperRIP;
2511        ExtraLoad = true;
2512      }
2513
2514      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2515                                          G->getOffset(), OpFlags);
2516
2517      // Add a wrapper if needed.
2518      if (WrapperKind != ISD::DELETED_NODE)
2519        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2520      // Add extra indirection if needed.
2521      if (ExtraLoad)
2522        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2523                             MachinePointerInfo::getGOT(),
2524                             false, false, false, 0);
2525    }
2526  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2527    unsigned char OpFlags = 0;
2528
2529    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2530    // external symbols should go through the PLT.
2531    if (Subtarget->isTargetELF() &&
2532        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2533      OpFlags = X86II::MO_PLT;
2534    } else if (Subtarget->isPICStyleStubAny() &&
2535               (!Subtarget->getTargetTriple().isMacOSX() ||
2536                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2537      // PC-relative references to external symbols should go through $stub,
2538      // unless we're building with the leopard linker or later, which
2539      // automatically synthesizes these stubs.
2540      OpFlags = X86II::MO_DARWIN_STUB;
2541    }
2542
2543    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2544                                         OpFlags);
2545  }
2546
2547  // Returns a chain & a flag for retval copy to use.
2548  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2549  SmallVector<SDValue, 8> Ops;
2550
2551  if (!IsSibcall && isTailCall) {
2552    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2553                           DAG.getIntPtrConstant(0, true), InFlag);
2554    InFlag = Chain.getValue(1);
2555  }
2556
2557  Ops.push_back(Chain);
2558  Ops.push_back(Callee);
2559
2560  if (isTailCall)
2561    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2562
2563  // Add argument registers to the end of the list so that they are known live
2564  // into the call.
2565  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2566    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2567                                  RegsToPass[i].second.getValueType()));
2568
2569  // Add a register mask operand representing the call-preserved registers.
2570  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2571  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2572  assert(Mask && "Missing call preserved mask for calling convention");
2573  Ops.push_back(DAG.getRegisterMask(Mask));
2574
2575  if (InFlag.getNode())
2576    Ops.push_back(InFlag);
2577
2578  if (isTailCall) {
2579    // We used to do:
2580    //// If this is the first return lowered for this function, add the regs
2581    //// to the liveout set for the function.
2582    // This isn't right, although it's probably harmless on x86; liveouts
2583    // should be computed from returns not tail calls.  Consider a void
2584    // function making a tail call to a function returning int.
2585    return DAG.getNode(X86ISD::TC_RETURN, dl,
2586                       NodeTys, &Ops[0], Ops.size());
2587  }
2588
2589  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2590  InFlag = Chain.getValue(1);
2591
2592  // Create the CALLSEQ_END node.
2593  unsigned NumBytesForCalleeToPush;
2594  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2595                       getTargetMachine().Options.GuaranteedTailCallOpt))
2596    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2597  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2598           SR == StackStructReturn)
2599    // If this is a call to a struct-return function, the callee
2600    // pops the hidden struct pointer, so we have to push it back.
2601    // This is common for Darwin/X86, Linux & Mingw32 targets.
2602    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2603    NumBytesForCalleeToPush = 4;
2604  else
2605    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2606
2607  // Returns a flag for retval copy to use.
2608  if (!IsSibcall) {
2609    Chain = DAG.getCALLSEQ_END(Chain,
2610                               DAG.getIntPtrConstant(NumBytes, true),
2611                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2612                                                     true),
2613                               InFlag);
2614    InFlag = Chain.getValue(1);
2615  }
2616
2617  // Handle result values, copying them out of physregs into vregs that we
2618  // return.
2619  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2620                         Ins, dl, DAG, InVals);
2621}
2622
2623
2624//===----------------------------------------------------------------------===//
2625//                Fast Calling Convention (tail call) implementation
2626//===----------------------------------------------------------------------===//
2627
2628//  Like std call, callee cleans arguments, convention except that ECX is
2629//  reserved for storing the tail called function address. Only 2 registers are
2630//  free for argument passing (inreg). Tail call optimization is performed
2631//  provided:
2632//                * tailcallopt is enabled
2633//                * caller/callee are fastcc
2634//  On X86_64 architecture with GOT-style position independent code only local
2635//  (within module) calls are supported at the moment.
2636//  To keep the stack aligned according to platform abi the function
2637//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2638//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2639//  If a tail called function callee has more arguments than the caller the
2640//  caller needs to make sure that there is room to move the RETADDR to. This is
2641//  achieved by reserving an area the size of the argument delta right after the
2642//  original REtADDR, but before the saved framepointer or the spilled registers
2643//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2644//  stack layout:
2645//    arg1
2646//    arg2
2647//    RETADDR
2648//    [ new RETADDR
2649//      move area ]
2650//    (possible EBP)
2651//    ESI
2652//    EDI
2653//    local1 ..
2654
2655/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2656/// for a 16 byte align requirement.
2657unsigned
2658X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2659                                               SelectionDAG& DAG) const {
2660  MachineFunction &MF = DAG.getMachineFunction();
2661  const TargetMachine &TM = MF.getTarget();
2662  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2663  unsigned StackAlignment = TFI.getStackAlignment();
2664  uint64_t AlignMask = StackAlignment - 1;
2665  int64_t Offset = StackSize;
2666  uint64_t SlotSize = TD->getPointerSize(0);
2667  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2668    // Number smaller than 12 so just add the difference.
2669    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2670  } else {
2671    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2672    Offset = ((~AlignMask) & Offset) + StackAlignment +
2673      (StackAlignment-SlotSize);
2674  }
2675  return Offset;
2676}
2677
2678/// MatchingStackOffset - Return true if the given stack call argument is
2679/// already available in the same position (relatively) of the caller's
2680/// incoming argument stack.
2681static
2682bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2683                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2684                         const X86InstrInfo *TII) {
2685  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2686  int FI = INT_MAX;
2687  if (Arg.getOpcode() == ISD::CopyFromReg) {
2688    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2689    if (!TargetRegisterInfo::isVirtualRegister(VR))
2690      return false;
2691    MachineInstr *Def = MRI->getVRegDef(VR);
2692    if (!Def)
2693      return false;
2694    if (!Flags.isByVal()) {
2695      if (!TII->isLoadFromStackSlot(Def, FI))
2696        return false;
2697    } else {
2698      unsigned Opcode = Def->getOpcode();
2699      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2700          Def->getOperand(1).isFI()) {
2701        FI = Def->getOperand(1).getIndex();
2702        Bytes = Flags.getByValSize();
2703      } else
2704        return false;
2705    }
2706  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2707    if (Flags.isByVal())
2708      // ByVal argument is passed in as a pointer but it's now being
2709      // dereferenced. e.g.
2710      // define @foo(%struct.X* %A) {
2711      //   tail call @bar(%struct.X* byval %A)
2712      // }
2713      return false;
2714    SDValue Ptr = Ld->getBasePtr();
2715    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2716    if (!FINode)
2717      return false;
2718    FI = FINode->getIndex();
2719  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2720    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2721    FI = FINode->getIndex();
2722    Bytes = Flags.getByValSize();
2723  } else
2724    return false;
2725
2726  assert(FI != INT_MAX);
2727  if (!MFI->isFixedObjectIndex(FI))
2728    return false;
2729  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2730}
2731
2732/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2733/// for tail call optimization. Targets which want to do tail call
2734/// optimization should implement this function.
2735bool
2736X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2737                                                     CallingConv::ID CalleeCC,
2738                                                     bool isVarArg,
2739                                                     bool isCalleeStructRet,
2740                                                     bool isCallerStructRet,
2741                                                     Type *RetTy,
2742                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2743                                    const SmallVectorImpl<SDValue> &OutVals,
2744                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2745                                                     SelectionDAG& DAG) const {
2746  if (!IsTailCallConvention(CalleeCC) &&
2747      CalleeCC != CallingConv::C)
2748    return false;
2749
2750  // If -tailcallopt is specified, make fastcc functions tail-callable.
2751  const MachineFunction &MF = DAG.getMachineFunction();
2752  const Function *CallerF = DAG.getMachineFunction().getFunction();
2753
2754  // If the function return type is x86_fp80 and the callee return type is not,
2755  // then the FP_EXTEND of the call result is not a nop. It's not safe to
2756  // perform a tailcall optimization here.
2757  if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
2758    return false;
2759
2760  CallingConv::ID CallerCC = CallerF->getCallingConv();
2761  bool CCMatch = CallerCC == CalleeCC;
2762
2763  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2764    if (IsTailCallConvention(CalleeCC) && CCMatch)
2765      return true;
2766    return false;
2767  }
2768
2769  // Look for obvious safe cases to perform tail call optimization that do not
2770  // require ABI changes. This is what gcc calls sibcall.
2771
2772  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2773  // emit a special epilogue.
2774  if (RegInfo->needsStackRealignment(MF))
2775    return false;
2776
2777  // Also avoid sibcall optimization if either caller or callee uses struct
2778  // return semantics.
2779  if (isCalleeStructRet || isCallerStructRet)
2780    return false;
2781
2782  // An stdcall caller is expected to clean up its arguments; the callee
2783  // isn't going to do that.
2784  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2785    return false;
2786
2787  // Do not sibcall optimize vararg calls unless all arguments are passed via
2788  // registers.
2789  if (isVarArg && !Outs.empty()) {
2790
2791    // Optimizing for varargs on Win64 is unlikely to be safe without
2792    // additional testing.
2793    if (Subtarget->isTargetWin64())
2794      return false;
2795
2796    SmallVector<CCValAssign, 16> ArgLocs;
2797    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2798                   getTargetMachine(), ArgLocs, *DAG.getContext());
2799
2800    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2801    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2802      if (!ArgLocs[i].isRegLoc())
2803        return false;
2804  }
2805
2806  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2807  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2808  // this into a sibcall.
2809  bool Unused = false;
2810  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2811    if (!Ins[i].Used) {
2812      Unused = true;
2813      break;
2814    }
2815  }
2816  if (Unused) {
2817    SmallVector<CCValAssign, 16> RVLocs;
2818    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2819                   getTargetMachine(), RVLocs, *DAG.getContext());
2820    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2821    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2822      CCValAssign &VA = RVLocs[i];
2823      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2824        return false;
2825    }
2826  }
2827
2828  // If the calling conventions do not match, then we'd better make sure the
2829  // results are returned in the same way as what the caller expects.
2830  if (!CCMatch) {
2831    SmallVector<CCValAssign, 16> RVLocs1;
2832    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2833                    getTargetMachine(), RVLocs1, *DAG.getContext());
2834    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2835
2836    SmallVector<CCValAssign, 16> RVLocs2;
2837    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2838                    getTargetMachine(), RVLocs2, *DAG.getContext());
2839    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2840
2841    if (RVLocs1.size() != RVLocs2.size())
2842      return false;
2843    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2844      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2845        return false;
2846      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2847        return false;
2848      if (RVLocs1[i].isRegLoc()) {
2849        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2850          return false;
2851      } else {
2852        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2853          return false;
2854      }
2855    }
2856  }
2857
2858  // If the callee takes no arguments then go on to check the results of the
2859  // call.
2860  if (!Outs.empty()) {
2861    // Check if stack adjustment is needed. For now, do not do this if any
2862    // argument is passed on the stack.
2863    SmallVector<CCValAssign, 16> ArgLocs;
2864    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2865                   getTargetMachine(), ArgLocs, *DAG.getContext());
2866
2867    // Allocate shadow area for Win64
2868    if (Subtarget->isTargetWin64()) {
2869      CCInfo.AllocateStack(32, 8);
2870    }
2871
2872    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2873    if (CCInfo.getNextStackOffset()) {
2874      MachineFunction &MF = DAG.getMachineFunction();
2875      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2876        return false;
2877
2878      // Check if the arguments are already laid out in the right way as
2879      // the caller's fixed stack objects.
2880      MachineFrameInfo *MFI = MF.getFrameInfo();
2881      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2882      const X86InstrInfo *TII =
2883        ((const X86TargetMachine&)getTargetMachine()).getInstrInfo();
2884      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2885        CCValAssign &VA = ArgLocs[i];
2886        SDValue Arg = OutVals[i];
2887        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2888        if (VA.getLocInfo() == CCValAssign::Indirect)
2889          return false;
2890        if (!VA.isRegLoc()) {
2891          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2892                                   MFI, MRI, TII))
2893            return false;
2894        }
2895      }
2896    }
2897
2898    // If the tailcall address may be in a register, then make sure it's
2899    // possible to register allocate for it. In 32-bit, the call address can
2900    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2901    // callee-saved registers are restored. These happen to be the same
2902    // registers used to pass 'inreg' arguments so watch out for those.
2903    if (!Subtarget->is64Bit() &&
2904        !isa<GlobalAddressSDNode>(Callee) &&
2905        !isa<ExternalSymbolSDNode>(Callee)) {
2906      unsigned NumInRegs = 0;
2907      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2908        CCValAssign &VA = ArgLocs[i];
2909        if (!VA.isRegLoc())
2910          continue;
2911        unsigned Reg = VA.getLocReg();
2912        switch (Reg) {
2913        default: break;
2914        case X86::EAX: case X86::EDX: case X86::ECX:
2915          if (++NumInRegs == 3)
2916            return false;
2917          break;
2918        }
2919      }
2920    }
2921  }
2922
2923  return true;
2924}
2925
2926FastISel *
2927X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2928                                  const TargetLibraryInfo *libInfo) const {
2929  return X86::createFastISel(funcInfo, libInfo);
2930}
2931
2932
2933//===----------------------------------------------------------------------===//
2934//                           Other Lowering Hooks
2935//===----------------------------------------------------------------------===//
2936
2937static bool MayFoldLoad(SDValue Op) {
2938  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2939}
2940
2941static bool MayFoldIntoStore(SDValue Op) {
2942  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2943}
2944
2945static bool isTargetShuffle(unsigned Opcode) {
2946  switch(Opcode) {
2947  default: return false;
2948  case X86ISD::PSHUFD:
2949  case X86ISD::PSHUFHW:
2950  case X86ISD::PSHUFLW:
2951  case X86ISD::SHUFP:
2952  case X86ISD::PALIGN:
2953  case X86ISD::MOVLHPS:
2954  case X86ISD::MOVLHPD:
2955  case X86ISD::MOVHLPS:
2956  case X86ISD::MOVLPS:
2957  case X86ISD::MOVLPD:
2958  case X86ISD::MOVSHDUP:
2959  case X86ISD::MOVSLDUP:
2960  case X86ISD::MOVDDUP:
2961  case X86ISD::MOVSS:
2962  case X86ISD::MOVSD:
2963  case X86ISD::UNPCKL:
2964  case X86ISD::UNPCKH:
2965  case X86ISD::VPERMILP:
2966  case X86ISD::VPERM2X128:
2967  case X86ISD::VPERMI:
2968    return true;
2969  }
2970}
2971
2972static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2973                                    SDValue V1, SelectionDAG &DAG) {
2974  switch(Opc) {
2975  default: llvm_unreachable("Unknown x86 shuffle node");
2976  case X86ISD::MOVSHDUP:
2977  case X86ISD::MOVSLDUP:
2978  case X86ISD::MOVDDUP:
2979    return DAG.getNode(Opc, dl, VT, V1);
2980  }
2981}
2982
2983static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2984                                    SDValue V1, unsigned TargetMask,
2985                                    SelectionDAG &DAG) {
2986  switch(Opc) {
2987  default: llvm_unreachable("Unknown x86 shuffle node");
2988  case X86ISD::PSHUFD:
2989  case X86ISD::PSHUFHW:
2990  case X86ISD::PSHUFLW:
2991  case X86ISD::VPERMILP:
2992  case X86ISD::VPERMI:
2993    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2994  }
2995}
2996
2997static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2998                                    SDValue V1, SDValue V2, unsigned TargetMask,
2999                                    SelectionDAG &DAG) {
3000  switch(Opc) {
3001  default: llvm_unreachable("Unknown x86 shuffle node");
3002  case X86ISD::PALIGN:
3003  case X86ISD::SHUFP:
3004  case X86ISD::VPERM2X128:
3005    return DAG.getNode(Opc, dl, VT, V1, V2,
3006                       DAG.getConstant(TargetMask, MVT::i8));
3007  }
3008}
3009
3010static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
3011                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
3012  switch(Opc) {
3013  default: llvm_unreachable("Unknown x86 shuffle node");
3014  case X86ISD::MOVLHPS:
3015  case X86ISD::MOVLHPD:
3016  case X86ISD::MOVHLPS:
3017  case X86ISD::MOVLPS:
3018  case X86ISD::MOVLPD:
3019  case X86ISD::MOVSS:
3020  case X86ISD::MOVSD:
3021  case X86ISD::UNPCKL:
3022  case X86ISD::UNPCKH:
3023    return DAG.getNode(Opc, dl, VT, V1, V2);
3024  }
3025}
3026
3027SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
3028  MachineFunction &MF = DAG.getMachineFunction();
3029  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
3030  int ReturnAddrIndex = FuncInfo->getRAIndex();
3031
3032  if (ReturnAddrIndex == 0) {
3033    // Set up a frame object for the return address.
3034    uint64_t SlotSize = TD->getPointerSize(0);
3035    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
3036                                                           false);
3037    FuncInfo->setRAIndex(ReturnAddrIndex);
3038  }
3039
3040  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
3041}
3042
3043
3044bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
3045                                       bool hasSymbolicDisplacement) {
3046  // Offset should fit into 32 bit immediate field.
3047  if (!isInt<32>(Offset))
3048    return false;
3049
3050  // If we don't have a symbolic displacement - we don't have any extra
3051  // restrictions.
3052  if (!hasSymbolicDisplacement)
3053    return true;
3054
3055  // FIXME: Some tweaks might be needed for medium code model.
3056  if (M != CodeModel::Small && M != CodeModel::Kernel)
3057    return false;
3058
3059  // For small code model we assume that latest object is 16MB before end of 31
3060  // bits boundary. We may also accept pretty large negative constants knowing
3061  // that all objects are in the positive half of address space.
3062  if (M == CodeModel::Small && Offset < 16*1024*1024)
3063    return true;
3064
3065  // For kernel code model we know that all object resist in the negative half
3066  // of 32bits address space. We may not accept negative offsets, since they may
3067  // be just off and we may accept pretty large positive ones.
3068  if (M == CodeModel::Kernel && Offset > 0)
3069    return true;
3070
3071  return false;
3072}
3073
3074/// isCalleePop - Determines whether the callee is required to pop its
3075/// own arguments. Callee pop is necessary to support tail calls.
3076bool X86::isCalleePop(CallingConv::ID CallingConv,
3077                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3078  if (IsVarArg)
3079    return false;
3080
3081  switch (CallingConv) {
3082  default:
3083    return false;
3084  case CallingConv::X86_StdCall:
3085    return !is64Bit;
3086  case CallingConv::X86_FastCall:
3087    return !is64Bit;
3088  case CallingConv::X86_ThisCall:
3089    return !is64Bit;
3090  case CallingConv::Fast:
3091    return TailCallOpt;
3092  case CallingConv::GHC:
3093    return TailCallOpt;
3094  }
3095}
3096
3097/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3098/// specific condition code, returning the condition code and the LHS/RHS of the
3099/// comparison to make.
3100static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3101                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3102  if (!isFP) {
3103    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3104      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3105        // X > -1   -> X == 0, jump !sign.
3106        RHS = DAG.getConstant(0, RHS.getValueType());
3107        return X86::COND_NS;
3108      }
3109      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3110        // X < 0   -> X == 0, jump on sign.
3111        return X86::COND_S;
3112      }
3113      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3114        // X < 1   -> X <= 0
3115        RHS = DAG.getConstant(0, RHS.getValueType());
3116        return X86::COND_LE;
3117      }
3118    }
3119
3120    switch (SetCCOpcode) {
3121    default: llvm_unreachable("Invalid integer condition!");
3122    case ISD::SETEQ:  return X86::COND_E;
3123    case ISD::SETGT:  return X86::COND_G;
3124    case ISD::SETGE:  return X86::COND_GE;
3125    case ISD::SETLT:  return X86::COND_L;
3126    case ISD::SETLE:  return X86::COND_LE;
3127    case ISD::SETNE:  return X86::COND_NE;
3128    case ISD::SETULT: return X86::COND_B;
3129    case ISD::SETUGT: return X86::COND_A;
3130    case ISD::SETULE: return X86::COND_BE;
3131    case ISD::SETUGE: return X86::COND_AE;
3132    }
3133  }
3134
3135  // First determine if it is required or is profitable to flip the operands.
3136
3137  // If LHS is a foldable load, but RHS is not, flip the condition.
3138  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3139      !ISD::isNON_EXTLoad(RHS.getNode())) {
3140    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3141    std::swap(LHS, RHS);
3142  }
3143
3144  switch (SetCCOpcode) {
3145  default: break;
3146  case ISD::SETOLT:
3147  case ISD::SETOLE:
3148  case ISD::SETUGT:
3149  case ISD::SETUGE:
3150    std::swap(LHS, RHS);
3151    break;
3152  }
3153
3154  // On a floating point condition, the flags are set as follows:
3155  // ZF  PF  CF   op
3156  //  0 | 0 | 0 | X > Y
3157  //  0 | 0 | 1 | X < Y
3158  //  1 | 0 | 0 | X == Y
3159  //  1 | 1 | 1 | unordered
3160  switch (SetCCOpcode) {
3161  default: llvm_unreachable("Condcode should be pre-legalized away");
3162  case ISD::SETUEQ:
3163  case ISD::SETEQ:   return X86::COND_E;
3164  case ISD::SETOLT:              // flipped
3165  case ISD::SETOGT:
3166  case ISD::SETGT:   return X86::COND_A;
3167  case ISD::SETOLE:              // flipped
3168  case ISD::SETOGE:
3169  case ISD::SETGE:   return X86::COND_AE;
3170  case ISD::SETUGT:              // flipped
3171  case ISD::SETULT:
3172  case ISD::SETLT:   return X86::COND_B;
3173  case ISD::SETUGE:              // flipped
3174  case ISD::SETULE:
3175  case ISD::SETLE:   return X86::COND_BE;
3176  case ISD::SETONE:
3177  case ISD::SETNE:   return X86::COND_NE;
3178  case ISD::SETUO:   return X86::COND_P;
3179  case ISD::SETO:    return X86::COND_NP;
3180  case ISD::SETOEQ:
3181  case ISD::SETUNE:  return X86::COND_INVALID;
3182  }
3183}
3184
3185/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3186/// code. Current x86 isa includes the following FP cmov instructions:
3187/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3188static bool hasFPCMov(unsigned X86CC) {
3189  switch (X86CC) {
3190  default:
3191    return false;
3192  case X86::COND_B:
3193  case X86::COND_BE:
3194  case X86::COND_E:
3195  case X86::COND_P:
3196  case X86::COND_A:
3197  case X86::COND_AE:
3198  case X86::COND_NE:
3199  case X86::COND_NP:
3200    return true;
3201  }
3202}
3203
3204/// isFPImmLegal - Returns true if the target can instruction select the
3205/// specified FP immediate natively. If false, the legalizer will
3206/// materialize the FP immediate as a load from a constant pool.
3207bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3208  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3209    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3210      return true;
3211  }
3212  return false;
3213}
3214
3215/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3216/// the specified range (L, H].
3217static bool isUndefOrInRange(int Val, int Low, int Hi) {
3218  return (Val < 0) || (Val >= Low && Val < Hi);
3219}
3220
3221/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3222/// specified value.
3223static bool isUndefOrEqual(int Val, int CmpVal) {
3224  if (Val < 0 || Val == CmpVal)
3225    return true;
3226  return false;
3227}
3228
3229/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3230/// from position Pos and ending in Pos+Size, falls within the specified
3231/// sequential range (L, L+Pos]. or is undef.
3232static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3233                                       unsigned Pos, unsigned Size, int Low) {
3234  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3235    if (!isUndefOrEqual(Mask[i], Low))
3236      return false;
3237  return true;
3238}
3239
3240/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3241/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3242/// the second operand.
3243static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3244  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3245    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3246  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3247    return (Mask[0] < 2 && Mask[1] < 2);
3248  return false;
3249}
3250
3251/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3252/// is suitable for input to PSHUFHW.
3253static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3254  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3255    return false;
3256
3257  // Lower quadword copied in order or undef.
3258  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3259    return false;
3260
3261  // Upper quadword shuffled.
3262  for (unsigned i = 4; i != 8; ++i)
3263    if (!isUndefOrInRange(Mask[i], 4, 8))
3264      return false;
3265
3266  if (VT == MVT::v16i16) {
3267    // Lower quadword copied in order or undef.
3268    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3269      return false;
3270
3271    // Upper quadword shuffled.
3272    for (unsigned i = 12; i != 16; ++i)
3273      if (!isUndefOrInRange(Mask[i], 12, 16))
3274        return false;
3275  }
3276
3277  return true;
3278}
3279
3280/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3281/// is suitable for input to PSHUFLW.
3282static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3283  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3284    return false;
3285
3286  // Upper quadword copied in order.
3287  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3288    return false;
3289
3290  // Lower quadword shuffled.
3291  for (unsigned i = 0; i != 4; ++i)
3292    if (!isUndefOrInRange(Mask[i], 0, 4))
3293      return false;
3294
3295  if (VT == MVT::v16i16) {
3296    // Upper quadword copied in order.
3297    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3298      return false;
3299
3300    // Lower quadword shuffled.
3301    for (unsigned i = 8; i != 12; ++i)
3302      if (!isUndefOrInRange(Mask[i], 8, 12))
3303        return false;
3304  }
3305
3306  return true;
3307}
3308
3309/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3310/// is suitable for input to PALIGNR.
3311static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3312                          const X86Subtarget *Subtarget) {
3313  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3314      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3315    return false;
3316
3317  unsigned NumElts = VT.getVectorNumElements();
3318  unsigned NumLanes = VT.getSizeInBits()/128;
3319  unsigned NumLaneElts = NumElts/NumLanes;
3320
3321  // Do not handle 64-bit element shuffles with palignr.
3322  if (NumLaneElts == 2)
3323    return false;
3324
3325  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3326    unsigned i;
3327    for (i = 0; i != NumLaneElts; ++i) {
3328      if (Mask[i+l] >= 0)
3329        break;
3330    }
3331
3332    // Lane is all undef, go to next lane
3333    if (i == NumLaneElts)
3334      continue;
3335
3336    int Start = Mask[i+l];
3337
3338    // Make sure its in this lane in one of the sources
3339    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3340        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3341      return false;
3342
3343    // If not lane 0, then we must match lane 0
3344    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3345      return false;
3346
3347    // Correct second source to be contiguous with first source
3348    if (Start >= (int)NumElts)
3349      Start -= NumElts - NumLaneElts;
3350
3351    // Make sure we're shifting in the right direction.
3352    if (Start <= (int)(i+l))
3353      return false;
3354
3355    Start -= i;
3356
3357    // Check the rest of the elements to see if they are consecutive.
3358    for (++i; i != NumLaneElts; ++i) {
3359      int Idx = Mask[i+l];
3360
3361      // Make sure its in this lane
3362      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3363          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3364        return false;
3365
3366      // If not lane 0, then we must match lane 0
3367      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3368        return false;
3369
3370      if (Idx >= (int)NumElts)
3371        Idx -= NumElts - NumLaneElts;
3372
3373      if (!isUndefOrEqual(Idx, Start+i))
3374        return false;
3375
3376    }
3377  }
3378
3379  return true;
3380}
3381
3382/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3383/// the two vector operands have swapped position.
3384static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3385                                     unsigned NumElems) {
3386  for (unsigned i = 0; i != NumElems; ++i) {
3387    int idx = Mask[i];
3388    if (idx < 0)
3389      continue;
3390    else if (idx < (int)NumElems)
3391      Mask[i] = idx + NumElems;
3392    else
3393      Mask[i] = idx - NumElems;
3394  }
3395}
3396
3397/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3398/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3399/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3400/// reverse of what x86 shuffles want.
3401static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3402                        bool Commuted = false) {
3403  if (!HasAVX && VT.getSizeInBits() == 256)
3404    return false;
3405
3406  unsigned NumElems = VT.getVectorNumElements();
3407  unsigned NumLanes = VT.getSizeInBits()/128;
3408  unsigned NumLaneElems = NumElems/NumLanes;
3409
3410  if (NumLaneElems != 2 && NumLaneElems != 4)
3411    return false;
3412
3413  // VSHUFPSY divides the resulting vector into 4 chunks.
3414  // The sources are also splitted into 4 chunks, and each destination
3415  // chunk must come from a different source chunk.
3416  //
3417  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3418  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3419  //
3420  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3421  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3422  //
3423  // VSHUFPDY divides the resulting vector into 4 chunks.
3424  // The sources are also splitted into 4 chunks, and each destination
3425  // chunk must come from a different source chunk.
3426  //
3427  //  SRC1 =>      X3       X2       X1       X0
3428  //  SRC2 =>      Y3       Y2       Y1       Y0
3429  //
3430  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3431  //
3432  unsigned HalfLaneElems = NumLaneElems/2;
3433  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3434    for (unsigned i = 0; i != NumLaneElems; ++i) {
3435      int Idx = Mask[i+l];
3436      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3437      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3438        return false;
3439      // For VSHUFPSY, the mask of the second half must be the same as the
3440      // first but with the appropriate offsets. This works in the same way as
3441      // VPERMILPS works with masks.
3442      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3443        continue;
3444      if (!isUndefOrEqual(Idx, Mask[i]+l))
3445        return false;
3446    }
3447  }
3448
3449  return true;
3450}
3451
3452/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3453/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3454static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3455  if (!VT.is128BitVector())
3456    return false;
3457
3458  unsigned NumElems = VT.getVectorNumElements();
3459
3460  if (NumElems != 4)
3461    return false;
3462
3463  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3464  return isUndefOrEqual(Mask[0], 6) &&
3465         isUndefOrEqual(Mask[1], 7) &&
3466         isUndefOrEqual(Mask[2], 2) &&
3467         isUndefOrEqual(Mask[3], 3);
3468}
3469
3470/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3471/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3472/// <2, 3, 2, 3>
3473static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3474  if (!VT.is128BitVector())
3475    return false;
3476
3477  unsigned NumElems = VT.getVectorNumElements();
3478
3479  if (NumElems != 4)
3480    return false;
3481
3482  return isUndefOrEqual(Mask[0], 2) &&
3483         isUndefOrEqual(Mask[1], 3) &&
3484         isUndefOrEqual(Mask[2], 2) &&
3485         isUndefOrEqual(Mask[3], 3);
3486}
3487
3488/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3489/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3490static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3491  if (!VT.is128BitVector())
3492    return false;
3493
3494  unsigned NumElems = VT.getVectorNumElements();
3495
3496  if (NumElems != 2 && NumElems != 4)
3497    return false;
3498
3499  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3500    if (!isUndefOrEqual(Mask[i], i + NumElems))
3501      return false;
3502
3503  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3504    if (!isUndefOrEqual(Mask[i], i))
3505      return false;
3506
3507  return true;
3508}
3509
3510/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3511/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3512static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3513  if (!VT.is128BitVector())
3514    return false;
3515
3516  unsigned NumElems = VT.getVectorNumElements();
3517
3518  if (NumElems != 2 && NumElems != 4)
3519    return false;
3520
3521  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3522    if (!isUndefOrEqual(Mask[i], i))
3523      return false;
3524
3525  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3526    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3527      return false;
3528
3529  return true;
3530}
3531
3532//
3533// Some special combinations that can be optimized.
3534//
3535static
3536SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3537                               SelectionDAG &DAG) {
3538  EVT VT = SVOp->getValueType(0);
3539  DebugLoc dl = SVOp->getDebugLoc();
3540
3541  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3542    return SDValue();
3543
3544  ArrayRef<int> Mask = SVOp->getMask();
3545
3546  // These are the special masks that may be optimized.
3547  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3548  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3549  bool MatchEvenMask = true;
3550  bool MatchOddMask  = true;
3551  for (int i=0; i<8; ++i) {
3552    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3553      MatchEvenMask = false;
3554    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3555      MatchOddMask = false;
3556  }
3557
3558  if (!MatchEvenMask && !MatchOddMask)
3559    return SDValue();
3560
3561  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3562
3563  SDValue Op0 = SVOp->getOperand(0);
3564  SDValue Op1 = SVOp->getOperand(1);
3565
3566  if (MatchEvenMask) {
3567    // Shift the second operand right to 32 bits.
3568    static const int ShiftRightMask[] = {-1, 0, -1, 2, -1, 4, -1, 6 };
3569    Op1 = DAG.getVectorShuffle(VT, dl, Op1, UndefNode, ShiftRightMask);
3570  } else {
3571    // Shift the first operand left to 32 bits.
3572    static const int ShiftLeftMask[] = {1, -1, 3, -1, 5, -1, 7, -1 };
3573    Op0 = DAG.getVectorShuffle(VT, dl, Op0, UndefNode, ShiftLeftMask);
3574  }
3575  static const int BlendMask[] = {0, 9, 2, 11, 4, 13, 6, 15};
3576  return DAG.getVectorShuffle(VT, dl, Op0, Op1, BlendMask);
3577}
3578
3579/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3580/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3581static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3582                         bool HasAVX2, bool V2IsSplat = false) {
3583  unsigned NumElts = VT.getVectorNumElements();
3584
3585  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3586         "Unsupported vector type for unpckh");
3587
3588  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3589      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3590    return false;
3591
3592  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3593  // independently on 128-bit lanes.
3594  unsigned NumLanes = VT.getSizeInBits()/128;
3595  unsigned NumLaneElts = NumElts/NumLanes;
3596
3597  for (unsigned l = 0; l != NumLanes; ++l) {
3598    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3599         i != (l+1)*NumLaneElts;
3600         i += 2, ++j) {
3601      int BitI  = Mask[i];
3602      int BitI1 = Mask[i+1];
3603      if (!isUndefOrEqual(BitI, j))
3604        return false;
3605      if (V2IsSplat) {
3606        if (!isUndefOrEqual(BitI1, NumElts))
3607          return false;
3608      } else {
3609        if (!isUndefOrEqual(BitI1, j + NumElts))
3610          return false;
3611      }
3612    }
3613  }
3614
3615  return true;
3616}
3617
3618/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3619/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3620static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3621                         bool HasAVX2, bool V2IsSplat = false) {
3622  unsigned NumElts = VT.getVectorNumElements();
3623
3624  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3625         "Unsupported vector type for unpckh");
3626
3627  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3628      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3629    return false;
3630
3631  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3632  // independently on 128-bit lanes.
3633  unsigned NumLanes = VT.getSizeInBits()/128;
3634  unsigned NumLaneElts = NumElts/NumLanes;
3635
3636  for (unsigned l = 0; l != NumLanes; ++l) {
3637    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3638         i != (l+1)*NumLaneElts; i += 2, ++j) {
3639      int BitI  = Mask[i];
3640      int BitI1 = Mask[i+1];
3641      if (!isUndefOrEqual(BitI, j))
3642        return false;
3643      if (V2IsSplat) {
3644        if (isUndefOrEqual(BitI1, NumElts))
3645          return false;
3646      } else {
3647        if (!isUndefOrEqual(BitI1, j+NumElts))
3648          return false;
3649      }
3650    }
3651  }
3652  return true;
3653}
3654
3655/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3656/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3657/// <0, 0, 1, 1>
3658static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3659                                  bool HasAVX2) {
3660  unsigned NumElts = VT.getVectorNumElements();
3661
3662  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3663         "Unsupported vector type for unpckh");
3664
3665  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3666      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3667    return false;
3668
3669  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3670  // FIXME: Need a better way to get rid of this, there's no latency difference
3671  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3672  // the former later. We should also remove the "_undef" special mask.
3673  if (NumElts == 4 && VT.getSizeInBits() == 256)
3674    return false;
3675
3676  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3677  // independently on 128-bit lanes.
3678  unsigned NumLanes = VT.getSizeInBits()/128;
3679  unsigned NumLaneElts = NumElts/NumLanes;
3680
3681  for (unsigned l = 0; l != NumLanes; ++l) {
3682    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3683         i != (l+1)*NumLaneElts;
3684         i += 2, ++j) {
3685      int BitI  = Mask[i];
3686      int BitI1 = Mask[i+1];
3687
3688      if (!isUndefOrEqual(BitI, j))
3689        return false;
3690      if (!isUndefOrEqual(BitI1, j))
3691        return false;
3692    }
3693  }
3694
3695  return true;
3696}
3697
3698/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3699/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3700/// <2, 2, 3, 3>
3701static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3702  unsigned NumElts = VT.getVectorNumElements();
3703
3704  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3705         "Unsupported vector type for unpckh");
3706
3707  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3708      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3709    return false;
3710
3711  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3712  // independently on 128-bit lanes.
3713  unsigned NumLanes = VT.getSizeInBits()/128;
3714  unsigned NumLaneElts = NumElts/NumLanes;
3715
3716  for (unsigned l = 0; l != NumLanes; ++l) {
3717    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3718         i != (l+1)*NumLaneElts; i += 2, ++j) {
3719      int BitI  = Mask[i];
3720      int BitI1 = Mask[i+1];
3721      if (!isUndefOrEqual(BitI, j))
3722        return false;
3723      if (!isUndefOrEqual(BitI1, j))
3724        return false;
3725    }
3726  }
3727  return true;
3728}
3729
3730/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3731/// specifies a shuffle of elements that is suitable for input to MOVSS,
3732/// MOVSD, and MOVD, i.e. setting the lowest element.
3733static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3734  if (VT.getVectorElementType().getSizeInBits() < 32)
3735    return false;
3736  if (!VT.is128BitVector())
3737    return false;
3738
3739  unsigned NumElts = VT.getVectorNumElements();
3740
3741  if (!isUndefOrEqual(Mask[0], NumElts))
3742    return false;
3743
3744  for (unsigned i = 1; i != NumElts; ++i)
3745    if (!isUndefOrEqual(Mask[i], i))
3746      return false;
3747
3748  return true;
3749}
3750
3751/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3752/// as permutations between 128-bit chunks or halves. As an example: this
3753/// shuffle bellow:
3754///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3755/// The first half comes from the second half of V1 and the second half from the
3756/// the second half of V2.
3757static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3758  if (!HasAVX || !VT.is256BitVector())
3759    return false;
3760
3761  // The shuffle result is divided into half A and half B. In total the two
3762  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3763  // B must come from C, D, E or F.
3764  unsigned HalfSize = VT.getVectorNumElements()/2;
3765  bool MatchA = false, MatchB = false;
3766
3767  // Check if A comes from one of C, D, E, F.
3768  for (unsigned Half = 0; Half != 4; ++Half) {
3769    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3770      MatchA = true;
3771      break;
3772    }
3773  }
3774
3775  // Check if B comes from one of C, D, E, F.
3776  for (unsigned Half = 0; Half != 4; ++Half) {
3777    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3778      MatchB = true;
3779      break;
3780    }
3781  }
3782
3783  return MatchA && MatchB;
3784}
3785
3786/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3787/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3788static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3789  EVT VT = SVOp->getValueType(0);
3790
3791  unsigned HalfSize = VT.getVectorNumElements()/2;
3792
3793  unsigned FstHalf = 0, SndHalf = 0;
3794  for (unsigned i = 0; i < HalfSize; ++i) {
3795    if (SVOp->getMaskElt(i) > 0) {
3796      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3797      break;
3798    }
3799  }
3800  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3801    if (SVOp->getMaskElt(i) > 0) {
3802      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3803      break;
3804    }
3805  }
3806
3807  return (FstHalf | (SndHalf << 4));
3808}
3809
3810/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3811/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3812/// Note that VPERMIL mask matching is different depending whether theunderlying
3813/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3814/// to the same elements of the low, but to the higher half of the source.
3815/// In VPERMILPD the two lanes could be shuffled independently of each other
3816/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3817static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3818  if (!HasAVX)
3819    return false;
3820
3821  unsigned NumElts = VT.getVectorNumElements();
3822  // Only match 256-bit with 32/64-bit types
3823  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3824    return false;
3825
3826  unsigned NumLanes = VT.getSizeInBits()/128;
3827  unsigned LaneSize = NumElts/NumLanes;
3828  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3829    for (unsigned i = 0; i != LaneSize; ++i) {
3830      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3831        return false;
3832      if (NumElts != 8 || l == 0)
3833        continue;
3834      // VPERMILPS handling
3835      if (Mask[i] < 0)
3836        continue;
3837      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3838        return false;
3839    }
3840  }
3841
3842  return true;
3843}
3844
3845/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3846/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3847/// element of vector 2 and the other elements to come from vector 1 in order.
3848static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3849                               bool V2IsSplat = false, bool V2IsUndef = false) {
3850  if (!VT.is128BitVector())
3851    return false;
3852
3853  unsigned NumOps = VT.getVectorNumElements();
3854  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3855    return false;
3856
3857  if (!isUndefOrEqual(Mask[0], 0))
3858    return false;
3859
3860  for (unsigned i = 1; i != NumOps; ++i)
3861    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3862          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3863          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3864      return false;
3865
3866  return true;
3867}
3868
3869/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3870/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3871/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3872static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3873                           const X86Subtarget *Subtarget) {
3874  if (!Subtarget->hasSSE3())
3875    return false;
3876
3877  unsigned NumElems = VT.getVectorNumElements();
3878
3879  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3880      (VT.getSizeInBits() == 256 && NumElems != 8))
3881    return false;
3882
3883  // "i+1" is the value the indexed mask element must have
3884  for (unsigned i = 0; i != NumElems; i += 2)
3885    if (!isUndefOrEqual(Mask[i], i+1) ||
3886        !isUndefOrEqual(Mask[i+1], i+1))
3887      return false;
3888
3889  return true;
3890}
3891
3892/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3893/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3894/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3895static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3896                           const X86Subtarget *Subtarget) {
3897  if (!Subtarget->hasSSE3())
3898    return false;
3899
3900  unsigned NumElems = VT.getVectorNumElements();
3901
3902  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3903      (VT.getSizeInBits() == 256 && NumElems != 8))
3904    return false;
3905
3906  // "i" is the value the indexed mask element must have
3907  for (unsigned i = 0; i != NumElems; i += 2)
3908    if (!isUndefOrEqual(Mask[i], i) ||
3909        !isUndefOrEqual(Mask[i+1], i))
3910      return false;
3911
3912  return true;
3913}
3914
3915/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3916/// specifies a shuffle of elements that is suitable for input to 256-bit
3917/// version of MOVDDUP.
3918static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3919  if (!HasAVX || !VT.is256BitVector())
3920    return false;
3921
3922  unsigned NumElts = VT.getVectorNumElements();
3923  if (NumElts != 4)
3924    return false;
3925
3926  for (unsigned i = 0; i != NumElts/2; ++i)
3927    if (!isUndefOrEqual(Mask[i], 0))
3928      return false;
3929  for (unsigned i = NumElts/2; i != NumElts; ++i)
3930    if (!isUndefOrEqual(Mask[i], NumElts/2))
3931      return false;
3932  return true;
3933}
3934
3935/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3936/// specifies a shuffle of elements that is suitable for input to 128-bit
3937/// version of MOVDDUP.
3938static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3939  if (!VT.is128BitVector())
3940    return false;
3941
3942  unsigned e = VT.getVectorNumElements() / 2;
3943  for (unsigned i = 0; i != e; ++i)
3944    if (!isUndefOrEqual(Mask[i], i))
3945      return false;
3946  for (unsigned i = 0; i != e; ++i)
3947    if (!isUndefOrEqual(Mask[e+i], i))
3948      return false;
3949  return true;
3950}
3951
3952/// isVEXTRACTF128Index - Return true if the specified
3953/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3954/// suitable for input to VEXTRACTF128.
3955bool X86::isVEXTRACTF128Index(SDNode *N) {
3956  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3957    return false;
3958
3959  // The index should be aligned on a 128-bit boundary.
3960  uint64_t Index =
3961    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3962
3963  unsigned VL = N->getValueType(0).getVectorNumElements();
3964  unsigned VBits = N->getValueType(0).getSizeInBits();
3965  unsigned ElSize = VBits / VL;
3966  bool Result = (Index * ElSize) % 128 == 0;
3967
3968  return Result;
3969}
3970
3971/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3972/// operand specifies a subvector insert that is suitable for input to
3973/// VINSERTF128.
3974bool X86::isVINSERTF128Index(SDNode *N) {
3975  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3976    return false;
3977
3978  // The index should be aligned on a 128-bit boundary.
3979  uint64_t Index =
3980    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3981
3982  unsigned VL = N->getValueType(0).getVectorNumElements();
3983  unsigned VBits = N->getValueType(0).getSizeInBits();
3984  unsigned ElSize = VBits / VL;
3985  bool Result = (Index * ElSize) % 128 == 0;
3986
3987  return Result;
3988}
3989
3990/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3991/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3992/// Handles 128-bit and 256-bit.
3993static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3994  EVT VT = N->getValueType(0);
3995
3996  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3997         "Unsupported vector type for PSHUF/SHUFP");
3998
3999  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
4000  // independently on 128-bit lanes.
4001  unsigned NumElts = VT.getVectorNumElements();
4002  unsigned NumLanes = VT.getSizeInBits()/128;
4003  unsigned NumLaneElts = NumElts/NumLanes;
4004
4005  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
4006         "Only supports 2 or 4 elements per lane");
4007
4008  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
4009  unsigned Mask = 0;
4010  for (unsigned i = 0; i != NumElts; ++i) {
4011    int Elt = N->getMaskElt(i);
4012    if (Elt < 0) continue;
4013    Elt &= NumLaneElts - 1;
4014    unsigned ShAmt = (i << Shift) % 8;
4015    Mask |= Elt << ShAmt;
4016  }
4017
4018  return Mask;
4019}
4020
4021/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4022/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4023static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4024  EVT VT = N->getValueType(0);
4025
4026  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4027         "Unsupported vector type for PSHUFHW");
4028
4029  unsigned NumElts = VT.getVectorNumElements();
4030
4031  unsigned Mask = 0;
4032  for (unsigned l = 0; l != NumElts; l += 8) {
4033    // 8 nodes per lane, but we only care about the last 4.
4034    for (unsigned i = 0; i < 4; ++i) {
4035      int Elt = N->getMaskElt(l+i+4);
4036      if (Elt < 0) continue;
4037      Elt &= 0x3; // only 2-bits.
4038      Mask |= Elt << (i * 2);
4039    }
4040  }
4041
4042  return Mask;
4043}
4044
4045/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4046/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4047static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4048  EVT VT = N->getValueType(0);
4049
4050  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4051         "Unsupported vector type for PSHUFHW");
4052
4053  unsigned NumElts = VT.getVectorNumElements();
4054
4055  unsigned Mask = 0;
4056  for (unsigned l = 0; l != NumElts; l += 8) {
4057    // 8 nodes per lane, but we only care about the first 4.
4058    for (unsigned i = 0; i < 4; ++i) {
4059      int Elt = N->getMaskElt(l+i);
4060      if (Elt < 0) continue;
4061      Elt &= 0x3; // only 2-bits
4062      Mask |= Elt << (i * 2);
4063    }
4064  }
4065
4066  return Mask;
4067}
4068
4069/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4070/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4071static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4072  EVT VT = SVOp->getValueType(0);
4073  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4074
4075  unsigned NumElts = VT.getVectorNumElements();
4076  unsigned NumLanes = VT.getSizeInBits()/128;
4077  unsigned NumLaneElts = NumElts/NumLanes;
4078
4079  int Val = 0;
4080  unsigned i;
4081  for (i = 0; i != NumElts; ++i) {
4082    Val = SVOp->getMaskElt(i);
4083    if (Val >= 0)
4084      break;
4085  }
4086  if (Val >= (int)NumElts)
4087    Val -= NumElts - NumLaneElts;
4088
4089  assert(Val - i > 0 && "PALIGNR imm should be positive");
4090  return (Val - i) * EltSize;
4091}
4092
4093/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4094/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4095/// instructions.
4096unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4097  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4098    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4099
4100  uint64_t Index =
4101    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4102
4103  EVT VecVT = N->getOperand(0).getValueType();
4104  EVT ElVT = VecVT.getVectorElementType();
4105
4106  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4107  return Index / NumElemsPerChunk;
4108}
4109
4110/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4111/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4112/// instructions.
4113unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4114  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4115    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4116
4117  uint64_t Index =
4118    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4119
4120  EVT VecVT = N->getValueType(0);
4121  EVT ElVT = VecVT.getVectorElementType();
4122
4123  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4124  return Index / NumElemsPerChunk;
4125}
4126
4127/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4128/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4129/// Handles 256-bit.
4130static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4131  EVT VT = N->getValueType(0);
4132
4133  unsigned NumElts = VT.getVectorNumElements();
4134
4135  assert((VT.is256BitVector() && NumElts == 4) &&
4136         "Unsupported vector type for VPERMQ/VPERMPD");
4137
4138  unsigned Mask = 0;
4139  for (unsigned i = 0; i != NumElts; ++i) {
4140    int Elt = N->getMaskElt(i);
4141    if (Elt < 0)
4142      continue;
4143    Mask |= Elt << (i*2);
4144  }
4145
4146  return Mask;
4147}
4148/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4149/// constant +0.0.
4150bool X86::isZeroNode(SDValue Elt) {
4151  return ((isa<ConstantSDNode>(Elt) &&
4152           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4153          (isa<ConstantFPSDNode>(Elt) &&
4154           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4155}
4156
4157/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4158/// their permute mask.
4159static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4160                                    SelectionDAG &DAG) {
4161  EVT VT = SVOp->getValueType(0);
4162  unsigned NumElems = VT.getVectorNumElements();
4163  SmallVector<int, 8> MaskVec;
4164
4165  for (unsigned i = 0; i != NumElems; ++i) {
4166    int Idx = SVOp->getMaskElt(i);
4167    if (Idx >= 0) {
4168      if (Idx < (int)NumElems)
4169        Idx += NumElems;
4170      else
4171        Idx -= NumElems;
4172    }
4173    MaskVec.push_back(Idx);
4174  }
4175  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4176                              SVOp->getOperand(0), &MaskVec[0]);
4177}
4178
4179/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4180/// match movhlps. The lower half elements should come from upper half of
4181/// V1 (and in order), and the upper half elements should come from the upper
4182/// half of V2 (and in order).
4183static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4184  if (!VT.is128BitVector())
4185    return false;
4186  if (VT.getVectorNumElements() != 4)
4187    return false;
4188  for (unsigned i = 0, e = 2; i != e; ++i)
4189    if (!isUndefOrEqual(Mask[i], i+2))
4190      return false;
4191  for (unsigned i = 2; i != 4; ++i)
4192    if (!isUndefOrEqual(Mask[i], i+4))
4193      return false;
4194  return true;
4195}
4196
4197/// isScalarLoadToVector - Returns true if the node is a scalar load that
4198/// is promoted to a vector. It also returns the LoadSDNode by reference if
4199/// required.
4200static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4201  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4202    return false;
4203  N = N->getOperand(0).getNode();
4204  if (!ISD::isNON_EXTLoad(N))
4205    return false;
4206  if (LD)
4207    *LD = cast<LoadSDNode>(N);
4208  return true;
4209}
4210
4211// Test whether the given value is a vector value which will be legalized
4212// into a load.
4213static bool WillBeConstantPoolLoad(SDNode *N) {
4214  if (N->getOpcode() != ISD::BUILD_VECTOR)
4215    return false;
4216
4217  // Check for any non-constant elements.
4218  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4219    switch (N->getOperand(i).getNode()->getOpcode()) {
4220    case ISD::UNDEF:
4221    case ISD::ConstantFP:
4222    case ISD::Constant:
4223      break;
4224    default:
4225      return false;
4226    }
4227
4228  // Vectors of all-zeros and all-ones are materialized with special
4229  // instructions rather than being loaded.
4230  return !ISD::isBuildVectorAllZeros(N) &&
4231         !ISD::isBuildVectorAllOnes(N);
4232}
4233
4234/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4235/// match movlp{s|d}. The lower half elements should come from lower half of
4236/// V1 (and in order), and the upper half elements should come from the upper
4237/// half of V2 (and in order). And since V1 will become the source of the
4238/// MOVLP, it must be either a vector load or a scalar load to vector.
4239static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4240                               ArrayRef<int> Mask, EVT VT) {
4241  if (!VT.is128BitVector())
4242    return false;
4243
4244  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4245    return false;
4246  // Is V2 is a vector load, don't do this transformation. We will try to use
4247  // load folding shufps op.
4248  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4249    return false;
4250
4251  unsigned NumElems = VT.getVectorNumElements();
4252
4253  if (NumElems != 2 && NumElems != 4)
4254    return false;
4255  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4256    if (!isUndefOrEqual(Mask[i], i))
4257      return false;
4258  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4259    if (!isUndefOrEqual(Mask[i], i+NumElems))
4260      return false;
4261  return true;
4262}
4263
4264/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4265/// all the same.
4266static bool isSplatVector(SDNode *N) {
4267  if (N->getOpcode() != ISD::BUILD_VECTOR)
4268    return false;
4269
4270  SDValue SplatValue = N->getOperand(0);
4271  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4272    if (N->getOperand(i) != SplatValue)
4273      return false;
4274  return true;
4275}
4276
4277/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4278/// to an zero vector.
4279/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4280static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4281  SDValue V1 = N->getOperand(0);
4282  SDValue V2 = N->getOperand(1);
4283  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4284  for (unsigned i = 0; i != NumElems; ++i) {
4285    int Idx = N->getMaskElt(i);
4286    if (Idx >= (int)NumElems) {
4287      unsigned Opc = V2.getOpcode();
4288      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4289        continue;
4290      if (Opc != ISD::BUILD_VECTOR ||
4291          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4292        return false;
4293    } else if (Idx >= 0) {
4294      unsigned Opc = V1.getOpcode();
4295      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4296        continue;
4297      if (Opc != ISD::BUILD_VECTOR ||
4298          !X86::isZeroNode(V1.getOperand(Idx)))
4299        return false;
4300    }
4301  }
4302  return true;
4303}
4304
4305/// getZeroVector - Returns a vector of specified type with all zero elements.
4306///
4307static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4308                             SelectionDAG &DAG, DebugLoc dl) {
4309  assert(VT.isVector() && "Expected a vector type");
4310  unsigned Size = VT.getSizeInBits();
4311
4312  // Always build SSE zero vectors as <4 x i32> bitcasted
4313  // to their dest type. This ensures they get CSE'd.
4314  SDValue Vec;
4315  if (Size == 128) {  // SSE
4316    if (Subtarget->hasSSE2()) {  // SSE2
4317      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4318      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4319    } else { // SSE1
4320      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4321      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4322    }
4323  } else if (Size == 256) { // AVX
4324    if (Subtarget->hasAVX2()) { // AVX2
4325      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4326      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4327      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4328    } else {
4329      // 256-bit logic and arithmetic instructions in AVX are all
4330      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4331      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4332      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4333      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4334    }
4335  } else
4336    llvm_unreachable("Unexpected vector type");
4337
4338  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4339}
4340
4341/// getOnesVector - Returns a vector of specified type with all bits set.
4342/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4343/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4344/// Then bitcast to their original type, ensuring they get CSE'd.
4345static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4346                             DebugLoc dl) {
4347  assert(VT.isVector() && "Expected a vector type");
4348  unsigned Size = VT.getSizeInBits();
4349
4350  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4351  SDValue Vec;
4352  if (Size == 256) {
4353    if (HasAVX2) { // AVX2
4354      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4355      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4356    } else { // AVX
4357      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4358      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4359    }
4360  } else if (Size == 128) {
4361    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4362  } else
4363    llvm_unreachable("Unexpected vector type");
4364
4365  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4366}
4367
4368/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4369/// that point to V2 points to its first element.
4370static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4371  for (unsigned i = 0; i != NumElems; ++i) {
4372    if (Mask[i] > (int)NumElems) {
4373      Mask[i] = NumElems;
4374    }
4375  }
4376}
4377
4378/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4379/// operation of specified width.
4380static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4381                       SDValue V2) {
4382  unsigned NumElems = VT.getVectorNumElements();
4383  SmallVector<int, 8> Mask;
4384  Mask.push_back(NumElems);
4385  for (unsigned i = 1; i != NumElems; ++i)
4386    Mask.push_back(i);
4387  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4388}
4389
4390/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4391static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4392                          SDValue V2) {
4393  unsigned NumElems = VT.getVectorNumElements();
4394  SmallVector<int, 8> Mask;
4395  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4396    Mask.push_back(i);
4397    Mask.push_back(i + NumElems);
4398  }
4399  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4400}
4401
4402/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4403static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4404                          SDValue V2) {
4405  unsigned NumElems = VT.getVectorNumElements();
4406  SmallVector<int, 8> Mask;
4407  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4408    Mask.push_back(i + Half);
4409    Mask.push_back(i + NumElems + Half);
4410  }
4411  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4412}
4413
4414// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4415// a generic shuffle instruction because the target has no such instructions.
4416// Generate shuffles which repeat i16 and i8 several times until they can be
4417// represented by v4f32 and then be manipulated by target suported shuffles.
4418static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4419  EVT VT = V.getValueType();
4420  int NumElems = VT.getVectorNumElements();
4421  DebugLoc dl = V.getDebugLoc();
4422
4423  while (NumElems > 4) {
4424    if (EltNo < NumElems/2) {
4425      V = getUnpackl(DAG, dl, VT, V, V);
4426    } else {
4427      V = getUnpackh(DAG, dl, VT, V, V);
4428      EltNo -= NumElems/2;
4429    }
4430    NumElems >>= 1;
4431  }
4432  return V;
4433}
4434
4435/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4436static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4437  EVT VT = V.getValueType();
4438  DebugLoc dl = V.getDebugLoc();
4439  unsigned Size = VT.getSizeInBits();
4440
4441  if (Size == 128) {
4442    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4443    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4444    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4445                             &SplatMask[0]);
4446  } else if (Size == 256) {
4447    // To use VPERMILPS to splat scalars, the second half of indicies must
4448    // refer to the higher part, which is a duplication of the lower one,
4449    // because VPERMILPS can only handle in-lane permutations.
4450    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4451                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4452
4453    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4454    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4455                             &SplatMask[0]);
4456  } else
4457    llvm_unreachable("Vector size not supported");
4458
4459  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4460}
4461
4462/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4463static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4464  EVT SrcVT = SV->getValueType(0);
4465  SDValue V1 = SV->getOperand(0);
4466  DebugLoc dl = SV->getDebugLoc();
4467
4468  int EltNo = SV->getSplatIndex();
4469  int NumElems = SrcVT.getVectorNumElements();
4470  unsigned Size = SrcVT.getSizeInBits();
4471
4472  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4473          "Unknown how to promote splat for type");
4474
4475  // Extract the 128-bit part containing the splat element and update
4476  // the splat element index when it refers to the higher register.
4477  if (Size == 256) {
4478    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4479    if (EltNo >= NumElems/2)
4480      EltNo -= NumElems/2;
4481  }
4482
4483  // All i16 and i8 vector types can't be used directly by a generic shuffle
4484  // instruction because the target has no such instruction. Generate shuffles
4485  // which repeat i16 and i8 several times until they fit in i32, and then can
4486  // be manipulated by target suported shuffles.
4487  EVT EltVT = SrcVT.getVectorElementType();
4488  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4489    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4490
4491  // Recreate the 256-bit vector and place the same 128-bit vector
4492  // into the low and high part. This is necessary because we want
4493  // to use VPERM* to shuffle the vectors
4494  if (Size == 256) {
4495    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4496  }
4497
4498  return getLegalSplat(DAG, V1, EltNo);
4499}
4500
4501/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4502/// vector of zero or undef vector.  This produces a shuffle where the low
4503/// element of V2 is swizzled into the zero/undef vector, landing at element
4504/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4505static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4506                                           bool IsZero,
4507                                           const X86Subtarget *Subtarget,
4508                                           SelectionDAG &DAG) {
4509  EVT VT = V2.getValueType();
4510  SDValue V1 = IsZero
4511    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4512  unsigned NumElems = VT.getVectorNumElements();
4513  SmallVector<int, 16> MaskVec;
4514  for (unsigned i = 0; i != NumElems; ++i)
4515    // If this is the insertion idx, put the low elt of V2 here.
4516    MaskVec.push_back(i == Idx ? NumElems : i);
4517  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4518}
4519
4520/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4521/// target specific opcode. Returns true if the Mask could be calculated.
4522/// Sets IsUnary to true if only uses one source.
4523static bool getTargetShuffleMask(SDNode *N, MVT VT,
4524                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4525  unsigned NumElems = VT.getVectorNumElements();
4526  SDValue ImmN;
4527
4528  IsUnary = false;
4529  switch(N->getOpcode()) {
4530  case X86ISD::SHUFP:
4531    ImmN = N->getOperand(N->getNumOperands()-1);
4532    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4533    break;
4534  case X86ISD::UNPCKH:
4535    DecodeUNPCKHMask(VT, Mask);
4536    break;
4537  case X86ISD::UNPCKL:
4538    DecodeUNPCKLMask(VT, Mask);
4539    break;
4540  case X86ISD::MOVHLPS:
4541    DecodeMOVHLPSMask(NumElems, Mask);
4542    break;
4543  case X86ISD::MOVLHPS:
4544    DecodeMOVLHPSMask(NumElems, Mask);
4545    break;
4546  case X86ISD::PSHUFD:
4547  case X86ISD::VPERMILP:
4548    ImmN = N->getOperand(N->getNumOperands()-1);
4549    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4550    IsUnary = true;
4551    break;
4552  case X86ISD::PSHUFHW:
4553    ImmN = N->getOperand(N->getNumOperands()-1);
4554    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4555    IsUnary = true;
4556    break;
4557  case X86ISD::PSHUFLW:
4558    ImmN = N->getOperand(N->getNumOperands()-1);
4559    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4560    IsUnary = true;
4561    break;
4562  case X86ISD::VPERMI:
4563    ImmN = N->getOperand(N->getNumOperands()-1);
4564    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4565    IsUnary = true;
4566    break;
4567  case X86ISD::MOVSS:
4568  case X86ISD::MOVSD: {
4569    // The index 0 always comes from the first element of the second source,
4570    // this is why MOVSS and MOVSD are used in the first place. The other
4571    // elements come from the other positions of the first source vector
4572    Mask.push_back(NumElems);
4573    for (unsigned i = 1; i != NumElems; ++i) {
4574      Mask.push_back(i);
4575    }
4576    break;
4577  }
4578  case X86ISD::VPERM2X128:
4579    ImmN = N->getOperand(N->getNumOperands()-1);
4580    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4581    if (Mask.empty()) return false;
4582    break;
4583  case X86ISD::MOVDDUP:
4584  case X86ISD::MOVLHPD:
4585  case X86ISD::MOVLPD:
4586  case X86ISD::MOVLPS:
4587  case X86ISD::MOVSHDUP:
4588  case X86ISD::MOVSLDUP:
4589  case X86ISD::PALIGN:
4590    // Not yet implemented
4591    return false;
4592  default: llvm_unreachable("unknown target shuffle node");
4593  }
4594
4595  return true;
4596}
4597
4598/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4599/// element of the result of the vector shuffle.
4600static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4601                                   unsigned Depth) {
4602  if (Depth == 6)
4603    return SDValue();  // Limit search depth.
4604
4605  SDValue V = SDValue(N, 0);
4606  EVT VT = V.getValueType();
4607  unsigned Opcode = V.getOpcode();
4608
4609  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4610  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4611    int Elt = SV->getMaskElt(Index);
4612
4613    if (Elt < 0)
4614      return DAG.getUNDEF(VT.getVectorElementType());
4615
4616    unsigned NumElems = VT.getVectorNumElements();
4617    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4618                                         : SV->getOperand(1);
4619    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4620  }
4621
4622  // Recurse into target specific vector shuffles to find scalars.
4623  if (isTargetShuffle(Opcode)) {
4624    MVT ShufVT = V.getValueType().getSimpleVT();
4625    unsigned NumElems = ShufVT.getVectorNumElements();
4626    SmallVector<int, 16> ShuffleMask;
4627    SDValue ImmN;
4628    bool IsUnary;
4629
4630    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4631      return SDValue();
4632
4633    int Elt = ShuffleMask[Index];
4634    if (Elt < 0)
4635      return DAG.getUNDEF(ShufVT.getVectorElementType());
4636
4637    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4638                                         : N->getOperand(1);
4639    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4640                               Depth+1);
4641  }
4642
4643  // Actual nodes that may contain scalar elements
4644  if (Opcode == ISD::BITCAST) {
4645    V = V.getOperand(0);
4646    EVT SrcVT = V.getValueType();
4647    unsigned NumElems = VT.getVectorNumElements();
4648
4649    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4650      return SDValue();
4651  }
4652
4653  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4654    return (Index == 0) ? V.getOperand(0)
4655                        : DAG.getUNDEF(VT.getVectorElementType());
4656
4657  if (V.getOpcode() == ISD::BUILD_VECTOR)
4658    return V.getOperand(Index);
4659
4660  return SDValue();
4661}
4662
4663/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4664/// shuffle operation which come from a consecutively from a zero. The
4665/// search can start in two different directions, from left or right.
4666static
4667unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4668                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4669  unsigned i;
4670  for (i = 0; i != NumElems; ++i) {
4671    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4672    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4673    if (!(Elt.getNode() &&
4674         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4675      break;
4676  }
4677
4678  return i;
4679}
4680
4681/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4682/// correspond consecutively to elements from one of the vector operands,
4683/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4684static
4685bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4686                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4687                              unsigned NumElems, unsigned &OpNum) {
4688  bool SeenV1 = false;
4689  bool SeenV2 = false;
4690
4691  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4692    int Idx = SVOp->getMaskElt(i);
4693    // Ignore undef indicies
4694    if (Idx < 0)
4695      continue;
4696
4697    if (Idx < (int)NumElems)
4698      SeenV1 = true;
4699    else
4700      SeenV2 = true;
4701
4702    // Only accept consecutive elements from the same vector
4703    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4704      return false;
4705  }
4706
4707  OpNum = SeenV1 ? 0 : 1;
4708  return true;
4709}
4710
4711/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4712/// logical left shift of a vector.
4713static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4714                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4715  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4716  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4717              false /* check zeros from right */, DAG);
4718  unsigned OpSrc;
4719
4720  if (!NumZeros)
4721    return false;
4722
4723  // Considering the elements in the mask that are not consecutive zeros,
4724  // check if they consecutively come from only one of the source vectors.
4725  //
4726  //               V1 = {X, A, B, C}     0
4727  //                         \  \  \    /
4728  //   vector_shuffle V1, V2 <1, 2, 3, X>
4729  //
4730  if (!isShuffleMaskConsecutive(SVOp,
4731            0,                   // Mask Start Index
4732            NumElems-NumZeros,   // Mask End Index(exclusive)
4733            NumZeros,            // Where to start looking in the src vector
4734            NumElems,            // Number of elements in vector
4735            OpSrc))              // Which source operand ?
4736    return false;
4737
4738  isLeft = false;
4739  ShAmt = NumZeros;
4740  ShVal = SVOp->getOperand(OpSrc);
4741  return true;
4742}
4743
4744/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4745/// logical left shift of a vector.
4746static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4747                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4748  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4749  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4750              true /* check zeros from left */, DAG);
4751  unsigned OpSrc;
4752
4753  if (!NumZeros)
4754    return false;
4755
4756  // Considering the elements in the mask that are not consecutive zeros,
4757  // check if they consecutively come from only one of the source vectors.
4758  //
4759  //                           0    { A, B, X, X } = V2
4760  //                          / \    /  /
4761  //   vector_shuffle V1, V2 <X, X, 4, 5>
4762  //
4763  if (!isShuffleMaskConsecutive(SVOp,
4764            NumZeros,     // Mask Start Index
4765            NumElems,     // Mask End Index(exclusive)
4766            0,            // Where to start looking in the src vector
4767            NumElems,     // Number of elements in vector
4768            OpSrc))       // Which source operand ?
4769    return false;
4770
4771  isLeft = true;
4772  ShAmt = NumZeros;
4773  ShVal = SVOp->getOperand(OpSrc);
4774  return true;
4775}
4776
4777/// isVectorShift - Returns true if the shuffle can be implemented as a
4778/// logical left or right shift of a vector.
4779static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4780                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4781  // Although the logic below support any bitwidth size, there are no
4782  // shift instructions which handle more than 128-bit vectors.
4783  if (!SVOp->getValueType(0).is128BitVector())
4784    return false;
4785
4786  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4787      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4788    return true;
4789
4790  return false;
4791}
4792
4793/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4794///
4795static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4796                                       unsigned NumNonZero, unsigned NumZero,
4797                                       SelectionDAG &DAG,
4798                                       const X86Subtarget* Subtarget,
4799                                       const TargetLowering &TLI) {
4800  if (NumNonZero > 8)
4801    return SDValue();
4802
4803  DebugLoc dl = Op.getDebugLoc();
4804  SDValue V(0, 0);
4805  bool First = true;
4806  for (unsigned i = 0; i < 16; ++i) {
4807    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4808    if (ThisIsNonZero && First) {
4809      if (NumZero)
4810        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4811      else
4812        V = DAG.getUNDEF(MVT::v8i16);
4813      First = false;
4814    }
4815
4816    if ((i & 1) != 0) {
4817      SDValue ThisElt(0, 0), LastElt(0, 0);
4818      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4819      if (LastIsNonZero) {
4820        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4821                              MVT::i16, Op.getOperand(i-1));
4822      }
4823      if (ThisIsNonZero) {
4824        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4825        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4826                              ThisElt, DAG.getConstant(8, MVT::i8));
4827        if (LastIsNonZero)
4828          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4829      } else
4830        ThisElt = LastElt;
4831
4832      if (ThisElt.getNode())
4833        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4834                        DAG.getIntPtrConstant(i/2));
4835    }
4836  }
4837
4838  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4839}
4840
4841/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4842///
4843static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4844                                     unsigned NumNonZero, unsigned NumZero,
4845                                     SelectionDAG &DAG,
4846                                     const X86Subtarget* Subtarget,
4847                                     const TargetLowering &TLI) {
4848  if (NumNonZero > 4)
4849    return SDValue();
4850
4851  DebugLoc dl = Op.getDebugLoc();
4852  SDValue V(0, 0);
4853  bool First = true;
4854  for (unsigned i = 0; i < 8; ++i) {
4855    bool isNonZero = (NonZeros & (1 << i)) != 0;
4856    if (isNonZero) {
4857      if (First) {
4858        if (NumZero)
4859          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4860        else
4861          V = DAG.getUNDEF(MVT::v8i16);
4862        First = false;
4863      }
4864      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4865                      MVT::v8i16, V, Op.getOperand(i),
4866                      DAG.getIntPtrConstant(i));
4867    }
4868  }
4869
4870  return V;
4871}
4872
4873/// getVShift - Return a vector logical shift node.
4874///
4875static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4876                         unsigned NumBits, SelectionDAG &DAG,
4877                         const TargetLowering &TLI, DebugLoc dl) {
4878  assert(VT.is128BitVector() && "Unknown type for VShift");
4879  EVT ShVT = MVT::v2i64;
4880  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4881  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4882  return DAG.getNode(ISD::BITCAST, dl, VT,
4883                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4884                             DAG.getConstant(NumBits,
4885                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4886}
4887
4888SDValue
4889X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4890                                          SelectionDAG &DAG) const {
4891
4892  // Check if the scalar load can be widened into a vector load. And if
4893  // the address is "base + cst" see if the cst can be "absorbed" into
4894  // the shuffle mask.
4895  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4896    SDValue Ptr = LD->getBasePtr();
4897    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4898      return SDValue();
4899    EVT PVT = LD->getValueType(0);
4900    if (PVT != MVT::i32 && PVT != MVT::f32)
4901      return SDValue();
4902
4903    int FI = -1;
4904    int64_t Offset = 0;
4905    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4906      FI = FINode->getIndex();
4907      Offset = 0;
4908    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4909               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4910      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4911      Offset = Ptr.getConstantOperandVal(1);
4912      Ptr = Ptr.getOperand(0);
4913    } else {
4914      return SDValue();
4915    }
4916
4917    // FIXME: 256-bit vector instructions don't require a strict alignment,
4918    // improve this code to support it better.
4919    unsigned RequiredAlign = VT.getSizeInBits()/8;
4920    SDValue Chain = LD->getChain();
4921    // Make sure the stack object alignment is at least 16 or 32.
4922    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4923    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4924      if (MFI->isFixedObjectIndex(FI)) {
4925        // Can't change the alignment. FIXME: It's possible to compute
4926        // the exact stack offset and reference FI + adjust offset instead.
4927        // If someone *really* cares about this. That's the way to implement it.
4928        return SDValue();
4929      } else {
4930        MFI->setObjectAlignment(FI, RequiredAlign);
4931      }
4932    }
4933
4934    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4935    // Ptr + (Offset & ~15).
4936    if (Offset < 0)
4937      return SDValue();
4938    if ((Offset % RequiredAlign) & 3)
4939      return SDValue();
4940    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4941    if (StartOffset)
4942      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4943                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4944
4945    int EltNo = (Offset - StartOffset) >> 2;
4946    unsigned NumElems = VT.getVectorNumElements();
4947
4948    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4949    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4950                             LD->getPointerInfo().getWithOffset(StartOffset),
4951                             false, false, false, 0);
4952
4953    SmallVector<int, 8> Mask;
4954    for (unsigned i = 0; i != NumElems; ++i)
4955      Mask.push_back(EltNo);
4956
4957    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4958  }
4959
4960  return SDValue();
4961}
4962
4963/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4964/// vector of type 'VT', see if the elements can be replaced by a single large
4965/// load which has the same value as a build_vector whose operands are 'elts'.
4966///
4967/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4968///
4969/// FIXME: we'd also like to handle the case where the last elements are zero
4970/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4971/// There's even a handy isZeroNode for that purpose.
4972static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4973                                        DebugLoc &DL, SelectionDAG &DAG) {
4974  EVT EltVT = VT.getVectorElementType();
4975  unsigned NumElems = Elts.size();
4976
4977  LoadSDNode *LDBase = NULL;
4978  unsigned LastLoadedElt = -1U;
4979
4980  // For each element in the initializer, see if we've found a load or an undef.
4981  // If we don't find an initial load element, or later load elements are
4982  // non-consecutive, bail out.
4983  for (unsigned i = 0; i < NumElems; ++i) {
4984    SDValue Elt = Elts[i];
4985
4986    if (!Elt.getNode() ||
4987        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4988      return SDValue();
4989    if (!LDBase) {
4990      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4991        return SDValue();
4992      LDBase = cast<LoadSDNode>(Elt.getNode());
4993      LastLoadedElt = i;
4994      continue;
4995    }
4996    if (Elt.getOpcode() == ISD::UNDEF)
4997      continue;
4998
4999    LoadSDNode *LD = cast<LoadSDNode>(Elt);
5000    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5001      return SDValue();
5002    LastLoadedElt = i;
5003  }
5004
5005  // If we have found an entire vector of loads and undefs, then return a large
5006  // load of the entire vector width starting at the base pointer.  If we found
5007  // consecutive loads for the low half, generate a vzext_load node.
5008  if (LastLoadedElt == NumElems - 1) {
5009    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5010      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5011                         LDBase->getPointerInfo(),
5012                         LDBase->isVolatile(), LDBase->isNonTemporal(),
5013                         LDBase->isInvariant(), 0);
5014    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5015                       LDBase->getPointerInfo(),
5016                       LDBase->isVolatile(), LDBase->isNonTemporal(),
5017                       LDBase->isInvariant(), LDBase->getAlignment());
5018  }
5019  if (NumElems == 4 && LastLoadedElt == 1 &&
5020      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5021    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5022    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5023    SDValue ResNode =
5024        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5025                                LDBase->getPointerInfo(),
5026                                LDBase->getAlignment(),
5027                                false/*isVolatile*/, true/*ReadMem*/,
5028                                false/*WriteMem*/);
5029
5030    // Make sure the newly-created LOAD is in the same position as LDBase in
5031    // terms of dependency. We create a TokenFactor for LDBase and ResNode, and
5032    // update uses of LDBase's output chain to use the TokenFactor.
5033    if (LDBase->hasAnyUseOfValue(1)) {
5034      SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
5035                             SDValue(LDBase, 1), SDValue(ResNode.getNode(), 1));
5036      DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
5037      DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
5038                             SDValue(ResNode.getNode(), 1));
5039    }
5040
5041    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5042  }
5043  return SDValue();
5044}
5045
5046/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5047/// to generate a splat value for the following cases:
5048/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5049/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5050/// a scalar load, or a constant.
5051/// The VBROADCAST node is returned when a pattern is found,
5052/// or SDValue() otherwise.
5053SDValue
5054X86TargetLowering::LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const {
5055  if (!Subtarget->hasAVX())
5056    return SDValue();
5057
5058  EVT VT = Op.getValueType();
5059  DebugLoc dl = Op.getDebugLoc();
5060
5061  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5062         "Unsupported vector type for broadcast.");
5063
5064  SDValue Ld;
5065  bool ConstSplatVal;
5066
5067  switch (Op.getOpcode()) {
5068    default:
5069      // Unknown pattern found.
5070      return SDValue();
5071
5072    case ISD::BUILD_VECTOR: {
5073      // The BUILD_VECTOR node must be a splat.
5074      if (!isSplatVector(Op.getNode()))
5075        return SDValue();
5076
5077      Ld = Op.getOperand(0);
5078      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5079                     Ld.getOpcode() == ISD::ConstantFP);
5080
5081      // The suspected load node has several users. Make sure that all
5082      // of its users are from the BUILD_VECTOR node.
5083      // Constants may have multiple users.
5084      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5085        return SDValue();
5086      break;
5087    }
5088
5089    case ISD::VECTOR_SHUFFLE: {
5090      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5091
5092      // Shuffles must have a splat mask where the first element is
5093      // broadcasted.
5094      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5095        return SDValue();
5096
5097      SDValue Sc = Op.getOperand(0);
5098      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5099          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5100
5101        if (!Subtarget->hasAVX2())
5102          return SDValue();
5103
5104        // Use the register form of the broadcast instruction available on AVX2.
5105        if (VT.is256BitVector())
5106          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5107        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5108      }
5109
5110      Ld = Sc.getOperand(0);
5111      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5112                       Ld.getOpcode() == ISD::ConstantFP);
5113
5114      // The scalar_to_vector node and the suspected
5115      // load node must have exactly one user.
5116      // Constants may have multiple users.
5117      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5118        return SDValue();
5119      break;
5120    }
5121  }
5122
5123  bool Is256 = VT.is256BitVector();
5124
5125  // Handle the broadcasting a single constant scalar from the constant pool
5126  // into a vector. On Sandybridge it is still better to load a constant vector
5127  // from the constant pool and not to broadcast it from a scalar.
5128  if (ConstSplatVal && Subtarget->hasAVX2()) {
5129    EVT CVT = Ld.getValueType();
5130    assert(!CVT.isVector() && "Must not broadcast a vector type");
5131    unsigned ScalarSize = CVT.getSizeInBits();
5132
5133    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5134      const Constant *C = 0;
5135      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5136        C = CI->getConstantIntValue();
5137      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5138        C = CF->getConstantFPValue();
5139
5140      assert(C && "Invalid constant type");
5141
5142      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5143      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5144      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5145                       MachinePointerInfo::getConstantPool(),
5146                       false, false, false, Alignment);
5147
5148      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5149    }
5150  }
5151
5152  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5153  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5154
5155  // Handle AVX2 in-register broadcasts.
5156  if (!IsLoad && Subtarget->hasAVX2() &&
5157      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5158    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5159
5160  // The scalar source must be a normal load.
5161  if (!IsLoad)
5162    return SDValue();
5163
5164  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5165    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5166
5167  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5168  // double since there is no vbroadcastsd xmm
5169  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5170    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5171      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5172  }
5173
5174  // Unsupported broadcast.
5175  return SDValue();
5176}
5177
5178SDValue
5179X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5180  DebugLoc dl = Op.getDebugLoc();
5181
5182  EVT VT = Op.getValueType();
5183  EVT ExtVT = VT.getVectorElementType();
5184  unsigned NumElems = Op.getNumOperands();
5185
5186  // Vectors containing all zeros can be matched by pxor and xorps later
5187  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5188    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5189    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5190    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5191      return Op;
5192
5193    return getZeroVector(VT, Subtarget, DAG, dl);
5194  }
5195
5196  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5197  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5198  // vpcmpeqd on 256-bit vectors.
5199  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5200    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5201      return Op;
5202
5203    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5204  }
5205
5206  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5207  if (Broadcast.getNode())
5208    return Broadcast;
5209
5210  unsigned EVTBits = ExtVT.getSizeInBits();
5211
5212  unsigned NumZero  = 0;
5213  unsigned NumNonZero = 0;
5214  unsigned NonZeros = 0;
5215  bool IsAllConstants = true;
5216  SmallSet<SDValue, 8> Values;
5217  for (unsigned i = 0; i < NumElems; ++i) {
5218    SDValue Elt = Op.getOperand(i);
5219    if (Elt.getOpcode() == ISD::UNDEF)
5220      continue;
5221    Values.insert(Elt);
5222    if (Elt.getOpcode() != ISD::Constant &&
5223        Elt.getOpcode() != ISD::ConstantFP)
5224      IsAllConstants = false;
5225    if (X86::isZeroNode(Elt))
5226      NumZero++;
5227    else {
5228      NonZeros |= (1 << i);
5229      NumNonZero++;
5230    }
5231  }
5232
5233  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5234  if (NumNonZero == 0)
5235    return DAG.getUNDEF(VT);
5236
5237  // Special case for single non-zero, non-undef, element.
5238  if (NumNonZero == 1) {
5239    unsigned Idx = CountTrailingZeros_32(NonZeros);
5240    SDValue Item = Op.getOperand(Idx);
5241
5242    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5243    // the value are obviously zero, truncate the value to i32 and do the
5244    // insertion that way.  Only do this if the value is non-constant or if the
5245    // value is a constant being inserted into element 0.  It is cheaper to do
5246    // a constant pool load than it is to do a movd + shuffle.
5247    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5248        (!IsAllConstants || Idx == 0)) {
5249      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5250        // Handle SSE only.
5251        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5252        EVT VecVT = MVT::v4i32;
5253        unsigned VecElts = 4;
5254
5255        // Truncate the value (which may itself be a constant) to i32, and
5256        // convert it to a vector with movd (S2V+shuffle to zero extend).
5257        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5258        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5259        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5260
5261        // Now we have our 32-bit value zero extended in the low element of
5262        // a vector.  If Idx != 0, swizzle it into place.
5263        if (Idx != 0) {
5264          SmallVector<int, 4> Mask;
5265          Mask.push_back(Idx);
5266          for (unsigned i = 1; i != VecElts; ++i)
5267            Mask.push_back(i);
5268          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5269                                      &Mask[0]);
5270        }
5271        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5272      }
5273    }
5274
5275    // If we have a constant or non-constant insertion into the low element of
5276    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5277    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5278    // depending on what the source datatype is.
5279    if (Idx == 0) {
5280      if (NumZero == 0)
5281        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5282
5283      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5284          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5285        if (VT.is256BitVector()) {
5286          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5287          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5288                             Item, DAG.getIntPtrConstant(0));
5289        }
5290        assert(VT.is128BitVector() && "Expected an SSE value type!");
5291        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5292        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5293        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5294      }
5295
5296      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5297        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5298        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5299        if (VT.is256BitVector()) {
5300          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5301          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5302        } else {
5303          assert(VT.is128BitVector() && "Expected an SSE value type!");
5304          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5305        }
5306        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5307      }
5308    }
5309
5310    // Is it a vector logical left shift?
5311    if (NumElems == 2 && Idx == 1 &&
5312        X86::isZeroNode(Op.getOperand(0)) &&
5313        !X86::isZeroNode(Op.getOperand(1))) {
5314      unsigned NumBits = VT.getSizeInBits();
5315      return getVShift(true, VT,
5316                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5317                                   VT, Op.getOperand(1)),
5318                       NumBits/2, DAG, *this, dl);
5319    }
5320
5321    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5322      return SDValue();
5323
5324    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5325    // is a non-constant being inserted into an element other than the low one,
5326    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5327    // movd/movss) to move this into the low element, then shuffle it into
5328    // place.
5329    if (EVTBits == 32) {
5330      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5331
5332      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5333      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5334      SmallVector<int, 8> MaskVec;
5335      for (unsigned i = 0; i != NumElems; ++i)
5336        MaskVec.push_back(i == Idx ? 0 : 1);
5337      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5338    }
5339  }
5340
5341  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5342  if (Values.size() == 1) {
5343    if (EVTBits == 32) {
5344      // Instead of a shuffle like this:
5345      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5346      // Check if it's possible to issue this instead.
5347      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5348      unsigned Idx = CountTrailingZeros_32(NonZeros);
5349      SDValue Item = Op.getOperand(Idx);
5350      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5351        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5352    }
5353    return SDValue();
5354  }
5355
5356  // A vector full of immediates; various special cases are already
5357  // handled, so this is best done with a single constant-pool load.
5358  if (IsAllConstants)
5359    return SDValue();
5360
5361  // For AVX-length vectors, build the individual 128-bit pieces and use
5362  // shuffles to put them in place.
5363  if (VT.is256BitVector()) {
5364    SmallVector<SDValue, 32> V;
5365    for (unsigned i = 0; i != NumElems; ++i)
5366      V.push_back(Op.getOperand(i));
5367
5368    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5369
5370    // Build both the lower and upper subvector.
5371    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5372    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5373                                NumElems/2);
5374
5375    // Recreate the wider vector with the lower and upper part.
5376    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5377  }
5378
5379  // Let legalizer expand 2-wide build_vectors.
5380  if (EVTBits == 64) {
5381    if (NumNonZero == 1) {
5382      // One half is zero or undef.
5383      unsigned Idx = CountTrailingZeros_32(NonZeros);
5384      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5385                                 Op.getOperand(Idx));
5386      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5387    }
5388    return SDValue();
5389  }
5390
5391  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5392  if (EVTBits == 8 && NumElems == 16) {
5393    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5394                                        Subtarget, *this);
5395    if (V.getNode()) return V;
5396  }
5397
5398  if (EVTBits == 16 && NumElems == 8) {
5399    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5400                                      Subtarget, *this);
5401    if (V.getNode()) return V;
5402  }
5403
5404  // If element VT is == 32 bits, turn it into a number of shuffles.
5405  SmallVector<SDValue, 8> V(NumElems);
5406  if (NumElems == 4 && NumZero > 0) {
5407    for (unsigned i = 0; i < 4; ++i) {
5408      bool isZero = !(NonZeros & (1 << i));
5409      if (isZero)
5410        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5411      else
5412        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5413    }
5414
5415    for (unsigned i = 0; i < 2; ++i) {
5416      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5417        default: break;
5418        case 0:
5419          V[i] = V[i*2];  // Must be a zero vector.
5420          break;
5421        case 1:
5422          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5423          break;
5424        case 2:
5425          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5426          break;
5427        case 3:
5428          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5429          break;
5430      }
5431    }
5432
5433    bool Reverse1 = (NonZeros & 0x3) == 2;
5434    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5435    int MaskVec[] = {
5436      Reverse1 ? 1 : 0,
5437      Reverse1 ? 0 : 1,
5438      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5439      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5440    };
5441    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5442  }
5443
5444  if (Values.size() > 1 && VT.is128BitVector()) {
5445    // Check for a build vector of consecutive loads.
5446    for (unsigned i = 0; i < NumElems; ++i)
5447      V[i] = Op.getOperand(i);
5448
5449    // Check for elements which are consecutive loads.
5450    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5451    if (LD.getNode())
5452      return LD;
5453
5454    // For SSE 4.1, use insertps to put the high elements into the low element.
5455    if (getSubtarget()->hasSSE41()) {
5456      SDValue Result;
5457      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5458        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5459      else
5460        Result = DAG.getUNDEF(VT);
5461
5462      for (unsigned i = 1; i < NumElems; ++i) {
5463        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5464        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5465                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5466      }
5467      return Result;
5468    }
5469
5470    // Otherwise, expand into a number of unpckl*, start by extending each of
5471    // our (non-undef) elements to the full vector width with the element in the
5472    // bottom slot of the vector (which generates no code for SSE).
5473    for (unsigned i = 0; i < NumElems; ++i) {
5474      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5475        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5476      else
5477        V[i] = DAG.getUNDEF(VT);
5478    }
5479
5480    // Next, we iteratively mix elements, e.g. for v4f32:
5481    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5482    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5483    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5484    unsigned EltStride = NumElems >> 1;
5485    while (EltStride != 0) {
5486      for (unsigned i = 0; i < EltStride; ++i) {
5487        // If V[i+EltStride] is undef and this is the first round of mixing,
5488        // then it is safe to just drop this shuffle: V[i] is already in the
5489        // right place, the one element (since it's the first round) being
5490        // inserted as undef can be dropped.  This isn't safe for successive
5491        // rounds because they will permute elements within both vectors.
5492        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5493            EltStride == NumElems/2)
5494          continue;
5495
5496        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5497      }
5498      EltStride >>= 1;
5499    }
5500    return V[0];
5501  }
5502  return SDValue();
5503}
5504
5505// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5506// to create 256-bit vectors from two other 128-bit ones.
5507static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5508  DebugLoc dl = Op.getDebugLoc();
5509  EVT ResVT = Op.getValueType();
5510
5511  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5512
5513  SDValue V1 = Op.getOperand(0);
5514  SDValue V2 = Op.getOperand(1);
5515  unsigned NumElems = ResVT.getVectorNumElements();
5516
5517  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5518}
5519
5520static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5521  assert(Op.getNumOperands() == 2);
5522
5523  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5524  // from two other 128-bit ones.
5525  return LowerAVXCONCAT_VECTORS(Op, DAG);
5526}
5527
5528// Try to lower a shuffle node into a simple blend instruction.
5529static SDValue
5530LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5531                           const X86Subtarget *Subtarget, SelectionDAG &DAG) {
5532  SDValue V1 = SVOp->getOperand(0);
5533  SDValue V2 = SVOp->getOperand(1);
5534  DebugLoc dl = SVOp->getDebugLoc();
5535  MVT VT = SVOp->getValueType(0).getSimpleVT();
5536  unsigned NumElems = VT.getVectorNumElements();
5537
5538  if (!Subtarget->hasSSE41())
5539    return SDValue();
5540
5541  unsigned ISDNo = 0;
5542  MVT OpTy;
5543
5544  switch (VT.SimpleTy) {
5545  default: return SDValue();
5546  case MVT::v8i16:
5547    ISDNo = X86ISD::BLENDPW;
5548    OpTy = MVT::v8i16;
5549    break;
5550  case MVT::v4i32:
5551  case MVT::v4f32:
5552    ISDNo = X86ISD::BLENDPS;
5553    OpTy = MVT::v4f32;
5554    break;
5555  case MVT::v2i64:
5556  case MVT::v2f64:
5557    ISDNo = X86ISD::BLENDPD;
5558    OpTy = MVT::v2f64;
5559    break;
5560  case MVT::v8i32:
5561  case MVT::v8f32:
5562    if (!Subtarget->hasAVX())
5563      return SDValue();
5564    ISDNo = X86ISD::BLENDPS;
5565    OpTy = MVT::v8f32;
5566    break;
5567  case MVT::v4i64:
5568  case MVT::v4f64:
5569    if (!Subtarget->hasAVX())
5570      return SDValue();
5571    ISDNo = X86ISD::BLENDPD;
5572    OpTy = MVT::v4f64;
5573    break;
5574  }
5575  assert(ISDNo && "Invalid Op Number");
5576
5577  unsigned MaskVals = 0;
5578
5579  for (unsigned i = 0; i != NumElems; ++i) {
5580    int EltIdx = SVOp->getMaskElt(i);
5581    if (EltIdx == (int)i || EltIdx < 0)
5582      MaskVals |= (1<<i);
5583    else if (EltIdx == (int)(i + NumElems))
5584      continue; // Bit is set to zero;
5585    else
5586      return SDValue();
5587  }
5588
5589  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5590  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5591  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5592                             DAG.getConstant(MaskVals, MVT::i32));
5593  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5594}
5595
5596// v8i16 shuffles - Prefer shuffles in the following order:
5597// 1. [all]   pshuflw, pshufhw, optional move
5598// 2. [ssse3] 1 x pshufb
5599// 3. [ssse3] 2 x pshufb + 1 x por
5600// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5601static SDValue
5602LowerVECTOR_SHUFFLEv8i16(SDValue Op, const X86Subtarget *Subtarget,
5603                         SelectionDAG &DAG) {
5604  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5605  SDValue V1 = SVOp->getOperand(0);
5606  SDValue V2 = SVOp->getOperand(1);
5607  DebugLoc dl = SVOp->getDebugLoc();
5608  SmallVector<int, 8> MaskVals;
5609
5610  // Determine if more than 1 of the words in each of the low and high quadwords
5611  // of the result come from the same quadword of one of the two inputs.  Undef
5612  // mask values count as coming from any quadword, for better codegen.
5613  unsigned LoQuad[] = { 0, 0, 0, 0 };
5614  unsigned HiQuad[] = { 0, 0, 0, 0 };
5615  std::bitset<4> InputQuads;
5616  for (unsigned i = 0; i < 8; ++i) {
5617    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5618    int EltIdx = SVOp->getMaskElt(i);
5619    MaskVals.push_back(EltIdx);
5620    if (EltIdx < 0) {
5621      ++Quad[0];
5622      ++Quad[1];
5623      ++Quad[2];
5624      ++Quad[3];
5625      continue;
5626    }
5627    ++Quad[EltIdx / 4];
5628    InputQuads.set(EltIdx / 4);
5629  }
5630
5631  int BestLoQuad = -1;
5632  unsigned MaxQuad = 1;
5633  for (unsigned i = 0; i < 4; ++i) {
5634    if (LoQuad[i] > MaxQuad) {
5635      BestLoQuad = i;
5636      MaxQuad = LoQuad[i];
5637    }
5638  }
5639
5640  int BestHiQuad = -1;
5641  MaxQuad = 1;
5642  for (unsigned i = 0; i < 4; ++i) {
5643    if (HiQuad[i] > MaxQuad) {
5644      BestHiQuad = i;
5645      MaxQuad = HiQuad[i];
5646    }
5647  }
5648
5649  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5650  // of the two input vectors, shuffle them into one input vector so only a
5651  // single pshufb instruction is necessary. If There are more than 2 input
5652  // quads, disable the next transformation since it does not help SSSE3.
5653  bool V1Used = InputQuads[0] || InputQuads[1];
5654  bool V2Used = InputQuads[2] || InputQuads[3];
5655  if (Subtarget->hasSSSE3()) {
5656    if (InputQuads.count() == 2 && V1Used && V2Used) {
5657      BestLoQuad = InputQuads[0] ? 0 : 1;
5658      BestHiQuad = InputQuads[2] ? 2 : 3;
5659    }
5660    if (InputQuads.count() > 2) {
5661      BestLoQuad = -1;
5662      BestHiQuad = -1;
5663    }
5664  }
5665
5666  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5667  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5668  // words from all 4 input quadwords.
5669  SDValue NewV;
5670  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5671    int MaskV[] = {
5672      BestLoQuad < 0 ? 0 : BestLoQuad,
5673      BestHiQuad < 0 ? 1 : BestHiQuad
5674    };
5675    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5676                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5677                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5678    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5679
5680    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5681    // source words for the shuffle, to aid later transformations.
5682    bool AllWordsInNewV = true;
5683    bool InOrder[2] = { true, true };
5684    for (unsigned i = 0; i != 8; ++i) {
5685      int idx = MaskVals[i];
5686      if (idx != (int)i)
5687        InOrder[i/4] = false;
5688      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5689        continue;
5690      AllWordsInNewV = false;
5691      break;
5692    }
5693
5694    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5695    if (AllWordsInNewV) {
5696      for (int i = 0; i != 8; ++i) {
5697        int idx = MaskVals[i];
5698        if (idx < 0)
5699          continue;
5700        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5701        if ((idx != i) && idx < 4)
5702          pshufhw = false;
5703        if ((idx != i) && idx > 3)
5704          pshuflw = false;
5705      }
5706      V1 = NewV;
5707      V2Used = false;
5708      BestLoQuad = 0;
5709      BestHiQuad = 1;
5710    }
5711
5712    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5713    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5714    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5715      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5716      unsigned TargetMask = 0;
5717      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5718                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5719      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5720      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5721                             getShufflePSHUFLWImmediate(SVOp);
5722      V1 = NewV.getOperand(0);
5723      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5724    }
5725  }
5726
5727  // If we have SSSE3, and all words of the result are from 1 input vector,
5728  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5729  // is present, fall back to case 4.
5730  if (Subtarget->hasSSSE3()) {
5731    SmallVector<SDValue,16> pshufbMask;
5732
5733    // If we have elements from both input vectors, set the high bit of the
5734    // shuffle mask element to zero out elements that come from V2 in the V1
5735    // mask, and elements that come from V1 in the V2 mask, so that the two
5736    // results can be OR'd together.
5737    bool TwoInputs = V1Used && V2Used;
5738    for (unsigned i = 0; i != 8; ++i) {
5739      int EltIdx = MaskVals[i] * 2;
5740      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5741      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5742      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5743      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5744    }
5745    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5746    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5747                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5748                                 MVT::v16i8, &pshufbMask[0], 16));
5749    if (!TwoInputs)
5750      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5751
5752    // Calculate the shuffle mask for the second input, shuffle it, and
5753    // OR it with the first shuffled input.
5754    pshufbMask.clear();
5755    for (unsigned i = 0; i != 8; ++i) {
5756      int EltIdx = MaskVals[i] * 2;
5757      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5758      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5759      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5760      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5761    }
5762    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5763    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5764                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5765                                 MVT::v16i8, &pshufbMask[0], 16));
5766    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5767    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5768  }
5769
5770  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5771  // and update MaskVals with new element order.
5772  std::bitset<8> InOrder;
5773  if (BestLoQuad >= 0) {
5774    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5775    for (int i = 0; i != 4; ++i) {
5776      int idx = MaskVals[i];
5777      if (idx < 0) {
5778        InOrder.set(i);
5779      } else if ((idx / 4) == BestLoQuad) {
5780        MaskV[i] = idx & 3;
5781        InOrder.set(i);
5782      }
5783    }
5784    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5785                                &MaskV[0]);
5786
5787    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5788      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5789      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5790                                  NewV.getOperand(0),
5791                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5792    }
5793  }
5794
5795  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5796  // and update MaskVals with the new element order.
5797  if (BestHiQuad >= 0) {
5798    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5799    for (unsigned i = 4; i != 8; ++i) {
5800      int idx = MaskVals[i];
5801      if (idx < 0) {
5802        InOrder.set(i);
5803      } else if ((idx / 4) == BestHiQuad) {
5804        MaskV[i] = (idx & 3) + 4;
5805        InOrder.set(i);
5806      }
5807    }
5808    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5809                                &MaskV[0]);
5810
5811    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5812      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5813      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5814                                  NewV.getOperand(0),
5815                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5816    }
5817  }
5818
5819  // In case BestHi & BestLo were both -1, which means each quadword has a word
5820  // from each of the four input quadwords, calculate the InOrder bitvector now
5821  // before falling through to the insert/extract cleanup.
5822  if (BestLoQuad == -1 && BestHiQuad == -1) {
5823    NewV = V1;
5824    for (int i = 0; i != 8; ++i)
5825      if (MaskVals[i] < 0 || MaskVals[i] == i)
5826        InOrder.set(i);
5827  }
5828
5829  // The other elements are put in the right place using pextrw and pinsrw.
5830  for (unsigned i = 0; i != 8; ++i) {
5831    if (InOrder[i])
5832      continue;
5833    int EltIdx = MaskVals[i];
5834    if (EltIdx < 0)
5835      continue;
5836    SDValue ExtOp = (EltIdx < 8) ?
5837      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5838                  DAG.getIntPtrConstant(EltIdx)) :
5839      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5840                  DAG.getIntPtrConstant(EltIdx - 8));
5841    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5842                       DAG.getIntPtrConstant(i));
5843  }
5844  return NewV;
5845}
5846
5847// v16i8 shuffles - Prefer shuffles in the following order:
5848// 1. [ssse3] 1 x pshufb
5849// 2. [ssse3] 2 x pshufb + 1 x por
5850// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5851static
5852SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5853                                 SelectionDAG &DAG,
5854                                 const X86TargetLowering &TLI) {
5855  SDValue V1 = SVOp->getOperand(0);
5856  SDValue V2 = SVOp->getOperand(1);
5857  DebugLoc dl = SVOp->getDebugLoc();
5858  ArrayRef<int> MaskVals = SVOp->getMask();
5859
5860  // If we have SSSE3, case 1 is generated when all result bytes come from
5861  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5862  // present, fall back to case 3.
5863
5864  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5865  if (TLI.getSubtarget()->hasSSSE3()) {
5866    SmallVector<SDValue,16> pshufbMask;
5867
5868    // If all result elements are from one input vector, then only translate
5869    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5870    //
5871    // Otherwise, we have elements from both input vectors, and must zero out
5872    // elements that come from V2 in the first mask, and V1 in the second mask
5873    // so that we can OR them together.
5874    for (unsigned i = 0; i != 16; ++i) {
5875      int EltIdx = MaskVals[i];
5876      if (EltIdx < 0 || EltIdx >= 16)
5877        EltIdx = 0x80;
5878      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5879    }
5880    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5881                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5882                                 MVT::v16i8, &pshufbMask[0], 16));
5883
5884    // As PSHUFB will zero elements with negative indices, it's safe to ignore
5885    // the 2nd operand if it's undefined or zero.
5886    if (V2.getOpcode() == ISD::UNDEF ||
5887        ISD::isBuildVectorAllZeros(V2.getNode()))
5888      return V1;
5889
5890    // Calculate the shuffle mask for the second input, shuffle it, and
5891    // OR it with the first shuffled input.
5892    pshufbMask.clear();
5893    for (unsigned i = 0; i != 16; ++i) {
5894      int EltIdx = MaskVals[i];
5895      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5896      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5897    }
5898    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5899                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5900                                 MVT::v16i8, &pshufbMask[0], 16));
5901    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5902  }
5903
5904  // No SSSE3 - Calculate in place words and then fix all out of place words
5905  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5906  // the 16 different words that comprise the two doublequadword input vectors.
5907  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5908  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5909  SDValue NewV = V1;
5910  for (int i = 0; i != 8; ++i) {
5911    int Elt0 = MaskVals[i*2];
5912    int Elt1 = MaskVals[i*2+1];
5913
5914    // This word of the result is all undef, skip it.
5915    if (Elt0 < 0 && Elt1 < 0)
5916      continue;
5917
5918    // This word of the result is already in the correct place, skip it.
5919    if ((Elt0 == i*2) && (Elt1 == i*2+1))
5920      continue;
5921
5922    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5923    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5924    SDValue InsElt;
5925
5926    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5927    // using a single extract together, load it and store it.
5928    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5929      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5930                           DAG.getIntPtrConstant(Elt1 / 2));
5931      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5932                        DAG.getIntPtrConstant(i));
5933      continue;
5934    }
5935
5936    // If Elt1 is defined, extract it from the appropriate source.  If the
5937    // source byte is not also odd, shift the extracted word left 8 bits
5938    // otherwise clear the bottom 8 bits if we need to do an or.
5939    if (Elt1 >= 0) {
5940      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5941                           DAG.getIntPtrConstant(Elt1 / 2));
5942      if ((Elt1 & 1) == 0)
5943        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5944                             DAG.getConstant(8,
5945                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5946      else if (Elt0 >= 0)
5947        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5948                             DAG.getConstant(0xFF00, MVT::i16));
5949    }
5950    // If Elt0 is defined, extract it from the appropriate source.  If the
5951    // source byte is not also even, shift the extracted word right 8 bits. If
5952    // Elt1 was also defined, OR the extracted values together before
5953    // inserting them in the result.
5954    if (Elt0 >= 0) {
5955      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5956                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5957      if ((Elt0 & 1) != 0)
5958        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5959                              DAG.getConstant(8,
5960                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5961      else if (Elt1 >= 0)
5962        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5963                             DAG.getConstant(0x00FF, MVT::i16));
5964      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5965                         : InsElt0;
5966    }
5967    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5968                       DAG.getIntPtrConstant(i));
5969  }
5970  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5971}
5972
5973// v32i8 shuffles - Translate to VPSHUFB if possible.
5974static
5975SDValue LowerVECTOR_SHUFFLEv32i8(ShuffleVectorSDNode *SVOp,
5976                                 const X86Subtarget *Subtarget,
5977                                 SelectionDAG &DAG) {
5978  EVT VT = SVOp->getValueType(0);
5979  SDValue V1 = SVOp->getOperand(0);
5980  SDValue V2 = SVOp->getOperand(1);
5981  DebugLoc dl = SVOp->getDebugLoc();
5982  SmallVector<int, 32> MaskVals(SVOp->getMask().begin(), SVOp->getMask().end());
5983
5984  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5985  bool V1IsAllZero = ISD::isBuildVectorAllZeros(V1.getNode());
5986  bool V2IsAllZero = ISD::isBuildVectorAllZeros(V2.getNode());
5987
5988  // VPSHUFB may be generated if
5989  // (1) one of input vector is undefined or zeroinitializer.
5990  // The mask value 0x80 puts 0 in the corresponding slot of the vector.
5991  // And (2) the mask indexes don't cross the 128-bit lane.
5992  if (VT != MVT::v32i8 || !Subtarget->hasAVX2() ||
5993      (!V2IsUndef && !V2IsAllZero && !V1IsAllZero))
5994    return SDValue();
5995
5996  if (V1IsAllZero && !V2IsAllZero) {
5997    CommuteVectorShuffleMask(MaskVals, 32);
5998    V1 = V2;
5999  }
6000  SmallVector<SDValue, 32> pshufbMask;
6001  for (unsigned i = 0; i != 32; i++) {
6002    int EltIdx = MaskVals[i];
6003    if (EltIdx < 0 || EltIdx >= 32)
6004      EltIdx = 0x80;
6005    else {
6006      if ((EltIdx >= 16 && i < 16) || (EltIdx < 16 && i >= 16))
6007        // Cross lane is not allowed.
6008        return SDValue();
6009      EltIdx &= 0xf;
6010    }
6011    pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
6012  }
6013  return DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, V1,
6014                      DAG.getNode(ISD::BUILD_VECTOR, dl,
6015                                  MVT::v32i8, &pshufbMask[0], 32));
6016}
6017
6018/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
6019/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
6020/// done when every pair / quad of shuffle mask elements point to elements in
6021/// the right sequence. e.g.
6022/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6023static
6024SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6025                                 SelectionDAG &DAG, DebugLoc dl) {
6026  MVT VT = SVOp->getValueType(0).getSimpleVT();
6027  unsigned NumElems = VT.getVectorNumElements();
6028  MVT NewVT;
6029  unsigned Scale;
6030  switch (VT.SimpleTy) {
6031  default: llvm_unreachable("Unexpected!");
6032  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6033  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6034  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6035  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6036  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6037  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6038  }
6039
6040  SmallVector<int, 8> MaskVec;
6041  for (unsigned i = 0; i != NumElems; i += Scale) {
6042    int StartIdx = -1;
6043    for (unsigned j = 0; j != Scale; ++j) {
6044      int EltIdx = SVOp->getMaskElt(i+j);
6045      if (EltIdx < 0)
6046        continue;
6047      if (StartIdx < 0)
6048        StartIdx = (EltIdx / Scale);
6049      if (EltIdx != (int)(StartIdx*Scale + j))
6050        return SDValue();
6051    }
6052    MaskVec.push_back(StartIdx);
6053  }
6054
6055  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6056  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6057  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6058}
6059
6060/// getVZextMovL - Return a zero-extending vector move low node.
6061///
6062static SDValue getVZextMovL(EVT VT, EVT OpVT,
6063                            SDValue SrcOp, SelectionDAG &DAG,
6064                            const X86Subtarget *Subtarget, DebugLoc dl) {
6065  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6066    LoadSDNode *LD = NULL;
6067    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6068      LD = dyn_cast<LoadSDNode>(SrcOp);
6069    if (!LD) {
6070      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6071      // instead.
6072      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6073      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6074          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6075          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6076          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6077        // PR2108
6078        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6079        return DAG.getNode(ISD::BITCAST, dl, VT,
6080                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6081                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6082                                                   OpVT,
6083                                                   SrcOp.getOperand(0)
6084                                                          .getOperand(0))));
6085      }
6086    }
6087  }
6088
6089  return DAG.getNode(ISD::BITCAST, dl, VT,
6090                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6091                                 DAG.getNode(ISD::BITCAST, dl,
6092                                             OpVT, SrcOp)));
6093}
6094
6095/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6096/// which could not be matched by any known target speficic shuffle
6097static SDValue
6098LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6099
6100  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6101  if (NewOp.getNode())
6102    return NewOp;
6103
6104  EVT VT = SVOp->getValueType(0);
6105
6106  unsigned NumElems = VT.getVectorNumElements();
6107  unsigned NumLaneElems = NumElems / 2;
6108
6109  DebugLoc dl = SVOp->getDebugLoc();
6110  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6111  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6112  SDValue Output[2];
6113
6114  SmallVector<int, 16> Mask;
6115  for (unsigned l = 0; l < 2; ++l) {
6116    // Build a shuffle mask for the output, discovering on the fly which
6117    // input vectors to use as shuffle operands (recorded in InputUsed).
6118    // If building a suitable shuffle vector proves too hard, then bail
6119    // out with UseBuildVector set.
6120    bool UseBuildVector = false;
6121    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6122    unsigned LaneStart = l * NumLaneElems;
6123    for (unsigned i = 0; i != NumLaneElems; ++i) {
6124      // The mask element.  This indexes into the input.
6125      int Idx = SVOp->getMaskElt(i+LaneStart);
6126      if (Idx < 0) {
6127        // the mask element does not index into any input vector.
6128        Mask.push_back(-1);
6129        continue;
6130      }
6131
6132      // The input vector this mask element indexes into.
6133      int Input = Idx / NumLaneElems;
6134
6135      // Turn the index into an offset from the start of the input vector.
6136      Idx -= Input * NumLaneElems;
6137
6138      // Find or create a shuffle vector operand to hold this input.
6139      unsigned OpNo;
6140      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6141        if (InputUsed[OpNo] == Input)
6142          // This input vector is already an operand.
6143          break;
6144        if (InputUsed[OpNo] < 0) {
6145          // Create a new operand for this input vector.
6146          InputUsed[OpNo] = Input;
6147          break;
6148        }
6149      }
6150
6151      if (OpNo >= array_lengthof(InputUsed)) {
6152        // More than two input vectors used!  Give up on trying to create a
6153        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6154        UseBuildVector = true;
6155        break;
6156      }
6157
6158      // Add the mask index for the new shuffle vector.
6159      Mask.push_back(Idx + OpNo * NumLaneElems);
6160    }
6161
6162    if (UseBuildVector) {
6163      SmallVector<SDValue, 16> SVOps;
6164      for (unsigned i = 0; i != NumLaneElems; ++i) {
6165        // The mask element.  This indexes into the input.
6166        int Idx = SVOp->getMaskElt(i+LaneStart);
6167        if (Idx < 0) {
6168          SVOps.push_back(DAG.getUNDEF(EltVT));
6169          continue;
6170        }
6171
6172        // The input vector this mask element indexes into.
6173        int Input = Idx / NumElems;
6174
6175        // Turn the index into an offset from the start of the input vector.
6176        Idx -= Input * NumElems;
6177
6178        // Extract the vector element by hand.
6179        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6180                                    SVOp->getOperand(Input),
6181                                    DAG.getIntPtrConstant(Idx)));
6182      }
6183
6184      // Construct the output using a BUILD_VECTOR.
6185      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6186                              SVOps.size());
6187    } else if (InputUsed[0] < 0) {
6188      // No input vectors were used! The result is undefined.
6189      Output[l] = DAG.getUNDEF(NVT);
6190    } else {
6191      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6192                                        (InputUsed[0] % 2) * NumLaneElems,
6193                                        DAG, dl);
6194      // If only one input was used, use an undefined vector for the other.
6195      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6196        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6197                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6198      // At least one input vector was used. Create a new shuffle vector.
6199      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6200    }
6201
6202    Mask.clear();
6203  }
6204
6205  // Concatenate the result back
6206  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6207}
6208
6209/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6210/// 4 elements, and match them with several different shuffle types.
6211static SDValue
6212LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6213  SDValue V1 = SVOp->getOperand(0);
6214  SDValue V2 = SVOp->getOperand(1);
6215  DebugLoc dl = SVOp->getDebugLoc();
6216  EVT VT = SVOp->getValueType(0);
6217
6218  assert(VT.is128BitVector() && "Unsupported vector size");
6219
6220  std::pair<int, int> Locs[4];
6221  int Mask1[] = { -1, -1, -1, -1 };
6222  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6223
6224  unsigned NumHi = 0;
6225  unsigned NumLo = 0;
6226  for (unsigned i = 0; i != 4; ++i) {
6227    int Idx = PermMask[i];
6228    if (Idx < 0) {
6229      Locs[i] = std::make_pair(-1, -1);
6230    } else {
6231      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6232      if (Idx < 4) {
6233        Locs[i] = std::make_pair(0, NumLo);
6234        Mask1[NumLo] = Idx;
6235        NumLo++;
6236      } else {
6237        Locs[i] = std::make_pair(1, NumHi);
6238        if (2+NumHi < 4)
6239          Mask1[2+NumHi] = Idx;
6240        NumHi++;
6241      }
6242    }
6243  }
6244
6245  if (NumLo <= 2 && NumHi <= 2) {
6246    // If no more than two elements come from either vector. This can be
6247    // implemented with two shuffles. First shuffle gather the elements.
6248    // The second shuffle, which takes the first shuffle as both of its
6249    // vector operands, put the elements into the right order.
6250    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6251
6252    int Mask2[] = { -1, -1, -1, -1 };
6253
6254    for (unsigned i = 0; i != 4; ++i)
6255      if (Locs[i].first != -1) {
6256        unsigned Idx = (i < 2) ? 0 : 4;
6257        Idx += Locs[i].first * 2 + Locs[i].second;
6258        Mask2[i] = Idx;
6259      }
6260
6261    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6262  }
6263
6264  if (NumLo == 3 || NumHi == 3) {
6265    // Otherwise, we must have three elements from one vector, call it X, and
6266    // one element from the other, call it Y.  First, use a shufps to build an
6267    // intermediate vector with the one element from Y and the element from X
6268    // that will be in the same half in the final destination (the indexes don't
6269    // matter). Then, use a shufps to build the final vector, taking the half
6270    // containing the element from Y from the intermediate, and the other half
6271    // from X.
6272    if (NumHi == 3) {
6273      // Normalize it so the 3 elements come from V1.
6274      CommuteVectorShuffleMask(PermMask, 4);
6275      std::swap(V1, V2);
6276    }
6277
6278    // Find the element from V2.
6279    unsigned HiIndex;
6280    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6281      int Val = PermMask[HiIndex];
6282      if (Val < 0)
6283        continue;
6284      if (Val >= 4)
6285        break;
6286    }
6287
6288    Mask1[0] = PermMask[HiIndex];
6289    Mask1[1] = -1;
6290    Mask1[2] = PermMask[HiIndex^1];
6291    Mask1[3] = -1;
6292    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6293
6294    if (HiIndex >= 2) {
6295      Mask1[0] = PermMask[0];
6296      Mask1[1] = PermMask[1];
6297      Mask1[2] = HiIndex & 1 ? 6 : 4;
6298      Mask1[3] = HiIndex & 1 ? 4 : 6;
6299      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6300    }
6301
6302    Mask1[0] = HiIndex & 1 ? 2 : 0;
6303    Mask1[1] = HiIndex & 1 ? 0 : 2;
6304    Mask1[2] = PermMask[2];
6305    Mask1[3] = PermMask[3];
6306    if (Mask1[2] >= 0)
6307      Mask1[2] += 4;
6308    if (Mask1[3] >= 0)
6309      Mask1[3] += 4;
6310    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6311  }
6312
6313  // Break it into (shuffle shuffle_hi, shuffle_lo).
6314  int LoMask[] = { -1, -1, -1, -1 };
6315  int HiMask[] = { -1, -1, -1, -1 };
6316
6317  int *MaskPtr = LoMask;
6318  unsigned MaskIdx = 0;
6319  unsigned LoIdx = 0;
6320  unsigned HiIdx = 2;
6321  for (unsigned i = 0; i != 4; ++i) {
6322    if (i == 2) {
6323      MaskPtr = HiMask;
6324      MaskIdx = 1;
6325      LoIdx = 0;
6326      HiIdx = 2;
6327    }
6328    int Idx = PermMask[i];
6329    if (Idx < 0) {
6330      Locs[i] = std::make_pair(-1, -1);
6331    } else if (Idx < 4) {
6332      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6333      MaskPtr[LoIdx] = Idx;
6334      LoIdx++;
6335    } else {
6336      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6337      MaskPtr[HiIdx] = Idx;
6338      HiIdx++;
6339    }
6340  }
6341
6342  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6343  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6344  int MaskOps[] = { -1, -1, -1, -1 };
6345  for (unsigned i = 0; i != 4; ++i)
6346    if (Locs[i].first != -1)
6347      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6348  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6349}
6350
6351static bool MayFoldVectorLoad(SDValue V) {
6352  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6353    V = V.getOperand(0);
6354  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6355    V = V.getOperand(0);
6356  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6357      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6358    // BUILD_VECTOR (load), undef
6359    V = V.getOperand(0);
6360  if (MayFoldLoad(V))
6361    return true;
6362  return false;
6363}
6364
6365// FIXME: the version above should always be used. Since there's
6366// a bug where several vector shuffles can't be folded because the
6367// DAG is not updated during lowering and a node claims to have two
6368// uses while it only has one, use this version, and let isel match
6369// another instruction if the load really happens to have more than
6370// one use. Remove this version after this bug get fixed.
6371// rdar://8434668, PR8156
6372static bool RelaxedMayFoldVectorLoad(SDValue V) {
6373  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6374    V = V.getOperand(0);
6375  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6376    V = V.getOperand(0);
6377  if (ISD::isNormalLoad(V.getNode()))
6378    return true;
6379  return false;
6380}
6381
6382static
6383SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6384  EVT VT = Op.getValueType();
6385
6386  // Canonizalize to v2f64.
6387  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6388  return DAG.getNode(ISD::BITCAST, dl, VT,
6389                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6390                                          V1, DAG));
6391}
6392
6393static
6394SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6395                        bool HasSSE2) {
6396  SDValue V1 = Op.getOperand(0);
6397  SDValue V2 = Op.getOperand(1);
6398  EVT VT = Op.getValueType();
6399
6400  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6401
6402  if (HasSSE2 && VT == MVT::v2f64)
6403    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6404
6405  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6406  return DAG.getNode(ISD::BITCAST, dl, VT,
6407                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6408                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6409                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6410}
6411
6412static
6413SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6414  SDValue V1 = Op.getOperand(0);
6415  SDValue V2 = Op.getOperand(1);
6416  EVT VT = Op.getValueType();
6417
6418  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6419         "unsupported shuffle type");
6420
6421  if (V2.getOpcode() == ISD::UNDEF)
6422    V2 = V1;
6423
6424  // v4i32 or v4f32
6425  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6426}
6427
6428static
6429SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6430  SDValue V1 = Op.getOperand(0);
6431  SDValue V2 = Op.getOperand(1);
6432  EVT VT = Op.getValueType();
6433  unsigned NumElems = VT.getVectorNumElements();
6434
6435  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6436  // operand of these instructions is only memory, so check if there's a
6437  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6438  // same masks.
6439  bool CanFoldLoad = false;
6440
6441  // Trivial case, when V2 comes from a load.
6442  if (MayFoldVectorLoad(V2))
6443    CanFoldLoad = true;
6444
6445  // When V1 is a load, it can be folded later into a store in isel, example:
6446  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6447  //    turns into:
6448  //  (MOVLPSmr addr:$src1, VR128:$src2)
6449  // So, recognize this potential and also use MOVLPS or MOVLPD
6450  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6451    CanFoldLoad = true;
6452
6453  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6454  if (CanFoldLoad) {
6455    if (HasSSE2 && NumElems == 2)
6456      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6457
6458    if (NumElems == 4)
6459      // If we don't care about the second element, proceed to use movss.
6460      if (SVOp->getMaskElt(1) != -1)
6461        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6462  }
6463
6464  // movl and movlp will both match v2i64, but v2i64 is never matched by
6465  // movl earlier because we make it strict to avoid messing with the movlp load
6466  // folding logic (see the code above getMOVLP call). Match it here then,
6467  // this is horrible, but will stay like this until we move all shuffle
6468  // matching to x86 specific nodes. Note that for the 1st condition all
6469  // types are matched with movsd.
6470  if (HasSSE2) {
6471    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6472    // as to remove this logic from here, as much as possible
6473    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6474      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6475    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6476  }
6477
6478  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6479
6480  // Invert the operand order and use SHUFPS to match it.
6481  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6482                              getShuffleSHUFImmediate(SVOp), DAG);
6483}
6484
6485SDValue
6486X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6487  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6488  EVT VT = Op.getValueType();
6489  DebugLoc dl = Op.getDebugLoc();
6490  SDValue V1 = Op.getOperand(0);
6491  SDValue V2 = Op.getOperand(1);
6492
6493  if (isZeroShuffle(SVOp))
6494    return getZeroVector(VT, Subtarget, DAG, dl);
6495
6496  // Handle splat operations
6497  if (SVOp->isSplat()) {
6498    unsigned NumElem = VT.getVectorNumElements();
6499    int Size = VT.getSizeInBits();
6500
6501    // Use vbroadcast whenever the splat comes from a foldable load
6502    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6503    if (Broadcast.getNode())
6504      return Broadcast;
6505
6506    // Handle splats by matching through known shuffle masks
6507    if ((Size == 128 && NumElem <= 4) ||
6508        (Size == 256 && NumElem < 8))
6509      return SDValue();
6510
6511    // All remaning splats are promoted to target supported vector shuffles.
6512    return PromoteSplat(SVOp, DAG);
6513  }
6514
6515  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6516  // do it!
6517  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6518      VT == MVT::v16i16 || VT == MVT::v32i8) {
6519    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6520    if (NewOp.getNode())
6521      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6522  } else if ((VT == MVT::v4i32 ||
6523             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6524    // FIXME: Figure out a cleaner way to do this.
6525    // Try to make use of movq to zero out the top part.
6526    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6527      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6528      if (NewOp.getNode()) {
6529        EVT NewVT = NewOp.getValueType();
6530        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6531                               NewVT, true, false))
6532          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6533                              DAG, Subtarget, dl);
6534      }
6535    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6536      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6537      if (NewOp.getNode()) {
6538        EVT NewVT = NewOp.getValueType();
6539        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6540          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6541                              DAG, Subtarget, dl);
6542      }
6543    }
6544  }
6545  return SDValue();
6546}
6547
6548SDValue
6549X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6550  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6551  SDValue V1 = Op.getOperand(0);
6552  SDValue V2 = Op.getOperand(1);
6553  EVT VT = Op.getValueType();
6554  DebugLoc dl = Op.getDebugLoc();
6555  unsigned NumElems = VT.getVectorNumElements();
6556  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6557  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6558  bool V1IsSplat = false;
6559  bool V2IsSplat = false;
6560  bool HasSSE2 = Subtarget->hasSSE2();
6561  bool HasAVX    = Subtarget->hasAVX();
6562  bool HasAVX2   = Subtarget->hasAVX2();
6563  MachineFunction &MF = DAG.getMachineFunction();
6564  bool OptForSize = MF.getFunction()->getFnAttributes().
6565    hasAttribute(Attributes::OptimizeForSize);
6566
6567  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6568
6569  if (V1IsUndef && V2IsUndef)
6570    return DAG.getUNDEF(VT);
6571
6572  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6573
6574  // Vector shuffle lowering takes 3 steps:
6575  //
6576  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6577  //    narrowing and commutation of operands should be handled.
6578  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6579  //    shuffle nodes.
6580  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6581  //    so the shuffle can be broken into other shuffles and the legalizer can
6582  //    try the lowering again.
6583  //
6584  // The general idea is that no vector_shuffle operation should be left to
6585  // be matched during isel, all of them must be converted to a target specific
6586  // node here.
6587
6588  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6589  // narrowing and commutation of operands should be handled. The actual code
6590  // doesn't include all of those, work in progress...
6591  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6592  if (NewOp.getNode())
6593    return NewOp;
6594
6595  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6596
6597  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6598  // unpckh_undef). Only use pshufd if speed is more important than size.
6599  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6600    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6601  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6602    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6603
6604  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6605      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6606    return getMOVDDup(Op, dl, V1, DAG);
6607
6608  if (isMOVHLPS_v_undef_Mask(M, VT))
6609    return getMOVHighToLow(Op, dl, DAG);
6610
6611  // Use to match splats
6612  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6613      (VT == MVT::v2f64 || VT == MVT::v2i64))
6614    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6615
6616  if (isPSHUFDMask(M, VT)) {
6617    // The actual implementation will match the mask in the if above and then
6618    // during isel it can match several different instructions, not only pshufd
6619    // as its name says, sad but true, emulate the behavior for now...
6620    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6621      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6622
6623    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6624
6625    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6626      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6627
6628    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6629      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6630
6631    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6632                                TargetMask, DAG);
6633  }
6634
6635  // Check if this can be converted into a logical shift.
6636  bool isLeft = false;
6637  unsigned ShAmt = 0;
6638  SDValue ShVal;
6639  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6640  if (isShift && ShVal.hasOneUse()) {
6641    // If the shifted value has multiple uses, it may be cheaper to use
6642    // v_set0 + movlhps or movhlps, etc.
6643    EVT EltVT = VT.getVectorElementType();
6644    ShAmt *= EltVT.getSizeInBits();
6645    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6646  }
6647
6648  if (isMOVLMask(M, VT)) {
6649    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6650      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6651    if (!isMOVLPMask(M, VT)) {
6652      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6653        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6654
6655      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6656        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6657    }
6658  }
6659
6660  // FIXME: fold these into legal mask.
6661  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6662    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6663
6664  if (isMOVHLPSMask(M, VT))
6665    return getMOVHighToLow(Op, dl, DAG);
6666
6667  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6668    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6669
6670  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6671    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6672
6673  if (isMOVLPMask(M, VT))
6674    return getMOVLP(Op, dl, DAG, HasSSE2);
6675
6676  if (ShouldXformToMOVHLPS(M, VT) ||
6677      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6678    return CommuteVectorShuffle(SVOp, DAG);
6679
6680  if (isShift) {
6681    // No better options. Use a vshldq / vsrldq.
6682    EVT EltVT = VT.getVectorElementType();
6683    ShAmt *= EltVT.getSizeInBits();
6684    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6685  }
6686
6687  bool Commuted = false;
6688  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6689  // 1,1,1,1 -> v8i16 though.
6690  V1IsSplat = isSplatVector(V1.getNode());
6691  V2IsSplat = isSplatVector(V2.getNode());
6692
6693  // Canonicalize the splat or undef, if present, to be on the RHS.
6694  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6695    CommuteVectorShuffleMask(M, NumElems);
6696    std::swap(V1, V2);
6697    std::swap(V1IsSplat, V2IsSplat);
6698    Commuted = true;
6699  }
6700
6701  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6702    // Shuffling low element of v1 into undef, just return v1.
6703    if (V2IsUndef)
6704      return V1;
6705    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6706    // the instruction selector will not match, so get a canonical MOVL with
6707    // swapped operands to undo the commute.
6708    return getMOVL(DAG, dl, VT, V2, V1);
6709  }
6710
6711  if (isUNPCKLMask(M, VT, HasAVX2))
6712    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6713
6714  if (isUNPCKHMask(M, VT, HasAVX2))
6715    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6716
6717  if (V2IsSplat) {
6718    // Normalize mask so all entries that point to V2 points to its first
6719    // element then try to match unpck{h|l} again. If match, return a
6720    // new vector_shuffle with the corrected mask.p
6721    SmallVector<int, 8> NewMask(M.begin(), M.end());
6722    NormalizeMask(NewMask, NumElems);
6723    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6724      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6725    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6726      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6727  }
6728
6729  if (Commuted) {
6730    // Commute is back and try unpck* again.
6731    // FIXME: this seems wrong.
6732    CommuteVectorShuffleMask(M, NumElems);
6733    std::swap(V1, V2);
6734    std::swap(V1IsSplat, V2IsSplat);
6735    Commuted = false;
6736
6737    if (isUNPCKLMask(M, VT, HasAVX2))
6738      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6739
6740    if (isUNPCKHMask(M, VT, HasAVX2))
6741      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6742  }
6743
6744  // Normalize the node to match x86 shuffle ops if needed
6745  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6746    return CommuteVectorShuffle(SVOp, DAG);
6747
6748  // The checks below are all present in isShuffleMaskLegal, but they are
6749  // inlined here right now to enable us to directly emit target specific
6750  // nodes, and remove one by one until they don't return Op anymore.
6751
6752  if (isPALIGNRMask(M, VT, Subtarget))
6753    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6754                                getShufflePALIGNRImmediate(SVOp),
6755                                DAG);
6756
6757  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6758      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6759    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6760      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6761  }
6762
6763  if (isPSHUFHWMask(M, VT, HasAVX2))
6764    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6765                                getShufflePSHUFHWImmediate(SVOp),
6766                                DAG);
6767
6768  if (isPSHUFLWMask(M, VT, HasAVX2))
6769    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6770                                getShufflePSHUFLWImmediate(SVOp),
6771                                DAG);
6772
6773  if (isSHUFPMask(M, VT, HasAVX))
6774    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6775                                getShuffleSHUFImmediate(SVOp), DAG);
6776
6777  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6778    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6779  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6780    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6781
6782  //===--------------------------------------------------------------------===//
6783  // Generate target specific nodes for 128 or 256-bit shuffles only
6784  // supported in the AVX instruction set.
6785  //
6786
6787  // Handle VMOVDDUPY permutations
6788  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6789    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6790
6791  // Handle VPERMILPS/D* permutations
6792  if (isVPERMILPMask(M, VT, HasAVX)) {
6793    if (HasAVX2 && VT == MVT::v8i32)
6794      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6795                                  getShuffleSHUFImmediate(SVOp), DAG);
6796    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6797                                getShuffleSHUFImmediate(SVOp), DAG);
6798  }
6799
6800  // Handle VPERM2F128/VPERM2I128 permutations
6801  if (isVPERM2X128Mask(M, VT, HasAVX))
6802    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6803                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6804
6805  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6806  if (BlendOp.getNode())
6807    return BlendOp;
6808
6809  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6810    SmallVector<SDValue, 8> permclMask;
6811    for (unsigned i = 0; i != 8; ++i) {
6812      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6813    }
6814    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6815                               &permclMask[0], 8);
6816    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6817    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6818                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6819  }
6820
6821  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6822    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6823                                getShuffleCLImmediate(SVOp), DAG);
6824
6825
6826  //===--------------------------------------------------------------------===//
6827  // Since no target specific shuffle was selected for this generic one,
6828  // lower it into other known shuffles. FIXME: this isn't true yet, but
6829  // this is the plan.
6830  //
6831
6832  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6833  if (VT == MVT::v8i16) {
6834    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, Subtarget, DAG);
6835    if (NewOp.getNode())
6836      return NewOp;
6837  }
6838
6839  if (VT == MVT::v16i8) {
6840    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6841    if (NewOp.getNode())
6842      return NewOp;
6843  }
6844
6845  if (VT == MVT::v32i8) {
6846    SDValue NewOp = LowerVECTOR_SHUFFLEv32i8(SVOp, Subtarget, DAG);
6847    if (NewOp.getNode())
6848      return NewOp;
6849  }
6850
6851  // Handle all 128-bit wide vectors with 4 elements, and match them with
6852  // several different shuffle types.
6853  if (NumElems == 4 && VT.is128BitVector())
6854    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6855
6856  // Handle general 256-bit shuffles
6857  if (VT.is256BitVector())
6858    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6859
6860  return SDValue();
6861}
6862
6863SDValue
6864X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6865                                                SelectionDAG &DAG) const {
6866  EVT VT = Op.getValueType();
6867  DebugLoc dl = Op.getDebugLoc();
6868
6869  if (!Op.getOperand(0).getValueType().is128BitVector())
6870    return SDValue();
6871
6872  if (VT.getSizeInBits() == 8) {
6873    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6874                                  Op.getOperand(0), Op.getOperand(1));
6875    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6876                                  DAG.getValueType(VT));
6877    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6878  }
6879
6880  if (VT.getSizeInBits() == 16) {
6881    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6882    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6883    if (Idx == 0)
6884      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6885                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6886                                     DAG.getNode(ISD::BITCAST, dl,
6887                                                 MVT::v4i32,
6888                                                 Op.getOperand(0)),
6889                                     Op.getOperand(1)));
6890    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6891                                  Op.getOperand(0), Op.getOperand(1));
6892    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6893                                  DAG.getValueType(VT));
6894    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6895  }
6896
6897  if (VT == MVT::f32) {
6898    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6899    // the result back to FR32 register. It's only worth matching if the
6900    // result has a single use which is a store or a bitcast to i32.  And in
6901    // the case of a store, it's not worth it if the index is a constant 0,
6902    // because a MOVSSmr can be used instead, which is smaller and faster.
6903    if (!Op.hasOneUse())
6904      return SDValue();
6905    SDNode *User = *Op.getNode()->use_begin();
6906    if ((User->getOpcode() != ISD::STORE ||
6907         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6908          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6909        (User->getOpcode() != ISD::BITCAST ||
6910         User->getValueType(0) != MVT::i32))
6911      return SDValue();
6912    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6913                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6914                                              Op.getOperand(0)),
6915                                              Op.getOperand(1));
6916    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6917  }
6918
6919  if (VT == MVT::i32 || VT == MVT::i64) {
6920    // ExtractPS/pextrq works with constant index.
6921    if (isa<ConstantSDNode>(Op.getOperand(1)))
6922      return Op;
6923  }
6924  return SDValue();
6925}
6926
6927
6928SDValue
6929X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6930                                           SelectionDAG &DAG) const {
6931  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6932    return SDValue();
6933
6934  SDValue Vec = Op.getOperand(0);
6935  EVT VecVT = Vec.getValueType();
6936
6937  // If this is a 256-bit vector result, first extract the 128-bit vector and
6938  // then extract the element from the 128-bit vector.
6939  if (VecVT.is256BitVector()) {
6940    DebugLoc dl = Op.getNode()->getDebugLoc();
6941    unsigned NumElems = VecVT.getVectorNumElements();
6942    SDValue Idx = Op.getOperand(1);
6943    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6944
6945    // Get the 128-bit vector.
6946    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
6947
6948    if (IdxVal >= NumElems/2)
6949      IdxVal -= NumElems/2;
6950    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6951                       DAG.getConstant(IdxVal, MVT::i32));
6952  }
6953
6954  assert(VecVT.is128BitVector() && "Unexpected vector length");
6955
6956  if (Subtarget->hasSSE41()) {
6957    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6958    if (Res.getNode())
6959      return Res;
6960  }
6961
6962  EVT VT = Op.getValueType();
6963  DebugLoc dl = Op.getDebugLoc();
6964  // TODO: handle v16i8.
6965  if (VT.getSizeInBits() == 16) {
6966    SDValue Vec = Op.getOperand(0);
6967    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6968    if (Idx == 0)
6969      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6970                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6971                                     DAG.getNode(ISD::BITCAST, dl,
6972                                                 MVT::v4i32, Vec),
6973                                     Op.getOperand(1)));
6974    // Transform it so it match pextrw which produces a 32-bit result.
6975    EVT EltVT = MVT::i32;
6976    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6977                                  Op.getOperand(0), Op.getOperand(1));
6978    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6979                                  DAG.getValueType(VT));
6980    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6981  }
6982
6983  if (VT.getSizeInBits() == 32) {
6984    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6985    if (Idx == 0)
6986      return Op;
6987
6988    // SHUFPS the element to the lowest double word, then movss.
6989    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6990    EVT VVT = Op.getOperand(0).getValueType();
6991    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6992                                       DAG.getUNDEF(VVT), Mask);
6993    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6994                       DAG.getIntPtrConstant(0));
6995  }
6996
6997  if (VT.getSizeInBits() == 64) {
6998    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6999    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
7000    //        to match extract_elt for f64.
7001    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7002    if (Idx == 0)
7003      return Op;
7004
7005    // UNPCKHPD the element to the lowest double word, then movsd.
7006    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
7007    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
7008    int Mask[2] = { 1, -1 };
7009    EVT VVT = Op.getOperand(0).getValueType();
7010    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
7011                                       DAG.getUNDEF(VVT), Mask);
7012    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
7013                       DAG.getIntPtrConstant(0));
7014  }
7015
7016  return SDValue();
7017}
7018
7019SDValue
7020X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
7021                                               SelectionDAG &DAG) const {
7022  EVT VT = Op.getValueType();
7023  EVT EltVT = VT.getVectorElementType();
7024  DebugLoc dl = Op.getDebugLoc();
7025
7026  SDValue N0 = Op.getOperand(0);
7027  SDValue N1 = Op.getOperand(1);
7028  SDValue N2 = Op.getOperand(2);
7029
7030  if (!VT.is128BitVector())
7031    return SDValue();
7032
7033  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7034      isa<ConstantSDNode>(N2)) {
7035    unsigned Opc;
7036    if (VT == MVT::v8i16)
7037      Opc = X86ISD::PINSRW;
7038    else if (VT == MVT::v16i8)
7039      Opc = X86ISD::PINSRB;
7040    else
7041      Opc = X86ISD::PINSRB;
7042
7043    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7044    // argument.
7045    if (N1.getValueType() != MVT::i32)
7046      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7047    if (N2.getValueType() != MVT::i32)
7048      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7049    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7050  }
7051
7052  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7053    // Bits [7:6] of the constant are the source select.  This will always be
7054    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7055    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7056    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7057    // Bits [5:4] of the constant are the destination select.  This is the
7058    //  value of the incoming immediate.
7059    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7060    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7061    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7062    // Create this as a scalar to vector..
7063    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7064    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7065  }
7066
7067  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7068    // PINSR* works with constant index.
7069    return Op;
7070  }
7071  return SDValue();
7072}
7073
7074SDValue
7075X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7076  EVT VT = Op.getValueType();
7077  EVT EltVT = VT.getVectorElementType();
7078
7079  DebugLoc dl = Op.getDebugLoc();
7080  SDValue N0 = Op.getOperand(0);
7081  SDValue N1 = Op.getOperand(1);
7082  SDValue N2 = Op.getOperand(2);
7083
7084  // If this is a 256-bit vector result, first extract the 128-bit vector,
7085  // insert the element into the extracted half and then place it back.
7086  if (VT.is256BitVector()) {
7087    if (!isa<ConstantSDNode>(N2))
7088      return SDValue();
7089
7090    // Get the desired 128-bit vector half.
7091    unsigned NumElems = VT.getVectorNumElements();
7092    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7093    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7094
7095    // Insert the element into the desired half.
7096    bool Upper = IdxVal >= NumElems/2;
7097    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7098                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7099
7100    // Insert the changed part back to the 256-bit vector
7101    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7102  }
7103
7104  if (Subtarget->hasSSE41())
7105    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7106
7107  if (EltVT == MVT::i8)
7108    return SDValue();
7109
7110  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7111    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7112    // as its second argument.
7113    if (N1.getValueType() != MVT::i32)
7114      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7115    if (N2.getValueType() != MVT::i32)
7116      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7117    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7118  }
7119  return SDValue();
7120}
7121
7122static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
7123  LLVMContext *Context = DAG.getContext();
7124  DebugLoc dl = Op.getDebugLoc();
7125  EVT OpVT = Op.getValueType();
7126
7127  // If this is a 256-bit vector result, first insert into a 128-bit
7128  // vector and then insert into the 256-bit vector.
7129  if (!OpVT.is128BitVector()) {
7130    // Insert into a 128-bit vector.
7131    EVT VT128 = EVT::getVectorVT(*Context,
7132                                 OpVT.getVectorElementType(),
7133                                 OpVT.getVectorNumElements() / 2);
7134
7135    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7136
7137    // Insert the 128-bit vector.
7138    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7139  }
7140
7141  if (OpVT == MVT::v1i64 &&
7142      Op.getOperand(0).getValueType() == MVT::i64)
7143    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7144
7145  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7146  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7147  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7148                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7149}
7150
7151// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7152// a simple subregister reference or explicit instructions to grab
7153// upper bits of a vector.
7154static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7155                                      SelectionDAG &DAG) {
7156  if (Subtarget->hasAVX()) {
7157    DebugLoc dl = Op.getNode()->getDebugLoc();
7158    SDValue Vec = Op.getNode()->getOperand(0);
7159    SDValue Idx = Op.getNode()->getOperand(1);
7160
7161    if (Op.getNode()->getValueType(0).is128BitVector() &&
7162        Vec.getNode()->getValueType(0).is256BitVector() &&
7163        isa<ConstantSDNode>(Idx)) {
7164      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7165      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7166    }
7167  }
7168  return SDValue();
7169}
7170
7171// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7172// simple superregister reference or explicit instructions to insert
7173// the upper bits of a vector.
7174static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget *Subtarget,
7175                                     SelectionDAG &DAG) {
7176  if (Subtarget->hasAVX()) {
7177    DebugLoc dl = Op.getNode()->getDebugLoc();
7178    SDValue Vec = Op.getNode()->getOperand(0);
7179    SDValue SubVec = Op.getNode()->getOperand(1);
7180    SDValue Idx = Op.getNode()->getOperand(2);
7181
7182    if (Op.getNode()->getValueType(0).is256BitVector() &&
7183        SubVec.getNode()->getValueType(0).is128BitVector() &&
7184        isa<ConstantSDNode>(Idx)) {
7185      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7186      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7187    }
7188  }
7189  return SDValue();
7190}
7191
7192// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7193// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7194// one of the above mentioned nodes. It has to be wrapped because otherwise
7195// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7196// be used to form addressing mode. These wrapped nodes will be selected
7197// into MOV32ri.
7198SDValue
7199X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7200  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7201
7202  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7203  // global base reg.
7204  unsigned char OpFlag = 0;
7205  unsigned WrapperKind = X86ISD::Wrapper;
7206  CodeModel::Model M = getTargetMachine().getCodeModel();
7207
7208  if (Subtarget->isPICStyleRIPRel() &&
7209      (M == CodeModel::Small || M == CodeModel::Kernel))
7210    WrapperKind = X86ISD::WrapperRIP;
7211  else if (Subtarget->isPICStyleGOT())
7212    OpFlag = X86II::MO_GOTOFF;
7213  else if (Subtarget->isPICStyleStubPIC())
7214    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7215
7216  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7217                                             CP->getAlignment(),
7218                                             CP->getOffset(), OpFlag);
7219  DebugLoc DL = CP->getDebugLoc();
7220  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7221  // With PIC, the address is actually $g + Offset.
7222  if (OpFlag) {
7223    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7224                         DAG.getNode(X86ISD::GlobalBaseReg,
7225                                     DebugLoc(), getPointerTy()),
7226                         Result);
7227  }
7228
7229  return Result;
7230}
7231
7232SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7233  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7234
7235  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7236  // global base reg.
7237  unsigned char OpFlag = 0;
7238  unsigned WrapperKind = X86ISD::Wrapper;
7239  CodeModel::Model M = getTargetMachine().getCodeModel();
7240
7241  if (Subtarget->isPICStyleRIPRel() &&
7242      (M == CodeModel::Small || M == CodeModel::Kernel))
7243    WrapperKind = X86ISD::WrapperRIP;
7244  else if (Subtarget->isPICStyleGOT())
7245    OpFlag = X86II::MO_GOTOFF;
7246  else if (Subtarget->isPICStyleStubPIC())
7247    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7248
7249  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7250                                          OpFlag);
7251  DebugLoc DL = JT->getDebugLoc();
7252  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7253
7254  // With PIC, the address is actually $g + Offset.
7255  if (OpFlag)
7256    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7257                         DAG.getNode(X86ISD::GlobalBaseReg,
7258                                     DebugLoc(), getPointerTy()),
7259                         Result);
7260
7261  return Result;
7262}
7263
7264SDValue
7265X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7266  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7267
7268  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7269  // global base reg.
7270  unsigned char OpFlag = 0;
7271  unsigned WrapperKind = X86ISD::Wrapper;
7272  CodeModel::Model M = getTargetMachine().getCodeModel();
7273
7274  if (Subtarget->isPICStyleRIPRel() &&
7275      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7276    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7277      OpFlag = X86II::MO_GOTPCREL;
7278    WrapperKind = X86ISD::WrapperRIP;
7279  } else if (Subtarget->isPICStyleGOT()) {
7280    OpFlag = X86II::MO_GOT;
7281  } else if (Subtarget->isPICStyleStubPIC()) {
7282    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7283  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7284    OpFlag = X86II::MO_DARWIN_NONLAZY;
7285  }
7286
7287  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7288
7289  DebugLoc DL = Op.getDebugLoc();
7290  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7291
7292
7293  // With PIC, the address is actually $g + Offset.
7294  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7295      !Subtarget->is64Bit()) {
7296    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7297                         DAG.getNode(X86ISD::GlobalBaseReg,
7298                                     DebugLoc(), getPointerTy()),
7299                         Result);
7300  }
7301
7302  // For symbols that require a load from a stub to get the address, emit the
7303  // load.
7304  if (isGlobalStubReference(OpFlag))
7305    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7306                         MachinePointerInfo::getGOT(), false, false, false, 0);
7307
7308  return Result;
7309}
7310
7311SDValue
7312X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7313  // Create the TargetBlockAddressAddress node.
7314  unsigned char OpFlags =
7315    Subtarget->ClassifyBlockAddressReference();
7316  CodeModel::Model M = getTargetMachine().getCodeModel();
7317  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7318  int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
7319  DebugLoc dl = Op.getDebugLoc();
7320  SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(), Offset,
7321                                             OpFlags);
7322
7323  if (Subtarget->isPICStyleRIPRel() &&
7324      (M == CodeModel::Small || M == CodeModel::Kernel))
7325    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7326  else
7327    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7328
7329  // With PIC, the address is actually $g + Offset.
7330  if (isGlobalRelativeToPICBase(OpFlags)) {
7331    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7332                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7333                         Result);
7334  }
7335
7336  return Result;
7337}
7338
7339SDValue
7340X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7341                                      int64_t Offset,
7342                                      SelectionDAG &DAG) const {
7343  // Create the TargetGlobalAddress node, folding in the constant
7344  // offset if it is legal.
7345  unsigned char OpFlags =
7346    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7347  CodeModel::Model M = getTargetMachine().getCodeModel();
7348  SDValue Result;
7349  if (OpFlags == X86II::MO_NO_FLAG &&
7350      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7351    // A direct static reference to a global.
7352    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7353    Offset = 0;
7354  } else {
7355    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7356  }
7357
7358  if (Subtarget->isPICStyleRIPRel() &&
7359      (M == CodeModel::Small || M == CodeModel::Kernel))
7360    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7361  else
7362    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7363
7364  // With PIC, the address is actually $g + Offset.
7365  if (isGlobalRelativeToPICBase(OpFlags)) {
7366    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7367                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7368                         Result);
7369  }
7370
7371  // For globals that require a load from a stub to get the address, emit the
7372  // load.
7373  if (isGlobalStubReference(OpFlags))
7374    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7375                         MachinePointerInfo::getGOT(), false, false, false, 0);
7376
7377  // If there was a non-zero offset that we didn't fold, create an explicit
7378  // addition for it.
7379  if (Offset != 0)
7380    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7381                         DAG.getConstant(Offset, getPointerTy()));
7382
7383  return Result;
7384}
7385
7386SDValue
7387X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7388  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7389  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7390  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7391}
7392
7393static SDValue
7394GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7395           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7396           unsigned char OperandFlags, bool LocalDynamic = false) {
7397  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7398  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7399  DebugLoc dl = GA->getDebugLoc();
7400  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7401                                           GA->getValueType(0),
7402                                           GA->getOffset(),
7403                                           OperandFlags);
7404
7405  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7406                                           : X86ISD::TLSADDR;
7407
7408  if (InFlag) {
7409    SDValue Ops[] = { Chain,  TGA, *InFlag };
7410    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7411  } else {
7412    SDValue Ops[]  = { Chain, TGA };
7413    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7414  }
7415
7416  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7417  MFI->setAdjustsStack(true);
7418
7419  SDValue Flag = Chain.getValue(1);
7420  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7421}
7422
7423// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7424static SDValue
7425LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7426                                const EVT PtrVT) {
7427  SDValue InFlag;
7428  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7429  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7430                                   DAG.getNode(X86ISD::GlobalBaseReg,
7431                                               DebugLoc(), PtrVT), InFlag);
7432  InFlag = Chain.getValue(1);
7433
7434  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7435}
7436
7437// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7438static SDValue
7439LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7440                                const EVT PtrVT) {
7441  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7442                    X86::RAX, X86II::MO_TLSGD);
7443}
7444
7445static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7446                                           SelectionDAG &DAG,
7447                                           const EVT PtrVT,
7448                                           bool is64Bit) {
7449  DebugLoc dl = GA->getDebugLoc();
7450
7451  // Get the start address of the TLS block for this module.
7452  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7453      .getInfo<X86MachineFunctionInfo>();
7454  MFI->incNumLocalDynamicTLSAccesses();
7455
7456  SDValue Base;
7457  if (is64Bit) {
7458    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7459                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7460  } else {
7461    SDValue InFlag;
7462    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7463        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7464    InFlag = Chain.getValue(1);
7465    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7466                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7467  }
7468
7469  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7470  // of Base.
7471
7472  // Build x@dtpoff.
7473  unsigned char OperandFlags = X86II::MO_DTPOFF;
7474  unsigned WrapperKind = X86ISD::Wrapper;
7475  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7476                                           GA->getValueType(0),
7477                                           GA->getOffset(), OperandFlags);
7478  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7479
7480  // Add x@dtpoff with the base.
7481  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7482}
7483
7484// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7485static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7486                                   const EVT PtrVT, TLSModel::Model model,
7487                                   bool is64Bit, bool isPIC) {
7488  DebugLoc dl = GA->getDebugLoc();
7489
7490  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7491  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7492                                                         is64Bit ? 257 : 256));
7493
7494  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7495                                      DAG.getIntPtrConstant(0),
7496                                      MachinePointerInfo(Ptr),
7497                                      false, false, false, 0);
7498
7499  unsigned char OperandFlags = 0;
7500  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7501  // initialexec.
7502  unsigned WrapperKind = X86ISD::Wrapper;
7503  if (model == TLSModel::LocalExec) {
7504    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7505  } else if (model == TLSModel::InitialExec) {
7506    if (is64Bit) {
7507      OperandFlags = X86II::MO_GOTTPOFF;
7508      WrapperKind = X86ISD::WrapperRIP;
7509    } else {
7510      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7511    }
7512  } else {
7513    llvm_unreachable("Unexpected model");
7514  }
7515
7516  // emit "addl x@ntpoff,%eax" (local exec)
7517  // or "addl x@indntpoff,%eax" (initial exec)
7518  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7519  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7520                                           GA->getValueType(0),
7521                                           GA->getOffset(), OperandFlags);
7522  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7523
7524  if (model == TLSModel::InitialExec) {
7525    if (isPIC && !is64Bit) {
7526      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7527                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7528                           Offset);
7529    }
7530
7531    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7532                         MachinePointerInfo::getGOT(), false, false, false,
7533                         0);
7534  }
7535
7536  // The address of the thread local variable is the add of the thread
7537  // pointer with the offset of the variable.
7538  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7539}
7540
7541SDValue
7542X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7543
7544  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7545  const GlobalValue *GV = GA->getGlobal();
7546
7547  if (Subtarget->isTargetELF()) {
7548    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7549
7550    switch (model) {
7551      case TLSModel::GeneralDynamic:
7552        if (Subtarget->is64Bit())
7553          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7554        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7555      case TLSModel::LocalDynamic:
7556        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7557                                           Subtarget->is64Bit());
7558      case TLSModel::InitialExec:
7559      case TLSModel::LocalExec:
7560        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7561                                   Subtarget->is64Bit(),
7562                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7563    }
7564    llvm_unreachable("Unknown TLS model.");
7565  }
7566
7567  if (Subtarget->isTargetDarwin()) {
7568    // Darwin only has one model of TLS.  Lower to that.
7569    unsigned char OpFlag = 0;
7570    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7571                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7572
7573    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7574    // global base reg.
7575    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7576                  !Subtarget->is64Bit();
7577    if (PIC32)
7578      OpFlag = X86II::MO_TLVP_PIC_BASE;
7579    else
7580      OpFlag = X86II::MO_TLVP;
7581    DebugLoc DL = Op.getDebugLoc();
7582    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7583                                                GA->getValueType(0),
7584                                                GA->getOffset(), OpFlag);
7585    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7586
7587    // With PIC32, the address is actually $g + Offset.
7588    if (PIC32)
7589      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7590                           DAG.getNode(X86ISD::GlobalBaseReg,
7591                                       DebugLoc(), getPointerTy()),
7592                           Offset);
7593
7594    // Lowering the machine isd will make sure everything is in the right
7595    // location.
7596    SDValue Chain = DAG.getEntryNode();
7597    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7598    SDValue Args[] = { Chain, Offset };
7599    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7600
7601    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7602    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7603    MFI->setAdjustsStack(true);
7604
7605    // And our return value (tls address) is in the standard call return value
7606    // location.
7607    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7608    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7609                              Chain.getValue(1));
7610  }
7611
7612  if (Subtarget->isTargetWindows()) {
7613    // Just use the implicit TLS architecture
7614    // Need to generate someting similar to:
7615    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7616    //                                  ; from TEB
7617    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7618    //   mov     rcx, qword [rdx+rcx*8]
7619    //   mov     eax, .tls$:tlsvar
7620    //   [rax+rcx] contains the address
7621    // Windows 64bit: gs:0x58
7622    // Windows 32bit: fs:__tls_array
7623
7624    // If GV is an alias then use the aliasee for determining
7625    // thread-localness.
7626    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7627      GV = GA->resolveAliasedGlobal(false);
7628    DebugLoc dl = GA->getDebugLoc();
7629    SDValue Chain = DAG.getEntryNode();
7630
7631    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7632    // %gs:0x58 (64-bit).
7633    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7634                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7635                                                             256)
7636                                        : Type::getInt32PtrTy(*DAG.getContext(),
7637                                                              257));
7638
7639    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7640                                        Subtarget->is64Bit()
7641                                        ? DAG.getIntPtrConstant(0x58)
7642                                        : DAG.getExternalSymbol("_tls_array",
7643                                                                getPointerTy()),
7644                                        MachinePointerInfo(Ptr),
7645                                        false, false, false, 0);
7646
7647    // Load the _tls_index variable
7648    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7649    if (Subtarget->is64Bit())
7650      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7651                           IDX, MachinePointerInfo(), MVT::i32,
7652                           false, false, 0);
7653    else
7654      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7655                        false, false, false, 0);
7656
7657    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize(0)),
7658                                    getPointerTy());
7659    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7660
7661    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7662    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7663                      false, false, false, 0);
7664
7665    // Get the offset of start of .tls section
7666    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7667                                             GA->getValueType(0),
7668                                             GA->getOffset(), X86II::MO_SECREL);
7669    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7670
7671    // The address of the thread local variable is the add of the thread
7672    // pointer with the offset of the variable.
7673    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7674  }
7675
7676  llvm_unreachable("TLS not implemented for this target.");
7677}
7678
7679
7680/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7681/// and take a 2 x i32 value to shift plus a shift amount.
7682SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7683  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7684  EVT VT = Op.getValueType();
7685  unsigned VTBits = VT.getSizeInBits();
7686  DebugLoc dl = Op.getDebugLoc();
7687  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7688  SDValue ShOpLo = Op.getOperand(0);
7689  SDValue ShOpHi = Op.getOperand(1);
7690  SDValue ShAmt  = Op.getOperand(2);
7691  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7692                                     DAG.getConstant(VTBits - 1, MVT::i8))
7693                       : DAG.getConstant(0, VT);
7694
7695  SDValue Tmp2, Tmp3;
7696  if (Op.getOpcode() == ISD::SHL_PARTS) {
7697    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7698    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7699  } else {
7700    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7701    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7702  }
7703
7704  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7705                                DAG.getConstant(VTBits, MVT::i8));
7706  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7707                             AndNode, DAG.getConstant(0, MVT::i8));
7708
7709  SDValue Hi, Lo;
7710  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7711  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7712  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7713
7714  if (Op.getOpcode() == ISD::SHL_PARTS) {
7715    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7716    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7717  } else {
7718    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7719    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7720  }
7721
7722  SDValue Ops[2] = { Lo, Hi };
7723  return DAG.getMergeValues(Ops, 2, dl);
7724}
7725
7726SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7727                                           SelectionDAG &DAG) const {
7728  EVT SrcVT = Op.getOperand(0).getValueType();
7729
7730  if (SrcVT.isVector())
7731    return SDValue();
7732
7733  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7734         "Unknown SINT_TO_FP to lower!");
7735
7736  // These are really Legal; return the operand so the caller accepts it as
7737  // Legal.
7738  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7739    return Op;
7740  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7741      Subtarget->is64Bit()) {
7742    return Op;
7743  }
7744
7745  DebugLoc dl = Op.getDebugLoc();
7746  unsigned Size = SrcVT.getSizeInBits()/8;
7747  MachineFunction &MF = DAG.getMachineFunction();
7748  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7749  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7750  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7751                               StackSlot,
7752                               MachinePointerInfo::getFixedStack(SSFI),
7753                               false, false, 0);
7754  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7755}
7756
7757SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7758                                     SDValue StackSlot,
7759                                     SelectionDAG &DAG) const {
7760  // Build the FILD
7761  DebugLoc DL = Op.getDebugLoc();
7762  SDVTList Tys;
7763  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7764  if (useSSE)
7765    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7766  else
7767    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7768
7769  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7770
7771  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7772  MachineMemOperand *MMO;
7773  if (FI) {
7774    int SSFI = FI->getIndex();
7775    MMO =
7776      DAG.getMachineFunction()
7777      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7778                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7779  } else {
7780    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7781    StackSlot = StackSlot.getOperand(1);
7782  }
7783  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7784  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7785                                           X86ISD::FILD, DL,
7786                                           Tys, Ops, array_lengthof(Ops),
7787                                           SrcVT, MMO);
7788
7789  if (useSSE) {
7790    Chain = Result.getValue(1);
7791    SDValue InFlag = Result.getValue(2);
7792
7793    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7794    // shouldn't be necessary except that RFP cannot be live across
7795    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7796    MachineFunction &MF = DAG.getMachineFunction();
7797    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7798    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7799    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7800    Tys = DAG.getVTList(MVT::Other);
7801    SDValue Ops[] = {
7802      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7803    };
7804    MachineMemOperand *MMO =
7805      DAG.getMachineFunction()
7806      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7807                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7808
7809    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7810                                    Ops, array_lengthof(Ops),
7811                                    Op.getValueType(), MMO);
7812    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7813                         MachinePointerInfo::getFixedStack(SSFI),
7814                         false, false, false, 0);
7815  }
7816
7817  return Result;
7818}
7819
7820// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7821SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7822                                               SelectionDAG &DAG) const {
7823  // This algorithm is not obvious. Here it is what we're trying to output:
7824  /*
7825     movq       %rax,  %xmm0
7826     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7827     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7828     #ifdef __SSE3__
7829       haddpd   %xmm0, %xmm0
7830     #else
7831       pshufd   $0x4e, %xmm0, %xmm1
7832       addpd    %xmm1, %xmm0
7833     #endif
7834  */
7835
7836  DebugLoc dl = Op.getDebugLoc();
7837  LLVMContext *Context = DAG.getContext();
7838
7839  // Build some magic constants.
7840  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7841  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7842  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7843
7844  SmallVector<Constant*,2> CV1;
7845  CV1.push_back(
7846        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7847  CV1.push_back(
7848        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7849  Constant *C1 = ConstantVector::get(CV1);
7850  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7851
7852  // Load the 64-bit value into an XMM register.
7853  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7854                            Op.getOperand(0));
7855  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7856                              MachinePointerInfo::getConstantPool(),
7857                              false, false, false, 16);
7858  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7859                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7860                              CLod0);
7861
7862  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7863                              MachinePointerInfo::getConstantPool(),
7864                              false, false, false, 16);
7865  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7866  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7867  SDValue Result;
7868
7869  if (Subtarget->hasSSE3()) {
7870    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7871    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7872  } else {
7873    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7874    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7875                                           S2F, 0x4E, DAG);
7876    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7877                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7878                         Sub);
7879  }
7880
7881  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7882                     DAG.getIntPtrConstant(0));
7883}
7884
7885// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7886SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7887                                               SelectionDAG &DAG) const {
7888  DebugLoc dl = Op.getDebugLoc();
7889  // FP constant to bias correct the final result.
7890  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7891                                   MVT::f64);
7892
7893  // Load the 32-bit value into an XMM register.
7894  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7895                             Op.getOperand(0));
7896
7897  // Zero out the upper parts of the register.
7898  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7899
7900  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7901                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7902                     DAG.getIntPtrConstant(0));
7903
7904  // Or the load with the bias.
7905  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7906                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7907                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7908                                                   MVT::v2f64, Load)),
7909                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7910                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7911                                                   MVT::v2f64, Bias)));
7912  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7913                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7914                   DAG.getIntPtrConstant(0));
7915
7916  // Subtract the bias.
7917  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7918
7919  // Handle final rounding.
7920  EVT DestVT = Op.getValueType();
7921
7922  if (DestVT.bitsLT(MVT::f64))
7923    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7924                       DAG.getIntPtrConstant(0));
7925  if (DestVT.bitsGT(MVT::f64))
7926    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7927
7928  // Handle final rounding.
7929  return Sub;
7930}
7931
7932SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7933                                           SelectionDAG &DAG) const {
7934  SDValue N0 = Op.getOperand(0);
7935  DebugLoc dl = Op.getDebugLoc();
7936
7937  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7938  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7939  // the optimization here.
7940  if (DAG.SignBitIsZero(N0))
7941    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7942
7943  EVT SrcVT = N0.getValueType();
7944  EVT DstVT = Op.getValueType();
7945  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7946    return LowerUINT_TO_FP_i64(Op, DAG);
7947  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7948    return LowerUINT_TO_FP_i32(Op, DAG);
7949  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
7950    return SDValue();
7951
7952  // Make a 64-bit buffer, and use it to build an FILD.
7953  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7954  if (SrcVT == MVT::i32) {
7955    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7956    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7957                                     getPointerTy(), StackSlot, WordOff);
7958    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7959                                  StackSlot, MachinePointerInfo(),
7960                                  false, false, 0);
7961    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7962                                  OffsetSlot, MachinePointerInfo(),
7963                                  false, false, 0);
7964    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7965    return Fild;
7966  }
7967
7968  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7969  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7970                               StackSlot, MachinePointerInfo(),
7971                               false, false, 0);
7972  // For i64 source, we need to add the appropriate power of 2 if the input
7973  // was negative.  This is the same as the optimization in
7974  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7975  // we must be careful to do the computation in x87 extended precision, not
7976  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7977  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7978  MachineMemOperand *MMO =
7979    DAG.getMachineFunction()
7980    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7981                          MachineMemOperand::MOLoad, 8, 8);
7982
7983  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7984  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7985  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7986                                         MVT::i64, MMO);
7987
7988  APInt FF(32, 0x5F800000ULL);
7989
7990  // Check whether the sign bit is set.
7991  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7992                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7993                                 ISD::SETLT);
7994
7995  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7996  SDValue FudgePtr = DAG.getConstantPool(
7997                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7998                                         getPointerTy());
7999
8000  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
8001  SDValue Zero = DAG.getIntPtrConstant(0);
8002  SDValue Four = DAG.getIntPtrConstant(4);
8003  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
8004                               Zero, Four);
8005  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
8006
8007  // Load the value out, extending it from f32 to f80.
8008  // FIXME: Avoid the extend by constructing the right constant pool?
8009  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
8010                                 FudgePtr, MachinePointerInfo::getConstantPool(),
8011                                 MVT::f32, false, false, 4);
8012  // Extend everything to 80 bits to force it to be done on x87.
8013  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
8014  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
8015}
8016
8017std::pair<SDValue,SDValue> X86TargetLowering::
8018FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
8019  DebugLoc DL = Op.getDebugLoc();
8020
8021  EVT DstTy = Op.getValueType();
8022
8023  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
8024    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
8025    DstTy = MVT::i64;
8026  }
8027
8028  assert(DstTy.getSimpleVT() <= MVT::i64 &&
8029         DstTy.getSimpleVT() >= MVT::i16 &&
8030         "Unknown FP_TO_INT to lower!");
8031
8032  // These are really Legal.
8033  if (DstTy == MVT::i32 &&
8034      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8035    return std::make_pair(SDValue(), SDValue());
8036  if (Subtarget->is64Bit() &&
8037      DstTy == MVT::i64 &&
8038      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8039    return std::make_pair(SDValue(), SDValue());
8040
8041  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8042  // stack slot, or into the FTOL runtime function.
8043  MachineFunction &MF = DAG.getMachineFunction();
8044  unsigned MemSize = DstTy.getSizeInBits()/8;
8045  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8046  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8047
8048  unsigned Opc;
8049  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8050    Opc = X86ISD::WIN_FTOL;
8051  else
8052    switch (DstTy.getSimpleVT().SimpleTy) {
8053    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8054    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8055    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8056    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8057    }
8058
8059  SDValue Chain = DAG.getEntryNode();
8060  SDValue Value = Op.getOperand(0);
8061  EVT TheVT = Op.getOperand(0).getValueType();
8062  // FIXME This causes a redundant load/store if the SSE-class value is already
8063  // in memory, such as if it is on the callstack.
8064  if (isScalarFPTypeInSSEReg(TheVT)) {
8065    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8066    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8067                         MachinePointerInfo::getFixedStack(SSFI),
8068                         false, false, 0);
8069    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8070    SDValue Ops[] = {
8071      Chain, StackSlot, DAG.getValueType(TheVT)
8072    };
8073
8074    MachineMemOperand *MMO =
8075      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8076                              MachineMemOperand::MOLoad, MemSize, MemSize);
8077    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8078                                    DstTy, MMO);
8079    Chain = Value.getValue(1);
8080    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8081    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8082  }
8083
8084  MachineMemOperand *MMO =
8085    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8086                            MachineMemOperand::MOStore, MemSize, MemSize);
8087
8088  if (Opc != X86ISD::WIN_FTOL) {
8089    // Build the FP_TO_INT*_IN_MEM
8090    SDValue Ops[] = { Chain, Value, StackSlot };
8091    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8092                                           Ops, 3, DstTy, MMO);
8093    return std::make_pair(FIST, StackSlot);
8094  } else {
8095    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8096      DAG.getVTList(MVT::Other, MVT::Glue),
8097      Chain, Value);
8098    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8099      MVT::i32, ftol.getValue(1));
8100    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8101      MVT::i32, eax.getValue(2));
8102    SDValue Ops[] = { eax, edx };
8103    SDValue pair = IsReplace
8104      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8105      : DAG.getMergeValues(Ops, 2, DL);
8106    return std::make_pair(pair, SDValue());
8107  }
8108}
8109
8110SDValue X86TargetLowering::lowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
8111  DebugLoc DL = Op.getDebugLoc();
8112  EVT VT = Op.getValueType();
8113  EVT SVT = Op.getOperand(0).getValueType();
8114
8115  if (!VT.is128BitVector() || !SVT.is256BitVector() ||
8116      VT.getVectorNumElements() != SVT.getVectorNumElements())
8117    return SDValue();
8118
8119  assert(Subtarget->hasAVX() && "256-bit vector is observed without AVX!");
8120
8121  unsigned NumElems = VT.getVectorNumElements();
8122  EVT NVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8123                             NumElems * 2);
8124
8125  SDValue In = Op.getOperand(0);
8126  SmallVector<int, 16> MaskVec(NumElems * 2, -1);
8127  // Prepare truncation shuffle mask
8128  for (unsigned i = 0; i != NumElems; ++i)
8129    MaskVec[i] = i * 2;
8130  SDValue V = DAG.getVectorShuffle(NVT, DL,
8131                                   DAG.getNode(ISD::BITCAST, DL, NVT, In),
8132                                   DAG.getUNDEF(NVT), &MaskVec[0]);
8133  return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
8134                     DAG.getIntPtrConstant(0));
8135}
8136
8137SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8138                                           SelectionDAG &DAG) const {
8139  if (Op.getValueType().isVector()) {
8140    if (Op.getValueType() == MVT::v8i16)
8141      return DAG.getNode(ISD::TRUNCATE, Op.getDebugLoc(), Op.getValueType(),
8142                         DAG.getNode(ISD::FP_TO_SINT, Op.getDebugLoc(),
8143                                     MVT::v8i32, Op.getOperand(0)));
8144    return SDValue();
8145  }
8146
8147  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8148    /*IsSigned=*/ true, /*IsReplace=*/ false);
8149  SDValue FIST = Vals.first, StackSlot = Vals.second;
8150  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8151  if (FIST.getNode() == 0) return Op;
8152
8153  if (StackSlot.getNode())
8154    // Load the result.
8155    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8156                       FIST, StackSlot, MachinePointerInfo(),
8157                       false, false, false, 0);
8158
8159  // The node is the result.
8160  return FIST;
8161}
8162
8163SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8164                                           SelectionDAG &DAG) const {
8165  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8166    /*IsSigned=*/ false, /*IsReplace=*/ false);
8167  SDValue FIST = Vals.first, StackSlot = Vals.second;
8168  assert(FIST.getNode() && "Unexpected failure");
8169
8170  if (StackSlot.getNode())
8171    // Load the result.
8172    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8173                       FIST, StackSlot, MachinePointerInfo(),
8174                       false, false, false, 0);
8175
8176  // The node is the result.
8177  return FIST;
8178}
8179
8180SDValue X86TargetLowering::lowerFP_EXTEND(SDValue Op,
8181                                          SelectionDAG &DAG) const {
8182  DebugLoc DL = Op.getDebugLoc();
8183  EVT VT = Op.getValueType();
8184  SDValue In = Op.getOperand(0);
8185  EVT SVT = In.getValueType();
8186
8187  assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
8188
8189  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
8190                     DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
8191                                 In, DAG.getUNDEF(SVT)));
8192}
8193
8194SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
8195  LLVMContext *Context = DAG.getContext();
8196  DebugLoc dl = Op.getDebugLoc();
8197  EVT VT = Op.getValueType();
8198  EVT EltVT = VT;
8199  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8200  if (VT.isVector()) {
8201    EltVT = VT.getVectorElementType();
8202    NumElts = VT.getVectorNumElements();
8203  }
8204  Constant *C;
8205  if (EltVT == MVT::f64)
8206    C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8207  else
8208    C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8209  C = ConstantVector::getSplat(NumElts, C);
8210  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8211  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8212  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8213                             MachinePointerInfo::getConstantPool(),
8214                             false, false, false, Alignment);
8215  if (VT.isVector()) {
8216    MVT ANDVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8217    return DAG.getNode(ISD::BITCAST, dl, VT,
8218                       DAG.getNode(ISD::AND, dl, ANDVT,
8219                                   DAG.getNode(ISD::BITCAST, dl, ANDVT,
8220                                               Op.getOperand(0)),
8221                                   DAG.getNode(ISD::BITCAST, dl, ANDVT, Mask)));
8222  }
8223  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8224}
8225
8226SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8227  LLVMContext *Context = DAG.getContext();
8228  DebugLoc dl = Op.getDebugLoc();
8229  EVT VT = Op.getValueType();
8230  EVT EltVT = VT;
8231  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8232  if (VT.isVector()) {
8233    EltVT = VT.getVectorElementType();
8234    NumElts = VT.getVectorNumElements();
8235  }
8236  Constant *C;
8237  if (EltVT == MVT::f64)
8238    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8239  else
8240    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8241  C = ConstantVector::getSplat(NumElts, C);
8242  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy());
8243  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
8244  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8245                             MachinePointerInfo::getConstantPool(),
8246                             false, false, false, Alignment);
8247  if (VT.isVector()) {
8248    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8249    return DAG.getNode(ISD::BITCAST, dl, VT,
8250                       DAG.getNode(ISD::XOR, dl, XORVT,
8251                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8252                                               Op.getOperand(0)),
8253                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8254  }
8255
8256  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8257}
8258
8259SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8260  LLVMContext *Context = DAG.getContext();
8261  SDValue Op0 = Op.getOperand(0);
8262  SDValue Op1 = Op.getOperand(1);
8263  DebugLoc dl = Op.getDebugLoc();
8264  EVT VT = Op.getValueType();
8265  EVT SrcVT = Op1.getValueType();
8266
8267  // If second operand is smaller, extend it first.
8268  if (SrcVT.bitsLT(VT)) {
8269    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8270    SrcVT = VT;
8271  }
8272  // And if it is bigger, shrink it first.
8273  if (SrcVT.bitsGT(VT)) {
8274    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8275    SrcVT = VT;
8276  }
8277
8278  // At this point the operands and the result should have the same
8279  // type, and that won't be f80 since that is not custom lowered.
8280
8281  // First get the sign bit of second operand.
8282  SmallVector<Constant*,4> CV;
8283  if (SrcVT == MVT::f64) {
8284    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8285    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8286  } else {
8287    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8288    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8289    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8290    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8291  }
8292  Constant *C = ConstantVector::get(CV);
8293  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8294  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8295                              MachinePointerInfo::getConstantPool(),
8296                              false, false, false, 16);
8297  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8298
8299  // Shift sign bit right or left if the two operands have different types.
8300  if (SrcVT.bitsGT(VT)) {
8301    // Op0 is MVT::f32, Op1 is MVT::f64.
8302    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8303    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8304                          DAG.getConstant(32, MVT::i32));
8305    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8306    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8307                          DAG.getIntPtrConstant(0));
8308  }
8309
8310  // Clear first operand sign bit.
8311  CV.clear();
8312  if (VT == MVT::f64) {
8313    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8314    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8315  } else {
8316    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8317    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8318    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8319    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8320  }
8321  C = ConstantVector::get(CV);
8322  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8323  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8324                              MachinePointerInfo::getConstantPool(),
8325                              false, false, false, 16);
8326  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8327
8328  // Or the value with the sign bit.
8329  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8330}
8331
8332static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
8333  SDValue N0 = Op.getOperand(0);
8334  DebugLoc dl = Op.getDebugLoc();
8335  EVT VT = Op.getValueType();
8336
8337  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8338  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8339                                  DAG.getConstant(1, VT));
8340  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8341}
8342
8343// LowerVectorAllZeroTest - Check whether an OR'd tree is PTEST-able.
8344//
8345SDValue X86TargetLowering::LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const {
8346  assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
8347
8348  if (!Subtarget->hasSSE41())
8349    return SDValue();
8350
8351  if (!Op->hasOneUse())
8352    return SDValue();
8353
8354  SDNode *N = Op.getNode();
8355  DebugLoc DL = N->getDebugLoc();
8356
8357  SmallVector<SDValue, 8> Opnds;
8358  DenseMap<SDValue, unsigned> VecInMap;
8359  EVT VT = MVT::Other;
8360
8361  // Recognize a special case where a vector is casted into wide integer to
8362  // test all 0s.
8363  Opnds.push_back(N->getOperand(0));
8364  Opnds.push_back(N->getOperand(1));
8365
8366  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
8367    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
8368    // BFS traverse all OR'd operands.
8369    if (I->getOpcode() == ISD::OR) {
8370      Opnds.push_back(I->getOperand(0));
8371      Opnds.push_back(I->getOperand(1));
8372      // Re-evaluate the number of nodes to be traversed.
8373      e += 2; // 2 more nodes (LHS and RHS) are pushed.
8374      continue;
8375    }
8376
8377    // Quit if a non-EXTRACT_VECTOR_ELT
8378    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8379      return SDValue();
8380
8381    // Quit if without a constant index.
8382    SDValue Idx = I->getOperand(1);
8383    if (!isa<ConstantSDNode>(Idx))
8384      return SDValue();
8385
8386    SDValue ExtractedFromVec = I->getOperand(0);
8387    DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
8388    if (M == VecInMap.end()) {
8389      VT = ExtractedFromVec.getValueType();
8390      // Quit if not 128/256-bit vector.
8391      if (!VT.is128BitVector() && !VT.is256BitVector())
8392        return SDValue();
8393      // Quit if not the same type.
8394      if (VecInMap.begin() != VecInMap.end() &&
8395          VT != VecInMap.begin()->first.getValueType())
8396        return SDValue();
8397      M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
8398    }
8399    M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
8400  }
8401
8402  assert((VT.is128BitVector() || VT.is256BitVector()) &&
8403         "Not extracted from 128-/256-bit vector.");
8404
8405  unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
8406  SmallVector<SDValue, 8> VecIns;
8407
8408  for (DenseMap<SDValue, unsigned>::const_iterator
8409        I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
8410    // Quit if not all elements are used.
8411    if (I->second != FullMask)
8412      return SDValue();
8413    VecIns.push_back(I->first);
8414  }
8415
8416  EVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8417
8418  // Cast all vectors into TestVT for PTEST.
8419  for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
8420    VecIns[i] = DAG.getNode(ISD::BITCAST, DL, TestVT, VecIns[i]);
8421
8422  // If more than one full vectors are evaluated, OR them first before PTEST.
8423  for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
8424    // Each iteration will OR 2 nodes and append the result until there is only
8425    // 1 node left, i.e. the final OR'd value of all vectors.
8426    SDValue LHS = VecIns[Slot];
8427    SDValue RHS = VecIns[Slot + 1];
8428    VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
8429  }
8430
8431  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
8432                     VecIns.back(), VecIns.back());
8433}
8434
8435/// Emit nodes that will be selected as "test Op0,Op0", or something
8436/// equivalent.
8437SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8438                                    SelectionDAG &DAG) const {
8439  DebugLoc dl = Op.getDebugLoc();
8440
8441  // CF and OF aren't always set the way we want. Determine which
8442  // of these we need.
8443  bool NeedCF = false;
8444  bool NeedOF = false;
8445  switch (X86CC) {
8446  default: break;
8447  case X86::COND_A: case X86::COND_AE:
8448  case X86::COND_B: case X86::COND_BE:
8449    NeedCF = true;
8450    break;
8451  case X86::COND_G: case X86::COND_GE:
8452  case X86::COND_L: case X86::COND_LE:
8453  case X86::COND_O: case X86::COND_NO:
8454    NeedOF = true;
8455    break;
8456  }
8457
8458  // See if we can use the EFLAGS value from the operand instead of
8459  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8460  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8461  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8462    // Emit a CMP with 0, which is the TEST pattern.
8463    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8464                       DAG.getConstant(0, Op.getValueType()));
8465
8466  unsigned Opcode = 0;
8467  unsigned NumOperands = 0;
8468
8469  // Truncate operations may prevent the merge of the SETCC instruction
8470  // and the arithmetic intruction before it. Attempt to truncate the operands
8471  // of the arithmetic instruction and use a reduced bit-width instruction.
8472  bool NeedTruncation = false;
8473  SDValue ArithOp = Op;
8474  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8475    SDValue Arith = Op->getOperand(0);
8476    // Both the trunc and the arithmetic op need to have one user each.
8477    if (Arith->hasOneUse())
8478      switch (Arith.getOpcode()) {
8479        default: break;
8480        case ISD::ADD:
8481        case ISD::SUB:
8482        case ISD::AND:
8483        case ISD::OR:
8484        case ISD::XOR: {
8485          NeedTruncation = true;
8486          ArithOp = Arith;
8487        }
8488      }
8489  }
8490
8491  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8492  // which may be the result of a CAST.  We use the variable 'Op', which is the
8493  // non-casted variable when we check for possible users.
8494  switch (ArithOp.getOpcode()) {
8495  case ISD::ADD:
8496    // Due to an isel shortcoming, be conservative if this add is likely to be
8497    // selected as part of a load-modify-store instruction. When the root node
8498    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8499    // uses of other nodes in the match, such as the ADD in this case. This
8500    // leads to the ADD being left around and reselected, with the result being
8501    // two adds in the output.  Alas, even if none our users are stores, that
8502    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8503    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8504    // climbing the DAG back to the root, and it doesn't seem to be worth the
8505    // effort.
8506    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8507         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8508      if (UI->getOpcode() != ISD::CopyToReg &&
8509          UI->getOpcode() != ISD::SETCC &&
8510          UI->getOpcode() != ISD::STORE)
8511        goto default_case;
8512
8513    if (ConstantSDNode *C =
8514        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8515      // An add of one will be selected as an INC.
8516      if (C->getAPIntValue() == 1) {
8517        Opcode = X86ISD::INC;
8518        NumOperands = 1;
8519        break;
8520      }
8521
8522      // An add of negative one (subtract of one) will be selected as a DEC.
8523      if (C->getAPIntValue().isAllOnesValue()) {
8524        Opcode = X86ISD::DEC;
8525        NumOperands = 1;
8526        break;
8527      }
8528    }
8529
8530    // Otherwise use a regular EFLAGS-setting add.
8531    Opcode = X86ISD::ADD;
8532    NumOperands = 2;
8533    break;
8534  case ISD::AND: {
8535    // If the primary and result isn't used, don't bother using X86ISD::AND,
8536    // because a TEST instruction will be better.
8537    bool NonFlagUse = false;
8538    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8539           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8540      SDNode *User = *UI;
8541      unsigned UOpNo = UI.getOperandNo();
8542      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8543        // Look pass truncate.
8544        UOpNo = User->use_begin().getOperandNo();
8545        User = *User->use_begin();
8546      }
8547
8548      if (User->getOpcode() != ISD::BRCOND &&
8549          User->getOpcode() != ISD::SETCC &&
8550          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8551        NonFlagUse = true;
8552        break;
8553      }
8554    }
8555
8556    if (!NonFlagUse)
8557      break;
8558  }
8559    // FALL THROUGH
8560  case ISD::SUB:
8561  case ISD::OR:
8562  case ISD::XOR:
8563    // Due to the ISEL shortcoming noted above, be conservative if this op is
8564    // likely to be selected as part of a load-modify-store instruction.
8565    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8566           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8567      if (UI->getOpcode() == ISD::STORE)
8568        goto default_case;
8569
8570    // Otherwise use a regular EFLAGS-setting instruction.
8571    switch (ArithOp.getOpcode()) {
8572    default: llvm_unreachable("unexpected operator!");
8573    case ISD::SUB: Opcode = X86ISD::SUB; break;
8574    case ISD::XOR: Opcode = X86ISD::XOR; break;
8575    case ISD::AND: Opcode = X86ISD::AND; break;
8576    case ISD::OR: {
8577      if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
8578        SDValue EFLAGS = LowerVectorAllZeroTest(Op, DAG);
8579        if (EFLAGS.getNode())
8580          return EFLAGS;
8581      }
8582      Opcode = X86ISD::OR;
8583      break;
8584    }
8585    }
8586
8587    NumOperands = 2;
8588    break;
8589  case X86ISD::ADD:
8590  case X86ISD::SUB:
8591  case X86ISD::INC:
8592  case X86ISD::DEC:
8593  case X86ISD::OR:
8594  case X86ISD::XOR:
8595  case X86ISD::AND:
8596    return SDValue(Op.getNode(), 1);
8597  default:
8598  default_case:
8599    break;
8600  }
8601
8602  // If we found that truncation is beneficial, perform the truncation and
8603  // update 'Op'.
8604  if (NeedTruncation) {
8605    EVT VT = Op.getValueType();
8606    SDValue WideVal = Op->getOperand(0);
8607    EVT WideVT = WideVal.getValueType();
8608    unsigned ConvertedOp = 0;
8609    // Use a target machine opcode to prevent further DAGCombine
8610    // optimizations that may separate the arithmetic operations
8611    // from the setcc node.
8612    switch (WideVal.getOpcode()) {
8613      default: break;
8614      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8615      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8616      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8617      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8618      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8619    }
8620
8621    if (ConvertedOp) {
8622      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8623      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8624        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8625        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8626        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8627      }
8628    }
8629  }
8630
8631  if (Opcode == 0)
8632    // Emit a CMP with 0, which is the TEST pattern.
8633    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8634                       DAG.getConstant(0, Op.getValueType()));
8635
8636  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8637  SmallVector<SDValue, 4> Ops;
8638  for (unsigned i = 0; i != NumOperands; ++i)
8639    Ops.push_back(Op.getOperand(i));
8640
8641  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8642  DAG.ReplaceAllUsesWith(Op, New);
8643  return SDValue(New.getNode(), 1);
8644}
8645
8646/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8647/// equivalent.
8648SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8649                                   SelectionDAG &DAG) const {
8650  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8651    if (C->getAPIntValue() == 0)
8652      return EmitTest(Op0, X86CC, DAG);
8653
8654  DebugLoc dl = Op0.getDebugLoc();
8655  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
8656       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
8657    // Use SUB instead of CMP to enable CSE between SUB and CMP.
8658    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
8659    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
8660                              Op0, Op1);
8661    return SDValue(Sub.getNode(), 1);
8662  }
8663  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8664}
8665
8666/// Convert a comparison if required by the subtarget.
8667SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8668                                                 SelectionDAG &DAG) const {
8669  // If the subtarget does not support the FUCOMI instruction, floating-point
8670  // comparisons have to be converted.
8671  if (Subtarget->hasCMov() ||
8672      Cmp.getOpcode() != X86ISD::CMP ||
8673      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8674      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8675    return Cmp;
8676
8677  // The instruction selector will select an FUCOM instruction instead of
8678  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8679  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8680  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8681  DebugLoc dl = Cmp.getDebugLoc();
8682  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8683  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8684  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8685                            DAG.getConstant(8, MVT::i8));
8686  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8687  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8688}
8689
8690/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8691/// if it's possible.
8692SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8693                                     DebugLoc dl, SelectionDAG &DAG) const {
8694  SDValue Op0 = And.getOperand(0);
8695  SDValue Op1 = And.getOperand(1);
8696  if (Op0.getOpcode() == ISD::TRUNCATE)
8697    Op0 = Op0.getOperand(0);
8698  if (Op1.getOpcode() == ISD::TRUNCATE)
8699    Op1 = Op1.getOperand(0);
8700
8701  SDValue LHS, RHS;
8702  if (Op1.getOpcode() == ISD::SHL)
8703    std::swap(Op0, Op1);
8704  if (Op0.getOpcode() == ISD::SHL) {
8705    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8706      if (And00C->getZExtValue() == 1) {
8707        // If we looked past a truncate, check that it's only truncating away
8708        // known zeros.
8709        unsigned BitWidth = Op0.getValueSizeInBits();
8710        unsigned AndBitWidth = And.getValueSizeInBits();
8711        if (BitWidth > AndBitWidth) {
8712          APInt Zeros, Ones;
8713          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8714          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8715            return SDValue();
8716        }
8717        LHS = Op1;
8718        RHS = Op0.getOperand(1);
8719      }
8720  } else if (Op1.getOpcode() == ISD::Constant) {
8721    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8722    uint64_t AndRHSVal = AndRHS->getZExtValue();
8723    SDValue AndLHS = Op0;
8724
8725    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8726      LHS = AndLHS.getOperand(0);
8727      RHS = AndLHS.getOperand(1);
8728    }
8729
8730    // Use BT if the immediate can't be encoded in a TEST instruction.
8731    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8732      LHS = AndLHS;
8733      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8734    }
8735  }
8736
8737  if (LHS.getNode()) {
8738    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8739    // instruction.  Since the shift amount is in-range-or-undefined, we know
8740    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8741    // the encoding for the i16 version is larger than the i32 version.
8742    // Also promote i16 to i32 for performance / code size reason.
8743    if (LHS.getValueType() == MVT::i8 ||
8744        LHS.getValueType() == MVT::i16)
8745      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8746
8747    // If the operand types disagree, extend the shift amount to match.  Since
8748    // BT ignores high bits (like shifts) we can use anyextend.
8749    if (LHS.getValueType() != RHS.getValueType())
8750      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8751
8752    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8753    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8754    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8755                       DAG.getConstant(Cond, MVT::i8), BT);
8756  }
8757
8758  return SDValue();
8759}
8760
8761SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8762
8763  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8764
8765  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8766  SDValue Op0 = Op.getOperand(0);
8767  SDValue Op1 = Op.getOperand(1);
8768  DebugLoc dl = Op.getDebugLoc();
8769  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8770
8771  // Optimize to BT if possible.
8772  // Lower (X & (1 << N)) == 0 to BT(X, N).
8773  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8774  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8775  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8776      Op1.getOpcode() == ISD::Constant &&
8777      cast<ConstantSDNode>(Op1)->isNullValue() &&
8778      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8779    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8780    if (NewSetCC.getNode())
8781      return NewSetCC;
8782  }
8783
8784  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8785  // these.
8786  if (Op1.getOpcode() == ISD::Constant &&
8787      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8788       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8789      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8790
8791    // If the input is a setcc, then reuse the input setcc or use a new one with
8792    // the inverted condition.
8793    if (Op0.getOpcode() == X86ISD::SETCC) {
8794      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8795      bool Invert = (CC == ISD::SETNE) ^
8796        cast<ConstantSDNode>(Op1)->isNullValue();
8797      if (!Invert) return Op0;
8798
8799      CCode = X86::GetOppositeBranchCondition(CCode);
8800      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8801                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8802    }
8803  }
8804
8805  bool isFP = Op1.getValueType().isFloatingPoint();
8806  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8807  if (X86CC == X86::COND_INVALID)
8808    return SDValue();
8809
8810  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8811  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8812  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8813                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8814}
8815
8816// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8817// ones, and then concatenate the result back.
8818static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8819  EVT VT = Op.getValueType();
8820
8821  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
8822         "Unsupported value type for operation");
8823
8824  unsigned NumElems = VT.getVectorNumElements();
8825  DebugLoc dl = Op.getDebugLoc();
8826  SDValue CC = Op.getOperand(2);
8827
8828  // Extract the LHS vectors
8829  SDValue LHS = Op.getOperand(0);
8830  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8831  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8832
8833  // Extract the RHS vectors
8834  SDValue RHS = Op.getOperand(1);
8835  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8836  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8837
8838  // Issue the operation on the smaller types and concatenate the result back
8839  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8840  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8841  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8842                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8843                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8844}
8845
8846
8847SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8848  SDValue Cond;
8849  SDValue Op0 = Op.getOperand(0);
8850  SDValue Op1 = Op.getOperand(1);
8851  SDValue CC = Op.getOperand(2);
8852  EVT VT = Op.getValueType();
8853  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8854  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8855  DebugLoc dl = Op.getDebugLoc();
8856
8857  if (isFP) {
8858#ifndef NDEBUG
8859    EVT EltVT = Op0.getValueType().getVectorElementType();
8860    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8861#endif
8862
8863    unsigned SSECC;
8864    bool Swap = false;
8865
8866    // SSE Condition code mapping:
8867    //  0 - EQ
8868    //  1 - LT
8869    //  2 - LE
8870    //  3 - UNORD
8871    //  4 - NEQ
8872    //  5 - NLT
8873    //  6 - NLE
8874    //  7 - ORD
8875    switch (SetCCOpcode) {
8876    default: llvm_unreachable("Unexpected SETCC condition");
8877    case ISD::SETOEQ:
8878    case ISD::SETEQ:  SSECC = 0; break;
8879    case ISD::SETOGT:
8880    case ISD::SETGT: Swap = true; // Fallthrough
8881    case ISD::SETLT:
8882    case ISD::SETOLT: SSECC = 1; break;
8883    case ISD::SETOGE:
8884    case ISD::SETGE: Swap = true; // Fallthrough
8885    case ISD::SETLE:
8886    case ISD::SETOLE: SSECC = 2; break;
8887    case ISD::SETUO:  SSECC = 3; break;
8888    case ISD::SETUNE:
8889    case ISD::SETNE:  SSECC = 4; break;
8890    case ISD::SETULE: Swap = true; // Fallthrough
8891    case ISD::SETUGE: SSECC = 5; break;
8892    case ISD::SETULT: Swap = true; // Fallthrough
8893    case ISD::SETUGT: SSECC = 6; break;
8894    case ISD::SETO:   SSECC = 7; break;
8895    case ISD::SETUEQ:
8896    case ISD::SETONE: SSECC = 8; break;
8897    }
8898    if (Swap)
8899      std::swap(Op0, Op1);
8900
8901    // In the two special cases we can't handle, emit two comparisons.
8902    if (SSECC == 8) {
8903      unsigned CC0, CC1;
8904      unsigned CombineOpc;
8905      if (SetCCOpcode == ISD::SETUEQ) {
8906        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
8907      } else {
8908        assert(SetCCOpcode == ISD::SETONE);
8909        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
8910      }
8911
8912      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8913                                 DAG.getConstant(CC0, MVT::i8));
8914      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8915                                 DAG.getConstant(CC1, MVT::i8));
8916      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
8917    }
8918    // Handle all other FP comparisons here.
8919    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8920                       DAG.getConstant(SSECC, MVT::i8));
8921  }
8922
8923  // Break 256-bit integer vector compare into smaller ones.
8924  if (VT.is256BitVector() && !Subtarget->hasAVX2())
8925    return Lower256IntVSETCC(Op, DAG);
8926
8927  // We are handling one of the integer comparisons here.  Since SSE only has
8928  // GT and EQ comparisons for integer, swapping operands and multiple
8929  // operations may be required for some comparisons.
8930  unsigned Opc;
8931  bool Swap = false, Invert = false, FlipSigns = false;
8932
8933  switch (SetCCOpcode) {
8934  default: llvm_unreachable("Unexpected SETCC condition");
8935  case ISD::SETNE:  Invert = true;
8936  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8937  case ISD::SETLT:  Swap = true;
8938  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8939  case ISD::SETGE:  Swap = true;
8940  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8941  case ISD::SETULT: Swap = true;
8942  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8943  case ISD::SETUGE: Swap = true;
8944  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8945  }
8946  if (Swap)
8947    std::swap(Op0, Op1);
8948
8949  // Check that the operation in question is available (most are plain SSE2,
8950  // but PCMPGTQ and PCMPEQQ have different requirements).
8951  if (VT == MVT::v2i64) {
8952    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
8953      return SDValue();
8954    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41())
8955      return SDValue();
8956  }
8957
8958  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8959  // bits of the inputs before performing those operations.
8960  if (FlipSigns) {
8961    EVT EltVT = VT.getVectorElementType();
8962    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8963                                      EltVT);
8964    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8965    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8966                                    SignBits.size());
8967    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8968    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8969  }
8970
8971  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8972
8973  // If the logical-not of the result is required, perform that now.
8974  if (Invert)
8975    Result = DAG.getNOT(dl, Result, VT);
8976
8977  return Result;
8978}
8979
8980// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8981static bool isX86LogicalCmp(SDValue Op) {
8982  unsigned Opc = Op.getNode()->getOpcode();
8983  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8984      Opc == X86ISD::SAHF)
8985    return true;
8986  if (Op.getResNo() == 1 &&
8987      (Opc == X86ISD::ADD ||
8988       Opc == X86ISD::SUB ||
8989       Opc == X86ISD::ADC ||
8990       Opc == X86ISD::SBB ||
8991       Opc == X86ISD::SMUL ||
8992       Opc == X86ISD::UMUL ||
8993       Opc == X86ISD::INC ||
8994       Opc == X86ISD::DEC ||
8995       Opc == X86ISD::OR ||
8996       Opc == X86ISD::XOR ||
8997       Opc == X86ISD::AND))
8998    return true;
8999
9000  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
9001    return true;
9002
9003  return false;
9004}
9005
9006static bool isZero(SDValue V) {
9007  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9008  return C && C->isNullValue();
9009}
9010
9011static bool isAllOnes(SDValue V) {
9012  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
9013  return C && C->isAllOnesValue();
9014}
9015
9016static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
9017  if (V.getOpcode() != ISD::TRUNCATE)
9018    return false;
9019
9020  SDValue VOp0 = V.getOperand(0);
9021  unsigned InBits = VOp0.getValueSizeInBits();
9022  unsigned Bits = V.getValueSizeInBits();
9023  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
9024}
9025
9026SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
9027  bool addTest = true;
9028  SDValue Cond  = Op.getOperand(0);
9029  SDValue Op1 = Op.getOperand(1);
9030  SDValue Op2 = Op.getOperand(2);
9031  DebugLoc DL = Op.getDebugLoc();
9032  SDValue CC;
9033
9034  if (Cond.getOpcode() == ISD::SETCC) {
9035    SDValue NewCond = LowerSETCC(Cond, DAG);
9036    if (NewCond.getNode())
9037      Cond = NewCond;
9038  }
9039
9040  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
9041  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
9042  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
9043  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
9044  if (Cond.getOpcode() == X86ISD::SETCC &&
9045      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
9046      isZero(Cond.getOperand(1).getOperand(1))) {
9047    SDValue Cmp = Cond.getOperand(1);
9048
9049    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
9050
9051    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
9052        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
9053      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
9054
9055      SDValue CmpOp0 = Cmp.getOperand(0);
9056      // Apply further optimizations for special cases
9057      // (select (x != 0), -1, 0) -> neg & sbb
9058      // (select (x == 0), 0, -1) -> neg & sbb
9059      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
9060        if (YC->isNullValue() &&
9061            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
9062          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
9063          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
9064                                    DAG.getConstant(0, CmpOp0.getValueType()),
9065                                    CmpOp0);
9066          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9067                                    DAG.getConstant(X86::COND_B, MVT::i8),
9068                                    SDValue(Neg.getNode(), 1));
9069          return Res;
9070        }
9071
9072      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
9073                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
9074      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9075
9076      SDValue Res =   // Res = 0 or -1.
9077        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9078                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
9079
9080      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
9081        Res = DAG.getNOT(DL, Res, Res.getValueType());
9082
9083      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
9084      if (N2C == 0 || !N2C->isNullValue())
9085        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
9086      return Res;
9087    }
9088  }
9089
9090  // Look past (and (setcc_carry (cmp ...)), 1).
9091  if (Cond.getOpcode() == ISD::AND &&
9092      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9093    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9094    if (C && C->getAPIntValue() == 1)
9095      Cond = Cond.getOperand(0);
9096  }
9097
9098  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9099  // setting operand in place of the X86ISD::SETCC.
9100  unsigned CondOpcode = Cond.getOpcode();
9101  if (CondOpcode == X86ISD::SETCC ||
9102      CondOpcode == X86ISD::SETCC_CARRY) {
9103    CC = Cond.getOperand(0);
9104
9105    SDValue Cmp = Cond.getOperand(1);
9106    unsigned Opc = Cmp.getOpcode();
9107    EVT VT = Op.getValueType();
9108
9109    bool IllegalFPCMov = false;
9110    if (VT.isFloatingPoint() && !VT.isVector() &&
9111        !isScalarFPTypeInSSEReg(VT))  // FPStack?
9112      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
9113
9114    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
9115        Opc == X86ISD::BT) { // FIXME
9116      Cond = Cmp;
9117      addTest = false;
9118    }
9119  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9120             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9121             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9122              Cond.getOperand(0).getValueType() != MVT::i8)) {
9123    SDValue LHS = Cond.getOperand(0);
9124    SDValue RHS = Cond.getOperand(1);
9125    unsigned X86Opcode;
9126    unsigned X86Cond;
9127    SDVTList VTs;
9128    switch (CondOpcode) {
9129    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9130    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9131    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9132    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9133    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9134    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9135    default: llvm_unreachable("unexpected overflowing operator");
9136    }
9137    if (CondOpcode == ISD::UMULO)
9138      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9139                          MVT::i32);
9140    else
9141      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9142
9143    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
9144
9145    if (CondOpcode == ISD::UMULO)
9146      Cond = X86Op.getValue(2);
9147    else
9148      Cond = X86Op.getValue(1);
9149
9150    CC = DAG.getConstant(X86Cond, MVT::i8);
9151    addTest = false;
9152  }
9153
9154  if (addTest) {
9155    // Look pass the truncate if the high bits are known zero.
9156    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9157        Cond = Cond.getOperand(0);
9158
9159    // We know the result of AND is compared against zero. Try to match
9160    // it to BT.
9161    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9162      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
9163      if (NewSetCC.getNode()) {
9164        CC = NewSetCC.getOperand(0);
9165        Cond = NewSetCC.getOperand(1);
9166        addTest = false;
9167      }
9168    }
9169  }
9170
9171  if (addTest) {
9172    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9173    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9174  }
9175
9176  // a <  b ? -1 :  0 -> RES = ~setcc_carry
9177  // a <  b ?  0 : -1 -> RES = setcc_carry
9178  // a >= b ? -1 :  0 -> RES = setcc_carry
9179  // a >= b ?  0 : -1 -> RES = ~setcc_carry
9180  if (Cond.getOpcode() == X86ISD::SUB) {
9181    Cond = ConvertCmpIfNecessary(Cond, DAG);
9182    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
9183
9184    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
9185        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9186      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9187                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9188      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9189        return DAG.getNOT(DL, Res, Res.getValueType());
9190      return Res;
9191    }
9192  }
9193
9194  // X86 doesn't have an i8 cmov. If both operands are the result of a truncate
9195  // widen the cmov and push the truncate through. This avoids introducing a new
9196  // branch during isel and doesn't add any extensions.
9197  if (Op.getValueType() == MVT::i8 &&
9198      Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
9199    SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
9200    if (T1.getValueType() == T2.getValueType() &&
9201        // Blacklist CopyFromReg to avoid partial register stalls.
9202        T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
9203      SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
9204      SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
9205      return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
9206    }
9207  }
9208
9209  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9210  // condition is true.
9211  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9212  SDValue Ops[] = { Op2, Op1, CC, Cond };
9213  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9214}
9215
9216// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9217// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9218// from the AND / OR.
9219static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9220  Opc = Op.getOpcode();
9221  if (Opc != ISD::OR && Opc != ISD::AND)
9222    return false;
9223  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9224          Op.getOperand(0).hasOneUse() &&
9225          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9226          Op.getOperand(1).hasOneUse());
9227}
9228
9229// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9230// 1 and that the SETCC node has a single use.
9231static bool isXor1OfSetCC(SDValue Op) {
9232  if (Op.getOpcode() != ISD::XOR)
9233    return false;
9234  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9235  if (N1C && N1C->getAPIntValue() == 1) {
9236    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9237      Op.getOperand(0).hasOneUse();
9238  }
9239  return false;
9240}
9241
9242SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9243  bool addTest = true;
9244  SDValue Chain = Op.getOperand(0);
9245  SDValue Cond  = Op.getOperand(1);
9246  SDValue Dest  = Op.getOperand(2);
9247  DebugLoc dl = Op.getDebugLoc();
9248  SDValue CC;
9249  bool Inverted = false;
9250
9251  if (Cond.getOpcode() == ISD::SETCC) {
9252    // Check for setcc([su]{add,sub,mul}o == 0).
9253    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9254        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9255        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9256        Cond.getOperand(0).getResNo() == 1 &&
9257        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9258         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9259         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9260         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9261         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9262         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9263      Inverted = true;
9264      Cond = Cond.getOperand(0);
9265    } else {
9266      SDValue NewCond = LowerSETCC(Cond, DAG);
9267      if (NewCond.getNode())
9268        Cond = NewCond;
9269    }
9270  }
9271#if 0
9272  // FIXME: LowerXALUO doesn't handle these!!
9273  else if (Cond.getOpcode() == X86ISD::ADD  ||
9274           Cond.getOpcode() == X86ISD::SUB  ||
9275           Cond.getOpcode() == X86ISD::SMUL ||
9276           Cond.getOpcode() == X86ISD::UMUL)
9277    Cond = LowerXALUO(Cond, DAG);
9278#endif
9279
9280  // Look pass (and (setcc_carry (cmp ...)), 1).
9281  if (Cond.getOpcode() == ISD::AND &&
9282      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9283    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9284    if (C && C->getAPIntValue() == 1)
9285      Cond = Cond.getOperand(0);
9286  }
9287
9288  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9289  // setting operand in place of the X86ISD::SETCC.
9290  unsigned CondOpcode = Cond.getOpcode();
9291  if (CondOpcode == X86ISD::SETCC ||
9292      CondOpcode == X86ISD::SETCC_CARRY) {
9293    CC = Cond.getOperand(0);
9294
9295    SDValue Cmp = Cond.getOperand(1);
9296    unsigned Opc = Cmp.getOpcode();
9297    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9298    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9299      Cond = Cmp;
9300      addTest = false;
9301    } else {
9302      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9303      default: break;
9304      case X86::COND_O:
9305      case X86::COND_B:
9306        // These can only come from an arithmetic instruction with overflow,
9307        // e.g. SADDO, UADDO.
9308        Cond = Cond.getNode()->getOperand(1);
9309        addTest = false;
9310        break;
9311      }
9312    }
9313  }
9314  CondOpcode = Cond.getOpcode();
9315  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9316      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9317      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9318       Cond.getOperand(0).getValueType() != MVT::i8)) {
9319    SDValue LHS = Cond.getOperand(0);
9320    SDValue RHS = Cond.getOperand(1);
9321    unsigned X86Opcode;
9322    unsigned X86Cond;
9323    SDVTList VTs;
9324    switch (CondOpcode) {
9325    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9326    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9327    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9328    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9329    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9330    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9331    default: llvm_unreachable("unexpected overflowing operator");
9332    }
9333    if (Inverted)
9334      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9335    if (CondOpcode == ISD::UMULO)
9336      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9337                          MVT::i32);
9338    else
9339      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9340
9341    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9342
9343    if (CondOpcode == ISD::UMULO)
9344      Cond = X86Op.getValue(2);
9345    else
9346      Cond = X86Op.getValue(1);
9347
9348    CC = DAG.getConstant(X86Cond, MVT::i8);
9349    addTest = false;
9350  } else {
9351    unsigned CondOpc;
9352    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9353      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9354      if (CondOpc == ISD::OR) {
9355        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9356        // two branches instead of an explicit OR instruction with a
9357        // separate test.
9358        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9359            isX86LogicalCmp(Cmp)) {
9360          CC = Cond.getOperand(0).getOperand(0);
9361          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9362                              Chain, Dest, CC, Cmp);
9363          CC = Cond.getOperand(1).getOperand(0);
9364          Cond = Cmp;
9365          addTest = false;
9366        }
9367      } else { // ISD::AND
9368        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9369        // two branches instead of an explicit AND instruction with a
9370        // separate test. However, we only do this if this block doesn't
9371        // have a fall-through edge, because this requires an explicit
9372        // jmp when the condition is false.
9373        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9374            isX86LogicalCmp(Cmp) &&
9375            Op.getNode()->hasOneUse()) {
9376          X86::CondCode CCode =
9377            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9378          CCode = X86::GetOppositeBranchCondition(CCode);
9379          CC = DAG.getConstant(CCode, MVT::i8);
9380          SDNode *User = *Op.getNode()->use_begin();
9381          // Look for an unconditional branch following this conditional branch.
9382          // We need this because we need to reverse the successors in order
9383          // to implement FCMP_OEQ.
9384          if (User->getOpcode() == ISD::BR) {
9385            SDValue FalseBB = User->getOperand(1);
9386            SDNode *NewBR =
9387              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9388            assert(NewBR == User);
9389            (void)NewBR;
9390            Dest = FalseBB;
9391
9392            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9393                                Chain, Dest, CC, Cmp);
9394            X86::CondCode CCode =
9395              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9396            CCode = X86::GetOppositeBranchCondition(CCode);
9397            CC = DAG.getConstant(CCode, MVT::i8);
9398            Cond = Cmp;
9399            addTest = false;
9400          }
9401        }
9402      }
9403    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9404      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9405      // It should be transformed during dag combiner except when the condition
9406      // is set by a arithmetics with overflow node.
9407      X86::CondCode CCode =
9408        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9409      CCode = X86::GetOppositeBranchCondition(CCode);
9410      CC = DAG.getConstant(CCode, MVT::i8);
9411      Cond = Cond.getOperand(0).getOperand(1);
9412      addTest = false;
9413    } else if (Cond.getOpcode() == ISD::SETCC &&
9414               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9415      // For FCMP_OEQ, we can emit
9416      // two branches instead of an explicit AND instruction with a
9417      // separate test. However, we only do this if this block doesn't
9418      // have a fall-through edge, because this requires an explicit
9419      // jmp when the condition is false.
9420      if (Op.getNode()->hasOneUse()) {
9421        SDNode *User = *Op.getNode()->use_begin();
9422        // Look for an unconditional branch following this conditional branch.
9423        // We need this because we need to reverse the successors in order
9424        // to implement FCMP_OEQ.
9425        if (User->getOpcode() == ISD::BR) {
9426          SDValue FalseBB = User->getOperand(1);
9427          SDNode *NewBR =
9428            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9429          assert(NewBR == User);
9430          (void)NewBR;
9431          Dest = FalseBB;
9432
9433          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9434                                    Cond.getOperand(0), Cond.getOperand(1));
9435          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9436          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9437          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9438                              Chain, Dest, CC, Cmp);
9439          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9440          Cond = Cmp;
9441          addTest = false;
9442        }
9443      }
9444    } else if (Cond.getOpcode() == ISD::SETCC &&
9445               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9446      // For FCMP_UNE, we can emit
9447      // two branches instead of an explicit AND instruction with a
9448      // separate test. However, we only do this if this block doesn't
9449      // have a fall-through edge, because this requires an explicit
9450      // jmp when the condition is false.
9451      if (Op.getNode()->hasOneUse()) {
9452        SDNode *User = *Op.getNode()->use_begin();
9453        // Look for an unconditional branch following this conditional branch.
9454        // We need this because we need to reverse the successors in order
9455        // to implement FCMP_UNE.
9456        if (User->getOpcode() == ISD::BR) {
9457          SDValue FalseBB = User->getOperand(1);
9458          SDNode *NewBR =
9459            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9460          assert(NewBR == User);
9461          (void)NewBR;
9462
9463          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9464                                    Cond.getOperand(0), Cond.getOperand(1));
9465          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9466          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9467          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9468                              Chain, Dest, CC, Cmp);
9469          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9470          Cond = Cmp;
9471          addTest = false;
9472          Dest = FalseBB;
9473        }
9474      }
9475    }
9476  }
9477
9478  if (addTest) {
9479    // Look pass the truncate if the high bits are known zero.
9480    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9481        Cond = Cond.getOperand(0);
9482
9483    // We know the result of AND is compared against zero. Try to match
9484    // it to BT.
9485    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9486      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9487      if (NewSetCC.getNode()) {
9488        CC = NewSetCC.getOperand(0);
9489        Cond = NewSetCC.getOperand(1);
9490        addTest = false;
9491      }
9492    }
9493  }
9494
9495  if (addTest) {
9496    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9497    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9498  }
9499  Cond = ConvertCmpIfNecessary(Cond, DAG);
9500  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9501                     Chain, Dest, CC, Cond);
9502}
9503
9504
9505// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9506// Calls to _alloca is needed to probe the stack when allocating more than 4k
9507// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9508// that the guard pages used by the OS virtual memory manager are allocated in
9509// correct sequence.
9510SDValue
9511X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9512                                           SelectionDAG &DAG) const {
9513  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9514          getTargetMachine().Options.EnableSegmentedStacks) &&
9515         "This should be used only on Windows targets or when segmented stacks "
9516         "are being used");
9517  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9518  DebugLoc dl = Op.getDebugLoc();
9519
9520  // Get the inputs.
9521  SDValue Chain = Op.getOperand(0);
9522  SDValue Size  = Op.getOperand(1);
9523  // FIXME: Ensure alignment here
9524
9525  bool Is64Bit = Subtarget->is64Bit();
9526  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9527
9528  if (getTargetMachine().Options.EnableSegmentedStacks) {
9529    MachineFunction &MF = DAG.getMachineFunction();
9530    MachineRegisterInfo &MRI = MF.getRegInfo();
9531
9532    if (Is64Bit) {
9533      // The 64 bit implementation of segmented stacks needs to clobber both r10
9534      // r11. This makes it impossible to use it along with nested parameters.
9535      const Function *F = MF.getFunction();
9536
9537      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9538           I != E; ++I)
9539        if (I->hasNestAttr())
9540          report_fatal_error("Cannot use segmented stacks with functions that "
9541                             "have nested arguments.");
9542    }
9543
9544    const TargetRegisterClass *AddrRegClass =
9545      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9546    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9547    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9548    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9549                                DAG.getRegister(Vreg, SPTy));
9550    SDValue Ops1[2] = { Value, Chain };
9551    return DAG.getMergeValues(Ops1, 2, dl);
9552  } else {
9553    SDValue Flag;
9554    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9555
9556    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9557    Flag = Chain.getValue(1);
9558    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9559
9560    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9561    Flag = Chain.getValue(1);
9562
9563    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9564
9565    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9566    return DAG.getMergeValues(Ops1, 2, dl);
9567  }
9568}
9569
9570SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9571  MachineFunction &MF = DAG.getMachineFunction();
9572  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9573
9574  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9575  DebugLoc DL = Op.getDebugLoc();
9576
9577  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9578    // vastart just stores the address of the VarArgsFrameIndex slot into the
9579    // memory location argument.
9580    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9581                                   getPointerTy());
9582    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9583                        MachinePointerInfo(SV), false, false, 0);
9584  }
9585
9586  // __va_list_tag:
9587  //   gp_offset         (0 - 6 * 8)
9588  //   fp_offset         (48 - 48 + 8 * 16)
9589  //   overflow_arg_area (point to parameters coming in memory).
9590  //   reg_save_area
9591  SmallVector<SDValue, 8> MemOps;
9592  SDValue FIN = Op.getOperand(1);
9593  // Store gp_offset
9594  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9595                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9596                                               MVT::i32),
9597                               FIN, MachinePointerInfo(SV), false, false, 0);
9598  MemOps.push_back(Store);
9599
9600  // Store fp_offset
9601  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9602                    FIN, DAG.getIntPtrConstant(4));
9603  Store = DAG.getStore(Op.getOperand(0), DL,
9604                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9605                                       MVT::i32),
9606                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9607  MemOps.push_back(Store);
9608
9609  // Store ptr to overflow_arg_area
9610  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9611                    FIN, DAG.getIntPtrConstant(4));
9612  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9613                                    getPointerTy());
9614  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9615                       MachinePointerInfo(SV, 8),
9616                       false, false, 0);
9617  MemOps.push_back(Store);
9618
9619  // Store ptr to reg_save_area.
9620  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9621                    FIN, DAG.getIntPtrConstant(8));
9622  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9623                                    getPointerTy());
9624  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9625                       MachinePointerInfo(SV, 16), false, false, 0);
9626  MemOps.push_back(Store);
9627  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9628                     &MemOps[0], MemOps.size());
9629}
9630
9631SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9632  assert(Subtarget->is64Bit() &&
9633         "LowerVAARG only handles 64-bit va_arg!");
9634  assert((Subtarget->isTargetLinux() ||
9635          Subtarget->isTargetDarwin()) &&
9636          "Unhandled target in LowerVAARG");
9637  assert(Op.getNode()->getNumOperands() == 4);
9638  SDValue Chain = Op.getOperand(0);
9639  SDValue SrcPtr = Op.getOperand(1);
9640  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9641  unsigned Align = Op.getConstantOperandVal(3);
9642  DebugLoc dl = Op.getDebugLoc();
9643
9644  EVT ArgVT = Op.getNode()->getValueType(0);
9645  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9646  uint32_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy);
9647  uint8_t ArgMode;
9648
9649  // Decide which area this value should be read from.
9650  // TODO: Implement the AMD64 ABI in its entirety. This simple
9651  // selection mechanism works only for the basic types.
9652  if (ArgVT == MVT::f80) {
9653    llvm_unreachable("va_arg for f80 not yet implemented");
9654  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9655    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9656  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9657    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9658  } else {
9659    llvm_unreachable("Unhandled argument type in LowerVAARG");
9660  }
9661
9662  if (ArgMode == 2) {
9663    // Sanity Check: Make sure using fp_offset makes sense.
9664    assert(!getTargetMachine().Options.UseSoftFloat &&
9665           !(DAG.getMachineFunction()
9666                .getFunction()->getFnAttributes()
9667                .hasAttribute(Attributes::NoImplicitFloat)) &&
9668           Subtarget->hasSSE1());
9669  }
9670
9671  // Insert VAARG_64 node into the DAG
9672  // VAARG_64 returns two values: Variable Argument Address, Chain
9673  SmallVector<SDValue, 11> InstOps;
9674  InstOps.push_back(Chain);
9675  InstOps.push_back(SrcPtr);
9676  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9677  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9678  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9679  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9680  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9681                                          VTs, &InstOps[0], InstOps.size(),
9682                                          MVT::i64,
9683                                          MachinePointerInfo(SV),
9684                                          /*Align=*/0,
9685                                          /*Volatile=*/false,
9686                                          /*ReadMem=*/true,
9687                                          /*WriteMem=*/true);
9688  Chain = VAARG.getValue(1);
9689
9690  // Load the next argument and return it
9691  return DAG.getLoad(ArgVT, dl,
9692                     Chain,
9693                     VAARG,
9694                     MachinePointerInfo(),
9695                     false, false, false, 0);
9696}
9697
9698static SDValue LowerVACOPY(SDValue Op, const X86Subtarget *Subtarget,
9699                           SelectionDAG &DAG) {
9700  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9701  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9702  SDValue Chain = Op.getOperand(0);
9703  SDValue DstPtr = Op.getOperand(1);
9704  SDValue SrcPtr = Op.getOperand(2);
9705  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9706  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9707  DebugLoc DL = Op.getDebugLoc();
9708
9709  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9710                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9711                       false,
9712                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9713}
9714
9715// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9716// may or may not be a constant. Takes immediate version of shift as input.
9717static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9718                                   SDValue SrcOp, SDValue ShAmt,
9719                                   SelectionDAG &DAG) {
9720  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9721
9722  if (isa<ConstantSDNode>(ShAmt)) {
9723    // Constant may be a TargetConstant. Use a regular constant.
9724    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9725    switch (Opc) {
9726      default: llvm_unreachable("Unknown target vector shift node");
9727      case X86ISD::VSHLI:
9728      case X86ISD::VSRLI:
9729      case X86ISD::VSRAI:
9730        return DAG.getNode(Opc, dl, VT, SrcOp,
9731                           DAG.getConstant(ShiftAmt, MVT::i32));
9732    }
9733  }
9734
9735  // Change opcode to non-immediate version
9736  switch (Opc) {
9737    default: llvm_unreachable("Unknown target vector shift node");
9738    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9739    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9740    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9741  }
9742
9743  // Need to build a vector containing shift amount
9744  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9745  SDValue ShOps[4];
9746  ShOps[0] = ShAmt;
9747  ShOps[1] = DAG.getConstant(0, MVT::i32);
9748  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
9749  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9750
9751  // The return type has to be a 128-bit type with the same element
9752  // type as the input type.
9753  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9754  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9755
9756  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9757  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9758}
9759
9760static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
9761  DebugLoc dl = Op.getDebugLoc();
9762  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9763  switch (IntNo) {
9764  default: return SDValue();    // Don't custom lower most intrinsics.
9765  // Comparison intrinsics.
9766  case Intrinsic::x86_sse_comieq_ss:
9767  case Intrinsic::x86_sse_comilt_ss:
9768  case Intrinsic::x86_sse_comile_ss:
9769  case Intrinsic::x86_sse_comigt_ss:
9770  case Intrinsic::x86_sse_comige_ss:
9771  case Intrinsic::x86_sse_comineq_ss:
9772  case Intrinsic::x86_sse_ucomieq_ss:
9773  case Intrinsic::x86_sse_ucomilt_ss:
9774  case Intrinsic::x86_sse_ucomile_ss:
9775  case Intrinsic::x86_sse_ucomigt_ss:
9776  case Intrinsic::x86_sse_ucomige_ss:
9777  case Intrinsic::x86_sse_ucomineq_ss:
9778  case Intrinsic::x86_sse2_comieq_sd:
9779  case Intrinsic::x86_sse2_comilt_sd:
9780  case Intrinsic::x86_sse2_comile_sd:
9781  case Intrinsic::x86_sse2_comigt_sd:
9782  case Intrinsic::x86_sse2_comige_sd:
9783  case Intrinsic::x86_sse2_comineq_sd:
9784  case Intrinsic::x86_sse2_ucomieq_sd:
9785  case Intrinsic::x86_sse2_ucomilt_sd:
9786  case Intrinsic::x86_sse2_ucomile_sd:
9787  case Intrinsic::x86_sse2_ucomigt_sd:
9788  case Intrinsic::x86_sse2_ucomige_sd:
9789  case Intrinsic::x86_sse2_ucomineq_sd: {
9790    unsigned Opc;
9791    ISD::CondCode CC;
9792    switch (IntNo) {
9793    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9794    case Intrinsic::x86_sse_comieq_ss:
9795    case Intrinsic::x86_sse2_comieq_sd:
9796      Opc = X86ISD::COMI;
9797      CC = ISD::SETEQ;
9798      break;
9799    case Intrinsic::x86_sse_comilt_ss:
9800    case Intrinsic::x86_sse2_comilt_sd:
9801      Opc = X86ISD::COMI;
9802      CC = ISD::SETLT;
9803      break;
9804    case Intrinsic::x86_sse_comile_ss:
9805    case Intrinsic::x86_sse2_comile_sd:
9806      Opc = X86ISD::COMI;
9807      CC = ISD::SETLE;
9808      break;
9809    case Intrinsic::x86_sse_comigt_ss:
9810    case Intrinsic::x86_sse2_comigt_sd:
9811      Opc = X86ISD::COMI;
9812      CC = ISD::SETGT;
9813      break;
9814    case Intrinsic::x86_sse_comige_ss:
9815    case Intrinsic::x86_sse2_comige_sd:
9816      Opc = X86ISD::COMI;
9817      CC = ISD::SETGE;
9818      break;
9819    case Intrinsic::x86_sse_comineq_ss:
9820    case Intrinsic::x86_sse2_comineq_sd:
9821      Opc = X86ISD::COMI;
9822      CC = ISD::SETNE;
9823      break;
9824    case Intrinsic::x86_sse_ucomieq_ss:
9825    case Intrinsic::x86_sse2_ucomieq_sd:
9826      Opc = X86ISD::UCOMI;
9827      CC = ISD::SETEQ;
9828      break;
9829    case Intrinsic::x86_sse_ucomilt_ss:
9830    case Intrinsic::x86_sse2_ucomilt_sd:
9831      Opc = X86ISD::UCOMI;
9832      CC = ISD::SETLT;
9833      break;
9834    case Intrinsic::x86_sse_ucomile_ss:
9835    case Intrinsic::x86_sse2_ucomile_sd:
9836      Opc = X86ISD::UCOMI;
9837      CC = ISD::SETLE;
9838      break;
9839    case Intrinsic::x86_sse_ucomigt_ss:
9840    case Intrinsic::x86_sse2_ucomigt_sd:
9841      Opc = X86ISD::UCOMI;
9842      CC = ISD::SETGT;
9843      break;
9844    case Intrinsic::x86_sse_ucomige_ss:
9845    case Intrinsic::x86_sse2_ucomige_sd:
9846      Opc = X86ISD::UCOMI;
9847      CC = ISD::SETGE;
9848      break;
9849    case Intrinsic::x86_sse_ucomineq_ss:
9850    case Intrinsic::x86_sse2_ucomineq_sd:
9851      Opc = X86ISD::UCOMI;
9852      CC = ISD::SETNE;
9853      break;
9854    }
9855
9856    SDValue LHS = Op.getOperand(1);
9857    SDValue RHS = Op.getOperand(2);
9858    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9859    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9860    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9861    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9862                                DAG.getConstant(X86CC, MVT::i8), Cond);
9863    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9864  }
9865
9866  // Arithmetic intrinsics.
9867  case Intrinsic::x86_sse2_pmulu_dq:
9868  case Intrinsic::x86_avx2_pmulu_dq:
9869    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9870                       Op.getOperand(1), Op.getOperand(2));
9871
9872  // SSE3/AVX horizontal add/sub intrinsics
9873  case Intrinsic::x86_sse3_hadd_ps:
9874  case Intrinsic::x86_sse3_hadd_pd:
9875  case Intrinsic::x86_avx_hadd_ps_256:
9876  case Intrinsic::x86_avx_hadd_pd_256:
9877  case Intrinsic::x86_sse3_hsub_ps:
9878  case Intrinsic::x86_sse3_hsub_pd:
9879  case Intrinsic::x86_avx_hsub_ps_256:
9880  case Intrinsic::x86_avx_hsub_pd_256:
9881  case Intrinsic::x86_ssse3_phadd_w_128:
9882  case Intrinsic::x86_ssse3_phadd_d_128:
9883  case Intrinsic::x86_avx2_phadd_w:
9884  case Intrinsic::x86_avx2_phadd_d:
9885  case Intrinsic::x86_ssse3_phsub_w_128:
9886  case Intrinsic::x86_ssse3_phsub_d_128:
9887  case Intrinsic::x86_avx2_phsub_w:
9888  case Intrinsic::x86_avx2_phsub_d: {
9889    unsigned Opcode;
9890    switch (IntNo) {
9891    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9892    case Intrinsic::x86_sse3_hadd_ps:
9893    case Intrinsic::x86_sse3_hadd_pd:
9894    case Intrinsic::x86_avx_hadd_ps_256:
9895    case Intrinsic::x86_avx_hadd_pd_256:
9896      Opcode = X86ISD::FHADD;
9897      break;
9898    case Intrinsic::x86_sse3_hsub_ps:
9899    case Intrinsic::x86_sse3_hsub_pd:
9900    case Intrinsic::x86_avx_hsub_ps_256:
9901    case Intrinsic::x86_avx_hsub_pd_256:
9902      Opcode = X86ISD::FHSUB;
9903      break;
9904    case Intrinsic::x86_ssse3_phadd_w_128:
9905    case Intrinsic::x86_ssse3_phadd_d_128:
9906    case Intrinsic::x86_avx2_phadd_w:
9907    case Intrinsic::x86_avx2_phadd_d:
9908      Opcode = X86ISD::HADD;
9909      break;
9910    case Intrinsic::x86_ssse3_phsub_w_128:
9911    case Intrinsic::x86_ssse3_phsub_d_128:
9912    case Intrinsic::x86_avx2_phsub_w:
9913    case Intrinsic::x86_avx2_phsub_d:
9914      Opcode = X86ISD::HSUB;
9915      break;
9916    }
9917    return DAG.getNode(Opcode, dl, Op.getValueType(),
9918                       Op.getOperand(1), Op.getOperand(2));
9919  }
9920
9921  // AVX2 variable shift intrinsics
9922  case Intrinsic::x86_avx2_psllv_d:
9923  case Intrinsic::x86_avx2_psllv_q:
9924  case Intrinsic::x86_avx2_psllv_d_256:
9925  case Intrinsic::x86_avx2_psllv_q_256:
9926  case Intrinsic::x86_avx2_psrlv_d:
9927  case Intrinsic::x86_avx2_psrlv_q:
9928  case Intrinsic::x86_avx2_psrlv_d_256:
9929  case Intrinsic::x86_avx2_psrlv_q_256:
9930  case Intrinsic::x86_avx2_psrav_d:
9931  case Intrinsic::x86_avx2_psrav_d_256: {
9932    unsigned Opcode;
9933    switch (IntNo) {
9934    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9935    case Intrinsic::x86_avx2_psllv_d:
9936    case Intrinsic::x86_avx2_psllv_q:
9937    case Intrinsic::x86_avx2_psllv_d_256:
9938    case Intrinsic::x86_avx2_psllv_q_256:
9939      Opcode = ISD::SHL;
9940      break;
9941    case Intrinsic::x86_avx2_psrlv_d:
9942    case Intrinsic::x86_avx2_psrlv_q:
9943    case Intrinsic::x86_avx2_psrlv_d_256:
9944    case Intrinsic::x86_avx2_psrlv_q_256:
9945      Opcode = ISD::SRL;
9946      break;
9947    case Intrinsic::x86_avx2_psrav_d:
9948    case Intrinsic::x86_avx2_psrav_d_256:
9949      Opcode = ISD::SRA;
9950      break;
9951    }
9952    return DAG.getNode(Opcode, dl, Op.getValueType(),
9953                       Op.getOperand(1), Op.getOperand(2));
9954  }
9955
9956  case Intrinsic::x86_ssse3_pshuf_b_128:
9957  case Intrinsic::x86_avx2_pshuf_b:
9958    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9959                       Op.getOperand(1), Op.getOperand(2));
9960
9961  case Intrinsic::x86_ssse3_psign_b_128:
9962  case Intrinsic::x86_ssse3_psign_w_128:
9963  case Intrinsic::x86_ssse3_psign_d_128:
9964  case Intrinsic::x86_avx2_psign_b:
9965  case Intrinsic::x86_avx2_psign_w:
9966  case Intrinsic::x86_avx2_psign_d:
9967    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9968                       Op.getOperand(1), Op.getOperand(2));
9969
9970  case Intrinsic::x86_sse41_insertps:
9971    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9972                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9973
9974  case Intrinsic::x86_avx_vperm2f128_ps_256:
9975  case Intrinsic::x86_avx_vperm2f128_pd_256:
9976  case Intrinsic::x86_avx_vperm2f128_si_256:
9977  case Intrinsic::x86_avx2_vperm2i128:
9978    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9979                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9980
9981  case Intrinsic::x86_avx2_permd:
9982  case Intrinsic::x86_avx2_permps:
9983    // Operands intentionally swapped. Mask is last operand to intrinsic,
9984    // but second operand for node/intruction.
9985    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9986                       Op.getOperand(2), Op.getOperand(1));
9987
9988  // ptest and testp intrinsics. The intrinsic these come from are designed to
9989  // return an integer value, not just an instruction so lower it to the ptest
9990  // or testp pattern and a setcc for the result.
9991  case Intrinsic::x86_sse41_ptestz:
9992  case Intrinsic::x86_sse41_ptestc:
9993  case Intrinsic::x86_sse41_ptestnzc:
9994  case Intrinsic::x86_avx_ptestz_256:
9995  case Intrinsic::x86_avx_ptestc_256:
9996  case Intrinsic::x86_avx_ptestnzc_256:
9997  case Intrinsic::x86_avx_vtestz_ps:
9998  case Intrinsic::x86_avx_vtestc_ps:
9999  case Intrinsic::x86_avx_vtestnzc_ps:
10000  case Intrinsic::x86_avx_vtestz_pd:
10001  case Intrinsic::x86_avx_vtestc_pd:
10002  case Intrinsic::x86_avx_vtestnzc_pd:
10003  case Intrinsic::x86_avx_vtestz_ps_256:
10004  case Intrinsic::x86_avx_vtestc_ps_256:
10005  case Intrinsic::x86_avx_vtestnzc_ps_256:
10006  case Intrinsic::x86_avx_vtestz_pd_256:
10007  case Intrinsic::x86_avx_vtestc_pd_256:
10008  case Intrinsic::x86_avx_vtestnzc_pd_256: {
10009    bool IsTestPacked = false;
10010    unsigned X86CC;
10011    switch (IntNo) {
10012    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
10013    case Intrinsic::x86_avx_vtestz_ps:
10014    case Intrinsic::x86_avx_vtestz_pd:
10015    case Intrinsic::x86_avx_vtestz_ps_256:
10016    case Intrinsic::x86_avx_vtestz_pd_256:
10017      IsTestPacked = true; // Fallthrough
10018    case Intrinsic::x86_sse41_ptestz:
10019    case Intrinsic::x86_avx_ptestz_256:
10020      // ZF = 1
10021      X86CC = X86::COND_E;
10022      break;
10023    case Intrinsic::x86_avx_vtestc_ps:
10024    case Intrinsic::x86_avx_vtestc_pd:
10025    case Intrinsic::x86_avx_vtestc_ps_256:
10026    case Intrinsic::x86_avx_vtestc_pd_256:
10027      IsTestPacked = true; // Fallthrough
10028    case Intrinsic::x86_sse41_ptestc:
10029    case Intrinsic::x86_avx_ptestc_256:
10030      // CF = 1
10031      X86CC = X86::COND_B;
10032      break;
10033    case Intrinsic::x86_avx_vtestnzc_ps:
10034    case Intrinsic::x86_avx_vtestnzc_pd:
10035    case Intrinsic::x86_avx_vtestnzc_ps_256:
10036    case Intrinsic::x86_avx_vtestnzc_pd_256:
10037      IsTestPacked = true; // Fallthrough
10038    case Intrinsic::x86_sse41_ptestnzc:
10039    case Intrinsic::x86_avx_ptestnzc_256:
10040      // ZF and CF = 0
10041      X86CC = X86::COND_A;
10042      break;
10043    }
10044
10045    SDValue LHS = Op.getOperand(1);
10046    SDValue RHS = Op.getOperand(2);
10047    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
10048    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
10049    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
10050    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
10051    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10052  }
10053
10054  // SSE/AVX shift intrinsics
10055  case Intrinsic::x86_sse2_psll_w:
10056  case Intrinsic::x86_sse2_psll_d:
10057  case Intrinsic::x86_sse2_psll_q:
10058  case Intrinsic::x86_avx2_psll_w:
10059  case Intrinsic::x86_avx2_psll_d:
10060  case Intrinsic::x86_avx2_psll_q:
10061  case Intrinsic::x86_sse2_psrl_w:
10062  case Intrinsic::x86_sse2_psrl_d:
10063  case Intrinsic::x86_sse2_psrl_q:
10064  case Intrinsic::x86_avx2_psrl_w:
10065  case Intrinsic::x86_avx2_psrl_d:
10066  case Intrinsic::x86_avx2_psrl_q:
10067  case Intrinsic::x86_sse2_psra_w:
10068  case Intrinsic::x86_sse2_psra_d:
10069  case Intrinsic::x86_avx2_psra_w:
10070  case Intrinsic::x86_avx2_psra_d: {
10071    unsigned Opcode;
10072    switch (IntNo) {
10073    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10074    case Intrinsic::x86_sse2_psll_w:
10075    case Intrinsic::x86_sse2_psll_d:
10076    case Intrinsic::x86_sse2_psll_q:
10077    case Intrinsic::x86_avx2_psll_w:
10078    case Intrinsic::x86_avx2_psll_d:
10079    case Intrinsic::x86_avx2_psll_q:
10080      Opcode = X86ISD::VSHL;
10081      break;
10082    case Intrinsic::x86_sse2_psrl_w:
10083    case Intrinsic::x86_sse2_psrl_d:
10084    case Intrinsic::x86_sse2_psrl_q:
10085    case Intrinsic::x86_avx2_psrl_w:
10086    case Intrinsic::x86_avx2_psrl_d:
10087    case Intrinsic::x86_avx2_psrl_q:
10088      Opcode = X86ISD::VSRL;
10089      break;
10090    case Intrinsic::x86_sse2_psra_w:
10091    case Intrinsic::x86_sse2_psra_d:
10092    case Intrinsic::x86_avx2_psra_w:
10093    case Intrinsic::x86_avx2_psra_d:
10094      Opcode = X86ISD::VSRA;
10095      break;
10096    }
10097    return DAG.getNode(Opcode, dl, Op.getValueType(),
10098                       Op.getOperand(1), Op.getOperand(2));
10099  }
10100
10101  // SSE/AVX immediate shift intrinsics
10102  case Intrinsic::x86_sse2_pslli_w:
10103  case Intrinsic::x86_sse2_pslli_d:
10104  case Intrinsic::x86_sse2_pslli_q:
10105  case Intrinsic::x86_avx2_pslli_w:
10106  case Intrinsic::x86_avx2_pslli_d:
10107  case Intrinsic::x86_avx2_pslli_q:
10108  case Intrinsic::x86_sse2_psrli_w:
10109  case Intrinsic::x86_sse2_psrli_d:
10110  case Intrinsic::x86_sse2_psrli_q:
10111  case Intrinsic::x86_avx2_psrli_w:
10112  case Intrinsic::x86_avx2_psrli_d:
10113  case Intrinsic::x86_avx2_psrli_q:
10114  case Intrinsic::x86_sse2_psrai_w:
10115  case Intrinsic::x86_sse2_psrai_d:
10116  case Intrinsic::x86_avx2_psrai_w:
10117  case Intrinsic::x86_avx2_psrai_d: {
10118    unsigned Opcode;
10119    switch (IntNo) {
10120    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10121    case Intrinsic::x86_sse2_pslli_w:
10122    case Intrinsic::x86_sse2_pslli_d:
10123    case Intrinsic::x86_sse2_pslli_q:
10124    case Intrinsic::x86_avx2_pslli_w:
10125    case Intrinsic::x86_avx2_pslli_d:
10126    case Intrinsic::x86_avx2_pslli_q:
10127      Opcode = X86ISD::VSHLI;
10128      break;
10129    case Intrinsic::x86_sse2_psrli_w:
10130    case Intrinsic::x86_sse2_psrli_d:
10131    case Intrinsic::x86_sse2_psrli_q:
10132    case Intrinsic::x86_avx2_psrli_w:
10133    case Intrinsic::x86_avx2_psrli_d:
10134    case Intrinsic::x86_avx2_psrli_q:
10135      Opcode = X86ISD::VSRLI;
10136      break;
10137    case Intrinsic::x86_sse2_psrai_w:
10138    case Intrinsic::x86_sse2_psrai_d:
10139    case Intrinsic::x86_avx2_psrai_w:
10140    case Intrinsic::x86_avx2_psrai_d:
10141      Opcode = X86ISD::VSRAI;
10142      break;
10143    }
10144    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
10145                               Op.getOperand(1), Op.getOperand(2), DAG);
10146  }
10147
10148  case Intrinsic::x86_sse42_pcmpistria128:
10149  case Intrinsic::x86_sse42_pcmpestria128:
10150  case Intrinsic::x86_sse42_pcmpistric128:
10151  case Intrinsic::x86_sse42_pcmpestric128:
10152  case Intrinsic::x86_sse42_pcmpistrio128:
10153  case Intrinsic::x86_sse42_pcmpestrio128:
10154  case Intrinsic::x86_sse42_pcmpistris128:
10155  case Intrinsic::x86_sse42_pcmpestris128:
10156  case Intrinsic::x86_sse42_pcmpistriz128:
10157  case Intrinsic::x86_sse42_pcmpestriz128: {
10158    unsigned Opcode;
10159    unsigned X86CC;
10160    switch (IntNo) {
10161    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10162    case Intrinsic::x86_sse42_pcmpistria128:
10163      Opcode = X86ISD::PCMPISTRI;
10164      X86CC = X86::COND_A;
10165      break;
10166    case Intrinsic::x86_sse42_pcmpestria128:
10167      Opcode = X86ISD::PCMPESTRI;
10168      X86CC = X86::COND_A;
10169      break;
10170    case Intrinsic::x86_sse42_pcmpistric128:
10171      Opcode = X86ISD::PCMPISTRI;
10172      X86CC = X86::COND_B;
10173      break;
10174    case Intrinsic::x86_sse42_pcmpestric128:
10175      Opcode = X86ISD::PCMPESTRI;
10176      X86CC = X86::COND_B;
10177      break;
10178    case Intrinsic::x86_sse42_pcmpistrio128:
10179      Opcode = X86ISD::PCMPISTRI;
10180      X86CC = X86::COND_O;
10181      break;
10182    case Intrinsic::x86_sse42_pcmpestrio128:
10183      Opcode = X86ISD::PCMPESTRI;
10184      X86CC = X86::COND_O;
10185      break;
10186    case Intrinsic::x86_sse42_pcmpistris128:
10187      Opcode = X86ISD::PCMPISTRI;
10188      X86CC = X86::COND_S;
10189      break;
10190    case Intrinsic::x86_sse42_pcmpestris128:
10191      Opcode = X86ISD::PCMPESTRI;
10192      X86CC = X86::COND_S;
10193      break;
10194    case Intrinsic::x86_sse42_pcmpistriz128:
10195      Opcode = X86ISD::PCMPISTRI;
10196      X86CC = X86::COND_E;
10197      break;
10198    case Intrinsic::x86_sse42_pcmpestriz128:
10199      Opcode = X86ISD::PCMPESTRI;
10200      X86CC = X86::COND_E;
10201      break;
10202    }
10203    SmallVector<SDValue, 5> NewOps;
10204    NewOps.append(Op->op_begin()+1, Op->op_end());
10205    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10206    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10207    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10208                                DAG.getConstant(X86CC, MVT::i8),
10209                                SDValue(PCMP.getNode(), 1));
10210    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10211  }
10212
10213  case Intrinsic::x86_sse42_pcmpistri128:
10214  case Intrinsic::x86_sse42_pcmpestri128: {
10215    unsigned Opcode;
10216    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10217      Opcode = X86ISD::PCMPISTRI;
10218    else
10219      Opcode = X86ISD::PCMPESTRI;
10220
10221    SmallVector<SDValue, 5> NewOps;
10222    NewOps.append(Op->op_begin()+1, Op->op_end());
10223    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10224    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10225  }
10226  case Intrinsic::x86_fma_vfmadd_ps:
10227  case Intrinsic::x86_fma_vfmadd_pd:
10228  case Intrinsic::x86_fma_vfmsub_ps:
10229  case Intrinsic::x86_fma_vfmsub_pd:
10230  case Intrinsic::x86_fma_vfnmadd_ps:
10231  case Intrinsic::x86_fma_vfnmadd_pd:
10232  case Intrinsic::x86_fma_vfnmsub_ps:
10233  case Intrinsic::x86_fma_vfnmsub_pd:
10234  case Intrinsic::x86_fma_vfmaddsub_ps:
10235  case Intrinsic::x86_fma_vfmaddsub_pd:
10236  case Intrinsic::x86_fma_vfmsubadd_ps:
10237  case Intrinsic::x86_fma_vfmsubadd_pd:
10238  case Intrinsic::x86_fma_vfmadd_ps_256:
10239  case Intrinsic::x86_fma_vfmadd_pd_256:
10240  case Intrinsic::x86_fma_vfmsub_ps_256:
10241  case Intrinsic::x86_fma_vfmsub_pd_256:
10242  case Intrinsic::x86_fma_vfnmadd_ps_256:
10243  case Intrinsic::x86_fma_vfnmadd_pd_256:
10244  case Intrinsic::x86_fma_vfnmsub_ps_256:
10245  case Intrinsic::x86_fma_vfnmsub_pd_256:
10246  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10247  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10248  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10249  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10250    unsigned Opc;
10251    switch (IntNo) {
10252    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10253    case Intrinsic::x86_fma_vfmadd_ps:
10254    case Intrinsic::x86_fma_vfmadd_pd:
10255    case Intrinsic::x86_fma_vfmadd_ps_256:
10256    case Intrinsic::x86_fma_vfmadd_pd_256:
10257      Opc = X86ISD::FMADD;
10258      break;
10259    case Intrinsic::x86_fma_vfmsub_ps:
10260    case Intrinsic::x86_fma_vfmsub_pd:
10261    case Intrinsic::x86_fma_vfmsub_ps_256:
10262    case Intrinsic::x86_fma_vfmsub_pd_256:
10263      Opc = X86ISD::FMSUB;
10264      break;
10265    case Intrinsic::x86_fma_vfnmadd_ps:
10266    case Intrinsic::x86_fma_vfnmadd_pd:
10267    case Intrinsic::x86_fma_vfnmadd_ps_256:
10268    case Intrinsic::x86_fma_vfnmadd_pd_256:
10269      Opc = X86ISD::FNMADD;
10270      break;
10271    case Intrinsic::x86_fma_vfnmsub_ps:
10272    case Intrinsic::x86_fma_vfnmsub_pd:
10273    case Intrinsic::x86_fma_vfnmsub_ps_256:
10274    case Intrinsic::x86_fma_vfnmsub_pd_256:
10275      Opc = X86ISD::FNMSUB;
10276      break;
10277    case Intrinsic::x86_fma_vfmaddsub_ps:
10278    case Intrinsic::x86_fma_vfmaddsub_pd:
10279    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10280    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10281      Opc = X86ISD::FMADDSUB;
10282      break;
10283    case Intrinsic::x86_fma_vfmsubadd_ps:
10284    case Intrinsic::x86_fma_vfmsubadd_pd:
10285    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10286    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10287      Opc = X86ISD::FMSUBADD;
10288      break;
10289    }
10290
10291    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10292                       Op.getOperand(2), Op.getOperand(3));
10293  }
10294  }
10295}
10296
10297static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) {
10298  DebugLoc dl = Op.getDebugLoc();
10299  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10300  switch (IntNo) {
10301  default: return SDValue();    // Don't custom lower most intrinsics.
10302
10303  // RDRAND intrinsics.
10304  case Intrinsic::x86_rdrand_16:
10305  case Intrinsic::x86_rdrand_32:
10306  case Intrinsic::x86_rdrand_64: {
10307    // Emit the node with the right value type.
10308    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10309    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10310
10311    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10312    // return the value from Rand, which is always 0, casted to i32.
10313    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10314                      DAG.getConstant(1, Op->getValueType(1)),
10315                      DAG.getConstant(X86::COND_B, MVT::i32),
10316                      SDValue(Result.getNode(), 1) };
10317    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10318                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10319                                  Ops, 4);
10320
10321    // Return { result, isValid, chain }.
10322    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10323                       SDValue(Result.getNode(), 2));
10324  }
10325  }
10326}
10327
10328SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10329                                           SelectionDAG &DAG) const {
10330  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10331  MFI->setReturnAddressIsTaken(true);
10332
10333  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10334  DebugLoc dl = Op.getDebugLoc();
10335
10336  if (Depth > 0) {
10337    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10338    SDValue Offset =
10339      DAG.getConstant(TD->getPointerSize(0),
10340                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
10341    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10342                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
10343                                   FrameAddr, Offset),
10344                       MachinePointerInfo(), false, false, false, 0);
10345  }
10346
10347  // Just load the return address.
10348  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10349  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10350                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10351}
10352
10353SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10354  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10355  MFI->setFrameAddressIsTaken(true);
10356
10357  EVT VT = Op.getValueType();
10358  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10359  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10360  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10361  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10362  while (Depth--)
10363    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10364                            MachinePointerInfo(),
10365                            false, false, false, 0);
10366  return FrameAddr;
10367}
10368
10369SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10370                                                     SelectionDAG &DAG) const {
10371  return DAG.getIntPtrConstant(2*TD->getPointerSize(0));
10372}
10373
10374SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10375  SDValue Chain     = Op.getOperand(0);
10376  SDValue Offset    = Op.getOperand(1);
10377  SDValue Handler   = Op.getOperand(2);
10378  DebugLoc dl       = Op.getDebugLoc();
10379
10380  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10381                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10382                                     getPointerTy());
10383  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10384
10385  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10386                                  DAG.getIntPtrConstant(TD->getPointerSize(0)));
10387  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10388  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10389                       false, false, 0);
10390  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10391
10392  return DAG.getNode(X86ISD::EH_RETURN, dl,
10393                     MVT::Other,
10394                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10395}
10396
10397SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
10398                                               SelectionDAG &DAG) const {
10399  DebugLoc DL = Op.getDebugLoc();
10400  return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
10401                     DAG.getVTList(MVT::i32, MVT::Other),
10402                     Op.getOperand(0), Op.getOperand(1));
10403}
10404
10405SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
10406                                                SelectionDAG &DAG) const {
10407  DebugLoc DL = Op.getDebugLoc();
10408  return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
10409                     Op.getOperand(0), Op.getOperand(1));
10410}
10411
10412static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
10413  return Op.getOperand(0);
10414}
10415
10416SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10417                                                SelectionDAG &DAG) const {
10418  SDValue Root = Op.getOperand(0);
10419  SDValue Trmp = Op.getOperand(1); // trampoline
10420  SDValue FPtr = Op.getOperand(2); // nested function
10421  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10422  DebugLoc dl  = Op.getDebugLoc();
10423
10424  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10425  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
10426
10427  if (Subtarget->is64Bit()) {
10428    SDValue OutChains[6];
10429
10430    // Large code-model.
10431    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10432    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10433
10434    const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
10435    const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
10436
10437    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10438
10439    // Load the pointer to the nested function into R11.
10440    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10441    SDValue Addr = Trmp;
10442    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10443                                Addr, MachinePointerInfo(TrmpAddr),
10444                                false, false, 0);
10445
10446    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10447                       DAG.getConstant(2, MVT::i64));
10448    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10449                                MachinePointerInfo(TrmpAddr, 2),
10450                                false, false, 2);
10451
10452    // Load the 'nest' parameter value into R10.
10453    // R10 is specified in X86CallingConv.td
10454    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10455    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10456                       DAG.getConstant(10, MVT::i64));
10457    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10458                                Addr, MachinePointerInfo(TrmpAddr, 10),
10459                                false, false, 0);
10460
10461    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10462                       DAG.getConstant(12, MVT::i64));
10463    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10464                                MachinePointerInfo(TrmpAddr, 12),
10465                                false, false, 2);
10466
10467    // Jump to the nested function.
10468    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10469    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10470                       DAG.getConstant(20, MVT::i64));
10471    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10472                                Addr, MachinePointerInfo(TrmpAddr, 20),
10473                                false, false, 0);
10474
10475    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10476    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10477                       DAG.getConstant(22, MVT::i64));
10478    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10479                                MachinePointerInfo(TrmpAddr, 22),
10480                                false, false, 0);
10481
10482    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10483  } else {
10484    const Function *Func =
10485      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10486    CallingConv::ID CC = Func->getCallingConv();
10487    unsigned NestReg;
10488
10489    switch (CC) {
10490    default:
10491      llvm_unreachable("Unsupported calling convention");
10492    case CallingConv::C:
10493    case CallingConv::X86_StdCall: {
10494      // Pass 'nest' parameter in ECX.
10495      // Must be kept in sync with X86CallingConv.td
10496      NestReg = X86::ECX;
10497
10498      // Check that ECX wasn't needed by an 'inreg' parameter.
10499      FunctionType *FTy = Func->getFunctionType();
10500      const AttrListPtr &Attrs = Func->getAttributes();
10501
10502      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10503        unsigned InRegCount = 0;
10504        unsigned Idx = 1;
10505
10506        for (FunctionType::param_iterator I = FTy->param_begin(),
10507             E = FTy->param_end(); I != E; ++I, ++Idx)
10508          if (Attrs.getParamAttributes(Idx).hasAttribute(Attributes::InReg))
10509            // FIXME: should only count parameters that are lowered to integers.
10510            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10511
10512        if (InRegCount > 2) {
10513          report_fatal_error("Nest register in use - reduce number of inreg"
10514                             " parameters!");
10515        }
10516      }
10517      break;
10518    }
10519    case CallingConv::X86_FastCall:
10520    case CallingConv::X86_ThisCall:
10521    case CallingConv::Fast:
10522      // Pass 'nest' parameter in EAX.
10523      // Must be kept in sync with X86CallingConv.td
10524      NestReg = X86::EAX;
10525      break;
10526    }
10527
10528    SDValue OutChains[4];
10529    SDValue Addr, Disp;
10530
10531    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10532                       DAG.getConstant(10, MVT::i32));
10533    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10534
10535    // This is storing the opcode for MOV32ri.
10536    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10537    const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
10538    OutChains[0] = DAG.getStore(Root, dl,
10539                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10540                                Trmp, MachinePointerInfo(TrmpAddr),
10541                                false, false, 0);
10542
10543    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10544                       DAG.getConstant(1, MVT::i32));
10545    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10546                                MachinePointerInfo(TrmpAddr, 1),
10547                                false, false, 1);
10548
10549    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10550    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10551                       DAG.getConstant(5, MVT::i32));
10552    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10553                                MachinePointerInfo(TrmpAddr, 5),
10554                                false, false, 1);
10555
10556    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10557                       DAG.getConstant(6, MVT::i32));
10558    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10559                                MachinePointerInfo(TrmpAddr, 6),
10560                                false, false, 1);
10561
10562    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10563  }
10564}
10565
10566SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10567                                            SelectionDAG &DAG) const {
10568  /*
10569   The rounding mode is in bits 11:10 of FPSR, and has the following
10570   settings:
10571     00 Round to nearest
10572     01 Round to -inf
10573     10 Round to +inf
10574     11 Round to 0
10575
10576  FLT_ROUNDS, on the other hand, expects the following:
10577    -1 Undefined
10578     0 Round to 0
10579     1 Round to nearest
10580     2 Round to +inf
10581     3 Round to -inf
10582
10583  To perform the conversion, we do:
10584    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10585  */
10586
10587  MachineFunction &MF = DAG.getMachineFunction();
10588  const TargetMachine &TM = MF.getTarget();
10589  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10590  unsigned StackAlignment = TFI.getStackAlignment();
10591  EVT VT = Op.getValueType();
10592  DebugLoc DL = Op.getDebugLoc();
10593
10594  // Save FP Control Word to stack slot
10595  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10596  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10597
10598
10599  MachineMemOperand *MMO =
10600   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10601                           MachineMemOperand::MOStore, 2, 2);
10602
10603  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10604  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10605                                          DAG.getVTList(MVT::Other),
10606                                          Ops, 2, MVT::i16, MMO);
10607
10608  // Load FP Control Word from stack slot
10609  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10610                            MachinePointerInfo(), false, false, false, 0);
10611
10612  // Transform as necessary
10613  SDValue CWD1 =
10614    DAG.getNode(ISD::SRL, DL, MVT::i16,
10615                DAG.getNode(ISD::AND, DL, MVT::i16,
10616                            CWD, DAG.getConstant(0x800, MVT::i16)),
10617                DAG.getConstant(11, MVT::i8));
10618  SDValue CWD2 =
10619    DAG.getNode(ISD::SRL, DL, MVT::i16,
10620                DAG.getNode(ISD::AND, DL, MVT::i16,
10621                            CWD, DAG.getConstant(0x400, MVT::i16)),
10622                DAG.getConstant(9, MVT::i8));
10623
10624  SDValue RetVal =
10625    DAG.getNode(ISD::AND, DL, MVT::i16,
10626                DAG.getNode(ISD::ADD, DL, MVT::i16,
10627                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10628                            DAG.getConstant(1, MVT::i16)),
10629                DAG.getConstant(3, MVT::i16));
10630
10631
10632  return DAG.getNode((VT.getSizeInBits() < 16 ?
10633                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10634}
10635
10636static SDValue LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
10637  EVT VT = Op.getValueType();
10638  EVT OpVT = VT;
10639  unsigned NumBits = VT.getSizeInBits();
10640  DebugLoc dl = Op.getDebugLoc();
10641
10642  Op = Op.getOperand(0);
10643  if (VT == MVT::i8) {
10644    // Zero extend to i32 since there is not an i8 bsr.
10645    OpVT = MVT::i32;
10646    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10647  }
10648
10649  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10650  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10651  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10652
10653  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10654  SDValue Ops[] = {
10655    Op,
10656    DAG.getConstant(NumBits+NumBits-1, OpVT),
10657    DAG.getConstant(X86::COND_E, MVT::i8),
10658    Op.getValue(1)
10659  };
10660  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10661
10662  // Finally xor with NumBits-1.
10663  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10664
10665  if (VT == MVT::i8)
10666    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10667  return Op;
10668}
10669
10670static SDValue LowerCTLZ_ZERO_UNDEF(SDValue Op, SelectionDAG &DAG) {
10671  EVT VT = Op.getValueType();
10672  EVT OpVT = VT;
10673  unsigned NumBits = VT.getSizeInBits();
10674  DebugLoc dl = Op.getDebugLoc();
10675
10676  Op = Op.getOperand(0);
10677  if (VT == MVT::i8) {
10678    // Zero extend to i32 since there is not an i8 bsr.
10679    OpVT = MVT::i32;
10680    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10681  }
10682
10683  // Issue a bsr (scan bits in reverse).
10684  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10685  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10686
10687  // And xor with NumBits-1.
10688  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10689
10690  if (VT == MVT::i8)
10691    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10692  return Op;
10693}
10694
10695static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
10696  EVT VT = Op.getValueType();
10697  unsigned NumBits = VT.getSizeInBits();
10698  DebugLoc dl = Op.getDebugLoc();
10699  Op = Op.getOperand(0);
10700
10701  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10702  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10703  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10704
10705  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10706  SDValue Ops[] = {
10707    Op,
10708    DAG.getConstant(NumBits, VT),
10709    DAG.getConstant(X86::COND_E, MVT::i8),
10710    Op.getValue(1)
10711  };
10712  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10713}
10714
10715// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10716// ones, and then concatenate the result back.
10717static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10718  EVT VT = Op.getValueType();
10719
10720  assert(VT.is256BitVector() && VT.isInteger() &&
10721         "Unsupported value type for operation");
10722
10723  unsigned NumElems = VT.getVectorNumElements();
10724  DebugLoc dl = Op.getDebugLoc();
10725
10726  // Extract the LHS vectors
10727  SDValue LHS = Op.getOperand(0);
10728  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10729  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10730
10731  // Extract the RHS vectors
10732  SDValue RHS = Op.getOperand(1);
10733  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10734  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10735
10736  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10737  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10738
10739  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10740                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10741                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10742}
10743
10744static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
10745  assert(Op.getValueType().is256BitVector() &&
10746         Op.getValueType().isInteger() &&
10747         "Only handle AVX 256-bit vector integer operation");
10748  return Lower256IntArith(Op, DAG);
10749}
10750
10751static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
10752  assert(Op.getValueType().is256BitVector() &&
10753         Op.getValueType().isInteger() &&
10754         "Only handle AVX 256-bit vector integer operation");
10755  return Lower256IntArith(Op, DAG);
10756}
10757
10758static SDValue LowerMUL(SDValue Op, const X86Subtarget *Subtarget,
10759                        SelectionDAG &DAG) {
10760  EVT VT = Op.getValueType();
10761
10762  // Decompose 256-bit ops into smaller 128-bit ops.
10763  if (VT.is256BitVector() && !Subtarget->hasAVX2())
10764    return Lower256IntArith(Op, DAG);
10765
10766  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10767         "Only know how to lower V2I64/V4I64 multiply");
10768
10769  DebugLoc dl = Op.getDebugLoc();
10770
10771  //  Ahi = psrlqi(a, 32);
10772  //  Bhi = psrlqi(b, 32);
10773  //
10774  //  AloBlo = pmuludq(a, b);
10775  //  AloBhi = pmuludq(a, Bhi);
10776  //  AhiBlo = pmuludq(Ahi, b);
10777
10778  //  AloBhi = psllqi(AloBhi, 32);
10779  //  AhiBlo = psllqi(AhiBlo, 32);
10780  //  return AloBlo + AloBhi + AhiBlo;
10781
10782  SDValue A = Op.getOperand(0);
10783  SDValue B = Op.getOperand(1);
10784
10785  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10786
10787  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10788  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10789
10790  // Bit cast to 32-bit vectors for MULUDQ
10791  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10792  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10793  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10794  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10795  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10796
10797  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10798  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10799  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10800
10801  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10802  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10803
10804  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10805  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10806}
10807
10808SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10809
10810  EVT VT = Op.getValueType();
10811  DebugLoc dl = Op.getDebugLoc();
10812  SDValue R = Op.getOperand(0);
10813  SDValue Amt = Op.getOperand(1);
10814  LLVMContext *Context = DAG.getContext();
10815
10816  if (!Subtarget->hasSSE2())
10817    return SDValue();
10818
10819  // Optimize shl/srl/sra with constant shift amount.
10820  if (isSplatVector(Amt.getNode())) {
10821    SDValue SclrAmt = Amt->getOperand(0);
10822    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10823      uint64_t ShiftAmt = C->getZExtValue();
10824
10825      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10826          (Subtarget->hasAVX2() &&
10827           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10828        if (Op.getOpcode() == ISD::SHL)
10829          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10830                             DAG.getConstant(ShiftAmt, MVT::i32));
10831        if (Op.getOpcode() == ISD::SRL)
10832          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10833                             DAG.getConstant(ShiftAmt, MVT::i32));
10834        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10835          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10836                             DAG.getConstant(ShiftAmt, MVT::i32));
10837      }
10838
10839      if (VT == MVT::v16i8) {
10840        if (Op.getOpcode() == ISD::SHL) {
10841          // Make a large shift.
10842          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10843                                    DAG.getConstant(ShiftAmt, MVT::i32));
10844          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10845          // Zero out the rightmost bits.
10846          SmallVector<SDValue, 16> V(16,
10847                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10848                                                     MVT::i8));
10849          return DAG.getNode(ISD::AND, dl, VT, SHL,
10850                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10851        }
10852        if (Op.getOpcode() == ISD::SRL) {
10853          // Make a large shift.
10854          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10855                                    DAG.getConstant(ShiftAmt, MVT::i32));
10856          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10857          // Zero out the leftmost bits.
10858          SmallVector<SDValue, 16> V(16,
10859                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10860                                                     MVT::i8));
10861          return DAG.getNode(ISD::AND, dl, VT, SRL,
10862                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10863        }
10864        if (Op.getOpcode() == ISD::SRA) {
10865          if (ShiftAmt == 7) {
10866            // R s>> 7  ===  R s< 0
10867            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10868            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10869          }
10870
10871          // R s>> a === ((R u>> a) ^ m) - m
10872          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10873          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10874                                                         MVT::i8));
10875          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10876          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10877          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10878          return Res;
10879        }
10880        llvm_unreachable("Unknown shift opcode.");
10881      }
10882
10883      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10884        if (Op.getOpcode() == ISD::SHL) {
10885          // Make a large shift.
10886          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10887                                    DAG.getConstant(ShiftAmt, MVT::i32));
10888          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10889          // Zero out the rightmost bits.
10890          SmallVector<SDValue, 32> V(32,
10891                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10892                                                     MVT::i8));
10893          return DAG.getNode(ISD::AND, dl, VT, SHL,
10894                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10895        }
10896        if (Op.getOpcode() == ISD::SRL) {
10897          // Make a large shift.
10898          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10899                                    DAG.getConstant(ShiftAmt, MVT::i32));
10900          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10901          // Zero out the leftmost bits.
10902          SmallVector<SDValue, 32> V(32,
10903                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10904                                                     MVT::i8));
10905          return DAG.getNode(ISD::AND, dl, VT, SRL,
10906                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10907        }
10908        if (Op.getOpcode() == ISD::SRA) {
10909          if (ShiftAmt == 7) {
10910            // R s>> 7  ===  R s< 0
10911            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10912            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10913          }
10914
10915          // R s>> a === ((R u>> a) ^ m) - m
10916          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10917          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10918                                                         MVT::i8));
10919          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10920          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10921          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10922          return Res;
10923        }
10924        llvm_unreachable("Unknown shift opcode.");
10925      }
10926    }
10927  }
10928
10929  // Lower SHL with variable shift amount.
10930  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10931    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10932                     DAG.getConstant(23, MVT::i32));
10933
10934    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10935    Constant *C = ConstantDataVector::get(*Context, CV);
10936    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10937    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10938                                 MachinePointerInfo::getConstantPool(),
10939                                 false, false, false, 16);
10940
10941    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10942    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10943    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10944    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10945  }
10946  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10947    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10948
10949    // a = a << 5;
10950    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10951                     DAG.getConstant(5, MVT::i32));
10952    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10953
10954    // Turn 'a' into a mask suitable for VSELECT
10955    SDValue VSelM = DAG.getConstant(0x80, VT);
10956    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10957    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10958
10959    SDValue CM1 = DAG.getConstant(0x0f, VT);
10960    SDValue CM2 = DAG.getConstant(0x3f, VT);
10961
10962    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10963    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10964    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10965                            DAG.getConstant(4, MVT::i32), DAG);
10966    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10967    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10968
10969    // a += a
10970    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10971    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10972    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10973
10974    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10975    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10976    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10977                            DAG.getConstant(2, MVT::i32), DAG);
10978    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10979    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10980
10981    // a += a
10982    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10983    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10984    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10985
10986    // return VSELECT(r, r+r, a);
10987    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10988                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10989    return R;
10990  }
10991
10992  // Decompose 256-bit shifts into smaller 128-bit shifts.
10993  if (VT.is256BitVector()) {
10994    unsigned NumElems = VT.getVectorNumElements();
10995    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10996    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10997
10998    // Extract the two vectors
10999    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
11000    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
11001
11002    // Recreate the shift amount vectors
11003    SDValue Amt1, Amt2;
11004    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
11005      // Constant shift amount
11006      SmallVector<SDValue, 4> Amt1Csts;
11007      SmallVector<SDValue, 4> Amt2Csts;
11008      for (unsigned i = 0; i != NumElems/2; ++i)
11009        Amt1Csts.push_back(Amt->getOperand(i));
11010      for (unsigned i = NumElems/2; i != NumElems; ++i)
11011        Amt2Csts.push_back(Amt->getOperand(i));
11012
11013      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11014                                 &Amt1Csts[0], NumElems/2);
11015      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
11016                                 &Amt2Csts[0], NumElems/2);
11017    } else {
11018      // Variable shift amount
11019      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
11020      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
11021    }
11022
11023    // Issue new vector shifts for the smaller types
11024    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
11025    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
11026
11027    // Concatenate the result back
11028    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
11029  }
11030
11031  return SDValue();
11032}
11033
11034static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
11035  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
11036  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
11037  // looks for this combo and may remove the "setcc" instruction if the "setcc"
11038  // has only one use.
11039  SDNode *N = Op.getNode();
11040  SDValue LHS = N->getOperand(0);
11041  SDValue RHS = N->getOperand(1);
11042  unsigned BaseOp = 0;
11043  unsigned Cond = 0;
11044  DebugLoc DL = Op.getDebugLoc();
11045  switch (Op.getOpcode()) {
11046  default: llvm_unreachable("Unknown ovf instruction!");
11047  case ISD::SADDO:
11048    // A subtract of one will be selected as a INC. Note that INC doesn't
11049    // set CF, so we can't do this for UADDO.
11050    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11051      if (C->isOne()) {
11052        BaseOp = X86ISD::INC;
11053        Cond = X86::COND_O;
11054        break;
11055      }
11056    BaseOp = X86ISD::ADD;
11057    Cond = X86::COND_O;
11058    break;
11059  case ISD::UADDO:
11060    BaseOp = X86ISD::ADD;
11061    Cond = X86::COND_B;
11062    break;
11063  case ISD::SSUBO:
11064    // A subtract of one will be selected as a DEC. Note that DEC doesn't
11065    // set CF, so we can't do this for USUBO.
11066    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
11067      if (C->isOne()) {
11068        BaseOp = X86ISD::DEC;
11069        Cond = X86::COND_O;
11070        break;
11071      }
11072    BaseOp = X86ISD::SUB;
11073    Cond = X86::COND_O;
11074    break;
11075  case ISD::USUBO:
11076    BaseOp = X86ISD::SUB;
11077    Cond = X86::COND_B;
11078    break;
11079  case ISD::SMULO:
11080    BaseOp = X86ISD::SMUL;
11081    Cond = X86::COND_O;
11082    break;
11083  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
11084    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
11085                                 MVT::i32);
11086    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
11087
11088    SDValue SetCC =
11089      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11090                  DAG.getConstant(X86::COND_O, MVT::i32),
11091                  SDValue(Sum.getNode(), 2));
11092
11093    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11094  }
11095  }
11096
11097  // Also sets EFLAGS.
11098  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
11099  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
11100
11101  SDValue SetCC =
11102    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
11103                DAG.getConstant(Cond, MVT::i32),
11104                SDValue(Sum.getNode(), 1));
11105
11106  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
11107}
11108
11109SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
11110                                                  SelectionDAG &DAG) const {
11111  DebugLoc dl = Op.getDebugLoc();
11112  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
11113  EVT VT = Op.getValueType();
11114
11115  if (!Subtarget->hasSSE2() || !VT.isVector())
11116    return SDValue();
11117
11118  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
11119                      ExtraVT.getScalarType().getSizeInBits();
11120  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
11121
11122  switch (VT.getSimpleVT().SimpleTy) {
11123    default: return SDValue();
11124    case MVT::v8i32:
11125    case MVT::v16i16:
11126      if (!Subtarget->hasAVX())
11127        return SDValue();
11128      if (!Subtarget->hasAVX2()) {
11129        // needs to be split
11130        unsigned NumElems = VT.getVectorNumElements();
11131
11132        // Extract the LHS vectors
11133        SDValue LHS = Op.getOperand(0);
11134        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
11135        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
11136
11137        MVT EltVT = VT.getVectorElementType().getSimpleVT();
11138        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
11139
11140        EVT ExtraEltVT = ExtraVT.getVectorElementType();
11141        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
11142        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
11143                                   ExtraNumElems/2);
11144        SDValue Extra = DAG.getValueType(ExtraVT);
11145
11146        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
11147        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
11148
11149        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);
11150      }
11151      // fall through
11152    case MVT::v4i32:
11153    case MVT::v8i16: {
11154      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
11155                                         Op.getOperand(0), ShAmt, DAG);
11156      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
11157    }
11158  }
11159}
11160
11161
11162static SDValue LowerMEMBARRIER(SDValue Op, const X86Subtarget *Subtarget,
11163                              SelectionDAG &DAG) {
11164  DebugLoc dl = Op.getDebugLoc();
11165
11166  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
11167  // There isn't any reason to disable it if the target processor supports it.
11168  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
11169    SDValue Chain = Op.getOperand(0);
11170    SDValue Zero = DAG.getConstant(0, MVT::i32);
11171    SDValue Ops[] = {
11172      DAG.getRegister(X86::ESP, MVT::i32), // Base
11173      DAG.getTargetConstant(1, MVT::i8),   // Scale
11174      DAG.getRegister(0, MVT::i32),        // Index
11175      DAG.getTargetConstant(0, MVT::i32),  // Disp
11176      DAG.getRegister(0, MVT::i32),        // Segment.
11177      Zero,
11178      Chain
11179    };
11180    SDNode *Res =
11181      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11182                          array_lengthof(Ops));
11183    return SDValue(Res, 0);
11184  }
11185
11186  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
11187  if (!isDev)
11188    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11189
11190  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
11191  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
11192  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
11193  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
11194
11195  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
11196  if (!Op1 && !Op2 && !Op3 && Op4)
11197    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
11198
11199  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
11200  if (Op1 && !Op2 && !Op3 && !Op4)
11201    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
11202
11203  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
11204  //           (MFENCE)>;
11205  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11206}
11207
11208static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget *Subtarget,
11209                                 SelectionDAG &DAG) {
11210  DebugLoc dl = Op.getDebugLoc();
11211  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
11212    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
11213  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
11214    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
11215
11216  // The only fence that needs an instruction is a sequentially-consistent
11217  // cross-thread fence.
11218  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11219    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11220    // no-sse2). There isn't any reason to disable it if the target processor
11221    // supports it.
11222    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11223      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11224
11225    SDValue Chain = Op.getOperand(0);
11226    SDValue Zero = DAG.getConstant(0, MVT::i32);
11227    SDValue Ops[] = {
11228      DAG.getRegister(X86::ESP, MVT::i32), // Base
11229      DAG.getTargetConstant(1, MVT::i8),   // Scale
11230      DAG.getRegister(0, MVT::i32),        // Index
11231      DAG.getTargetConstant(0, MVT::i32),  // Disp
11232      DAG.getRegister(0, MVT::i32),        // Segment.
11233      Zero,
11234      Chain
11235    };
11236    SDNode *Res =
11237      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11238                         array_lengthof(Ops));
11239    return SDValue(Res, 0);
11240  }
11241
11242  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11243  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11244}
11245
11246
11247static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget *Subtarget,
11248                             SelectionDAG &DAG) {
11249  EVT T = Op.getValueType();
11250  DebugLoc DL = Op.getDebugLoc();
11251  unsigned Reg = 0;
11252  unsigned size = 0;
11253  switch(T.getSimpleVT().SimpleTy) {
11254  default: llvm_unreachable("Invalid value type!");
11255  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11256  case MVT::i16: Reg = X86::AX;  size = 2; break;
11257  case MVT::i32: Reg = X86::EAX; size = 4; break;
11258  case MVT::i64:
11259    assert(Subtarget->is64Bit() && "Node not type legal!");
11260    Reg = X86::RAX; size = 8;
11261    break;
11262  }
11263  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11264                                    Op.getOperand(2), SDValue());
11265  SDValue Ops[] = { cpIn.getValue(0),
11266                    Op.getOperand(1),
11267                    Op.getOperand(3),
11268                    DAG.getTargetConstant(size, MVT::i8),
11269                    cpIn.getValue(1) };
11270  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11271  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11272  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11273                                           Ops, 5, T, MMO);
11274  SDValue cpOut =
11275    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11276  return cpOut;
11277}
11278
11279static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget *Subtarget,
11280                                     SelectionDAG &DAG) {
11281  assert(Subtarget->is64Bit() && "Result not type legalized?");
11282  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11283  SDValue TheChain = Op.getOperand(0);
11284  DebugLoc dl = Op.getDebugLoc();
11285  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11286  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11287  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11288                                   rax.getValue(2));
11289  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11290                            DAG.getConstant(32, MVT::i8));
11291  SDValue Ops[] = {
11292    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11293    rdx.getValue(1)
11294  };
11295  return DAG.getMergeValues(Ops, 2, dl);
11296}
11297
11298SDValue X86TargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
11299  EVT SrcVT = Op.getOperand(0).getValueType();
11300  EVT DstVT = Op.getValueType();
11301  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11302         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11303  assert((DstVT == MVT::i64 ||
11304          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11305         "Unexpected custom BITCAST");
11306  // i64 <=> MMX conversions are Legal.
11307  if (SrcVT==MVT::i64 && DstVT.isVector())
11308    return Op;
11309  if (DstVT==MVT::i64 && SrcVT.isVector())
11310    return Op;
11311  // MMX <=> MMX conversions are Legal.
11312  if (SrcVT.isVector() && DstVT.isVector())
11313    return Op;
11314  // All other conversions need to be expanded.
11315  return SDValue();
11316}
11317
11318static SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
11319  SDNode *Node = Op.getNode();
11320  DebugLoc dl = Node->getDebugLoc();
11321  EVT T = Node->getValueType(0);
11322  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11323                              DAG.getConstant(0, T), Node->getOperand(2));
11324  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11325                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11326                       Node->getOperand(0),
11327                       Node->getOperand(1), negOp,
11328                       cast<AtomicSDNode>(Node)->getSrcValue(),
11329                       cast<AtomicSDNode>(Node)->getAlignment(),
11330                       cast<AtomicSDNode>(Node)->getOrdering(),
11331                       cast<AtomicSDNode>(Node)->getSynchScope());
11332}
11333
11334static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11335  SDNode *Node = Op.getNode();
11336  DebugLoc dl = Node->getDebugLoc();
11337  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11338
11339  // Convert seq_cst store -> xchg
11340  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11341  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11342  //        (The only way to get a 16-byte store is cmpxchg16b)
11343  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11344  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11345      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11346    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11347                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11348                                 Node->getOperand(0),
11349                                 Node->getOperand(1), Node->getOperand(2),
11350                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11351                                 cast<AtomicSDNode>(Node)->getOrdering(),
11352                                 cast<AtomicSDNode>(Node)->getSynchScope());
11353    return Swap.getValue(1);
11354  }
11355  // Other atomic stores have a simple pattern.
11356  return Op;
11357}
11358
11359static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11360  EVT VT = Op.getNode()->getValueType(0);
11361
11362  // Let legalize expand this if it isn't a legal type yet.
11363  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11364    return SDValue();
11365
11366  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11367
11368  unsigned Opc;
11369  bool ExtraOp = false;
11370  switch (Op.getOpcode()) {
11371  default: llvm_unreachable("Invalid code");
11372  case ISD::ADDC: Opc = X86ISD::ADD; break;
11373  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11374  case ISD::SUBC: Opc = X86ISD::SUB; break;
11375  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11376  }
11377
11378  if (!ExtraOp)
11379    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11380                       Op.getOperand(1));
11381  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11382                     Op.getOperand(1), Op.getOperand(2));
11383}
11384
11385/// LowerOperation - Provide custom lowering hooks for some operations.
11386///
11387SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11388  switch (Op.getOpcode()) {
11389  default: llvm_unreachable("Should not custom lower this!");
11390  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
11391  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op, Subtarget, DAG);
11392  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, Subtarget, DAG);
11393  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op, Subtarget, DAG);
11394  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
11395  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
11396  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11397  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
11398  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11399  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11400  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11401  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
11402  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
11403  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11404  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11405  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11406  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11407  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
11408  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11409  case ISD::SHL_PARTS:
11410  case ISD::SRA_PARTS:
11411  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
11412  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
11413  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
11414  case ISD::TRUNCATE:           return lowerTRUNCATE(Op, DAG);
11415  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
11416  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
11417  case ISD::FP_EXTEND:          return lowerFP_EXTEND(Op, DAG);
11418  case ISD::FABS:               return LowerFABS(Op, DAG);
11419  case ISD::FNEG:               return LowerFNEG(Op, DAG);
11420  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
11421  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
11422  case ISD::SETCC:              return LowerSETCC(Op, DAG);
11423  case ISD::SELECT:             return LowerSELECT(Op, DAG);
11424  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
11425  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11426  case ISD::VASTART:            return LowerVASTART(Op, DAG);
11427  case ISD::VAARG:              return LowerVAARG(Op, DAG);
11428  case ISD::VACOPY:             return LowerVACOPY(Op, Subtarget, DAG);
11429  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11430  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
11431  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11432  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11433  case ISD::FRAME_TO_ARGS_OFFSET:
11434                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
11435  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11436  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
11437  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11438  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11439  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11440  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11441  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11442  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
11443  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
11444  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
11445  case ISD::MUL:                return LowerMUL(Op, Subtarget, DAG);
11446  case ISD::SRA:
11447  case ISD::SRL:
11448  case ISD::SHL:                return LowerShift(Op, DAG);
11449  case ISD::SADDO:
11450  case ISD::UADDO:
11451  case ISD::SSUBO:
11452  case ISD::USUBO:
11453  case ISD::SMULO:
11454  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11455  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
11456  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11457  case ISD::ADDC:
11458  case ISD::ADDE:
11459  case ISD::SUBC:
11460  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11461  case ISD::ADD:                return LowerADD(Op, DAG);
11462  case ISD::SUB:                return LowerSUB(Op, DAG);
11463  }
11464}
11465
11466static void ReplaceATOMIC_LOAD(SDNode *Node,
11467                                  SmallVectorImpl<SDValue> &Results,
11468                                  SelectionDAG &DAG) {
11469  DebugLoc dl = Node->getDebugLoc();
11470  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11471
11472  // Convert wide load -> cmpxchg8b/cmpxchg16b
11473  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11474  //        (The only way to get a 16-byte load is cmpxchg16b)
11475  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11476  SDValue Zero = DAG.getConstant(0, VT);
11477  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11478                               Node->getOperand(0),
11479                               Node->getOperand(1), Zero, Zero,
11480                               cast<AtomicSDNode>(Node)->getMemOperand(),
11481                               cast<AtomicSDNode>(Node)->getOrdering(),
11482                               cast<AtomicSDNode>(Node)->getSynchScope());
11483  Results.push_back(Swap.getValue(0));
11484  Results.push_back(Swap.getValue(1));
11485}
11486
11487static void
11488ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11489                        SelectionDAG &DAG, unsigned NewOp) {
11490  DebugLoc dl = Node->getDebugLoc();
11491  assert (Node->getValueType(0) == MVT::i64 &&
11492          "Only know how to expand i64 atomics");
11493
11494  SDValue Chain = Node->getOperand(0);
11495  SDValue In1 = Node->getOperand(1);
11496  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11497                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11498  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11499                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11500  SDValue Ops[] = { Chain, In1, In2L, In2H };
11501  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11502  SDValue Result =
11503    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11504                            cast<MemSDNode>(Node)->getMemOperand());
11505  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11506  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11507  Results.push_back(Result.getValue(2));
11508}
11509
11510/// ReplaceNodeResults - Replace a node with an illegal result type
11511/// with a new node built out of custom code.
11512void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11513                                           SmallVectorImpl<SDValue>&Results,
11514                                           SelectionDAG &DAG) const {
11515  DebugLoc dl = N->getDebugLoc();
11516  switch (N->getOpcode()) {
11517  default:
11518    llvm_unreachable("Do not know how to custom type legalize this operation!");
11519  case ISD::SIGN_EXTEND_INREG:
11520  case ISD::ADDC:
11521  case ISD::ADDE:
11522  case ISD::SUBC:
11523  case ISD::SUBE:
11524    // We don't want to expand or promote these.
11525    return;
11526  case ISD::FP_TO_SINT:
11527  case ISD::FP_TO_UINT: {
11528    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11529
11530    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11531      return;
11532
11533    std::pair<SDValue,SDValue> Vals =
11534        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11535    SDValue FIST = Vals.first, StackSlot = Vals.second;
11536    if (FIST.getNode() != 0) {
11537      EVT VT = N->getValueType(0);
11538      // Return a load from the stack slot.
11539      if (StackSlot.getNode() != 0)
11540        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11541                                      MachinePointerInfo(),
11542                                      false, false, false, 0));
11543      else
11544        Results.push_back(FIST);
11545    }
11546    return;
11547  }
11548  case ISD::FP_ROUND: {
11549    SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
11550    Results.push_back(V);
11551    return;
11552  }
11553  case ISD::READCYCLECOUNTER: {
11554    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11555    SDValue TheChain = N->getOperand(0);
11556    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11557    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11558                                     rd.getValue(1));
11559    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11560                                     eax.getValue(2));
11561    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11562    SDValue Ops[] = { eax, edx };
11563    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11564    Results.push_back(edx.getValue(1));
11565    return;
11566  }
11567  case ISD::ATOMIC_CMP_SWAP: {
11568    EVT T = N->getValueType(0);
11569    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11570    bool Regs64bit = T == MVT::i128;
11571    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11572    SDValue cpInL, cpInH;
11573    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11574                        DAG.getConstant(0, HalfT));
11575    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11576                        DAG.getConstant(1, HalfT));
11577    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11578                             Regs64bit ? X86::RAX : X86::EAX,
11579                             cpInL, SDValue());
11580    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11581                             Regs64bit ? X86::RDX : X86::EDX,
11582                             cpInH, cpInL.getValue(1));
11583    SDValue swapInL, swapInH;
11584    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11585                          DAG.getConstant(0, HalfT));
11586    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11587                          DAG.getConstant(1, HalfT));
11588    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11589                               Regs64bit ? X86::RBX : X86::EBX,
11590                               swapInL, cpInH.getValue(1));
11591    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11592                               Regs64bit ? X86::RCX : X86::ECX,
11593                               swapInH, swapInL.getValue(1));
11594    SDValue Ops[] = { swapInH.getValue(0),
11595                      N->getOperand(1),
11596                      swapInH.getValue(1) };
11597    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11598    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11599    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11600                                  X86ISD::LCMPXCHG8_DAG;
11601    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11602                                             Ops, 3, T, MMO);
11603    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11604                                        Regs64bit ? X86::RAX : X86::EAX,
11605                                        HalfT, Result.getValue(1));
11606    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11607                                        Regs64bit ? X86::RDX : X86::EDX,
11608                                        HalfT, cpOutL.getValue(2));
11609    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11610    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11611    Results.push_back(cpOutH.getValue(1));
11612    return;
11613  }
11614  case ISD::ATOMIC_LOAD_ADD:
11615  case ISD::ATOMIC_LOAD_AND:
11616  case ISD::ATOMIC_LOAD_NAND:
11617  case ISD::ATOMIC_LOAD_OR:
11618  case ISD::ATOMIC_LOAD_SUB:
11619  case ISD::ATOMIC_LOAD_XOR:
11620  case ISD::ATOMIC_LOAD_MAX:
11621  case ISD::ATOMIC_LOAD_MIN:
11622  case ISD::ATOMIC_LOAD_UMAX:
11623  case ISD::ATOMIC_LOAD_UMIN:
11624  case ISD::ATOMIC_SWAP: {
11625    unsigned Opc;
11626    switch (N->getOpcode()) {
11627    default: llvm_unreachable("Unexpected opcode");
11628    case ISD::ATOMIC_LOAD_ADD:
11629      Opc = X86ISD::ATOMADD64_DAG;
11630      break;
11631    case ISD::ATOMIC_LOAD_AND:
11632      Opc = X86ISD::ATOMAND64_DAG;
11633      break;
11634    case ISD::ATOMIC_LOAD_NAND:
11635      Opc = X86ISD::ATOMNAND64_DAG;
11636      break;
11637    case ISD::ATOMIC_LOAD_OR:
11638      Opc = X86ISD::ATOMOR64_DAG;
11639      break;
11640    case ISD::ATOMIC_LOAD_SUB:
11641      Opc = X86ISD::ATOMSUB64_DAG;
11642      break;
11643    case ISD::ATOMIC_LOAD_XOR:
11644      Opc = X86ISD::ATOMXOR64_DAG;
11645      break;
11646    case ISD::ATOMIC_LOAD_MAX:
11647      Opc = X86ISD::ATOMMAX64_DAG;
11648      break;
11649    case ISD::ATOMIC_LOAD_MIN:
11650      Opc = X86ISD::ATOMMIN64_DAG;
11651      break;
11652    case ISD::ATOMIC_LOAD_UMAX:
11653      Opc = X86ISD::ATOMUMAX64_DAG;
11654      break;
11655    case ISD::ATOMIC_LOAD_UMIN:
11656      Opc = X86ISD::ATOMUMIN64_DAG;
11657      break;
11658    case ISD::ATOMIC_SWAP:
11659      Opc = X86ISD::ATOMSWAP64_DAG;
11660      break;
11661    }
11662    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
11663    return;
11664  }
11665  case ISD::ATOMIC_LOAD:
11666    ReplaceATOMIC_LOAD(N, Results, DAG);
11667  }
11668}
11669
11670const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11671  switch (Opcode) {
11672  default: return NULL;
11673  case X86ISD::BSF:                return "X86ISD::BSF";
11674  case X86ISD::BSR:                return "X86ISD::BSR";
11675  case X86ISD::SHLD:               return "X86ISD::SHLD";
11676  case X86ISD::SHRD:               return "X86ISD::SHRD";
11677  case X86ISD::FAND:               return "X86ISD::FAND";
11678  case X86ISD::FOR:                return "X86ISD::FOR";
11679  case X86ISD::FXOR:               return "X86ISD::FXOR";
11680  case X86ISD::FSRL:               return "X86ISD::FSRL";
11681  case X86ISD::FILD:               return "X86ISD::FILD";
11682  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11683  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11684  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11685  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11686  case X86ISD::FLD:                return "X86ISD::FLD";
11687  case X86ISD::FST:                return "X86ISD::FST";
11688  case X86ISD::CALL:               return "X86ISD::CALL";
11689  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11690  case X86ISD::BT:                 return "X86ISD::BT";
11691  case X86ISD::CMP:                return "X86ISD::CMP";
11692  case X86ISD::COMI:               return "X86ISD::COMI";
11693  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11694  case X86ISD::SETCC:              return "X86ISD::SETCC";
11695  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11696  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11697  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11698  case X86ISD::CMOV:               return "X86ISD::CMOV";
11699  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11700  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11701  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11702  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11703  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11704  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11705  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11706  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11707  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11708  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11709  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11710  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11711  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11712  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11713  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11714  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11715  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11716  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11717  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11718  case X86ISD::HADD:               return "X86ISD::HADD";
11719  case X86ISD::HSUB:               return "X86ISD::HSUB";
11720  case X86ISD::FHADD:              return "X86ISD::FHADD";
11721  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11722  case X86ISD::FMAX:               return "X86ISD::FMAX";
11723  case X86ISD::FMIN:               return "X86ISD::FMIN";
11724  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
11725  case X86ISD::FMINC:              return "X86ISD::FMINC";
11726  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11727  case X86ISD::FRCP:               return "X86ISD::FRCP";
11728  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11729  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11730  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11731  case X86ISD::EH_SJLJ_SETJMP:     return "X86ISD::EH_SJLJ_SETJMP";
11732  case X86ISD::EH_SJLJ_LONGJMP:    return "X86ISD::EH_SJLJ_LONGJMP";
11733  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11734  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11735  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11736  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11737  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11738  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11739  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11740  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11741  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11742  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11743  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11744  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11745  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11746  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
11747  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11748  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
11749  case X86ISD::VFPROUND:           return "X86ISD::VFPROUND";
11750  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11751  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11752  case X86ISD::VSHL:               return "X86ISD::VSHL";
11753  case X86ISD::VSRL:               return "X86ISD::VSRL";
11754  case X86ISD::VSRA:               return "X86ISD::VSRA";
11755  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11756  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11757  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11758  case X86ISD::CMPP:               return "X86ISD::CMPP";
11759  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11760  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11761  case X86ISD::ADD:                return "X86ISD::ADD";
11762  case X86ISD::SUB:                return "X86ISD::SUB";
11763  case X86ISD::ADC:                return "X86ISD::ADC";
11764  case X86ISD::SBB:                return "X86ISD::SBB";
11765  case X86ISD::SMUL:               return "X86ISD::SMUL";
11766  case X86ISD::UMUL:               return "X86ISD::UMUL";
11767  case X86ISD::INC:                return "X86ISD::INC";
11768  case X86ISD::DEC:                return "X86ISD::DEC";
11769  case X86ISD::OR:                 return "X86ISD::OR";
11770  case X86ISD::XOR:                return "X86ISD::XOR";
11771  case X86ISD::AND:                return "X86ISD::AND";
11772  case X86ISD::ANDN:               return "X86ISD::ANDN";
11773  case X86ISD::BLSI:               return "X86ISD::BLSI";
11774  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11775  case X86ISD::BLSR:               return "X86ISD::BLSR";
11776  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11777  case X86ISD::PTEST:              return "X86ISD::PTEST";
11778  case X86ISD::TESTP:              return "X86ISD::TESTP";
11779  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11780  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11781  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11782  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11783  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11784  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11785  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11786  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11787  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11788  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11789  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11790  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11791  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11792  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11793  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11794  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11795  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11796  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11797  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11798  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11799  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11800  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11801  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11802  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11803  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11804  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11805  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11806  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11807  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11808  case X86ISD::SAHF:               return "X86ISD::SAHF";
11809  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
11810  case X86ISD::FMADD:              return "X86ISD::FMADD";
11811  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
11812  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
11813  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
11814  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
11815  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
11816  }
11817}
11818
11819// isLegalAddressingMode - Return true if the addressing mode represented
11820// by AM is legal for this target, for a load/store of the specified type.
11821bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11822                                              Type *Ty) const {
11823  // X86 supports extremely general addressing modes.
11824  CodeModel::Model M = getTargetMachine().getCodeModel();
11825  Reloc::Model R = getTargetMachine().getRelocationModel();
11826
11827  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11828  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11829    return false;
11830
11831  if (AM.BaseGV) {
11832    unsigned GVFlags =
11833      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11834
11835    // If a reference to this global requires an extra load, we can't fold it.
11836    if (isGlobalStubReference(GVFlags))
11837      return false;
11838
11839    // If BaseGV requires a register for the PIC base, we cannot also have a
11840    // BaseReg specified.
11841    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11842      return false;
11843
11844    // If lower 4G is not available, then we must use rip-relative addressing.
11845    if ((M != CodeModel::Small || R != Reloc::Static) &&
11846        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11847      return false;
11848  }
11849
11850  switch (AM.Scale) {
11851  case 0:
11852  case 1:
11853  case 2:
11854  case 4:
11855  case 8:
11856    // These scales always work.
11857    break;
11858  case 3:
11859  case 5:
11860  case 9:
11861    // These scales are formed with basereg+scalereg.  Only accept if there is
11862    // no basereg yet.
11863    if (AM.HasBaseReg)
11864      return false;
11865    break;
11866  default:  // Other stuff never works.
11867    return false;
11868  }
11869
11870  return true;
11871}
11872
11873
11874bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11875  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11876    return false;
11877  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11878  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11879  if (NumBits1 <= NumBits2)
11880    return false;
11881  return true;
11882}
11883
11884bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11885  return Imm == (int32_t)Imm;
11886}
11887
11888bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
11889  // Can also use sub to handle negated immediates.
11890  return Imm == (int32_t)Imm;
11891}
11892
11893bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11894  if (!VT1.isInteger() || !VT2.isInteger())
11895    return false;
11896  unsigned NumBits1 = VT1.getSizeInBits();
11897  unsigned NumBits2 = VT2.getSizeInBits();
11898  if (NumBits1 <= NumBits2)
11899    return false;
11900  return true;
11901}
11902
11903bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11904  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11905  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11906}
11907
11908bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11909  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11910  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11911}
11912
11913bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11914  // i16 instructions are longer (0x66 prefix) and potentially slower.
11915  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11916}
11917
11918/// isShuffleMaskLegal - Targets can use this to indicate that they only
11919/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11920/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11921/// are assumed to be legal.
11922bool
11923X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11924                                      EVT VT) const {
11925  // Very little shuffling can be done for 64-bit vectors right now.
11926  if (VT.getSizeInBits() == 64)
11927    return false;
11928
11929  // FIXME: pshufb, blends, shifts.
11930  return (VT.getVectorNumElements() == 2 ||
11931          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11932          isMOVLMask(M, VT) ||
11933          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11934          isPSHUFDMask(M, VT) ||
11935          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11936          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11937          isPALIGNRMask(M, VT, Subtarget) ||
11938          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11939          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11940          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11941          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11942}
11943
11944bool
11945X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11946                                          EVT VT) const {
11947  unsigned NumElts = VT.getVectorNumElements();
11948  // FIXME: This collection of masks seems suspect.
11949  if (NumElts == 2)
11950    return true;
11951  if (NumElts == 4 && VT.is128BitVector()) {
11952    return (isMOVLMask(Mask, VT)  ||
11953            isCommutedMOVLMask(Mask, VT, true) ||
11954            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11955            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11956  }
11957  return false;
11958}
11959
11960//===----------------------------------------------------------------------===//
11961//                           X86 Scheduler Hooks
11962//===----------------------------------------------------------------------===//
11963
11964// private utility function
11965
11966// Get CMPXCHG opcode for the specified data type.
11967static unsigned getCmpXChgOpcode(EVT VT) {
11968  switch (VT.getSimpleVT().SimpleTy) {
11969  case MVT::i8:  return X86::LCMPXCHG8;
11970  case MVT::i16: return X86::LCMPXCHG16;
11971  case MVT::i32: return X86::LCMPXCHG32;
11972  case MVT::i64: return X86::LCMPXCHG64;
11973  default:
11974    break;
11975  }
11976  llvm_unreachable("Invalid operand size!");
11977}
11978
11979// Get LOAD opcode for the specified data type.
11980static unsigned getLoadOpcode(EVT VT) {
11981  switch (VT.getSimpleVT().SimpleTy) {
11982  case MVT::i8:  return X86::MOV8rm;
11983  case MVT::i16: return X86::MOV16rm;
11984  case MVT::i32: return X86::MOV32rm;
11985  case MVT::i64: return X86::MOV64rm;
11986  default:
11987    break;
11988  }
11989  llvm_unreachable("Invalid operand size!");
11990}
11991
11992// Get opcode of the non-atomic one from the specified atomic instruction.
11993static unsigned getNonAtomicOpcode(unsigned Opc) {
11994  switch (Opc) {
11995  case X86::ATOMAND8:  return X86::AND8rr;
11996  case X86::ATOMAND16: return X86::AND16rr;
11997  case X86::ATOMAND32: return X86::AND32rr;
11998  case X86::ATOMAND64: return X86::AND64rr;
11999  case X86::ATOMOR8:   return X86::OR8rr;
12000  case X86::ATOMOR16:  return X86::OR16rr;
12001  case X86::ATOMOR32:  return X86::OR32rr;
12002  case X86::ATOMOR64:  return X86::OR64rr;
12003  case X86::ATOMXOR8:  return X86::XOR8rr;
12004  case X86::ATOMXOR16: return X86::XOR16rr;
12005  case X86::ATOMXOR32: return X86::XOR32rr;
12006  case X86::ATOMXOR64: return X86::XOR64rr;
12007  }
12008  llvm_unreachable("Unhandled atomic-load-op opcode!");
12009}
12010
12011// Get opcode of the non-atomic one from the specified atomic instruction with
12012// extra opcode.
12013static unsigned getNonAtomicOpcodeWithExtraOpc(unsigned Opc,
12014                                               unsigned &ExtraOpc) {
12015  switch (Opc) {
12016  case X86::ATOMNAND8:  ExtraOpc = X86::NOT8r;   return X86::AND8rr;
12017  case X86::ATOMNAND16: ExtraOpc = X86::NOT16r;  return X86::AND16rr;
12018  case X86::ATOMNAND32: ExtraOpc = X86::NOT32r;  return X86::AND32rr;
12019  case X86::ATOMNAND64: ExtraOpc = X86::NOT64r;  return X86::AND64rr;
12020  case X86::ATOMMAX8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVL32rr;
12021  case X86::ATOMMAX16:  ExtraOpc = X86::CMP16rr; return X86::CMOVL16rr;
12022  case X86::ATOMMAX32:  ExtraOpc = X86::CMP32rr; return X86::CMOVL32rr;
12023  case X86::ATOMMAX64:  ExtraOpc = X86::CMP64rr; return X86::CMOVL64rr;
12024  case X86::ATOMMIN8:   ExtraOpc = X86::CMP8rr;  return X86::CMOVG32rr;
12025  case X86::ATOMMIN16:  ExtraOpc = X86::CMP16rr; return X86::CMOVG16rr;
12026  case X86::ATOMMIN32:  ExtraOpc = X86::CMP32rr; return X86::CMOVG32rr;
12027  case X86::ATOMMIN64:  ExtraOpc = X86::CMP64rr; return X86::CMOVG64rr;
12028  case X86::ATOMUMAX8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVB32rr;
12029  case X86::ATOMUMAX16: ExtraOpc = X86::CMP16rr; return X86::CMOVB16rr;
12030  case X86::ATOMUMAX32: ExtraOpc = X86::CMP32rr; return X86::CMOVB32rr;
12031  case X86::ATOMUMAX64: ExtraOpc = X86::CMP64rr; return X86::CMOVB64rr;
12032  case X86::ATOMUMIN8:  ExtraOpc = X86::CMP8rr;  return X86::CMOVA32rr;
12033  case X86::ATOMUMIN16: ExtraOpc = X86::CMP16rr; return X86::CMOVA16rr;
12034  case X86::ATOMUMIN32: ExtraOpc = X86::CMP32rr; return X86::CMOVA32rr;
12035  case X86::ATOMUMIN64: ExtraOpc = X86::CMP64rr; return X86::CMOVA64rr;
12036  }
12037  llvm_unreachable("Unhandled atomic-load-op opcode!");
12038}
12039
12040// Get opcode of the non-atomic one from the specified atomic instruction for
12041// 64-bit data type on 32-bit target.
12042static unsigned getNonAtomic6432Opcode(unsigned Opc, unsigned &HiOpc) {
12043  switch (Opc) {
12044  case X86::ATOMAND6432:  HiOpc = X86::AND32rr; return X86::AND32rr;
12045  case X86::ATOMOR6432:   HiOpc = X86::OR32rr;  return X86::OR32rr;
12046  case X86::ATOMXOR6432:  HiOpc = X86::XOR32rr; return X86::XOR32rr;
12047  case X86::ATOMADD6432:  HiOpc = X86::ADC32rr; return X86::ADD32rr;
12048  case X86::ATOMSUB6432:  HiOpc = X86::SBB32rr; return X86::SUB32rr;
12049  case X86::ATOMSWAP6432: HiOpc = X86::MOV32rr; return X86::MOV32rr;
12050  case X86::ATOMMAX6432:  HiOpc = X86::SETLr;   return X86::SETLr;
12051  case X86::ATOMMIN6432:  HiOpc = X86::SETGr;   return X86::SETGr;
12052  case X86::ATOMUMAX6432: HiOpc = X86::SETBr;   return X86::SETBr;
12053  case X86::ATOMUMIN6432: HiOpc = X86::SETAr;   return X86::SETAr;
12054  }
12055  llvm_unreachable("Unhandled atomic-load-op opcode!");
12056}
12057
12058// Get opcode of the non-atomic one from the specified atomic instruction for
12059// 64-bit data type on 32-bit target with extra opcode.
12060static unsigned getNonAtomic6432OpcodeWithExtraOpc(unsigned Opc,
12061                                                   unsigned &HiOpc,
12062                                                   unsigned &ExtraOpc) {
12063  switch (Opc) {
12064  case X86::ATOMNAND6432:
12065    ExtraOpc = X86::NOT32r;
12066    HiOpc = X86::AND32rr;
12067    return X86::AND32rr;
12068  }
12069  llvm_unreachable("Unhandled atomic-load-op opcode!");
12070}
12071
12072// Get pseudo CMOV opcode from the specified data type.
12073static unsigned getPseudoCMOVOpc(EVT VT) {
12074  switch (VT.getSimpleVT().SimpleTy) {
12075  case MVT::i8:  return X86::CMOV_GR8;
12076  case MVT::i16: return X86::CMOV_GR16;
12077  case MVT::i32: return X86::CMOV_GR32;
12078  default:
12079    break;
12080  }
12081  llvm_unreachable("Unknown CMOV opcode!");
12082}
12083
12084// EmitAtomicLoadArith - emit the code sequence for pseudo atomic instructions.
12085// They will be translated into a spin-loop or compare-exchange loop from
12086//
12087//    ...
12088//    dst = atomic-fetch-op MI.addr, MI.val
12089//    ...
12090//
12091// to
12092//
12093//    ...
12094//    EAX = LOAD MI.addr
12095// loop:
12096//    t1 = OP MI.val, EAX
12097//    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12098//    JNE loop
12099// sink:
12100//    dst = EAX
12101//    ...
12102MachineBasicBlock *
12103X86TargetLowering::EmitAtomicLoadArith(MachineInstr *MI,
12104                                       MachineBasicBlock *MBB) const {
12105  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12106  DebugLoc DL = MI->getDebugLoc();
12107
12108  MachineFunction *MF = MBB->getParent();
12109  MachineRegisterInfo &MRI = MF->getRegInfo();
12110
12111  const BasicBlock *BB = MBB->getBasicBlock();
12112  MachineFunction::iterator I = MBB;
12113  ++I;
12114
12115  assert(MI->getNumOperands() <= X86::AddrNumOperands + 2 &&
12116         "Unexpected number of operands");
12117
12118  assert(MI->hasOneMemOperand() &&
12119         "Expected atomic-load-op to have one memoperand");
12120
12121  // Memory Reference
12122  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12123  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12124
12125  unsigned DstReg, SrcReg;
12126  unsigned MemOpndSlot;
12127
12128  unsigned CurOp = 0;
12129
12130  DstReg = MI->getOperand(CurOp++).getReg();
12131  MemOpndSlot = CurOp;
12132  CurOp += X86::AddrNumOperands;
12133  SrcReg = MI->getOperand(CurOp++).getReg();
12134
12135  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12136  MVT::SimpleValueType VT = *RC->vt_begin();
12137  unsigned AccPhyReg = getX86SubSuperRegister(X86::EAX, VT);
12138
12139  unsigned LCMPXCHGOpc = getCmpXChgOpcode(VT);
12140  unsigned LOADOpc = getLoadOpcode(VT);
12141
12142  // For the atomic load-arith operator, we generate
12143  //
12144  //  thisMBB:
12145  //    EAX = LOAD [MI.addr]
12146  //  mainMBB:
12147  //    t1 = OP MI.val, EAX
12148  //    LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
12149  //    JNE mainMBB
12150  //  sinkMBB:
12151
12152  MachineBasicBlock *thisMBB = MBB;
12153  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12154  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12155  MF->insert(I, mainMBB);
12156  MF->insert(I, sinkMBB);
12157
12158  MachineInstrBuilder MIB;
12159
12160  // Transfer the remainder of BB and its successor edges to sinkMBB.
12161  sinkMBB->splice(sinkMBB->begin(), MBB,
12162                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12163  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12164
12165  // thisMBB:
12166  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), AccPhyReg);
12167  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12168    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12169  MIB.setMemRefs(MMOBegin, MMOEnd);
12170
12171  thisMBB->addSuccessor(mainMBB);
12172
12173  // mainMBB:
12174  MachineBasicBlock *origMainMBB = mainMBB;
12175  mainMBB->addLiveIn(AccPhyReg);
12176
12177  // Copy AccPhyReg as it is used more than once.
12178  unsigned AccReg = MRI.createVirtualRegister(RC);
12179  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccReg)
12180    .addReg(AccPhyReg);
12181
12182  unsigned t1 = MRI.createVirtualRegister(RC);
12183  unsigned Opc = MI->getOpcode();
12184  switch (Opc) {
12185  default:
12186    llvm_unreachable("Unhandled atomic-load-op opcode!");
12187  case X86::ATOMAND8:
12188  case X86::ATOMAND16:
12189  case X86::ATOMAND32:
12190  case X86::ATOMAND64:
12191  case X86::ATOMOR8:
12192  case X86::ATOMOR16:
12193  case X86::ATOMOR32:
12194  case X86::ATOMOR64:
12195  case X86::ATOMXOR8:
12196  case X86::ATOMXOR16:
12197  case X86::ATOMXOR32:
12198  case X86::ATOMXOR64: {
12199    unsigned ARITHOpc = getNonAtomicOpcode(Opc);
12200    BuildMI(mainMBB, DL, TII->get(ARITHOpc), t1).addReg(SrcReg)
12201      .addReg(AccReg);
12202    break;
12203  }
12204  case X86::ATOMNAND8:
12205  case X86::ATOMNAND16:
12206  case X86::ATOMNAND32:
12207  case X86::ATOMNAND64: {
12208    unsigned t2 = MRI.createVirtualRegister(RC);
12209    unsigned NOTOpc;
12210    unsigned ANDOpc = getNonAtomicOpcodeWithExtraOpc(Opc, NOTOpc);
12211    BuildMI(mainMBB, DL, TII->get(ANDOpc), t2).addReg(SrcReg)
12212      .addReg(AccReg);
12213    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1).addReg(t2);
12214    break;
12215  }
12216  case X86::ATOMMAX8:
12217  case X86::ATOMMAX16:
12218  case X86::ATOMMAX32:
12219  case X86::ATOMMAX64:
12220  case X86::ATOMMIN8:
12221  case X86::ATOMMIN16:
12222  case X86::ATOMMIN32:
12223  case X86::ATOMMIN64:
12224  case X86::ATOMUMAX8:
12225  case X86::ATOMUMAX16:
12226  case X86::ATOMUMAX32:
12227  case X86::ATOMUMAX64:
12228  case X86::ATOMUMIN8:
12229  case X86::ATOMUMIN16:
12230  case X86::ATOMUMIN32:
12231  case X86::ATOMUMIN64: {
12232    unsigned CMPOpc;
12233    unsigned CMOVOpc = getNonAtomicOpcodeWithExtraOpc(Opc, CMPOpc);
12234
12235    BuildMI(mainMBB, DL, TII->get(CMPOpc))
12236      .addReg(SrcReg)
12237      .addReg(AccReg);
12238
12239    if (Subtarget->hasCMov()) {
12240      if (VT != MVT::i8) {
12241        // Native support
12242        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t1)
12243          .addReg(SrcReg)
12244          .addReg(AccReg);
12245      } else {
12246        // Promote i8 to i32 to use CMOV32
12247        const TargetRegisterClass *RC32 = getRegClassFor(MVT::i32);
12248        unsigned SrcReg32 = MRI.createVirtualRegister(RC32);
12249        unsigned AccReg32 = MRI.createVirtualRegister(RC32);
12250        unsigned t2 = MRI.createVirtualRegister(RC32);
12251
12252        unsigned Undef = MRI.createVirtualRegister(RC32);
12253        BuildMI(mainMBB, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Undef);
12254
12255        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), SrcReg32)
12256          .addReg(Undef)
12257          .addReg(SrcReg)
12258          .addImm(X86::sub_8bit);
12259        BuildMI(mainMBB, DL, TII->get(TargetOpcode::INSERT_SUBREG), AccReg32)
12260          .addReg(Undef)
12261          .addReg(AccReg)
12262          .addImm(X86::sub_8bit);
12263
12264        BuildMI(mainMBB, DL, TII->get(CMOVOpc), t2)
12265          .addReg(SrcReg32)
12266          .addReg(AccReg32);
12267
12268        BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), t1)
12269          .addReg(t2, 0, X86::sub_8bit);
12270      }
12271    } else {
12272      // Use pseudo select and lower them.
12273      assert((VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) &&
12274             "Invalid atomic-load-op transformation!");
12275      unsigned SelOpc = getPseudoCMOVOpc(VT);
12276      X86::CondCode CC = X86::getCondFromCMovOpc(CMOVOpc);
12277      assert(CC != X86::COND_INVALID && "Invalid atomic-load-op transformation!");
12278      MIB = BuildMI(mainMBB, DL, TII->get(SelOpc), t1)
12279              .addReg(SrcReg).addReg(AccReg)
12280              .addImm(CC);
12281      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12282    }
12283    break;
12284  }
12285  }
12286
12287  // Copy AccPhyReg back from virtual register.
12288  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), AccPhyReg)
12289    .addReg(AccReg);
12290
12291  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12292  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12293    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12294  MIB.addReg(t1);
12295  MIB.setMemRefs(MMOBegin, MMOEnd);
12296
12297  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12298
12299  mainMBB->addSuccessor(origMainMBB);
12300  mainMBB->addSuccessor(sinkMBB);
12301
12302  // sinkMBB:
12303  sinkMBB->addLiveIn(AccPhyReg);
12304
12305  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12306          TII->get(TargetOpcode::COPY), DstReg)
12307    .addReg(AccPhyReg);
12308
12309  MI->eraseFromParent();
12310  return sinkMBB;
12311}
12312
12313// EmitAtomicLoadArith6432 - emit the code sequence for pseudo atomic
12314// instructions. They will be translated into a spin-loop or compare-exchange
12315// loop from
12316//
12317//    ...
12318//    dst = atomic-fetch-op MI.addr, MI.val
12319//    ...
12320//
12321// to
12322//
12323//    ...
12324//    EAX = LOAD [MI.addr + 0]
12325//    EDX = LOAD [MI.addr + 4]
12326// loop:
12327//    EBX = OP MI.val.lo, EAX
12328//    ECX = OP MI.val.hi, EDX
12329//    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12330//    JNE loop
12331// sink:
12332//    dst = EDX:EAX
12333//    ...
12334MachineBasicBlock *
12335X86TargetLowering::EmitAtomicLoadArith6432(MachineInstr *MI,
12336                                           MachineBasicBlock *MBB) const {
12337  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12338  DebugLoc DL = MI->getDebugLoc();
12339
12340  MachineFunction *MF = MBB->getParent();
12341  MachineRegisterInfo &MRI = MF->getRegInfo();
12342
12343  const BasicBlock *BB = MBB->getBasicBlock();
12344  MachineFunction::iterator I = MBB;
12345  ++I;
12346
12347  assert(MI->getNumOperands() <= X86::AddrNumOperands + 4 &&
12348         "Unexpected number of operands");
12349
12350  assert(MI->hasOneMemOperand() &&
12351         "Expected atomic-load-op32 to have one memoperand");
12352
12353  // Memory Reference
12354  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12355  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12356
12357  unsigned DstLoReg, DstHiReg;
12358  unsigned SrcLoReg, SrcHiReg;
12359  unsigned MemOpndSlot;
12360
12361  unsigned CurOp = 0;
12362
12363  DstLoReg = MI->getOperand(CurOp++).getReg();
12364  DstHiReg = MI->getOperand(CurOp++).getReg();
12365  MemOpndSlot = CurOp;
12366  CurOp += X86::AddrNumOperands;
12367  SrcLoReg = MI->getOperand(CurOp++).getReg();
12368  SrcHiReg = MI->getOperand(CurOp++).getReg();
12369
12370  const TargetRegisterClass *RC = &X86::GR32RegClass;
12371  const TargetRegisterClass *RC8 = &X86::GR8RegClass;
12372
12373  unsigned LCMPXCHGOpc = X86::LCMPXCHG8B;
12374  unsigned LOADOpc = X86::MOV32rm;
12375
12376  // For the atomic load-arith operator, we generate
12377  //
12378  //  thisMBB:
12379  //    EAX = LOAD [MI.addr + 0]
12380  //    EDX = LOAD [MI.addr + 4]
12381  //  mainMBB:
12382  //    EBX = OP MI.vallo, EAX
12383  //    ECX = OP MI.valhi, EDX
12384  //    LCMPXCHG8B [MI.addr], [ECX:EBX & EDX:EAX are implicitly used and EDX:EAX is implicitly defined]
12385  //    JNE mainMBB
12386  //  sinkMBB:
12387
12388  MachineBasicBlock *thisMBB = MBB;
12389  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12390  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12391  MF->insert(I, mainMBB);
12392  MF->insert(I, sinkMBB);
12393
12394  MachineInstrBuilder MIB;
12395
12396  // Transfer the remainder of BB and its successor edges to sinkMBB.
12397  sinkMBB->splice(sinkMBB->begin(), MBB,
12398                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
12399  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12400
12401  // thisMBB:
12402  // Lo
12403  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EAX);
12404  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12405    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12406  MIB.setMemRefs(MMOBegin, MMOEnd);
12407  // Hi
12408  MIB = BuildMI(thisMBB, DL, TII->get(LOADOpc), X86::EDX);
12409  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
12410    if (i == X86::AddrDisp)
12411      MIB.addDisp(MI->getOperand(MemOpndSlot + i), 4); // 4 == sizeof(i32)
12412    else
12413      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12414  }
12415  MIB.setMemRefs(MMOBegin, MMOEnd);
12416
12417  thisMBB->addSuccessor(mainMBB);
12418
12419  // mainMBB:
12420  MachineBasicBlock *origMainMBB = mainMBB;
12421  mainMBB->addLiveIn(X86::EAX);
12422  mainMBB->addLiveIn(X86::EDX);
12423
12424  // Copy EDX:EAX as they are used more than once.
12425  unsigned LoReg = MRI.createVirtualRegister(RC);
12426  unsigned HiReg = MRI.createVirtualRegister(RC);
12427  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), LoReg).addReg(X86::EAX);
12428  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), HiReg).addReg(X86::EDX);
12429
12430  unsigned t1L = MRI.createVirtualRegister(RC);
12431  unsigned t1H = MRI.createVirtualRegister(RC);
12432
12433  unsigned Opc = MI->getOpcode();
12434  switch (Opc) {
12435  default:
12436    llvm_unreachable("Unhandled atomic-load-op6432 opcode!");
12437  case X86::ATOMAND6432:
12438  case X86::ATOMOR6432:
12439  case X86::ATOMXOR6432:
12440  case X86::ATOMADD6432:
12441  case X86::ATOMSUB6432: {
12442    unsigned HiOpc;
12443    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12444    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg).addReg(LoReg);
12445    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg).addReg(HiReg);
12446    break;
12447  }
12448  case X86::ATOMNAND6432: {
12449    unsigned HiOpc, NOTOpc;
12450    unsigned LoOpc = getNonAtomic6432OpcodeWithExtraOpc(Opc, HiOpc, NOTOpc);
12451    unsigned t2L = MRI.createVirtualRegister(RC);
12452    unsigned t2H = MRI.createVirtualRegister(RC);
12453    BuildMI(mainMBB, DL, TII->get(LoOpc), t2L).addReg(SrcLoReg).addReg(LoReg);
12454    BuildMI(mainMBB, DL, TII->get(HiOpc), t2H).addReg(SrcHiReg).addReg(HiReg);
12455    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1L).addReg(t2L);
12456    BuildMI(mainMBB, DL, TII->get(NOTOpc), t1H).addReg(t2H);
12457    break;
12458  }
12459  case X86::ATOMMAX6432:
12460  case X86::ATOMMIN6432:
12461  case X86::ATOMUMAX6432:
12462  case X86::ATOMUMIN6432: {
12463    unsigned HiOpc;
12464    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12465    unsigned cL = MRI.createVirtualRegister(RC8);
12466    unsigned cH = MRI.createVirtualRegister(RC8);
12467    unsigned cL32 = MRI.createVirtualRegister(RC);
12468    unsigned cH32 = MRI.createVirtualRegister(RC);
12469    unsigned cc = MRI.createVirtualRegister(RC);
12470    // cl := cmp src_lo, lo
12471    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12472      .addReg(SrcLoReg).addReg(LoReg);
12473    BuildMI(mainMBB, DL, TII->get(LoOpc), cL);
12474    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cL32).addReg(cL);
12475    // ch := cmp src_hi, hi
12476    BuildMI(mainMBB, DL, TII->get(X86::CMP32rr))
12477      .addReg(SrcHiReg).addReg(HiReg);
12478    BuildMI(mainMBB, DL, TII->get(HiOpc), cH);
12479    BuildMI(mainMBB, DL, TII->get(X86::MOVZX32rr8), cH32).addReg(cH);
12480    // cc := if (src_hi == hi) ? cl : ch;
12481    if (Subtarget->hasCMov()) {
12482      BuildMI(mainMBB, DL, TII->get(X86::CMOVE32rr), cc)
12483        .addReg(cH32).addReg(cL32);
12484    } else {
12485      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), cc)
12486              .addReg(cH32).addReg(cL32)
12487              .addImm(X86::COND_E);
12488      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12489    }
12490    BuildMI(mainMBB, DL, TII->get(X86::TEST32rr)).addReg(cc).addReg(cc);
12491    if (Subtarget->hasCMov()) {
12492      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1L)
12493        .addReg(SrcLoReg).addReg(LoReg);
12494      BuildMI(mainMBB, DL, TII->get(X86::CMOVNE32rr), t1H)
12495        .addReg(SrcHiReg).addReg(HiReg);
12496    } else {
12497      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1L)
12498              .addReg(SrcLoReg).addReg(LoReg)
12499              .addImm(X86::COND_NE);
12500      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12501      MIB = BuildMI(mainMBB, DL, TII->get(X86::CMOV_GR32), t1H)
12502              .addReg(SrcHiReg).addReg(HiReg)
12503              .addImm(X86::COND_NE);
12504      mainMBB = EmitLoweredSelect(MIB, mainMBB);
12505    }
12506    break;
12507  }
12508  case X86::ATOMSWAP6432: {
12509    unsigned HiOpc;
12510    unsigned LoOpc = getNonAtomic6432Opcode(Opc, HiOpc);
12511    BuildMI(mainMBB, DL, TII->get(LoOpc), t1L).addReg(SrcLoReg);
12512    BuildMI(mainMBB, DL, TII->get(HiOpc), t1H).addReg(SrcHiReg);
12513    break;
12514  }
12515  }
12516
12517  // Copy EDX:EAX back from HiReg:LoReg
12518  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EAX).addReg(LoReg);
12519  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EDX).addReg(HiReg);
12520  // Copy ECX:EBX from t1H:t1L
12521  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::EBX).addReg(t1L);
12522  BuildMI(mainMBB, DL, TII->get(TargetOpcode::COPY), X86::ECX).addReg(t1H);
12523
12524  MIB = BuildMI(mainMBB, DL, TII->get(LCMPXCHGOpc));
12525  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
12526    MIB.addOperand(MI->getOperand(MemOpndSlot + i));
12527  MIB.setMemRefs(MMOBegin, MMOEnd);
12528
12529  BuildMI(mainMBB, DL, TII->get(X86::JNE_4)).addMBB(origMainMBB);
12530
12531  mainMBB->addSuccessor(origMainMBB);
12532  mainMBB->addSuccessor(sinkMBB);
12533
12534  // sinkMBB:
12535  sinkMBB->addLiveIn(X86::EAX);
12536  sinkMBB->addLiveIn(X86::EDX);
12537
12538  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12539          TII->get(TargetOpcode::COPY), DstLoReg)
12540    .addReg(X86::EAX);
12541  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12542          TII->get(TargetOpcode::COPY), DstHiReg)
12543    .addReg(X86::EDX);
12544
12545  MI->eraseFromParent();
12546  return sinkMBB;
12547}
12548
12549// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
12550// or XMM0_V32I8 in AVX all of this code can be replaced with that
12551// in the .td file.
12552MachineBasicBlock *
12553X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
12554                            unsigned numArgs, bool memArg) const {
12555  assert(Subtarget->hasSSE42() &&
12556         "Target must have SSE4.2 or AVX features enabled");
12557
12558  DebugLoc dl = MI->getDebugLoc();
12559  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12560  unsigned Opc;
12561  if (!Subtarget->hasAVX()) {
12562    if (memArg)
12563      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
12564    else
12565      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
12566  } else {
12567    if (memArg)
12568      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
12569    else
12570      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
12571  }
12572
12573  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
12574  for (unsigned i = 0; i < numArgs; ++i) {
12575    MachineOperand &Op = MI->getOperand(i+1);
12576    if (!(Op.isReg() && Op.isImplicit()))
12577      MIB.addOperand(Op);
12578  }
12579  BuildMI(*BB, MI, dl,
12580    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12581    .addReg(X86::XMM0);
12582
12583  MI->eraseFromParent();
12584  return BB;
12585}
12586
12587MachineBasicBlock *
12588X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
12589  DebugLoc dl = MI->getDebugLoc();
12590  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12591
12592  // Address into RAX/EAX, other two args into ECX, EDX.
12593  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
12594  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
12595  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
12596  for (int i = 0; i < X86::AddrNumOperands; ++i)
12597    MIB.addOperand(MI->getOperand(i));
12598
12599  unsigned ValOps = X86::AddrNumOperands;
12600  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
12601    .addReg(MI->getOperand(ValOps).getReg());
12602  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
12603    .addReg(MI->getOperand(ValOps+1).getReg());
12604
12605  // The instruction doesn't actually take any operands though.
12606  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
12607
12608  MI->eraseFromParent(); // The pseudo is gone now.
12609  return BB;
12610}
12611
12612MachineBasicBlock *
12613X86TargetLowering::EmitVAARG64WithCustomInserter(
12614                   MachineInstr *MI,
12615                   MachineBasicBlock *MBB) const {
12616  // Emit va_arg instruction on X86-64.
12617
12618  // Operands to this pseudo-instruction:
12619  // 0  ) Output        : destination address (reg)
12620  // 1-5) Input         : va_list address (addr, i64mem)
12621  // 6  ) ArgSize       : Size (in bytes) of vararg type
12622  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
12623  // 8  ) Align         : Alignment of type
12624  // 9  ) EFLAGS (implicit-def)
12625
12626  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
12627  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
12628
12629  unsigned DestReg = MI->getOperand(0).getReg();
12630  MachineOperand &Base = MI->getOperand(1);
12631  MachineOperand &Scale = MI->getOperand(2);
12632  MachineOperand &Index = MI->getOperand(3);
12633  MachineOperand &Disp = MI->getOperand(4);
12634  MachineOperand &Segment = MI->getOperand(5);
12635  unsigned ArgSize = MI->getOperand(6).getImm();
12636  unsigned ArgMode = MI->getOperand(7).getImm();
12637  unsigned Align = MI->getOperand(8).getImm();
12638
12639  // Memory Reference
12640  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
12641  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12642  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12643
12644  // Machine Information
12645  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12646  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
12647  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
12648  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
12649  DebugLoc DL = MI->getDebugLoc();
12650
12651  // struct va_list {
12652  //   i32   gp_offset
12653  //   i32   fp_offset
12654  //   i64   overflow_area (address)
12655  //   i64   reg_save_area (address)
12656  // }
12657  // sizeof(va_list) = 24
12658  // alignment(va_list) = 8
12659
12660  unsigned TotalNumIntRegs = 6;
12661  unsigned TotalNumXMMRegs = 8;
12662  bool UseGPOffset = (ArgMode == 1);
12663  bool UseFPOffset = (ArgMode == 2);
12664  unsigned MaxOffset = TotalNumIntRegs * 8 +
12665                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
12666
12667  /* Align ArgSize to a multiple of 8 */
12668  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
12669  bool NeedsAlign = (Align > 8);
12670
12671  MachineBasicBlock *thisMBB = MBB;
12672  MachineBasicBlock *overflowMBB;
12673  MachineBasicBlock *offsetMBB;
12674  MachineBasicBlock *endMBB;
12675
12676  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
12677  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
12678  unsigned OffsetReg = 0;
12679
12680  if (!UseGPOffset && !UseFPOffset) {
12681    // If we only pull from the overflow region, we don't create a branch.
12682    // We don't need to alter control flow.
12683    OffsetDestReg = 0; // unused
12684    OverflowDestReg = DestReg;
12685
12686    offsetMBB = NULL;
12687    overflowMBB = thisMBB;
12688    endMBB = thisMBB;
12689  } else {
12690    // First emit code to check if gp_offset (or fp_offset) is below the bound.
12691    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12692    // If not, pull from overflow_area. (branch to overflowMBB)
12693    //
12694    //       thisMBB
12695    //         |     .
12696    //         |        .
12697    //     offsetMBB   overflowMBB
12698    //         |        .
12699    //         |     .
12700    //        endMBB
12701
12702    // Registers for the PHI in endMBB
12703    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12704    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12705
12706    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12707    MachineFunction *MF = MBB->getParent();
12708    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12709    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12710    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12711
12712    MachineFunction::iterator MBBIter = MBB;
12713    ++MBBIter;
12714
12715    // Insert the new basic blocks
12716    MF->insert(MBBIter, offsetMBB);
12717    MF->insert(MBBIter, overflowMBB);
12718    MF->insert(MBBIter, endMBB);
12719
12720    // Transfer the remainder of MBB and its successor edges to endMBB.
12721    endMBB->splice(endMBB->begin(), thisMBB,
12722                    llvm::next(MachineBasicBlock::iterator(MI)),
12723                    thisMBB->end());
12724    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12725
12726    // Make offsetMBB and overflowMBB successors of thisMBB
12727    thisMBB->addSuccessor(offsetMBB);
12728    thisMBB->addSuccessor(overflowMBB);
12729
12730    // endMBB is a successor of both offsetMBB and overflowMBB
12731    offsetMBB->addSuccessor(endMBB);
12732    overflowMBB->addSuccessor(endMBB);
12733
12734    // Load the offset value into a register
12735    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12736    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12737      .addOperand(Base)
12738      .addOperand(Scale)
12739      .addOperand(Index)
12740      .addDisp(Disp, UseFPOffset ? 4 : 0)
12741      .addOperand(Segment)
12742      .setMemRefs(MMOBegin, MMOEnd);
12743
12744    // Check if there is enough room left to pull this argument.
12745    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12746      .addReg(OffsetReg)
12747      .addImm(MaxOffset + 8 - ArgSizeA8);
12748
12749    // Branch to "overflowMBB" if offset >= max
12750    // Fall through to "offsetMBB" otherwise
12751    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12752      .addMBB(overflowMBB);
12753  }
12754
12755  // In offsetMBB, emit code to use the reg_save_area.
12756  if (offsetMBB) {
12757    assert(OffsetReg != 0);
12758
12759    // Read the reg_save_area address.
12760    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12761    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12762      .addOperand(Base)
12763      .addOperand(Scale)
12764      .addOperand(Index)
12765      .addDisp(Disp, 16)
12766      .addOperand(Segment)
12767      .setMemRefs(MMOBegin, MMOEnd);
12768
12769    // Zero-extend the offset
12770    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12771      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12772        .addImm(0)
12773        .addReg(OffsetReg)
12774        .addImm(X86::sub_32bit);
12775
12776    // Add the offset to the reg_save_area to get the final address.
12777    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12778      .addReg(OffsetReg64)
12779      .addReg(RegSaveReg);
12780
12781    // Compute the offset for the next argument
12782    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12783    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12784      .addReg(OffsetReg)
12785      .addImm(UseFPOffset ? 16 : 8);
12786
12787    // Store it back into the va_list.
12788    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12789      .addOperand(Base)
12790      .addOperand(Scale)
12791      .addOperand(Index)
12792      .addDisp(Disp, UseFPOffset ? 4 : 0)
12793      .addOperand(Segment)
12794      .addReg(NextOffsetReg)
12795      .setMemRefs(MMOBegin, MMOEnd);
12796
12797    // Jump to endMBB
12798    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12799      .addMBB(endMBB);
12800  }
12801
12802  //
12803  // Emit code to use overflow area
12804  //
12805
12806  // Load the overflow_area address into a register.
12807  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12808  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12809    .addOperand(Base)
12810    .addOperand(Scale)
12811    .addOperand(Index)
12812    .addDisp(Disp, 8)
12813    .addOperand(Segment)
12814    .setMemRefs(MMOBegin, MMOEnd);
12815
12816  // If we need to align it, do so. Otherwise, just copy the address
12817  // to OverflowDestReg.
12818  if (NeedsAlign) {
12819    // Align the overflow address
12820    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12821    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12822
12823    // aligned_addr = (addr + (align-1)) & ~(align-1)
12824    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12825      .addReg(OverflowAddrReg)
12826      .addImm(Align-1);
12827
12828    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12829      .addReg(TmpReg)
12830      .addImm(~(uint64_t)(Align-1));
12831  } else {
12832    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12833      .addReg(OverflowAddrReg);
12834  }
12835
12836  // Compute the next overflow address after this argument.
12837  // (the overflow address should be kept 8-byte aligned)
12838  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12839  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12840    .addReg(OverflowDestReg)
12841    .addImm(ArgSizeA8);
12842
12843  // Store the new overflow address.
12844  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12845    .addOperand(Base)
12846    .addOperand(Scale)
12847    .addOperand(Index)
12848    .addDisp(Disp, 8)
12849    .addOperand(Segment)
12850    .addReg(NextAddrReg)
12851    .setMemRefs(MMOBegin, MMOEnd);
12852
12853  // If we branched, emit the PHI to the front of endMBB.
12854  if (offsetMBB) {
12855    BuildMI(*endMBB, endMBB->begin(), DL,
12856            TII->get(X86::PHI), DestReg)
12857      .addReg(OffsetDestReg).addMBB(offsetMBB)
12858      .addReg(OverflowDestReg).addMBB(overflowMBB);
12859  }
12860
12861  // Erase the pseudo instruction
12862  MI->eraseFromParent();
12863
12864  return endMBB;
12865}
12866
12867MachineBasicBlock *
12868X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12869                                                 MachineInstr *MI,
12870                                                 MachineBasicBlock *MBB) const {
12871  // Emit code to save XMM registers to the stack. The ABI says that the
12872  // number of registers to save is given in %al, so it's theoretically
12873  // possible to do an indirect jump trick to avoid saving all of them,
12874  // however this code takes a simpler approach and just executes all
12875  // of the stores if %al is non-zero. It's less code, and it's probably
12876  // easier on the hardware branch predictor, and stores aren't all that
12877  // expensive anyway.
12878
12879  // Create the new basic blocks. One block contains all the XMM stores,
12880  // and one block is the final destination regardless of whether any
12881  // stores were performed.
12882  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12883  MachineFunction *F = MBB->getParent();
12884  MachineFunction::iterator MBBIter = MBB;
12885  ++MBBIter;
12886  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12887  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12888  F->insert(MBBIter, XMMSaveMBB);
12889  F->insert(MBBIter, EndMBB);
12890
12891  // Transfer the remainder of MBB and its successor edges to EndMBB.
12892  EndMBB->splice(EndMBB->begin(), MBB,
12893                 llvm::next(MachineBasicBlock::iterator(MI)),
12894                 MBB->end());
12895  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12896
12897  // The original block will now fall through to the XMM save block.
12898  MBB->addSuccessor(XMMSaveMBB);
12899  // The XMMSaveMBB will fall through to the end block.
12900  XMMSaveMBB->addSuccessor(EndMBB);
12901
12902  // Now add the instructions.
12903  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12904  DebugLoc DL = MI->getDebugLoc();
12905
12906  unsigned CountReg = MI->getOperand(0).getReg();
12907  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12908  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12909
12910  if (!Subtarget->isTargetWin64()) {
12911    // If %al is 0, branch around the XMM save block.
12912    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12913    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12914    MBB->addSuccessor(EndMBB);
12915  }
12916
12917  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12918  // In the XMM save block, save all the XMM argument registers.
12919  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12920    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12921    MachineMemOperand *MMO =
12922      F->getMachineMemOperand(
12923          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12924        MachineMemOperand::MOStore,
12925        /*Size=*/16, /*Align=*/16);
12926    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12927      .addFrameIndex(RegSaveFrameIndex)
12928      .addImm(/*Scale=*/1)
12929      .addReg(/*IndexReg=*/0)
12930      .addImm(/*Disp=*/Offset)
12931      .addReg(/*Segment=*/0)
12932      .addReg(MI->getOperand(i).getReg())
12933      .addMemOperand(MMO);
12934  }
12935
12936  MI->eraseFromParent();   // The pseudo instruction is gone now.
12937
12938  return EndMBB;
12939}
12940
12941// The EFLAGS operand of SelectItr might be missing a kill marker
12942// because there were multiple uses of EFLAGS, and ISel didn't know
12943// which to mark. Figure out whether SelectItr should have had a
12944// kill marker, and set it if it should. Returns the correct kill
12945// marker value.
12946static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12947                                     MachineBasicBlock* BB,
12948                                     const TargetRegisterInfo* TRI) {
12949  // Scan forward through BB for a use/def of EFLAGS.
12950  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12951  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12952    const MachineInstr& mi = *miI;
12953    if (mi.readsRegister(X86::EFLAGS))
12954      return false;
12955    if (mi.definesRegister(X86::EFLAGS))
12956      break; // Should have kill-flag - update below.
12957  }
12958
12959  // If we hit the end of the block, check whether EFLAGS is live into a
12960  // successor.
12961  if (miI == BB->end()) {
12962    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12963                                          sEnd = BB->succ_end();
12964         sItr != sEnd; ++sItr) {
12965      MachineBasicBlock* succ = *sItr;
12966      if (succ->isLiveIn(X86::EFLAGS))
12967        return false;
12968    }
12969  }
12970
12971  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12972  // out. SelectMI should have a kill flag on EFLAGS.
12973  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12974  return true;
12975}
12976
12977MachineBasicBlock *
12978X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12979                                     MachineBasicBlock *BB) const {
12980  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12981  DebugLoc DL = MI->getDebugLoc();
12982
12983  // To "insert" a SELECT_CC instruction, we actually have to insert the
12984  // diamond control-flow pattern.  The incoming instruction knows the
12985  // destination vreg to set, the condition code register to branch on, the
12986  // true/false values to select between, and a branch opcode to use.
12987  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12988  MachineFunction::iterator It = BB;
12989  ++It;
12990
12991  //  thisMBB:
12992  //  ...
12993  //   TrueVal = ...
12994  //   cmpTY ccX, r1, r2
12995  //   bCC copy1MBB
12996  //   fallthrough --> copy0MBB
12997  MachineBasicBlock *thisMBB = BB;
12998  MachineFunction *F = BB->getParent();
12999  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
13000  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
13001  F->insert(It, copy0MBB);
13002  F->insert(It, sinkMBB);
13003
13004  // If the EFLAGS register isn't dead in the terminator, then claim that it's
13005  // live into the sink and copy blocks.
13006  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
13007  if (!MI->killsRegister(X86::EFLAGS) &&
13008      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
13009    copy0MBB->addLiveIn(X86::EFLAGS);
13010    sinkMBB->addLiveIn(X86::EFLAGS);
13011  }
13012
13013  // Transfer the remainder of BB and its successor edges to sinkMBB.
13014  sinkMBB->splice(sinkMBB->begin(), BB,
13015                  llvm::next(MachineBasicBlock::iterator(MI)),
13016                  BB->end());
13017  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
13018
13019  // Add the true and fallthrough blocks as its successors.
13020  BB->addSuccessor(copy0MBB);
13021  BB->addSuccessor(sinkMBB);
13022
13023  // Create the conditional branch instruction.
13024  unsigned Opc =
13025    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
13026  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
13027
13028  //  copy0MBB:
13029  //   %FalseValue = ...
13030  //   # fallthrough to sinkMBB
13031  copy0MBB->addSuccessor(sinkMBB);
13032
13033  //  sinkMBB:
13034  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
13035  //  ...
13036  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13037          TII->get(X86::PHI), MI->getOperand(0).getReg())
13038    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
13039    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
13040
13041  MI->eraseFromParent();   // The pseudo instruction is gone now.
13042  return sinkMBB;
13043}
13044
13045MachineBasicBlock *
13046X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
13047                                        bool Is64Bit) const {
13048  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13049  DebugLoc DL = MI->getDebugLoc();
13050  MachineFunction *MF = BB->getParent();
13051  const BasicBlock *LLVM_BB = BB->getBasicBlock();
13052
13053  assert(getTargetMachine().Options.EnableSegmentedStacks);
13054
13055  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
13056  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
13057
13058  // BB:
13059  //  ... [Till the alloca]
13060  // If stacklet is not large enough, jump to mallocMBB
13061  //
13062  // bumpMBB:
13063  //  Allocate by subtracting from RSP
13064  //  Jump to continueMBB
13065  //
13066  // mallocMBB:
13067  //  Allocate by call to runtime
13068  //
13069  // continueMBB:
13070  //  ...
13071  //  [rest of original BB]
13072  //
13073
13074  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13075  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13076  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
13077
13078  MachineRegisterInfo &MRI = MF->getRegInfo();
13079  const TargetRegisterClass *AddrRegClass =
13080    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
13081
13082  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13083    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
13084    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
13085    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
13086    sizeVReg = MI->getOperand(1).getReg(),
13087    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
13088
13089  MachineFunction::iterator MBBIter = BB;
13090  ++MBBIter;
13091
13092  MF->insert(MBBIter, bumpMBB);
13093  MF->insert(MBBIter, mallocMBB);
13094  MF->insert(MBBIter, continueMBB);
13095
13096  continueMBB->splice(continueMBB->begin(), BB, llvm::next
13097                      (MachineBasicBlock::iterator(MI)), BB->end());
13098  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
13099
13100  // Add code to the main basic block to check if the stack limit has been hit,
13101  // and if so, jump to mallocMBB otherwise to bumpMBB.
13102  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
13103  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
13104    .addReg(tmpSPVReg).addReg(sizeVReg);
13105  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
13106    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
13107    .addReg(SPLimitVReg);
13108  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
13109
13110  // bumpMBB simply decreases the stack pointer, since we know the current
13111  // stacklet has enough space.
13112  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
13113    .addReg(SPLimitVReg);
13114  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
13115    .addReg(SPLimitVReg);
13116  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13117
13118  // Calls into a routine in libgcc to allocate more space from the heap.
13119  const uint32_t *RegMask =
13120    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13121  if (Is64Bit) {
13122    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
13123      .addReg(sizeVReg);
13124    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
13125      .addExternalSymbol("__morestack_allocate_stack_space")
13126      .addRegMask(RegMask)
13127      .addReg(X86::RDI, RegState::Implicit)
13128      .addReg(X86::RAX, RegState::ImplicitDefine);
13129  } else {
13130    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
13131      .addImm(12);
13132    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
13133    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
13134      .addExternalSymbol("__morestack_allocate_stack_space")
13135      .addRegMask(RegMask)
13136      .addReg(X86::EAX, RegState::ImplicitDefine);
13137  }
13138
13139  if (!Is64Bit)
13140    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
13141      .addImm(16);
13142
13143  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
13144    .addReg(Is64Bit ? X86::RAX : X86::EAX);
13145  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
13146
13147  // Set up the CFG correctly.
13148  BB->addSuccessor(bumpMBB);
13149  BB->addSuccessor(mallocMBB);
13150  mallocMBB->addSuccessor(continueMBB);
13151  bumpMBB->addSuccessor(continueMBB);
13152
13153  // Take care of the PHI nodes.
13154  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
13155          MI->getOperand(0).getReg())
13156    .addReg(mallocPtrVReg).addMBB(mallocMBB)
13157    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
13158
13159  // Delete the original pseudo instruction.
13160  MI->eraseFromParent();
13161
13162  // And we're done.
13163  return continueMBB;
13164}
13165
13166MachineBasicBlock *
13167X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
13168                                          MachineBasicBlock *BB) const {
13169  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13170  DebugLoc DL = MI->getDebugLoc();
13171
13172  assert(!Subtarget->isTargetEnvMacho());
13173
13174  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
13175  // non-trivial part is impdef of ESP.
13176
13177  if (Subtarget->isTargetWin64()) {
13178    if (Subtarget->isTargetCygMing()) {
13179      // ___chkstk(Mingw64):
13180      // Clobbers R10, R11, RAX and EFLAGS.
13181      // Updates RSP.
13182      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13183        .addExternalSymbol("___chkstk")
13184        .addReg(X86::RAX, RegState::Implicit)
13185        .addReg(X86::RSP, RegState::Implicit)
13186        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
13187        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
13188        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13189    } else {
13190      // __chkstk(MSVCRT): does not update stack pointer.
13191      // Clobbers R10, R11 and EFLAGS.
13192      // FIXME: RAX(allocated size) might be reused and not killed.
13193      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
13194        .addExternalSymbol("__chkstk")
13195        .addReg(X86::RAX, RegState::Implicit)
13196        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13197      // RAX has the offset to subtracted from RSP.
13198      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
13199        .addReg(X86::RSP)
13200        .addReg(X86::RAX);
13201    }
13202  } else {
13203    const char *StackProbeSymbol =
13204      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
13205
13206    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
13207      .addExternalSymbol(StackProbeSymbol)
13208      .addReg(X86::EAX, RegState::Implicit)
13209      .addReg(X86::ESP, RegState::Implicit)
13210      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
13211      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
13212      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
13213  }
13214
13215  MI->eraseFromParent();   // The pseudo instruction is gone now.
13216  return BB;
13217}
13218
13219MachineBasicBlock *
13220X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
13221                                      MachineBasicBlock *BB) const {
13222  // This is pretty easy.  We're taking the value that we received from
13223  // our load from the relocation, sticking it in either RDI (x86-64)
13224  // or EAX and doing an indirect call.  The return value will then
13225  // be in the normal return register.
13226  const X86InstrInfo *TII
13227    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
13228  DebugLoc DL = MI->getDebugLoc();
13229  MachineFunction *F = BB->getParent();
13230
13231  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
13232  assert(MI->getOperand(3).isGlobal() && "This should be a global");
13233
13234  // Get a register mask for the lowered call.
13235  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
13236  // proper register mask.
13237  const uint32_t *RegMask =
13238    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
13239  if (Subtarget->is64Bit()) {
13240    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13241                                      TII->get(X86::MOV64rm), X86::RDI)
13242    .addReg(X86::RIP)
13243    .addImm(0).addReg(0)
13244    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13245                      MI->getOperand(3).getTargetFlags())
13246    .addReg(0);
13247    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
13248    addDirectMem(MIB, X86::RDI);
13249    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
13250  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
13251    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13252                                      TII->get(X86::MOV32rm), X86::EAX)
13253    .addReg(0)
13254    .addImm(0).addReg(0)
13255    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13256                      MI->getOperand(3).getTargetFlags())
13257    .addReg(0);
13258    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13259    addDirectMem(MIB, X86::EAX);
13260    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13261  } else {
13262    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
13263                                      TII->get(X86::MOV32rm), X86::EAX)
13264    .addReg(TII->getGlobalBaseReg(F))
13265    .addImm(0).addReg(0)
13266    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
13267                      MI->getOperand(3).getTargetFlags())
13268    .addReg(0);
13269    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
13270    addDirectMem(MIB, X86::EAX);
13271    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
13272  }
13273
13274  MI->eraseFromParent(); // The pseudo instruction is gone now.
13275  return BB;
13276}
13277
13278MachineBasicBlock *
13279X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
13280                                    MachineBasicBlock *MBB) const {
13281  DebugLoc DL = MI->getDebugLoc();
13282  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13283
13284  MachineFunction *MF = MBB->getParent();
13285  MachineRegisterInfo &MRI = MF->getRegInfo();
13286
13287  const BasicBlock *BB = MBB->getBasicBlock();
13288  MachineFunction::iterator I = MBB;
13289  ++I;
13290
13291  // Memory Reference
13292  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13293  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13294
13295  unsigned DstReg;
13296  unsigned MemOpndSlot = 0;
13297
13298  unsigned CurOp = 0;
13299
13300  DstReg = MI->getOperand(CurOp++).getReg();
13301  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
13302  assert(RC->hasType(MVT::i32) && "Invalid destination!");
13303  unsigned mainDstReg = MRI.createVirtualRegister(RC);
13304  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
13305
13306  MemOpndSlot = CurOp;
13307
13308  MVT PVT = getPointerTy();
13309  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
13310         "Invalid Pointer Size!");
13311
13312  // For v = setjmp(buf), we generate
13313  //
13314  // thisMBB:
13315  //  buf[Label_Offset] = ljMBB
13316  //  SjLjSetup restoreMBB
13317  //
13318  // mainMBB:
13319  //  v_main = 0
13320  //
13321  // sinkMBB:
13322  //  v = phi(main, restore)
13323  //
13324  // restoreMBB:
13325  //  v_restore = 1
13326
13327  MachineBasicBlock *thisMBB = MBB;
13328  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
13329  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
13330  MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
13331  MF->insert(I, mainMBB);
13332  MF->insert(I, sinkMBB);
13333  MF->push_back(restoreMBB);
13334
13335  MachineInstrBuilder MIB;
13336
13337  // Transfer the remainder of BB and its successor edges to sinkMBB.
13338  sinkMBB->splice(sinkMBB->begin(), MBB,
13339                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
13340  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
13341
13342  // thisMBB:
13343  unsigned PtrImmStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
13344  const int64_t Label_Offset = 1 * PVT.getStoreSize();
13345
13346  // Store IP
13347  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrImmStoreOpc));
13348  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13349    if (i == X86::AddrDisp)
13350      MIB.addDisp(MI->getOperand(MemOpndSlot + i), Label_Offset);
13351    else
13352      MIB.addOperand(MI->getOperand(MemOpndSlot + i));
13353  }
13354  MIB.addMBB(restoreMBB);
13355  MIB.setMemRefs(MMOBegin, MMOEnd);
13356  // Setup
13357  MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
13358          .addMBB(restoreMBB);
13359  MIB.addRegMask(RegInfo->getNoPreservedMask());
13360  thisMBB->addSuccessor(mainMBB);
13361  thisMBB->addSuccessor(restoreMBB);
13362
13363  // mainMBB:
13364  //  EAX = 0
13365  BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
13366  mainMBB->addSuccessor(sinkMBB);
13367
13368  // sinkMBB:
13369  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
13370          TII->get(X86::PHI), DstReg)
13371    .addReg(mainDstReg).addMBB(mainMBB)
13372    .addReg(restoreDstReg).addMBB(restoreMBB);
13373
13374  // restoreMBB:
13375  BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
13376  BuildMI(restoreMBB, DL, TII->get(X86::JMP_4)).addMBB(sinkMBB);
13377  restoreMBB->addSuccessor(sinkMBB);
13378
13379  MI->eraseFromParent();
13380  return sinkMBB;
13381}
13382
13383MachineBasicBlock *
13384X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
13385                                     MachineBasicBlock *MBB) const {
13386  DebugLoc DL = MI->getDebugLoc();
13387  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13388
13389  MachineFunction *MF = MBB->getParent();
13390  MachineRegisterInfo &MRI = MF->getRegInfo();
13391
13392  // Memory Reference
13393  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
13394  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
13395
13396  MVT PVT = getPointerTy();
13397  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
13398         "Invalid Pointer Size!");
13399
13400  const TargetRegisterClass *RC =
13401    (PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
13402  unsigned Tmp = MRI.createVirtualRegister(RC);
13403  // Since FP is only updated here but NOT referenced, it's treated as GPR.
13404  unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
13405  unsigned SP = RegInfo->getStackRegister();
13406
13407  MachineInstrBuilder MIB;
13408
13409  const int64_t Label_Offset = 1 * PVT.getStoreSize();
13410  const int64_t SP_Offset = 2 * PVT.getStoreSize();
13411
13412  unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
13413  unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
13414
13415  // Reload FP
13416  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
13417  for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
13418    MIB.addOperand(MI->getOperand(i));
13419  MIB.setMemRefs(MMOBegin, MMOEnd);
13420  // Reload IP
13421  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
13422  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13423    if (i == X86::AddrDisp)
13424      MIB.addDisp(MI->getOperand(i), Label_Offset);
13425    else
13426      MIB.addOperand(MI->getOperand(i));
13427  }
13428  MIB.setMemRefs(MMOBegin, MMOEnd);
13429  // Reload SP
13430  MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
13431  for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
13432    if (i == X86::AddrDisp)
13433      MIB.addDisp(MI->getOperand(i), SP_Offset);
13434    else
13435      MIB.addOperand(MI->getOperand(i));
13436  }
13437  MIB.setMemRefs(MMOBegin, MMOEnd);
13438  // Jump
13439  BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
13440
13441  MI->eraseFromParent();
13442  return MBB;
13443}
13444
13445MachineBasicBlock *
13446X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
13447                                               MachineBasicBlock *BB) const {
13448  switch (MI->getOpcode()) {
13449  default: llvm_unreachable("Unexpected instr type to insert");
13450  case X86::TAILJMPd64:
13451  case X86::TAILJMPr64:
13452  case X86::TAILJMPm64:
13453    llvm_unreachable("TAILJMP64 would not be touched here.");
13454  case X86::TCRETURNdi64:
13455  case X86::TCRETURNri64:
13456  case X86::TCRETURNmi64:
13457    return BB;
13458  case X86::WIN_ALLOCA:
13459    return EmitLoweredWinAlloca(MI, BB);
13460  case X86::SEG_ALLOCA_32:
13461    return EmitLoweredSegAlloca(MI, BB, false);
13462  case X86::SEG_ALLOCA_64:
13463    return EmitLoweredSegAlloca(MI, BB, true);
13464  case X86::TLSCall_32:
13465  case X86::TLSCall_64:
13466    return EmitLoweredTLSCall(MI, BB);
13467  case X86::CMOV_GR8:
13468  case X86::CMOV_FR32:
13469  case X86::CMOV_FR64:
13470  case X86::CMOV_V4F32:
13471  case X86::CMOV_V2F64:
13472  case X86::CMOV_V2I64:
13473  case X86::CMOV_V8F32:
13474  case X86::CMOV_V4F64:
13475  case X86::CMOV_V4I64:
13476  case X86::CMOV_GR16:
13477  case X86::CMOV_GR32:
13478  case X86::CMOV_RFP32:
13479  case X86::CMOV_RFP64:
13480  case X86::CMOV_RFP80:
13481    return EmitLoweredSelect(MI, BB);
13482
13483  case X86::FP32_TO_INT16_IN_MEM:
13484  case X86::FP32_TO_INT32_IN_MEM:
13485  case X86::FP32_TO_INT64_IN_MEM:
13486  case X86::FP64_TO_INT16_IN_MEM:
13487  case X86::FP64_TO_INT32_IN_MEM:
13488  case X86::FP64_TO_INT64_IN_MEM:
13489  case X86::FP80_TO_INT16_IN_MEM:
13490  case X86::FP80_TO_INT32_IN_MEM:
13491  case X86::FP80_TO_INT64_IN_MEM: {
13492    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
13493    DebugLoc DL = MI->getDebugLoc();
13494
13495    // Change the floating point control register to use "round towards zero"
13496    // mode when truncating to an integer value.
13497    MachineFunction *F = BB->getParent();
13498    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
13499    addFrameReference(BuildMI(*BB, MI, DL,
13500                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
13501
13502    // Load the old value of the high byte of the control word...
13503    unsigned OldCW =
13504      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
13505    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
13506                      CWFrameIdx);
13507
13508    // Set the high part to be round to zero...
13509    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
13510      .addImm(0xC7F);
13511
13512    // Reload the modified control word now...
13513    addFrameReference(BuildMI(*BB, MI, DL,
13514                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13515
13516    // Restore the memory image of control word to original value
13517    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
13518      .addReg(OldCW);
13519
13520    // Get the X86 opcode to use.
13521    unsigned Opc;
13522    switch (MI->getOpcode()) {
13523    default: llvm_unreachable("illegal opcode!");
13524    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
13525    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
13526    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
13527    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
13528    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
13529    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
13530    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
13531    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
13532    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
13533    }
13534
13535    X86AddressMode AM;
13536    MachineOperand &Op = MI->getOperand(0);
13537    if (Op.isReg()) {
13538      AM.BaseType = X86AddressMode::RegBase;
13539      AM.Base.Reg = Op.getReg();
13540    } else {
13541      AM.BaseType = X86AddressMode::FrameIndexBase;
13542      AM.Base.FrameIndex = Op.getIndex();
13543    }
13544    Op = MI->getOperand(1);
13545    if (Op.isImm())
13546      AM.Scale = Op.getImm();
13547    Op = MI->getOperand(2);
13548    if (Op.isImm())
13549      AM.IndexReg = Op.getImm();
13550    Op = MI->getOperand(3);
13551    if (Op.isGlobal()) {
13552      AM.GV = Op.getGlobal();
13553    } else {
13554      AM.Disp = Op.getImm();
13555    }
13556    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
13557                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
13558
13559    // Reload the original control word now.
13560    addFrameReference(BuildMI(*BB, MI, DL,
13561                              TII->get(X86::FLDCW16m)), CWFrameIdx);
13562
13563    MI->eraseFromParent();   // The pseudo instruction is gone now.
13564    return BB;
13565  }
13566    // String/text processing lowering.
13567  case X86::PCMPISTRM128REG:
13568  case X86::VPCMPISTRM128REG:
13569  case X86::PCMPISTRM128MEM:
13570  case X86::VPCMPISTRM128MEM:
13571  case X86::PCMPESTRM128REG:
13572  case X86::VPCMPESTRM128REG:
13573  case X86::PCMPESTRM128MEM:
13574  case X86::VPCMPESTRM128MEM: {
13575    unsigned NumArgs;
13576    bool MemArg;
13577    switch (MI->getOpcode()) {
13578    default: llvm_unreachable("illegal opcode!");
13579    case X86::PCMPISTRM128REG:
13580    case X86::VPCMPISTRM128REG:
13581      NumArgs = 3; MemArg = false; break;
13582    case X86::PCMPISTRM128MEM:
13583    case X86::VPCMPISTRM128MEM:
13584      NumArgs = 3; MemArg = true; break;
13585    case X86::PCMPESTRM128REG:
13586    case X86::VPCMPESTRM128REG:
13587      NumArgs = 5; MemArg = false; break;
13588    case X86::PCMPESTRM128MEM:
13589    case X86::VPCMPESTRM128MEM:
13590      NumArgs = 5; MemArg = true; break;
13591    }
13592    return EmitPCMP(MI, BB, NumArgs, MemArg);
13593  }
13594
13595    // Thread synchronization.
13596  case X86::MONITOR:
13597    return EmitMonitor(MI, BB);
13598
13599    // Atomic Lowering.
13600  case X86::ATOMAND8:
13601  case X86::ATOMAND16:
13602  case X86::ATOMAND32:
13603  case X86::ATOMAND64:
13604    // Fall through
13605  case X86::ATOMOR8:
13606  case X86::ATOMOR16:
13607  case X86::ATOMOR32:
13608  case X86::ATOMOR64:
13609    // Fall through
13610  case X86::ATOMXOR16:
13611  case X86::ATOMXOR8:
13612  case X86::ATOMXOR32:
13613  case X86::ATOMXOR64:
13614    // Fall through
13615  case X86::ATOMNAND8:
13616  case X86::ATOMNAND16:
13617  case X86::ATOMNAND32:
13618  case X86::ATOMNAND64:
13619    // Fall through
13620  case X86::ATOMMAX8:
13621  case X86::ATOMMAX16:
13622  case X86::ATOMMAX32:
13623  case X86::ATOMMAX64:
13624    // Fall through
13625  case X86::ATOMMIN8:
13626  case X86::ATOMMIN16:
13627  case X86::ATOMMIN32:
13628  case X86::ATOMMIN64:
13629    // Fall through
13630  case X86::ATOMUMAX8:
13631  case X86::ATOMUMAX16:
13632  case X86::ATOMUMAX32:
13633  case X86::ATOMUMAX64:
13634    // Fall through
13635  case X86::ATOMUMIN8:
13636  case X86::ATOMUMIN16:
13637  case X86::ATOMUMIN32:
13638  case X86::ATOMUMIN64:
13639    return EmitAtomicLoadArith(MI, BB);
13640
13641  // This group does 64-bit operations on a 32-bit host.
13642  case X86::ATOMAND6432:
13643  case X86::ATOMOR6432:
13644  case X86::ATOMXOR6432:
13645  case X86::ATOMNAND6432:
13646  case X86::ATOMADD6432:
13647  case X86::ATOMSUB6432:
13648  case X86::ATOMMAX6432:
13649  case X86::ATOMMIN6432:
13650  case X86::ATOMUMAX6432:
13651  case X86::ATOMUMIN6432:
13652  case X86::ATOMSWAP6432:
13653    return EmitAtomicLoadArith6432(MI, BB);
13654
13655  case X86::VASTART_SAVE_XMM_REGS:
13656    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
13657
13658  case X86::VAARG_64:
13659    return EmitVAARG64WithCustomInserter(MI, BB);
13660
13661  case X86::EH_SjLj_SetJmp32:
13662  case X86::EH_SjLj_SetJmp64:
13663    return emitEHSjLjSetJmp(MI, BB);
13664
13665  case X86::EH_SjLj_LongJmp32:
13666  case X86::EH_SjLj_LongJmp64:
13667    return emitEHSjLjLongJmp(MI, BB);
13668  }
13669}
13670
13671//===----------------------------------------------------------------------===//
13672//                           X86 Optimization Hooks
13673//===----------------------------------------------------------------------===//
13674
13675void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
13676                                                       APInt &KnownZero,
13677                                                       APInt &KnownOne,
13678                                                       const SelectionDAG &DAG,
13679                                                       unsigned Depth) const {
13680  unsigned BitWidth = KnownZero.getBitWidth();
13681  unsigned Opc = Op.getOpcode();
13682  assert((Opc >= ISD::BUILTIN_OP_END ||
13683          Opc == ISD::INTRINSIC_WO_CHAIN ||
13684          Opc == ISD::INTRINSIC_W_CHAIN ||
13685          Opc == ISD::INTRINSIC_VOID) &&
13686         "Should use MaskedValueIsZero if you don't know whether Op"
13687         " is a target node!");
13688
13689  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
13690  switch (Opc) {
13691  default: break;
13692  case X86ISD::ADD:
13693  case X86ISD::SUB:
13694  case X86ISD::ADC:
13695  case X86ISD::SBB:
13696  case X86ISD::SMUL:
13697  case X86ISD::UMUL:
13698  case X86ISD::INC:
13699  case X86ISD::DEC:
13700  case X86ISD::OR:
13701  case X86ISD::XOR:
13702  case X86ISD::AND:
13703    // These nodes' second result is a boolean.
13704    if (Op.getResNo() == 0)
13705      break;
13706    // Fallthrough
13707  case X86ISD::SETCC:
13708    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13709    break;
13710  case ISD::INTRINSIC_WO_CHAIN: {
13711    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13712    unsigned NumLoBits = 0;
13713    switch (IntId) {
13714    default: break;
13715    case Intrinsic::x86_sse_movmsk_ps:
13716    case Intrinsic::x86_avx_movmsk_ps_256:
13717    case Intrinsic::x86_sse2_movmsk_pd:
13718    case Intrinsic::x86_avx_movmsk_pd_256:
13719    case Intrinsic::x86_mmx_pmovmskb:
13720    case Intrinsic::x86_sse2_pmovmskb_128:
13721    case Intrinsic::x86_avx2_pmovmskb: {
13722      // High bits of movmskp{s|d}, pmovmskb are known zero.
13723      switch (IntId) {
13724        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13725        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
13726        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
13727        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
13728        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
13729        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
13730        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
13731        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
13732      }
13733      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
13734      break;
13735    }
13736    }
13737    break;
13738  }
13739  }
13740}
13741
13742unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
13743                                                         unsigned Depth) const {
13744  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
13745  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
13746    return Op.getValueType().getScalarType().getSizeInBits();
13747
13748  // Fallback case.
13749  return 1;
13750}
13751
13752/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
13753/// node is a GlobalAddress + offset.
13754bool X86TargetLowering::isGAPlusOffset(SDNode *N,
13755                                       const GlobalValue* &GA,
13756                                       int64_t &Offset) const {
13757  if (N->getOpcode() == X86ISD::Wrapper) {
13758    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
13759      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
13760      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
13761      return true;
13762    }
13763  }
13764  return TargetLowering::isGAPlusOffset(N, GA, Offset);
13765}
13766
13767/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
13768/// same as extracting the high 128-bit part of 256-bit vector and then
13769/// inserting the result into the low part of a new 256-bit vector
13770static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
13771  EVT VT = SVOp->getValueType(0);
13772  unsigned NumElems = VT.getVectorNumElements();
13773
13774  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13775  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
13776    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13777        SVOp->getMaskElt(j) >= 0)
13778      return false;
13779
13780  return true;
13781}
13782
13783/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
13784/// same as extracting the low 128-bit part of 256-bit vector and then
13785/// inserting the result into the high part of a new 256-bit vector
13786static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
13787  EVT VT = SVOp->getValueType(0);
13788  unsigned NumElems = VT.getVectorNumElements();
13789
13790  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13791  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
13792    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13793        SVOp->getMaskElt(j) >= 0)
13794      return false;
13795
13796  return true;
13797}
13798
13799/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
13800static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13801                                        TargetLowering::DAGCombinerInfo &DCI,
13802                                        const X86Subtarget* Subtarget) {
13803  DebugLoc dl = N->getDebugLoc();
13804  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13805  SDValue V1 = SVOp->getOperand(0);
13806  SDValue V2 = SVOp->getOperand(1);
13807  EVT VT = SVOp->getValueType(0);
13808  unsigned NumElems = VT.getVectorNumElements();
13809
13810  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13811      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13812    //
13813    //                   0,0,0,...
13814    //                      |
13815    //    V      UNDEF    BUILD_VECTOR    UNDEF
13816    //     \      /           \           /
13817    //  CONCAT_VECTOR         CONCAT_VECTOR
13818    //         \                  /
13819    //          \                /
13820    //          RESULT: V + zero extended
13821    //
13822    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13823        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13824        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13825      return SDValue();
13826
13827    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13828      return SDValue();
13829
13830    // To match the shuffle mask, the first half of the mask should
13831    // be exactly the first vector, and all the rest a splat with the
13832    // first element of the second one.
13833    for (unsigned i = 0; i != NumElems/2; ++i)
13834      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13835          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13836        return SDValue();
13837
13838    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13839    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13840      if (Ld->hasNUsesOfValue(1, 0)) {
13841        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13842        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13843        SDValue ResNode =
13844          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13845                                  Ld->getMemoryVT(),
13846                                  Ld->getPointerInfo(),
13847                                  Ld->getAlignment(),
13848                                  false/*isVolatile*/, true/*ReadMem*/,
13849                                  false/*WriteMem*/);
13850        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13851      }
13852    }
13853
13854    // Emit a zeroed vector and insert the desired subvector on its
13855    // first half.
13856    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13857    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13858    return DCI.CombineTo(N, InsV);
13859  }
13860
13861  //===--------------------------------------------------------------------===//
13862  // Combine some shuffles into subvector extracts and inserts:
13863  //
13864
13865  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13866  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13867    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13868    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13869    return DCI.CombineTo(N, InsV);
13870  }
13871
13872  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13873  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13874    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13875    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13876    return DCI.CombineTo(N, InsV);
13877  }
13878
13879  return SDValue();
13880}
13881
13882/// PerformShuffleCombine - Performs several different shuffle combines.
13883static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13884                                     TargetLowering::DAGCombinerInfo &DCI,
13885                                     const X86Subtarget *Subtarget) {
13886  DebugLoc dl = N->getDebugLoc();
13887  EVT VT = N->getValueType(0);
13888
13889  // Don't create instructions with illegal types after legalize types has run.
13890  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13891  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13892    return SDValue();
13893
13894  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13895  if (Subtarget->hasAVX() && VT.is256BitVector() &&
13896      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13897    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13898
13899  // Only handle 128 wide vector from here on.
13900  if (!VT.is128BitVector())
13901    return SDValue();
13902
13903  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13904  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13905  // consecutive, non-overlapping, and in the right order.
13906  SmallVector<SDValue, 16> Elts;
13907  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13908    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13909
13910  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13911}
13912
13913
13914/// PerformTruncateCombine - Converts truncate operation to
13915/// a sequence of vector shuffle operations.
13916/// It is possible when we truncate 256-bit vector to 128-bit vector
13917static SDValue PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13918                                      TargetLowering::DAGCombinerInfo &DCI,
13919                                      const X86Subtarget *Subtarget)  {
13920  if (!DCI.isBeforeLegalizeOps())
13921    return SDValue();
13922
13923  if (!Subtarget->hasAVX())
13924    return SDValue();
13925
13926  EVT VT = N->getValueType(0);
13927  SDValue Op = N->getOperand(0);
13928  EVT OpVT = Op.getValueType();
13929  DebugLoc dl = N->getDebugLoc();
13930
13931  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13932
13933    if (Subtarget->hasAVX2()) {
13934      // AVX2: v4i64 -> v4i32
13935
13936      // VPERMD
13937      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13938
13939      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13940      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13941                                ShufMask);
13942
13943      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13944                         DAG.getIntPtrConstant(0));
13945    }
13946
13947    // AVX: v4i64 -> v4i32
13948    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13949                               DAG.getIntPtrConstant(0));
13950
13951    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13952                               DAG.getIntPtrConstant(2));
13953
13954    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13955    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13956
13957    // PSHUFD
13958    static const int ShufMask1[] = {0, 2, 0, 0};
13959
13960    SDValue Undef = DAG.getUNDEF(VT);
13961    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1);
13962    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1);
13963
13964    // MOVLHPS
13965    static const int ShufMask2[] = {0, 1, 4, 5};
13966
13967    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13968  }
13969
13970  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13971
13972    if (Subtarget->hasAVX2()) {
13973      // AVX2: v8i32 -> v8i16
13974
13975      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13976
13977      // PSHUFB
13978      SmallVector<SDValue,32> pshufbMask;
13979      for (unsigned i = 0; i < 2; ++i) {
13980        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13981        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13982        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13983        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13984        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13985        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13986        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13987        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13988        for (unsigned j = 0; j < 8; ++j)
13989          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13990      }
13991      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13992                               &pshufbMask[0], 32);
13993      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13994
13995      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13996
13997      static const int ShufMask[] = {0,  2,  -1,  -1};
13998      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13999                                &ShufMask[0]);
14000
14001      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
14002                       DAG.getIntPtrConstant(0));
14003
14004      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
14005    }
14006
14007    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
14008                               DAG.getIntPtrConstant(0));
14009
14010    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
14011                               DAG.getIntPtrConstant(4));
14012
14013    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
14014    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
14015
14016    // PSHUFB
14017    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
14018                                   -1, -1, -1, -1, -1, -1, -1, -1};
14019
14020    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
14021    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1);
14022    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1);
14023
14024    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
14025    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
14026
14027    // MOVLHPS
14028    static const int ShufMask2[] = {0, 1, 4, 5};
14029
14030    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
14031    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
14032  }
14033
14034  return SDValue();
14035}
14036
14037/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
14038/// specific shuffle of a load can be folded into a single element load.
14039/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
14040/// shuffles have been customed lowered so we need to handle those here.
14041static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
14042                                         TargetLowering::DAGCombinerInfo &DCI) {
14043  if (DCI.isBeforeLegalizeOps())
14044    return SDValue();
14045
14046  SDValue InVec = N->getOperand(0);
14047  SDValue EltNo = N->getOperand(1);
14048
14049  if (!isa<ConstantSDNode>(EltNo))
14050    return SDValue();
14051
14052  EVT VT = InVec.getValueType();
14053
14054  bool HasShuffleIntoBitcast = false;
14055  if (InVec.getOpcode() == ISD::BITCAST) {
14056    // Don't duplicate a load with other uses.
14057    if (!InVec.hasOneUse())
14058      return SDValue();
14059    EVT BCVT = InVec.getOperand(0).getValueType();
14060    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
14061      return SDValue();
14062    InVec = InVec.getOperand(0);
14063    HasShuffleIntoBitcast = true;
14064  }
14065
14066  if (!isTargetShuffle(InVec.getOpcode()))
14067    return SDValue();
14068
14069  // Don't duplicate a load with other uses.
14070  if (!InVec.hasOneUse())
14071    return SDValue();
14072
14073  SmallVector<int, 16> ShuffleMask;
14074  bool UnaryShuffle;
14075  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
14076                            UnaryShuffle))
14077    return SDValue();
14078
14079  // Select the input vector, guarding against out of range extract vector.
14080  unsigned NumElems = VT.getVectorNumElements();
14081  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
14082  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
14083  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
14084                                         : InVec.getOperand(1);
14085
14086  // If inputs to shuffle are the same for both ops, then allow 2 uses
14087  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
14088
14089  if (LdNode.getOpcode() == ISD::BITCAST) {
14090    // Don't duplicate a load with other uses.
14091    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
14092      return SDValue();
14093
14094    AllowedUses = 1; // only allow 1 load use if we have a bitcast
14095    LdNode = LdNode.getOperand(0);
14096  }
14097
14098  if (!ISD::isNormalLoad(LdNode.getNode()))
14099    return SDValue();
14100
14101  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
14102
14103  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
14104    return SDValue();
14105
14106  if (HasShuffleIntoBitcast) {
14107    // If there's a bitcast before the shuffle, check if the load type and
14108    // alignment is valid.
14109    unsigned Align = LN0->getAlignment();
14110    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14111    unsigned NewAlign = TLI.getDataLayout()->
14112      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
14113
14114    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
14115      return SDValue();
14116  }
14117
14118  // All checks match so transform back to vector_shuffle so that DAG combiner
14119  // can finish the job
14120  DebugLoc dl = N->getDebugLoc();
14121
14122  // Create shuffle node taking into account the case that its a unary shuffle
14123  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
14124  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
14125                                 InVec.getOperand(0), Shuffle,
14126                                 &ShuffleMask[0]);
14127  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
14128  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
14129                     EltNo);
14130}
14131
14132/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
14133/// generation and convert it from being a bunch of shuffles and extracts
14134/// to a simple store and scalar loads to extract the elements.
14135static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
14136                                         TargetLowering::DAGCombinerInfo &DCI) {
14137  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
14138  if (NewOp.getNode())
14139    return NewOp;
14140
14141  SDValue InputVector = N->getOperand(0);
14142
14143  // Only operate on vectors of 4 elements, where the alternative shuffling
14144  // gets to be more expensive.
14145  if (InputVector.getValueType() != MVT::v4i32)
14146    return SDValue();
14147
14148  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
14149  // single use which is a sign-extend or zero-extend, and all elements are
14150  // used.
14151  SmallVector<SDNode *, 4> Uses;
14152  unsigned ExtractedElements = 0;
14153  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
14154       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
14155    if (UI.getUse().getResNo() != InputVector.getResNo())
14156      return SDValue();
14157
14158    SDNode *Extract = *UI;
14159    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14160      return SDValue();
14161
14162    if (Extract->getValueType(0) != MVT::i32)
14163      return SDValue();
14164    if (!Extract->hasOneUse())
14165      return SDValue();
14166    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
14167        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
14168      return SDValue();
14169    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
14170      return SDValue();
14171
14172    // Record which element was extracted.
14173    ExtractedElements |=
14174      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
14175
14176    Uses.push_back(Extract);
14177  }
14178
14179  // If not all the elements were used, this may not be worthwhile.
14180  if (ExtractedElements != 15)
14181    return SDValue();
14182
14183  // Ok, we've now decided to do the transformation.
14184  DebugLoc dl = InputVector.getDebugLoc();
14185
14186  // Store the value to a temporary stack slot.
14187  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
14188  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
14189                            MachinePointerInfo(), false, false, 0);
14190
14191  // Replace each use (extract) with a load of the appropriate element.
14192  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
14193       UE = Uses.end(); UI != UE; ++UI) {
14194    SDNode *Extract = *UI;
14195
14196    // cOMpute the element's address.
14197    SDValue Idx = Extract->getOperand(1);
14198    unsigned EltSize =
14199        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
14200    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
14201    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14202    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
14203
14204    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
14205                                     StackPtr, OffsetVal);
14206
14207    // Load the scalar.
14208    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
14209                                     ScalarAddr, MachinePointerInfo(),
14210                                     false, false, false, 0);
14211
14212    // Replace the exact with the load.
14213    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
14214  }
14215
14216  // The replacement was made in place; don't return anything.
14217  return SDValue();
14218}
14219
14220/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
14221/// nodes.
14222static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
14223                                    TargetLowering::DAGCombinerInfo &DCI,
14224                                    const X86Subtarget *Subtarget) {
14225  DebugLoc DL = N->getDebugLoc();
14226  SDValue Cond = N->getOperand(0);
14227  // Get the LHS/RHS of the select.
14228  SDValue LHS = N->getOperand(1);
14229  SDValue RHS = N->getOperand(2);
14230  EVT VT = LHS.getValueType();
14231
14232  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
14233  // instructions match the semantics of the common C idiom x<y?x:y but not
14234  // x<=y?x:y, because of how they handle negative zero (which can be
14235  // ignored in unsafe-math mode).
14236  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
14237      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
14238      (Subtarget->hasSSE2() ||
14239       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
14240    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14241
14242    unsigned Opcode = 0;
14243    // Check for x CC y ? x : y.
14244    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14245        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14246      switch (CC) {
14247      default: break;
14248      case ISD::SETULT:
14249        // Converting this to a min would handle NaNs incorrectly, and swapping
14250        // the operands would cause it to handle comparisons between positive
14251        // and negative zero incorrectly.
14252        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14253          if (!DAG.getTarget().Options.UnsafeFPMath &&
14254              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14255            break;
14256          std::swap(LHS, RHS);
14257        }
14258        Opcode = X86ISD::FMIN;
14259        break;
14260      case ISD::SETOLE:
14261        // Converting this to a min would handle comparisons between positive
14262        // and negative zero incorrectly.
14263        if (!DAG.getTarget().Options.UnsafeFPMath &&
14264            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14265          break;
14266        Opcode = X86ISD::FMIN;
14267        break;
14268      case ISD::SETULE:
14269        // Converting this to a min would handle both negative zeros and NaNs
14270        // incorrectly, but we can swap the operands to fix both.
14271        std::swap(LHS, RHS);
14272      case ISD::SETOLT:
14273      case ISD::SETLT:
14274      case ISD::SETLE:
14275        Opcode = X86ISD::FMIN;
14276        break;
14277
14278      case ISD::SETOGE:
14279        // Converting this to a max would handle comparisons between positive
14280        // and negative zero incorrectly.
14281        if (!DAG.getTarget().Options.UnsafeFPMath &&
14282            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
14283          break;
14284        Opcode = X86ISD::FMAX;
14285        break;
14286      case ISD::SETUGT:
14287        // Converting this to a max would handle NaNs incorrectly, and swapping
14288        // the operands would cause it to handle comparisons between positive
14289        // and negative zero incorrectly.
14290        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
14291          if (!DAG.getTarget().Options.UnsafeFPMath &&
14292              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
14293            break;
14294          std::swap(LHS, RHS);
14295        }
14296        Opcode = X86ISD::FMAX;
14297        break;
14298      case ISD::SETUGE:
14299        // Converting this to a max would handle both negative zeros and NaNs
14300        // incorrectly, but we can swap the operands to fix both.
14301        std::swap(LHS, RHS);
14302      case ISD::SETOGT:
14303      case ISD::SETGT:
14304      case ISD::SETGE:
14305        Opcode = X86ISD::FMAX;
14306        break;
14307      }
14308    // Check for x CC y ? y : x -- a min/max with reversed arms.
14309    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
14310               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
14311      switch (CC) {
14312      default: break;
14313      case ISD::SETOGE:
14314        // Converting this to a min would handle comparisons between positive
14315        // and negative zero incorrectly, and swapping the operands would
14316        // cause it to handle NaNs incorrectly.
14317        if (!DAG.getTarget().Options.UnsafeFPMath &&
14318            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
14319          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14320            break;
14321          std::swap(LHS, RHS);
14322        }
14323        Opcode = X86ISD::FMIN;
14324        break;
14325      case ISD::SETUGT:
14326        // Converting this to a min would handle NaNs incorrectly.
14327        if (!DAG.getTarget().Options.UnsafeFPMath &&
14328            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
14329          break;
14330        Opcode = X86ISD::FMIN;
14331        break;
14332      case ISD::SETUGE:
14333        // Converting this to a min would handle both negative zeros and NaNs
14334        // incorrectly, but we can swap the operands to fix both.
14335        std::swap(LHS, RHS);
14336      case ISD::SETOGT:
14337      case ISD::SETGT:
14338      case ISD::SETGE:
14339        Opcode = X86ISD::FMIN;
14340        break;
14341
14342      case ISD::SETULT:
14343        // Converting this to a max would handle NaNs incorrectly.
14344        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14345          break;
14346        Opcode = X86ISD::FMAX;
14347        break;
14348      case ISD::SETOLE:
14349        // Converting this to a max would handle comparisons between positive
14350        // and negative zero incorrectly, and swapping the operands would
14351        // cause it to handle NaNs incorrectly.
14352        if (!DAG.getTarget().Options.UnsafeFPMath &&
14353            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
14354          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
14355            break;
14356          std::swap(LHS, RHS);
14357        }
14358        Opcode = X86ISD::FMAX;
14359        break;
14360      case ISD::SETULE:
14361        // Converting this to a max would handle both negative zeros and NaNs
14362        // incorrectly, but we can swap the operands to fix both.
14363        std::swap(LHS, RHS);
14364      case ISD::SETOLT:
14365      case ISD::SETLT:
14366      case ISD::SETLE:
14367        Opcode = X86ISD::FMAX;
14368        break;
14369      }
14370    }
14371
14372    if (Opcode)
14373      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
14374  }
14375
14376  // If this is a select between two integer constants, try to do some
14377  // optimizations.
14378  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
14379    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
14380      // Don't do this for crazy integer types.
14381      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
14382        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
14383        // so that TrueC (the true value) is larger than FalseC.
14384        bool NeedsCondInvert = false;
14385
14386        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
14387            // Efficiently invertible.
14388            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
14389             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
14390              isa<ConstantSDNode>(Cond.getOperand(1))))) {
14391          NeedsCondInvert = true;
14392          std::swap(TrueC, FalseC);
14393        }
14394
14395        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
14396        if (FalseC->getAPIntValue() == 0 &&
14397            TrueC->getAPIntValue().isPowerOf2()) {
14398          if (NeedsCondInvert) // Invert the condition if needed.
14399            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14400                               DAG.getConstant(1, Cond.getValueType()));
14401
14402          // Zero extend the condition if needed.
14403          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
14404
14405          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14406          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
14407                             DAG.getConstant(ShAmt, MVT::i8));
14408        }
14409
14410        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
14411        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14412          if (NeedsCondInvert) // Invert the condition if needed.
14413            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14414                               DAG.getConstant(1, Cond.getValueType()));
14415
14416          // Zero extend the condition if needed.
14417          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14418                             FalseC->getValueType(0), Cond);
14419          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14420                             SDValue(FalseC, 0));
14421        }
14422
14423        // Optimize cases that will turn into an LEA instruction.  This requires
14424        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14425        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14426          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14427          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14428
14429          bool isFastMultiplier = false;
14430          if (Diff < 10) {
14431            switch ((unsigned char)Diff) {
14432              default: break;
14433              case 1:  // result = add base, cond
14434              case 2:  // result = lea base(    , cond*2)
14435              case 3:  // result = lea base(cond, cond*2)
14436              case 4:  // result = lea base(    , cond*4)
14437              case 5:  // result = lea base(cond, cond*4)
14438              case 8:  // result = lea base(    , cond*8)
14439              case 9:  // result = lea base(cond, cond*8)
14440                isFastMultiplier = true;
14441                break;
14442            }
14443          }
14444
14445          if (isFastMultiplier) {
14446            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14447            if (NeedsCondInvert) // Invert the condition if needed.
14448              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
14449                                 DAG.getConstant(1, Cond.getValueType()));
14450
14451            // Zero extend the condition if needed.
14452            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14453                               Cond);
14454            // Scale the condition by the difference.
14455            if (Diff != 1)
14456              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14457                                 DAG.getConstant(Diff, Cond.getValueType()));
14458
14459            // Add the base if non-zero.
14460            if (FalseC->getAPIntValue() != 0)
14461              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14462                                 SDValue(FalseC, 0));
14463            return Cond;
14464          }
14465        }
14466      }
14467  }
14468
14469  // Canonicalize max and min:
14470  // (x > y) ? x : y -> (x >= y) ? x : y
14471  // (x < y) ? x : y -> (x <= y) ? x : y
14472  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
14473  // the need for an extra compare
14474  // against zero. e.g.
14475  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
14476  // subl   %esi, %edi
14477  // testl  %edi, %edi
14478  // movl   $0, %eax
14479  // cmovgl %edi, %eax
14480  // =>
14481  // xorl   %eax, %eax
14482  // subl   %esi, $edi
14483  // cmovsl %eax, %edi
14484  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
14485      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
14486      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
14487    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
14488    switch (CC) {
14489    default: break;
14490    case ISD::SETLT:
14491    case ISD::SETGT: {
14492      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
14493      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
14494                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
14495      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
14496    }
14497    }
14498  }
14499
14500  // If we know that this node is legal then we know that it is going to be
14501  // matched by one of the SSE/AVX BLEND instructions. These instructions only
14502  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
14503  // to simplify previous instructions.
14504  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14505  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
14506      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
14507    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
14508
14509    // Don't optimize vector selects that map to mask-registers.
14510    if (BitWidth == 1)
14511      return SDValue();
14512
14513    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
14514    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
14515
14516    APInt KnownZero, KnownOne;
14517    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
14518                                          DCI.isBeforeLegalizeOps());
14519    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
14520        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
14521      DCI.CommitTargetLoweringOpt(TLO);
14522  }
14523
14524  return SDValue();
14525}
14526
14527// Check whether a boolean test is testing a boolean value generated by
14528// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
14529// code.
14530//
14531// Simplify the following patterns:
14532// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
14533// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
14534// to (Op EFLAGS Cond)
14535//
14536// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
14537// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
14538// to (Op EFLAGS !Cond)
14539//
14540// where Op could be BRCOND or CMOV.
14541//
14542static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
14543  // Quit if not CMP and SUB with its value result used.
14544  if (Cmp.getOpcode() != X86ISD::CMP &&
14545      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
14546      return SDValue();
14547
14548  // Quit if not used as a boolean value.
14549  if (CC != X86::COND_E && CC != X86::COND_NE)
14550    return SDValue();
14551
14552  // Check CMP operands. One of them should be 0 or 1 and the other should be
14553  // an SetCC or extended from it.
14554  SDValue Op1 = Cmp.getOperand(0);
14555  SDValue Op2 = Cmp.getOperand(1);
14556
14557  SDValue SetCC;
14558  const ConstantSDNode* C = 0;
14559  bool needOppositeCond = (CC == X86::COND_E);
14560
14561  if ((C = dyn_cast<ConstantSDNode>(Op1)))
14562    SetCC = Op2;
14563  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
14564    SetCC = Op1;
14565  else // Quit if all operands are not constants.
14566    return SDValue();
14567
14568  if (C->getZExtValue() == 1)
14569    needOppositeCond = !needOppositeCond;
14570  else if (C->getZExtValue() != 0)
14571    // Quit if the constant is neither 0 or 1.
14572    return SDValue();
14573
14574  // Skip 'zext' node.
14575  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
14576    SetCC = SetCC.getOperand(0);
14577
14578  switch (SetCC.getOpcode()) {
14579  case X86ISD::SETCC:
14580    // Set the condition code or opposite one if necessary.
14581    CC = X86::CondCode(SetCC.getConstantOperandVal(0));
14582    if (needOppositeCond)
14583      CC = X86::GetOppositeBranchCondition(CC);
14584    return SetCC.getOperand(1);
14585  case X86ISD::CMOV: {
14586    // Check whether false/true value has canonical one, i.e. 0 or 1.
14587    ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
14588    ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
14589    // Quit if true value is not a constant.
14590    if (!TVal)
14591      return SDValue();
14592    // Quit if false value is not a constant.
14593    if (!FVal) {
14594      // A special case for rdrand, where 0 is set if false cond is found.
14595      SDValue Op = SetCC.getOperand(0);
14596      if (Op.getOpcode() != X86ISD::RDRAND)
14597        return SDValue();
14598    }
14599    // Quit if false value is not the constant 0 or 1.
14600    bool FValIsFalse = true;
14601    if (FVal && FVal->getZExtValue() != 0) {
14602      if (FVal->getZExtValue() != 1)
14603        return SDValue();
14604      // If FVal is 1, opposite cond is needed.
14605      needOppositeCond = !needOppositeCond;
14606      FValIsFalse = false;
14607    }
14608    // Quit if TVal is not the constant opposite of FVal.
14609    if (FValIsFalse && TVal->getZExtValue() != 1)
14610      return SDValue();
14611    if (!FValIsFalse && TVal->getZExtValue() != 0)
14612      return SDValue();
14613    CC = X86::CondCode(SetCC.getConstantOperandVal(2));
14614    if (needOppositeCond)
14615      CC = X86::GetOppositeBranchCondition(CC);
14616    return SetCC.getOperand(3);
14617  }
14618  }
14619
14620  return SDValue();
14621}
14622
14623/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
14624static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
14625                                  TargetLowering::DAGCombinerInfo &DCI,
14626                                  const X86Subtarget *Subtarget) {
14627  DebugLoc DL = N->getDebugLoc();
14628
14629  // If the flag operand isn't dead, don't touch this CMOV.
14630  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
14631    return SDValue();
14632
14633  SDValue FalseOp = N->getOperand(0);
14634  SDValue TrueOp = N->getOperand(1);
14635  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
14636  SDValue Cond = N->getOperand(3);
14637
14638  if (CC == X86::COND_E || CC == X86::COND_NE) {
14639    switch (Cond.getOpcode()) {
14640    default: break;
14641    case X86ISD::BSR:
14642    case X86ISD::BSF:
14643      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
14644      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
14645        return (CC == X86::COND_E) ? FalseOp : TrueOp;
14646    }
14647  }
14648
14649  SDValue Flags;
14650
14651  Flags = checkBoolTestSetCCCombine(Cond, CC);
14652  if (Flags.getNode() &&
14653      // Extra check as FCMOV only supports a subset of X86 cond.
14654      (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC))) {
14655    SDValue Ops[] = { FalseOp, TrueOp,
14656                      DAG.getConstant(CC, MVT::i8), Flags };
14657    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
14658                       Ops, array_lengthof(Ops));
14659  }
14660
14661  // If this is a select between two integer constants, try to do some
14662  // optimizations.  Note that the operands are ordered the opposite of SELECT
14663  // operands.
14664  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
14665    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
14666      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
14667      // larger than FalseC (the false value).
14668      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
14669        CC = X86::GetOppositeBranchCondition(CC);
14670        std::swap(TrueC, FalseC);
14671        std::swap(TrueOp, FalseOp);
14672      }
14673
14674      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
14675      // This is efficient for any integer data type (including i8/i16) and
14676      // shift amount.
14677      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
14678        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14679                           DAG.getConstant(CC, MVT::i8), Cond);
14680
14681        // Zero extend the condition if needed.
14682        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
14683
14684        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14685        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
14686                           DAG.getConstant(ShAmt, MVT::i8));
14687        if (N->getNumValues() == 2)  // Dead flag value?
14688          return DCI.CombineTo(N, Cond, SDValue());
14689        return Cond;
14690      }
14691
14692      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
14693      // for any integer data type, including i8/i16.
14694      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14695        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14696                           DAG.getConstant(CC, MVT::i8), Cond);
14697
14698        // Zero extend the condition if needed.
14699        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14700                           FalseC->getValueType(0), Cond);
14701        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14702                           SDValue(FalseC, 0));
14703
14704        if (N->getNumValues() == 2)  // Dead flag value?
14705          return DCI.CombineTo(N, Cond, SDValue());
14706        return Cond;
14707      }
14708
14709      // Optimize cases that will turn into an LEA instruction.  This requires
14710      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14711      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14712        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14713        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14714
14715        bool isFastMultiplier = false;
14716        if (Diff < 10) {
14717          switch ((unsigned char)Diff) {
14718          default: break;
14719          case 1:  // result = add base, cond
14720          case 2:  // result = lea base(    , cond*2)
14721          case 3:  // result = lea base(cond, cond*2)
14722          case 4:  // result = lea base(    , cond*4)
14723          case 5:  // result = lea base(cond, cond*4)
14724          case 8:  // result = lea base(    , cond*8)
14725          case 9:  // result = lea base(cond, cond*8)
14726            isFastMultiplier = true;
14727            break;
14728          }
14729        }
14730
14731        if (isFastMultiplier) {
14732          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14733          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14734                             DAG.getConstant(CC, MVT::i8), Cond);
14735          // Zero extend the condition if needed.
14736          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14737                             Cond);
14738          // Scale the condition by the difference.
14739          if (Diff != 1)
14740            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14741                               DAG.getConstant(Diff, Cond.getValueType()));
14742
14743          // Add the base if non-zero.
14744          if (FalseC->getAPIntValue() != 0)
14745            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14746                               SDValue(FalseC, 0));
14747          if (N->getNumValues() == 2)  // Dead flag value?
14748            return DCI.CombineTo(N, Cond, SDValue());
14749          return Cond;
14750        }
14751      }
14752    }
14753  }
14754
14755  // Handle these cases:
14756  //   (select (x != c), e, c) -> select (x != c), e, x),
14757  //   (select (x == c), c, e) -> select (x == c), x, e)
14758  // where the c is an integer constant, and the "select" is the combination
14759  // of CMOV and CMP.
14760  //
14761  // The rationale for this change is that the conditional-move from a constant
14762  // needs two instructions, however, conditional-move from a register needs
14763  // only one instruction.
14764  //
14765  // CAVEAT: By replacing a constant with a symbolic value, it may obscure
14766  //  some instruction-combining opportunities. This opt needs to be
14767  //  postponed as late as possible.
14768  //
14769  if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
14770    // the DCI.xxxx conditions are provided to postpone the optimization as
14771    // late as possible.
14772
14773    ConstantSDNode *CmpAgainst = 0;
14774    if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
14775        (CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
14776        dyn_cast<ConstantSDNode>(Cond.getOperand(0)) == 0) {
14777
14778      if (CC == X86::COND_NE &&
14779          CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
14780        CC = X86::GetOppositeBranchCondition(CC);
14781        std::swap(TrueOp, FalseOp);
14782      }
14783
14784      if (CC == X86::COND_E &&
14785          CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
14786        SDValue Ops[] = { FalseOp, Cond.getOperand(0),
14787                          DAG.getConstant(CC, MVT::i8), Cond };
14788        return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops,
14789                           array_lengthof(Ops));
14790      }
14791    }
14792  }
14793
14794  return SDValue();
14795}
14796
14797
14798/// PerformMulCombine - Optimize a single multiply with constant into two
14799/// in order to implement it with two cheaper instructions, e.g.
14800/// LEA + SHL, LEA + LEA.
14801static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
14802                                 TargetLowering::DAGCombinerInfo &DCI) {
14803  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14804    return SDValue();
14805
14806  EVT VT = N->getValueType(0);
14807  if (VT != MVT::i64)
14808    return SDValue();
14809
14810  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14811  if (!C)
14812    return SDValue();
14813  uint64_t MulAmt = C->getZExtValue();
14814  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
14815    return SDValue();
14816
14817  uint64_t MulAmt1 = 0;
14818  uint64_t MulAmt2 = 0;
14819  if ((MulAmt % 9) == 0) {
14820    MulAmt1 = 9;
14821    MulAmt2 = MulAmt / 9;
14822  } else if ((MulAmt % 5) == 0) {
14823    MulAmt1 = 5;
14824    MulAmt2 = MulAmt / 5;
14825  } else if ((MulAmt % 3) == 0) {
14826    MulAmt1 = 3;
14827    MulAmt2 = MulAmt / 3;
14828  }
14829  if (MulAmt2 &&
14830      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
14831    DebugLoc DL = N->getDebugLoc();
14832
14833    if (isPowerOf2_64(MulAmt2) &&
14834        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
14835      // If second multiplifer is pow2, issue it first. We want the multiply by
14836      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
14837      // is an add.
14838      std::swap(MulAmt1, MulAmt2);
14839
14840    SDValue NewMul;
14841    if (isPowerOf2_64(MulAmt1))
14842      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14843                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
14844    else
14845      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
14846                           DAG.getConstant(MulAmt1, VT));
14847
14848    if (isPowerOf2_64(MulAmt2))
14849      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
14850                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
14851    else
14852      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
14853                           DAG.getConstant(MulAmt2, VT));
14854
14855    // Do not add new nodes to DAG combiner worklist.
14856    DCI.CombineTo(N, NewMul, false);
14857  }
14858  return SDValue();
14859}
14860
14861static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
14862  SDValue N0 = N->getOperand(0);
14863  SDValue N1 = N->getOperand(1);
14864  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14865  EVT VT = N0.getValueType();
14866
14867  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
14868  // since the result of setcc_c is all zero's or all ones.
14869  if (VT.isInteger() && !VT.isVector() &&
14870      N1C && N0.getOpcode() == ISD::AND &&
14871      N0.getOperand(1).getOpcode() == ISD::Constant) {
14872    SDValue N00 = N0.getOperand(0);
14873    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
14874        ((N00.getOpcode() == ISD::ANY_EXTEND ||
14875          N00.getOpcode() == ISD::ZERO_EXTEND) &&
14876         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
14877      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
14878      APInt ShAmt = N1C->getAPIntValue();
14879      Mask = Mask.shl(ShAmt);
14880      if (Mask != 0)
14881        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
14882                           N00, DAG.getConstant(Mask, VT));
14883    }
14884  }
14885
14886
14887  // Hardware support for vector shifts is sparse which makes us scalarize the
14888  // vector operations in many cases. Also, on sandybridge ADD is faster than
14889  // shl.
14890  // (shl V, 1) -> add V,V
14891  if (isSplatVector(N1.getNode())) {
14892    assert(N0.getValueType().isVector() && "Invalid vector shift type");
14893    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
14894    // We shift all of the values by one. In many cases we do not have
14895    // hardware support for this operation. This is better expressed as an ADD
14896    // of two values.
14897    if (N1C && (1 == N1C->getZExtValue())) {
14898      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
14899    }
14900  }
14901
14902  return SDValue();
14903}
14904
14905/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
14906///                       when possible.
14907static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
14908                                   TargetLowering::DAGCombinerInfo &DCI,
14909                                   const X86Subtarget *Subtarget) {
14910  EVT VT = N->getValueType(0);
14911  if (N->getOpcode() == ISD::SHL) {
14912    SDValue V = PerformSHLCombine(N, DAG);
14913    if (V.getNode()) return V;
14914  }
14915
14916  // On X86 with SSE2 support, we can transform this to a vector shift if
14917  // all elements are shifted by the same amount.  We can't do this in legalize
14918  // because the a constant vector is typically transformed to a constant pool
14919  // so we have no knowledge of the shift amount.
14920  if (!Subtarget->hasSSE2())
14921    return SDValue();
14922
14923  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
14924      (!Subtarget->hasAVX2() ||
14925       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
14926    return SDValue();
14927
14928  SDValue ShAmtOp = N->getOperand(1);
14929  EVT EltVT = VT.getVectorElementType();
14930  DebugLoc DL = N->getDebugLoc();
14931  SDValue BaseShAmt = SDValue();
14932  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
14933    unsigned NumElts = VT.getVectorNumElements();
14934    unsigned i = 0;
14935    for (; i != NumElts; ++i) {
14936      SDValue Arg = ShAmtOp.getOperand(i);
14937      if (Arg.getOpcode() == ISD::UNDEF) continue;
14938      BaseShAmt = Arg;
14939      break;
14940    }
14941    // Handle the case where the build_vector is all undef
14942    // FIXME: Should DAG allow this?
14943    if (i == NumElts)
14944      return SDValue();
14945
14946    for (; i != NumElts; ++i) {
14947      SDValue Arg = ShAmtOp.getOperand(i);
14948      if (Arg.getOpcode() == ISD::UNDEF) continue;
14949      if (Arg != BaseShAmt) {
14950        return SDValue();
14951      }
14952    }
14953  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
14954             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
14955    SDValue InVec = ShAmtOp.getOperand(0);
14956    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
14957      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14958      unsigned i = 0;
14959      for (; i != NumElts; ++i) {
14960        SDValue Arg = InVec.getOperand(i);
14961        if (Arg.getOpcode() == ISD::UNDEF) continue;
14962        BaseShAmt = Arg;
14963        break;
14964      }
14965    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14966       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14967         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14968         if (C->getZExtValue() == SplatIdx)
14969           BaseShAmt = InVec.getOperand(1);
14970       }
14971    }
14972    if (BaseShAmt.getNode() == 0) {
14973      // Don't create instructions with illegal types after legalize
14974      // types has run.
14975      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14976          !DCI.isBeforeLegalize())
14977        return SDValue();
14978
14979      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14980                              DAG.getIntPtrConstant(0));
14981    }
14982  } else
14983    return SDValue();
14984
14985  // The shift amount is an i32.
14986  if (EltVT.bitsGT(MVT::i32))
14987    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14988  else if (EltVT.bitsLT(MVT::i32))
14989    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14990
14991  // The shift amount is identical so we can do a vector shift.
14992  SDValue  ValOp = N->getOperand(0);
14993  switch (N->getOpcode()) {
14994  default:
14995    llvm_unreachable("Unknown shift opcode!");
14996  case ISD::SHL:
14997    switch (VT.getSimpleVT().SimpleTy) {
14998    default: return SDValue();
14999    case MVT::v2i64:
15000    case MVT::v4i32:
15001    case MVT::v8i16:
15002    case MVT::v4i64:
15003    case MVT::v8i32:
15004    case MVT::v16i16:
15005      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
15006    }
15007  case ISD::SRA:
15008    switch (VT.getSimpleVT().SimpleTy) {
15009    default: return SDValue();
15010    case MVT::v4i32:
15011    case MVT::v8i16:
15012    case MVT::v8i32:
15013    case MVT::v16i16:
15014      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
15015    }
15016  case ISD::SRL:
15017    switch (VT.getSimpleVT().SimpleTy) {
15018    default: return SDValue();
15019    case MVT::v2i64:
15020    case MVT::v4i32:
15021    case MVT::v8i16:
15022    case MVT::v4i64:
15023    case MVT::v8i32:
15024    case MVT::v16i16:
15025      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
15026    }
15027  }
15028}
15029
15030
15031// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
15032// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
15033// and friends.  Likewise for OR -> CMPNEQSS.
15034static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
15035                            TargetLowering::DAGCombinerInfo &DCI,
15036                            const X86Subtarget *Subtarget) {
15037  unsigned opcode;
15038
15039  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
15040  // we're requiring SSE2 for both.
15041  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
15042    SDValue N0 = N->getOperand(0);
15043    SDValue N1 = N->getOperand(1);
15044    SDValue CMP0 = N0->getOperand(1);
15045    SDValue CMP1 = N1->getOperand(1);
15046    DebugLoc DL = N->getDebugLoc();
15047
15048    // The SETCCs should both refer to the same CMP.
15049    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
15050      return SDValue();
15051
15052    SDValue CMP00 = CMP0->getOperand(0);
15053    SDValue CMP01 = CMP0->getOperand(1);
15054    EVT     VT    = CMP00.getValueType();
15055
15056    if (VT == MVT::f32 || VT == MVT::f64) {
15057      bool ExpectingFlags = false;
15058      // Check for any users that want flags:
15059      for (SDNode::use_iterator UI = N->use_begin(),
15060             UE = N->use_end();
15061           !ExpectingFlags && UI != UE; ++UI)
15062        switch (UI->getOpcode()) {
15063        default:
15064        case ISD::BR_CC:
15065        case ISD::BRCOND:
15066        case ISD::SELECT:
15067          ExpectingFlags = true;
15068          break;
15069        case ISD::CopyToReg:
15070        case ISD::SIGN_EXTEND:
15071        case ISD::ZERO_EXTEND:
15072        case ISD::ANY_EXTEND:
15073          break;
15074        }
15075
15076      if (!ExpectingFlags) {
15077        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
15078        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
15079
15080        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
15081          X86::CondCode tmp = cc0;
15082          cc0 = cc1;
15083          cc1 = tmp;
15084        }
15085
15086        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
15087            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
15088          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
15089          X86ISD::NodeType NTOperator = is64BitFP ?
15090            X86ISD::FSETCCsd : X86ISD::FSETCCss;
15091          // FIXME: need symbolic constants for these magic numbers.
15092          // See X86ATTInstPrinter.cpp:printSSECC().
15093          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
15094          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
15095                                              DAG.getConstant(x86cc, MVT::i8));
15096          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
15097                                              OnesOrZeroesF);
15098          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
15099                                      DAG.getConstant(1, MVT::i32));
15100          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
15101          return OneBitOfTruth;
15102        }
15103      }
15104    }
15105  }
15106  return SDValue();
15107}
15108
15109/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
15110/// so it can be folded inside ANDNP.
15111static bool CanFoldXORWithAllOnes(const SDNode *N) {
15112  EVT VT = N->getValueType(0);
15113
15114  // Match direct AllOnes for 128 and 256-bit vectors
15115  if (ISD::isBuildVectorAllOnes(N))
15116    return true;
15117
15118  // Look through a bit convert.
15119  if (N->getOpcode() == ISD::BITCAST)
15120    N = N->getOperand(0).getNode();
15121
15122  // Sometimes the operand may come from a insert_subvector building a 256-bit
15123  // allones vector
15124  if (VT.is256BitVector() &&
15125      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
15126    SDValue V1 = N->getOperand(0);
15127    SDValue V2 = N->getOperand(1);
15128
15129    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
15130        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
15131        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
15132        ISD::isBuildVectorAllOnes(V2.getNode()))
15133      return true;
15134  }
15135
15136  return false;
15137}
15138
15139static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
15140                                 TargetLowering::DAGCombinerInfo &DCI,
15141                                 const X86Subtarget *Subtarget) {
15142  if (DCI.isBeforeLegalizeOps())
15143    return SDValue();
15144
15145  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
15146  if (R.getNode())
15147    return R;
15148
15149  EVT VT = N->getValueType(0);
15150
15151  // Create ANDN, BLSI, and BLSR instructions
15152  // BLSI is X & (-X)
15153  // BLSR is X & (X-1)
15154  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
15155    SDValue N0 = N->getOperand(0);
15156    SDValue N1 = N->getOperand(1);
15157    DebugLoc DL = N->getDebugLoc();
15158
15159    // Check LHS for not
15160    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
15161      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
15162    // Check RHS for not
15163    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
15164      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
15165
15166    // Check LHS for neg
15167    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
15168        isZero(N0.getOperand(0)))
15169      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
15170
15171    // Check RHS for neg
15172    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
15173        isZero(N1.getOperand(0)))
15174      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
15175
15176    // Check LHS for X-1
15177    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15178        isAllOnes(N0.getOperand(1)))
15179      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
15180
15181    // Check RHS for X-1
15182    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15183        isAllOnes(N1.getOperand(1)))
15184      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
15185
15186    return SDValue();
15187  }
15188
15189  // Want to form ANDNP nodes:
15190  // 1) In the hopes of then easily combining them with OR and AND nodes
15191  //    to form PBLEND/PSIGN.
15192  // 2) To match ANDN packed intrinsics
15193  if (VT != MVT::v2i64 && VT != MVT::v4i64)
15194    return SDValue();
15195
15196  SDValue N0 = N->getOperand(0);
15197  SDValue N1 = N->getOperand(1);
15198  DebugLoc DL = N->getDebugLoc();
15199
15200  // Check LHS for vnot
15201  if (N0.getOpcode() == ISD::XOR &&
15202      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
15203      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
15204    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
15205
15206  // Check RHS for vnot
15207  if (N1.getOpcode() == ISD::XOR &&
15208      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
15209      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
15210    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
15211
15212  return SDValue();
15213}
15214
15215static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
15216                                TargetLowering::DAGCombinerInfo &DCI,
15217                                const X86Subtarget *Subtarget) {
15218  if (DCI.isBeforeLegalizeOps())
15219    return SDValue();
15220
15221  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
15222  if (R.getNode())
15223    return R;
15224
15225  EVT VT = N->getValueType(0);
15226
15227  SDValue N0 = N->getOperand(0);
15228  SDValue N1 = N->getOperand(1);
15229
15230  // look for psign/blend
15231  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
15232    if (!Subtarget->hasSSSE3() ||
15233        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
15234      return SDValue();
15235
15236    // Canonicalize pandn to RHS
15237    if (N0.getOpcode() == X86ISD::ANDNP)
15238      std::swap(N0, N1);
15239    // or (and (m, y), (pandn m, x))
15240    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
15241      SDValue Mask = N1.getOperand(0);
15242      SDValue X    = N1.getOperand(1);
15243      SDValue Y;
15244      if (N0.getOperand(0) == Mask)
15245        Y = N0.getOperand(1);
15246      if (N0.getOperand(1) == Mask)
15247        Y = N0.getOperand(0);
15248
15249      // Check to see if the mask appeared in both the AND and ANDNP and
15250      if (!Y.getNode())
15251        return SDValue();
15252
15253      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
15254      // Look through mask bitcast.
15255      if (Mask.getOpcode() == ISD::BITCAST)
15256        Mask = Mask.getOperand(0);
15257      if (X.getOpcode() == ISD::BITCAST)
15258        X = X.getOperand(0);
15259      if (Y.getOpcode() == ISD::BITCAST)
15260        Y = Y.getOperand(0);
15261
15262      EVT MaskVT = Mask.getValueType();
15263
15264      // Validate that the Mask operand is a vector sra node.
15265      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
15266      // there is no psrai.b
15267      if (Mask.getOpcode() != X86ISD::VSRAI)
15268        return SDValue();
15269
15270      // Check that the SRA is all signbits.
15271      SDValue SraC = Mask.getOperand(1);
15272      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
15273      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
15274      if ((SraAmt + 1) != EltBits)
15275        return SDValue();
15276
15277      DebugLoc DL = N->getDebugLoc();
15278
15279      // Now we know we at least have a plendvb with the mask val.  See if
15280      // we can form a psignb/w/d.
15281      // psign = x.type == y.type == mask.type && y = sub(0, x);
15282      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
15283          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
15284          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
15285        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
15286               "Unsupported VT for PSIGN");
15287        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
15288        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15289      }
15290      // PBLENDVB only available on SSE 4.1
15291      if (!Subtarget->hasSSE41())
15292        return SDValue();
15293
15294      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
15295
15296      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
15297      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
15298      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
15299      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
15300      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
15301    }
15302  }
15303
15304  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
15305    return SDValue();
15306
15307  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
15308  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
15309    std::swap(N0, N1);
15310  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
15311    return SDValue();
15312  if (!N0.hasOneUse() || !N1.hasOneUse())
15313    return SDValue();
15314
15315  SDValue ShAmt0 = N0.getOperand(1);
15316  if (ShAmt0.getValueType() != MVT::i8)
15317    return SDValue();
15318  SDValue ShAmt1 = N1.getOperand(1);
15319  if (ShAmt1.getValueType() != MVT::i8)
15320    return SDValue();
15321  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
15322    ShAmt0 = ShAmt0.getOperand(0);
15323  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
15324    ShAmt1 = ShAmt1.getOperand(0);
15325
15326  DebugLoc DL = N->getDebugLoc();
15327  unsigned Opc = X86ISD::SHLD;
15328  SDValue Op0 = N0.getOperand(0);
15329  SDValue Op1 = N1.getOperand(0);
15330  if (ShAmt0.getOpcode() == ISD::SUB) {
15331    Opc = X86ISD::SHRD;
15332    std::swap(Op0, Op1);
15333    std::swap(ShAmt0, ShAmt1);
15334  }
15335
15336  unsigned Bits = VT.getSizeInBits();
15337  if (ShAmt1.getOpcode() == ISD::SUB) {
15338    SDValue Sum = ShAmt1.getOperand(0);
15339    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
15340      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
15341      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
15342        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
15343      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
15344        return DAG.getNode(Opc, DL, VT,
15345                           Op0, Op1,
15346                           DAG.getNode(ISD::TRUNCATE, DL,
15347                                       MVT::i8, ShAmt0));
15348    }
15349  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
15350    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
15351    if (ShAmt0C &&
15352        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
15353      return DAG.getNode(Opc, DL, VT,
15354                         N0.getOperand(0), N1.getOperand(0),
15355                         DAG.getNode(ISD::TRUNCATE, DL,
15356                                       MVT::i8, ShAmt0));
15357  }
15358
15359  return SDValue();
15360}
15361
15362// Generate NEG and CMOV for integer abs.
15363static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
15364  EVT VT = N->getValueType(0);
15365
15366  // Since X86 does not have CMOV for 8-bit integer, we don't convert
15367  // 8-bit integer abs to NEG and CMOV.
15368  if (VT.isInteger() && VT.getSizeInBits() == 8)
15369    return SDValue();
15370
15371  SDValue N0 = N->getOperand(0);
15372  SDValue N1 = N->getOperand(1);
15373  DebugLoc DL = N->getDebugLoc();
15374
15375  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
15376  // and change it to SUB and CMOV.
15377  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
15378      N0.getOpcode() == ISD::ADD &&
15379      N0.getOperand(1) == N1 &&
15380      N1.getOpcode() == ISD::SRA &&
15381      N1.getOperand(0) == N0.getOperand(0))
15382    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
15383      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
15384        // Generate SUB & CMOV.
15385        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
15386                                  DAG.getConstant(0, VT), N0.getOperand(0));
15387
15388        SDValue Ops[] = { N0.getOperand(0), Neg,
15389                          DAG.getConstant(X86::COND_GE, MVT::i8),
15390                          SDValue(Neg.getNode(), 1) };
15391        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
15392                           Ops, array_lengthof(Ops));
15393      }
15394  return SDValue();
15395}
15396
15397// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
15398static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
15399                                 TargetLowering::DAGCombinerInfo &DCI,
15400                                 const X86Subtarget *Subtarget) {
15401  if (DCI.isBeforeLegalizeOps())
15402    return SDValue();
15403
15404  if (Subtarget->hasCMov()) {
15405    SDValue RV = performIntegerAbsCombine(N, DAG);
15406    if (RV.getNode())
15407      return RV;
15408  }
15409
15410  // Try forming BMI if it is available.
15411  if (!Subtarget->hasBMI())
15412    return SDValue();
15413
15414  EVT VT = N->getValueType(0);
15415
15416  if (VT != MVT::i32 && VT != MVT::i64)
15417    return SDValue();
15418
15419  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
15420
15421  // Create BLSMSK instructions by finding X ^ (X-1)
15422  SDValue N0 = N->getOperand(0);
15423  SDValue N1 = N->getOperand(1);
15424  DebugLoc DL = N->getDebugLoc();
15425
15426  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
15427      isAllOnes(N0.getOperand(1)))
15428    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
15429
15430  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
15431      isAllOnes(N1.getOperand(1)))
15432    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
15433
15434  return SDValue();
15435}
15436
15437/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
15438static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
15439                                  TargetLowering::DAGCombinerInfo &DCI,
15440                                  const X86Subtarget *Subtarget) {
15441  LoadSDNode *Ld = cast<LoadSDNode>(N);
15442  EVT RegVT = Ld->getValueType(0);
15443  EVT MemVT = Ld->getMemoryVT();
15444  DebugLoc dl = Ld->getDebugLoc();
15445  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15446
15447  ISD::LoadExtType Ext = Ld->getExtensionType();
15448
15449  // If this is a vector EXT Load then attempt to optimize it using a
15450  // shuffle. We need SSE4 for the shuffles.
15451  // TODO: It is possible to support ZExt by zeroing the undef values
15452  // during the shuffle phase or after the shuffle.
15453  if (RegVT.isVector() && RegVT.isInteger() &&
15454      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
15455    assert(MemVT != RegVT && "Cannot extend to the same type");
15456    assert(MemVT.isVector() && "Must load a vector from memory");
15457
15458    unsigned NumElems = RegVT.getVectorNumElements();
15459    unsigned RegSz = RegVT.getSizeInBits();
15460    unsigned MemSz = MemVT.getSizeInBits();
15461    assert(RegSz > MemSz && "Register size must be greater than the mem size");
15462
15463    // All sizes must be a power of two.
15464    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
15465      return SDValue();
15466
15467    // Attempt to load the original value using scalar loads.
15468    // Find the largest scalar type that divides the total loaded size.
15469    MVT SclrLoadTy = MVT::i8;
15470    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15471         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15472      MVT Tp = (MVT::SimpleValueType)tp;
15473      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
15474        SclrLoadTy = Tp;
15475      }
15476    }
15477
15478    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15479    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
15480        (64 <= MemSz))
15481      SclrLoadTy = MVT::f64;
15482
15483    // Calculate the number of scalar loads that we need to perform
15484    // in order to load our vector from memory.
15485    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
15486
15487    // Represent our vector as a sequence of elements which are the
15488    // largest scalar that we can load.
15489    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
15490      RegSz/SclrLoadTy.getSizeInBits());
15491
15492    // Represent the data using the same element type that is stored in
15493    // memory. In practice, we ''widen'' MemVT.
15494    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
15495                                  RegSz/MemVT.getScalarType().getSizeInBits());
15496
15497    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
15498      "Invalid vector type");
15499
15500    // We can't shuffle using an illegal type.
15501    if (!TLI.isTypeLegal(WideVecVT))
15502      return SDValue();
15503
15504    SmallVector<SDValue, 8> Chains;
15505    SDValue Ptr = Ld->getBasePtr();
15506    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
15507                                        TLI.getPointerTy());
15508    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
15509
15510    for (unsigned i = 0; i < NumLoads; ++i) {
15511      // Perform a single load.
15512      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
15513                                       Ptr, Ld->getPointerInfo(),
15514                                       Ld->isVolatile(), Ld->isNonTemporal(),
15515                                       Ld->isInvariant(), Ld->getAlignment());
15516      Chains.push_back(ScalarLoad.getValue(1));
15517      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
15518      // another round of DAGCombining.
15519      if (i == 0)
15520        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
15521      else
15522        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
15523                          ScalarLoad, DAG.getIntPtrConstant(i));
15524
15525      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15526    }
15527
15528    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15529                               Chains.size());
15530
15531    // Bitcast the loaded value to a vector of the original element type, in
15532    // the size of the target vector type.
15533    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
15534    unsigned SizeRatio = RegSz/MemSz;
15535
15536    // Redistribute the loaded elements into the different locations.
15537    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15538    for (unsigned i = 0; i != NumElems; ++i)
15539      ShuffleVec[i*SizeRatio] = i;
15540
15541    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
15542                                         DAG.getUNDEF(WideVecVT),
15543                                         &ShuffleVec[0]);
15544
15545    // Bitcast to the requested type.
15546    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
15547    // Replace the original load with the new sequence
15548    // and return the new chain.
15549    return DCI.CombineTo(N, Shuff, TF, true);
15550  }
15551
15552  return SDValue();
15553}
15554
15555/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
15556static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
15557                                   const X86Subtarget *Subtarget) {
15558  StoreSDNode *St = cast<StoreSDNode>(N);
15559  EVT VT = St->getValue().getValueType();
15560  EVT StVT = St->getMemoryVT();
15561  DebugLoc dl = St->getDebugLoc();
15562  SDValue StoredVal = St->getOperand(1);
15563  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15564
15565  // If we are saving a concatenation of two XMM registers, perform two stores.
15566  // On Sandy Bridge, 256-bit memory operations are executed by two
15567  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
15568  // memory  operation.
15569  if (VT.is256BitVector() && !Subtarget->hasAVX2() &&
15570      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
15571      StoredVal.getNumOperands() == 2) {
15572    SDValue Value0 = StoredVal.getOperand(0);
15573    SDValue Value1 = StoredVal.getOperand(1);
15574
15575    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
15576    SDValue Ptr0 = St->getBasePtr();
15577    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
15578
15579    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
15580                                St->getPointerInfo(), St->isVolatile(),
15581                                St->isNonTemporal(), St->getAlignment());
15582    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
15583                                St->getPointerInfo(), St->isVolatile(),
15584                                St->isNonTemporal(), St->getAlignment());
15585    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
15586  }
15587
15588  // Optimize trunc store (of multiple scalars) to shuffle and store.
15589  // First, pack all of the elements in one place. Next, store to memory
15590  // in fewer chunks.
15591  if (St->isTruncatingStore() && VT.isVector()) {
15592    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15593    unsigned NumElems = VT.getVectorNumElements();
15594    assert(StVT != VT && "Cannot truncate to the same type");
15595    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
15596    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
15597
15598    // From, To sizes and ElemCount must be pow of two
15599    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
15600    // We are going to use the original vector elt for storing.
15601    // Accumulated smaller vector elements must be a multiple of the store size.
15602    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
15603
15604    unsigned SizeRatio  = FromSz / ToSz;
15605
15606    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
15607
15608    // Create a type on which we perform the shuffle
15609    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
15610            StVT.getScalarType(), NumElems*SizeRatio);
15611
15612    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
15613
15614    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
15615    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15616    for (unsigned i = 0; i != NumElems; ++i)
15617      ShuffleVec[i] = i * SizeRatio;
15618
15619    // Can't shuffle using an illegal type.
15620    if (!TLI.isTypeLegal(WideVecVT))
15621      return SDValue();
15622
15623    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
15624                                         DAG.getUNDEF(WideVecVT),
15625                                         &ShuffleVec[0]);
15626    // At this point all of the data is stored at the bottom of the
15627    // register. We now need to save it to mem.
15628
15629    // Find the largest store unit
15630    MVT StoreType = MVT::i8;
15631    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15632         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15633      MVT Tp = (MVT::SimpleValueType)tp;
15634      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
15635        StoreType = Tp;
15636    }
15637
15638    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15639    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
15640        (64 <= NumElems * ToSz))
15641      StoreType = MVT::f64;
15642
15643    // Bitcast the original vector into a vector of store-size units
15644    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
15645            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
15646    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
15647    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
15648    SmallVector<SDValue, 8> Chains;
15649    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
15650                                        TLI.getPointerTy());
15651    SDValue Ptr = St->getBasePtr();
15652
15653    // Perform one or more big stores into memory.
15654    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
15655      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
15656                                   StoreType, ShuffWide,
15657                                   DAG.getIntPtrConstant(i));
15658      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
15659                                St->getPointerInfo(), St->isVolatile(),
15660                                St->isNonTemporal(), St->getAlignment());
15661      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15662      Chains.push_back(Ch);
15663    }
15664
15665    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15666                               Chains.size());
15667  }
15668
15669
15670  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
15671  // the FP state in cases where an emms may be missing.
15672  // A preferable solution to the general problem is to figure out the right
15673  // places to insert EMMS.  This qualifies as a quick hack.
15674
15675  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
15676  if (VT.getSizeInBits() != 64)
15677    return SDValue();
15678
15679  const Function *F = DAG.getMachineFunction().getFunction();
15680  bool NoImplicitFloatOps = F->getFnAttributes().
15681    hasAttribute(Attributes::NoImplicitFloat);
15682  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
15683                     && Subtarget->hasSSE2();
15684  if ((VT.isVector() ||
15685       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
15686      isa<LoadSDNode>(St->getValue()) &&
15687      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
15688      St->getChain().hasOneUse() && !St->isVolatile()) {
15689    SDNode* LdVal = St->getValue().getNode();
15690    LoadSDNode *Ld = 0;
15691    int TokenFactorIndex = -1;
15692    SmallVector<SDValue, 8> Ops;
15693    SDNode* ChainVal = St->getChain().getNode();
15694    // Must be a store of a load.  We currently handle two cases:  the load
15695    // is a direct child, and it's under an intervening TokenFactor.  It is
15696    // possible to dig deeper under nested TokenFactors.
15697    if (ChainVal == LdVal)
15698      Ld = cast<LoadSDNode>(St->getChain());
15699    else if (St->getValue().hasOneUse() &&
15700             ChainVal->getOpcode() == ISD::TokenFactor) {
15701      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
15702        if (ChainVal->getOperand(i).getNode() == LdVal) {
15703          TokenFactorIndex = i;
15704          Ld = cast<LoadSDNode>(St->getValue());
15705        } else
15706          Ops.push_back(ChainVal->getOperand(i));
15707      }
15708    }
15709
15710    if (!Ld || !ISD::isNormalLoad(Ld))
15711      return SDValue();
15712
15713    // If this is not the MMX case, i.e. we are just turning i64 load/store
15714    // into f64 load/store, avoid the transformation if there are multiple
15715    // uses of the loaded value.
15716    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
15717      return SDValue();
15718
15719    DebugLoc LdDL = Ld->getDebugLoc();
15720    DebugLoc StDL = N->getDebugLoc();
15721    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
15722    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
15723    // pair instead.
15724    if (Subtarget->is64Bit() || F64IsLegal) {
15725      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
15726      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
15727                                  Ld->getPointerInfo(), Ld->isVolatile(),
15728                                  Ld->isNonTemporal(), Ld->isInvariant(),
15729                                  Ld->getAlignment());
15730      SDValue NewChain = NewLd.getValue(1);
15731      if (TokenFactorIndex != -1) {
15732        Ops.push_back(NewChain);
15733        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15734                               Ops.size());
15735      }
15736      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
15737                          St->getPointerInfo(),
15738                          St->isVolatile(), St->isNonTemporal(),
15739                          St->getAlignment());
15740    }
15741
15742    // Otherwise, lower to two pairs of 32-bit loads / stores.
15743    SDValue LoAddr = Ld->getBasePtr();
15744    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
15745                                 DAG.getConstant(4, MVT::i32));
15746
15747    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
15748                               Ld->getPointerInfo(),
15749                               Ld->isVolatile(), Ld->isNonTemporal(),
15750                               Ld->isInvariant(), Ld->getAlignment());
15751    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
15752                               Ld->getPointerInfo().getWithOffset(4),
15753                               Ld->isVolatile(), Ld->isNonTemporal(),
15754                               Ld->isInvariant(),
15755                               MinAlign(Ld->getAlignment(), 4));
15756
15757    SDValue NewChain = LoLd.getValue(1);
15758    if (TokenFactorIndex != -1) {
15759      Ops.push_back(LoLd);
15760      Ops.push_back(HiLd);
15761      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15762                             Ops.size());
15763    }
15764
15765    LoAddr = St->getBasePtr();
15766    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
15767                         DAG.getConstant(4, MVT::i32));
15768
15769    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
15770                                St->getPointerInfo(),
15771                                St->isVolatile(), St->isNonTemporal(),
15772                                St->getAlignment());
15773    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
15774                                St->getPointerInfo().getWithOffset(4),
15775                                St->isVolatile(),
15776                                St->isNonTemporal(),
15777                                MinAlign(St->getAlignment(), 4));
15778    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
15779  }
15780  return SDValue();
15781}
15782
15783/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
15784/// and return the operands for the horizontal operation in LHS and RHS.  A
15785/// horizontal operation performs the binary operation on successive elements
15786/// of its first operand, then on successive elements of its second operand,
15787/// returning the resulting values in a vector.  For example, if
15788///   A = < float a0, float a1, float a2, float a3 >
15789/// and
15790///   B = < float b0, float b1, float b2, float b3 >
15791/// then the result of doing a horizontal operation on A and B is
15792///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
15793/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
15794/// A horizontal-op B, for some already available A and B, and if so then LHS is
15795/// set to A, RHS to B, and the routine returns 'true'.
15796/// Note that the binary operation should have the property that if one of the
15797/// operands is UNDEF then the result is UNDEF.
15798static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
15799  // Look for the following pattern: if
15800  //   A = < float a0, float a1, float a2, float a3 >
15801  //   B = < float b0, float b1, float b2, float b3 >
15802  // and
15803  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
15804  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
15805  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
15806  // which is A horizontal-op B.
15807
15808  // At least one of the operands should be a vector shuffle.
15809  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
15810      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
15811    return false;
15812
15813  EVT VT = LHS.getValueType();
15814
15815  assert((VT.is128BitVector() || VT.is256BitVector()) &&
15816         "Unsupported vector type for horizontal add/sub");
15817
15818  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
15819  // operate independently on 128-bit lanes.
15820  unsigned NumElts = VT.getVectorNumElements();
15821  unsigned NumLanes = VT.getSizeInBits()/128;
15822  unsigned NumLaneElts = NumElts / NumLanes;
15823  assert((NumLaneElts % 2 == 0) &&
15824         "Vector type should have an even number of elements in each lane");
15825  unsigned HalfLaneElts = NumLaneElts/2;
15826
15827  // View LHS in the form
15828  //   LHS = VECTOR_SHUFFLE A, B, LMask
15829  // If LHS is not a shuffle then pretend it is the shuffle
15830  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
15831  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
15832  // type VT.
15833  SDValue A, B;
15834  SmallVector<int, 16> LMask(NumElts);
15835  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15836    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
15837      A = LHS.getOperand(0);
15838    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
15839      B = LHS.getOperand(1);
15840    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
15841    std::copy(Mask.begin(), Mask.end(), LMask.begin());
15842  } else {
15843    if (LHS.getOpcode() != ISD::UNDEF)
15844      A = LHS;
15845    for (unsigned i = 0; i != NumElts; ++i)
15846      LMask[i] = i;
15847  }
15848
15849  // Likewise, view RHS in the form
15850  //   RHS = VECTOR_SHUFFLE C, D, RMask
15851  SDValue C, D;
15852  SmallVector<int, 16> RMask(NumElts);
15853  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15854    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
15855      C = RHS.getOperand(0);
15856    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
15857      D = RHS.getOperand(1);
15858    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
15859    std::copy(Mask.begin(), Mask.end(), RMask.begin());
15860  } else {
15861    if (RHS.getOpcode() != ISD::UNDEF)
15862      C = RHS;
15863    for (unsigned i = 0; i != NumElts; ++i)
15864      RMask[i] = i;
15865  }
15866
15867  // Check that the shuffles are both shuffling the same vectors.
15868  if (!(A == C && B == D) && !(A == D && B == C))
15869    return false;
15870
15871  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
15872  if (!A.getNode() && !B.getNode())
15873    return false;
15874
15875  // If A and B occur in reverse order in RHS, then "swap" them (which means
15876  // rewriting the mask).
15877  if (A != C)
15878    CommuteVectorShuffleMask(RMask, NumElts);
15879
15880  // At this point LHS and RHS are equivalent to
15881  //   LHS = VECTOR_SHUFFLE A, B, LMask
15882  //   RHS = VECTOR_SHUFFLE A, B, RMask
15883  // Check that the masks correspond to performing a horizontal operation.
15884  for (unsigned i = 0; i != NumElts; ++i) {
15885    int LIdx = LMask[i], RIdx = RMask[i];
15886
15887    // Ignore any UNDEF components.
15888    if (LIdx < 0 || RIdx < 0 ||
15889        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
15890        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
15891      continue;
15892
15893    // Check that successive elements are being operated on.  If not, this is
15894    // not a horizontal operation.
15895    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
15896    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
15897    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
15898    if (!(LIdx == Index && RIdx == Index + 1) &&
15899        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
15900      return false;
15901  }
15902
15903  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
15904  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
15905  return true;
15906}
15907
15908/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
15909static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
15910                                  const X86Subtarget *Subtarget) {
15911  EVT VT = N->getValueType(0);
15912  SDValue LHS = N->getOperand(0);
15913  SDValue RHS = N->getOperand(1);
15914
15915  // Try to synthesize horizontal adds from adds of shuffles.
15916  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15917       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15918      isHorizontalBinOp(LHS, RHS, true))
15919    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
15920  return SDValue();
15921}
15922
15923/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
15924static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
15925                                  const X86Subtarget *Subtarget) {
15926  EVT VT = N->getValueType(0);
15927  SDValue LHS = N->getOperand(0);
15928  SDValue RHS = N->getOperand(1);
15929
15930  // Try to synthesize horizontal subs from subs of shuffles.
15931  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15932       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15933      isHorizontalBinOp(LHS, RHS, false))
15934    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
15935  return SDValue();
15936}
15937
15938/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
15939/// X86ISD::FXOR nodes.
15940static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
15941  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
15942  // F[X]OR(0.0, x) -> x
15943  // F[X]OR(x, 0.0) -> x
15944  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15945    if (C->getValueAPF().isPosZero())
15946      return N->getOperand(1);
15947  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15948    if (C->getValueAPF().isPosZero())
15949      return N->getOperand(0);
15950  return SDValue();
15951}
15952
15953/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
15954/// X86ISD::FMAX nodes.
15955static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
15956  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
15957
15958  // Only perform optimizations if UnsafeMath is used.
15959  if (!DAG.getTarget().Options.UnsafeFPMath)
15960    return SDValue();
15961
15962  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
15963  // into FMINC and FMAXC, which are Commutative operations.
15964  unsigned NewOp = 0;
15965  switch (N->getOpcode()) {
15966    default: llvm_unreachable("unknown opcode");
15967    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
15968    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
15969  }
15970
15971  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
15972                     N->getOperand(0), N->getOperand(1));
15973}
15974
15975
15976/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
15977static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
15978  // FAND(0.0, x) -> 0.0
15979  // FAND(x, 0.0) -> 0.0
15980  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15981    if (C->getValueAPF().isPosZero())
15982      return N->getOperand(0);
15983  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15984    if (C->getValueAPF().isPosZero())
15985      return N->getOperand(1);
15986  return SDValue();
15987}
15988
15989static SDValue PerformBTCombine(SDNode *N,
15990                                SelectionDAG &DAG,
15991                                TargetLowering::DAGCombinerInfo &DCI) {
15992  // BT ignores high bits in the bit index operand.
15993  SDValue Op1 = N->getOperand(1);
15994  if (Op1.hasOneUse()) {
15995    unsigned BitWidth = Op1.getValueSizeInBits();
15996    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
15997    APInt KnownZero, KnownOne;
15998    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
15999                                          !DCI.isBeforeLegalizeOps());
16000    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16001    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
16002        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
16003      DCI.CommitTargetLoweringOpt(TLO);
16004  }
16005  return SDValue();
16006}
16007
16008static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
16009  SDValue Op = N->getOperand(0);
16010  if (Op.getOpcode() == ISD::BITCAST)
16011    Op = Op.getOperand(0);
16012  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
16013  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
16014      VT.getVectorElementType().getSizeInBits() ==
16015      OpVT.getVectorElementType().getSizeInBits()) {
16016    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
16017  }
16018  return SDValue();
16019}
16020
16021static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
16022                                  TargetLowering::DAGCombinerInfo &DCI,
16023                                  const X86Subtarget *Subtarget) {
16024  if (!DCI.isBeforeLegalizeOps())
16025    return SDValue();
16026
16027  if (!Subtarget->hasAVX())
16028    return SDValue();
16029
16030  EVT VT = N->getValueType(0);
16031  SDValue Op = N->getOperand(0);
16032  EVT OpVT = Op.getValueType();
16033  DebugLoc dl = N->getDebugLoc();
16034
16035  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
16036      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
16037
16038    if (Subtarget->hasAVX2())
16039      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
16040
16041    // Optimize vectors in AVX mode
16042    // Sign extend  v8i16 to v8i32 and
16043    //              v4i32 to v4i64
16044    //
16045    // Divide input vector into two parts
16046    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
16047    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
16048    // concat the vectors to original VT
16049
16050    unsigned NumElems = OpVT.getVectorNumElements();
16051    SDValue Undef = DAG.getUNDEF(OpVT);
16052
16053    SmallVector<int,8> ShufMask1(NumElems, -1);
16054    for (unsigned i = 0; i != NumElems/2; ++i)
16055      ShufMask1[i] = i;
16056
16057    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]);
16058
16059    SmallVector<int,8> ShufMask2(NumElems, -1);
16060    for (unsigned i = 0; i != NumElems/2; ++i)
16061      ShufMask2[i] = i + NumElems/2;
16062
16063    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]);
16064
16065    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
16066                                  VT.getVectorNumElements()/2);
16067
16068    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
16069    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
16070
16071    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
16072  }
16073  return SDValue();
16074}
16075
16076static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
16077                                 const X86Subtarget* Subtarget) {
16078  DebugLoc dl = N->getDebugLoc();
16079  EVT VT = N->getValueType(0);
16080
16081  // Let legalize expand this if it isn't a legal type yet.
16082  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
16083    return SDValue();
16084
16085  EVT ScalarVT = VT.getScalarType();
16086  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) ||
16087      (!Subtarget->hasFMA() && !Subtarget->hasFMA4()))
16088    return SDValue();
16089
16090  SDValue A = N->getOperand(0);
16091  SDValue B = N->getOperand(1);
16092  SDValue C = N->getOperand(2);
16093
16094  bool NegA = (A.getOpcode() == ISD::FNEG);
16095  bool NegB = (B.getOpcode() == ISD::FNEG);
16096  bool NegC = (C.getOpcode() == ISD::FNEG);
16097
16098  // Negative multiplication when NegA xor NegB
16099  bool NegMul = (NegA != NegB);
16100  if (NegA)
16101    A = A.getOperand(0);
16102  if (NegB)
16103    B = B.getOperand(0);
16104  if (NegC)
16105    C = C.getOperand(0);
16106
16107  unsigned Opcode;
16108  if (!NegMul)
16109    Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
16110  else
16111    Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
16112
16113  return DAG.getNode(Opcode, dl, VT, A, B, C);
16114}
16115
16116static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
16117                                  TargetLowering::DAGCombinerInfo &DCI,
16118                                  const X86Subtarget *Subtarget) {
16119  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
16120  //           (and (i32 x86isd::setcc_carry), 1)
16121  // This eliminates the zext. This transformation is necessary because
16122  // ISD::SETCC is always legalized to i8.
16123  DebugLoc dl = N->getDebugLoc();
16124  SDValue N0 = N->getOperand(0);
16125  EVT VT = N->getValueType(0);
16126  EVT OpVT = N0.getValueType();
16127
16128  if (N0.getOpcode() == ISD::AND &&
16129      N0.hasOneUse() &&
16130      N0.getOperand(0).hasOneUse()) {
16131    SDValue N00 = N0.getOperand(0);
16132    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
16133      return SDValue();
16134    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
16135    if (!C || C->getZExtValue() != 1)
16136      return SDValue();
16137    return DAG.getNode(ISD::AND, dl, VT,
16138                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
16139                                   N00.getOperand(0), N00.getOperand(1)),
16140                       DAG.getConstant(1, VT));
16141  }
16142
16143  // Optimize vectors in AVX mode:
16144  //
16145  //   v8i16 -> v8i32
16146  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
16147  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
16148  //   Concat upper and lower parts.
16149  //
16150  //   v4i32 -> v4i64
16151  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
16152  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
16153  //   Concat upper and lower parts.
16154  //
16155  if (!DCI.isBeforeLegalizeOps())
16156    return SDValue();
16157
16158  if (!Subtarget->hasAVX())
16159    return SDValue();
16160
16161  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
16162      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
16163
16164    if (Subtarget->hasAVX2())
16165      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
16166
16167    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
16168    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
16169    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
16170
16171    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
16172                               VT.getVectorNumElements()/2);
16173
16174    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
16175    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
16176
16177    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
16178  }
16179
16180  return SDValue();
16181}
16182
16183// Optimize x == -y --> x+y == 0
16184//          x != -y --> x+y != 0
16185static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
16186  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
16187  SDValue LHS = N->getOperand(0);
16188  SDValue RHS = N->getOperand(1);
16189
16190  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
16191    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
16192      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
16193        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
16194                                   LHS.getValueType(), RHS, LHS.getOperand(1));
16195        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
16196                            addV, DAG.getConstant(0, addV.getValueType()), CC);
16197      }
16198  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
16199    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
16200      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
16201        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
16202                                   RHS.getValueType(), LHS, RHS.getOperand(1));
16203        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
16204                            addV, DAG.getConstant(0, addV.getValueType()), CC);
16205      }
16206  return SDValue();
16207}
16208
16209// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
16210static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
16211                                   TargetLowering::DAGCombinerInfo &DCI,
16212                                   const X86Subtarget *Subtarget) {
16213  DebugLoc DL = N->getDebugLoc();
16214  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
16215  SDValue EFLAGS = N->getOperand(1);
16216
16217  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
16218  // a zext and produces an all-ones bit which is more useful than 0/1 in some
16219  // cases.
16220  if (CC == X86::COND_B)
16221    return DAG.getNode(ISD::AND, DL, MVT::i8,
16222                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
16223                                   DAG.getConstant(CC, MVT::i8), EFLAGS),
16224                       DAG.getConstant(1, MVT::i8));
16225
16226  SDValue Flags;
16227
16228  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
16229  if (Flags.getNode()) {
16230    SDValue Cond = DAG.getConstant(CC, MVT::i8);
16231    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
16232  }
16233
16234  return SDValue();
16235}
16236
16237// Optimize branch condition evaluation.
16238//
16239static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
16240                                    TargetLowering::DAGCombinerInfo &DCI,
16241                                    const X86Subtarget *Subtarget) {
16242  DebugLoc DL = N->getDebugLoc();
16243  SDValue Chain = N->getOperand(0);
16244  SDValue Dest = N->getOperand(1);
16245  SDValue EFLAGS = N->getOperand(3);
16246  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
16247
16248  SDValue Flags;
16249
16250  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
16251  if (Flags.getNode()) {
16252    SDValue Cond = DAG.getConstant(CC, MVT::i8);
16253    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
16254                       Flags);
16255  }
16256
16257  return SDValue();
16258}
16259
16260static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
16261  SDValue Op0 = N->getOperand(0);
16262  EVT InVT = Op0->getValueType(0);
16263
16264  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
16265  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
16266    DebugLoc dl = N->getDebugLoc();
16267    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
16268    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
16269    // Notice that we use SINT_TO_FP because we know that the high bits
16270    // are zero and SINT_TO_FP is better supported by the hardware.
16271    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
16272  }
16273
16274  return SDValue();
16275}
16276
16277static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
16278                                        const X86TargetLowering *XTLI) {
16279  SDValue Op0 = N->getOperand(0);
16280  EVT InVT = Op0->getValueType(0);
16281
16282  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
16283  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
16284    DebugLoc dl = N->getDebugLoc();
16285    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
16286    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
16287    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
16288  }
16289
16290  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
16291  // a 32-bit target where SSE doesn't support i64->FP operations.
16292  if (Op0.getOpcode() == ISD::LOAD) {
16293    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
16294    EVT VT = Ld->getValueType(0);
16295    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
16296        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
16297        !XTLI->getSubtarget()->is64Bit() &&
16298        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
16299      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
16300                                          Ld->getChain(), Op0, DAG);
16301      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
16302      return FILDChain;
16303    }
16304  }
16305  return SDValue();
16306}
16307
16308// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
16309static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
16310                                 X86TargetLowering::DAGCombinerInfo &DCI) {
16311  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
16312  // the result is either zero or one (depending on the input carry bit).
16313  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
16314  if (X86::isZeroNode(N->getOperand(0)) &&
16315      X86::isZeroNode(N->getOperand(1)) &&
16316      // We don't have a good way to replace an EFLAGS use, so only do this when
16317      // dead right now.
16318      SDValue(N, 1).use_empty()) {
16319    DebugLoc DL = N->getDebugLoc();
16320    EVT VT = N->getValueType(0);
16321    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
16322    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
16323                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
16324                                           DAG.getConstant(X86::COND_B,MVT::i8),
16325                                           N->getOperand(2)),
16326                               DAG.getConstant(1, VT));
16327    return DCI.CombineTo(N, Res1, CarryOut);
16328  }
16329
16330  return SDValue();
16331}
16332
16333// fold (add Y, (sete  X, 0)) -> adc  0, Y
16334//      (add Y, (setne X, 0)) -> sbb -1, Y
16335//      (sub (sete  X, 0), Y) -> sbb  0, Y
16336//      (sub (setne X, 0), Y) -> adc -1, Y
16337static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
16338  DebugLoc DL = N->getDebugLoc();
16339
16340  // Look through ZExts.
16341  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
16342  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
16343    return SDValue();
16344
16345  SDValue SetCC = Ext.getOperand(0);
16346  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
16347    return SDValue();
16348
16349  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
16350  if (CC != X86::COND_E && CC != X86::COND_NE)
16351    return SDValue();
16352
16353  SDValue Cmp = SetCC.getOperand(1);
16354  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
16355      !X86::isZeroNode(Cmp.getOperand(1)) ||
16356      !Cmp.getOperand(0).getValueType().isInteger())
16357    return SDValue();
16358
16359  SDValue CmpOp0 = Cmp.getOperand(0);
16360  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
16361                               DAG.getConstant(1, CmpOp0.getValueType()));
16362
16363  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
16364  if (CC == X86::COND_NE)
16365    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
16366                       DL, OtherVal.getValueType(), OtherVal,
16367                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
16368  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
16369                     DL, OtherVal.getValueType(), OtherVal,
16370                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
16371}
16372
16373/// PerformADDCombine - Do target-specific dag combines on integer adds.
16374static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
16375                                 const X86Subtarget *Subtarget) {
16376  EVT VT = N->getValueType(0);
16377  SDValue Op0 = N->getOperand(0);
16378  SDValue Op1 = N->getOperand(1);
16379
16380  // Try to synthesize horizontal adds from adds of shuffles.
16381  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16382       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16383      isHorizontalBinOp(Op0, Op1, true))
16384    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
16385
16386  return OptimizeConditionalInDecrement(N, DAG);
16387}
16388
16389static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
16390                                 const X86Subtarget *Subtarget) {
16391  SDValue Op0 = N->getOperand(0);
16392  SDValue Op1 = N->getOperand(1);
16393
16394  // X86 can't encode an immediate LHS of a sub. See if we can push the
16395  // negation into a preceding instruction.
16396  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
16397    // If the RHS of the sub is a XOR with one use and a constant, invert the
16398    // immediate. Then add one to the LHS of the sub so we can turn
16399    // X-Y -> X+~Y+1, saving one register.
16400    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
16401        isa<ConstantSDNode>(Op1.getOperand(1))) {
16402      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
16403      EVT VT = Op0.getValueType();
16404      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
16405                                   Op1.getOperand(0),
16406                                   DAG.getConstant(~XorC, VT));
16407      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
16408                         DAG.getConstant(C->getAPIntValue()+1, VT));
16409    }
16410  }
16411
16412  // Try to synthesize horizontal adds from adds of shuffles.
16413  EVT VT = N->getValueType(0);
16414  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
16415       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
16416      isHorizontalBinOp(Op0, Op1, true))
16417    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
16418
16419  return OptimizeConditionalInDecrement(N, DAG);
16420}
16421
16422SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
16423                                             DAGCombinerInfo &DCI) const {
16424  SelectionDAG &DAG = DCI.DAG;
16425  switch (N->getOpcode()) {
16426  default: break;
16427  case ISD::EXTRACT_VECTOR_ELT:
16428    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
16429  case ISD::VSELECT:
16430  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
16431  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
16432  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
16433  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
16434  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
16435  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
16436  case ISD::SHL:
16437  case ISD::SRA:
16438  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
16439  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
16440  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
16441  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
16442  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
16443  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
16444  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
16445  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
16446  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
16447  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
16448  case X86ISD::FXOR:
16449  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
16450  case X86ISD::FMIN:
16451  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
16452  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
16453  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
16454  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
16455  case ISD::ANY_EXTEND:
16456  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
16457  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
16458  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG,DCI,Subtarget);
16459  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
16460  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
16461  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
16462  case X86ISD::SHUFP:       // Handle all target specific shuffles
16463  case X86ISD::PALIGN:
16464  case X86ISD::UNPCKH:
16465  case X86ISD::UNPCKL:
16466  case X86ISD::MOVHLPS:
16467  case X86ISD::MOVLHPS:
16468  case X86ISD::PSHUFD:
16469  case X86ISD::PSHUFHW:
16470  case X86ISD::PSHUFLW:
16471  case X86ISD::MOVSS:
16472  case X86ISD::MOVSD:
16473  case X86ISD::VPERMILP:
16474  case X86ISD::VPERM2X128:
16475  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
16476  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
16477  }
16478
16479  return SDValue();
16480}
16481
16482/// isTypeDesirableForOp - Return true if the target has native support for
16483/// the specified value type and it is 'desirable' to use the type for the
16484/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
16485/// instruction encodings are longer and some i16 instructions are slow.
16486bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
16487  if (!isTypeLegal(VT))
16488    return false;
16489  if (VT != MVT::i16)
16490    return true;
16491
16492  switch (Opc) {
16493  default:
16494    return true;
16495  case ISD::LOAD:
16496  case ISD::SIGN_EXTEND:
16497  case ISD::ZERO_EXTEND:
16498  case ISD::ANY_EXTEND:
16499  case ISD::SHL:
16500  case ISD::SRL:
16501  case ISD::SUB:
16502  case ISD::ADD:
16503  case ISD::MUL:
16504  case ISD::AND:
16505  case ISD::OR:
16506  case ISD::XOR:
16507    return false;
16508  }
16509}
16510
16511/// IsDesirableToPromoteOp - This method query the target whether it is
16512/// beneficial for dag combiner to promote the specified node. If true, it
16513/// should return the desired promotion type by reference.
16514bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
16515  EVT VT = Op.getValueType();
16516  if (VT != MVT::i16)
16517    return false;
16518
16519  bool Promote = false;
16520  bool Commute = false;
16521  switch (Op.getOpcode()) {
16522  default: break;
16523  case ISD::LOAD: {
16524    LoadSDNode *LD = cast<LoadSDNode>(Op);
16525    // If the non-extending load has a single use and it's not live out, then it
16526    // might be folded.
16527    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
16528                                                     Op.hasOneUse()*/) {
16529      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
16530             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
16531        // The only case where we'd want to promote LOAD (rather then it being
16532        // promoted as an operand is when it's only use is liveout.
16533        if (UI->getOpcode() != ISD::CopyToReg)
16534          return false;
16535      }
16536    }
16537    Promote = true;
16538    break;
16539  }
16540  case ISD::SIGN_EXTEND:
16541  case ISD::ZERO_EXTEND:
16542  case ISD::ANY_EXTEND:
16543    Promote = true;
16544    break;
16545  case ISD::SHL:
16546  case ISD::SRL: {
16547    SDValue N0 = Op.getOperand(0);
16548    // Look out for (store (shl (load), x)).
16549    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
16550      return false;
16551    Promote = true;
16552    break;
16553  }
16554  case ISD::ADD:
16555  case ISD::MUL:
16556  case ISD::AND:
16557  case ISD::OR:
16558  case ISD::XOR:
16559    Commute = true;
16560    // fallthrough
16561  case ISD::SUB: {
16562    SDValue N0 = Op.getOperand(0);
16563    SDValue N1 = Op.getOperand(1);
16564    if (!Commute && MayFoldLoad(N1))
16565      return false;
16566    // Avoid disabling potential load folding opportunities.
16567    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
16568      return false;
16569    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
16570      return false;
16571    Promote = true;
16572  }
16573  }
16574
16575  PVT = MVT::i32;
16576  return Promote;
16577}
16578
16579//===----------------------------------------------------------------------===//
16580//                           X86 Inline Assembly Support
16581//===----------------------------------------------------------------------===//
16582
16583namespace {
16584  // Helper to match a string separated by whitespace.
16585  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
16586    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
16587
16588    for (unsigned i = 0, e = args.size(); i != e; ++i) {
16589      StringRef piece(*args[i]);
16590      if (!s.startswith(piece)) // Check if the piece matches.
16591        return false;
16592
16593      s = s.substr(piece.size());
16594      StringRef::size_type pos = s.find_first_not_of(" \t");
16595      if (pos == 0) // We matched a prefix.
16596        return false;
16597
16598      s = s.substr(pos);
16599    }
16600
16601    return s.empty();
16602  }
16603  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
16604}
16605
16606bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
16607  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
16608
16609  std::string AsmStr = IA->getAsmString();
16610
16611  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
16612  if (!Ty || Ty->getBitWidth() % 16 != 0)
16613    return false;
16614
16615  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
16616  SmallVector<StringRef, 4> AsmPieces;
16617  SplitString(AsmStr, AsmPieces, ";\n");
16618
16619  switch (AsmPieces.size()) {
16620  default: return false;
16621  case 1:
16622    // FIXME: this should verify that we are targeting a 486 or better.  If not,
16623    // we will turn this bswap into something that will be lowered to logical
16624    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
16625    // lower so don't worry about this.
16626    // bswap $0
16627    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
16628        matchAsm(AsmPieces[0], "bswapl", "$0") ||
16629        matchAsm(AsmPieces[0], "bswapq", "$0") ||
16630        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
16631        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
16632        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
16633      // No need to check constraints, nothing other than the equivalent of
16634      // "=r,0" would be valid here.
16635      return IntrinsicLowering::LowerToByteSwap(CI);
16636    }
16637
16638    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
16639    if (CI->getType()->isIntegerTy(16) &&
16640        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16641        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
16642         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
16643      AsmPieces.clear();
16644      const std::string &ConstraintsStr = IA->getConstraintString();
16645      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16646      std::sort(AsmPieces.begin(), AsmPieces.end());
16647      if (AsmPieces.size() == 4 &&
16648          AsmPieces[0] == "~{cc}" &&
16649          AsmPieces[1] == "~{dirflag}" &&
16650          AsmPieces[2] == "~{flags}" &&
16651          AsmPieces[3] == "~{fpsr}")
16652      return IntrinsicLowering::LowerToByteSwap(CI);
16653    }
16654    break;
16655  case 3:
16656    if (CI->getType()->isIntegerTy(32) &&
16657        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16658        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
16659        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
16660        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
16661      AsmPieces.clear();
16662      const std::string &ConstraintsStr = IA->getConstraintString();
16663      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16664      std::sort(AsmPieces.begin(), AsmPieces.end());
16665      if (AsmPieces.size() == 4 &&
16666          AsmPieces[0] == "~{cc}" &&
16667          AsmPieces[1] == "~{dirflag}" &&
16668          AsmPieces[2] == "~{flags}" &&
16669          AsmPieces[3] == "~{fpsr}")
16670        return IntrinsicLowering::LowerToByteSwap(CI);
16671    }
16672
16673    if (CI->getType()->isIntegerTy(64)) {
16674      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
16675      if (Constraints.size() >= 2 &&
16676          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
16677          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
16678        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
16679        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
16680            matchAsm(AsmPieces[1], "bswap", "%edx") &&
16681            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
16682          return IntrinsicLowering::LowerToByteSwap(CI);
16683      }
16684    }
16685    break;
16686  }
16687  return false;
16688}
16689
16690
16691
16692/// getConstraintType - Given a constraint letter, return the type of
16693/// constraint it is for this target.
16694X86TargetLowering::ConstraintType
16695X86TargetLowering::getConstraintType(const std::string &Constraint) const {
16696  if (Constraint.size() == 1) {
16697    switch (Constraint[0]) {
16698    case 'R':
16699    case 'q':
16700    case 'Q':
16701    case 'f':
16702    case 't':
16703    case 'u':
16704    case 'y':
16705    case 'x':
16706    case 'Y':
16707    case 'l':
16708      return C_RegisterClass;
16709    case 'a':
16710    case 'b':
16711    case 'c':
16712    case 'd':
16713    case 'S':
16714    case 'D':
16715    case 'A':
16716      return C_Register;
16717    case 'I':
16718    case 'J':
16719    case 'K':
16720    case 'L':
16721    case 'M':
16722    case 'N':
16723    case 'G':
16724    case 'C':
16725    case 'e':
16726    case 'Z':
16727      return C_Other;
16728    default:
16729      break;
16730    }
16731  }
16732  return TargetLowering::getConstraintType(Constraint);
16733}
16734
16735/// Examine constraint type and operand type and determine a weight value.
16736/// This object must already have been set up with the operand type
16737/// and the current alternative constraint selected.
16738TargetLowering::ConstraintWeight
16739  X86TargetLowering::getSingleConstraintMatchWeight(
16740    AsmOperandInfo &info, const char *constraint) const {
16741  ConstraintWeight weight = CW_Invalid;
16742  Value *CallOperandVal = info.CallOperandVal;
16743    // If we don't have a value, we can't do a match,
16744    // but allow it at the lowest weight.
16745  if (CallOperandVal == NULL)
16746    return CW_Default;
16747  Type *type = CallOperandVal->getType();
16748  // Look at the constraint type.
16749  switch (*constraint) {
16750  default:
16751    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
16752  case 'R':
16753  case 'q':
16754  case 'Q':
16755  case 'a':
16756  case 'b':
16757  case 'c':
16758  case 'd':
16759  case 'S':
16760  case 'D':
16761  case 'A':
16762    if (CallOperandVal->getType()->isIntegerTy())
16763      weight = CW_SpecificReg;
16764    break;
16765  case 'f':
16766  case 't':
16767  case 'u':
16768      if (type->isFloatingPointTy())
16769        weight = CW_SpecificReg;
16770      break;
16771  case 'y':
16772      if (type->isX86_MMXTy() && Subtarget->hasMMX())
16773        weight = CW_SpecificReg;
16774      break;
16775  case 'x':
16776  case 'Y':
16777    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
16778        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
16779      weight = CW_Register;
16780    break;
16781  case 'I':
16782    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
16783      if (C->getZExtValue() <= 31)
16784        weight = CW_Constant;
16785    }
16786    break;
16787  case 'J':
16788    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16789      if (C->getZExtValue() <= 63)
16790        weight = CW_Constant;
16791    }
16792    break;
16793  case 'K':
16794    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16795      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
16796        weight = CW_Constant;
16797    }
16798    break;
16799  case 'L':
16800    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16801      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
16802        weight = CW_Constant;
16803    }
16804    break;
16805  case 'M':
16806    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16807      if (C->getZExtValue() <= 3)
16808        weight = CW_Constant;
16809    }
16810    break;
16811  case 'N':
16812    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16813      if (C->getZExtValue() <= 0xff)
16814        weight = CW_Constant;
16815    }
16816    break;
16817  case 'G':
16818  case 'C':
16819    if (dyn_cast<ConstantFP>(CallOperandVal)) {
16820      weight = CW_Constant;
16821    }
16822    break;
16823  case 'e':
16824    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16825      if ((C->getSExtValue() >= -0x80000000LL) &&
16826          (C->getSExtValue() <= 0x7fffffffLL))
16827        weight = CW_Constant;
16828    }
16829    break;
16830  case 'Z':
16831    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16832      if (C->getZExtValue() <= 0xffffffff)
16833        weight = CW_Constant;
16834    }
16835    break;
16836  }
16837  return weight;
16838}
16839
16840/// LowerXConstraint - try to replace an X constraint, which matches anything,
16841/// with another that has more specific requirements based on the type of the
16842/// corresponding operand.
16843const char *X86TargetLowering::
16844LowerXConstraint(EVT ConstraintVT) const {
16845  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
16846  // 'f' like normal targets.
16847  if (ConstraintVT.isFloatingPoint()) {
16848    if (Subtarget->hasSSE2())
16849      return "Y";
16850    if (Subtarget->hasSSE1())
16851      return "x";
16852  }
16853
16854  return TargetLowering::LowerXConstraint(ConstraintVT);
16855}
16856
16857/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16858/// vector.  If it is invalid, don't add anything to Ops.
16859void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16860                                                     std::string &Constraint,
16861                                                     std::vector<SDValue>&Ops,
16862                                                     SelectionDAG &DAG) const {
16863  SDValue Result(0, 0);
16864
16865  // Only support length 1 constraints for now.
16866  if (Constraint.length() > 1) return;
16867
16868  char ConstraintLetter = Constraint[0];
16869  switch (ConstraintLetter) {
16870  default: break;
16871  case 'I':
16872    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16873      if (C->getZExtValue() <= 31) {
16874        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16875        break;
16876      }
16877    }
16878    return;
16879  case 'J':
16880    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16881      if (C->getZExtValue() <= 63) {
16882        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16883        break;
16884      }
16885    }
16886    return;
16887  case 'K':
16888    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16889      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
16890        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16891        break;
16892      }
16893    }
16894    return;
16895  case 'N':
16896    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16897      if (C->getZExtValue() <= 255) {
16898        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16899        break;
16900      }
16901    }
16902    return;
16903  case 'e': {
16904    // 32-bit signed value
16905    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16906      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16907                                           C->getSExtValue())) {
16908        // Widen to 64 bits here to get it sign extended.
16909        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
16910        break;
16911      }
16912    // FIXME gcc accepts some relocatable values here too, but only in certain
16913    // memory models; it's complicated.
16914    }
16915    return;
16916  }
16917  case 'Z': {
16918    // 32-bit unsigned value
16919    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16920      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16921                                           C->getZExtValue())) {
16922        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16923        break;
16924      }
16925    }
16926    // FIXME gcc accepts some relocatable values here too, but only in certain
16927    // memory models; it's complicated.
16928    return;
16929  }
16930  case 'i': {
16931    // Literal immediates are always ok.
16932    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
16933      // Widen to 64 bits here to get it sign extended.
16934      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
16935      break;
16936    }
16937
16938    // In any sort of PIC mode addresses need to be computed at runtime by
16939    // adding in a register or some sort of table lookup.  These can't
16940    // be used as immediates.
16941    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
16942      return;
16943
16944    // If we are in non-pic codegen mode, we allow the address of a global (with
16945    // an optional displacement) to be used with 'i'.
16946    GlobalAddressSDNode *GA = 0;
16947    int64_t Offset = 0;
16948
16949    // Match either (GA), (GA+C), (GA+C1+C2), etc.
16950    while (1) {
16951      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
16952        Offset += GA->getOffset();
16953        break;
16954      } else if (Op.getOpcode() == ISD::ADD) {
16955        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16956          Offset += C->getZExtValue();
16957          Op = Op.getOperand(0);
16958          continue;
16959        }
16960      } else if (Op.getOpcode() == ISD::SUB) {
16961        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16962          Offset += -C->getZExtValue();
16963          Op = Op.getOperand(0);
16964          continue;
16965        }
16966      }
16967
16968      // Otherwise, this isn't something we can handle, reject it.
16969      return;
16970    }
16971
16972    const GlobalValue *GV = GA->getGlobal();
16973    // If we require an extra load to get this address, as in PIC mode, we
16974    // can't accept it.
16975    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
16976                                                        getTargetMachine())))
16977      return;
16978
16979    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
16980                                        GA->getValueType(0), Offset);
16981    break;
16982  }
16983  }
16984
16985  if (Result.getNode()) {
16986    Ops.push_back(Result);
16987    return;
16988  }
16989  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16990}
16991
16992std::pair<unsigned, const TargetRegisterClass*>
16993X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
16994                                                EVT VT) const {
16995  // First, see if this is a constraint that directly corresponds to an LLVM
16996  // register class.
16997  if (Constraint.size() == 1) {
16998    // GCC Constraint Letters
16999    switch (Constraint[0]) {
17000    default: break;
17001      // TODO: Slight differences here in allocation order and leaving
17002      // RIP in the class. Do they matter any more here than they do
17003      // in the normal allocation?
17004    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
17005      if (Subtarget->is64Bit()) {
17006        if (VT == MVT::i32 || VT == MVT::f32)
17007          return std::make_pair(0U, &X86::GR32RegClass);
17008        if (VT == MVT::i16)
17009          return std::make_pair(0U, &X86::GR16RegClass);
17010        if (VT == MVT::i8 || VT == MVT::i1)
17011          return std::make_pair(0U, &X86::GR8RegClass);
17012        if (VT == MVT::i64 || VT == MVT::f64)
17013          return std::make_pair(0U, &X86::GR64RegClass);
17014        break;
17015      }
17016      // 32-bit fallthrough
17017    case 'Q':   // Q_REGS
17018      if (VT == MVT::i32 || VT == MVT::f32)
17019        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
17020      if (VT == MVT::i16)
17021        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
17022      if (VT == MVT::i8 || VT == MVT::i1)
17023        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
17024      if (VT == MVT::i64)
17025        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
17026      break;
17027    case 'r':   // GENERAL_REGS
17028    case 'l':   // INDEX_REGS
17029      if (VT == MVT::i8 || VT == MVT::i1)
17030        return std::make_pair(0U, &X86::GR8RegClass);
17031      if (VT == MVT::i16)
17032        return std::make_pair(0U, &X86::GR16RegClass);
17033      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
17034        return std::make_pair(0U, &X86::GR32RegClass);
17035      return std::make_pair(0U, &X86::GR64RegClass);
17036    case 'R':   // LEGACY_REGS
17037      if (VT == MVT::i8 || VT == MVT::i1)
17038        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
17039      if (VT == MVT::i16)
17040        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
17041      if (VT == MVT::i32 || !Subtarget->is64Bit())
17042        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
17043      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
17044    case 'f':  // FP Stack registers.
17045      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
17046      // value to the correct fpstack register class.
17047      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
17048        return std::make_pair(0U, &X86::RFP32RegClass);
17049      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
17050        return std::make_pair(0U, &X86::RFP64RegClass);
17051      return std::make_pair(0U, &X86::RFP80RegClass);
17052    case 'y':   // MMX_REGS if MMX allowed.
17053      if (!Subtarget->hasMMX()) break;
17054      return std::make_pair(0U, &X86::VR64RegClass);
17055    case 'Y':   // SSE_REGS if SSE2 allowed
17056      if (!Subtarget->hasSSE2()) break;
17057      // FALL THROUGH.
17058    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
17059      if (!Subtarget->hasSSE1()) break;
17060
17061      switch (VT.getSimpleVT().SimpleTy) {
17062      default: break;
17063      // Scalar SSE types.
17064      case MVT::f32:
17065      case MVT::i32:
17066        return std::make_pair(0U, &X86::FR32RegClass);
17067      case MVT::f64:
17068      case MVT::i64:
17069        return std::make_pair(0U, &X86::FR64RegClass);
17070      // Vector types.
17071      case MVT::v16i8:
17072      case MVT::v8i16:
17073      case MVT::v4i32:
17074      case MVT::v2i64:
17075      case MVT::v4f32:
17076      case MVT::v2f64:
17077        return std::make_pair(0U, &X86::VR128RegClass);
17078      // AVX types.
17079      case MVT::v32i8:
17080      case MVT::v16i16:
17081      case MVT::v8i32:
17082      case MVT::v4i64:
17083      case MVT::v8f32:
17084      case MVT::v4f64:
17085        return std::make_pair(0U, &X86::VR256RegClass);
17086      }
17087      break;
17088    }
17089  }
17090
17091  // Use the default implementation in TargetLowering to convert the register
17092  // constraint into a member of a register class.
17093  std::pair<unsigned, const TargetRegisterClass*> Res;
17094  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
17095
17096  // Not found as a standard register?
17097  if (Res.second == 0) {
17098    // Map st(0) -> st(7) -> ST0
17099    if (Constraint.size() == 7 && Constraint[0] == '{' &&
17100        tolower(Constraint[1]) == 's' &&
17101        tolower(Constraint[2]) == 't' &&
17102        Constraint[3] == '(' &&
17103        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
17104        Constraint[5] == ')' &&
17105        Constraint[6] == '}') {
17106
17107      Res.first = X86::ST0+Constraint[4]-'0';
17108      Res.second = &X86::RFP80RegClass;
17109      return Res;
17110    }
17111
17112    // GCC allows "st(0)" to be called just plain "st".
17113    if (StringRef("{st}").equals_lower(Constraint)) {
17114      Res.first = X86::ST0;
17115      Res.second = &X86::RFP80RegClass;
17116      return Res;
17117    }
17118
17119    // flags -> EFLAGS
17120    if (StringRef("{flags}").equals_lower(Constraint)) {
17121      Res.first = X86::EFLAGS;
17122      Res.second = &X86::CCRRegClass;
17123      return Res;
17124    }
17125
17126    // 'A' means EAX + EDX.
17127    if (Constraint == "A") {
17128      Res.first = X86::EAX;
17129      Res.second = &X86::GR32_ADRegClass;
17130      return Res;
17131    }
17132    return Res;
17133  }
17134
17135  // Otherwise, check to see if this is a register class of the wrong value
17136  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
17137  // turn into {ax},{dx}.
17138  if (Res.second->hasType(VT))
17139    return Res;   // Correct type already, nothing to do.
17140
17141  // All of the single-register GCC register classes map their values onto
17142  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
17143  // really want an 8-bit or 32-bit register, map to the appropriate register
17144  // class and return the appropriate register.
17145  if (Res.second == &X86::GR16RegClass) {
17146    if (VT == MVT::i8) {
17147      unsigned DestReg = 0;
17148      switch (Res.first) {
17149      default: break;
17150      case X86::AX: DestReg = X86::AL; break;
17151      case X86::DX: DestReg = X86::DL; break;
17152      case X86::CX: DestReg = X86::CL; break;
17153      case X86::BX: DestReg = X86::BL; break;
17154      }
17155      if (DestReg) {
17156        Res.first = DestReg;
17157        Res.second = &X86::GR8RegClass;
17158      }
17159    } else if (VT == MVT::i32) {
17160      unsigned DestReg = 0;
17161      switch (Res.first) {
17162      default: break;
17163      case X86::AX: DestReg = X86::EAX; break;
17164      case X86::DX: DestReg = X86::EDX; break;
17165      case X86::CX: DestReg = X86::ECX; break;
17166      case X86::BX: DestReg = X86::EBX; break;
17167      case X86::SI: DestReg = X86::ESI; break;
17168      case X86::DI: DestReg = X86::EDI; break;
17169      case X86::BP: DestReg = X86::EBP; break;
17170      case X86::SP: DestReg = X86::ESP; break;
17171      }
17172      if (DestReg) {
17173        Res.first = DestReg;
17174        Res.second = &X86::GR32RegClass;
17175      }
17176    } else if (VT == MVT::i64) {
17177      unsigned DestReg = 0;
17178      switch (Res.first) {
17179      default: break;
17180      case X86::AX: DestReg = X86::RAX; break;
17181      case X86::DX: DestReg = X86::RDX; break;
17182      case X86::CX: DestReg = X86::RCX; break;
17183      case X86::BX: DestReg = X86::RBX; break;
17184      case X86::SI: DestReg = X86::RSI; break;
17185      case X86::DI: DestReg = X86::RDI; break;
17186      case X86::BP: DestReg = X86::RBP; break;
17187      case X86::SP: DestReg = X86::RSP; break;
17188      }
17189      if (DestReg) {
17190        Res.first = DestReg;
17191        Res.second = &X86::GR64RegClass;
17192      }
17193    }
17194  } else if (Res.second == &X86::FR32RegClass ||
17195             Res.second == &X86::FR64RegClass ||
17196             Res.second == &X86::VR128RegClass) {
17197    // Handle references to XMM physical registers that got mapped into the
17198    // wrong class.  This can happen with constraints like {xmm0} where the
17199    // target independent register mapper will just pick the first match it can
17200    // find, ignoring the required type.
17201
17202    if (VT == MVT::f32 || VT == MVT::i32)
17203      Res.second = &X86::FR32RegClass;
17204    else if (VT == MVT::f64 || VT == MVT::i64)
17205      Res.second = &X86::FR64RegClass;
17206    else if (X86::VR128RegClass.hasType(VT))
17207      Res.second = &X86::VR128RegClass;
17208    else if (X86::VR256RegClass.hasType(VT))
17209      Res.second = &X86::VR256RegClass;
17210  }
17211
17212  return Res;
17213}
17214