X86ISelLowering.cpp revision c4db4e5105ccd82df19f141957511f735a9be2d0
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53using namespace llvm;
54using namespace dwarf;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static SDValue Insert128BitVector(SDValue Result,
63                                  SDValue Vec,
64                                  SDValue Idx,
65                                  SelectionDAG &DAG,
66                                  DebugLoc dl);
67
68static SDValue Extract128BitVector(SDValue Vec,
69                                   SDValue Idx,
70                                   SelectionDAG &DAG,
71                                   DebugLoc dl);
72
73static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG);
74
75
76/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
77/// sets things up to match to an AVX VEXTRACTF128 instruction or a
78/// simple subregister reference.  Idx is an index in the 128 bits we
79/// want.  It need not be aligned to a 128-bit bounday.  That makes
80/// lowering EXTRACT_VECTOR_ELT operations easier.
81static SDValue Extract128BitVector(SDValue Vec,
82                                   SDValue Idx,
83                                   SelectionDAG &DAG,
84                                   DebugLoc dl) {
85  EVT VT = Vec.getValueType();
86  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
87
88  EVT ElVT = VT.getVectorElementType();
89
90  int Factor = VT.getSizeInBits() / 128;
91
92  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(),
93                                  ElVT,
94                                  VT.getVectorNumElements() / Factor);
95
96  // Extract from UNDEF is UNDEF.
97  if (Vec.getOpcode() == ISD::UNDEF)
98    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
99
100  if (isa<ConstantSDNode>(Idx)) {
101    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
102
103    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
104    // we can match to VEXTRACTF128.
105    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
106
107    // This is the index of the first element of the 128-bit chunk
108    // we want.
109    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
110                                 * ElemsPerChunk);
111
112    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
113
114    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
115                                 VecIdx);
116
117    return Result;
118  }
119
120  return SDValue();
121}
122
123/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
124/// sets things up to match to an AVX VINSERTF128 instruction or a
125/// simple superregister reference.  Idx is an index in the 128 bits
126/// we want.  It need not be aligned to a 128-bit bounday.  That makes
127/// lowering INSERT_VECTOR_ELT operations easier.
128static SDValue Insert128BitVector(SDValue Result,
129                                  SDValue Vec,
130                                  SDValue Idx,
131                                  SelectionDAG &DAG,
132                                  DebugLoc dl) {
133  if (isa<ConstantSDNode>(Idx)) {
134    EVT VT = Vec.getValueType();
135    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
136
137    EVT ElVT = VT.getVectorElementType();
138
139    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
140
141    EVT ResultVT = Result.getValueType();
142
143    // Insert the relevant 128 bits.
144    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
145
146    // This is the index of the first element of the 128-bit chunk
147    // we want.
148    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
149                                 * ElemsPerChunk);
150
151    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
152
153    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
154                         VecIdx);
155    return Result;
156  }
157
158  return SDValue();
159}
160
161/// Given two vectors, concat them.
162static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG) {
163  DebugLoc dl = Lower.getDebugLoc();
164
165  assert(Lower.getValueType() == Upper.getValueType() && "Mismatched vectors!");
166
167  EVT VT = EVT::getVectorVT(*DAG.getContext(),
168                            Lower.getValueType().getVectorElementType(),
169                            Lower.getValueType().getVectorNumElements() * 2);
170
171  // TODO: Generalize to arbitrary vector length (this assumes 256-bit vectors).
172  assert(VT.getSizeInBits() == 256 && "Unsupported vector concat!");
173
174  // Insert the upper subvector.
175  SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
176                                   DAG.getConstant(
177                                     // This is half the length of the result
178                                     // vector.  Start inserting the upper 128
179                                     // bits here.
180                                     Lower.getValueType().getVectorNumElements(),
181                                     MVT::i32),
182                                   DAG, dl);
183
184  // Insert the lower subvector.
185  Vec = Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32), DAG, dl);
186  return Vec;
187}
188
189static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
190  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
191  bool is64Bit = Subtarget->is64Bit();
192
193  if (Subtarget->isTargetEnvMacho()) {
194    if (is64Bit)
195      return new X8664_MachoTargetObjectFile();
196    return new TargetLoweringObjectFileMachO();
197  }
198
199  if (Subtarget->isTargetELF()) {
200    if (is64Bit)
201      return new X8664_ELFTargetObjectFile(TM);
202    return new X8632_ELFTargetObjectFile(TM);
203  }
204  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
205    return new TargetLoweringObjectFileCOFF();
206  llvm_unreachable("unknown subtarget type");
207}
208
209X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
210  : TargetLowering(TM, createTLOF(TM)) {
211  Subtarget = &TM.getSubtarget<X86Subtarget>();
212  X86ScalarSSEf64 = Subtarget->hasXMMInt();
213  X86ScalarSSEf32 = Subtarget->hasXMM();
214  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
215
216  RegInfo = TM.getRegisterInfo();
217  TD = getTargetData();
218
219  // Set up the TargetLowering object.
220  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
221
222  // X86 is weird, it always uses i8 for shift amounts and setcc results.
223  setBooleanContents(ZeroOrOneBooleanContent);
224  setSchedulingPreference(Sched::RegPressure);
225  setStackPointerRegisterToSaveRestore(X86StackPtr);
226
227  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
228    // Setup Windows compiler runtime calls.
229    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
230    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
231    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
232    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
233    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
234    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
235    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
236    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
237  }
238
239  if (Subtarget->isTargetDarwin()) {
240    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
241    setUseUnderscoreSetJmp(false);
242    setUseUnderscoreLongJmp(false);
243  } else if (Subtarget->isTargetMingw()) {
244    // MS runtime is weird: it exports _setjmp, but longjmp!
245    setUseUnderscoreSetJmp(true);
246    setUseUnderscoreLongJmp(false);
247  } else {
248    setUseUnderscoreSetJmp(true);
249    setUseUnderscoreLongJmp(true);
250  }
251
252  // Set up the register classes.
253  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
254  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
255  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
256  if (Subtarget->is64Bit())
257    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
258
259  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
260
261  // We don't accept any truncstore of integer registers.
262  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
263  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
264  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
265  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
266  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
267  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
268
269  // SETOEQ and SETUNE require checking two conditions.
270  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
271  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
272  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
273  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
274  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
275  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
276
277  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
278  // operation.
279  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
280  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
281  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
282
283  if (Subtarget->is64Bit()) {
284    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
285    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
286  } else if (!UseSoftFloat) {
287    // We have an algorithm for SSE2->double, and we turn this into a
288    // 64-bit FILD followed by conditional FADD for other targets.
289    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
290    // We have an algorithm for SSE2, and we turn this into a 64-bit
291    // FILD for other targets.
292    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
293  }
294
295  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
296  // this operation.
297  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
298  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
299
300  if (!UseSoftFloat) {
301    // SSE has no i16 to fp conversion, only i32
302    if (X86ScalarSSEf32) {
303      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
304      // f32 and f64 cases are Legal, f80 case is not
305      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
306    } else {
307      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
308      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
309    }
310  } else {
311    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
312    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
313  }
314
315  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
316  // are Legal, f80 is custom lowered.
317  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
318  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
319
320  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
321  // this operation.
322  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
323  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
324
325  if (X86ScalarSSEf32) {
326    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
327    // f32 and f64 cases are Legal, f80 case is not
328    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
329  } else {
330    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
331    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
332  }
333
334  // Handle FP_TO_UINT by promoting the destination to a larger signed
335  // conversion.
336  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
337  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
338  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
339
340  if (Subtarget->is64Bit()) {
341    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
342    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
343  } else if (!UseSoftFloat) {
344    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
345      // Expand FP_TO_UINT into a select.
346      // FIXME: We would like to use a Custom expander here eventually to do
347      // the optimal thing for SSE vs. the default expansion in the legalizer.
348      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
349    else
350      // With SSE3 we can use fisttpll to convert to a signed i64; without
351      // SSE, we're stuck with a fistpll.
352      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
353  }
354
355  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
356  if (!X86ScalarSSEf64) {
357    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
358    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
359    if (Subtarget->is64Bit()) {
360      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
361      // Without SSE, i64->f64 goes through memory.
362      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
363    }
364  }
365
366  // Scalar integer divide and remainder are lowered to use operations that
367  // produce two results, to match the available instructions. This exposes
368  // the two-result form to trivial CSE, which is able to combine x/y and x%y
369  // into a single instruction.
370  //
371  // Scalar integer multiply-high is also lowered to use two-result
372  // operations, to match the available instructions. However, plain multiply
373  // (low) operations are left as Legal, as there are single-result
374  // instructions for this in x86. Using the two-result multiply instructions
375  // when both high and low results are needed must be arranged by dagcombine.
376  for (unsigned i = 0, e = 4; i != e; ++i) {
377    MVT VT = IntVTs[i];
378    setOperationAction(ISD::MULHS, VT, Expand);
379    setOperationAction(ISD::MULHU, VT, Expand);
380    setOperationAction(ISD::SDIV, VT, Expand);
381    setOperationAction(ISD::UDIV, VT, Expand);
382    setOperationAction(ISD::SREM, VT, Expand);
383    setOperationAction(ISD::UREM, VT, Expand);
384
385    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
386    setOperationAction(ISD::ADDC, VT, Custom);
387    setOperationAction(ISD::ADDE, VT, Custom);
388    setOperationAction(ISD::SUBC, VT, Custom);
389    setOperationAction(ISD::SUBE, VT, Custom);
390  }
391
392  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
393  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
394  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
395  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
396  if (Subtarget->is64Bit())
397    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
398  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
399  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
400  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
401  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
402  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
403  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
404  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
405  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
406
407  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
408  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
409  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
410  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
411  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
412  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
413  if (Subtarget->is64Bit()) {
414    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
415    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
416  }
417
418  if (Subtarget->hasPOPCNT()) {
419    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
420  } else {
421    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
422    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
423    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
424    if (Subtarget->is64Bit())
425      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
426  }
427
428  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
429  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
430
431  // These should be promoted to a larger select which is supported.
432  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
433  // X86 wants to expand cmov itself.
434  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
435  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
436  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
437  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
438  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
439  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
440  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
441  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
442  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
446  if (Subtarget->is64Bit()) {
447    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
448    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
449  }
450  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
451
452  // Darwin ABI issue.
453  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
454  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
455  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
456  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
457  if (Subtarget->is64Bit())
458    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
459  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
460  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
461  if (Subtarget->is64Bit()) {
462    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
463    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
464    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
465    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
466    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
467  }
468  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
469  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
470  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
471  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
472  if (Subtarget->is64Bit()) {
473    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
474    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
475    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
476  }
477
478  if (Subtarget->hasXMM())
479    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
480
481  // We may not have a libcall for MEMBARRIER so we should lower this.
482  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
483
484  // On X86 and X86-64, atomic operations are lowered to locked instructions.
485  // Locked instructions, in turn, have implicit fence semantics (all memory
486  // operations are flushed before issuing the locked instruction, and they
487  // are not buffered), so we can fold away the common pattern of
488  // fence-atomic-fence.
489  setShouldFoldAtomicFences(true);
490
491  // Expand certain atomics
492  for (unsigned i = 0, e = 4; i != e; ++i) {
493    MVT VT = IntVTs[i];
494    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
495    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
496  }
497
498  if (!Subtarget->is64Bit()) {
499    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
503    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
506  }
507
508  // FIXME - use subtarget debug flags
509  if (!Subtarget->isTargetDarwin() &&
510      !Subtarget->isTargetELF() &&
511      !Subtarget->isTargetCygMing()) {
512    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
513  }
514
515  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
516  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
517  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
518  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
519  if (Subtarget->is64Bit()) {
520    setExceptionPointerRegister(X86::RAX);
521    setExceptionSelectorRegister(X86::RDX);
522  } else {
523    setExceptionPointerRegister(X86::EAX);
524    setExceptionSelectorRegister(X86::EDX);
525  }
526  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
527  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
528
529  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
530
531  setOperationAction(ISD::TRAP, MVT::Other, Legal);
532
533  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
534  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
535  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
536  if (Subtarget->is64Bit()) {
537    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
538    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
539  } else {
540    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
541    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
542  }
543
544  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
545  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
546  if (Subtarget->is64Bit())
547    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
548  if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
549    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
550  else
551    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
552
553  if (!UseSoftFloat && X86ScalarSSEf64) {
554    // f32 and f64 use SSE.
555    // Set up the FP register classes.
556    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
557    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
558
559    // Use ANDPD to simulate FABS.
560    setOperationAction(ISD::FABS , MVT::f64, Custom);
561    setOperationAction(ISD::FABS , MVT::f32, Custom);
562
563    // Use XORP to simulate FNEG.
564    setOperationAction(ISD::FNEG , MVT::f64, Custom);
565    setOperationAction(ISD::FNEG , MVT::f32, Custom);
566
567    // Use ANDPD and ORPD to simulate FCOPYSIGN.
568    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
569    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
570
571    // We don't support sin/cos/fmod
572    setOperationAction(ISD::FSIN , MVT::f64, Expand);
573    setOperationAction(ISD::FCOS , MVT::f64, Expand);
574    setOperationAction(ISD::FSIN , MVT::f32, Expand);
575    setOperationAction(ISD::FCOS , MVT::f32, Expand);
576
577    // Expand FP immediates into loads from the stack, except for the special
578    // cases we handle.
579    addLegalFPImmediate(APFloat(+0.0)); // xorpd
580    addLegalFPImmediate(APFloat(+0.0f)); // xorps
581  } else if (!UseSoftFloat && X86ScalarSSEf32) {
582    // Use SSE for f32, x87 for f64.
583    // Set up the FP register classes.
584    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
585    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
586
587    // Use ANDPS to simulate FABS.
588    setOperationAction(ISD::FABS , MVT::f32, Custom);
589
590    // Use XORP to simulate FNEG.
591    setOperationAction(ISD::FNEG , MVT::f32, Custom);
592
593    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
594
595    // Use ANDPS and ORPS to simulate FCOPYSIGN.
596    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
597    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
598
599    // We don't support sin/cos/fmod
600    setOperationAction(ISD::FSIN , MVT::f32, Expand);
601    setOperationAction(ISD::FCOS , MVT::f32, Expand);
602
603    // Special cases we handle for FP constants.
604    addLegalFPImmediate(APFloat(+0.0f)); // xorps
605    addLegalFPImmediate(APFloat(+0.0)); // FLD0
606    addLegalFPImmediate(APFloat(+1.0)); // FLD1
607    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
608    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
609
610    if (!UnsafeFPMath) {
611      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
612      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
613    }
614  } else if (!UseSoftFloat) {
615    // f32 and f64 in x87.
616    // Set up the FP register classes.
617    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
618    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
619
620    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
621    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
622    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
623    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
624
625    if (!UnsafeFPMath) {
626      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
627      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
628    }
629    addLegalFPImmediate(APFloat(+0.0)); // FLD0
630    addLegalFPImmediate(APFloat(+1.0)); // FLD1
631    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
632    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
633    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
634    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
635    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
636    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
637  }
638
639  // Long double always uses X87.
640  if (!UseSoftFloat) {
641    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
642    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
643    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
644    {
645      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
646      addLegalFPImmediate(TmpFlt);  // FLD0
647      TmpFlt.changeSign();
648      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
649
650      bool ignored;
651      APFloat TmpFlt2(+1.0);
652      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
653                      &ignored);
654      addLegalFPImmediate(TmpFlt2);  // FLD1
655      TmpFlt2.changeSign();
656      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
657    }
658
659    if (!UnsafeFPMath) {
660      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
661      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
662    }
663  }
664
665  // Always use a library call for pow.
666  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
667  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
668  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
669
670  setOperationAction(ISD::FLOG, MVT::f80, Expand);
671  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
672  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
673  setOperationAction(ISD::FEXP, MVT::f80, Expand);
674  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
675
676  // First set operation action for all vector types to either promote
677  // (for widening) or expand (for scalarization). Then we will selectively
678  // turn on ones that can be effectively codegen'd.
679  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
680       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
681    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
696    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
698    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
699    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
731    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
735    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
736         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
737      setTruncStoreAction((MVT::SimpleValueType)VT,
738                          (MVT::SimpleValueType)InnerVT, Expand);
739    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
740    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
741    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
742  }
743
744  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
745  // with -msoft-float, disable use of MMX as well.
746  if (!UseSoftFloat && Subtarget->hasMMX()) {
747    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
748    // No operations on x86mmx supported, everything uses intrinsics.
749  }
750
751  // MMX-sized vectors (other than x86mmx) are expected to be expanded
752  // into smaller operations.
753  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
754  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
755  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
756  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
757  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
758  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
759  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
760  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
761  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
762  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
763  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
764  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
765  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
766  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
767  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
768  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
769  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
770  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
771  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
772  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
773  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
774  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
775  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
776  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
777  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
778  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
779  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
780  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
781  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
782
783  if (!UseSoftFloat && Subtarget->hasXMM()) {
784    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
785
786    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
787    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
788    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
789    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
790    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
791    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
792    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
793    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
794    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
795    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
796    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
797    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
798  }
799
800  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
801    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
802
803    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
804    // registers cannot be used even for integer operations.
805    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
806    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
807    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
808    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
809
810    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
811    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
812    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
813    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
814    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
815    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
816    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
817    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
818    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
819    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
820    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
821    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
822    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
823    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
824    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
825    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
826
827    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
828    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
829    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
830    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
831
832    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
833    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
834    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
835    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
836    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
837
838    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
839    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
840    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
841    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
842    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
843
844    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
845    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
846      EVT VT = (MVT::SimpleValueType)i;
847      // Do not attempt to custom lower non-power-of-2 vectors
848      if (!isPowerOf2_32(VT.getVectorNumElements()))
849        continue;
850      // Do not attempt to custom lower non-128-bit vectors
851      if (!VT.is128BitVector())
852        continue;
853      setOperationAction(ISD::BUILD_VECTOR,
854                         VT.getSimpleVT().SimpleTy, Custom);
855      setOperationAction(ISD::VECTOR_SHUFFLE,
856                         VT.getSimpleVT().SimpleTy, Custom);
857      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
858                         VT.getSimpleVT().SimpleTy, Custom);
859    }
860
861    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
862    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
863    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
864    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
865    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
866    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
867
868    if (Subtarget->is64Bit()) {
869      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
870      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
871    }
872
873    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
874    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
875      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
876      EVT VT = SVT;
877
878      // Do not attempt to promote non-128-bit vectors
879      if (!VT.is128BitVector())
880        continue;
881
882      setOperationAction(ISD::AND,    SVT, Promote);
883      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
884      setOperationAction(ISD::OR,     SVT, Promote);
885      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
886      setOperationAction(ISD::XOR,    SVT, Promote);
887      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
888      setOperationAction(ISD::LOAD,   SVT, Promote);
889      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
890      setOperationAction(ISD::SELECT, SVT, Promote);
891      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
892    }
893
894    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
895
896    // Custom lower v2i64 and v2f64 selects.
897    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
898    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
899    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
900    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
901
902    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
903    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
904  }
905
906  if (Subtarget->hasSSE41()) {
907    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
908    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
909    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
910    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
911    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
912    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
913    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
914    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
915    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
916    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
917
918    // FIXME: Do we need to handle scalar-to-vector here?
919    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
920
921    // Can turn SHL into an integer multiply.
922    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
923    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
924
925    // i8 and i16 vectors are custom , because the source register and source
926    // source memory operand types are not the same width.  f32 vectors are
927    // custom since the immediate controlling the insert encodes additional
928    // information.
929    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
930    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
931    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
932    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
933
934    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
935    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
936    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
937    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
938
939    if (Subtarget->is64Bit()) {
940      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
942    }
943  }
944
945  if (Subtarget->hasSSE42())
946    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
947
948  if (!UseSoftFloat && Subtarget->hasAVX()) {
949    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
950    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
951    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
952    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
953    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
954
955    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
956    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
957    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
958    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
959
960    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
961    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
962    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
963    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
964    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
965    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
966
967    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
968    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
969    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
970    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
971    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
972    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
973
974    // Custom lower build_vector, vector_shuffle, scalar_to_vector,
975    // insert_vector_elt extract_subvector and extract_vector_elt for
976    // 256-bit types.
977    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
978         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
979         ++i) {
980      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
981      // Do not attempt to custom lower non-256-bit vectors
982      if (!isPowerOf2_32(MVT(VT).getVectorNumElements())
983          || (MVT(VT).getSizeInBits() < 256))
984        continue;
985      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
986      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
987      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
988      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
989      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
990    }
991    // Custom-lower insert_subvector and extract_subvector based on
992    // the result type.
993    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
994         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
995         ++i) {
996      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
997      // Do not attempt to custom lower non-256-bit vectors
998      if (!isPowerOf2_32(MVT(VT).getVectorNumElements()))
999        continue;
1000
1001      if (MVT(VT).getSizeInBits() == 128) {
1002        setOperationAction(ISD::EXTRACT_SUBVECTOR,  VT, Custom);
1003      }
1004      else if (MVT(VT).getSizeInBits() == 256) {
1005        setOperationAction(ISD::INSERT_SUBVECTOR,  VT, Custom);
1006      }
1007    }
1008
1009    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1010    // Don't promote loads because we need them for VPERM vector index versions.
1011
1012    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1013         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1014         VT++) {
1015      if (!isPowerOf2_32(MVT((MVT::SimpleValueType)VT).getVectorNumElements())
1016          || (MVT((MVT::SimpleValueType)VT).getSizeInBits() < 256))
1017        continue;
1018      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
1019      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v4i64);
1020      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
1021      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v4i64);
1022      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
1023      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v4i64);
1024      //setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
1025      //AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v4i64);
1026      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
1027      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v4i64);
1028    }
1029  }
1030
1031  // We want to custom lower some of our intrinsics.
1032  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1033
1034
1035  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1036  // handle type legalization for these operations here.
1037  //
1038  // FIXME: We really should do custom legalization for addition and
1039  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1040  // than generic legalization for 64-bit multiplication-with-overflow, though.
1041  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1042    // Add/Sub/Mul with overflow operations are custom lowered.
1043    MVT VT = IntVTs[i];
1044    setOperationAction(ISD::SADDO, VT, Custom);
1045    setOperationAction(ISD::UADDO, VT, Custom);
1046    setOperationAction(ISD::SSUBO, VT, Custom);
1047    setOperationAction(ISD::USUBO, VT, Custom);
1048    setOperationAction(ISD::SMULO, VT, Custom);
1049    setOperationAction(ISD::UMULO, VT, Custom);
1050  }
1051
1052  // There are no 8-bit 3-address imul/mul instructions
1053  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1054  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1055
1056  if (!Subtarget->is64Bit()) {
1057    // These libcalls are not available in 32-bit.
1058    setLibcallName(RTLIB::SHL_I128, 0);
1059    setLibcallName(RTLIB::SRL_I128, 0);
1060    setLibcallName(RTLIB::SRA_I128, 0);
1061  }
1062
1063  // We have target-specific dag combine patterns for the following nodes:
1064  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1065  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1066  setTargetDAGCombine(ISD::BUILD_VECTOR);
1067  setTargetDAGCombine(ISD::SELECT);
1068  setTargetDAGCombine(ISD::SHL);
1069  setTargetDAGCombine(ISD::SRA);
1070  setTargetDAGCombine(ISD::SRL);
1071  setTargetDAGCombine(ISD::OR);
1072  setTargetDAGCombine(ISD::AND);
1073  setTargetDAGCombine(ISD::ADD);
1074  setTargetDAGCombine(ISD::SUB);
1075  setTargetDAGCombine(ISD::STORE);
1076  setTargetDAGCombine(ISD::ZERO_EXTEND);
1077  if (Subtarget->is64Bit())
1078    setTargetDAGCombine(ISD::MUL);
1079
1080  computeRegisterProperties();
1081
1082  // On Darwin, -Os means optimize for size without hurting performance,
1083  // do not reduce the limit.
1084  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1085  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1086  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1087  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1088  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1089  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1090  setPrefLoopAlignment(16);
1091  benefitFromCodePlacementOpt = true;
1092}
1093
1094
1095MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1096  return MVT::i8;
1097}
1098
1099
1100/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1101/// the desired ByVal argument alignment.
1102static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1103  if (MaxAlign == 16)
1104    return;
1105  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1106    if (VTy->getBitWidth() == 128)
1107      MaxAlign = 16;
1108  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1109    unsigned EltAlign = 0;
1110    getMaxByValAlign(ATy->getElementType(), EltAlign);
1111    if (EltAlign > MaxAlign)
1112      MaxAlign = EltAlign;
1113  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1114    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1115      unsigned EltAlign = 0;
1116      getMaxByValAlign(STy->getElementType(i), EltAlign);
1117      if (EltAlign > MaxAlign)
1118        MaxAlign = EltAlign;
1119      if (MaxAlign == 16)
1120        break;
1121    }
1122  }
1123  return;
1124}
1125
1126/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1127/// function arguments in the caller parameter area. For X86, aggregates
1128/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1129/// are at 4-byte boundaries.
1130unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1131  if (Subtarget->is64Bit()) {
1132    // Max of 8 and alignment of type.
1133    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1134    if (TyAlign > 8)
1135      return TyAlign;
1136    return 8;
1137  }
1138
1139  unsigned Align = 4;
1140  if (Subtarget->hasXMM())
1141    getMaxByValAlign(Ty, Align);
1142  return Align;
1143}
1144
1145/// getOptimalMemOpType - Returns the target specific optimal type for load
1146/// and store operations as a result of memset, memcpy, and memmove
1147/// lowering. If DstAlign is zero that means it's safe to destination
1148/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1149/// means there isn't a need to check it against alignment requirement,
1150/// probably because the source does not need to be loaded. If
1151/// 'NonScalarIntSafe' is true, that means it's safe to return a
1152/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1153/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1154/// constant so it does not need to be loaded.
1155/// It returns EVT::Other if the type should be determined using generic
1156/// target-independent logic.
1157EVT
1158X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1159                                       unsigned DstAlign, unsigned SrcAlign,
1160                                       bool NonScalarIntSafe,
1161                                       bool MemcpyStrSrc,
1162                                       MachineFunction &MF) const {
1163  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1164  // linux.  This is because the stack realignment code can't handle certain
1165  // cases like PR2962.  This should be removed when PR2962 is fixed.
1166  const Function *F = MF.getFunction();
1167  if (NonScalarIntSafe &&
1168      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1169    if (Size >= 16 &&
1170        (Subtarget->isUnalignedMemAccessFast() ||
1171         ((DstAlign == 0 || DstAlign >= 16) &&
1172          (SrcAlign == 0 || SrcAlign >= 16))) &&
1173        Subtarget->getStackAlignment() >= 16) {
1174      if (Subtarget->hasSSE2())
1175        return MVT::v4i32;
1176      if (Subtarget->hasSSE1())
1177        return MVT::v4f32;
1178    } else if (!MemcpyStrSrc && Size >= 8 &&
1179               !Subtarget->is64Bit() &&
1180               Subtarget->getStackAlignment() >= 8 &&
1181               Subtarget->hasXMMInt()) {
1182      // Do not use f64 to lower memcpy if source is string constant. It's
1183      // better to use i32 to avoid the loads.
1184      return MVT::f64;
1185    }
1186  }
1187  if (Subtarget->is64Bit() && Size >= 8)
1188    return MVT::i64;
1189  return MVT::i32;
1190}
1191
1192/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1193/// current function.  The returned value is a member of the
1194/// MachineJumpTableInfo::JTEntryKind enum.
1195unsigned X86TargetLowering::getJumpTableEncoding() const {
1196  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1197  // symbol.
1198  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1199      Subtarget->isPICStyleGOT())
1200    return MachineJumpTableInfo::EK_Custom32;
1201
1202  // Otherwise, use the normal jump table encoding heuristics.
1203  return TargetLowering::getJumpTableEncoding();
1204}
1205
1206const MCExpr *
1207X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1208                                             const MachineBasicBlock *MBB,
1209                                             unsigned uid,MCContext &Ctx) const{
1210  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1211         Subtarget->isPICStyleGOT());
1212  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1213  // entries.
1214  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1215                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1216}
1217
1218/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1219/// jumptable.
1220SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1221                                                    SelectionDAG &DAG) const {
1222  if (!Subtarget->is64Bit())
1223    // This doesn't have DebugLoc associated with it, but is not really the
1224    // same as a Register.
1225    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1226  return Table;
1227}
1228
1229/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1230/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1231/// MCExpr.
1232const MCExpr *X86TargetLowering::
1233getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1234                             MCContext &Ctx) const {
1235  // X86-64 uses RIP relative addressing based on the jump table label.
1236  if (Subtarget->isPICStyleRIPRel())
1237    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1238
1239  // Otherwise, the reference is relative to the PIC base.
1240  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1241}
1242
1243/// getFunctionAlignment - Return the Log2 alignment of this function.
1244unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1245  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1246}
1247
1248// FIXME: Why this routine is here? Move to RegInfo!
1249std::pair<const TargetRegisterClass*, uint8_t>
1250X86TargetLowering::findRepresentativeClass(EVT VT) const{
1251  const TargetRegisterClass *RRC = 0;
1252  uint8_t Cost = 1;
1253  switch (VT.getSimpleVT().SimpleTy) {
1254  default:
1255    return TargetLowering::findRepresentativeClass(VT);
1256  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1257    RRC = (Subtarget->is64Bit()
1258           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1259    break;
1260  case MVT::x86mmx:
1261    RRC = X86::VR64RegisterClass;
1262    break;
1263  case MVT::f32: case MVT::f64:
1264  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1265  case MVT::v4f32: case MVT::v2f64:
1266  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1267  case MVT::v4f64:
1268    RRC = X86::VR128RegisterClass;
1269    break;
1270  }
1271  return std::make_pair(RRC, Cost);
1272}
1273
1274// FIXME: Why this routine is here? Move to RegInfo!
1275unsigned
1276X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1277                                       MachineFunction &MF) const {
1278  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
1279
1280  unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
1281  switch (RC->getID()) {
1282  default:
1283    return 0;
1284  case X86::GR32RegClassID:
1285    return 4 - FPDiff;
1286  case X86::GR64RegClassID:
1287    return 8 - FPDiff;
1288  case X86::VR128RegClassID:
1289    return Subtarget->is64Bit() ? 10 : 4;
1290  case X86::VR64RegClassID:
1291    return 4;
1292  }
1293}
1294
1295bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1296                                               unsigned &Offset) const {
1297  if (!Subtarget->isTargetLinux())
1298    return false;
1299
1300  if (Subtarget->is64Bit()) {
1301    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1302    Offset = 0x28;
1303    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1304      AddressSpace = 256;
1305    else
1306      AddressSpace = 257;
1307  } else {
1308    // %gs:0x14 on i386
1309    Offset = 0x14;
1310    AddressSpace = 256;
1311  }
1312  return true;
1313}
1314
1315
1316//===----------------------------------------------------------------------===//
1317//               Return Value Calling Convention Implementation
1318//===----------------------------------------------------------------------===//
1319
1320#include "X86GenCallingConv.inc"
1321
1322bool
1323X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1324                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1325                        LLVMContext &Context) const {
1326  SmallVector<CCValAssign, 16> RVLocs;
1327  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1328                 RVLocs, Context);
1329  return CCInfo.CheckReturn(Outs, RetCC_X86);
1330}
1331
1332SDValue
1333X86TargetLowering::LowerReturn(SDValue Chain,
1334                               CallingConv::ID CallConv, bool isVarArg,
1335                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1336                               const SmallVectorImpl<SDValue> &OutVals,
1337                               DebugLoc dl, SelectionDAG &DAG) const {
1338  MachineFunction &MF = DAG.getMachineFunction();
1339  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1340
1341  SmallVector<CCValAssign, 16> RVLocs;
1342  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1343                 RVLocs, *DAG.getContext());
1344  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1345
1346  // Add the regs to the liveout set for the function.
1347  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1348  for (unsigned i = 0; i != RVLocs.size(); ++i)
1349    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1350      MRI.addLiveOut(RVLocs[i].getLocReg());
1351
1352  SDValue Flag;
1353
1354  SmallVector<SDValue, 6> RetOps;
1355  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1356  // Operand #1 = Bytes To Pop
1357  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1358                   MVT::i16));
1359
1360  // Copy the result values into the output registers.
1361  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1362    CCValAssign &VA = RVLocs[i];
1363    assert(VA.isRegLoc() && "Can only return in registers!");
1364    SDValue ValToCopy = OutVals[i];
1365    EVT ValVT = ValToCopy.getValueType();
1366
1367    // If this is x86-64, and we disabled SSE, we can't return FP values,
1368    // or SSE or MMX vectors.
1369    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1370         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1371          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1372      report_fatal_error("SSE register return with SSE disabled");
1373    }
1374    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1375    // llvm-gcc has never done it right and no one has noticed, so this
1376    // should be OK for now.
1377    if (ValVT == MVT::f64 &&
1378        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1379      report_fatal_error("SSE2 register return with SSE2 disabled");
1380
1381    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1382    // the RET instruction and handled by the FP Stackifier.
1383    if (VA.getLocReg() == X86::ST0 ||
1384        VA.getLocReg() == X86::ST1) {
1385      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1386      // change the value to the FP stack register class.
1387      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1388        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1389      RetOps.push_back(ValToCopy);
1390      // Don't emit a copytoreg.
1391      continue;
1392    }
1393
1394    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1395    // which is returned in RAX / RDX.
1396    if (Subtarget->is64Bit()) {
1397      if (ValVT == MVT::x86mmx) {
1398        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1399          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1400          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1401                                  ValToCopy);
1402          // If we don't have SSE2 available, convert to v4f32 so the generated
1403          // register is legal.
1404          if (!Subtarget->hasSSE2())
1405            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1406        }
1407      }
1408    }
1409
1410    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1411    Flag = Chain.getValue(1);
1412  }
1413
1414  // The x86-64 ABI for returning structs by value requires that we copy
1415  // the sret argument into %rax for the return. We saved the argument into
1416  // a virtual register in the entry block, so now we copy the value out
1417  // and into %rax.
1418  if (Subtarget->is64Bit() &&
1419      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1420    MachineFunction &MF = DAG.getMachineFunction();
1421    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1422    unsigned Reg = FuncInfo->getSRetReturnReg();
1423    assert(Reg &&
1424           "SRetReturnReg should have been set in LowerFormalArguments().");
1425    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1426
1427    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1428    Flag = Chain.getValue(1);
1429
1430    // RAX now acts like a return value.
1431    MRI.addLiveOut(X86::RAX);
1432  }
1433
1434  RetOps[0] = Chain;  // Update chain.
1435
1436  // Add the flag if we have it.
1437  if (Flag.getNode())
1438    RetOps.push_back(Flag);
1439
1440  return DAG.getNode(X86ISD::RET_FLAG, dl,
1441                     MVT::Other, &RetOps[0], RetOps.size());
1442}
1443
1444bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1445  if (N->getNumValues() != 1)
1446    return false;
1447  if (!N->hasNUsesOfValue(1, 0))
1448    return false;
1449
1450  SDNode *Copy = *N->use_begin();
1451  if (Copy->getOpcode() != ISD::CopyToReg &&
1452      Copy->getOpcode() != ISD::FP_EXTEND)
1453    return false;
1454
1455  bool HasRet = false;
1456  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1457       UI != UE; ++UI) {
1458    if (UI->getOpcode() != X86ISD::RET_FLAG)
1459      return false;
1460    HasRet = true;
1461  }
1462
1463  return HasRet;
1464}
1465
1466/// LowerCallResult - Lower the result values of a call into the
1467/// appropriate copies out of appropriate physical registers.
1468///
1469SDValue
1470X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1471                                   CallingConv::ID CallConv, bool isVarArg,
1472                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1473                                   DebugLoc dl, SelectionDAG &DAG,
1474                                   SmallVectorImpl<SDValue> &InVals) const {
1475
1476  // Assign locations to each value returned by this call.
1477  SmallVector<CCValAssign, 16> RVLocs;
1478  bool Is64Bit = Subtarget->is64Bit();
1479  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1482
1483  // Copy all of the result registers out of their specified physreg.
1484  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1485    CCValAssign &VA = RVLocs[i];
1486    EVT CopyVT = VA.getValVT();
1487
1488    // If this is x86-64, and we disabled SSE, we can't return FP values
1489    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1490        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1491      report_fatal_error("SSE register return with SSE disabled");
1492    }
1493
1494    SDValue Val;
1495
1496    // If this is a call to a function that returns an fp value on the floating
1497    // point stack, we must guarantee the the value is popped from the stack, so
1498    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1499    // if the return value is not used. We use the FpGET_ST0 instructions
1500    // instead.
1501    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1502      // If we prefer to use the value in xmm registers, copy it out as f80 and
1503      // use a truncate to move it from fp stack reg to xmm reg.
1504      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1505      bool isST0 = VA.getLocReg() == X86::ST0;
1506      unsigned Opc = 0;
1507      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1508      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1509      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1510      SDValue Ops[] = { Chain, InFlag };
1511      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
1512                                         Ops, 2), 1);
1513      Val = Chain.getValue(0);
1514
1515      // Round the f80 to the right size, which also moves it to the appropriate
1516      // xmm register.
1517      if (CopyVT != VA.getValVT())
1518        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1519                          // This truncation won't change the value.
1520                          DAG.getIntPtrConstant(1));
1521    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1522      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1523      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1524        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1525                                   MVT::v2i64, InFlag).getValue(1);
1526        Val = Chain.getValue(0);
1527        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1528                          Val, DAG.getConstant(0, MVT::i64));
1529      } else {
1530        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1531                                   MVT::i64, InFlag).getValue(1);
1532        Val = Chain.getValue(0);
1533      }
1534      Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val);
1535    } else {
1536      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1537                                 CopyVT, InFlag).getValue(1);
1538      Val = Chain.getValue(0);
1539    }
1540    InFlag = Chain.getValue(2);
1541    InVals.push_back(Val);
1542  }
1543
1544  return Chain;
1545}
1546
1547
1548//===----------------------------------------------------------------------===//
1549//                C & StdCall & Fast Calling Convention implementation
1550//===----------------------------------------------------------------------===//
1551//  StdCall calling convention seems to be standard for many Windows' API
1552//  routines and around. It differs from C calling convention just a little:
1553//  callee should clean up the stack, not caller. Symbols should be also
1554//  decorated in some fancy way :) It doesn't support any vector arguments.
1555//  For info on fast calling convention see Fast Calling Convention (tail call)
1556//  implementation LowerX86_32FastCCCallTo.
1557
1558/// CallIsStructReturn - Determines whether a call uses struct return
1559/// semantics.
1560static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1561  if (Outs.empty())
1562    return false;
1563
1564  return Outs[0].Flags.isSRet();
1565}
1566
1567/// ArgsAreStructReturn - Determines whether a function uses struct
1568/// return semantics.
1569static bool
1570ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1571  if (Ins.empty())
1572    return false;
1573
1574  return Ins[0].Flags.isSRet();
1575}
1576
1577/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1578/// by "Src" to address "Dst" with size and alignment information specified by
1579/// the specific parameter attribute. The copy will be passed as a byval
1580/// function parameter.
1581static SDValue
1582CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1583                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1584                          DebugLoc dl) {
1585  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1586
1587  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1588                       /*isVolatile*/false, /*AlwaysInline=*/true,
1589                       MachinePointerInfo(), MachinePointerInfo());
1590}
1591
1592/// IsTailCallConvention - Return true if the calling convention is one that
1593/// supports tail call optimization.
1594static bool IsTailCallConvention(CallingConv::ID CC) {
1595  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1596}
1597
1598/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1599/// a tailcall target by changing its ABI.
1600static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1601  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1602}
1603
1604SDValue
1605X86TargetLowering::LowerMemArgument(SDValue Chain,
1606                                    CallingConv::ID CallConv,
1607                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1608                                    DebugLoc dl, SelectionDAG &DAG,
1609                                    const CCValAssign &VA,
1610                                    MachineFrameInfo *MFI,
1611                                    unsigned i) const {
1612  // Create the nodes corresponding to a load from this parameter slot.
1613  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1614  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1615  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1616  EVT ValVT;
1617
1618  // If value is passed by pointer we have address passed instead of the value
1619  // itself.
1620  if (VA.getLocInfo() == CCValAssign::Indirect)
1621    ValVT = VA.getLocVT();
1622  else
1623    ValVT = VA.getValVT();
1624
1625  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1626  // changed with more analysis.
1627  // In case of tail call optimization mark all arguments mutable. Since they
1628  // could be overwritten by lowering of arguments in case of a tail call.
1629  if (Flags.isByVal()) {
1630    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1631                                    VA.getLocMemOffset(), isImmutable);
1632    return DAG.getFrameIndex(FI, getPointerTy());
1633  } else {
1634    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1635                                    VA.getLocMemOffset(), isImmutable);
1636    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1637    return DAG.getLoad(ValVT, dl, Chain, FIN,
1638                       MachinePointerInfo::getFixedStack(FI),
1639                       false, false, 0);
1640  }
1641}
1642
1643SDValue
1644X86TargetLowering::LowerFormalArguments(SDValue Chain,
1645                                        CallingConv::ID CallConv,
1646                                        bool isVarArg,
1647                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1648                                        DebugLoc dl,
1649                                        SelectionDAG &DAG,
1650                                        SmallVectorImpl<SDValue> &InVals)
1651                                          const {
1652  MachineFunction &MF = DAG.getMachineFunction();
1653  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1654
1655  const Function* Fn = MF.getFunction();
1656  if (Fn->hasExternalLinkage() &&
1657      Subtarget->isTargetCygMing() &&
1658      Fn->getName() == "main")
1659    FuncInfo->setForceFramePointer(true);
1660
1661  MachineFrameInfo *MFI = MF.getFrameInfo();
1662  bool Is64Bit = Subtarget->is64Bit();
1663  bool IsWin64 = Subtarget->isTargetWin64();
1664
1665  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1666         "Var args not supported with calling convention fastcc or ghc");
1667
1668  // Assign locations to all of the incoming arguments.
1669  SmallVector<CCValAssign, 16> ArgLocs;
1670  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1671                 ArgLocs, *DAG.getContext());
1672
1673  // Allocate shadow area for Win64
1674  if (IsWin64) {
1675    CCInfo.AllocateStack(32, 8);
1676  }
1677
1678  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1679
1680  unsigned LastVal = ~0U;
1681  SDValue ArgValue;
1682  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1683    CCValAssign &VA = ArgLocs[i];
1684    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1685    // places.
1686    assert(VA.getValNo() != LastVal &&
1687           "Don't support value assigned to multiple locs yet");
1688    LastVal = VA.getValNo();
1689
1690    if (VA.isRegLoc()) {
1691      EVT RegVT = VA.getLocVT();
1692      TargetRegisterClass *RC = NULL;
1693      if (RegVT == MVT::i32)
1694        RC = X86::GR32RegisterClass;
1695      else if (Is64Bit && RegVT == MVT::i64)
1696        RC = X86::GR64RegisterClass;
1697      else if (RegVT == MVT::f32)
1698        RC = X86::FR32RegisterClass;
1699      else if (RegVT == MVT::f64)
1700        RC = X86::FR64RegisterClass;
1701      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1702        RC = X86::VR256RegisterClass;
1703      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1704        RC = X86::VR128RegisterClass;
1705      else if (RegVT == MVT::x86mmx)
1706        RC = X86::VR64RegisterClass;
1707      else
1708        llvm_unreachable("Unknown argument type!");
1709
1710      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1711      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1712
1713      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1714      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1715      // right size.
1716      if (VA.getLocInfo() == CCValAssign::SExt)
1717        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1718                               DAG.getValueType(VA.getValVT()));
1719      else if (VA.getLocInfo() == CCValAssign::ZExt)
1720        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1721                               DAG.getValueType(VA.getValVT()));
1722      else if (VA.getLocInfo() == CCValAssign::BCvt)
1723        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1724
1725      if (VA.isExtInLoc()) {
1726        // Handle MMX values passed in XMM regs.
1727        if (RegVT.isVector()) {
1728          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1729                                 ArgValue);
1730        } else
1731          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1732      }
1733    } else {
1734      assert(VA.isMemLoc());
1735      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1736    }
1737
1738    // If value is passed via pointer - do a load.
1739    if (VA.getLocInfo() == CCValAssign::Indirect)
1740      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1741                             MachinePointerInfo(), false, false, 0);
1742
1743    InVals.push_back(ArgValue);
1744  }
1745
1746  // The x86-64 ABI for returning structs by value requires that we copy
1747  // the sret argument into %rax for the return. Save the argument into
1748  // a virtual register so that we can access it from the return points.
1749  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1750    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1751    unsigned Reg = FuncInfo->getSRetReturnReg();
1752    if (!Reg) {
1753      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1754      FuncInfo->setSRetReturnReg(Reg);
1755    }
1756    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1757    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1758  }
1759
1760  unsigned StackSize = CCInfo.getNextStackOffset();
1761  // Align stack specially for tail calls.
1762  if (FuncIsMadeTailCallSafe(CallConv))
1763    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1764
1765  // If the function takes variable number of arguments, make a frame index for
1766  // the start of the first vararg value... for expansion of llvm.va_start.
1767  if (isVarArg) {
1768    if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1769                    CallConv != CallingConv::X86_ThisCall))) {
1770      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1771    }
1772    if (Is64Bit) {
1773      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1774
1775      // FIXME: We should really autogenerate these arrays
1776      static const unsigned GPR64ArgRegsWin64[] = {
1777        X86::RCX, X86::RDX, X86::R8,  X86::R9
1778      };
1779      static const unsigned GPR64ArgRegs64Bit[] = {
1780        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1781      };
1782      static const unsigned XMMArgRegs64Bit[] = {
1783        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1784        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1785      };
1786      const unsigned *GPR64ArgRegs;
1787      unsigned NumXMMRegs = 0;
1788
1789      if (IsWin64) {
1790        // The XMM registers which might contain var arg parameters are shadowed
1791        // in their paired GPR.  So we only need to save the GPR to their home
1792        // slots.
1793        TotalNumIntRegs = 4;
1794        GPR64ArgRegs = GPR64ArgRegsWin64;
1795      } else {
1796        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1797        GPR64ArgRegs = GPR64ArgRegs64Bit;
1798
1799        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1800      }
1801      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1802                                                       TotalNumIntRegs);
1803
1804      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1805      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1806             "SSE register cannot be used when SSE is disabled!");
1807      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1808             "SSE register cannot be used when SSE is disabled!");
1809      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1810        // Kernel mode asks for SSE to be disabled, so don't push them
1811        // on the stack.
1812        TotalNumXMMRegs = 0;
1813
1814      if (IsWin64) {
1815        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1816        // Get to the caller-allocated home save location.  Add 8 to account
1817        // for the return address.
1818        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1819        FuncInfo->setRegSaveFrameIndex(
1820          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1821        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1822      } else {
1823        // For X86-64, if there are vararg parameters that are passed via
1824        // registers, then we must store them to their spots on the stack so they
1825        // may be loaded by deferencing the result of va_next.
1826        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1827        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1828        FuncInfo->setRegSaveFrameIndex(
1829          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1830                               false));
1831      }
1832
1833      // Store the integer parameter registers.
1834      SmallVector<SDValue, 8> MemOps;
1835      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1836                                        getPointerTy());
1837      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1838      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1839        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1840                                  DAG.getIntPtrConstant(Offset));
1841        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1842                                     X86::GR64RegisterClass);
1843        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1844        SDValue Store =
1845          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1846                       MachinePointerInfo::getFixedStack(
1847                         FuncInfo->getRegSaveFrameIndex(), Offset),
1848                       false, false, 0);
1849        MemOps.push_back(Store);
1850        Offset += 8;
1851      }
1852
1853      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1854        // Now store the XMM (fp + vector) parameter registers.
1855        SmallVector<SDValue, 11> SaveXMMOps;
1856        SaveXMMOps.push_back(Chain);
1857
1858        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1859        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1860        SaveXMMOps.push_back(ALVal);
1861
1862        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1863                               FuncInfo->getRegSaveFrameIndex()));
1864        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1865                               FuncInfo->getVarArgsFPOffset()));
1866
1867        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1868          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1869                                       X86::VR128RegisterClass);
1870          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1871          SaveXMMOps.push_back(Val);
1872        }
1873        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1874                                     MVT::Other,
1875                                     &SaveXMMOps[0], SaveXMMOps.size()));
1876      }
1877
1878      if (!MemOps.empty())
1879        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1880                            &MemOps[0], MemOps.size());
1881    }
1882  }
1883
1884  // Some CCs need callee pop.
1885  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1886    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1887  } else {
1888    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1889    // If this is an sret function, the return should pop the hidden pointer.
1890    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1891      FuncInfo->setBytesToPopOnReturn(4);
1892  }
1893
1894  if (!Is64Bit) {
1895    // RegSaveFrameIndex is X86-64 only.
1896    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1897    if (CallConv == CallingConv::X86_FastCall ||
1898        CallConv == CallingConv::X86_ThisCall)
1899      // fastcc functions can't have varargs.
1900      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1901  }
1902
1903  return Chain;
1904}
1905
1906SDValue
1907X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1908                                    SDValue StackPtr, SDValue Arg,
1909                                    DebugLoc dl, SelectionDAG &DAG,
1910                                    const CCValAssign &VA,
1911                                    ISD::ArgFlagsTy Flags) const {
1912  unsigned LocMemOffset = VA.getLocMemOffset();
1913  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1914  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1915  if (Flags.isByVal())
1916    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1917
1918  return DAG.getStore(Chain, dl, Arg, PtrOff,
1919                      MachinePointerInfo::getStack(LocMemOffset),
1920                      false, false, 0);
1921}
1922
1923/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1924/// optimization is performed and it is required.
1925SDValue
1926X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1927                                           SDValue &OutRetAddr, SDValue Chain,
1928                                           bool IsTailCall, bool Is64Bit,
1929                                           int FPDiff, DebugLoc dl) const {
1930  // Adjust the Return address stack slot.
1931  EVT VT = getPointerTy();
1932  OutRetAddr = getReturnAddressFrameIndex(DAG);
1933
1934  // Load the "old" Return address.
1935  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1936                           false, false, 0);
1937  return SDValue(OutRetAddr.getNode(), 1);
1938}
1939
1940/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1941/// optimization is performed and it is required (FPDiff!=0).
1942static SDValue
1943EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1944                         SDValue Chain, SDValue RetAddrFrIdx,
1945                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1946  // Store the return address to the appropriate stack slot.
1947  if (!FPDiff) return Chain;
1948  // Calculate the new stack slot for the return address.
1949  int SlotSize = Is64Bit ? 8 : 4;
1950  int NewReturnAddrFI =
1951    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1952  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1953  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1954  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1955                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1956                       false, false, 0);
1957  return Chain;
1958}
1959
1960SDValue
1961X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1962                             CallingConv::ID CallConv, bool isVarArg,
1963                             bool &isTailCall,
1964                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1965                             const SmallVectorImpl<SDValue> &OutVals,
1966                             const SmallVectorImpl<ISD::InputArg> &Ins,
1967                             DebugLoc dl, SelectionDAG &DAG,
1968                             SmallVectorImpl<SDValue> &InVals) const {
1969  MachineFunction &MF = DAG.getMachineFunction();
1970  bool Is64Bit        = Subtarget->is64Bit();
1971  bool IsWin64        = Subtarget->isTargetWin64();
1972  bool IsStructRet    = CallIsStructReturn(Outs);
1973  bool IsSibcall      = false;
1974
1975  if (isTailCall) {
1976    // Check if it's really possible to do a tail call.
1977    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1978                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1979                                                   Outs, OutVals, Ins, DAG);
1980
1981    // Sibcalls are automatically detected tailcalls which do not require
1982    // ABI changes.
1983    if (!GuaranteedTailCallOpt && isTailCall)
1984      IsSibcall = true;
1985
1986    if (isTailCall)
1987      ++NumTailCalls;
1988  }
1989
1990  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1991         "Var args not supported with calling convention fastcc or ghc");
1992
1993  // Analyze operands of the call, assigning locations to each operand.
1994  SmallVector<CCValAssign, 16> ArgLocs;
1995  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1996                 ArgLocs, *DAG.getContext());
1997
1998  // Allocate shadow area for Win64
1999  if (IsWin64) {
2000    CCInfo.AllocateStack(32, 8);
2001  }
2002
2003  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2004
2005  // Get a count of how many bytes are to be pushed on the stack.
2006  unsigned NumBytes = CCInfo.getNextStackOffset();
2007  if (IsSibcall)
2008    // This is a sibcall. The memory operands are available in caller's
2009    // own caller's stack.
2010    NumBytes = 0;
2011  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2012    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2013
2014  int FPDiff = 0;
2015  if (isTailCall && !IsSibcall) {
2016    // Lower arguments at fp - stackoffset + fpdiff.
2017    unsigned NumBytesCallerPushed =
2018      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2019    FPDiff = NumBytesCallerPushed - NumBytes;
2020
2021    // Set the delta of movement of the returnaddr stackslot.
2022    // But only set if delta is greater than previous delta.
2023    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2024      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2025  }
2026
2027  if (!IsSibcall)
2028    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2029
2030  SDValue RetAddrFrIdx;
2031  // Load return adress for tail calls.
2032  if (isTailCall && FPDiff)
2033    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2034                                    Is64Bit, FPDiff, dl);
2035
2036  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2037  SmallVector<SDValue, 8> MemOpChains;
2038  SDValue StackPtr;
2039
2040  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2041  // of tail call optimization arguments are handle later.
2042  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2043    CCValAssign &VA = ArgLocs[i];
2044    EVT RegVT = VA.getLocVT();
2045    SDValue Arg = OutVals[i];
2046    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2047    bool isByVal = Flags.isByVal();
2048
2049    // Promote the value if needed.
2050    switch (VA.getLocInfo()) {
2051    default: llvm_unreachable("Unknown loc info!");
2052    case CCValAssign::Full: break;
2053    case CCValAssign::SExt:
2054      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2055      break;
2056    case CCValAssign::ZExt:
2057      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2058      break;
2059    case CCValAssign::AExt:
2060      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2061        // Special case: passing MMX values in XMM registers.
2062        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2063        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2064        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2065      } else
2066        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2067      break;
2068    case CCValAssign::BCvt:
2069      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2070      break;
2071    case CCValAssign::Indirect: {
2072      // Store the argument.
2073      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2074      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2075      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2076                           MachinePointerInfo::getFixedStack(FI),
2077                           false, false, 0);
2078      Arg = SpillSlot;
2079      break;
2080    }
2081    }
2082
2083    if (VA.isRegLoc()) {
2084      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2085      if (isVarArg && IsWin64) {
2086        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2087        // shadow reg if callee is a varargs function.
2088        unsigned ShadowReg = 0;
2089        switch (VA.getLocReg()) {
2090        case X86::XMM0: ShadowReg = X86::RCX; break;
2091        case X86::XMM1: ShadowReg = X86::RDX; break;
2092        case X86::XMM2: ShadowReg = X86::R8; break;
2093        case X86::XMM3: ShadowReg = X86::R9; break;
2094        }
2095        if (ShadowReg)
2096          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2097      }
2098    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2099      assert(VA.isMemLoc());
2100      if (StackPtr.getNode() == 0)
2101        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2102      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2103                                             dl, DAG, VA, Flags));
2104    }
2105  }
2106
2107  if (!MemOpChains.empty())
2108    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2109                        &MemOpChains[0], MemOpChains.size());
2110
2111  // Build a sequence of copy-to-reg nodes chained together with token chain
2112  // and flag operands which copy the outgoing args into registers.
2113  SDValue InFlag;
2114  // Tail call byval lowering might overwrite argument registers so in case of
2115  // tail call optimization the copies to registers are lowered later.
2116  if (!isTailCall)
2117    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2118      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2119                               RegsToPass[i].second, InFlag);
2120      InFlag = Chain.getValue(1);
2121    }
2122
2123  if (Subtarget->isPICStyleGOT()) {
2124    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2125    // GOT pointer.
2126    if (!isTailCall) {
2127      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2128                               DAG.getNode(X86ISD::GlobalBaseReg,
2129                                           DebugLoc(), getPointerTy()),
2130                               InFlag);
2131      InFlag = Chain.getValue(1);
2132    } else {
2133      // If we are tail calling and generating PIC/GOT style code load the
2134      // address of the callee into ECX. The value in ecx is used as target of
2135      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2136      // for tail calls on PIC/GOT architectures. Normally we would just put the
2137      // address of GOT into ebx and then call target@PLT. But for tail calls
2138      // ebx would be restored (since ebx is callee saved) before jumping to the
2139      // target@PLT.
2140
2141      // Note: The actual moving to ECX is done further down.
2142      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2143      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2144          !G->getGlobal()->hasProtectedVisibility())
2145        Callee = LowerGlobalAddress(Callee, DAG);
2146      else if (isa<ExternalSymbolSDNode>(Callee))
2147        Callee = LowerExternalSymbol(Callee, DAG);
2148    }
2149  }
2150
2151  if (Is64Bit && isVarArg && !IsWin64) {
2152    // From AMD64 ABI document:
2153    // For calls that may call functions that use varargs or stdargs
2154    // (prototype-less calls or calls to functions containing ellipsis (...) in
2155    // the declaration) %al is used as hidden argument to specify the number
2156    // of SSE registers used. The contents of %al do not need to match exactly
2157    // the number of registers, but must be an ubound on the number of SSE
2158    // registers used and is in the range 0 - 8 inclusive.
2159
2160    // Count the number of XMM registers allocated.
2161    static const unsigned XMMArgRegs[] = {
2162      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2163      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2164    };
2165    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2166    assert((Subtarget->hasXMM() || !NumXMMRegs)
2167           && "SSE registers cannot be used when SSE is disabled");
2168
2169    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2170                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2171    InFlag = Chain.getValue(1);
2172  }
2173
2174
2175  // For tail calls lower the arguments to the 'real' stack slot.
2176  if (isTailCall) {
2177    // Force all the incoming stack arguments to be loaded from the stack
2178    // before any new outgoing arguments are stored to the stack, because the
2179    // outgoing stack slots may alias the incoming argument stack slots, and
2180    // the alias isn't otherwise explicit. This is slightly more conservative
2181    // than necessary, because it means that each store effectively depends
2182    // on every argument instead of just those arguments it would clobber.
2183    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2184
2185    SmallVector<SDValue, 8> MemOpChains2;
2186    SDValue FIN;
2187    int FI = 0;
2188    // Do not flag preceeding copytoreg stuff together with the following stuff.
2189    InFlag = SDValue();
2190    if (GuaranteedTailCallOpt) {
2191      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2192        CCValAssign &VA = ArgLocs[i];
2193        if (VA.isRegLoc())
2194          continue;
2195        assert(VA.isMemLoc());
2196        SDValue Arg = OutVals[i];
2197        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2198        // Create frame index.
2199        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2200        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2201        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2202        FIN = DAG.getFrameIndex(FI, getPointerTy());
2203
2204        if (Flags.isByVal()) {
2205          // Copy relative to framepointer.
2206          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2207          if (StackPtr.getNode() == 0)
2208            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2209                                          getPointerTy());
2210          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2211
2212          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2213                                                           ArgChain,
2214                                                           Flags, DAG, dl));
2215        } else {
2216          // Store relative to framepointer.
2217          MemOpChains2.push_back(
2218            DAG.getStore(ArgChain, dl, Arg, FIN,
2219                         MachinePointerInfo::getFixedStack(FI),
2220                         false, false, 0));
2221        }
2222      }
2223    }
2224
2225    if (!MemOpChains2.empty())
2226      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2227                          &MemOpChains2[0], MemOpChains2.size());
2228
2229    // Copy arguments to their registers.
2230    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2231      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2232                               RegsToPass[i].second, InFlag);
2233      InFlag = Chain.getValue(1);
2234    }
2235    InFlag =SDValue();
2236
2237    // Store the return address to the appropriate stack slot.
2238    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2239                                     FPDiff, dl);
2240  }
2241
2242  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2243    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2244    // In the 64-bit large code model, we have to make all calls
2245    // through a register, since the call instruction's 32-bit
2246    // pc-relative offset may not be large enough to hold the whole
2247    // address.
2248  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2249    // If the callee is a GlobalAddress node (quite common, every direct call
2250    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2251    // it.
2252
2253    // We should use extra load for direct calls to dllimported functions in
2254    // non-JIT mode.
2255    const GlobalValue *GV = G->getGlobal();
2256    if (!GV->hasDLLImportLinkage()) {
2257      unsigned char OpFlags = 0;
2258
2259      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2260      // external symbols most go through the PLT in PIC mode.  If the symbol
2261      // has hidden or protected visibility, or if it is static or local, then
2262      // we don't need to use the PLT - we can directly call it.
2263      if (Subtarget->isTargetELF() &&
2264          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2265          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2266        OpFlags = X86II::MO_PLT;
2267      } else if (Subtarget->isPICStyleStubAny() &&
2268                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2269                 Subtarget->getDarwinVers() < 9) {
2270        // PC-relative references to external symbols should go through $stub,
2271        // unless we're building with the leopard linker or later, which
2272        // automatically synthesizes these stubs.
2273        OpFlags = X86II::MO_DARWIN_STUB;
2274      }
2275
2276      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2277                                          G->getOffset(), OpFlags);
2278    }
2279  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2280    unsigned char OpFlags = 0;
2281
2282    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2283    // external symbols should go through the PLT.
2284    if (Subtarget->isTargetELF() &&
2285        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2286      OpFlags = X86II::MO_PLT;
2287    } else if (Subtarget->isPICStyleStubAny() &&
2288               Subtarget->getDarwinVers() < 9) {
2289      // PC-relative references to external symbols should go through $stub,
2290      // unless we're building with the leopard linker or later, which
2291      // automatically synthesizes these stubs.
2292      OpFlags = X86II::MO_DARWIN_STUB;
2293    }
2294
2295    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2296                                         OpFlags);
2297  }
2298
2299  // Returns a chain & a flag for retval copy to use.
2300  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2301  SmallVector<SDValue, 8> Ops;
2302
2303  if (!IsSibcall && isTailCall) {
2304    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2305                           DAG.getIntPtrConstant(0, true), InFlag);
2306    InFlag = Chain.getValue(1);
2307  }
2308
2309  Ops.push_back(Chain);
2310  Ops.push_back(Callee);
2311
2312  if (isTailCall)
2313    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2314
2315  // Add argument registers to the end of the list so that they are known live
2316  // into the call.
2317  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2318    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2319                                  RegsToPass[i].second.getValueType()));
2320
2321  // Add an implicit use GOT pointer in EBX.
2322  if (!isTailCall && Subtarget->isPICStyleGOT())
2323    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2324
2325  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2326  if (Is64Bit && isVarArg && !IsWin64)
2327    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2328
2329  if (InFlag.getNode())
2330    Ops.push_back(InFlag);
2331
2332  if (isTailCall) {
2333    // We used to do:
2334    //// If this is the first return lowered for this function, add the regs
2335    //// to the liveout set for the function.
2336    // This isn't right, although it's probably harmless on x86; liveouts
2337    // should be computed from returns not tail calls.  Consider a void
2338    // function making a tail call to a function returning int.
2339    return DAG.getNode(X86ISD::TC_RETURN, dl,
2340                       NodeTys, &Ops[0], Ops.size());
2341  }
2342
2343  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2344  InFlag = Chain.getValue(1);
2345
2346  // Create the CALLSEQ_END node.
2347  unsigned NumBytesForCalleeToPush;
2348  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2349    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2350  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2351    // If this is a call to a struct-return function, the callee
2352    // pops the hidden struct pointer, so we have to push it back.
2353    // This is common for Darwin/X86, Linux & Mingw32 targets.
2354    NumBytesForCalleeToPush = 4;
2355  else
2356    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2357
2358  // Returns a flag for retval copy to use.
2359  if (!IsSibcall) {
2360    Chain = DAG.getCALLSEQ_END(Chain,
2361                               DAG.getIntPtrConstant(NumBytes, true),
2362                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2363                                                     true),
2364                               InFlag);
2365    InFlag = Chain.getValue(1);
2366  }
2367
2368  // Handle result values, copying them out of physregs into vregs that we
2369  // return.
2370  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2371                         Ins, dl, DAG, InVals);
2372}
2373
2374
2375//===----------------------------------------------------------------------===//
2376//                Fast Calling Convention (tail call) implementation
2377//===----------------------------------------------------------------------===//
2378
2379//  Like std call, callee cleans arguments, convention except that ECX is
2380//  reserved for storing the tail called function address. Only 2 registers are
2381//  free for argument passing (inreg). Tail call optimization is performed
2382//  provided:
2383//                * tailcallopt is enabled
2384//                * caller/callee are fastcc
2385//  On X86_64 architecture with GOT-style position independent code only local
2386//  (within module) calls are supported at the moment.
2387//  To keep the stack aligned according to platform abi the function
2388//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2389//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2390//  If a tail called function callee has more arguments than the caller the
2391//  caller needs to make sure that there is room to move the RETADDR to. This is
2392//  achieved by reserving an area the size of the argument delta right after the
2393//  original REtADDR, but before the saved framepointer or the spilled registers
2394//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2395//  stack layout:
2396//    arg1
2397//    arg2
2398//    RETADDR
2399//    [ new RETADDR
2400//      move area ]
2401//    (possible EBP)
2402//    ESI
2403//    EDI
2404//    local1 ..
2405
2406/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2407/// for a 16 byte align requirement.
2408unsigned
2409X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2410                                               SelectionDAG& DAG) const {
2411  MachineFunction &MF = DAG.getMachineFunction();
2412  const TargetMachine &TM = MF.getTarget();
2413  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2414  unsigned StackAlignment = TFI.getStackAlignment();
2415  uint64_t AlignMask = StackAlignment - 1;
2416  int64_t Offset = StackSize;
2417  uint64_t SlotSize = TD->getPointerSize();
2418  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2419    // Number smaller than 12 so just add the difference.
2420    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2421  } else {
2422    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2423    Offset = ((~AlignMask) & Offset) + StackAlignment +
2424      (StackAlignment-SlotSize);
2425  }
2426  return Offset;
2427}
2428
2429/// MatchingStackOffset - Return true if the given stack call argument is
2430/// already available in the same position (relatively) of the caller's
2431/// incoming argument stack.
2432static
2433bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2434                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2435                         const X86InstrInfo *TII) {
2436  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2437  int FI = INT_MAX;
2438  if (Arg.getOpcode() == ISD::CopyFromReg) {
2439    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2440    if (!TargetRegisterInfo::isVirtualRegister(VR))
2441      return false;
2442    MachineInstr *Def = MRI->getVRegDef(VR);
2443    if (!Def)
2444      return false;
2445    if (!Flags.isByVal()) {
2446      if (!TII->isLoadFromStackSlot(Def, FI))
2447        return false;
2448    } else {
2449      unsigned Opcode = Def->getOpcode();
2450      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2451          Def->getOperand(1).isFI()) {
2452        FI = Def->getOperand(1).getIndex();
2453        Bytes = Flags.getByValSize();
2454      } else
2455        return false;
2456    }
2457  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2458    if (Flags.isByVal())
2459      // ByVal argument is passed in as a pointer but it's now being
2460      // dereferenced. e.g.
2461      // define @foo(%struct.X* %A) {
2462      //   tail call @bar(%struct.X* byval %A)
2463      // }
2464      return false;
2465    SDValue Ptr = Ld->getBasePtr();
2466    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2467    if (!FINode)
2468      return false;
2469    FI = FINode->getIndex();
2470  } else
2471    return false;
2472
2473  assert(FI != INT_MAX);
2474  if (!MFI->isFixedObjectIndex(FI))
2475    return false;
2476  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2477}
2478
2479/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2480/// for tail call optimization. Targets which want to do tail call
2481/// optimization should implement this function.
2482bool
2483X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2484                                                     CallingConv::ID CalleeCC,
2485                                                     bool isVarArg,
2486                                                     bool isCalleeStructRet,
2487                                                     bool isCallerStructRet,
2488                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2489                                    const SmallVectorImpl<SDValue> &OutVals,
2490                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2491                                                     SelectionDAG& DAG) const {
2492  if (!IsTailCallConvention(CalleeCC) &&
2493      CalleeCC != CallingConv::C)
2494    return false;
2495
2496  // If -tailcallopt is specified, make fastcc functions tail-callable.
2497  const MachineFunction &MF = DAG.getMachineFunction();
2498  const Function *CallerF = DAG.getMachineFunction().getFunction();
2499  CallingConv::ID CallerCC = CallerF->getCallingConv();
2500  bool CCMatch = CallerCC == CalleeCC;
2501
2502  if (GuaranteedTailCallOpt) {
2503    if (IsTailCallConvention(CalleeCC) && CCMatch)
2504      return true;
2505    return false;
2506  }
2507
2508  // Look for obvious safe cases to perform tail call optimization that do not
2509  // require ABI changes. This is what gcc calls sibcall.
2510
2511  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2512  // emit a special epilogue.
2513  if (RegInfo->needsStackRealignment(MF))
2514    return false;
2515
2516  // Do not sibcall optimize vararg calls unless the call site is not passing
2517  // any arguments.
2518  if (isVarArg && !Outs.empty())
2519    return false;
2520
2521  // Also avoid sibcall optimization if either caller or callee uses struct
2522  // return semantics.
2523  if (isCalleeStructRet || isCallerStructRet)
2524    return false;
2525
2526  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2527  // Therefore if it's not used by the call it is not safe to optimize this into
2528  // a sibcall.
2529  bool Unused = false;
2530  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2531    if (!Ins[i].Used) {
2532      Unused = true;
2533      break;
2534    }
2535  }
2536  if (Unused) {
2537    SmallVector<CCValAssign, 16> RVLocs;
2538    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2539                   RVLocs, *DAG.getContext());
2540    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2541    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2542      CCValAssign &VA = RVLocs[i];
2543      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2544        return false;
2545    }
2546  }
2547
2548  // If the calling conventions do not match, then we'd better make sure the
2549  // results are returned in the same way as what the caller expects.
2550  if (!CCMatch) {
2551    SmallVector<CCValAssign, 16> RVLocs1;
2552    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2553                    RVLocs1, *DAG.getContext());
2554    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2555
2556    SmallVector<CCValAssign, 16> RVLocs2;
2557    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2558                    RVLocs2, *DAG.getContext());
2559    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2560
2561    if (RVLocs1.size() != RVLocs2.size())
2562      return false;
2563    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2564      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2565        return false;
2566      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2567        return false;
2568      if (RVLocs1[i].isRegLoc()) {
2569        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2570          return false;
2571      } else {
2572        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2573          return false;
2574      }
2575    }
2576  }
2577
2578  // If the callee takes no arguments then go on to check the results of the
2579  // call.
2580  if (!Outs.empty()) {
2581    // Check if stack adjustment is needed. For now, do not do this if any
2582    // argument is passed on the stack.
2583    SmallVector<CCValAssign, 16> ArgLocs;
2584    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2585                   ArgLocs, *DAG.getContext());
2586
2587    // Allocate shadow area for Win64
2588    if (Subtarget->isTargetWin64()) {
2589      CCInfo.AllocateStack(32, 8);
2590    }
2591
2592    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2593    if (CCInfo.getNextStackOffset()) {
2594      MachineFunction &MF = DAG.getMachineFunction();
2595      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2596        return false;
2597
2598      // Check if the arguments are already laid out in the right way as
2599      // the caller's fixed stack objects.
2600      MachineFrameInfo *MFI = MF.getFrameInfo();
2601      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2602      const X86InstrInfo *TII =
2603        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2604      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2605        CCValAssign &VA = ArgLocs[i];
2606        SDValue Arg = OutVals[i];
2607        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2608        if (VA.getLocInfo() == CCValAssign::Indirect)
2609          return false;
2610        if (!VA.isRegLoc()) {
2611          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2612                                   MFI, MRI, TII))
2613            return false;
2614        }
2615      }
2616    }
2617
2618    // If the tailcall address may be in a register, then make sure it's
2619    // possible to register allocate for it. In 32-bit, the call address can
2620    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2621    // callee-saved registers are restored. These happen to be the same
2622    // registers used to pass 'inreg' arguments so watch out for those.
2623    if (!Subtarget->is64Bit() &&
2624        !isa<GlobalAddressSDNode>(Callee) &&
2625        !isa<ExternalSymbolSDNode>(Callee)) {
2626      unsigned NumInRegs = 0;
2627      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2628        CCValAssign &VA = ArgLocs[i];
2629        if (!VA.isRegLoc())
2630          continue;
2631        unsigned Reg = VA.getLocReg();
2632        switch (Reg) {
2633        default: break;
2634        case X86::EAX: case X86::EDX: case X86::ECX:
2635          if (++NumInRegs == 3)
2636            return false;
2637          break;
2638        }
2639      }
2640    }
2641  }
2642
2643  // An stdcall caller is expected to clean up its arguments; the callee
2644  // isn't going to do that.
2645  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2646    return false;
2647
2648  return true;
2649}
2650
2651FastISel *
2652X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2653  return X86::createFastISel(funcInfo);
2654}
2655
2656
2657//===----------------------------------------------------------------------===//
2658//                           Other Lowering Hooks
2659//===----------------------------------------------------------------------===//
2660
2661static bool MayFoldLoad(SDValue Op) {
2662  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2663}
2664
2665static bool MayFoldIntoStore(SDValue Op) {
2666  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2667}
2668
2669static bool isTargetShuffle(unsigned Opcode) {
2670  switch(Opcode) {
2671  default: return false;
2672  case X86ISD::PSHUFD:
2673  case X86ISD::PSHUFHW:
2674  case X86ISD::PSHUFLW:
2675  case X86ISD::SHUFPD:
2676  case X86ISD::PALIGN:
2677  case X86ISD::SHUFPS:
2678  case X86ISD::MOVLHPS:
2679  case X86ISD::MOVLHPD:
2680  case X86ISD::MOVHLPS:
2681  case X86ISD::MOVLPS:
2682  case X86ISD::MOVLPD:
2683  case X86ISD::MOVSHDUP:
2684  case X86ISD::MOVSLDUP:
2685  case X86ISD::MOVDDUP:
2686  case X86ISD::MOVSS:
2687  case X86ISD::MOVSD:
2688  case X86ISD::UNPCKLPS:
2689  case X86ISD::UNPCKLPD:
2690  case X86ISD::VUNPCKLPS:
2691  case X86ISD::VUNPCKLPD:
2692  case X86ISD::VUNPCKLPSY:
2693  case X86ISD::VUNPCKLPDY:
2694  case X86ISD::PUNPCKLWD:
2695  case X86ISD::PUNPCKLBW:
2696  case X86ISD::PUNPCKLDQ:
2697  case X86ISD::PUNPCKLQDQ:
2698  case X86ISD::UNPCKHPS:
2699  case X86ISD::UNPCKHPD:
2700  case X86ISD::PUNPCKHWD:
2701  case X86ISD::PUNPCKHBW:
2702  case X86ISD::PUNPCKHDQ:
2703  case X86ISD::PUNPCKHQDQ:
2704    return true;
2705  }
2706  return false;
2707}
2708
2709static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2710                                               SDValue V1, SelectionDAG &DAG) {
2711  switch(Opc) {
2712  default: llvm_unreachable("Unknown x86 shuffle node");
2713  case X86ISD::MOVSHDUP:
2714  case X86ISD::MOVSLDUP:
2715  case X86ISD::MOVDDUP:
2716    return DAG.getNode(Opc, dl, VT, V1);
2717  }
2718
2719  return SDValue();
2720}
2721
2722static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2723                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2724  switch(Opc) {
2725  default: llvm_unreachable("Unknown x86 shuffle node");
2726  case X86ISD::PSHUFD:
2727  case X86ISD::PSHUFHW:
2728  case X86ISD::PSHUFLW:
2729    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2730  }
2731
2732  return SDValue();
2733}
2734
2735static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2736               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2737  switch(Opc) {
2738  default: llvm_unreachable("Unknown x86 shuffle node");
2739  case X86ISD::PALIGN:
2740  case X86ISD::SHUFPD:
2741  case X86ISD::SHUFPS:
2742    return DAG.getNode(Opc, dl, VT, V1, V2,
2743                       DAG.getConstant(TargetMask, MVT::i8));
2744  }
2745  return SDValue();
2746}
2747
2748static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2749                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2750  switch(Opc) {
2751  default: llvm_unreachable("Unknown x86 shuffle node");
2752  case X86ISD::MOVLHPS:
2753  case X86ISD::MOVLHPD:
2754  case X86ISD::MOVHLPS:
2755  case X86ISD::MOVLPS:
2756  case X86ISD::MOVLPD:
2757  case X86ISD::MOVSS:
2758  case X86ISD::MOVSD:
2759  case X86ISD::UNPCKLPS:
2760  case X86ISD::UNPCKLPD:
2761  case X86ISD::VUNPCKLPS:
2762  case X86ISD::VUNPCKLPD:
2763  case X86ISD::VUNPCKLPSY:
2764  case X86ISD::VUNPCKLPDY:
2765  case X86ISD::PUNPCKLWD:
2766  case X86ISD::PUNPCKLBW:
2767  case X86ISD::PUNPCKLDQ:
2768  case X86ISD::PUNPCKLQDQ:
2769  case X86ISD::UNPCKHPS:
2770  case X86ISD::UNPCKHPD:
2771  case X86ISD::PUNPCKHWD:
2772  case X86ISD::PUNPCKHBW:
2773  case X86ISD::PUNPCKHDQ:
2774  case X86ISD::PUNPCKHQDQ:
2775    return DAG.getNode(Opc, dl, VT, V1, V2);
2776  }
2777  return SDValue();
2778}
2779
2780SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2781  MachineFunction &MF = DAG.getMachineFunction();
2782  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2783  int ReturnAddrIndex = FuncInfo->getRAIndex();
2784
2785  if (ReturnAddrIndex == 0) {
2786    // Set up a frame object for the return address.
2787    uint64_t SlotSize = TD->getPointerSize();
2788    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2789                                                           false);
2790    FuncInfo->setRAIndex(ReturnAddrIndex);
2791  }
2792
2793  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2794}
2795
2796
2797bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2798                                       bool hasSymbolicDisplacement) {
2799  // Offset should fit into 32 bit immediate field.
2800  if (!isInt<32>(Offset))
2801    return false;
2802
2803  // If we don't have a symbolic displacement - we don't have any extra
2804  // restrictions.
2805  if (!hasSymbolicDisplacement)
2806    return true;
2807
2808  // FIXME: Some tweaks might be needed for medium code model.
2809  if (M != CodeModel::Small && M != CodeModel::Kernel)
2810    return false;
2811
2812  // For small code model we assume that latest object is 16MB before end of 31
2813  // bits boundary. We may also accept pretty large negative constants knowing
2814  // that all objects are in the positive half of address space.
2815  if (M == CodeModel::Small && Offset < 16*1024*1024)
2816    return true;
2817
2818  // For kernel code model we know that all object resist in the negative half
2819  // of 32bits address space. We may not accept negative offsets, since they may
2820  // be just off and we may accept pretty large positive ones.
2821  if (M == CodeModel::Kernel && Offset > 0)
2822    return true;
2823
2824  return false;
2825}
2826
2827/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2828/// specific condition code, returning the condition code and the LHS/RHS of the
2829/// comparison to make.
2830static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2831                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2832  if (!isFP) {
2833    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2834      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2835        // X > -1   -> X == 0, jump !sign.
2836        RHS = DAG.getConstant(0, RHS.getValueType());
2837        return X86::COND_NS;
2838      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2839        // X < 0   -> X == 0, jump on sign.
2840        return X86::COND_S;
2841      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2842        // X < 1   -> X <= 0
2843        RHS = DAG.getConstant(0, RHS.getValueType());
2844        return X86::COND_LE;
2845      }
2846    }
2847
2848    switch (SetCCOpcode) {
2849    default: llvm_unreachable("Invalid integer condition!");
2850    case ISD::SETEQ:  return X86::COND_E;
2851    case ISD::SETGT:  return X86::COND_G;
2852    case ISD::SETGE:  return X86::COND_GE;
2853    case ISD::SETLT:  return X86::COND_L;
2854    case ISD::SETLE:  return X86::COND_LE;
2855    case ISD::SETNE:  return X86::COND_NE;
2856    case ISD::SETULT: return X86::COND_B;
2857    case ISD::SETUGT: return X86::COND_A;
2858    case ISD::SETULE: return X86::COND_BE;
2859    case ISD::SETUGE: return X86::COND_AE;
2860    }
2861  }
2862
2863  // First determine if it is required or is profitable to flip the operands.
2864
2865  // If LHS is a foldable load, but RHS is not, flip the condition.
2866  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2867      !ISD::isNON_EXTLoad(RHS.getNode())) {
2868    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2869    std::swap(LHS, RHS);
2870  }
2871
2872  switch (SetCCOpcode) {
2873  default: break;
2874  case ISD::SETOLT:
2875  case ISD::SETOLE:
2876  case ISD::SETUGT:
2877  case ISD::SETUGE:
2878    std::swap(LHS, RHS);
2879    break;
2880  }
2881
2882  // On a floating point condition, the flags are set as follows:
2883  // ZF  PF  CF   op
2884  //  0 | 0 | 0 | X > Y
2885  //  0 | 0 | 1 | X < Y
2886  //  1 | 0 | 0 | X == Y
2887  //  1 | 1 | 1 | unordered
2888  switch (SetCCOpcode) {
2889  default: llvm_unreachable("Condcode should be pre-legalized away");
2890  case ISD::SETUEQ:
2891  case ISD::SETEQ:   return X86::COND_E;
2892  case ISD::SETOLT:              // flipped
2893  case ISD::SETOGT:
2894  case ISD::SETGT:   return X86::COND_A;
2895  case ISD::SETOLE:              // flipped
2896  case ISD::SETOGE:
2897  case ISD::SETGE:   return X86::COND_AE;
2898  case ISD::SETUGT:              // flipped
2899  case ISD::SETULT:
2900  case ISD::SETLT:   return X86::COND_B;
2901  case ISD::SETUGE:              // flipped
2902  case ISD::SETULE:
2903  case ISD::SETLE:   return X86::COND_BE;
2904  case ISD::SETONE:
2905  case ISD::SETNE:   return X86::COND_NE;
2906  case ISD::SETUO:   return X86::COND_P;
2907  case ISD::SETO:    return X86::COND_NP;
2908  case ISD::SETOEQ:
2909  case ISD::SETUNE:  return X86::COND_INVALID;
2910  }
2911}
2912
2913/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2914/// code. Current x86 isa includes the following FP cmov instructions:
2915/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2916static bool hasFPCMov(unsigned X86CC) {
2917  switch (X86CC) {
2918  default:
2919    return false;
2920  case X86::COND_B:
2921  case X86::COND_BE:
2922  case X86::COND_E:
2923  case X86::COND_P:
2924  case X86::COND_A:
2925  case X86::COND_AE:
2926  case X86::COND_NE:
2927  case X86::COND_NP:
2928    return true;
2929  }
2930}
2931
2932/// isFPImmLegal - Returns true if the target can instruction select the
2933/// specified FP immediate natively. If false, the legalizer will
2934/// materialize the FP immediate as a load from a constant pool.
2935bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2936  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2937    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2938      return true;
2939  }
2940  return false;
2941}
2942
2943/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2944/// the specified range (L, H].
2945static bool isUndefOrInRange(int Val, int Low, int Hi) {
2946  return (Val < 0) || (Val >= Low && Val < Hi);
2947}
2948
2949/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2950/// specified value.
2951static bool isUndefOrEqual(int Val, int CmpVal) {
2952  if (Val < 0 || Val == CmpVal)
2953    return true;
2954  return false;
2955}
2956
2957/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2958/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2959/// the second operand.
2960static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2961  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2962    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2963  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2964    return (Mask[0] < 2 && Mask[1] < 2);
2965  return false;
2966}
2967
2968bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2969  SmallVector<int, 8> M;
2970  N->getMask(M);
2971  return ::isPSHUFDMask(M, N->getValueType(0));
2972}
2973
2974/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2975/// is suitable for input to PSHUFHW.
2976static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2977  if (VT != MVT::v8i16)
2978    return false;
2979
2980  // Lower quadword copied in order or undef.
2981  for (int i = 0; i != 4; ++i)
2982    if (Mask[i] >= 0 && Mask[i] != i)
2983      return false;
2984
2985  // Upper quadword shuffled.
2986  for (int i = 4; i != 8; ++i)
2987    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2988      return false;
2989
2990  return true;
2991}
2992
2993bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2994  SmallVector<int, 8> M;
2995  N->getMask(M);
2996  return ::isPSHUFHWMask(M, N->getValueType(0));
2997}
2998
2999/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3000/// is suitable for input to PSHUFLW.
3001static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3002  if (VT != MVT::v8i16)
3003    return false;
3004
3005  // Upper quadword copied in order.
3006  for (int i = 4; i != 8; ++i)
3007    if (Mask[i] >= 0 && Mask[i] != i)
3008      return false;
3009
3010  // Lower quadword shuffled.
3011  for (int i = 0; i != 4; ++i)
3012    if (Mask[i] >= 4)
3013      return false;
3014
3015  return true;
3016}
3017
3018bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3019  SmallVector<int, 8> M;
3020  N->getMask(M);
3021  return ::isPSHUFLWMask(M, N->getValueType(0));
3022}
3023
3024/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3025/// is suitable for input to PALIGNR.
3026static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3027                          bool hasSSSE3) {
3028  int i, e = VT.getVectorNumElements();
3029
3030  // Do not handle v2i64 / v2f64 shuffles with palignr.
3031  if (e < 4 || !hasSSSE3)
3032    return false;
3033
3034  for (i = 0; i != e; ++i)
3035    if (Mask[i] >= 0)
3036      break;
3037
3038  // All undef, not a palignr.
3039  if (i == e)
3040    return false;
3041
3042  // Determine if it's ok to perform a palignr with only the LHS, since we
3043  // don't have access to the actual shuffle elements to see if RHS is undef.
3044  bool Unary = Mask[i] < (int)e;
3045  bool NeedsUnary = false;
3046
3047  int s = Mask[i] - i;
3048
3049  // Check the rest of the elements to see if they are consecutive.
3050  for (++i; i != e; ++i) {
3051    int m = Mask[i];
3052    if (m < 0)
3053      continue;
3054
3055    Unary = Unary && (m < (int)e);
3056    NeedsUnary = NeedsUnary || (m < s);
3057
3058    if (NeedsUnary && !Unary)
3059      return false;
3060    if (Unary && m != ((s+i) & (e-1)))
3061      return false;
3062    if (!Unary && m != (s+i))
3063      return false;
3064  }
3065  return true;
3066}
3067
3068bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
3069  SmallVector<int, 8> M;
3070  N->getMask(M);
3071  return ::isPALIGNRMask(M, N->getValueType(0), true);
3072}
3073
3074/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3075/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3076static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3077  int NumElems = VT.getVectorNumElements();
3078  if (NumElems != 2 && NumElems != 4)
3079    return false;
3080
3081  int Half = NumElems / 2;
3082  for (int i = 0; i < Half; ++i)
3083    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3084      return false;
3085  for (int i = Half; i < NumElems; ++i)
3086    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3087      return false;
3088
3089  return true;
3090}
3091
3092bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3093  SmallVector<int, 8> M;
3094  N->getMask(M);
3095  return ::isSHUFPMask(M, N->getValueType(0));
3096}
3097
3098/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3099/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3100/// half elements to come from vector 1 (which would equal the dest.) and
3101/// the upper half to come from vector 2.
3102static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3103  int NumElems = VT.getVectorNumElements();
3104
3105  if (NumElems != 2 && NumElems != 4)
3106    return false;
3107
3108  int Half = NumElems / 2;
3109  for (int i = 0; i < Half; ++i)
3110    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3111      return false;
3112  for (int i = Half; i < NumElems; ++i)
3113    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3114      return false;
3115  return true;
3116}
3117
3118static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3119  SmallVector<int, 8> M;
3120  N->getMask(M);
3121  return isCommutedSHUFPMask(M, N->getValueType(0));
3122}
3123
3124/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3125/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3126bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3127  if (N->getValueType(0).getVectorNumElements() != 4)
3128    return false;
3129
3130  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3131  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3132         isUndefOrEqual(N->getMaskElt(1), 7) &&
3133         isUndefOrEqual(N->getMaskElt(2), 2) &&
3134         isUndefOrEqual(N->getMaskElt(3), 3);
3135}
3136
3137/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3138/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3139/// <2, 3, 2, 3>
3140bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3141  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3142
3143  if (NumElems != 4)
3144    return false;
3145
3146  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3147  isUndefOrEqual(N->getMaskElt(1), 3) &&
3148  isUndefOrEqual(N->getMaskElt(2), 2) &&
3149  isUndefOrEqual(N->getMaskElt(3), 3);
3150}
3151
3152/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3153/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3154bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3155  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3156
3157  if (NumElems != 2 && NumElems != 4)
3158    return false;
3159
3160  for (unsigned i = 0; i < NumElems/2; ++i)
3161    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3162      return false;
3163
3164  for (unsigned i = NumElems/2; i < NumElems; ++i)
3165    if (!isUndefOrEqual(N->getMaskElt(i), i))
3166      return false;
3167
3168  return true;
3169}
3170
3171/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3172/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3173bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3174  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3175
3176  if (NumElems != 2 && NumElems != 4)
3177    return false;
3178
3179  for (unsigned i = 0; i < NumElems/2; ++i)
3180    if (!isUndefOrEqual(N->getMaskElt(i), i))
3181      return false;
3182
3183  for (unsigned i = 0; i < NumElems/2; ++i)
3184    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3185      return false;
3186
3187  return true;
3188}
3189
3190/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3191/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3192static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3193                         bool V2IsSplat = false) {
3194  int NumElts = VT.getVectorNumElements();
3195  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3196    return false;
3197
3198  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3199    int BitI  = Mask[i];
3200    int BitI1 = Mask[i+1];
3201    if (!isUndefOrEqual(BitI, j))
3202      return false;
3203    if (V2IsSplat) {
3204      if (!isUndefOrEqual(BitI1, NumElts))
3205        return false;
3206    } else {
3207      if (!isUndefOrEqual(BitI1, j + NumElts))
3208        return false;
3209    }
3210  }
3211  return true;
3212}
3213
3214bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3215  SmallVector<int, 8> M;
3216  N->getMask(M);
3217  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3218}
3219
3220/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3221/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3222static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3223                         bool V2IsSplat = false) {
3224  int NumElts = VT.getVectorNumElements();
3225  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3226    return false;
3227
3228  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3229    int BitI  = Mask[i];
3230    int BitI1 = Mask[i+1];
3231    if (!isUndefOrEqual(BitI, j + NumElts/2))
3232      return false;
3233    if (V2IsSplat) {
3234      if (isUndefOrEqual(BitI1, NumElts))
3235        return false;
3236    } else {
3237      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3238        return false;
3239    }
3240  }
3241  return true;
3242}
3243
3244bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3245  SmallVector<int, 8> M;
3246  N->getMask(M);
3247  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3248}
3249
3250/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3251/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3252/// <0, 0, 1, 1>
3253static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3254  int NumElems = VT.getVectorNumElements();
3255  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3256    return false;
3257
3258  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3259    int BitI  = Mask[i];
3260    int BitI1 = Mask[i+1];
3261    if (!isUndefOrEqual(BitI, j))
3262      return false;
3263    if (!isUndefOrEqual(BitI1, j))
3264      return false;
3265  }
3266  return true;
3267}
3268
3269bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3270  SmallVector<int, 8> M;
3271  N->getMask(M);
3272  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3273}
3274
3275/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3276/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3277/// <2, 2, 3, 3>
3278static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3279  int NumElems = VT.getVectorNumElements();
3280  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3281    return false;
3282
3283  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3284    int BitI  = Mask[i];
3285    int BitI1 = Mask[i+1];
3286    if (!isUndefOrEqual(BitI, j))
3287      return false;
3288    if (!isUndefOrEqual(BitI1, j))
3289      return false;
3290  }
3291  return true;
3292}
3293
3294bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3295  SmallVector<int, 8> M;
3296  N->getMask(M);
3297  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3298}
3299
3300/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3301/// specifies a shuffle of elements that is suitable for input to MOVSS,
3302/// MOVSD, and MOVD, i.e. setting the lowest element.
3303static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3304  if (VT.getVectorElementType().getSizeInBits() < 32)
3305    return false;
3306
3307  int NumElts = VT.getVectorNumElements();
3308
3309  if (!isUndefOrEqual(Mask[0], NumElts))
3310    return false;
3311
3312  for (int i = 1; i < NumElts; ++i)
3313    if (!isUndefOrEqual(Mask[i], i))
3314      return false;
3315
3316  return true;
3317}
3318
3319bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3320  SmallVector<int, 8> M;
3321  N->getMask(M);
3322  return ::isMOVLMask(M, N->getValueType(0));
3323}
3324
3325/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3326/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3327/// element of vector 2 and the other elements to come from vector 1 in order.
3328static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3329                               bool V2IsSplat = false, bool V2IsUndef = false) {
3330  int NumOps = VT.getVectorNumElements();
3331  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3332    return false;
3333
3334  if (!isUndefOrEqual(Mask[0], 0))
3335    return false;
3336
3337  for (int i = 1; i < NumOps; ++i)
3338    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3339          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3340          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3341      return false;
3342
3343  return true;
3344}
3345
3346static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3347                           bool V2IsUndef = false) {
3348  SmallVector<int, 8> M;
3349  N->getMask(M);
3350  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3351}
3352
3353/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3354/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3355bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3356  if (N->getValueType(0).getVectorNumElements() != 4)
3357    return false;
3358
3359  // Expect 1, 1, 3, 3
3360  for (unsigned i = 0; i < 2; ++i) {
3361    int Elt = N->getMaskElt(i);
3362    if (Elt >= 0 && Elt != 1)
3363      return false;
3364  }
3365
3366  bool HasHi = false;
3367  for (unsigned i = 2; i < 4; ++i) {
3368    int Elt = N->getMaskElt(i);
3369    if (Elt >= 0 && Elt != 3)
3370      return false;
3371    if (Elt == 3)
3372      HasHi = true;
3373  }
3374  // Don't use movshdup if it can be done with a shufps.
3375  // FIXME: verify that matching u, u, 3, 3 is what we want.
3376  return HasHi;
3377}
3378
3379/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3380/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3381bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3382  if (N->getValueType(0).getVectorNumElements() != 4)
3383    return false;
3384
3385  // Expect 0, 0, 2, 2
3386  for (unsigned i = 0; i < 2; ++i)
3387    if (N->getMaskElt(i) > 0)
3388      return false;
3389
3390  bool HasHi = false;
3391  for (unsigned i = 2; i < 4; ++i) {
3392    int Elt = N->getMaskElt(i);
3393    if (Elt >= 0 && Elt != 2)
3394      return false;
3395    if (Elt == 2)
3396      HasHi = true;
3397  }
3398  // Don't use movsldup if it can be done with a shufps.
3399  return HasHi;
3400}
3401
3402/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3403/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3404bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3405  int e = N->getValueType(0).getVectorNumElements() / 2;
3406
3407  for (int i = 0; i < e; ++i)
3408    if (!isUndefOrEqual(N->getMaskElt(i), i))
3409      return false;
3410  for (int i = 0; i < e; ++i)
3411    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3412      return false;
3413  return true;
3414}
3415
3416/// isVEXTRACTF128Index - Return true if the specified
3417/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3418/// suitable for input to VEXTRACTF128.
3419bool X86::isVEXTRACTF128Index(SDNode *N) {
3420  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3421    return false;
3422
3423  // The index should be aligned on a 128-bit boundary.
3424  uint64_t Index =
3425    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3426
3427  unsigned VL = N->getValueType(0).getVectorNumElements();
3428  unsigned VBits = N->getValueType(0).getSizeInBits();
3429  unsigned ElSize = VBits / VL;
3430  bool Result = (Index * ElSize) % 128 == 0;
3431
3432  return Result;
3433}
3434
3435/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3436/// operand specifies a subvector insert that is suitable for input to
3437/// VINSERTF128.
3438bool X86::isVINSERTF128Index(SDNode *N) {
3439  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3440    return false;
3441
3442  // The index should be aligned on a 128-bit boundary.
3443  uint64_t Index =
3444    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3445
3446  unsigned VL = N->getValueType(0).getVectorNumElements();
3447  unsigned VBits = N->getValueType(0).getSizeInBits();
3448  unsigned ElSize = VBits / VL;
3449  bool Result = (Index * ElSize) % 128 == 0;
3450
3451  return Result;
3452}
3453
3454/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3455/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3456unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3457  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3458  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3459
3460  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3461  unsigned Mask = 0;
3462  for (int i = 0; i < NumOperands; ++i) {
3463    int Val = SVOp->getMaskElt(NumOperands-i-1);
3464    if (Val < 0) Val = 0;
3465    if (Val >= NumOperands) Val -= NumOperands;
3466    Mask |= Val;
3467    if (i != NumOperands - 1)
3468      Mask <<= Shift;
3469  }
3470  return Mask;
3471}
3472
3473/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3474/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3475unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3476  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3477  unsigned Mask = 0;
3478  // 8 nodes, but we only care about the last 4.
3479  for (unsigned i = 7; i >= 4; --i) {
3480    int Val = SVOp->getMaskElt(i);
3481    if (Val >= 0)
3482      Mask |= (Val - 4);
3483    if (i != 4)
3484      Mask <<= 2;
3485  }
3486  return Mask;
3487}
3488
3489/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3490/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3491unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3492  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3493  unsigned Mask = 0;
3494  // 8 nodes, but we only care about the first 4.
3495  for (int i = 3; i >= 0; --i) {
3496    int Val = SVOp->getMaskElt(i);
3497    if (Val >= 0)
3498      Mask |= Val;
3499    if (i != 0)
3500      Mask <<= 2;
3501  }
3502  return Mask;
3503}
3504
3505/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3506/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3507unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3508  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3509  EVT VVT = N->getValueType(0);
3510  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3511  int Val = 0;
3512
3513  unsigned i, e;
3514  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3515    Val = SVOp->getMaskElt(i);
3516    if (Val >= 0)
3517      break;
3518  }
3519  return (Val - i) * EltSize;
3520}
3521
3522/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3523/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3524/// instructions.
3525unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3526  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3527    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3528
3529  uint64_t Index =
3530    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3531
3532  EVT VecVT = N->getOperand(0).getValueType();
3533  EVT ElVT = VecVT.getVectorElementType();
3534
3535  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3536
3537  return Index / NumElemsPerChunk;
3538}
3539
3540/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3541/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3542/// instructions.
3543unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3544  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3545    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3546
3547  uint64_t Index =
3548    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3549
3550  EVT VecVT = N->getValueType(0);
3551  EVT ElVT = VecVT.getVectorElementType();
3552
3553  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3554
3555  return Index / NumElemsPerChunk;
3556}
3557
3558/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3559/// constant +0.0.
3560bool X86::isZeroNode(SDValue Elt) {
3561  return ((isa<ConstantSDNode>(Elt) &&
3562           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3563          (isa<ConstantFPSDNode>(Elt) &&
3564           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3565}
3566
3567/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3568/// their permute mask.
3569static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3570                                    SelectionDAG &DAG) {
3571  EVT VT = SVOp->getValueType(0);
3572  unsigned NumElems = VT.getVectorNumElements();
3573  SmallVector<int, 8> MaskVec;
3574
3575  for (unsigned i = 0; i != NumElems; ++i) {
3576    int idx = SVOp->getMaskElt(i);
3577    if (idx < 0)
3578      MaskVec.push_back(idx);
3579    else if (idx < (int)NumElems)
3580      MaskVec.push_back(idx + NumElems);
3581    else
3582      MaskVec.push_back(idx - NumElems);
3583  }
3584  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3585                              SVOp->getOperand(0), &MaskVec[0]);
3586}
3587
3588/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3589/// the two vector operands have swapped position.
3590static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3591  unsigned NumElems = VT.getVectorNumElements();
3592  for (unsigned i = 0; i != NumElems; ++i) {
3593    int idx = Mask[i];
3594    if (idx < 0)
3595      continue;
3596    else if (idx < (int)NumElems)
3597      Mask[i] = idx + NumElems;
3598    else
3599      Mask[i] = idx - NumElems;
3600  }
3601}
3602
3603/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3604/// match movhlps. The lower half elements should come from upper half of
3605/// V1 (and in order), and the upper half elements should come from the upper
3606/// half of V2 (and in order).
3607static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3608  if (Op->getValueType(0).getVectorNumElements() != 4)
3609    return false;
3610  for (unsigned i = 0, e = 2; i != e; ++i)
3611    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3612      return false;
3613  for (unsigned i = 2; i != 4; ++i)
3614    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3615      return false;
3616  return true;
3617}
3618
3619/// isScalarLoadToVector - Returns true if the node is a scalar load that
3620/// is promoted to a vector. It also returns the LoadSDNode by reference if
3621/// required.
3622static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3623  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3624    return false;
3625  N = N->getOperand(0).getNode();
3626  if (!ISD::isNON_EXTLoad(N))
3627    return false;
3628  if (LD)
3629    *LD = cast<LoadSDNode>(N);
3630  return true;
3631}
3632
3633/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3634/// match movlp{s|d}. The lower half elements should come from lower half of
3635/// V1 (and in order), and the upper half elements should come from the upper
3636/// half of V2 (and in order). And since V1 will become the source of the
3637/// MOVLP, it must be either a vector load or a scalar load to vector.
3638static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3639                               ShuffleVectorSDNode *Op) {
3640  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3641    return false;
3642  // Is V2 is a vector load, don't do this transformation. We will try to use
3643  // load folding shufps op.
3644  if (ISD::isNON_EXTLoad(V2))
3645    return false;
3646
3647  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3648
3649  if (NumElems != 2 && NumElems != 4)
3650    return false;
3651  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3652    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3653      return false;
3654  for (unsigned i = NumElems/2; i != NumElems; ++i)
3655    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3656      return false;
3657  return true;
3658}
3659
3660/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3661/// all the same.
3662static bool isSplatVector(SDNode *N) {
3663  if (N->getOpcode() != ISD::BUILD_VECTOR)
3664    return false;
3665
3666  SDValue SplatValue = N->getOperand(0);
3667  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3668    if (N->getOperand(i) != SplatValue)
3669      return false;
3670  return true;
3671}
3672
3673/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3674/// to an zero vector.
3675/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3676static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3677  SDValue V1 = N->getOperand(0);
3678  SDValue V2 = N->getOperand(1);
3679  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3680  for (unsigned i = 0; i != NumElems; ++i) {
3681    int Idx = N->getMaskElt(i);
3682    if (Idx >= (int)NumElems) {
3683      unsigned Opc = V2.getOpcode();
3684      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3685        continue;
3686      if (Opc != ISD::BUILD_VECTOR ||
3687          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3688        return false;
3689    } else if (Idx >= 0) {
3690      unsigned Opc = V1.getOpcode();
3691      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3692        continue;
3693      if (Opc != ISD::BUILD_VECTOR ||
3694          !X86::isZeroNode(V1.getOperand(Idx)))
3695        return false;
3696    }
3697  }
3698  return true;
3699}
3700
3701/// getZeroVector - Returns a vector of specified type with all zero elements.
3702///
3703static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3704                             DebugLoc dl) {
3705  assert(VT.isVector() && "Expected a vector type");
3706
3707  // Always build SSE zero vectors as <4 x i32> bitcasted
3708  // to their dest type. This ensures they get CSE'd.
3709  SDValue Vec;
3710  if (VT.getSizeInBits() == 128) {  // SSE
3711    if (HasSSE2) {  // SSE2
3712      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3713      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3714    } else { // SSE1
3715      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3716      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3717    }
3718  } else if (VT.getSizeInBits() == 256) { // AVX
3719    // 256-bit logic and arithmetic instructions in AVX are
3720    // all floating-point, no support for integer ops. Default
3721    // to emitting fp zeroed vectors then.
3722    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3723    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3724    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3725  }
3726  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3727}
3728
3729/// getOnesVector - Returns a vector of specified type with all bits set.
3730///
3731static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3732  assert(VT.isVector() && "Expected a vector type");
3733
3734  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3735  // type.  This ensures they get CSE'd.
3736  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3737  SDValue Vec;
3738  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3739  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3740}
3741
3742
3743/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3744/// that point to V2 points to its first element.
3745static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3746  EVT VT = SVOp->getValueType(0);
3747  unsigned NumElems = VT.getVectorNumElements();
3748
3749  bool Changed = false;
3750  SmallVector<int, 8> MaskVec;
3751  SVOp->getMask(MaskVec);
3752
3753  for (unsigned i = 0; i != NumElems; ++i) {
3754    if (MaskVec[i] > (int)NumElems) {
3755      MaskVec[i] = NumElems;
3756      Changed = true;
3757    }
3758  }
3759  if (Changed)
3760    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3761                                SVOp->getOperand(1), &MaskVec[0]);
3762  return SDValue(SVOp, 0);
3763}
3764
3765/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3766/// operation of specified width.
3767static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3768                       SDValue V2) {
3769  unsigned NumElems = VT.getVectorNumElements();
3770  SmallVector<int, 8> Mask;
3771  Mask.push_back(NumElems);
3772  for (unsigned i = 1; i != NumElems; ++i)
3773    Mask.push_back(i);
3774  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3775}
3776
3777/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3778static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3779                          SDValue V2) {
3780  unsigned NumElems = VT.getVectorNumElements();
3781  SmallVector<int, 8> Mask;
3782  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3783    Mask.push_back(i);
3784    Mask.push_back(i + NumElems);
3785  }
3786  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3787}
3788
3789/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3790static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3791                          SDValue V2) {
3792  unsigned NumElems = VT.getVectorNumElements();
3793  unsigned Half = NumElems/2;
3794  SmallVector<int, 8> Mask;
3795  for (unsigned i = 0; i != Half; ++i) {
3796    Mask.push_back(i + Half);
3797    Mask.push_back(i + NumElems + Half);
3798  }
3799  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3800}
3801
3802/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3803static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3804  EVT PVT = MVT::v4f32;
3805  EVT VT = SV->getValueType(0);
3806  DebugLoc dl = SV->getDebugLoc();
3807  SDValue V1 = SV->getOperand(0);
3808  int NumElems = VT.getVectorNumElements();
3809  int EltNo = SV->getSplatIndex();
3810
3811  // unpack elements to the correct location
3812  while (NumElems > 4) {
3813    if (EltNo < NumElems/2) {
3814      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3815    } else {
3816      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3817      EltNo -= NumElems/2;
3818    }
3819    NumElems >>= 1;
3820  }
3821
3822  // Perform the splat.
3823  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3824  V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3825  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3826  return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3827}
3828
3829/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3830/// vector of zero or undef vector.  This produces a shuffle where the low
3831/// element of V2 is swizzled into the zero/undef vector, landing at element
3832/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3833static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3834                                             bool isZero, bool HasSSE2,
3835                                             SelectionDAG &DAG) {
3836  EVT VT = V2.getValueType();
3837  SDValue V1 = isZero
3838    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3839  unsigned NumElems = VT.getVectorNumElements();
3840  SmallVector<int, 16> MaskVec;
3841  for (unsigned i = 0; i != NumElems; ++i)
3842    // If this is the insertion idx, put the low elt of V2 here.
3843    MaskVec.push_back(i == Idx ? NumElems : i);
3844  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3845}
3846
3847/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3848/// element of the result of the vector shuffle.
3849SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3850                            unsigned Depth) {
3851  if (Depth == 6)
3852    return SDValue();  // Limit search depth.
3853
3854  SDValue V = SDValue(N, 0);
3855  EVT VT = V.getValueType();
3856  unsigned Opcode = V.getOpcode();
3857
3858  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3859  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3860    Index = SV->getMaskElt(Index);
3861
3862    if (Index < 0)
3863      return DAG.getUNDEF(VT.getVectorElementType());
3864
3865    int NumElems = VT.getVectorNumElements();
3866    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3867    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3868  }
3869
3870  // Recurse into target specific vector shuffles to find scalars.
3871  if (isTargetShuffle(Opcode)) {
3872    int NumElems = VT.getVectorNumElements();
3873    SmallVector<unsigned, 16> ShuffleMask;
3874    SDValue ImmN;
3875
3876    switch(Opcode) {
3877    case X86ISD::SHUFPS:
3878    case X86ISD::SHUFPD:
3879      ImmN = N->getOperand(N->getNumOperands()-1);
3880      DecodeSHUFPSMask(NumElems,
3881                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3882                       ShuffleMask);
3883      break;
3884    case X86ISD::PUNPCKHBW:
3885    case X86ISD::PUNPCKHWD:
3886    case X86ISD::PUNPCKHDQ:
3887    case X86ISD::PUNPCKHQDQ:
3888      DecodePUNPCKHMask(NumElems, ShuffleMask);
3889      break;
3890    case X86ISD::UNPCKHPS:
3891    case X86ISD::UNPCKHPD:
3892      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3893      break;
3894    case X86ISD::PUNPCKLBW:
3895    case X86ISD::PUNPCKLWD:
3896    case X86ISD::PUNPCKLDQ:
3897    case X86ISD::PUNPCKLQDQ:
3898      DecodePUNPCKLMask(VT, ShuffleMask);
3899      break;
3900    case X86ISD::UNPCKLPS:
3901    case X86ISD::UNPCKLPD:
3902    case X86ISD::VUNPCKLPS:
3903    case X86ISD::VUNPCKLPD:
3904    case X86ISD::VUNPCKLPSY:
3905    case X86ISD::VUNPCKLPDY:
3906      DecodeUNPCKLPMask(VT, ShuffleMask);
3907      break;
3908    case X86ISD::MOVHLPS:
3909      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3910      break;
3911    case X86ISD::MOVLHPS:
3912      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3913      break;
3914    case X86ISD::PSHUFD:
3915      ImmN = N->getOperand(N->getNumOperands()-1);
3916      DecodePSHUFMask(NumElems,
3917                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3918                      ShuffleMask);
3919      break;
3920    case X86ISD::PSHUFHW:
3921      ImmN = N->getOperand(N->getNumOperands()-1);
3922      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3923                        ShuffleMask);
3924      break;
3925    case X86ISD::PSHUFLW:
3926      ImmN = N->getOperand(N->getNumOperands()-1);
3927      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3928                        ShuffleMask);
3929      break;
3930    case X86ISD::MOVSS:
3931    case X86ISD::MOVSD: {
3932      // The index 0 always comes from the first element of the second source,
3933      // this is why MOVSS and MOVSD are used in the first place. The other
3934      // elements come from the other positions of the first source vector.
3935      unsigned OpNum = (Index == 0) ? 1 : 0;
3936      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3937                                 Depth+1);
3938    }
3939    default:
3940      assert("not implemented for target shuffle node");
3941      return SDValue();
3942    }
3943
3944    Index = ShuffleMask[Index];
3945    if (Index < 0)
3946      return DAG.getUNDEF(VT.getVectorElementType());
3947
3948    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3949    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3950                               Depth+1);
3951  }
3952
3953  // Actual nodes that may contain scalar elements
3954  if (Opcode == ISD::BITCAST) {
3955    V = V.getOperand(0);
3956    EVT SrcVT = V.getValueType();
3957    unsigned NumElems = VT.getVectorNumElements();
3958
3959    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3960      return SDValue();
3961  }
3962
3963  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3964    return (Index == 0) ? V.getOperand(0)
3965                          : DAG.getUNDEF(VT.getVectorElementType());
3966
3967  if (V.getOpcode() == ISD::BUILD_VECTOR)
3968    return V.getOperand(Index);
3969
3970  return SDValue();
3971}
3972
3973/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3974/// shuffle operation which come from a consecutively from a zero. The
3975/// search can start in two diferent directions, from left or right.
3976static
3977unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3978                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3979  int i = 0;
3980
3981  while (i < NumElems) {
3982    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3983    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3984    if (!(Elt.getNode() &&
3985         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3986      break;
3987    ++i;
3988  }
3989
3990  return i;
3991}
3992
3993/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3994/// MaskE correspond consecutively to elements from one of the vector operands,
3995/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3996static
3997bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3998                              int OpIdx, int NumElems, unsigned &OpNum) {
3999  bool SeenV1 = false;
4000  bool SeenV2 = false;
4001
4002  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4003    int Idx = SVOp->getMaskElt(i);
4004    // Ignore undef indicies
4005    if (Idx < 0)
4006      continue;
4007
4008    if (Idx < NumElems)
4009      SeenV1 = true;
4010    else
4011      SeenV2 = true;
4012
4013    // Only accept consecutive elements from the same vector
4014    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4015      return false;
4016  }
4017
4018  OpNum = SeenV1 ? 0 : 1;
4019  return true;
4020}
4021
4022/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4023/// logical left shift of a vector.
4024static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4025                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4026  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4027  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4028              false /* check zeros from right */, DAG);
4029  unsigned OpSrc;
4030
4031  if (!NumZeros)
4032    return false;
4033
4034  // Considering the elements in the mask that are not consecutive zeros,
4035  // check if they consecutively come from only one of the source vectors.
4036  //
4037  //               V1 = {X, A, B, C}     0
4038  //                         \  \  \    /
4039  //   vector_shuffle V1, V2 <1, 2, 3, X>
4040  //
4041  if (!isShuffleMaskConsecutive(SVOp,
4042            0,                   // Mask Start Index
4043            NumElems-NumZeros-1, // Mask End Index
4044            NumZeros,            // Where to start looking in the src vector
4045            NumElems,            // Number of elements in vector
4046            OpSrc))              // Which source operand ?
4047    return false;
4048
4049  isLeft = false;
4050  ShAmt = NumZeros;
4051  ShVal = SVOp->getOperand(OpSrc);
4052  return true;
4053}
4054
4055/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4056/// logical left shift of a vector.
4057static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4058                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4059  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4060  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4061              true /* check zeros from left */, DAG);
4062  unsigned OpSrc;
4063
4064  if (!NumZeros)
4065    return false;
4066
4067  // Considering the elements in the mask that are not consecutive zeros,
4068  // check if they consecutively come from only one of the source vectors.
4069  //
4070  //                           0    { A, B, X, X } = V2
4071  //                          / \    /  /
4072  //   vector_shuffle V1, V2 <X, X, 4, 5>
4073  //
4074  if (!isShuffleMaskConsecutive(SVOp,
4075            NumZeros,     // Mask Start Index
4076            NumElems-1,   // Mask End Index
4077            0,            // Where to start looking in the src vector
4078            NumElems,     // Number of elements in vector
4079            OpSrc))       // Which source operand ?
4080    return false;
4081
4082  isLeft = true;
4083  ShAmt = NumZeros;
4084  ShVal = SVOp->getOperand(OpSrc);
4085  return true;
4086}
4087
4088/// isVectorShift - Returns true if the shuffle can be implemented as a
4089/// logical left or right shift of a vector.
4090static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4091                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4092  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4093      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4094    return true;
4095
4096  return false;
4097}
4098
4099/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4100///
4101static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4102                                       unsigned NumNonZero, unsigned NumZero,
4103                                       SelectionDAG &DAG,
4104                                       const TargetLowering &TLI) {
4105  if (NumNonZero > 8)
4106    return SDValue();
4107
4108  DebugLoc dl = Op.getDebugLoc();
4109  SDValue V(0, 0);
4110  bool First = true;
4111  for (unsigned i = 0; i < 16; ++i) {
4112    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4113    if (ThisIsNonZero && First) {
4114      if (NumZero)
4115        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4116      else
4117        V = DAG.getUNDEF(MVT::v8i16);
4118      First = false;
4119    }
4120
4121    if ((i & 1) != 0) {
4122      SDValue ThisElt(0, 0), LastElt(0, 0);
4123      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4124      if (LastIsNonZero) {
4125        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4126                              MVT::i16, Op.getOperand(i-1));
4127      }
4128      if (ThisIsNonZero) {
4129        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4130        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4131                              ThisElt, DAG.getConstant(8, MVT::i8));
4132        if (LastIsNonZero)
4133          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4134      } else
4135        ThisElt = LastElt;
4136
4137      if (ThisElt.getNode())
4138        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4139                        DAG.getIntPtrConstant(i/2));
4140    }
4141  }
4142
4143  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4144}
4145
4146/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4147///
4148static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4149                                     unsigned NumNonZero, unsigned NumZero,
4150                                     SelectionDAG &DAG,
4151                                     const TargetLowering &TLI) {
4152  if (NumNonZero > 4)
4153    return SDValue();
4154
4155  DebugLoc dl = Op.getDebugLoc();
4156  SDValue V(0, 0);
4157  bool First = true;
4158  for (unsigned i = 0; i < 8; ++i) {
4159    bool isNonZero = (NonZeros & (1 << i)) != 0;
4160    if (isNonZero) {
4161      if (First) {
4162        if (NumZero)
4163          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4164        else
4165          V = DAG.getUNDEF(MVT::v8i16);
4166        First = false;
4167      }
4168      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4169                      MVT::v8i16, V, Op.getOperand(i),
4170                      DAG.getIntPtrConstant(i));
4171    }
4172  }
4173
4174  return V;
4175}
4176
4177/// getVShift - Return a vector logical shift node.
4178///
4179static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4180                         unsigned NumBits, SelectionDAG &DAG,
4181                         const TargetLowering &TLI, DebugLoc dl) {
4182  EVT ShVT = MVT::v2i64;
4183  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4184  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4185  return DAG.getNode(ISD::BITCAST, dl, VT,
4186                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4187                             DAG.getConstant(NumBits,
4188                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4189}
4190
4191SDValue
4192X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4193                                          SelectionDAG &DAG) const {
4194
4195  // Check if the scalar load can be widened into a vector load. And if
4196  // the address is "base + cst" see if the cst can be "absorbed" into
4197  // the shuffle mask.
4198  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4199    SDValue Ptr = LD->getBasePtr();
4200    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4201      return SDValue();
4202    EVT PVT = LD->getValueType(0);
4203    if (PVT != MVT::i32 && PVT != MVT::f32)
4204      return SDValue();
4205
4206    int FI = -1;
4207    int64_t Offset = 0;
4208    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4209      FI = FINode->getIndex();
4210      Offset = 0;
4211    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4212               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4213      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4214      Offset = Ptr.getConstantOperandVal(1);
4215      Ptr = Ptr.getOperand(0);
4216    } else {
4217      return SDValue();
4218    }
4219
4220    SDValue Chain = LD->getChain();
4221    // Make sure the stack object alignment is at least 16.
4222    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4223    if (DAG.InferPtrAlignment(Ptr) < 16) {
4224      if (MFI->isFixedObjectIndex(FI)) {
4225        // Can't change the alignment. FIXME: It's possible to compute
4226        // the exact stack offset and reference FI + adjust offset instead.
4227        // If someone *really* cares about this. That's the way to implement it.
4228        return SDValue();
4229      } else {
4230        MFI->setObjectAlignment(FI, 16);
4231      }
4232    }
4233
4234    // (Offset % 16) must be multiple of 4. Then address is then
4235    // Ptr + (Offset & ~15).
4236    if (Offset < 0)
4237      return SDValue();
4238    if ((Offset % 16) & 3)
4239      return SDValue();
4240    int64_t StartOffset = Offset & ~15;
4241    if (StartOffset)
4242      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4243                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4244
4245    int EltNo = (Offset - StartOffset) >> 2;
4246    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4247    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4248    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4249                             LD->getPointerInfo().getWithOffset(StartOffset),
4250                             false, false, 0);
4251    // Canonicalize it to a v4i32 shuffle.
4252    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4253    return DAG.getNode(ISD::BITCAST, dl, VT,
4254                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4255                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4256  }
4257
4258  return SDValue();
4259}
4260
4261/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4262/// vector of type 'VT', see if the elements can be replaced by a single large
4263/// load which has the same value as a build_vector whose operands are 'elts'.
4264///
4265/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4266///
4267/// FIXME: we'd also like to handle the case where the last elements are zero
4268/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4269/// There's even a handy isZeroNode for that purpose.
4270static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4271                                        DebugLoc &DL, SelectionDAG &DAG) {
4272  EVT EltVT = VT.getVectorElementType();
4273  unsigned NumElems = Elts.size();
4274
4275  LoadSDNode *LDBase = NULL;
4276  unsigned LastLoadedElt = -1U;
4277
4278  // For each element in the initializer, see if we've found a load or an undef.
4279  // If we don't find an initial load element, or later load elements are
4280  // non-consecutive, bail out.
4281  for (unsigned i = 0; i < NumElems; ++i) {
4282    SDValue Elt = Elts[i];
4283
4284    if (!Elt.getNode() ||
4285        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4286      return SDValue();
4287    if (!LDBase) {
4288      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4289        return SDValue();
4290      LDBase = cast<LoadSDNode>(Elt.getNode());
4291      LastLoadedElt = i;
4292      continue;
4293    }
4294    if (Elt.getOpcode() == ISD::UNDEF)
4295      continue;
4296
4297    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4298    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4299      return SDValue();
4300    LastLoadedElt = i;
4301  }
4302
4303  // If we have found an entire vector of loads and undefs, then return a large
4304  // load of the entire vector width starting at the base pointer.  If we found
4305  // consecutive loads for the low half, generate a vzext_load node.
4306  if (LastLoadedElt == NumElems - 1) {
4307    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4308      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4309                         LDBase->getPointerInfo(),
4310                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4311    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4312                       LDBase->getPointerInfo(),
4313                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4314                       LDBase->getAlignment());
4315  } else if (NumElems == 4 && LastLoadedElt == 1) {
4316    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4317    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4318    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4319                                              Ops, 2, MVT::i32,
4320                                              LDBase->getMemOperand());
4321    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4322  }
4323  return SDValue();
4324}
4325
4326SDValue
4327X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4328  DebugLoc dl = Op.getDebugLoc();
4329
4330  EVT VT = Op.getValueType();
4331  EVT ExtVT = VT.getVectorElementType();
4332
4333  unsigned NumElems = Op.getNumOperands();
4334
4335  // For AVX-length vectors, build the individual 128-bit pieces and
4336  // use shuffles to put them in place.
4337  if (VT.getSizeInBits() > 256 &&
4338      Subtarget->hasAVX() &&
4339      !ISD::isBuildVectorAllZeros(Op.getNode())) {
4340    SmallVector<SDValue, 8> V;
4341    V.resize(NumElems);
4342    for (unsigned i = 0; i < NumElems; ++i) {
4343      V[i] = Op.getOperand(i);
4344    }
4345
4346    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4347
4348    // Build the lower subvector.
4349    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4350    // Build the upper subvector.
4351    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4352                                NumElems/2);
4353
4354    return ConcatVectors(Lower, Upper, DAG);
4355  }
4356
4357  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4358  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4359  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4360  // is present, so AllOnes is ignored.
4361  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4362      (Op.getValueType().getSizeInBits() != 256 &&
4363       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4364    // Canonicalize this to <4 x i32> (SSE) to
4365    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4366    // eliminated on x86-32 hosts.
4367    if (Op.getValueType() == MVT::v4i32)
4368      return Op;
4369
4370    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4371      return getOnesVector(Op.getValueType(), DAG, dl);
4372    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4373  }
4374
4375  unsigned EVTBits = ExtVT.getSizeInBits();
4376
4377  unsigned NumZero  = 0;
4378  unsigned NumNonZero = 0;
4379  unsigned NonZeros = 0;
4380  bool IsAllConstants = true;
4381  SmallSet<SDValue, 8> Values;
4382  for (unsigned i = 0; i < NumElems; ++i) {
4383    SDValue Elt = Op.getOperand(i);
4384    if (Elt.getOpcode() == ISD::UNDEF)
4385      continue;
4386    Values.insert(Elt);
4387    if (Elt.getOpcode() != ISD::Constant &&
4388        Elt.getOpcode() != ISD::ConstantFP)
4389      IsAllConstants = false;
4390    if (X86::isZeroNode(Elt))
4391      NumZero++;
4392    else {
4393      NonZeros |= (1 << i);
4394      NumNonZero++;
4395    }
4396  }
4397
4398  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4399  if (NumNonZero == 0)
4400    return DAG.getUNDEF(VT);
4401
4402  // Special case for single non-zero, non-undef, element.
4403  if (NumNonZero == 1) {
4404    unsigned Idx = CountTrailingZeros_32(NonZeros);
4405    SDValue Item = Op.getOperand(Idx);
4406
4407    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4408    // the value are obviously zero, truncate the value to i32 and do the
4409    // insertion that way.  Only do this if the value is non-constant or if the
4410    // value is a constant being inserted into element 0.  It is cheaper to do
4411    // a constant pool load than it is to do a movd + shuffle.
4412    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4413        (!IsAllConstants || Idx == 0)) {
4414      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4415        // Handle SSE only.
4416        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4417        EVT VecVT = MVT::v4i32;
4418        unsigned VecElts = 4;
4419
4420        // Truncate the value (which may itself be a constant) to i32, and
4421        // convert it to a vector with movd (S2V+shuffle to zero extend).
4422        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4423        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4424        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4425                                           Subtarget->hasSSE2(), DAG);
4426
4427        // Now we have our 32-bit value zero extended in the low element of
4428        // a vector.  If Idx != 0, swizzle it into place.
4429        if (Idx != 0) {
4430          SmallVector<int, 4> Mask;
4431          Mask.push_back(Idx);
4432          for (unsigned i = 1; i != VecElts; ++i)
4433            Mask.push_back(i);
4434          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4435                                      DAG.getUNDEF(Item.getValueType()),
4436                                      &Mask[0]);
4437        }
4438        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4439      }
4440    }
4441
4442    // If we have a constant or non-constant insertion into the low element of
4443    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4444    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4445    // depending on what the source datatype is.
4446    if (Idx == 0) {
4447      if (NumZero == 0) {
4448        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4449      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4450          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4451        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4452        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4453        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4454                                           DAG);
4455      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4456        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4457        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4458        EVT MiddleVT = MVT::v4i32;
4459        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4460        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4461                                           Subtarget->hasSSE2(), DAG);
4462        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4463      }
4464    }
4465
4466    // Is it a vector logical left shift?
4467    if (NumElems == 2 && Idx == 1 &&
4468        X86::isZeroNode(Op.getOperand(0)) &&
4469        !X86::isZeroNode(Op.getOperand(1))) {
4470      unsigned NumBits = VT.getSizeInBits();
4471      return getVShift(true, VT,
4472                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4473                                   VT, Op.getOperand(1)),
4474                       NumBits/2, DAG, *this, dl);
4475    }
4476
4477    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4478      return SDValue();
4479
4480    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4481    // is a non-constant being inserted into an element other than the low one,
4482    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4483    // movd/movss) to move this into the low element, then shuffle it into
4484    // place.
4485    if (EVTBits == 32) {
4486      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4487
4488      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4489      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4490                                         Subtarget->hasSSE2(), DAG);
4491      SmallVector<int, 8> MaskVec;
4492      for (unsigned i = 0; i < NumElems; i++)
4493        MaskVec.push_back(i == Idx ? 0 : 1);
4494      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4495    }
4496  }
4497
4498  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4499  if (Values.size() == 1) {
4500    if (EVTBits == 32) {
4501      // Instead of a shuffle like this:
4502      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4503      // Check if it's possible to issue this instead.
4504      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4505      unsigned Idx = CountTrailingZeros_32(NonZeros);
4506      SDValue Item = Op.getOperand(Idx);
4507      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4508        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4509    }
4510    return SDValue();
4511  }
4512
4513  // A vector full of immediates; various special cases are already
4514  // handled, so this is best done with a single constant-pool load.
4515  if (IsAllConstants)
4516    return SDValue();
4517
4518  // Let legalizer expand 2-wide build_vectors.
4519  if (EVTBits == 64) {
4520    if (NumNonZero == 1) {
4521      // One half is zero or undef.
4522      unsigned Idx = CountTrailingZeros_32(NonZeros);
4523      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4524                                 Op.getOperand(Idx));
4525      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4526                                         Subtarget->hasSSE2(), DAG);
4527    }
4528    return SDValue();
4529  }
4530
4531  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4532  if (EVTBits == 8 && NumElems == 16) {
4533    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4534                                        *this);
4535    if (V.getNode()) return V;
4536  }
4537
4538  if (EVTBits == 16 && NumElems == 8) {
4539    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4540                                      *this);
4541    if (V.getNode()) return V;
4542  }
4543
4544  // If element VT is == 32 bits, turn it into a number of shuffles.
4545  SmallVector<SDValue, 8> V;
4546  V.resize(NumElems);
4547  if (NumElems == 4 && NumZero > 0) {
4548    for (unsigned i = 0; i < 4; ++i) {
4549      bool isZero = !(NonZeros & (1 << i));
4550      if (isZero)
4551        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4552      else
4553        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4554    }
4555
4556    for (unsigned i = 0; i < 2; ++i) {
4557      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4558        default: break;
4559        case 0:
4560          V[i] = V[i*2];  // Must be a zero vector.
4561          break;
4562        case 1:
4563          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4564          break;
4565        case 2:
4566          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4567          break;
4568        case 3:
4569          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4570          break;
4571      }
4572    }
4573
4574    SmallVector<int, 8> MaskVec;
4575    bool Reverse = (NonZeros & 0x3) == 2;
4576    for (unsigned i = 0; i < 2; ++i)
4577      MaskVec.push_back(Reverse ? 1-i : i);
4578    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4579    for (unsigned i = 0; i < 2; ++i)
4580      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4581    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4582  }
4583
4584  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4585    // Check for a build vector of consecutive loads.
4586    for (unsigned i = 0; i < NumElems; ++i)
4587      V[i] = Op.getOperand(i);
4588
4589    // Check for elements which are consecutive loads.
4590    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4591    if (LD.getNode())
4592      return LD;
4593
4594    // For SSE 4.1, use insertps to put the high elements into the low element.
4595    if (getSubtarget()->hasSSE41()) {
4596      SDValue Result;
4597      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4598        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4599      else
4600        Result = DAG.getUNDEF(VT);
4601
4602      for (unsigned i = 1; i < NumElems; ++i) {
4603        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4604        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4605                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4606      }
4607      return Result;
4608    }
4609
4610    // Otherwise, expand into a number of unpckl*, start by extending each of
4611    // our (non-undef) elements to the full vector width with the element in the
4612    // bottom slot of the vector (which generates no code for SSE).
4613    for (unsigned i = 0; i < NumElems; ++i) {
4614      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4615        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4616      else
4617        V[i] = DAG.getUNDEF(VT);
4618    }
4619
4620    // Next, we iteratively mix elements, e.g. for v4f32:
4621    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4622    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4623    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4624    unsigned EltStride = NumElems >> 1;
4625    while (EltStride != 0) {
4626      for (unsigned i = 0; i < EltStride; ++i) {
4627        // If V[i+EltStride] is undef and this is the first round of mixing,
4628        // then it is safe to just drop this shuffle: V[i] is already in the
4629        // right place, the one element (since it's the first round) being
4630        // inserted as undef can be dropped.  This isn't safe for successive
4631        // rounds because they will permute elements within both vectors.
4632        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4633            EltStride == NumElems/2)
4634          continue;
4635
4636        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4637      }
4638      EltStride >>= 1;
4639    }
4640    return V[0];
4641  }
4642  return SDValue();
4643}
4644
4645SDValue
4646X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4647  // We support concatenate two MMX registers and place them in a MMX
4648  // register.  This is better than doing a stack convert.
4649  DebugLoc dl = Op.getDebugLoc();
4650  EVT ResVT = Op.getValueType();
4651  assert(Op.getNumOperands() == 2);
4652  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4653         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4654  int Mask[2];
4655  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4656  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4657  InVec = Op.getOperand(1);
4658  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4659    unsigned NumElts = ResVT.getVectorNumElements();
4660    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4661    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4662                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4663  } else {
4664    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4665    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4666    Mask[0] = 0; Mask[1] = 2;
4667    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4668  }
4669  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4670}
4671
4672// v8i16 shuffles - Prefer shuffles in the following order:
4673// 1. [all]   pshuflw, pshufhw, optional move
4674// 2. [ssse3] 1 x pshufb
4675// 3. [ssse3] 2 x pshufb + 1 x por
4676// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4677SDValue
4678X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4679                                            SelectionDAG &DAG) const {
4680  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4681  SDValue V1 = SVOp->getOperand(0);
4682  SDValue V2 = SVOp->getOperand(1);
4683  DebugLoc dl = SVOp->getDebugLoc();
4684  SmallVector<int, 8> MaskVals;
4685
4686  // Determine if more than 1 of the words in each of the low and high quadwords
4687  // of the result come from the same quadword of one of the two inputs.  Undef
4688  // mask values count as coming from any quadword, for better codegen.
4689  SmallVector<unsigned, 4> LoQuad(4);
4690  SmallVector<unsigned, 4> HiQuad(4);
4691  BitVector InputQuads(4);
4692  for (unsigned i = 0; i < 8; ++i) {
4693    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4694    int EltIdx = SVOp->getMaskElt(i);
4695    MaskVals.push_back(EltIdx);
4696    if (EltIdx < 0) {
4697      ++Quad[0];
4698      ++Quad[1];
4699      ++Quad[2];
4700      ++Quad[3];
4701      continue;
4702    }
4703    ++Quad[EltIdx / 4];
4704    InputQuads.set(EltIdx / 4);
4705  }
4706
4707  int BestLoQuad = -1;
4708  unsigned MaxQuad = 1;
4709  for (unsigned i = 0; i < 4; ++i) {
4710    if (LoQuad[i] > MaxQuad) {
4711      BestLoQuad = i;
4712      MaxQuad = LoQuad[i];
4713    }
4714  }
4715
4716  int BestHiQuad = -1;
4717  MaxQuad = 1;
4718  for (unsigned i = 0; i < 4; ++i) {
4719    if (HiQuad[i] > MaxQuad) {
4720      BestHiQuad = i;
4721      MaxQuad = HiQuad[i];
4722    }
4723  }
4724
4725  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4726  // of the two input vectors, shuffle them into one input vector so only a
4727  // single pshufb instruction is necessary. If There are more than 2 input
4728  // quads, disable the next transformation since it does not help SSSE3.
4729  bool V1Used = InputQuads[0] || InputQuads[1];
4730  bool V2Used = InputQuads[2] || InputQuads[3];
4731  if (Subtarget->hasSSSE3()) {
4732    if (InputQuads.count() == 2 && V1Used && V2Used) {
4733      BestLoQuad = InputQuads.find_first();
4734      BestHiQuad = InputQuads.find_next(BestLoQuad);
4735    }
4736    if (InputQuads.count() > 2) {
4737      BestLoQuad = -1;
4738      BestHiQuad = -1;
4739    }
4740  }
4741
4742  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4743  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4744  // words from all 4 input quadwords.
4745  SDValue NewV;
4746  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4747    SmallVector<int, 8> MaskV;
4748    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4749    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4750    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4751                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4752                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4753    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4754
4755    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4756    // source words for the shuffle, to aid later transformations.
4757    bool AllWordsInNewV = true;
4758    bool InOrder[2] = { true, true };
4759    for (unsigned i = 0; i != 8; ++i) {
4760      int idx = MaskVals[i];
4761      if (idx != (int)i)
4762        InOrder[i/4] = false;
4763      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4764        continue;
4765      AllWordsInNewV = false;
4766      break;
4767    }
4768
4769    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4770    if (AllWordsInNewV) {
4771      for (int i = 0; i != 8; ++i) {
4772        int idx = MaskVals[i];
4773        if (idx < 0)
4774          continue;
4775        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4776        if ((idx != i) && idx < 4)
4777          pshufhw = false;
4778        if ((idx != i) && idx > 3)
4779          pshuflw = false;
4780      }
4781      V1 = NewV;
4782      V2Used = false;
4783      BestLoQuad = 0;
4784      BestHiQuad = 1;
4785    }
4786
4787    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4788    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4789    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4790      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4791      unsigned TargetMask = 0;
4792      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4793                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4794      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4795                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4796      V1 = NewV.getOperand(0);
4797      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4798    }
4799  }
4800
4801  // If we have SSSE3, and all words of the result are from 1 input vector,
4802  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4803  // is present, fall back to case 4.
4804  if (Subtarget->hasSSSE3()) {
4805    SmallVector<SDValue,16> pshufbMask;
4806
4807    // If we have elements from both input vectors, set the high bit of the
4808    // shuffle mask element to zero out elements that come from V2 in the V1
4809    // mask, and elements that come from V1 in the V2 mask, so that the two
4810    // results can be OR'd together.
4811    bool TwoInputs = V1Used && V2Used;
4812    for (unsigned i = 0; i != 8; ++i) {
4813      int EltIdx = MaskVals[i] * 2;
4814      if (TwoInputs && (EltIdx >= 16)) {
4815        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4816        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4817        continue;
4818      }
4819      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4820      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4821    }
4822    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4823    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4824                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4825                                 MVT::v16i8, &pshufbMask[0], 16));
4826    if (!TwoInputs)
4827      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4828
4829    // Calculate the shuffle mask for the second input, shuffle it, and
4830    // OR it with the first shuffled input.
4831    pshufbMask.clear();
4832    for (unsigned i = 0; i != 8; ++i) {
4833      int EltIdx = MaskVals[i] * 2;
4834      if (EltIdx < 16) {
4835        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4836        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4837        continue;
4838      }
4839      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4840      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4841    }
4842    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4843    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4844                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4845                                 MVT::v16i8, &pshufbMask[0], 16));
4846    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4847    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4848  }
4849
4850  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4851  // and update MaskVals with new element order.
4852  BitVector InOrder(8);
4853  if (BestLoQuad >= 0) {
4854    SmallVector<int, 8> MaskV;
4855    for (int i = 0; i != 4; ++i) {
4856      int idx = MaskVals[i];
4857      if (idx < 0) {
4858        MaskV.push_back(-1);
4859        InOrder.set(i);
4860      } else if ((idx / 4) == BestLoQuad) {
4861        MaskV.push_back(idx & 3);
4862        InOrder.set(i);
4863      } else {
4864        MaskV.push_back(-1);
4865      }
4866    }
4867    for (unsigned i = 4; i != 8; ++i)
4868      MaskV.push_back(i);
4869    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4870                                &MaskV[0]);
4871
4872    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4873      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4874                               NewV.getOperand(0),
4875                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4876                               DAG);
4877  }
4878
4879  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4880  // and update MaskVals with the new element order.
4881  if (BestHiQuad >= 0) {
4882    SmallVector<int, 8> MaskV;
4883    for (unsigned i = 0; i != 4; ++i)
4884      MaskV.push_back(i);
4885    for (unsigned i = 4; i != 8; ++i) {
4886      int idx = MaskVals[i];
4887      if (idx < 0) {
4888        MaskV.push_back(-1);
4889        InOrder.set(i);
4890      } else if ((idx / 4) == BestHiQuad) {
4891        MaskV.push_back((idx & 3) + 4);
4892        InOrder.set(i);
4893      } else {
4894        MaskV.push_back(-1);
4895      }
4896    }
4897    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4898                                &MaskV[0]);
4899
4900    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4901      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4902                              NewV.getOperand(0),
4903                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4904                              DAG);
4905  }
4906
4907  // In case BestHi & BestLo were both -1, which means each quadword has a word
4908  // from each of the four input quadwords, calculate the InOrder bitvector now
4909  // before falling through to the insert/extract cleanup.
4910  if (BestLoQuad == -1 && BestHiQuad == -1) {
4911    NewV = V1;
4912    for (int i = 0; i != 8; ++i)
4913      if (MaskVals[i] < 0 || MaskVals[i] == i)
4914        InOrder.set(i);
4915  }
4916
4917  // The other elements are put in the right place using pextrw and pinsrw.
4918  for (unsigned i = 0; i != 8; ++i) {
4919    if (InOrder[i])
4920      continue;
4921    int EltIdx = MaskVals[i];
4922    if (EltIdx < 0)
4923      continue;
4924    SDValue ExtOp = (EltIdx < 8)
4925    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4926                  DAG.getIntPtrConstant(EltIdx))
4927    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4928                  DAG.getIntPtrConstant(EltIdx - 8));
4929    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4930                       DAG.getIntPtrConstant(i));
4931  }
4932  return NewV;
4933}
4934
4935// v16i8 shuffles - Prefer shuffles in the following order:
4936// 1. [ssse3] 1 x pshufb
4937// 2. [ssse3] 2 x pshufb + 1 x por
4938// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4939static
4940SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4941                                 SelectionDAG &DAG,
4942                                 const X86TargetLowering &TLI) {
4943  SDValue V1 = SVOp->getOperand(0);
4944  SDValue V2 = SVOp->getOperand(1);
4945  DebugLoc dl = SVOp->getDebugLoc();
4946  SmallVector<int, 16> MaskVals;
4947  SVOp->getMask(MaskVals);
4948
4949  // If we have SSSE3, case 1 is generated when all result bytes come from
4950  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4951  // present, fall back to case 3.
4952  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4953  bool V1Only = true;
4954  bool V2Only = true;
4955  for (unsigned i = 0; i < 16; ++i) {
4956    int EltIdx = MaskVals[i];
4957    if (EltIdx < 0)
4958      continue;
4959    if (EltIdx < 16)
4960      V2Only = false;
4961    else
4962      V1Only = false;
4963  }
4964
4965  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4966  if (TLI.getSubtarget()->hasSSSE3()) {
4967    SmallVector<SDValue,16> pshufbMask;
4968
4969    // If all result elements are from one input vector, then only translate
4970    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4971    //
4972    // Otherwise, we have elements from both input vectors, and must zero out
4973    // elements that come from V2 in the first mask, and V1 in the second mask
4974    // so that we can OR them together.
4975    bool TwoInputs = !(V1Only || V2Only);
4976    for (unsigned i = 0; i != 16; ++i) {
4977      int EltIdx = MaskVals[i];
4978      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4979        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4980        continue;
4981      }
4982      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4983    }
4984    // If all the elements are from V2, assign it to V1 and return after
4985    // building the first pshufb.
4986    if (V2Only)
4987      V1 = V2;
4988    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4989                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4990                                 MVT::v16i8, &pshufbMask[0], 16));
4991    if (!TwoInputs)
4992      return V1;
4993
4994    // Calculate the shuffle mask for the second input, shuffle it, and
4995    // OR it with the first shuffled input.
4996    pshufbMask.clear();
4997    for (unsigned i = 0; i != 16; ++i) {
4998      int EltIdx = MaskVals[i];
4999      if (EltIdx < 16) {
5000        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5001        continue;
5002      }
5003      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5004    }
5005    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5006                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5007                                 MVT::v16i8, &pshufbMask[0], 16));
5008    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5009  }
5010
5011  // No SSSE3 - Calculate in place words and then fix all out of place words
5012  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5013  // the 16 different words that comprise the two doublequadword input vectors.
5014  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5015  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5016  SDValue NewV = V2Only ? V2 : V1;
5017  for (int i = 0; i != 8; ++i) {
5018    int Elt0 = MaskVals[i*2];
5019    int Elt1 = MaskVals[i*2+1];
5020
5021    // This word of the result is all undef, skip it.
5022    if (Elt0 < 0 && Elt1 < 0)
5023      continue;
5024
5025    // This word of the result is already in the correct place, skip it.
5026    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5027      continue;
5028    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5029      continue;
5030
5031    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5032    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5033    SDValue InsElt;
5034
5035    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5036    // using a single extract together, load it and store it.
5037    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5038      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5039                           DAG.getIntPtrConstant(Elt1 / 2));
5040      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5041                        DAG.getIntPtrConstant(i));
5042      continue;
5043    }
5044
5045    // If Elt1 is defined, extract it from the appropriate source.  If the
5046    // source byte is not also odd, shift the extracted word left 8 bits
5047    // otherwise clear the bottom 8 bits if we need to do an or.
5048    if (Elt1 >= 0) {
5049      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5050                           DAG.getIntPtrConstant(Elt1 / 2));
5051      if ((Elt1 & 1) == 0)
5052        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5053                             DAG.getConstant(8,
5054                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5055      else if (Elt0 >= 0)
5056        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5057                             DAG.getConstant(0xFF00, MVT::i16));
5058    }
5059    // If Elt0 is defined, extract it from the appropriate source.  If the
5060    // source byte is not also even, shift the extracted word right 8 bits. If
5061    // Elt1 was also defined, OR the extracted values together before
5062    // inserting them in the result.
5063    if (Elt0 >= 0) {
5064      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5065                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5066      if ((Elt0 & 1) != 0)
5067        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5068                              DAG.getConstant(8,
5069                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5070      else if (Elt1 >= 0)
5071        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5072                             DAG.getConstant(0x00FF, MVT::i16));
5073      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5074                         : InsElt0;
5075    }
5076    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5077                       DAG.getIntPtrConstant(i));
5078  }
5079  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5080}
5081
5082/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5083/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5084/// done when every pair / quad of shuffle mask elements point to elements in
5085/// the right sequence. e.g.
5086/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5087static
5088SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5089                                 SelectionDAG &DAG, DebugLoc dl) {
5090  EVT VT = SVOp->getValueType(0);
5091  SDValue V1 = SVOp->getOperand(0);
5092  SDValue V2 = SVOp->getOperand(1);
5093  unsigned NumElems = VT.getVectorNumElements();
5094  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5095  EVT NewVT;
5096  switch (VT.getSimpleVT().SimpleTy) {
5097  default: assert(false && "Unexpected!");
5098  case MVT::v4f32: NewVT = MVT::v2f64; break;
5099  case MVT::v4i32: NewVT = MVT::v2i64; break;
5100  case MVT::v8i16: NewVT = MVT::v4i32; break;
5101  case MVT::v16i8: NewVT = MVT::v4i32; break;
5102  }
5103
5104  int Scale = NumElems / NewWidth;
5105  SmallVector<int, 8> MaskVec;
5106  for (unsigned i = 0; i < NumElems; i += Scale) {
5107    int StartIdx = -1;
5108    for (int j = 0; j < Scale; ++j) {
5109      int EltIdx = SVOp->getMaskElt(i+j);
5110      if (EltIdx < 0)
5111        continue;
5112      if (StartIdx == -1)
5113        StartIdx = EltIdx - (EltIdx % Scale);
5114      if (EltIdx != StartIdx + j)
5115        return SDValue();
5116    }
5117    if (StartIdx == -1)
5118      MaskVec.push_back(-1);
5119    else
5120      MaskVec.push_back(StartIdx / Scale);
5121  }
5122
5123  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5124  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5125  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5126}
5127
5128/// getVZextMovL - Return a zero-extending vector move low node.
5129///
5130static SDValue getVZextMovL(EVT VT, EVT OpVT,
5131                            SDValue SrcOp, SelectionDAG &DAG,
5132                            const X86Subtarget *Subtarget, DebugLoc dl) {
5133  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5134    LoadSDNode *LD = NULL;
5135    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5136      LD = dyn_cast<LoadSDNode>(SrcOp);
5137    if (!LD) {
5138      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5139      // instead.
5140      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5141      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5142          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5143          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5144          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5145        // PR2108
5146        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5147        return DAG.getNode(ISD::BITCAST, dl, VT,
5148                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5149                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5150                                                   OpVT,
5151                                                   SrcOp.getOperand(0)
5152                                                          .getOperand(0))));
5153      }
5154    }
5155  }
5156
5157  return DAG.getNode(ISD::BITCAST, dl, VT,
5158                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5159                                 DAG.getNode(ISD::BITCAST, dl,
5160                                             OpVT, SrcOp)));
5161}
5162
5163/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
5164/// shuffles.
5165static SDValue
5166LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5167  SDValue V1 = SVOp->getOperand(0);
5168  SDValue V2 = SVOp->getOperand(1);
5169  DebugLoc dl = SVOp->getDebugLoc();
5170  EVT VT = SVOp->getValueType(0);
5171
5172  SmallVector<std::pair<int, int>, 8> Locs;
5173  Locs.resize(4);
5174  SmallVector<int, 8> Mask1(4U, -1);
5175  SmallVector<int, 8> PermMask;
5176  SVOp->getMask(PermMask);
5177
5178  unsigned NumHi = 0;
5179  unsigned NumLo = 0;
5180  for (unsigned i = 0; i != 4; ++i) {
5181    int Idx = PermMask[i];
5182    if (Idx < 0) {
5183      Locs[i] = std::make_pair(-1, -1);
5184    } else {
5185      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5186      if (Idx < 4) {
5187        Locs[i] = std::make_pair(0, NumLo);
5188        Mask1[NumLo] = Idx;
5189        NumLo++;
5190      } else {
5191        Locs[i] = std::make_pair(1, NumHi);
5192        if (2+NumHi < 4)
5193          Mask1[2+NumHi] = Idx;
5194        NumHi++;
5195      }
5196    }
5197  }
5198
5199  if (NumLo <= 2 && NumHi <= 2) {
5200    // If no more than two elements come from either vector. This can be
5201    // implemented with two shuffles. First shuffle gather the elements.
5202    // The second shuffle, which takes the first shuffle as both of its
5203    // vector operands, put the elements into the right order.
5204    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5205
5206    SmallVector<int, 8> Mask2(4U, -1);
5207
5208    for (unsigned i = 0; i != 4; ++i) {
5209      if (Locs[i].first == -1)
5210        continue;
5211      else {
5212        unsigned Idx = (i < 2) ? 0 : 4;
5213        Idx += Locs[i].first * 2 + Locs[i].second;
5214        Mask2[i] = Idx;
5215      }
5216    }
5217
5218    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5219  } else if (NumLo == 3 || NumHi == 3) {
5220    // Otherwise, we must have three elements from one vector, call it X, and
5221    // one element from the other, call it Y.  First, use a shufps to build an
5222    // intermediate vector with the one element from Y and the element from X
5223    // that will be in the same half in the final destination (the indexes don't
5224    // matter). Then, use a shufps to build the final vector, taking the half
5225    // containing the element from Y from the intermediate, and the other half
5226    // from X.
5227    if (NumHi == 3) {
5228      // Normalize it so the 3 elements come from V1.
5229      CommuteVectorShuffleMask(PermMask, VT);
5230      std::swap(V1, V2);
5231    }
5232
5233    // Find the element from V2.
5234    unsigned HiIndex;
5235    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5236      int Val = PermMask[HiIndex];
5237      if (Val < 0)
5238        continue;
5239      if (Val >= 4)
5240        break;
5241    }
5242
5243    Mask1[0] = PermMask[HiIndex];
5244    Mask1[1] = -1;
5245    Mask1[2] = PermMask[HiIndex^1];
5246    Mask1[3] = -1;
5247    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5248
5249    if (HiIndex >= 2) {
5250      Mask1[0] = PermMask[0];
5251      Mask1[1] = PermMask[1];
5252      Mask1[2] = HiIndex & 1 ? 6 : 4;
5253      Mask1[3] = HiIndex & 1 ? 4 : 6;
5254      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5255    } else {
5256      Mask1[0] = HiIndex & 1 ? 2 : 0;
5257      Mask1[1] = HiIndex & 1 ? 0 : 2;
5258      Mask1[2] = PermMask[2];
5259      Mask1[3] = PermMask[3];
5260      if (Mask1[2] >= 0)
5261        Mask1[2] += 4;
5262      if (Mask1[3] >= 0)
5263        Mask1[3] += 4;
5264      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5265    }
5266  }
5267
5268  // Break it into (shuffle shuffle_hi, shuffle_lo).
5269  Locs.clear();
5270  Locs.resize(4);
5271  SmallVector<int,8> LoMask(4U, -1);
5272  SmallVector<int,8> HiMask(4U, -1);
5273
5274  SmallVector<int,8> *MaskPtr = &LoMask;
5275  unsigned MaskIdx = 0;
5276  unsigned LoIdx = 0;
5277  unsigned HiIdx = 2;
5278  for (unsigned i = 0; i != 4; ++i) {
5279    if (i == 2) {
5280      MaskPtr = &HiMask;
5281      MaskIdx = 1;
5282      LoIdx = 0;
5283      HiIdx = 2;
5284    }
5285    int Idx = PermMask[i];
5286    if (Idx < 0) {
5287      Locs[i] = std::make_pair(-1, -1);
5288    } else if (Idx < 4) {
5289      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5290      (*MaskPtr)[LoIdx] = Idx;
5291      LoIdx++;
5292    } else {
5293      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5294      (*MaskPtr)[HiIdx] = Idx;
5295      HiIdx++;
5296    }
5297  }
5298
5299  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5300  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5301  SmallVector<int, 8> MaskOps;
5302  for (unsigned i = 0; i != 4; ++i) {
5303    if (Locs[i].first == -1) {
5304      MaskOps.push_back(-1);
5305    } else {
5306      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5307      MaskOps.push_back(Idx);
5308    }
5309  }
5310  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5311}
5312
5313static bool MayFoldVectorLoad(SDValue V) {
5314  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5315    V = V.getOperand(0);
5316  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5317    V = V.getOperand(0);
5318  if (MayFoldLoad(V))
5319    return true;
5320  return false;
5321}
5322
5323// FIXME: the version above should always be used. Since there's
5324// a bug where several vector shuffles can't be folded because the
5325// DAG is not updated during lowering and a node claims to have two
5326// uses while it only has one, use this version, and let isel match
5327// another instruction if the load really happens to have more than
5328// one use. Remove this version after this bug get fixed.
5329// rdar://8434668, PR8156
5330static bool RelaxedMayFoldVectorLoad(SDValue V) {
5331  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5332    V = V.getOperand(0);
5333  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5334    V = V.getOperand(0);
5335  if (ISD::isNormalLoad(V.getNode()))
5336    return true;
5337  return false;
5338}
5339
5340/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5341/// a vector extract, and if both can be later optimized into a single load.
5342/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5343/// here because otherwise a target specific shuffle node is going to be
5344/// emitted for this shuffle, and the optimization not done.
5345/// FIXME: This is probably not the best approach, but fix the problem
5346/// until the right path is decided.
5347static
5348bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5349                                         const TargetLowering &TLI) {
5350  EVT VT = V.getValueType();
5351  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5352
5353  // Be sure that the vector shuffle is present in a pattern like this:
5354  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5355  if (!V.hasOneUse())
5356    return false;
5357
5358  SDNode *N = *V.getNode()->use_begin();
5359  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5360    return false;
5361
5362  SDValue EltNo = N->getOperand(1);
5363  if (!isa<ConstantSDNode>(EltNo))
5364    return false;
5365
5366  // If the bit convert changed the number of elements, it is unsafe
5367  // to examine the mask.
5368  bool HasShuffleIntoBitcast = false;
5369  if (V.getOpcode() == ISD::BITCAST) {
5370    EVT SrcVT = V.getOperand(0).getValueType();
5371    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5372      return false;
5373    V = V.getOperand(0);
5374    HasShuffleIntoBitcast = true;
5375  }
5376
5377  // Select the input vector, guarding against out of range extract vector.
5378  unsigned NumElems = VT.getVectorNumElements();
5379  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5380  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5381  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5382
5383  // Skip one more bit_convert if necessary
5384  if (V.getOpcode() == ISD::BITCAST)
5385    V = V.getOperand(0);
5386
5387  if (ISD::isNormalLoad(V.getNode())) {
5388    // Is the original load suitable?
5389    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5390
5391    // FIXME: avoid the multi-use bug that is preventing lots of
5392    // of foldings to be detected, this is still wrong of course, but
5393    // give the temporary desired behavior, and if it happens that
5394    // the load has real more uses, during isel it will not fold, and
5395    // will generate poor code.
5396    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5397      return false;
5398
5399    if (!HasShuffleIntoBitcast)
5400      return true;
5401
5402    // If there's a bitcast before the shuffle, check if the load type and
5403    // alignment is valid.
5404    unsigned Align = LN0->getAlignment();
5405    unsigned NewAlign =
5406      TLI.getTargetData()->getABITypeAlignment(
5407                                    VT.getTypeForEVT(*DAG.getContext()));
5408
5409    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5410      return false;
5411  }
5412
5413  return true;
5414}
5415
5416static
5417SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5418  EVT VT = Op.getValueType();
5419
5420  // Canonizalize to v2f64.
5421  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5422  return DAG.getNode(ISD::BITCAST, dl, VT,
5423                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5424                                          V1, DAG));
5425}
5426
5427static
5428SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5429                        bool HasSSE2) {
5430  SDValue V1 = Op.getOperand(0);
5431  SDValue V2 = Op.getOperand(1);
5432  EVT VT = Op.getValueType();
5433
5434  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5435
5436  if (HasSSE2 && VT == MVT::v2f64)
5437    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5438
5439  // v4f32 or v4i32
5440  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5441}
5442
5443static
5444SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5445  SDValue V1 = Op.getOperand(0);
5446  SDValue V2 = Op.getOperand(1);
5447  EVT VT = Op.getValueType();
5448
5449  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5450         "unsupported shuffle type");
5451
5452  if (V2.getOpcode() == ISD::UNDEF)
5453    V2 = V1;
5454
5455  // v4i32 or v4f32
5456  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5457}
5458
5459static
5460SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5461  SDValue V1 = Op.getOperand(0);
5462  SDValue V2 = Op.getOperand(1);
5463  EVT VT = Op.getValueType();
5464  unsigned NumElems = VT.getVectorNumElements();
5465
5466  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5467  // operand of these instructions is only memory, so check if there's a
5468  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5469  // same masks.
5470  bool CanFoldLoad = false;
5471
5472  // Trivial case, when V2 comes from a load.
5473  if (MayFoldVectorLoad(V2))
5474    CanFoldLoad = true;
5475
5476  // When V1 is a load, it can be folded later into a store in isel, example:
5477  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5478  //    turns into:
5479  //  (MOVLPSmr addr:$src1, VR128:$src2)
5480  // So, recognize this potential and also use MOVLPS or MOVLPD
5481  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5482    CanFoldLoad = true;
5483
5484  // Both of them can't be memory operations though.
5485  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5486    CanFoldLoad = false;
5487
5488  if (CanFoldLoad) {
5489    if (HasSSE2 && NumElems == 2)
5490      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5491
5492    if (NumElems == 4)
5493      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5494  }
5495
5496  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5497  // movl and movlp will both match v2i64, but v2i64 is never matched by
5498  // movl earlier because we make it strict to avoid messing with the movlp load
5499  // folding logic (see the code above getMOVLP call). Match it here then,
5500  // this is horrible, but will stay like this until we move all shuffle
5501  // matching to x86 specific nodes. Note that for the 1st condition all
5502  // types are matched with movsd.
5503  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5504    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5505  else if (HasSSE2)
5506    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5507
5508
5509  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5510
5511  // Invert the operand order and use SHUFPS to match it.
5512  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5513                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5514}
5515
5516static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) {
5517  switch(VT.getSimpleVT().SimpleTy) {
5518  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5519  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5520  case MVT::v4f32:
5521    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPS : X86ISD::UNPCKLPS;
5522  case MVT::v2f64:
5523    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5524  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5525  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5526  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5527  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5528  default:
5529    llvm_unreachable("Unknown type for unpckl");
5530  }
5531  return 0;
5532}
5533
5534static inline unsigned getUNPCKHOpcode(EVT VT) {
5535  switch(VT.getSimpleVT().SimpleTy) {
5536  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5537  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5538  case MVT::v4f32: return X86ISD::UNPCKHPS;
5539  case MVT::v2f64: return X86ISD::UNPCKHPD;
5540  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5541  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5542  default:
5543    llvm_unreachable("Unknown type for unpckh");
5544  }
5545  return 0;
5546}
5547
5548static
5549SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5550                               const TargetLowering &TLI,
5551                               const X86Subtarget *Subtarget) {
5552  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5553  EVT VT = Op.getValueType();
5554  DebugLoc dl = Op.getDebugLoc();
5555  SDValue V1 = Op.getOperand(0);
5556  SDValue V2 = Op.getOperand(1);
5557
5558  if (isZeroShuffle(SVOp))
5559    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5560
5561  // Handle splat operations
5562  if (SVOp->isSplat()) {
5563    // Special case, this is the only place now where it's
5564    // allowed to return a vector_shuffle operation without
5565    // using a target specific node, because *hopefully* it
5566    // will be optimized away by the dag combiner.
5567    if (VT.getVectorNumElements() <= 4 &&
5568        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5569      return Op;
5570
5571    // Handle splats by matching through known masks
5572    if (VT.getVectorNumElements() <= 4)
5573      return SDValue();
5574
5575    // Canonicalize all of the remaining to v4f32.
5576    return PromoteSplat(SVOp, DAG);
5577  }
5578
5579  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5580  // do it!
5581  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5582    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5583    if (NewOp.getNode())
5584      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5585  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5586    // FIXME: Figure out a cleaner way to do this.
5587    // Try to make use of movq to zero out the top part.
5588    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5589      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5590      if (NewOp.getNode()) {
5591        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5592          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5593                              DAG, Subtarget, dl);
5594      }
5595    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5596      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5597      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5598        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5599                            DAG, Subtarget, dl);
5600    }
5601  }
5602  return SDValue();
5603}
5604
5605SDValue
5606X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5607  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5608  SDValue V1 = Op.getOperand(0);
5609  SDValue V2 = Op.getOperand(1);
5610  EVT VT = Op.getValueType();
5611  DebugLoc dl = Op.getDebugLoc();
5612  unsigned NumElems = VT.getVectorNumElements();
5613  bool isMMX = VT.getSizeInBits() == 64;
5614  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5615  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5616  bool V1IsSplat = false;
5617  bool V2IsSplat = false;
5618  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5619  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5620  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5621  MachineFunction &MF = DAG.getMachineFunction();
5622  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5623
5624  // Shuffle operations on MMX not supported.
5625  if (isMMX)
5626    return Op;
5627
5628  // Vector shuffle lowering takes 3 steps:
5629  //
5630  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5631  //    narrowing and commutation of operands should be handled.
5632  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5633  //    shuffle nodes.
5634  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5635  //    so the shuffle can be broken into other shuffles and the legalizer can
5636  //    try the lowering again.
5637  //
5638  // The general ideia is that no vector_shuffle operation should be left to
5639  // be matched during isel, all of them must be converted to a target specific
5640  // node here.
5641
5642  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5643  // narrowing and commutation of operands should be handled. The actual code
5644  // doesn't include all of those, work in progress...
5645  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5646  if (NewOp.getNode())
5647    return NewOp;
5648
5649  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5650  // unpckh_undef). Only use pshufd if speed is more important than size.
5651  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5652    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5653      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG);
5654  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5655    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5656      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5657
5658  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5659      RelaxedMayFoldVectorLoad(V1))
5660    return getMOVDDup(Op, dl, V1, DAG);
5661
5662  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5663    return getMOVHighToLow(Op, dl, DAG);
5664
5665  // Use to match splats
5666  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5667      (VT == MVT::v2f64 || VT == MVT::v2i64))
5668    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5669
5670  if (X86::isPSHUFDMask(SVOp)) {
5671    // The actual implementation will match the mask in the if above and then
5672    // during isel it can match several different instructions, not only pshufd
5673    // as its name says, sad but true, emulate the behavior for now...
5674    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5675        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5676
5677    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5678
5679    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5680      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5681
5682    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5683      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5684                                  TargetMask, DAG);
5685
5686    if (VT == MVT::v4f32)
5687      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5688                                  TargetMask, DAG);
5689  }
5690
5691  // Check if this can be converted into a logical shift.
5692  bool isLeft = false;
5693  unsigned ShAmt = 0;
5694  SDValue ShVal;
5695  bool isShift = getSubtarget()->hasSSE2() &&
5696    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5697  if (isShift && ShVal.hasOneUse()) {
5698    // If the shifted value has multiple uses, it may be cheaper to use
5699    // v_set0 + movlhps or movhlps, etc.
5700    EVT EltVT = VT.getVectorElementType();
5701    ShAmt *= EltVT.getSizeInBits();
5702    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5703  }
5704
5705  if (X86::isMOVLMask(SVOp)) {
5706    if (V1IsUndef)
5707      return V2;
5708    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5709      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5710    if (!X86::isMOVLPMask(SVOp)) {
5711      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5712        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5713
5714      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5715        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5716    }
5717  }
5718
5719  // FIXME: fold these into legal mask.
5720  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5721    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5722
5723  if (X86::isMOVHLPSMask(SVOp))
5724    return getMOVHighToLow(Op, dl, DAG);
5725
5726  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5727    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5728
5729  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5730    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5731
5732  if (X86::isMOVLPMask(SVOp))
5733    return getMOVLP(Op, dl, DAG, HasSSE2);
5734
5735  if (ShouldXformToMOVHLPS(SVOp) ||
5736      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5737    return CommuteVectorShuffle(SVOp, DAG);
5738
5739  if (isShift) {
5740    // No better options. Use a vshl / vsrl.
5741    EVT EltVT = VT.getVectorElementType();
5742    ShAmt *= EltVT.getSizeInBits();
5743    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5744  }
5745
5746  bool Commuted = false;
5747  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5748  // 1,1,1,1 -> v8i16 though.
5749  V1IsSplat = isSplatVector(V1.getNode());
5750  V2IsSplat = isSplatVector(V2.getNode());
5751
5752  // Canonicalize the splat or undef, if present, to be on the RHS.
5753  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5754    Op = CommuteVectorShuffle(SVOp, DAG);
5755    SVOp = cast<ShuffleVectorSDNode>(Op);
5756    V1 = SVOp->getOperand(0);
5757    V2 = SVOp->getOperand(1);
5758    std::swap(V1IsSplat, V2IsSplat);
5759    std::swap(V1IsUndef, V2IsUndef);
5760    Commuted = true;
5761  }
5762
5763  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5764    // Shuffling low element of v1 into undef, just return v1.
5765    if (V2IsUndef)
5766      return V1;
5767    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5768    // the instruction selector will not match, so get a canonical MOVL with
5769    // swapped operands to undo the commute.
5770    return getMOVL(DAG, dl, VT, V2, V1);
5771  }
5772
5773  if (X86::isUNPCKLMask(SVOp))
5774    return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5775                                dl, VT, V1, V2, DAG);
5776
5777  if (X86::isUNPCKHMask(SVOp))
5778    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5779
5780  if (V2IsSplat) {
5781    // Normalize mask so all entries that point to V2 points to its first
5782    // element then try to match unpck{h|l} again. If match, return a
5783    // new vector_shuffle with the corrected mask.
5784    SDValue NewMask = NormalizeMask(SVOp, DAG);
5785    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5786    if (NSVOp != SVOp) {
5787      if (X86::isUNPCKLMask(NSVOp, true)) {
5788        return NewMask;
5789      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5790        return NewMask;
5791      }
5792    }
5793  }
5794
5795  if (Commuted) {
5796    // Commute is back and try unpck* again.
5797    // FIXME: this seems wrong.
5798    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5799    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5800
5801    if (X86::isUNPCKLMask(NewSVOp))
5802      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5803                                  dl, VT, V2, V1, DAG);
5804
5805    if (X86::isUNPCKHMask(NewSVOp))
5806      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5807  }
5808
5809  // Normalize the node to match x86 shuffle ops if needed
5810  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5811    return CommuteVectorShuffle(SVOp, DAG);
5812
5813  // The checks below are all present in isShuffleMaskLegal, but they are
5814  // inlined here right now to enable us to directly emit target specific
5815  // nodes, and remove one by one until they don't return Op anymore.
5816  SmallVector<int, 16> M;
5817  SVOp->getMask(M);
5818
5819  if (isPALIGNRMask(M, VT, HasSSSE3))
5820    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5821                                X86::getShufflePALIGNRImmediate(SVOp),
5822                                DAG);
5823
5824  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5825      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5826    if (VT == MVT::v2f64) {
5827      X86ISD::NodeType Opcode =
5828        getSubtarget()->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5829      return getTargetShuffleNode(Opcode, dl, VT, V1, V1, DAG);
5830    }
5831    if (VT == MVT::v2i64)
5832      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5833  }
5834
5835  if (isPSHUFHWMask(M, VT))
5836    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5837                                X86::getShufflePSHUFHWImmediate(SVOp),
5838                                DAG);
5839
5840  if (isPSHUFLWMask(M, VT))
5841    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5842                                X86::getShufflePSHUFLWImmediate(SVOp),
5843                                DAG);
5844
5845  if (isSHUFPMask(M, VT)) {
5846    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5847    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5848      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5849                                  TargetMask, DAG);
5850    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5851      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5852                                  TargetMask, DAG);
5853  }
5854
5855  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5856    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5857      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5858                                  dl, VT, V1, V1, DAG);
5859  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5860    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5861      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5862
5863  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5864  if (VT == MVT::v8i16) {
5865    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5866    if (NewOp.getNode())
5867      return NewOp;
5868  }
5869
5870  if (VT == MVT::v16i8) {
5871    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5872    if (NewOp.getNode())
5873      return NewOp;
5874  }
5875
5876  // Handle all 4 wide cases with a number of shuffles.
5877  if (NumElems == 4)
5878    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5879
5880  return SDValue();
5881}
5882
5883SDValue
5884X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5885                                                SelectionDAG &DAG) const {
5886  EVT VT = Op.getValueType();
5887  DebugLoc dl = Op.getDebugLoc();
5888  if (VT.getSizeInBits() == 8) {
5889    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5890                                    Op.getOperand(0), Op.getOperand(1));
5891    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5892                                    DAG.getValueType(VT));
5893    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5894  } else if (VT.getSizeInBits() == 16) {
5895    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5896    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5897    if (Idx == 0)
5898      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5899                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5900                                     DAG.getNode(ISD::BITCAST, dl,
5901                                                 MVT::v4i32,
5902                                                 Op.getOperand(0)),
5903                                     Op.getOperand(1)));
5904    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5905                                    Op.getOperand(0), Op.getOperand(1));
5906    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5907                                    DAG.getValueType(VT));
5908    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5909  } else if (VT == MVT::f32) {
5910    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5911    // the result back to FR32 register. It's only worth matching if the
5912    // result has a single use which is a store or a bitcast to i32.  And in
5913    // the case of a store, it's not worth it if the index is a constant 0,
5914    // because a MOVSSmr can be used instead, which is smaller and faster.
5915    if (!Op.hasOneUse())
5916      return SDValue();
5917    SDNode *User = *Op.getNode()->use_begin();
5918    if ((User->getOpcode() != ISD::STORE ||
5919         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5920          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5921        (User->getOpcode() != ISD::BITCAST ||
5922         User->getValueType(0) != MVT::i32))
5923      return SDValue();
5924    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5925                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5926                                              Op.getOperand(0)),
5927                                              Op.getOperand(1));
5928    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5929  } else if (VT == MVT::i32) {
5930    // ExtractPS works with constant index.
5931    if (isa<ConstantSDNode>(Op.getOperand(1)))
5932      return Op;
5933  }
5934  return SDValue();
5935}
5936
5937
5938SDValue
5939X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5940                                           SelectionDAG &DAG) const {
5941  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5942    return SDValue();
5943
5944  SDValue Vec = Op.getOperand(0);
5945  EVT VecVT = Vec.getValueType();
5946
5947  // If this is a 256-bit vector result, first extract the 128-bit
5948  // vector and then extract from the 128-bit vector.
5949  if (VecVT.getSizeInBits() > 128) {
5950    DebugLoc dl = Op.getNode()->getDebugLoc();
5951    unsigned NumElems = VecVT.getVectorNumElements();
5952    SDValue Idx = Op.getOperand(1);
5953
5954    if (!isa<ConstantSDNode>(Idx))
5955      return SDValue();
5956
5957    unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
5958    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5959
5960    // Get the 128-bit vector.
5961    bool Upper = IdxVal >= ExtractNumElems;
5962    Vec = Extract128BitVector(Vec, Idx, DAG, dl);
5963
5964    // Extract from it.
5965    SDValue ScaledIdx = Idx;
5966    if (Upper)
5967      ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
5968                              DAG.getConstant(ExtractNumElems,
5969                                              Idx.getValueType()));
5970    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
5971                       ScaledIdx);
5972  }
5973
5974  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
5975
5976  if (Subtarget->hasSSE41()) {
5977    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5978    if (Res.getNode())
5979      return Res;
5980  }
5981
5982  EVT VT = Op.getValueType();
5983  DebugLoc dl = Op.getDebugLoc();
5984  // TODO: handle v16i8.
5985  if (VT.getSizeInBits() == 16) {
5986    SDValue Vec = Op.getOperand(0);
5987    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5988    if (Idx == 0)
5989      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5990                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5991                                     DAG.getNode(ISD::BITCAST, dl,
5992                                                 MVT::v4i32, Vec),
5993                                     Op.getOperand(1)));
5994    // Transform it so it match pextrw which produces a 32-bit result.
5995    EVT EltVT = MVT::i32;
5996    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5997                                    Op.getOperand(0), Op.getOperand(1));
5998    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5999                                    DAG.getValueType(VT));
6000    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6001  } else if (VT.getSizeInBits() == 32) {
6002    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6003    if (Idx == 0)
6004      return Op;
6005
6006    // SHUFPS the element to the lowest double word, then movss.
6007    int Mask[4] = { Idx, -1, -1, -1 };
6008    EVT VVT = Op.getOperand(0).getValueType();
6009    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6010                                       DAG.getUNDEF(VVT), Mask);
6011    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6012                       DAG.getIntPtrConstant(0));
6013  } else if (VT.getSizeInBits() == 64) {
6014    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6015    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6016    //        to match extract_elt for f64.
6017    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6018    if (Idx == 0)
6019      return Op;
6020
6021    // UNPCKHPD the element to the lowest double word, then movsd.
6022    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6023    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6024    int Mask[2] = { 1, -1 };
6025    EVT VVT = Op.getOperand(0).getValueType();
6026    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6027                                       DAG.getUNDEF(VVT), Mask);
6028    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6029                       DAG.getIntPtrConstant(0));
6030  }
6031
6032  return SDValue();
6033}
6034
6035SDValue
6036X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6037                                               SelectionDAG &DAG) const {
6038  EVT VT = Op.getValueType();
6039  EVT EltVT = VT.getVectorElementType();
6040  DebugLoc dl = Op.getDebugLoc();
6041
6042  SDValue N0 = Op.getOperand(0);
6043  SDValue N1 = Op.getOperand(1);
6044  SDValue N2 = Op.getOperand(2);
6045
6046  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6047      isa<ConstantSDNode>(N2)) {
6048    unsigned Opc;
6049    if (VT == MVT::v8i16)
6050      Opc = X86ISD::PINSRW;
6051    else if (VT == MVT::v16i8)
6052      Opc = X86ISD::PINSRB;
6053    else
6054      Opc = X86ISD::PINSRB;
6055
6056    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6057    // argument.
6058    if (N1.getValueType() != MVT::i32)
6059      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6060    if (N2.getValueType() != MVT::i32)
6061      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6062    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6063  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6064    // Bits [7:6] of the constant are the source select.  This will always be
6065    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6066    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6067    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6068    // Bits [5:4] of the constant are the destination select.  This is the
6069    //  value of the incoming immediate.
6070    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6071    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6072    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6073    // Create this as a scalar to vector..
6074    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6075    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6076  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6077    // PINSR* works with constant index.
6078    return Op;
6079  }
6080  return SDValue();
6081}
6082
6083SDValue
6084X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6085  EVT VT = Op.getValueType();
6086  EVT EltVT = VT.getVectorElementType();
6087
6088  DebugLoc dl = Op.getDebugLoc();
6089  SDValue N0 = Op.getOperand(0);
6090  SDValue N1 = Op.getOperand(1);
6091  SDValue N2 = Op.getOperand(2);
6092
6093  // If this is a 256-bit vector result, first insert into a 128-bit
6094  // vector and then insert into the 256-bit vector.
6095  if (VT.getSizeInBits() > 128) {
6096    if (!isa<ConstantSDNode>(N2))
6097      return SDValue();
6098
6099    // Get the 128-bit vector.
6100    unsigned NumElems = VT.getVectorNumElements();
6101    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6102    bool Upper = IdxVal >= NumElems / 2;
6103
6104    SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
6105
6106    // Insert into it.
6107    SDValue ScaledN2 = N2;
6108    if (Upper)
6109      ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
6110                             DAG.getConstant(NumElems /
6111                                             (VT.getSizeInBits() / 128),
6112                                             N2.getValueType()));
6113    Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
6114                     N1, ScaledN2);
6115
6116    // Insert the 128-bit vector
6117    // FIXME: Why UNDEF?
6118    return Insert128BitVector(N0, Op, N2, DAG, dl);
6119  }
6120
6121  if (Subtarget->hasSSE41())
6122    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6123
6124  if (EltVT == MVT::i8)
6125    return SDValue();
6126
6127  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6128    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6129    // as its second argument.
6130    if (N1.getValueType() != MVT::i32)
6131      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6132    if (N2.getValueType() != MVT::i32)
6133      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6134    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6135  }
6136  return SDValue();
6137}
6138
6139SDValue
6140X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6141  LLVMContext *Context = DAG.getContext();
6142  DebugLoc dl = Op.getDebugLoc();
6143  EVT OpVT = Op.getValueType();
6144
6145  // If this is a 256-bit vector result, first insert into a 128-bit
6146  // vector and then insert into the 256-bit vector.
6147  if (OpVT.getSizeInBits() > 128) {
6148    // Insert into a 128-bit vector.
6149    EVT VT128 = EVT::getVectorVT(*Context,
6150                                 OpVT.getVectorElementType(),
6151                                 OpVT.getVectorNumElements() / 2);
6152
6153    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6154
6155    // Insert the 128-bit vector.
6156    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6157                              DAG.getConstant(0, MVT::i32),
6158                              DAG, dl);
6159  }
6160
6161  if (Op.getValueType() == MVT::v1i64 &&
6162      Op.getOperand(0).getValueType() == MVT::i64)
6163    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6164
6165  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6166  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6167         "Expected an SSE type!");
6168  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6169                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6170}
6171
6172// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6173// a simple subregister reference or explicit instructions to grab
6174// upper bits of a vector.
6175SDValue
6176X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6177  if (Subtarget->hasAVX()) {
6178    DebugLoc dl = Op.getNode()->getDebugLoc();
6179    SDValue Vec = Op.getNode()->getOperand(0);
6180    SDValue Idx = Op.getNode()->getOperand(1);
6181
6182    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6183        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6184        return Extract128BitVector(Vec, Idx, DAG, dl);
6185    }
6186  }
6187  return SDValue();
6188}
6189
6190// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6191// simple superregister reference or explicit instructions to insert
6192// the upper bits of a vector.
6193SDValue
6194X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6195  if (Subtarget->hasAVX()) {
6196    DebugLoc dl = Op.getNode()->getDebugLoc();
6197    SDValue Vec = Op.getNode()->getOperand(0);
6198    SDValue SubVec = Op.getNode()->getOperand(1);
6199    SDValue Idx = Op.getNode()->getOperand(2);
6200
6201    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6202        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6203      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6204    }
6205  }
6206  return SDValue();
6207}
6208
6209// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6210// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6211// one of the above mentioned nodes. It has to be wrapped because otherwise
6212// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6213// be used to form addressing mode. These wrapped nodes will be selected
6214// into MOV32ri.
6215SDValue
6216X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6217  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6218
6219  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6220  // global base reg.
6221  unsigned char OpFlag = 0;
6222  unsigned WrapperKind = X86ISD::Wrapper;
6223  CodeModel::Model M = getTargetMachine().getCodeModel();
6224
6225  if (Subtarget->isPICStyleRIPRel() &&
6226      (M == CodeModel::Small || M == CodeModel::Kernel))
6227    WrapperKind = X86ISD::WrapperRIP;
6228  else if (Subtarget->isPICStyleGOT())
6229    OpFlag = X86II::MO_GOTOFF;
6230  else if (Subtarget->isPICStyleStubPIC())
6231    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6232
6233  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6234                                             CP->getAlignment(),
6235                                             CP->getOffset(), OpFlag);
6236  DebugLoc DL = CP->getDebugLoc();
6237  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6238  // With PIC, the address is actually $g + Offset.
6239  if (OpFlag) {
6240    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6241                         DAG.getNode(X86ISD::GlobalBaseReg,
6242                                     DebugLoc(), getPointerTy()),
6243                         Result);
6244  }
6245
6246  return Result;
6247}
6248
6249SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6250  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6251
6252  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6253  // global base reg.
6254  unsigned char OpFlag = 0;
6255  unsigned WrapperKind = X86ISD::Wrapper;
6256  CodeModel::Model M = getTargetMachine().getCodeModel();
6257
6258  if (Subtarget->isPICStyleRIPRel() &&
6259      (M == CodeModel::Small || M == CodeModel::Kernel))
6260    WrapperKind = X86ISD::WrapperRIP;
6261  else if (Subtarget->isPICStyleGOT())
6262    OpFlag = X86II::MO_GOTOFF;
6263  else if (Subtarget->isPICStyleStubPIC())
6264    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6265
6266  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6267                                          OpFlag);
6268  DebugLoc DL = JT->getDebugLoc();
6269  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6270
6271  // With PIC, the address is actually $g + Offset.
6272  if (OpFlag)
6273    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6274                         DAG.getNode(X86ISD::GlobalBaseReg,
6275                                     DebugLoc(), getPointerTy()),
6276                         Result);
6277
6278  return Result;
6279}
6280
6281SDValue
6282X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6283  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6284
6285  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6286  // global base reg.
6287  unsigned char OpFlag = 0;
6288  unsigned WrapperKind = X86ISD::Wrapper;
6289  CodeModel::Model M = getTargetMachine().getCodeModel();
6290
6291  if (Subtarget->isPICStyleRIPRel() &&
6292      (M == CodeModel::Small || M == CodeModel::Kernel))
6293    WrapperKind = X86ISD::WrapperRIP;
6294  else if (Subtarget->isPICStyleGOT())
6295    OpFlag = X86II::MO_GOTOFF;
6296  else if (Subtarget->isPICStyleStubPIC())
6297    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6298
6299  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6300
6301  DebugLoc DL = Op.getDebugLoc();
6302  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6303
6304
6305  // With PIC, the address is actually $g + Offset.
6306  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6307      !Subtarget->is64Bit()) {
6308    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6309                         DAG.getNode(X86ISD::GlobalBaseReg,
6310                                     DebugLoc(), getPointerTy()),
6311                         Result);
6312  }
6313
6314  return Result;
6315}
6316
6317SDValue
6318X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6319  // Create the TargetBlockAddressAddress node.
6320  unsigned char OpFlags =
6321    Subtarget->ClassifyBlockAddressReference();
6322  CodeModel::Model M = getTargetMachine().getCodeModel();
6323  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6324  DebugLoc dl = Op.getDebugLoc();
6325  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6326                                       /*isTarget=*/true, OpFlags);
6327
6328  if (Subtarget->isPICStyleRIPRel() &&
6329      (M == CodeModel::Small || M == CodeModel::Kernel))
6330    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6331  else
6332    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6333
6334  // With PIC, the address is actually $g + Offset.
6335  if (isGlobalRelativeToPICBase(OpFlags)) {
6336    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6337                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6338                         Result);
6339  }
6340
6341  return Result;
6342}
6343
6344SDValue
6345X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6346                                      int64_t Offset,
6347                                      SelectionDAG &DAG) const {
6348  // Create the TargetGlobalAddress node, folding in the constant
6349  // offset if it is legal.
6350  unsigned char OpFlags =
6351    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6352  CodeModel::Model M = getTargetMachine().getCodeModel();
6353  SDValue Result;
6354  if (OpFlags == X86II::MO_NO_FLAG &&
6355      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6356    // A direct static reference to a global.
6357    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6358    Offset = 0;
6359  } else {
6360    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6361  }
6362
6363  if (Subtarget->isPICStyleRIPRel() &&
6364      (M == CodeModel::Small || M == CodeModel::Kernel))
6365    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6366  else
6367    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6368
6369  // With PIC, the address is actually $g + Offset.
6370  if (isGlobalRelativeToPICBase(OpFlags)) {
6371    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6372                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6373                         Result);
6374  }
6375
6376  // For globals that require a load from a stub to get the address, emit the
6377  // load.
6378  if (isGlobalStubReference(OpFlags))
6379    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6380                         MachinePointerInfo::getGOT(), false, false, 0);
6381
6382  // If there was a non-zero offset that we didn't fold, create an explicit
6383  // addition for it.
6384  if (Offset != 0)
6385    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6386                         DAG.getConstant(Offset, getPointerTy()));
6387
6388  return Result;
6389}
6390
6391SDValue
6392X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6393  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6394  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6395  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6396}
6397
6398static SDValue
6399GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6400           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6401           unsigned char OperandFlags) {
6402  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6403  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6404  DebugLoc dl = GA->getDebugLoc();
6405  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6406                                           GA->getValueType(0),
6407                                           GA->getOffset(),
6408                                           OperandFlags);
6409  if (InFlag) {
6410    SDValue Ops[] = { Chain,  TGA, *InFlag };
6411    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6412  } else {
6413    SDValue Ops[]  = { Chain, TGA };
6414    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6415  }
6416
6417  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6418  MFI->setAdjustsStack(true);
6419
6420  SDValue Flag = Chain.getValue(1);
6421  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6422}
6423
6424// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6425static SDValue
6426LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6427                                const EVT PtrVT) {
6428  SDValue InFlag;
6429  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6430  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6431                                     DAG.getNode(X86ISD::GlobalBaseReg,
6432                                                 DebugLoc(), PtrVT), InFlag);
6433  InFlag = Chain.getValue(1);
6434
6435  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6436}
6437
6438// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6439static SDValue
6440LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6441                                const EVT PtrVT) {
6442  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6443                    X86::RAX, X86II::MO_TLSGD);
6444}
6445
6446// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6447// "local exec" model.
6448static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6449                                   const EVT PtrVT, TLSModel::Model model,
6450                                   bool is64Bit) {
6451  DebugLoc dl = GA->getDebugLoc();
6452
6453  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6454  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6455                                                         is64Bit ? 257 : 256));
6456
6457  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6458                                      DAG.getIntPtrConstant(0),
6459                                      MachinePointerInfo(Ptr), false, false, 0);
6460
6461  unsigned char OperandFlags = 0;
6462  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6463  // initialexec.
6464  unsigned WrapperKind = X86ISD::Wrapper;
6465  if (model == TLSModel::LocalExec) {
6466    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6467  } else if (is64Bit) {
6468    assert(model == TLSModel::InitialExec);
6469    OperandFlags = X86II::MO_GOTTPOFF;
6470    WrapperKind = X86ISD::WrapperRIP;
6471  } else {
6472    assert(model == TLSModel::InitialExec);
6473    OperandFlags = X86II::MO_INDNTPOFF;
6474  }
6475
6476  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6477  // exec)
6478  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6479                                           GA->getValueType(0),
6480                                           GA->getOffset(), OperandFlags);
6481  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6482
6483  if (model == TLSModel::InitialExec)
6484    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6485                         MachinePointerInfo::getGOT(), false, false, 0);
6486
6487  // The address of the thread local variable is the add of the thread
6488  // pointer with the offset of the variable.
6489  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6490}
6491
6492SDValue
6493X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6494
6495  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6496  const GlobalValue *GV = GA->getGlobal();
6497
6498  if (Subtarget->isTargetELF()) {
6499    // TODO: implement the "local dynamic" model
6500    // TODO: implement the "initial exec"model for pic executables
6501
6502    // If GV is an alias then use the aliasee for determining
6503    // thread-localness.
6504    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6505      GV = GA->resolveAliasedGlobal(false);
6506
6507    TLSModel::Model model
6508      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6509
6510    switch (model) {
6511      case TLSModel::GeneralDynamic:
6512      case TLSModel::LocalDynamic: // not implemented
6513        if (Subtarget->is64Bit())
6514          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6515        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6516
6517      case TLSModel::InitialExec:
6518      case TLSModel::LocalExec:
6519        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6520                                   Subtarget->is64Bit());
6521    }
6522  } else if (Subtarget->isTargetDarwin()) {
6523    // Darwin only has one model of TLS.  Lower to that.
6524    unsigned char OpFlag = 0;
6525    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6526                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6527
6528    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6529    // global base reg.
6530    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6531                  !Subtarget->is64Bit();
6532    if (PIC32)
6533      OpFlag = X86II::MO_TLVP_PIC_BASE;
6534    else
6535      OpFlag = X86II::MO_TLVP;
6536    DebugLoc DL = Op.getDebugLoc();
6537    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6538                                                GA->getValueType(0),
6539                                                GA->getOffset(), OpFlag);
6540    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6541
6542    // With PIC32, the address is actually $g + Offset.
6543    if (PIC32)
6544      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6545                           DAG.getNode(X86ISD::GlobalBaseReg,
6546                                       DebugLoc(), getPointerTy()),
6547                           Offset);
6548
6549    // Lowering the machine isd will make sure everything is in the right
6550    // location.
6551    SDValue Chain = DAG.getEntryNode();
6552    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6553    SDValue Args[] = { Chain, Offset };
6554    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6555
6556    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6557    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6558    MFI->setAdjustsStack(true);
6559
6560    // And our return value (tls address) is in the standard call return value
6561    // location.
6562    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6563    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6564  }
6565
6566  assert(false &&
6567         "TLS not implemented for this target.");
6568
6569  llvm_unreachable("Unreachable");
6570  return SDValue();
6571}
6572
6573
6574/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6575/// take a 2 x i32 value to shift plus a shift amount.
6576SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6577  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6578  EVT VT = Op.getValueType();
6579  unsigned VTBits = VT.getSizeInBits();
6580  DebugLoc dl = Op.getDebugLoc();
6581  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6582  SDValue ShOpLo = Op.getOperand(0);
6583  SDValue ShOpHi = Op.getOperand(1);
6584  SDValue ShAmt  = Op.getOperand(2);
6585  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6586                                     DAG.getConstant(VTBits - 1, MVT::i8))
6587                       : DAG.getConstant(0, VT);
6588
6589  SDValue Tmp2, Tmp3;
6590  if (Op.getOpcode() == ISD::SHL_PARTS) {
6591    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6592    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6593  } else {
6594    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6595    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6596  }
6597
6598  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6599                                DAG.getConstant(VTBits, MVT::i8));
6600  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6601                             AndNode, DAG.getConstant(0, MVT::i8));
6602
6603  SDValue Hi, Lo;
6604  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6605  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6606  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6607
6608  if (Op.getOpcode() == ISD::SHL_PARTS) {
6609    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6610    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6611  } else {
6612    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6613    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6614  }
6615
6616  SDValue Ops[2] = { Lo, Hi };
6617  return DAG.getMergeValues(Ops, 2, dl);
6618}
6619
6620SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6621                                           SelectionDAG &DAG) const {
6622  EVT SrcVT = Op.getOperand(0).getValueType();
6623
6624  if (SrcVT.isVector())
6625    return SDValue();
6626
6627  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6628         "Unknown SINT_TO_FP to lower!");
6629
6630  // These are really Legal; return the operand so the caller accepts it as
6631  // Legal.
6632  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6633    return Op;
6634  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6635      Subtarget->is64Bit()) {
6636    return Op;
6637  }
6638
6639  DebugLoc dl = Op.getDebugLoc();
6640  unsigned Size = SrcVT.getSizeInBits()/8;
6641  MachineFunction &MF = DAG.getMachineFunction();
6642  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6643  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6644  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6645                               StackSlot,
6646                               MachinePointerInfo::getFixedStack(SSFI),
6647                               false, false, 0);
6648  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6649}
6650
6651SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6652                                     SDValue StackSlot,
6653                                     SelectionDAG &DAG) const {
6654  // Build the FILD
6655  DebugLoc DL = Op.getDebugLoc();
6656  SDVTList Tys;
6657  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6658  if (useSSE)
6659    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
6660  else
6661    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6662
6663  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6664
6665  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6666  MachineMemOperand *MMO =
6667    DAG.getMachineFunction()
6668    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6669                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6670
6671  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6672  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6673                                           X86ISD::FILD, DL,
6674                                           Tys, Ops, array_lengthof(Ops),
6675                                           SrcVT, MMO);
6676
6677  if (useSSE) {
6678    Chain = Result.getValue(1);
6679    SDValue InFlag = Result.getValue(2);
6680
6681    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6682    // shouldn't be necessary except that RFP cannot be live across
6683    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6684    MachineFunction &MF = DAG.getMachineFunction();
6685    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6686    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6687    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6688    Tys = DAG.getVTList(MVT::Other);
6689    SDValue Ops[] = {
6690      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6691    };
6692    MachineMemOperand *MMO =
6693      DAG.getMachineFunction()
6694      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6695                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6696
6697    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6698                                    Ops, array_lengthof(Ops),
6699                                    Op.getValueType(), MMO);
6700    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6701                         MachinePointerInfo::getFixedStack(SSFI),
6702                         false, false, 0);
6703  }
6704
6705  return Result;
6706}
6707
6708// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6709SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6710                                               SelectionDAG &DAG) const {
6711  // This algorithm is not obvious. Here it is in C code, more or less:
6712  /*
6713    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6714      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6715      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6716
6717      // Copy ints to xmm registers.
6718      __m128i xh = _mm_cvtsi32_si128( hi );
6719      __m128i xl = _mm_cvtsi32_si128( lo );
6720
6721      // Combine into low half of a single xmm register.
6722      __m128i x = _mm_unpacklo_epi32( xh, xl );
6723      __m128d d;
6724      double sd;
6725
6726      // Merge in appropriate exponents to give the integer bits the right
6727      // magnitude.
6728      x = _mm_unpacklo_epi32( x, exp );
6729
6730      // Subtract away the biases to deal with the IEEE-754 double precision
6731      // implicit 1.
6732      d = _mm_sub_pd( (__m128d) x, bias );
6733
6734      // All conversions up to here are exact. The correctly rounded result is
6735      // calculated using the current rounding mode using the following
6736      // horizontal add.
6737      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6738      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6739                                // store doesn't really need to be here (except
6740                                // maybe to zero the other double)
6741      return sd;
6742    }
6743  */
6744
6745  DebugLoc dl = Op.getDebugLoc();
6746  LLVMContext *Context = DAG.getContext();
6747
6748  // Build some magic constants.
6749  std::vector<Constant*> CV0;
6750  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6751  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6752  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6753  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6754  Constant *C0 = ConstantVector::get(CV0);
6755  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6756
6757  std::vector<Constant*> CV1;
6758  CV1.push_back(
6759    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6760  CV1.push_back(
6761    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6762  Constant *C1 = ConstantVector::get(CV1);
6763  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6764
6765  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6766                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6767                                        Op.getOperand(0),
6768                                        DAG.getIntPtrConstant(1)));
6769  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6770                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6771                                        Op.getOperand(0),
6772                                        DAG.getIntPtrConstant(0)));
6773  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6774  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6775                              MachinePointerInfo::getConstantPool(),
6776                              false, false, 16);
6777  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6778  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6779  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6780                              MachinePointerInfo::getConstantPool(),
6781                              false, false, 16);
6782  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6783
6784  // Add the halves; easiest way is to swap them into another reg first.
6785  int ShufMask[2] = { 1, -1 };
6786  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6787                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6788  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6789  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6790                     DAG.getIntPtrConstant(0));
6791}
6792
6793// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6794SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6795                                               SelectionDAG &DAG) const {
6796  DebugLoc dl = Op.getDebugLoc();
6797  // FP constant to bias correct the final result.
6798  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6799                                   MVT::f64);
6800
6801  // Load the 32-bit value into an XMM register.
6802  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6803                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6804                                         Op.getOperand(0),
6805                                         DAG.getIntPtrConstant(0)));
6806
6807  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6808                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6809                     DAG.getIntPtrConstant(0));
6810
6811  // Or the load with the bias.
6812  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6813                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6814                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6815                                                   MVT::v2f64, Load)),
6816                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6817                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6818                                                   MVT::v2f64, Bias)));
6819  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6820                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6821                   DAG.getIntPtrConstant(0));
6822
6823  // Subtract the bias.
6824  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6825
6826  // Handle final rounding.
6827  EVT DestVT = Op.getValueType();
6828
6829  if (DestVT.bitsLT(MVT::f64)) {
6830    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6831                       DAG.getIntPtrConstant(0));
6832  } else if (DestVT.bitsGT(MVT::f64)) {
6833    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6834  }
6835
6836  // Handle final rounding.
6837  return Sub;
6838}
6839
6840SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6841                                           SelectionDAG &DAG) const {
6842  SDValue N0 = Op.getOperand(0);
6843  DebugLoc dl = Op.getDebugLoc();
6844
6845  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6846  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6847  // the optimization here.
6848  if (DAG.SignBitIsZero(N0))
6849    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6850
6851  EVT SrcVT = N0.getValueType();
6852  EVT DstVT = Op.getValueType();
6853  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6854    return LowerUINT_TO_FP_i64(Op, DAG);
6855  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6856    return LowerUINT_TO_FP_i32(Op, DAG);
6857
6858  // Make a 64-bit buffer, and use it to build an FILD.
6859  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6860  if (SrcVT == MVT::i32) {
6861    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6862    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6863                                     getPointerTy(), StackSlot, WordOff);
6864    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6865                                  StackSlot, MachinePointerInfo(),
6866                                  false, false, 0);
6867    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6868                                  OffsetSlot, MachinePointerInfo(),
6869                                  false, false, 0);
6870    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6871    return Fild;
6872  }
6873
6874  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6875  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6876                                StackSlot, MachinePointerInfo(),
6877                               false, false, 0);
6878  // For i64 source, we need to add the appropriate power of 2 if the input
6879  // was negative.  This is the same as the optimization in
6880  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6881  // we must be careful to do the computation in x87 extended precision, not
6882  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6883  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6884  MachineMemOperand *MMO =
6885    DAG.getMachineFunction()
6886    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6887                          MachineMemOperand::MOLoad, 8, 8);
6888
6889  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6890  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6891  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6892                                         MVT::i64, MMO);
6893
6894  APInt FF(32, 0x5F800000ULL);
6895
6896  // Check whether the sign bit is set.
6897  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6898                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6899                                 ISD::SETLT);
6900
6901  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6902  SDValue FudgePtr = DAG.getConstantPool(
6903                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6904                                         getPointerTy());
6905
6906  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6907  SDValue Zero = DAG.getIntPtrConstant(0);
6908  SDValue Four = DAG.getIntPtrConstant(4);
6909  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6910                               Zero, Four);
6911  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6912
6913  // Load the value out, extending it from f32 to f80.
6914  // FIXME: Avoid the extend by constructing the right constant pool?
6915  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
6916                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6917                                 MVT::f32, false, false, 4);
6918  // Extend everything to 80 bits to force it to be done on x87.
6919  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6920  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6921}
6922
6923std::pair<SDValue,SDValue> X86TargetLowering::
6924FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6925  DebugLoc DL = Op.getDebugLoc();
6926
6927  EVT DstTy = Op.getValueType();
6928
6929  if (!IsSigned) {
6930    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6931    DstTy = MVT::i64;
6932  }
6933
6934  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6935         DstTy.getSimpleVT() >= MVT::i16 &&
6936         "Unknown FP_TO_SINT to lower!");
6937
6938  // These are really Legal.
6939  if (DstTy == MVT::i32 &&
6940      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6941    return std::make_pair(SDValue(), SDValue());
6942  if (Subtarget->is64Bit() &&
6943      DstTy == MVT::i64 &&
6944      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6945    return std::make_pair(SDValue(), SDValue());
6946
6947  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6948  // stack slot.
6949  MachineFunction &MF = DAG.getMachineFunction();
6950  unsigned MemSize = DstTy.getSizeInBits()/8;
6951  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6952  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6953
6954
6955
6956  unsigned Opc;
6957  switch (DstTy.getSimpleVT().SimpleTy) {
6958  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6959  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6960  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6961  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6962  }
6963
6964  SDValue Chain = DAG.getEntryNode();
6965  SDValue Value = Op.getOperand(0);
6966  EVT TheVT = Op.getOperand(0).getValueType();
6967  if (isScalarFPTypeInSSEReg(TheVT)) {
6968    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6969    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
6970                         MachinePointerInfo::getFixedStack(SSFI),
6971                         false, false, 0);
6972    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6973    SDValue Ops[] = {
6974      Chain, StackSlot, DAG.getValueType(TheVT)
6975    };
6976
6977    MachineMemOperand *MMO =
6978      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6979                              MachineMemOperand::MOLoad, MemSize, MemSize);
6980    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
6981                                    DstTy, MMO);
6982    Chain = Value.getValue(1);
6983    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6984    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6985  }
6986
6987  MachineMemOperand *MMO =
6988    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6989                            MachineMemOperand::MOStore, MemSize, MemSize);
6990
6991  // Build the FP_TO_INT*_IN_MEM
6992  SDValue Ops[] = { Chain, Value, StackSlot };
6993  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
6994                                         Ops, 3, DstTy, MMO);
6995
6996  return std::make_pair(FIST, StackSlot);
6997}
6998
6999SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7000                                           SelectionDAG &DAG) const {
7001  if (Op.getValueType().isVector())
7002    return SDValue();
7003
7004  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7005  SDValue FIST = Vals.first, StackSlot = Vals.second;
7006  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7007  if (FIST.getNode() == 0) return Op;
7008
7009  // Load the result.
7010  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7011                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7012}
7013
7014SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7015                                           SelectionDAG &DAG) const {
7016  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7017  SDValue FIST = Vals.first, StackSlot = Vals.second;
7018  assert(FIST.getNode() && "Unexpected failure");
7019
7020  // Load the result.
7021  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7022                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7023}
7024
7025SDValue X86TargetLowering::LowerFABS(SDValue Op,
7026                                     SelectionDAG &DAG) const {
7027  LLVMContext *Context = DAG.getContext();
7028  DebugLoc dl = Op.getDebugLoc();
7029  EVT VT = Op.getValueType();
7030  EVT EltVT = VT;
7031  if (VT.isVector())
7032    EltVT = VT.getVectorElementType();
7033  std::vector<Constant*> CV;
7034  if (EltVT == MVT::f64) {
7035    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7036    CV.push_back(C);
7037    CV.push_back(C);
7038  } else {
7039    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7040    CV.push_back(C);
7041    CV.push_back(C);
7042    CV.push_back(C);
7043    CV.push_back(C);
7044  }
7045  Constant *C = ConstantVector::get(CV);
7046  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7047  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7048                             MachinePointerInfo::getConstantPool(),
7049                             false, false, 16);
7050  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7051}
7052
7053SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7054  LLVMContext *Context = DAG.getContext();
7055  DebugLoc dl = Op.getDebugLoc();
7056  EVT VT = Op.getValueType();
7057  EVT EltVT = VT;
7058  if (VT.isVector())
7059    EltVT = VT.getVectorElementType();
7060  std::vector<Constant*> CV;
7061  if (EltVT == MVT::f64) {
7062    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7063    CV.push_back(C);
7064    CV.push_back(C);
7065  } else {
7066    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7067    CV.push_back(C);
7068    CV.push_back(C);
7069    CV.push_back(C);
7070    CV.push_back(C);
7071  }
7072  Constant *C = ConstantVector::get(CV);
7073  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7074  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7075                             MachinePointerInfo::getConstantPool(),
7076                             false, false, 16);
7077  if (VT.isVector()) {
7078    return DAG.getNode(ISD::BITCAST, dl, VT,
7079                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7080                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7081                                Op.getOperand(0)),
7082                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7083  } else {
7084    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7085  }
7086}
7087
7088SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7089  LLVMContext *Context = DAG.getContext();
7090  SDValue Op0 = Op.getOperand(0);
7091  SDValue Op1 = Op.getOperand(1);
7092  DebugLoc dl = Op.getDebugLoc();
7093  EVT VT = Op.getValueType();
7094  EVT SrcVT = Op1.getValueType();
7095
7096  // If second operand is smaller, extend it first.
7097  if (SrcVT.bitsLT(VT)) {
7098    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7099    SrcVT = VT;
7100  }
7101  // And if it is bigger, shrink it first.
7102  if (SrcVT.bitsGT(VT)) {
7103    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7104    SrcVT = VT;
7105  }
7106
7107  // At this point the operands and the result should have the same
7108  // type, and that won't be f80 since that is not custom lowered.
7109
7110  // First get the sign bit of second operand.
7111  std::vector<Constant*> CV;
7112  if (SrcVT == MVT::f64) {
7113    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7114    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7115  } else {
7116    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7117    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7118    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7119    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7120  }
7121  Constant *C = ConstantVector::get(CV);
7122  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7123  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7124                              MachinePointerInfo::getConstantPool(),
7125                              false, false, 16);
7126  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7127
7128  // Shift sign bit right or left if the two operands have different types.
7129  if (SrcVT.bitsGT(VT)) {
7130    // Op0 is MVT::f32, Op1 is MVT::f64.
7131    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7132    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7133                          DAG.getConstant(32, MVT::i32));
7134    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7135    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7136                          DAG.getIntPtrConstant(0));
7137  }
7138
7139  // Clear first operand sign bit.
7140  CV.clear();
7141  if (VT == MVT::f64) {
7142    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7143    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7144  } else {
7145    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7146    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7147    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7148    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7149  }
7150  C = ConstantVector::get(CV);
7151  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7152  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7153                              MachinePointerInfo::getConstantPool(),
7154                              false, false, 16);
7155  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7156
7157  // Or the value with the sign bit.
7158  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7159}
7160
7161/// Emit nodes that will be selected as "test Op0,Op0", or something
7162/// equivalent.
7163SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7164                                    SelectionDAG &DAG) const {
7165  DebugLoc dl = Op.getDebugLoc();
7166
7167  // CF and OF aren't always set the way we want. Determine which
7168  // of these we need.
7169  bool NeedCF = false;
7170  bool NeedOF = false;
7171  switch (X86CC) {
7172  default: break;
7173  case X86::COND_A: case X86::COND_AE:
7174  case X86::COND_B: case X86::COND_BE:
7175    NeedCF = true;
7176    break;
7177  case X86::COND_G: case X86::COND_GE:
7178  case X86::COND_L: case X86::COND_LE:
7179  case X86::COND_O: case X86::COND_NO:
7180    NeedOF = true;
7181    break;
7182  }
7183
7184  // See if we can use the EFLAGS value from the operand instead of
7185  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7186  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7187  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7188    // Emit a CMP with 0, which is the TEST pattern.
7189    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7190                       DAG.getConstant(0, Op.getValueType()));
7191
7192  unsigned Opcode = 0;
7193  unsigned NumOperands = 0;
7194  switch (Op.getNode()->getOpcode()) {
7195  case ISD::ADD:
7196    // Due to an isel shortcoming, be conservative if this add is likely to be
7197    // selected as part of a load-modify-store instruction. When the root node
7198    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7199    // uses of other nodes in the match, such as the ADD in this case. This
7200    // leads to the ADD being left around and reselected, with the result being
7201    // two adds in the output.  Alas, even if none our users are stores, that
7202    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7203    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7204    // climbing the DAG back to the root, and it doesn't seem to be worth the
7205    // effort.
7206    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7207           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7208      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7209        goto default_case;
7210
7211    if (ConstantSDNode *C =
7212        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7213      // An add of one will be selected as an INC.
7214      if (C->getAPIntValue() == 1) {
7215        Opcode = X86ISD::INC;
7216        NumOperands = 1;
7217        break;
7218      }
7219
7220      // An add of negative one (subtract of one) will be selected as a DEC.
7221      if (C->getAPIntValue().isAllOnesValue()) {
7222        Opcode = X86ISD::DEC;
7223        NumOperands = 1;
7224        break;
7225      }
7226    }
7227
7228    // Otherwise use a regular EFLAGS-setting add.
7229    Opcode = X86ISD::ADD;
7230    NumOperands = 2;
7231    break;
7232  case ISD::AND: {
7233    // If the primary and result isn't used, don't bother using X86ISD::AND,
7234    // because a TEST instruction will be better.
7235    bool NonFlagUse = false;
7236    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7237           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7238      SDNode *User = *UI;
7239      unsigned UOpNo = UI.getOperandNo();
7240      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7241        // Look pass truncate.
7242        UOpNo = User->use_begin().getOperandNo();
7243        User = *User->use_begin();
7244      }
7245
7246      if (User->getOpcode() != ISD::BRCOND &&
7247          User->getOpcode() != ISD::SETCC &&
7248          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7249        NonFlagUse = true;
7250        break;
7251      }
7252    }
7253
7254    if (!NonFlagUse)
7255      break;
7256  }
7257    // FALL THROUGH
7258  case ISD::SUB:
7259  case ISD::OR:
7260  case ISD::XOR:
7261    // Due to the ISEL shortcoming noted above, be conservative if this op is
7262    // likely to be selected as part of a load-modify-store instruction.
7263    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7264           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7265      if (UI->getOpcode() == ISD::STORE)
7266        goto default_case;
7267
7268    // Otherwise use a regular EFLAGS-setting instruction.
7269    switch (Op.getNode()->getOpcode()) {
7270    default: llvm_unreachable("unexpected operator!");
7271    case ISD::SUB: Opcode = X86ISD::SUB; break;
7272    case ISD::OR:  Opcode = X86ISD::OR;  break;
7273    case ISD::XOR: Opcode = X86ISD::XOR; break;
7274    case ISD::AND: Opcode = X86ISD::AND; break;
7275    }
7276
7277    NumOperands = 2;
7278    break;
7279  case X86ISD::ADD:
7280  case X86ISD::SUB:
7281  case X86ISD::INC:
7282  case X86ISD::DEC:
7283  case X86ISD::OR:
7284  case X86ISD::XOR:
7285  case X86ISD::AND:
7286    return SDValue(Op.getNode(), 1);
7287  default:
7288  default_case:
7289    break;
7290  }
7291
7292  if (Opcode == 0)
7293    // Emit a CMP with 0, which is the TEST pattern.
7294    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7295                       DAG.getConstant(0, Op.getValueType()));
7296
7297  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7298  SmallVector<SDValue, 4> Ops;
7299  for (unsigned i = 0; i != NumOperands; ++i)
7300    Ops.push_back(Op.getOperand(i));
7301
7302  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7303  DAG.ReplaceAllUsesWith(Op, New);
7304  return SDValue(New.getNode(), 1);
7305}
7306
7307/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7308/// equivalent.
7309SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7310                                   SelectionDAG &DAG) const {
7311  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7312    if (C->getAPIntValue() == 0)
7313      return EmitTest(Op0, X86CC, DAG);
7314
7315  DebugLoc dl = Op0.getDebugLoc();
7316  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7317}
7318
7319/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7320/// if it's possible.
7321SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7322                                     DebugLoc dl, SelectionDAG &DAG) const {
7323  SDValue Op0 = And.getOperand(0);
7324  SDValue Op1 = And.getOperand(1);
7325  if (Op0.getOpcode() == ISD::TRUNCATE)
7326    Op0 = Op0.getOperand(0);
7327  if (Op1.getOpcode() == ISD::TRUNCATE)
7328    Op1 = Op1.getOperand(0);
7329
7330  SDValue LHS, RHS;
7331  if (Op1.getOpcode() == ISD::SHL)
7332    std::swap(Op0, Op1);
7333  if (Op0.getOpcode() == ISD::SHL) {
7334    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7335      if (And00C->getZExtValue() == 1) {
7336        // If we looked past a truncate, check that it's only truncating away
7337        // known zeros.
7338        unsigned BitWidth = Op0.getValueSizeInBits();
7339        unsigned AndBitWidth = And.getValueSizeInBits();
7340        if (BitWidth > AndBitWidth) {
7341          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7342          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7343          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7344            return SDValue();
7345        }
7346        LHS = Op1;
7347        RHS = Op0.getOperand(1);
7348      }
7349  } else if (Op1.getOpcode() == ISD::Constant) {
7350    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7351    SDValue AndLHS = Op0;
7352    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7353      LHS = AndLHS.getOperand(0);
7354      RHS = AndLHS.getOperand(1);
7355    }
7356  }
7357
7358  if (LHS.getNode()) {
7359    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7360    // instruction.  Since the shift amount is in-range-or-undefined, we know
7361    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7362    // the encoding for the i16 version is larger than the i32 version.
7363    // Also promote i16 to i32 for performance / code size reason.
7364    if (LHS.getValueType() == MVT::i8 ||
7365        LHS.getValueType() == MVT::i16)
7366      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7367
7368    // If the operand types disagree, extend the shift amount to match.  Since
7369    // BT ignores high bits (like shifts) we can use anyextend.
7370    if (LHS.getValueType() != RHS.getValueType())
7371      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7372
7373    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7374    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7375    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7376                       DAG.getConstant(Cond, MVT::i8), BT);
7377  }
7378
7379  return SDValue();
7380}
7381
7382SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7383  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7384  SDValue Op0 = Op.getOperand(0);
7385  SDValue Op1 = Op.getOperand(1);
7386  DebugLoc dl = Op.getDebugLoc();
7387  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7388
7389  // Optimize to BT if possible.
7390  // Lower (X & (1 << N)) == 0 to BT(X, N).
7391  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7392  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7393  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7394      Op1.getOpcode() == ISD::Constant &&
7395      cast<ConstantSDNode>(Op1)->isNullValue() &&
7396      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7397    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7398    if (NewSetCC.getNode())
7399      return NewSetCC;
7400  }
7401
7402  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7403  // these.
7404  if (Op1.getOpcode() == ISD::Constant &&
7405      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7406       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7407      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7408
7409    // If the input is a setcc, then reuse the input setcc or use a new one with
7410    // the inverted condition.
7411    if (Op0.getOpcode() == X86ISD::SETCC) {
7412      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7413      bool Invert = (CC == ISD::SETNE) ^
7414        cast<ConstantSDNode>(Op1)->isNullValue();
7415      if (!Invert) return Op0;
7416
7417      CCode = X86::GetOppositeBranchCondition(CCode);
7418      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7419                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7420    }
7421  }
7422
7423  bool isFP = Op1.getValueType().isFloatingPoint();
7424  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7425  if (X86CC == X86::COND_INVALID)
7426    return SDValue();
7427
7428  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7429  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7430                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7431}
7432
7433SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7434  SDValue Cond;
7435  SDValue Op0 = Op.getOperand(0);
7436  SDValue Op1 = Op.getOperand(1);
7437  SDValue CC = Op.getOperand(2);
7438  EVT VT = Op.getValueType();
7439  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7440  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7441  DebugLoc dl = Op.getDebugLoc();
7442
7443  if (isFP) {
7444    unsigned SSECC = 8;
7445    EVT VT0 = Op0.getValueType();
7446    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7447    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7448    bool Swap = false;
7449
7450    switch (SetCCOpcode) {
7451    default: break;
7452    case ISD::SETOEQ:
7453    case ISD::SETEQ:  SSECC = 0; break;
7454    case ISD::SETOGT:
7455    case ISD::SETGT: Swap = true; // Fallthrough
7456    case ISD::SETLT:
7457    case ISD::SETOLT: SSECC = 1; break;
7458    case ISD::SETOGE:
7459    case ISD::SETGE: Swap = true; // Fallthrough
7460    case ISD::SETLE:
7461    case ISD::SETOLE: SSECC = 2; break;
7462    case ISD::SETUO:  SSECC = 3; break;
7463    case ISD::SETUNE:
7464    case ISD::SETNE:  SSECC = 4; break;
7465    case ISD::SETULE: Swap = true;
7466    case ISD::SETUGE: SSECC = 5; break;
7467    case ISD::SETULT: Swap = true;
7468    case ISD::SETUGT: SSECC = 6; break;
7469    case ISD::SETO:   SSECC = 7; break;
7470    }
7471    if (Swap)
7472      std::swap(Op0, Op1);
7473
7474    // In the two special cases we can't handle, emit two comparisons.
7475    if (SSECC == 8) {
7476      if (SetCCOpcode == ISD::SETUEQ) {
7477        SDValue UNORD, EQ;
7478        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7479        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7480        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7481      }
7482      else if (SetCCOpcode == ISD::SETONE) {
7483        SDValue ORD, NEQ;
7484        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7485        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7486        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7487      }
7488      llvm_unreachable("Illegal FP comparison");
7489    }
7490    // Handle all other FP comparisons here.
7491    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7492  }
7493
7494  // We are handling one of the integer comparisons here.  Since SSE only has
7495  // GT and EQ comparisons for integer, swapping operands and multiple
7496  // operations may be required for some comparisons.
7497  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7498  bool Swap = false, Invert = false, FlipSigns = false;
7499
7500  switch (VT.getSimpleVT().SimpleTy) {
7501  default: break;
7502  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7503  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7504  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7505  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7506  }
7507
7508  switch (SetCCOpcode) {
7509  default: break;
7510  case ISD::SETNE:  Invert = true;
7511  case ISD::SETEQ:  Opc = EQOpc; break;
7512  case ISD::SETLT:  Swap = true;
7513  case ISD::SETGT:  Opc = GTOpc; break;
7514  case ISD::SETGE:  Swap = true;
7515  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7516  case ISD::SETULT: Swap = true;
7517  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7518  case ISD::SETUGE: Swap = true;
7519  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7520  }
7521  if (Swap)
7522    std::swap(Op0, Op1);
7523
7524  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7525  // bits of the inputs before performing those operations.
7526  if (FlipSigns) {
7527    EVT EltVT = VT.getVectorElementType();
7528    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7529                                      EltVT);
7530    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7531    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7532                                    SignBits.size());
7533    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7534    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7535  }
7536
7537  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7538
7539  // If the logical-not of the result is required, perform that now.
7540  if (Invert)
7541    Result = DAG.getNOT(dl, Result, VT);
7542
7543  return Result;
7544}
7545
7546// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7547static bool isX86LogicalCmp(SDValue Op) {
7548  unsigned Opc = Op.getNode()->getOpcode();
7549  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7550    return true;
7551  if (Op.getResNo() == 1 &&
7552      (Opc == X86ISD::ADD ||
7553       Opc == X86ISD::SUB ||
7554       Opc == X86ISD::ADC ||
7555       Opc == X86ISD::SBB ||
7556       Opc == X86ISD::SMUL ||
7557       Opc == X86ISD::UMUL ||
7558       Opc == X86ISD::INC ||
7559       Opc == X86ISD::DEC ||
7560       Opc == X86ISD::OR ||
7561       Opc == X86ISD::XOR ||
7562       Opc == X86ISD::AND))
7563    return true;
7564
7565  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7566    return true;
7567
7568  return false;
7569}
7570
7571static bool isZero(SDValue V) {
7572  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7573  return C && C->isNullValue();
7574}
7575
7576static bool isAllOnes(SDValue V) {
7577  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7578  return C && C->isAllOnesValue();
7579}
7580
7581SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7582  bool addTest = true;
7583  SDValue Cond  = Op.getOperand(0);
7584  SDValue Op1 = Op.getOperand(1);
7585  SDValue Op2 = Op.getOperand(2);
7586  DebugLoc DL = Op.getDebugLoc();
7587  SDValue CC;
7588
7589  if (Cond.getOpcode() == ISD::SETCC) {
7590    SDValue NewCond = LowerSETCC(Cond, DAG);
7591    if (NewCond.getNode())
7592      Cond = NewCond;
7593  }
7594
7595  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7596  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7597  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7598  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7599  if (Cond.getOpcode() == X86ISD::SETCC &&
7600      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7601      isZero(Cond.getOperand(1).getOperand(1))) {
7602    SDValue Cmp = Cond.getOperand(1);
7603
7604    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7605
7606    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7607        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7608      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7609
7610      SDValue CmpOp0 = Cmp.getOperand(0);
7611      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7612                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7613
7614      SDValue Res =   // Res = 0 or -1.
7615        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7616                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7617
7618      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7619        Res = DAG.getNOT(DL, Res, Res.getValueType());
7620
7621      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7622      if (N2C == 0 || !N2C->isNullValue())
7623        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7624      return Res;
7625    }
7626  }
7627
7628  // Look past (and (setcc_carry (cmp ...)), 1).
7629  if (Cond.getOpcode() == ISD::AND &&
7630      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7631    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7632    if (C && C->getAPIntValue() == 1)
7633      Cond = Cond.getOperand(0);
7634  }
7635
7636  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7637  // setting operand in place of the X86ISD::SETCC.
7638  if (Cond.getOpcode() == X86ISD::SETCC ||
7639      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7640    CC = Cond.getOperand(0);
7641
7642    SDValue Cmp = Cond.getOperand(1);
7643    unsigned Opc = Cmp.getOpcode();
7644    EVT VT = Op.getValueType();
7645
7646    bool IllegalFPCMov = false;
7647    if (VT.isFloatingPoint() && !VT.isVector() &&
7648        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7649      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7650
7651    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7652        Opc == X86ISD::BT) { // FIXME
7653      Cond = Cmp;
7654      addTest = false;
7655    }
7656  }
7657
7658  if (addTest) {
7659    // Look pass the truncate.
7660    if (Cond.getOpcode() == ISD::TRUNCATE)
7661      Cond = Cond.getOperand(0);
7662
7663    // We know the result of AND is compared against zero. Try to match
7664    // it to BT.
7665    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7666      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7667      if (NewSetCC.getNode()) {
7668        CC = NewSetCC.getOperand(0);
7669        Cond = NewSetCC.getOperand(1);
7670        addTest = false;
7671      }
7672    }
7673  }
7674
7675  if (addTest) {
7676    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7677    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7678  }
7679
7680  // a <  b ? -1 :  0 -> RES = ~setcc_carry
7681  // a <  b ?  0 : -1 -> RES = setcc_carry
7682  // a >= b ? -1 :  0 -> RES = setcc_carry
7683  // a >= b ?  0 : -1 -> RES = ~setcc_carry
7684  if (Cond.getOpcode() == X86ISD::CMP) {
7685    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
7686
7687    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
7688        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
7689      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7690                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
7691      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
7692        return DAG.getNOT(DL, Res, Res.getValueType());
7693      return Res;
7694    }
7695  }
7696
7697  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7698  // condition is true.
7699  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
7700  SDValue Ops[] = { Op2, Op1, CC, Cond };
7701  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7702}
7703
7704// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7705// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7706// from the AND / OR.
7707static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7708  Opc = Op.getOpcode();
7709  if (Opc != ISD::OR && Opc != ISD::AND)
7710    return false;
7711  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7712          Op.getOperand(0).hasOneUse() &&
7713          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7714          Op.getOperand(1).hasOneUse());
7715}
7716
7717// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7718// 1 and that the SETCC node has a single use.
7719static bool isXor1OfSetCC(SDValue Op) {
7720  if (Op.getOpcode() != ISD::XOR)
7721    return false;
7722  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7723  if (N1C && N1C->getAPIntValue() == 1) {
7724    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7725      Op.getOperand(0).hasOneUse();
7726  }
7727  return false;
7728}
7729
7730SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7731  bool addTest = true;
7732  SDValue Chain = Op.getOperand(0);
7733  SDValue Cond  = Op.getOperand(1);
7734  SDValue Dest  = Op.getOperand(2);
7735  DebugLoc dl = Op.getDebugLoc();
7736  SDValue CC;
7737
7738  if (Cond.getOpcode() == ISD::SETCC) {
7739    SDValue NewCond = LowerSETCC(Cond, DAG);
7740    if (NewCond.getNode())
7741      Cond = NewCond;
7742  }
7743#if 0
7744  // FIXME: LowerXALUO doesn't handle these!!
7745  else if (Cond.getOpcode() == X86ISD::ADD  ||
7746           Cond.getOpcode() == X86ISD::SUB  ||
7747           Cond.getOpcode() == X86ISD::SMUL ||
7748           Cond.getOpcode() == X86ISD::UMUL)
7749    Cond = LowerXALUO(Cond, DAG);
7750#endif
7751
7752  // Look pass (and (setcc_carry (cmp ...)), 1).
7753  if (Cond.getOpcode() == ISD::AND &&
7754      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7755    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7756    if (C && C->getAPIntValue() == 1)
7757      Cond = Cond.getOperand(0);
7758  }
7759
7760  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7761  // setting operand in place of the X86ISD::SETCC.
7762  if (Cond.getOpcode() == X86ISD::SETCC ||
7763      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7764    CC = Cond.getOperand(0);
7765
7766    SDValue Cmp = Cond.getOperand(1);
7767    unsigned Opc = Cmp.getOpcode();
7768    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7769    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7770      Cond = Cmp;
7771      addTest = false;
7772    } else {
7773      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7774      default: break;
7775      case X86::COND_O:
7776      case X86::COND_B:
7777        // These can only come from an arithmetic instruction with overflow,
7778        // e.g. SADDO, UADDO.
7779        Cond = Cond.getNode()->getOperand(1);
7780        addTest = false;
7781        break;
7782      }
7783    }
7784  } else {
7785    unsigned CondOpc;
7786    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7787      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7788      if (CondOpc == ISD::OR) {
7789        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7790        // two branches instead of an explicit OR instruction with a
7791        // separate test.
7792        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7793            isX86LogicalCmp(Cmp)) {
7794          CC = Cond.getOperand(0).getOperand(0);
7795          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7796                              Chain, Dest, CC, Cmp);
7797          CC = Cond.getOperand(1).getOperand(0);
7798          Cond = Cmp;
7799          addTest = false;
7800        }
7801      } else { // ISD::AND
7802        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7803        // two branches instead of an explicit AND instruction with a
7804        // separate test. However, we only do this if this block doesn't
7805        // have a fall-through edge, because this requires an explicit
7806        // jmp when the condition is false.
7807        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7808            isX86LogicalCmp(Cmp) &&
7809            Op.getNode()->hasOneUse()) {
7810          X86::CondCode CCode =
7811            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7812          CCode = X86::GetOppositeBranchCondition(CCode);
7813          CC = DAG.getConstant(CCode, MVT::i8);
7814          SDNode *User = *Op.getNode()->use_begin();
7815          // Look for an unconditional branch following this conditional branch.
7816          // We need this because we need to reverse the successors in order
7817          // to implement FCMP_OEQ.
7818          if (User->getOpcode() == ISD::BR) {
7819            SDValue FalseBB = User->getOperand(1);
7820            SDNode *NewBR =
7821              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7822            assert(NewBR == User);
7823            (void)NewBR;
7824            Dest = FalseBB;
7825
7826            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7827                                Chain, Dest, CC, Cmp);
7828            X86::CondCode CCode =
7829              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7830            CCode = X86::GetOppositeBranchCondition(CCode);
7831            CC = DAG.getConstant(CCode, MVT::i8);
7832            Cond = Cmp;
7833            addTest = false;
7834          }
7835        }
7836      }
7837    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7838      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7839      // It should be transformed during dag combiner except when the condition
7840      // is set by a arithmetics with overflow node.
7841      X86::CondCode CCode =
7842        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7843      CCode = X86::GetOppositeBranchCondition(CCode);
7844      CC = DAG.getConstant(CCode, MVT::i8);
7845      Cond = Cond.getOperand(0).getOperand(1);
7846      addTest = false;
7847    }
7848  }
7849
7850  if (addTest) {
7851    // Look pass the truncate.
7852    if (Cond.getOpcode() == ISD::TRUNCATE)
7853      Cond = Cond.getOperand(0);
7854
7855    // We know the result of AND is compared against zero. Try to match
7856    // it to BT.
7857    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7858      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7859      if (NewSetCC.getNode()) {
7860        CC = NewSetCC.getOperand(0);
7861        Cond = NewSetCC.getOperand(1);
7862        addTest = false;
7863      }
7864    }
7865  }
7866
7867  if (addTest) {
7868    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7869    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7870  }
7871  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7872                     Chain, Dest, CC, Cond);
7873}
7874
7875
7876// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7877// Calls to _alloca is needed to probe the stack when allocating more than 4k
7878// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7879// that the guard pages used by the OS virtual memory manager are allocated in
7880// correct sequence.
7881SDValue
7882X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7883                                           SelectionDAG &DAG) const {
7884  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7885         "This should be used only on Windows targets");
7886  DebugLoc dl = Op.getDebugLoc();
7887
7888  // Get the inputs.
7889  SDValue Chain = Op.getOperand(0);
7890  SDValue Size  = Op.getOperand(1);
7891  // FIXME: Ensure alignment here
7892
7893  SDValue Flag;
7894
7895  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7896
7897  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7898  Flag = Chain.getValue(1);
7899
7900  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7901
7902  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7903  Flag = Chain.getValue(1);
7904
7905  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7906
7907  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7908  return DAG.getMergeValues(Ops1, 2, dl);
7909}
7910
7911SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7912  MachineFunction &MF = DAG.getMachineFunction();
7913  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7914
7915  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7916  DebugLoc DL = Op.getDebugLoc();
7917
7918  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7919    // vastart just stores the address of the VarArgsFrameIndex slot into the
7920    // memory location argument.
7921    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7922                                   getPointerTy());
7923    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7924                        MachinePointerInfo(SV), false, false, 0);
7925  }
7926
7927  // __va_list_tag:
7928  //   gp_offset         (0 - 6 * 8)
7929  //   fp_offset         (48 - 48 + 8 * 16)
7930  //   overflow_arg_area (point to parameters coming in memory).
7931  //   reg_save_area
7932  SmallVector<SDValue, 8> MemOps;
7933  SDValue FIN = Op.getOperand(1);
7934  // Store gp_offset
7935  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7936                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7937                                               MVT::i32),
7938                               FIN, MachinePointerInfo(SV), false, false, 0);
7939  MemOps.push_back(Store);
7940
7941  // Store fp_offset
7942  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7943                    FIN, DAG.getIntPtrConstant(4));
7944  Store = DAG.getStore(Op.getOperand(0), DL,
7945                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7946                                       MVT::i32),
7947                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7948  MemOps.push_back(Store);
7949
7950  // Store ptr to overflow_arg_area
7951  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7952                    FIN, DAG.getIntPtrConstant(4));
7953  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7954                                    getPointerTy());
7955  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7956                       MachinePointerInfo(SV, 8),
7957                       false, false, 0);
7958  MemOps.push_back(Store);
7959
7960  // Store ptr to reg_save_area.
7961  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7962                    FIN, DAG.getIntPtrConstant(8));
7963  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7964                                    getPointerTy());
7965  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7966                       MachinePointerInfo(SV, 16), false, false, 0);
7967  MemOps.push_back(Store);
7968  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
7969                     &MemOps[0], MemOps.size());
7970}
7971
7972SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7973  assert(Subtarget->is64Bit() &&
7974         "LowerVAARG only handles 64-bit va_arg!");
7975  assert((Subtarget->isTargetLinux() ||
7976          Subtarget->isTargetDarwin()) &&
7977          "Unhandled target in LowerVAARG");
7978  assert(Op.getNode()->getNumOperands() == 4);
7979  SDValue Chain = Op.getOperand(0);
7980  SDValue SrcPtr = Op.getOperand(1);
7981  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7982  unsigned Align = Op.getConstantOperandVal(3);
7983  DebugLoc dl = Op.getDebugLoc();
7984
7985  EVT ArgVT = Op.getNode()->getValueType(0);
7986  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7987  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
7988  uint8_t ArgMode;
7989
7990  // Decide which area this value should be read from.
7991  // TODO: Implement the AMD64 ABI in its entirety. This simple
7992  // selection mechanism works only for the basic types.
7993  if (ArgVT == MVT::f80) {
7994    llvm_unreachable("va_arg for f80 not yet implemented");
7995  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
7996    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
7997  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
7998    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
7999  } else {
8000    llvm_unreachable("Unhandled argument type in LowerVAARG");
8001  }
8002
8003  if (ArgMode == 2) {
8004    // Sanity Check: Make sure using fp_offset makes sense.
8005    assert(!UseSoftFloat &&
8006           !(DAG.getMachineFunction()
8007                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8008           Subtarget->hasXMM());
8009  }
8010
8011  // Insert VAARG_64 node into the DAG
8012  // VAARG_64 returns two values: Variable Argument Address, Chain
8013  SmallVector<SDValue, 11> InstOps;
8014  InstOps.push_back(Chain);
8015  InstOps.push_back(SrcPtr);
8016  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8017  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8018  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8019  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8020  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8021                                          VTs, &InstOps[0], InstOps.size(),
8022                                          MVT::i64,
8023                                          MachinePointerInfo(SV),
8024                                          /*Align=*/0,
8025                                          /*Volatile=*/false,
8026                                          /*ReadMem=*/true,
8027                                          /*WriteMem=*/true);
8028  Chain = VAARG.getValue(1);
8029
8030  // Load the next argument and return it
8031  return DAG.getLoad(ArgVT, dl,
8032                     Chain,
8033                     VAARG,
8034                     MachinePointerInfo(),
8035                     false, false, 0);
8036}
8037
8038SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8039  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8040  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8041  SDValue Chain = Op.getOperand(0);
8042  SDValue DstPtr = Op.getOperand(1);
8043  SDValue SrcPtr = Op.getOperand(2);
8044  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8045  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8046  DebugLoc DL = Op.getDebugLoc();
8047
8048  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8049                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8050                       false,
8051                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8052}
8053
8054SDValue
8055X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8056  DebugLoc dl = Op.getDebugLoc();
8057  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8058  switch (IntNo) {
8059  default: return SDValue();    // Don't custom lower most intrinsics.
8060  // Comparison intrinsics.
8061  case Intrinsic::x86_sse_comieq_ss:
8062  case Intrinsic::x86_sse_comilt_ss:
8063  case Intrinsic::x86_sse_comile_ss:
8064  case Intrinsic::x86_sse_comigt_ss:
8065  case Intrinsic::x86_sse_comige_ss:
8066  case Intrinsic::x86_sse_comineq_ss:
8067  case Intrinsic::x86_sse_ucomieq_ss:
8068  case Intrinsic::x86_sse_ucomilt_ss:
8069  case Intrinsic::x86_sse_ucomile_ss:
8070  case Intrinsic::x86_sse_ucomigt_ss:
8071  case Intrinsic::x86_sse_ucomige_ss:
8072  case Intrinsic::x86_sse_ucomineq_ss:
8073  case Intrinsic::x86_sse2_comieq_sd:
8074  case Intrinsic::x86_sse2_comilt_sd:
8075  case Intrinsic::x86_sse2_comile_sd:
8076  case Intrinsic::x86_sse2_comigt_sd:
8077  case Intrinsic::x86_sse2_comige_sd:
8078  case Intrinsic::x86_sse2_comineq_sd:
8079  case Intrinsic::x86_sse2_ucomieq_sd:
8080  case Intrinsic::x86_sse2_ucomilt_sd:
8081  case Intrinsic::x86_sse2_ucomile_sd:
8082  case Intrinsic::x86_sse2_ucomigt_sd:
8083  case Intrinsic::x86_sse2_ucomige_sd:
8084  case Intrinsic::x86_sse2_ucomineq_sd: {
8085    unsigned Opc = 0;
8086    ISD::CondCode CC = ISD::SETCC_INVALID;
8087    switch (IntNo) {
8088    default: break;
8089    case Intrinsic::x86_sse_comieq_ss:
8090    case Intrinsic::x86_sse2_comieq_sd:
8091      Opc = X86ISD::COMI;
8092      CC = ISD::SETEQ;
8093      break;
8094    case Intrinsic::x86_sse_comilt_ss:
8095    case Intrinsic::x86_sse2_comilt_sd:
8096      Opc = X86ISD::COMI;
8097      CC = ISD::SETLT;
8098      break;
8099    case Intrinsic::x86_sse_comile_ss:
8100    case Intrinsic::x86_sse2_comile_sd:
8101      Opc = X86ISD::COMI;
8102      CC = ISD::SETLE;
8103      break;
8104    case Intrinsic::x86_sse_comigt_ss:
8105    case Intrinsic::x86_sse2_comigt_sd:
8106      Opc = X86ISD::COMI;
8107      CC = ISD::SETGT;
8108      break;
8109    case Intrinsic::x86_sse_comige_ss:
8110    case Intrinsic::x86_sse2_comige_sd:
8111      Opc = X86ISD::COMI;
8112      CC = ISD::SETGE;
8113      break;
8114    case Intrinsic::x86_sse_comineq_ss:
8115    case Intrinsic::x86_sse2_comineq_sd:
8116      Opc = X86ISD::COMI;
8117      CC = ISD::SETNE;
8118      break;
8119    case Intrinsic::x86_sse_ucomieq_ss:
8120    case Intrinsic::x86_sse2_ucomieq_sd:
8121      Opc = X86ISD::UCOMI;
8122      CC = ISD::SETEQ;
8123      break;
8124    case Intrinsic::x86_sse_ucomilt_ss:
8125    case Intrinsic::x86_sse2_ucomilt_sd:
8126      Opc = X86ISD::UCOMI;
8127      CC = ISD::SETLT;
8128      break;
8129    case Intrinsic::x86_sse_ucomile_ss:
8130    case Intrinsic::x86_sse2_ucomile_sd:
8131      Opc = X86ISD::UCOMI;
8132      CC = ISD::SETLE;
8133      break;
8134    case Intrinsic::x86_sse_ucomigt_ss:
8135    case Intrinsic::x86_sse2_ucomigt_sd:
8136      Opc = X86ISD::UCOMI;
8137      CC = ISD::SETGT;
8138      break;
8139    case Intrinsic::x86_sse_ucomige_ss:
8140    case Intrinsic::x86_sse2_ucomige_sd:
8141      Opc = X86ISD::UCOMI;
8142      CC = ISD::SETGE;
8143      break;
8144    case Intrinsic::x86_sse_ucomineq_ss:
8145    case Intrinsic::x86_sse2_ucomineq_sd:
8146      Opc = X86ISD::UCOMI;
8147      CC = ISD::SETNE;
8148      break;
8149    }
8150
8151    SDValue LHS = Op.getOperand(1);
8152    SDValue RHS = Op.getOperand(2);
8153    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8154    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8155    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8156    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8157                                DAG.getConstant(X86CC, MVT::i8), Cond);
8158    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8159  }
8160  // ptest and testp intrinsics. The intrinsic these come from are designed to
8161  // return an integer value, not just an instruction so lower it to the ptest
8162  // or testp pattern and a setcc for the result.
8163  case Intrinsic::x86_sse41_ptestz:
8164  case Intrinsic::x86_sse41_ptestc:
8165  case Intrinsic::x86_sse41_ptestnzc:
8166  case Intrinsic::x86_avx_ptestz_256:
8167  case Intrinsic::x86_avx_ptestc_256:
8168  case Intrinsic::x86_avx_ptestnzc_256:
8169  case Intrinsic::x86_avx_vtestz_ps:
8170  case Intrinsic::x86_avx_vtestc_ps:
8171  case Intrinsic::x86_avx_vtestnzc_ps:
8172  case Intrinsic::x86_avx_vtestz_pd:
8173  case Intrinsic::x86_avx_vtestc_pd:
8174  case Intrinsic::x86_avx_vtestnzc_pd:
8175  case Intrinsic::x86_avx_vtestz_ps_256:
8176  case Intrinsic::x86_avx_vtestc_ps_256:
8177  case Intrinsic::x86_avx_vtestnzc_ps_256:
8178  case Intrinsic::x86_avx_vtestz_pd_256:
8179  case Intrinsic::x86_avx_vtestc_pd_256:
8180  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8181    bool IsTestPacked = false;
8182    unsigned X86CC = 0;
8183    switch (IntNo) {
8184    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8185    case Intrinsic::x86_avx_vtestz_ps:
8186    case Intrinsic::x86_avx_vtestz_pd:
8187    case Intrinsic::x86_avx_vtestz_ps_256:
8188    case Intrinsic::x86_avx_vtestz_pd_256:
8189      IsTestPacked = true; // Fallthrough
8190    case Intrinsic::x86_sse41_ptestz:
8191    case Intrinsic::x86_avx_ptestz_256:
8192      // ZF = 1
8193      X86CC = X86::COND_E;
8194      break;
8195    case Intrinsic::x86_avx_vtestc_ps:
8196    case Intrinsic::x86_avx_vtestc_pd:
8197    case Intrinsic::x86_avx_vtestc_ps_256:
8198    case Intrinsic::x86_avx_vtestc_pd_256:
8199      IsTestPacked = true; // Fallthrough
8200    case Intrinsic::x86_sse41_ptestc:
8201    case Intrinsic::x86_avx_ptestc_256:
8202      // CF = 1
8203      X86CC = X86::COND_B;
8204      break;
8205    case Intrinsic::x86_avx_vtestnzc_ps:
8206    case Intrinsic::x86_avx_vtestnzc_pd:
8207    case Intrinsic::x86_avx_vtestnzc_ps_256:
8208    case Intrinsic::x86_avx_vtestnzc_pd_256:
8209      IsTestPacked = true; // Fallthrough
8210    case Intrinsic::x86_sse41_ptestnzc:
8211    case Intrinsic::x86_avx_ptestnzc_256:
8212      // ZF and CF = 0
8213      X86CC = X86::COND_A;
8214      break;
8215    }
8216
8217    SDValue LHS = Op.getOperand(1);
8218    SDValue RHS = Op.getOperand(2);
8219    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8220    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8221    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8222    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8223    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8224  }
8225
8226  // Fix vector shift instructions where the last operand is a non-immediate
8227  // i32 value.
8228  case Intrinsic::x86_sse2_pslli_w:
8229  case Intrinsic::x86_sse2_pslli_d:
8230  case Intrinsic::x86_sse2_pslli_q:
8231  case Intrinsic::x86_sse2_psrli_w:
8232  case Intrinsic::x86_sse2_psrli_d:
8233  case Intrinsic::x86_sse2_psrli_q:
8234  case Intrinsic::x86_sse2_psrai_w:
8235  case Intrinsic::x86_sse2_psrai_d:
8236  case Intrinsic::x86_mmx_pslli_w:
8237  case Intrinsic::x86_mmx_pslli_d:
8238  case Intrinsic::x86_mmx_pslli_q:
8239  case Intrinsic::x86_mmx_psrli_w:
8240  case Intrinsic::x86_mmx_psrli_d:
8241  case Intrinsic::x86_mmx_psrli_q:
8242  case Intrinsic::x86_mmx_psrai_w:
8243  case Intrinsic::x86_mmx_psrai_d: {
8244    SDValue ShAmt = Op.getOperand(2);
8245    if (isa<ConstantSDNode>(ShAmt))
8246      return SDValue();
8247
8248    unsigned NewIntNo = 0;
8249    EVT ShAmtVT = MVT::v4i32;
8250    switch (IntNo) {
8251    case Intrinsic::x86_sse2_pslli_w:
8252      NewIntNo = Intrinsic::x86_sse2_psll_w;
8253      break;
8254    case Intrinsic::x86_sse2_pslli_d:
8255      NewIntNo = Intrinsic::x86_sse2_psll_d;
8256      break;
8257    case Intrinsic::x86_sse2_pslli_q:
8258      NewIntNo = Intrinsic::x86_sse2_psll_q;
8259      break;
8260    case Intrinsic::x86_sse2_psrli_w:
8261      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8262      break;
8263    case Intrinsic::x86_sse2_psrli_d:
8264      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8265      break;
8266    case Intrinsic::x86_sse2_psrli_q:
8267      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8268      break;
8269    case Intrinsic::x86_sse2_psrai_w:
8270      NewIntNo = Intrinsic::x86_sse2_psra_w;
8271      break;
8272    case Intrinsic::x86_sse2_psrai_d:
8273      NewIntNo = Intrinsic::x86_sse2_psra_d;
8274      break;
8275    default: {
8276      ShAmtVT = MVT::v2i32;
8277      switch (IntNo) {
8278      case Intrinsic::x86_mmx_pslli_w:
8279        NewIntNo = Intrinsic::x86_mmx_psll_w;
8280        break;
8281      case Intrinsic::x86_mmx_pslli_d:
8282        NewIntNo = Intrinsic::x86_mmx_psll_d;
8283        break;
8284      case Intrinsic::x86_mmx_pslli_q:
8285        NewIntNo = Intrinsic::x86_mmx_psll_q;
8286        break;
8287      case Intrinsic::x86_mmx_psrli_w:
8288        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8289        break;
8290      case Intrinsic::x86_mmx_psrli_d:
8291        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8292        break;
8293      case Intrinsic::x86_mmx_psrli_q:
8294        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8295        break;
8296      case Intrinsic::x86_mmx_psrai_w:
8297        NewIntNo = Intrinsic::x86_mmx_psra_w;
8298        break;
8299      case Intrinsic::x86_mmx_psrai_d:
8300        NewIntNo = Intrinsic::x86_mmx_psra_d;
8301        break;
8302      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8303      }
8304      break;
8305    }
8306    }
8307
8308    // The vector shift intrinsics with scalars uses 32b shift amounts but
8309    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8310    // to be zero.
8311    SDValue ShOps[4];
8312    ShOps[0] = ShAmt;
8313    ShOps[1] = DAG.getConstant(0, MVT::i32);
8314    if (ShAmtVT == MVT::v4i32) {
8315      ShOps[2] = DAG.getUNDEF(MVT::i32);
8316      ShOps[3] = DAG.getUNDEF(MVT::i32);
8317      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8318    } else {
8319      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8320// FIXME this must be lowered to get rid of the invalid type.
8321    }
8322
8323    EVT VT = Op.getValueType();
8324    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8325    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8326                       DAG.getConstant(NewIntNo, MVT::i32),
8327                       Op.getOperand(1), ShAmt);
8328  }
8329  }
8330}
8331
8332SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8333                                           SelectionDAG &DAG) const {
8334  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8335  MFI->setReturnAddressIsTaken(true);
8336
8337  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8338  DebugLoc dl = Op.getDebugLoc();
8339
8340  if (Depth > 0) {
8341    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8342    SDValue Offset =
8343      DAG.getConstant(TD->getPointerSize(),
8344                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8345    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8346                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8347                                   FrameAddr, Offset),
8348                       MachinePointerInfo(), false, false, 0);
8349  }
8350
8351  // Just load the return address.
8352  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8353  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8354                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8355}
8356
8357SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8358  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8359  MFI->setFrameAddressIsTaken(true);
8360
8361  EVT VT = Op.getValueType();
8362  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8363  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8364  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8365  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8366  while (Depth--)
8367    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8368                            MachinePointerInfo(),
8369                            false, false, 0);
8370  return FrameAddr;
8371}
8372
8373SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8374                                                     SelectionDAG &DAG) const {
8375  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8376}
8377
8378SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8379  MachineFunction &MF = DAG.getMachineFunction();
8380  SDValue Chain     = Op.getOperand(0);
8381  SDValue Offset    = Op.getOperand(1);
8382  SDValue Handler   = Op.getOperand(2);
8383  DebugLoc dl       = Op.getDebugLoc();
8384
8385  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8386                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8387                                     getPointerTy());
8388  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8389
8390  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8391                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8392  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8393  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8394                       false, false, 0);
8395  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8396  MF.getRegInfo().addLiveOut(StoreAddrReg);
8397
8398  return DAG.getNode(X86ISD::EH_RETURN, dl,
8399                     MVT::Other,
8400                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8401}
8402
8403SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8404                                             SelectionDAG &DAG) const {
8405  SDValue Root = Op.getOperand(0);
8406  SDValue Trmp = Op.getOperand(1); // trampoline
8407  SDValue FPtr = Op.getOperand(2); // nested function
8408  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8409  DebugLoc dl  = Op.getDebugLoc();
8410
8411  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8412
8413  if (Subtarget->is64Bit()) {
8414    SDValue OutChains[6];
8415
8416    // Large code-model.
8417    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8418    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8419
8420    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8421    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8422
8423    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8424
8425    // Load the pointer to the nested function into R11.
8426    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8427    SDValue Addr = Trmp;
8428    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8429                                Addr, MachinePointerInfo(TrmpAddr),
8430                                false, false, 0);
8431
8432    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8433                       DAG.getConstant(2, MVT::i64));
8434    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8435                                MachinePointerInfo(TrmpAddr, 2),
8436                                false, false, 2);
8437
8438    // Load the 'nest' parameter value into R10.
8439    // R10 is specified in X86CallingConv.td
8440    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8441    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8442                       DAG.getConstant(10, MVT::i64));
8443    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8444                                Addr, MachinePointerInfo(TrmpAddr, 10),
8445                                false, false, 0);
8446
8447    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8448                       DAG.getConstant(12, MVT::i64));
8449    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8450                                MachinePointerInfo(TrmpAddr, 12),
8451                                false, false, 2);
8452
8453    // Jump to the nested function.
8454    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8455    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8456                       DAG.getConstant(20, MVT::i64));
8457    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8458                                Addr, MachinePointerInfo(TrmpAddr, 20),
8459                                false, false, 0);
8460
8461    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8462    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8463                       DAG.getConstant(22, MVT::i64));
8464    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8465                                MachinePointerInfo(TrmpAddr, 22),
8466                                false, false, 0);
8467
8468    SDValue Ops[] =
8469      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8470    return DAG.getMergeValues(Ops, 2, dl);
8471  } else {
8472    const Function *Func =
8473      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8474    CallingConv::ID CC = Func->getCallingConv();
8475    unsigned NestReg;
8476
8477    switch (CC) {
8478    default:
8479      llvm_unreachable("Unsupported calling convention");
8480    case CallingConv::C:
8481    case CallingConv::X86_StdCall: {
8482      // Pass 'nest' parameter in ECX.
8483      // Must be kept in sync with X86CallingConv.td
8484      NestReg = X86::ECX;
8485
8486      // Check that ECX wasn't needed by an 'inreg' parameter.
8487      const FunctionType *FTy = Func->getFunctionType();
8488      const AttrListPtr &Attrs = Func->getAttributes();
8489
8490      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8491        unsigned InRegCount = 0;
8492        unsigned Idx = 1;
8493
8494        for (FunctionType::param_iterator I = FTy->param_begin(),
8495             E = FTy->param_end(); I != E; ++I, ++Idx)
8496          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8497            // FIXME: should only count parameters that are lowered to integers.
8498            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8499
8500        if (InRegCount > 2) {
8501          report_fatal_error("Nest register in use - reduce number of inreg"
8502                             " parameters!");
8503        }
8504      }
8505      break;
8506    }
8507    case CallingConv::X86_FastCall:
8508    case CallingConv::X86_ThisCall:
8509    case CallingConv::Fast:
8510      // Pass 'nest' parameter in EAX.
8511      // Must be kept in sync with X86CallingConv.td
8512      NestReg = X86::EAX;
8513      break;
8514    }
8515
8516    SDValue OutChains[4];
8517    SDValue Addr, Disp;
8518
8519    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8520                       DAG.getConstant(10, MVT::i32));
8521    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8522
8523    // This is storing the opcode for MOV32ri.
8524    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8525    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8526    OutChains[0] = DAG.getStore(Root, dl,
8527                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8528                                Trmp, MachinePointerInfo(TrmpAddr),
8529                                false, false, 0);
8530
8531    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8532                       DAG.getConstant(1, MVT::i32));
8533    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8534                                MachinePointerInfo(TrmpAddr, 1),
8535                                false, false, 1);
8536
8537    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8538    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8539                       DAG.getConstant(5, MVT::i32));
8540    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8541                                MachinePointerInfo(TrmpAddr, 5),
8542                                false, false, 1);
8543
8544    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8545                       DAG.getConstant(6, MVT::i32));
8546    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8547                                MachinePointerInfo(TrmpAddr, 6),
8548                                false, false, 1);
8549
8550    SDValue Ops[] =
8551      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8552    return DAG.getMergeValues(Ops, 2, dl);
8553  }
8554}
8555
8556SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8557                                            SelectionDAG &DAG) const {
8558  /*
8559   The rounding mode is in bits 11:10 of FPSR, and has the following
8560   settings:
8561     00 Round to nearest
8562     01 Round to -inf
8563     10 Round to +inf
8564     11 Round to 0
8565
8566  FLT_ROUNDS, on the other hand, expects the following:
8567    -1 Undefined
8568     0 Round to 0
8569     1 Round to nearest
8570     2 Round to +inf
8571     3 Round to -inf
8572
8573  To perform the conversion, we do:
8574    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8575  */
8576
8577  MachineFunction &MF = DAG.getMachineFunction();
8578  const TargetMachine &TM = MF.getTarget();
8579  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8580  unsigned StackAlignment = TFI.getStackAlignment();
8581  EVT VT = Op.getValueType();
8582  DebugLoc DL = Op.getDebugLoc();
8583
8584  // Save FP Control Word to stack slot
8585  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8586  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8587
8588
8589  MachineMemOperand *MMO =
8590   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8591                           MachineMemOperand::MOStore, 2, 2);
8592
8593  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8594  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8595                                          DAG.getVTList(MVT::Other),
8596                                          Ops, 2, MVT::i16, MMO);
8597
8598  // Load FP Control Word from stack slot
8599  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8600                            MachinePointerInfo(), false, false, 0);
8601
8602  // Transform as necessary
8603  SDValue CWD1 =
8604    DAG.getNode(ISD::SRL, DL, MVT::i16,
8605                DAG.getNode(ISD::AND, DL, MVT::i16,
8606                            CWD, DAG.getConstant(0x800, MVT::i16)),
8607                DAG.getConstant(11, MVT::i8));
8608  SDValue CWD2 =
8609    DAG.getNode(ISD::SRL, DL, MVT::i16,
8610                DAG.getNode(ISD::AND, DL, MVT::i16,
8611                            CWD, DAG.getConstant(0x400, MVT::i16)),
8612                DAG.getConstant(9, MVT::i8));
8613
8614  SDValue RetVal =
8615    DAG.getNode(ISD::AND, DL, MVT::i16,
8616                DAG.getNode(ISD::ADD, DL, MVT::i16,
8617                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8618                            DAG.getConstant(1, MVT::i16)),
8619                DAG.getConstant(3, MVT::i16));
8620
8621
8622  return DAG.getNode((VT.getSizeInBits() < 16 ?
8623                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8624}
8625
8626SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8627  EVT VT = Op.getValueType();
8628  EVT OpVT = VT;
8629  unsigned NumBits = VT.getSizeInBits();
8630  DebugLoc dl = Op.getDebugLoc();
8631
8632  Op = Op.getOperand(0);
8633  if (VT == MVT::i8) {
8634    // Zero extend to i32 since there is not an i8 bsr.
8635    OpVT = MVT::i32;
8636    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8637  }
8638
8639  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8640  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8641  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8642
8643  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8644  SDValue Ops[] = {
8645    Op,
8646    DAG.getConstant(NumBits+NumBits-1, OpVT),
8647    DAG.getConstant(X86::COND_E, MVT::i8),
8648    Op.getValue(1)
8649  };
8650  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8651
8652  // Finally xor with NumBits-1.
8653  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8654
8655  if (VT == MVT::i8)
8656    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8657  return Op;
8658}
8659
8660SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8661  EVT VT = Op.getValueType();
8662  EVT OpVT = VT;
8663  unsigned NumBits = VT.getSizeInBits();
8664  DebugLoc dl = Op.getDebugLoc();
8665
8666  Op = Op.getOperand(0);
8667  if (VT == MVT::i8) {
8668    OpVT = MVT::i32;
8669    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8670  }
8671
8672  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8673  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8674  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8675
8676  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8677  SDValue Ops[] = {
8678    Op,
8679    DAG.getConstant(NumBits, OpVT),
8680    DAG.getConstant(X86::COND_E, MVT::i8),
8681    Op.getValue(1)
8682  };
8683  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8684
8685  if (VT == MVT::i8)
8686    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8687  return Op;
8688}
8689
8690SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8691  EVT VT = Op.getValueType();
8692  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8693  DebugLoc dl = Op.getDebugLoc();
8694
8695  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8696  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8697  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8698  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8699  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8700  //
8701  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8702  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8703  //  return AloBlo + AloBhi + AhiBlo;
8704
8705  SDValue A = Op.getOperand(0);
8706  SDValue B = Op.getOperand(1);
8707
8708  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8709                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8710                       A, DAG.getConstant(32, MVT::i32));
8711  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8712                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8713                       B, DAG.getConstant(32, MVT::i32));
8714  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8715                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8716                       A, B);
8717  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8718                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8719                       A, Bhi);
8720  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8721                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8722                       Ahi, B);
8723  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8724                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8725                       AloBhi, DAG.getConstant(32, MVT::i32));
8726  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8727                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8728                       AhiBlo, DAG.getConstant(32, MVT::i32));
8729  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8730  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8731  return Res;
8732}
8733
8734SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8735  EVT VT = Op.getValueType();
8736  DebugLoc dl = Op.getDebugLoc();
8737  SDValue R = Op.getOperand(0);
8738
8739  LLVMContext *Context = DAG.getContext();
8740
8741  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8742
8743  if (VT == MVT::v4i32) {
8744    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8745                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8746                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8747
8748    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8749
8750    std::vector<Constant*> CV(4, CI);
8751    Constant *C = ConstantVector::get(CV);
8752    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8753    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8754                                 MachinePointerInfo::getConstantPool(),
8755                                 false, false, 16);
8756
8757    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8758    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8759    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8760    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8761  }
8762  if (VT == MVT::v16i8) {
8763    // a = a << 5;
8764    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8765                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8766                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8767
8768    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8769    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8770
8771    std::vector<Constant*> CVM1(16, CM1);
8772    std::vector<Constant*> CVM2(16, CM2);
8773    Constant *C = ConstantVector::get(CVM1);
8774    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8775    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8776                            MachinePointerInfo::getConstantPool(),
8777                            false, false, 16);
8778
8779    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8780    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8781    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8782                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8783                    DAG.getConstant(4, MVT::i32));
8784    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8785    // a += a
8786    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8787
8788    C = ConstantVector::get(CVM2);
8789    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8790    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8791                    MachinePointerInfo::getConstantPool(),
8792                    false, false, 16);
8793
8794    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8795    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8796    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8797                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8798                    DAG.getConstant(2, MVT::i32));
8799    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8800    // a += a
8801    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8802
8803    // return pblendv(r, r+r, a);
8804    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
8805                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8806    return R;
8807  }
8808  return SDValue();
8809}
8810
8811SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8812  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8813  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8814  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8815  // has only one use.
8816  SDNode *N = Op.getNode();
8817  SDValue LHS = N->getOperand(0);
8818  SDValue RHS = N->getOperand(1);
8819  unsigned BaseOp = 0;
8820  unsigned Cond = 0;
8821  DebugLoc DL = Op.getDebugLoc();
8822  switch (Op.getOpcode()) {
8823  default: llvm_unreachable("Unknown ovf instruction!");
8824  case ISD::SADDO:
8825    // A subtract of one will be selected as a INC. Note that INC doesn't
8826    // set CF, so we can't do this for UADDO.
8827    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8828      if (C->getAPIntValue() == 1) {
8829        BaseOp = X86ISD::INC;
8830        Cond = X86::COND_O;
8831        break;
8832      }
8833    BaseOp = X86ISD::ADD;
8834    Cond = X86::COND_O;
8835    break;
8836  case ISD::UADDO:
8837    BaseOp = X86ISD::ADD;
8838    Cond = X86::COND_B;
8839    break;
8840  case ISD::SSUBO:
8841    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8842    // set CF, so we can't do this for USUBO.
8843    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8844      if (C->getAPIntValue() == 1) {
8845        BaseOp = X86ISD::DEC;
8846        Cond = X86::COND_O;
8847        break;
8848      }
8849    BaseOp = X86ISD::SUB;
8850    Cond = X86::COND_O;
8851    break;
8852  case ISD::USUBO:
8853    BaseOp = X86ISD::SUB;
8854    Cond = X86::COND_B;
8855    break;
8856  case ISD::SMULO:
8857    BaseOp = X86ISD::SMUL;
8858    Cond = X86::COND_O;
8859    break;
8860  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
8861    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
8862                                 MVT::i32);
8863    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
8864
8865    SDValue SetCC =
8866      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8867                  DAG.getConstant(X86::COND_O, MVT::i32),
8868                  SDValue(Sum.getNode(), 2));
8869
8870    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8871    return Sum;
8872  }
8873  }
8874
8875  // Also sets EFLAGS.
8876  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8877  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
8878
8879  SDValue SetCC =
8880    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
8881                DAG.getConstant(Cond, MVT::i32),
8882                SDValue(Sum.getNode(), 1));
8883
8884  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8885  return Sum;
8886}
8887
8888SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8889  DebugLoc dl = Op.getDebugLoc();
8890
8891  if (!Subtarget->hasSSE2()) {
8892    SDValue Chain = Op.getOperand(0);
8893    SDValue Zero = DAG.getConstant(0,
8894                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8895    SDValue Ops[] = {
8896      DAG.getRegister(X86::ESP, MVT::i32), // Base
8897      DAG.getTargetConstant(1, MVT::i8),   // Scale
8898      DAG.getRegister(0, MVT::i32),        // Index
8899      DAG.getTargetConstant(0, MVT::i32),  // Disp
8900      DAG.getRegister(0, MVT::i32),        // Segment.
8901      Zero,
8902      Chain
8903    };
8904    SDNode *Res =
8905      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8906                          array_lengthof(Ops));
8907    return SDValue(Res, 0);
8908  }
8909
8910  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8911  if (!isDev)
8912    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8913
8914  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8915  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8916  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8917  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8918
8919  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8920  if (!Op1 && !Op2 && !Op3 && Op4)
8921    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8922
8923  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8924  if (Op1 && !Op2 && !Op3 && !Op4)
8925    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8926
8927  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8928  //           (MFENCE)>;
8929  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8930}
8931
8932SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8933  EVT T = Op.getValueType();
8934  DebugLoc DL = Op.getDebugLoc();
8935  unsigned Reg = 0;
8936  unsigned size = 0;
8937  switch(T.getSimpleVT().SimpleTy) {
8938  default:
8939    assert(false && "Invalid value type!");
8940  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8941  case MVT::i16: Reg = X86::AX;  size = 2; break;
8942  case MVT::i32: Reg = X86::EAX; size = 4; break;
8943  case MVT::i64:
8944    assert(Subtarget->is64Bit() && "Node not type legal!");
8945    Reg = X86::RAX; size = 8;
8946    break;
8947  }
8948  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8949                                    Op.getOperand(2), SDValue());
8950  SDValue Ops[] = { cpIn.getValue(0),
8951                    Op.getOperand(1),
8952                    Op.getOperand(3),
8953                    DAG.getTargetConstant(size, MVT::i8),
8954                    cpIn.getValue(1) };
8955  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8956  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8957  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8958                                           Ops, 5, T, MMO);
8959  SDValue cpOut =
8960    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8961  return cpOut;
8962}
8963
8964SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8965                                                 SelectionDAG &DAG) const {
8966  assert(Subtarget->is64Bit() && "Result not type legalized?");
8967  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8968  SDValue TheChain = Op.getOperand(0);
8969  DebugLoc dl = Op.getDebugLoc();
8970  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8971  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8972  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8973                                   rax.getValue(2));
8974  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8975                            DAG.getConstant(32, MVT::i8));
8976  SDValue Ops[] = {
8977    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8978    rdx.getValue(1)
8979  };
8980  return DAG.getMergeValues(Ops, 2, dl);
8981}
8982
8983SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
8984                                            SelectionDAG &DAG) const {
8985  EVT SrcVT = Op.getOperand(0).getValueType();
8986  EVT DstVT = Op.getValueType();
8987  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8988         Subtarget->hasMMX() && "Unexpected custom BITCAST");
8989  assert((DstVT == MVT::i64 ||
8990          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8991         "Unexpected custom BITCAST");
8992  // i64 <=> MMX conversions are Legal.
8993  if (SrcVT==MVT::i64 && DstVT.isVector())
8994    return Op;
8995  if (DstVT==MVT::i64 && SrcVT.isVector())
8996    return Op;
8997  // MMX <=> MMX conversions are Legal.
8998  if (SrcVT.isVector() && DstVT.isVector())
8999    return Op;
9000  // All other conversions need to be expanded.
9001  return SDValue();
9002}
9003
9004SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9005  SDNode *Node = Op.getNode();
9006  DebugLoc dl = Node->getDebugLoc();
9007  EVT T = Node->getValueType(0);
9008  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9009                              DAG.getConstant(0, T), Node->getOperand(2));
9010  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9011                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9012                       Node->getOperand(0),
9013                       Node->getOperand(1), negOp,
9014                       cast<AtomicSDNode>(Node)->getSrcValue(),
9015                       cast<AtomicSDNode>(Node)->getAlignment());
9016}
9017
9018static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9019  EVT VT = Op.getNode()->getValueType(0);
9020
9021  // Let legalize expand this if it isn't a legal type yet.
9022  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9023    return SDValue();
9024
9025  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9026
9027  unsigned Opc;
9028  bool ExtraOp = false;
9029  switch (Op.getOpcode()) {
9030  default: assert(0 && "Invalid code");
9031  case ISD::ADDC: Opc = X86ISD::ADD; break;
9032  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9033  case ISD::SUBC: Opc = X86ISD::SUB; break;
9034  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9035  }
9036
9037  if (!ExtraOp)
9038    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9039                       Op.getOperand(1));
9040  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9041                     Op.getOperand(1), Op.getOperand(2));
9042}
9043
9044/// LowerOperation - Provide custom lowering hooks for some operations.
9045///
9046SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9047  switch (Op.getOpcode()) {
9048  default: llvm_unreachable("Should not custom lower this!");
9049  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9050  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9051  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9052  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9053  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9054  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9055  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9056  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9057  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9058  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9059  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9060  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9061  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9062  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9063  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9064  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9065  case ISD::SHL_PARTS:
9066  case ISD::SRA_PARTS:
9067  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
9068  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9069  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9070  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9071  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9072  case ISD::FABS:               return LowerFABS(Op, DAG);
9073  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9074  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9075  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9076  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9077  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9078  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9079  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9080  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9081  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9082  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9083  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9084  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9085  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9086  case ISD::FRAME_TO_ARGS_OFFSET:
9087                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9088  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9089  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9090  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9091  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9092  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9093  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9094  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9095  case ISD::SHL:                return LowerSHL(Op, DAG);
9096  case ISD::SADDO:
9097  case ISD::UADDO:
9098  case ISD::SSUBO:
9099  case ISD::USUBO:
9100  case ISD::SMULO:
9101  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9102  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9103  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9104  case ISD::ADDC:
9105  case ISD::ADDE:
9106  case ISD::SUBC:
9107  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9108  }
9109}
9110
9111void X86TargetLowering::
9112ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9113                        SelectionDAG &DAG, unsigned NewOp) const {
9114  EVT T = Node->getValueType(0);
9115  DebugLoc dl = Node->getDebugLoc();
9116  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9117
9118  SDValue Chain = Node->getOperand(0);
9119  SDValue In1 = Node->getOperand(1);
9120  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9121                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9122  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9123                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9124  SDValue Ops[] = { Chain, In1, In2L, In2H };
9125  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9126  SDValue Result =
9127    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9128                            cast<MemSDNode>(Node)->getMemOperand());
9129  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9130  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9131  Results.push_back(Result.getValue(2));
9132}
9133
9134/// ReplaceNodeResults - Replace a node with an illegal result type
9135/// with a new node built out of custom code.
9136void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9137                                           SmallVectorImpl<SDValue>&Results,
9138                                           SelectionDAG &DAG) const {
9139  DebugLoc dl = N->getDebugLoc();
9140  switch (N->getOpcode()) {
9141  default:
9142    assert(false && "Do not know how to custom type legalize this operation!");
9143    return;
9144  case ISD::ADDC:
9145  case ISD::ADDE:
9146  case ISD::SUBC:
9147  case ISD::SUBE:
9148    // We don't want to expand or promote these.
9149    return;
9150  case ISD::FP_TO_SINT: {
9151    std::pair<SDValue,SDValue> Vals =
9152        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9153    SDValue FIST = Vals.first, StackSlot = Vals.second;
9154    if (FIST.getNode() != 0) {
9155      EVT VT = N->getValueType(0);
9156      // Return a load from the stack slot.
9157      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9158                                    MachinePointerInfo(), false, false, 0));
9159    }
9160    return;
9161  }
9162  case ISD::READCYCLECOUNTER: {
9163    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9164    SDValue TheChain = N->getOperand(0);
9165    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9166    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9167                                     rd.getValue(1));
9168    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9169                                     eax.getValue(2));
9170    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9171    SDValue Ops[] = { eax, edx };
9172    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9173    Results.push_back(edx.getValue(1));
9174    return;
9175  }
9176  case ISD::ATOMIC_CMP_SWAP: {
9177    EVT T = N->getValueType(0);
9178    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9179    SDValue cpInL, cpInH;
9180    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9181                        DAG.getConstant(0, MVT::i32));
9182    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9183                        DAG.getConstant(1, MVT::i32));
9184    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9185    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9186                             cpInL.getValue(1));
9187    SDValue swapInL, swapInH;
9188    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9189                          DAG.getConstant(0, MVT::i32));
9190    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9191                          DAG.getConstant(1, MVT::i32));
9192    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9193                               cpInH.getValue(1));
9194    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9195                               swapInL.getValue(1));
9196    SDValue Ops[] = { swapInH.getValue(0),
9197                      N->getOperand(1),
9198                      swapInH.getValue(1) };
9199    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9200    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9201    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9202                                             Ops, 3, T, MMO);
9203    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9204                                        MVT::i32, Result.getValue(1));
9205    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9206                                        MVT::i32, cpOutL.getValue(2));
9207    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9208    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9209    Results.push_back(cpOutH.getValue(1));
9210    return;
9211  }
9212  case ISD::ATOMIC_LOAD_ADD:
9213    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9214    return;
9215  case ISD::ATOMIC_LOAD_AND:
9216    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9217    return;
9218  case ISD::ATOMIC_LOAD_NAND:
9219    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9220    return;
9221  case ISD::ATOMIC_LOAD_OR:
9222    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9223    return;
9224  case ISD::ATOMIC_LOAD_SUB:
9225    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9226    return;
9227  case ISD::ATOMIC_LOAD_XOR:
9228    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9229    return;
9230  case ISD::ATOMIC_SWAP:
9231    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9232    return;
9233  }
9234}
9235
9236const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9237  switch (Opcode) {
9238  default: return NULL;
9239  case X86ISD::BSF:                return "X86ISD::BSF";
9240  case X86ISD::BSR:                return "X86ISD::BSR";
9241  case X86ISD::SHLD:               return "X86ISD::SHLD";
9242  case X86ISD::SHRD:               return "X86ISD::SHRD";
9243  case X86ISD::FAND:               return "X86ISD::FAND";
9244  case X86ISD::FOR:                return "X86ISD::FOR";
9245  case X86ISD::FXOR:               return "X86ISD::FXOR";
9246  case X86ISD::FSRL:               return "X86ISD::FSRL";
9247  case X86ISD::FILD:               return "X86ISD::FILD";
9248  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9249  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9250  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9251  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9252  case X86ISD::FLD:                return "X86ISD::FLD";
9253  case X86ISD::FST:                return "X86ISD::FST";
9254  case X86ISD::CALL:               return "X86ISD::CALL";
9255  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9256  case X86ISD::BT:                 return "X86ISD::BT";
9257  case X86ISD::CMP:                return "X86ISD::CMP";
9258  case X86ISD::COMI:               return "X86ISD::COMI";
9259  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9260  case X86ISD::SETCC:              return "X86ISD::SETCC";
9261  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9262  case X86ISD::CMOV:               return "X86ISD::CMOV";
9263  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9264  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9265  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9266  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9267  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9268  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9269  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9270  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9271  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9272  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9273  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9274  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9275  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9276  case X86ISD::PANDN:              return "X86ISD::PANDN";
9277  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9278  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9279  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9280  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9281  case X86ISD::FMAX:               return "X86ISD::FMAX";
9282  case X86ISD::FMIN:               return "X86ISD::FMIN";
9283  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9284  case X86ISD::FRCP:               return "X86ISD::FRCP";
9285  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9286  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9287  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9288  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9289  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9290  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9291  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9292  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9293  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9294  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9295  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9296  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9297  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9298  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9299  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9300  case X86ISD::VSHL:               return "X86ISD::VSHL";
9301  case X86ISD::VSRL:               return "X86ISD::VSRL";
9302  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9303  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9304  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9305  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9306  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9307  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9308  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9309  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9310  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9311  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9312  case X86ISD::ADD:                return "X86ISD::ADD";
9313  case X86ISD::SUB:                return "X86ISD::SUB";
9314  case X86ISD::ADC:                return "X86ISD::ADC";
9315  case X86ISD::SBB:                return "X86ISD::SBB";
9316  case X86ISD::SMUL:               return "X86ISD::SMUL";
9317  case X86ISD::UMUL:               return "X86ISD::UMUL";
9318  case X86ISD::INC:                return "X86ISD::INC";
9319  case X86ISD::DEC:                return "X86ISD::DEC";
9320  case X86ISD::OR:                 return "X86ISD::OR";
9321  case X86ISD::XOR:                return "X86ISD::XOR";
9322  case X86ISD::AND:                return "X86ISD::AND";
9323  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9324  case X86ISD::PTEST:              return "X86ISD::PTEST";
9325  case X86ISD::TESTP:              return "X86ISD::TESTP";
9326  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9327  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9328  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9329  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9330  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9331  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9332  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9333  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9334  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9335  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9336  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9337  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9338  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9339  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9340  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9341  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9342  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9343  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9344  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9345  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9346  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9347  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9348  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9349  case X86ISD::VUNPCKLPS:          return "X86ISD::VUNPCKLPS";
9350  case X86ISD::VUNPCKLPD:          return "X86ISD::VUNPCKLPD";
9351  case X86ISD::VUNPCKLPSY:         return "X86ISD::VUNPCKLPSY";
9352  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
9353  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9354  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9355  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9356  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9357  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9358  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9359  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9360  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9361  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9362  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9363  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9364  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9365  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9366  }
9367}
9368
9369// isLegalAddressingMode - Return true if the addressing mode represented
9370// by AM is legal for this target, for a load/store of the specified type.
9371bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9372                                              const Type *Ty) const {
9373  // X86 supports extremely general addressing modes.
9374  CodeModel::Model M = getTargetMachine().getCodeModel();
9375  Reloc::Model R = getTargetMachine().getRelocationModel();
9376
9377  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9378  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9379    return false;
9380
9381  if (AM.BaseGV) {
9382    unsigned GVFlags =
9383      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9384
9385    // If a reference to this global requires an extra load, we can't fold it.
9386    if (isGlobalStubReference(GVFlags))
9387      return false;
9388
9389    // If BaseGV requires a register for the PIC base, we cannot also have a
9390    // BaseReg specified.
9391    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9392      return false;
9393
9394    // If lower 4G is not available, then we must use rip-relative addressing.
9395    if ((M != CodeModel::Small || R != Reloc::Static) &&
9396        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9397      return false;
9398  }
9399
9400  switch (AM.Scale) {
9401  case 0:
9402  case 1:
9403  case 2:
9404  case 4:
9405  case 8:
9406    // These scales always work.
9407    break;
9408  case 3:
9409  case 5:
9410  case 9:
9411    // These scales are formed with basereg+scalereg.  Only accept if there is
9412    // no basereg yet.
9413    if (AM.HasBaseReg)
9414      return false;
9415    break;
9416  default:  // Other stuff never works.
9417    return false;
9418  }
9419
9420  return true;
9421}
9422
9423
9424bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
9425  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9426    return false;
9427  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9428  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9429  if (NumBits1 <= NumBits2)
9430    return false;
9431  return true;
9432}
9433
9434bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9435  if (!VT1.isInteger() || !VT2.isInteger())
9436    return false;
9437  unsigned NumBits1 = VT1.getSizeInBits();
9438  unsigned NumBits2 = VT2.getSizeInBits();
9439  if (NumBits1 <= NumBits2)
9440    return false;
9441  return true;
9442}
9443
9444bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
9445  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9446  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9447}
9448
9449bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9450  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9451  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9452}
9453
9454bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9455  // i16 instructions are longer (0x66 prefix) and potentially slower.
9456  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9457}
9458
9459/// isShuffleMaskLegal - Targets can use this to indicate that they only
9460/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9461/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9462/// are assumed to be legal.
9463bool
9464X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9465                                      EVT VT) const {
9466  // Very little shuffling can be done for 64-bit vectors right now.
9467  if (VT.getSizeInBits() == 64)
9468    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9469
9470  // FIXME: pshufb, blends, shifts.
9471  return (VT.getVectorNumElements() == 2 ||
9472          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9473          isMOVLMask(M, VT) ||
9474          isSHUFPMask(M, VT) ||
9475          isPSHUFDMask(M, VT) ||
9476          isPSHUFHWMask(M, VT) ||
9477          isPSHUFLWMask(M, VT) ||
9478          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9479          isUNPCKLMask(M, VT) ||
9480          isUNPCKHMask(M, VT) ||
9481          isUNPCKL_v_undef_Mask(M, VT) ||
9482          isUNPCKH_v_undef_Mask(M, VT));
9483}
9484
9485bool
9486X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9487                                          EVT VT) const {
9488  unsigned NumElts = VT.getVectorNumElements();
9489  // FIXME: This collection of masks seems suspect.
9490  if (NumElts == 2)
9491    return true;
9492  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9493    return (isMOVLMask(Mask, VT)  ||
9494            isCommutedMOVLMask(Mask, VT, true) ||
9495            isSHUFPMask(Mask, VT) ||
9496            isCommutedSHUFPMask(Mask, VT));
9497  }
9498  return false;
9499}
9500
9501//===----------------------------------------------------------------------===//
9502//                           X86 Scheduler Hooks
9503//===----------------------------------------------------------------------===//
9504
9505// private utility function
9506MachineBasicBlock *
9507X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9508                                                       MachineBasicBlock *MBB,
9509                                                       unsigned regOpc,
9510                                                       unsigned immOpc,
9511                                                       unsigned LoadOpc,
9512                                                       unsigned CXchgOpc,
9513                                                       unsigned notOpc,
9514                                                       unsigned EAXreg,
9515                                                       TargetRegisterClass *RC,
9516                                                       bool invSrc) const {
9517  // For the atomic bitwise operator, we generate
9518  //   thisMBB:
9519  //   newMBB:
9520  //     ld  t1 = [bitinstr.addr]
9521  //     op  t2 = t1, [bitinstr.val]
9522  //     mov EAX = t1
9523  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9524  //     bz  newMBB
9525  //     fallthrough -->nextMBB
9526  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9527  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9528  MachineFunction::iterator MBBIter = MBB;
9529  ++MBBIter;
9530
9531  /// First build the CFG
9532  MachineFunction *F = MBB->getParent();
9533  MachineBasicBlock *thisMBB = MBB;
9534  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9535  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9536  F->insert(MBBIter, newMBB);
9537  F->insert(MBBIter, nextMBB);
9538
9539  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9540  nextMBB->splice(nextMBB->begin(), thisMBB,
9541                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9542                  thisMBB->end());
9543  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9544
9545  // Update thisMBB to fall through to newMBB
9546  thisMBB->addSuccessor(newMBB);
9547
9548  // newMBB jumps to itself and fall through to nextMBB
9549  newMBB->addSuccessor(nextMBB);
9550  newMBB->addSuccessor(newMBB);
9551
9552  // Insert instructions into newMBB based on incoming instruction
9553  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9554         "unexpected number of operands");
9555  DebugLoc dl = bInstr->getDebugLoc();
9556  MachineOperand& destOper = bInstr->getOperand(0);
9557  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9558  int numArgs = bInstr->getNumOperands() - 1;
9559  for (int i=0; i < numArgs; ++i)
9560    argOpers[i] = &bInstr->getOperand(i+1);
9561
9562  // x86 address has 4 operands: base, index, scale, and displacement
9563  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9564  int valArgIndx = lastAddrIndx + 1;
9565
9566  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9567  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9568  for (int i=0; i <= lastAddrIndx; ++i)
9569    (*MIB).addOperand(*argOpers[i]);
9570
9571  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9572  if (invSrc) {
9573    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9574  }
9575  else
9576    tt = t1;
9577
9578  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9579  assert((argOpers[valArgIndx]->isReg() ||
9580          argOpers[valArgIndx]->isImm()) &&
9581         "invalid operand");
9582  if (argOpers[valArgIndx]->isReg())
9583    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9584  else
9585    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9586  MIB.addReg(tt);
9587  (*MIB).addOperand(*argOpers[valArgIndx]);
9588
9589  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9590  MIB.addReg(t1);
9591
9592  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9593  for (int i=0; i <= lastAddrIndx; ++i)
9594    (*MIB).addOperand(*argOpers[i]);
9595  MIB.addReg(t2);
9596  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9597  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9598                    bInstr->memoperands_end());
9599
9600  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9601  MIB.addReg(EAXreg);
9602
9603  // insert branch
9604  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9605
9606  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9607  return nextMBB;
9608}
9609
9610// private utility function:  64 bit atomics on 32 bit host.
9611MachineBasicBlock *
9612X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9613                                                       MachineBasicBlock *MBB,
9614                                                       unsigned regOpcL,
9615                                                       unsigned regOpcH,
9616                                                       unsigned immOpcL,
9617                                                       unsigned immOpcH,
9618                                                       bool invSrc) const {
9619  // For the atomic bitwise operator, we generate
9620  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9621  //     ld t1,t2 = [bitinstr.addr]
9622  //   newMBB:
9623  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9624  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9625  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9626  //     mov ECX, EBX <- t5, t6
9627  //     mov EAX, EDX <- t1, t2
9628  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9629  //     mov t3, t4 <- EAX, EDX
9630  //     bz  newMBB
9631  //     result in out1, out2
9632  //     fallthrough -->nextMBB
9633
9634  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9635  const unsigned LoadOpc = X86::MOV32rm;
9636  const unsigned NotOpc = X86::NOT32r;
9637  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9638  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9639  MachineFunction::iterator MBBIter = MBB;
9640  ++MBBIter;
9641
9642  /// First build the CFG
9643  MachineFunction *F = MBB->getParent();
9644  MachineBasicBlock *thisMBB = MBB;
9645  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9646  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9647  F->insert(MBBIter, newMBB);
9648  F->insert(MBBIter, nextMBB);
9649
9650  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9651  nextMBB->splice(nextMBB->begin(), thisMBB,
9652                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9653                  thisMBB->end());
9654  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9655
9656  // Update thisMBB to fall through to newMBB
9657  thisMBB->addSuccessor(newMBB);
9658
9659  // newMBB jumps to itself and fall through to nextMBB
9660  newMBB->addSuccessor(nextMBB);
9661  newMBB->addSuccessor(newMBB);
9662
9663  DebugLoc dl = bInstr->getDebugLoc();
9664  // Insert instructions into newMBB based on incoming instruction
9665  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9666  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9667         "unexpected number of operands");
9668  MachineOperand& dest1Oper = bInstr->getOperand(0);
9669  MachineOperand& dest2Oper = bInstr->getOperand(1);
9670  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9671  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9672    argOpers[i] = &bInstr->getOperand(i+2);
9673
9674    // We use some of the operands multiple times, so conservatively just
9675    // clear any kill flags that might be present.
9676    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9677      argOpers[i]->setIsKill(false);
9678  }
9679
9680  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9681  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9682
9683  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9684  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9685  for (int i=0; i <= lastAddrIndx; ++i)
9686    (*MIB).addOperand(*argOpers[i]);
9687  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9688  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9689  // add 4 to displacement.
9690  for (int i=0; i <= lastAddrIndx-2; ++i)
9691    (*MIB).addOperand(*argOpers[i]);
9692  MachineOperand newOp3 = *(argOpers[3]);
9693  if (newOp3.isImm())
9694    newOp3.setImm(newOp3.getImm()+4);
9695  else
9696    newOp3.setOffset(newOp3.getOffset()+4);
9697  (*MIB).addOperand(newOp3);
9698  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9699
9700  // t3/4 are defined later, at the bottom of the loop
9701  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9702  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9703  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9704    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9705  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9706    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9707
9708  // The subsequent operations should be using the destination registers of
9709  //the PHI instructions.
9710  if (invSrc) {
9711    t1 = F->getRegInfo().createVirtualRegister(RC);
9712    t2 = F->getRegInfo().createVirtualRegister(RC);
9713    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9714    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9715  } else {
9716    t1 = dest1Oper.getReg();
9717    t2 = dest2Oper.getReg();
9718  }
9719
9720  int valArgIndx = lastAddrIndx + 1;
9721  assert((argOpers[valArgIndx]->isReg() ||
9722          argOpers[valArgIndx]->isImm()) &&
9723         "invalid operand");
9724  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9725  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9726  if (argOpers[valArgIndx]->isReg())
9727    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9728  else
9729    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9730  if (regOpcL != X86::MOV32rr)
9731    MIB.addReg(t1);
9732  (*MIB).addOperand(*argOpers[valArgIndx]);
9733  assert(argOpers[valArgIndx + 1]->isReg() ==
9734         argOpers[valArgIndx]->isReg());
9735  assert(argOpers[valArgIndx + 1]->isImm() ==
9736         argOpers[valArgIndx]->isImm());
9737  if (argOpers[valArgIndx + 1]->isReg())
9738    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9739  else
9740    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9741  if (regOpcH != X86::MOV32rr)
9742    MIB.addReg(t2);
9743  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9744
9745  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9746  MIB.addReg(t1);
9747  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9748  MIB.addReg(t2);
9749
9750  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9751  MIB.addReg(t5);
9752  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9753  MIB.addReg(t6);
9754
9755  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9756  for (int i=0; i <= lastAddrIndx; ++i)
9757    (*MIB).addOperand(*argOpers[i]);
9758
9759  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9760  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9761                    bInstr->memoperands_end());
9762
9763  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9764  MIB.addReg(X86::EAX);
9765  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9766  MIB.addReg(X86::EDX);
9767
9768  // insert branch
9769  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9770
9771  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9772  return nextMBB;
9773}
9774
9775// private utility function
9776MachineBasicBlock *
9777X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9778                                                      MachineBasicBlock *MBB,
9779                                                      unsigned cmovOpc) const {
9780  // For the atomic min/max operator, we generate
9781  //   thisMBB:
9782  //   newMBB:
9783  //     ld t1 = [min/max.addr]
9784  //     mov t2 = [min/max.val]
9785  //     cmp  t1, t2
9786  //     cmov[cond] t2 = t1
9787  //     mov EAX = t1
9788  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9789  //     bz   newMBB
9790  //     fallthrough -->nextMBB
9791  //
9792  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9793  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9794  MachineFunction::iterator MBBIter = MBB;
9795  ++MBBIter;
9796
9797  /// First build the CFG
9798  MachineFunction *F = MBB->getParent();
9799  MachineBasicBlock *thisMBB = MBB;
9800  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9801  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9802  F->insert(MBBIter, newMBB);
9803  F->insert(MBBIter, nextMBB);
9804
9805  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9806  nextMBB->splice(nextMBB->begin(), thisMBB,
9807                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9808                  thisMBB->end());
9809  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9810
9811  // Update thisMBB to fall through to newMBB
9812  thisMBB->addSuccessor(newMBB);
9813
9814  // newMBB jumps to newMBB and fall through to nextMBB
9815  newMBB->addSuccessor(nextMBB);
9816  newMBB->addSuccessor(newMBB);
9817
9818  DebugLoc dl = mInstr->getDebugLoc();
9819  // Insert instructions into newMBB based on incoming instruction
9820  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9821         "unexpected number of operands");
9822  MachineOperand& destOper = mInstr->getOperand(0);
9823  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9824  int numArgs = mInstr->getNumOperands() - 1;
9825  for (int i=0; i < numArgs; ++i)
9826    argOpers[i] = &mInstr->getOperand(i+1);
9827
9828  // x86 address has 4 operands: base, index, scale, and displacement
9829  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9830  int valArgIndx = lastAddrIndx + 1;
9831
9832  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9833  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9834  for (int i=0; i <= lastAddrIndx; ++i)
9835    (*MIB).addOperand(*argOpers[i]);
9836
9837  // We only support register and immediate values
9838  assert((argOpers[valArgIndx]->isReg() ||
9839          argOpers[valArgIndx]->isImm()) &&
9840         "invalid operand");
9841
9842  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9843  if (argOpers[valArgIndx]->isReg())
9844    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9845  else
9846    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9847  (*MIB).addOperand(*argOpers[valArgIndx]);
9848
9849  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9850  MIB.addReg(t1);
9851
9852  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9853  MIB.addReg(t1);
9854  MIB.addReg(t2);
9855
9856  // Generate movc
9857  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9858  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9859  MIB.addReg(t2);
9860  MIB.addReg(t1);
9861
9862  // Cmp and exchange if none has modified the memory location
9863  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9864  for (int i=0; i <= lastAddrIndx; ++i)
9865    (*MIB).addOperand(*argOpers[i]);
9866  MIB.addReg(t3);
9867  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9868  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9869                    mInstr->memoperands_end());
9870
9871  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9872  MIB.addReg(X86::EAX);
9873
9874  // insert branch
9875  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9876
9877  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9878  return nextMBB;
9879}
9880
9881// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9882// or XMM0_V32I8 in AVX all of this code can be replaced with that
9883// in the .td file.
9884MachineBasicBlock *
9885X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9886                            unsigned numArgs, bool memArg) const {
9887  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9888         "Target must have SSE4.2 or AVX features enabled");
9889
9890  DebugLoc dl = MI->getDebugLoc();
9891  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9892  unsigned Opc;
9893  if (!Subtarget->hasAVX()) {
9894    if (memArg)
9895      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9896    else
9897      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9898  } else {
9899    if (memArg)
9900      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9901    else
9902      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9903  }
9904
9905  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
9906  for (unsigned i = 0; i < numArgs; ++i) {
9907    MachineOperand &Op = MI->getOperand(i+1);
9908    if (!(Op.isReg() && Op.isImplicit()))
9909      MIB.addOperand(Op);
9910  }
9911  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9912    .addReg(X86::XMM0);
9913
9914  MI->eraseFromParent();
9915  return BB;
9916}
9917
9918MachineBasicBlock *
9919X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
9920  DebugLoc dl = MI->getDebugLoc();
9921  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9922
9923  // Address into RAX/EAX, other two args into ECX, EDX.
9924  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
9925  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
9926  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
9927  for (int i = 0; i < X86::AddrNumOperands; ++i)
9928    MIB.addOperand(MI->getOperand(i));
9929
9930  unsigned ValOps = X86::AddrNumOperands;
9931  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9932    .addReg(MI->getOperand(ValOps).getReg());
9933  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
9934    .addReg(MI->getOperand(ValOps+1).getReg());
9935
9936  // The instruction doesn't actually take any operands though.
9937  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
9938
9939  MI->eraseFromParent(); // The pseudo is gone now.
9940  return BB;
9941}
9942
9943MachineBasicBlock *
9944X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
9945  DebugLoc dl = MI->getDebugLoc();
9946  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9947
9948  // First arg in ECX, the second in EAX.
9949  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9950    .addReg(MI->getOperand(0).getReg());
9951  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
9952    .addReg(MI->getOperand(1).getReg());
9953
9954  // The instruction doesn't actually take any operands though.
9955  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
9956
9957  MI->eraseFromParent(); // The pseudo is gone now.
9958  return BB;
9959}
9960
9961MachineBasicBlock *
9962X86TargetLowering::EmitVAARG64WithCustomInserter(
9963                   MachineInstr *MI,
9964                   MachineBasicBlock *MBB) const {
9965  // Emit va_arg instruction on X86-64.
9966
9967  // Operands to this pseudo-instruction:
9968  // 0  ) Output        : destination address (reg)
9969  // 1-5) Input         : va_list address (addr, i64mem)
9970  // 6  ) ArgSize       : Size (in bytes) of vararg type
9971  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
9972  // 8  ) Align         : Alignment of type
9973  // 9  ) EFLAGS (implicit-def)
9974
9975  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
9976  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
9977
9978  unsigned DestReg = MI->getOperand(0).getReg();
9979  MachineOperand &Base = MI->getOperand(1);
9980  MachineOperand &Scale = MI->getOperand(2);
9981  MachineOperand &Index = MI->getOperand(3);
9982  MachineOperand &Disp = MI->getOperand(4);
9983  MachineOperand &Segment = MI->getOperand(5);
9984  unsigned ArgSize = MI->getOperand(6).getImm();
9985  unsigned ArgMode = MI->getOperand(7).getImm();
9986  unsigned Align = MI->getOperand(8).getImm();
9987
9988  // Memory Reference
9989  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
9990  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
9991  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
9992
9993  // Machine Information
9994  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9995  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9996  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
9997  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
9998  DebugLoc DL = MI->getDebugLoc();
9999
10000  // struct va_list {
10001  //   i32   gp_offset
10002  //   i32   fp_offset
10003  //   i64   overflow_area (address)
10004  //   i64   reg_save_area (address)
10005  // }
10006  // sizeof(va_list) = 24
10007  // alignment(va_list) = 8
10008
10009  unsigned TotalNumIntRegs = 6;
10010  unsigned TotalNumXMMRegs = 8;
10011  bool UseGPOffset = (ArgMode == 1);
10012  bool UseFPOffset = (ArgMode == 2);
10013  unsigned MaxOffset = TotalNumIntRegs * 8 +
10014                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10015
10016  /* Align ArgSize to a multiple of 8 */
10017  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10018  bool NeedsAlign = (Align > 8);
10019
10020  MachineBasicBlock *thisMBB = MBB;
10021  MachineBasicBlock *overflowMBB;
10022  MachineBasicBlock *offsetMBB;
10023  MachineBasicBlock *endMBB;
10024
10025  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10026  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10027  unsigned OffsetReg = 0;
10028
10029  if (!UseGPOffset && !UseFPOffset) {
10030    // If we only pull from the overflow region, we don't create a branch.
10031    // We don't need to alter control flow.
10032    OffsetDestReg = 0; // unused
10033    OverflowDestReg = DestReg;
10034
10035    offsetMBB = NULL;
10036    overflowMBB = thisMBB;
10037    endMBB = thisMBB;
10038  } else {
10039    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10040    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10041    // If not, pull from overflow_area. (branch to overflowMBB)
10042    //
10043    //       thisMBB
10044    //         |     .
10045    //         |        .
10046    //     offsetMBB   overflowMBB
10047    //         |        .
10048    //         |     .
10049    //        endMBB
10050
10051    // Registers for the PHI in endMBB
10052    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10053    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10054
10055    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10056    MachineFunction *MF = MBB->getParent();
10057    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10058    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10059    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10060
10061    MachineFunction::iterator MBBIter = MBB;
10062    ++MBBIter;
10063
10064    // Insert the new basic blocks
10065    MF->insert(MBBIter, offsetMBB);
10066    MF->insert(MBBIter, overflowMBB);
10067    MF->insert(MBBIter, endMBB);
10068
10069    // Transfer the remainder of MBB and its successor edges to endMBB.
10070    endMBB->splice(endMBB->begin(), thisMBB,
10071                    llvm::next(MachineBasicBlock::iterator(MI)),
10072                    thisMBB->end());
10073    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10074
10075    // Make offsetMBB and overflowMBB successors of thisMBB
10076    thisMBB->addSuccessor(offsetMBB);
10077    thisMBB->addSuccessor(overflowMBB);
10078
10079    // endMBB is a successor of both offsetMBB and overflowMBB
10080    offsetMBB->addSuccessor(endMBB);
10081    overflowMBB->addSuccessor(endMBB);
10082
10083    // Load the offset value into a register
10084    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10085    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10086      .addOperand(Base)
10087      .addOperand(Scale)
10088      .addOperand(Index)
10089      .addDisp(Disp, UseFPOffset ? 4 : 0)
10090      .addOperand(Segment)
10091      .setMemRefs(MMOBegin, MMOEnd);
10092
10093    // Check if there is enough room left to pull this argument.
10094    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10095      .addReg(OffsetReg)
10096      .addImm(MaxOffset + 8 - ArgSizeA8);
10097
10098    // Branch to "overflowMBB" if offset >= max
10099    // Fall through to "offsetMBB" otherwise
10100    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10101      .addMBB(overflowMBB);
10102  }
10103
10104  // In offsetMBB, emit code to use the reg_save_area.
10105  if (offsetMBB) {
10106    assert(OffsetReg != 0);
10107
10108    // Read the reg_save_area address.
10109    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10110    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10111      .addOperand(Base)
10112      .addOperand(Scale)
10113      .addOperand(Index)
10114      .addDisp(Disp, 16)
10115      .addOperand(Segment)
10116      .setMemRefs(MMOBegin, MMOEnd);
10117
10118    // Zero-extend the offset
10119    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10120      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10121        .addImm(0)
10122        .addReg(OffsetReg)
10123        .addImm(X86::sub_32bit);
10124
10125    // Add the offset to the reg_save_area to get the final address.
10126    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10127      .addReg(OffsetReg64)
10128      .addReg(RegSaveReg);
10129
10130    // Compute the offset for the next argument
10131    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10132    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10133      .addReg(OffsetReg)
10134      .addImm(UseFPOffset ? 16 : 8);
10135
10136    // Store it back into the va_list.
10137    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10138      .addOperand(Base)
10139      .addOperand(Scale)
10140      .addOperand(Index)
10141      .addDisp(Disp, UseFPOffset ? 4 : 0)
10142      .addOperand(Segment)
10143      .addReg(NextOffsetReg)
10144      .setMemRefs(MMOBegin, MMOEnd);
10145
10146    // Jump to endMBB
10147    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10148      .addMBB(endMBB);
10149  }
10150
10151  //
10152  // Emit code to use overflow area
10153  //
10154
10155  // Load the overflow_area address into a register.
10156  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10157  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10158    .addOperand(Base)
10159    .addOperand(Scale)
10160    .addOperand(Index)
10161    .addDisp(Disp, 8)
10162    .addOperand(Segment)
10163    .setMemRefs(MMOBegin, MMOEnd);
10164
10165  // If we need to align it, do so. Otherwise, just copy the address
10166  // to OverflowDestReg.
10167  if (NeedsAlign) {
10168    // Align the overflow address
10169    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10170    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10171
10172    // aligned_addr = (addr + (align-1)) & ~(align-1)
10173    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10174      .addReg(OverflowAddrReg)
10175      .addImm(Align-1);
10176
10177    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10178      .addReg(TmpReg)
10179      .addImm(~(uint64_t)(Align-1));
10180  } else {
10181    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10182      .addReg(OverflowAddrReg);
10183  }
10184
10185  // Compute the next overflow address after this argument.
10186  // (the overflow address should be kept 8-byte aligned)
10187  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10188  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10189    .addReg(OverflowDestReg)
10190    .addImm(ArgSizeA8);
10191
10192  // Store the new overflow address.
10193  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10194    .addOperand(Base)
10195    .addOperand(Scale)
10196    .addOperand(Index)
10197    .addDisp(Disp, 8)
10198    .addOperand(Segment)
10199    .addReg(NextAddrReg)
10200    .setMemRefs(MMOBegin, MMOEnd);
10201
10202  // If we branched, emit the PHI to the front of endMBB.
10203  if (offsetMBB) {
10204    BuildMI(*endMBB, endMBB->begin(), DL,
10205            TII->get(X86::PHI), DestReg)
10206      .addReg(OffsetDestReg).addMBB(offsetMBB)
10207      .addReg(OverflowDestReg).addMBB(overflowMBB);
10208  }
10209
10210  // Erase the pseudo instruction
10211  MI->eraseFromParent();
10212
10213  return endMBB;
10214}
10215
10216MachineBasicBlock *
10217X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10218                                                 MachineInstr *MI,
10219                                                 MachineBasicBlock *MBB) const {
10220  // Emit code to save XMM registers to the stack. The ABI says that the
10221  // number of registers to save is given in %al, so it's theoretically
10222  // possible to do an indirect jump trick to avoid saving all of them,
10223  // however this code takes a simpler approach and just executes all
10224  // of the stores if %al is non-zero. It's less code, and it's probably
10225  // easier on the hardware branch predictor, and stores aren't all that
10226  // expensive anyway.
10227
10228  // Create the new basic blocks. One block contains all the XMM stores,
10229  // and one block is the final destination regardless of whether any
10230  // stores were performed.
10231  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10232  MachineFunction *F = MBB->getParent();
10233  MachineFunction::iterator MBBIter = MBB;
10234  ++MBBIter;
10235  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10236  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10237  F->insert(MBBIter, XMMSaveMBB);
10238  F->insert(MBBIter, EndMBB);
10239
10240  // Transfer the remainder of MBB and its successor edges to EndMBB.
10241  EndMBB->splice(EndMBB->begin(), MBB,
10242                 llvm::next(MachineBasicBlock::iterator(MI)),
10243                 MBB->end());
10244  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10245
10246  // The original block will now fall through to the XMM save block.
10247  MBB->addSuccessor(XMMSaveMBB);
10248  // The XMMSaveMBB will fall through to the end block.
10249  XMMSaveMBB->addSuccessor(EndMBB);
10250
10251  // Now add the instructions.
10252  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10253  DebugLoc DL = MI->getDebugLoc();
10254
10255  unsigned CountReg = MI->getOperand(0).getReg();
10256  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10257  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10258
10259  if (!Subtarget->isTargetWin64()) {
10260    // If %al is 0, branch around the XMM save block.
10261    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10262    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10263    MBB->addSuccessor(EndMBB);
10264  }
10265
10266  // In the XMM save block, save all the XMM argument registers.
10267  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10268    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10269    MachineMemOperand *MMO =
10270      F->getMachineMemOperand(
10271          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10272        MachineMemOperand::MOStore,
10273        /*Size=*/16, /*Align=*/16);
10274    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10275      .addFrameIndex(RegSaveFrameIndex)
10276      .addImm(/*Scale=*/1)
10277      .addReg(/*IndexReg=*/0)
10278      .addImm(/*Disp=*/Offset)
10279      .addReg(/*Segment=*/0)
10280      .addReg(MI->getOperand(i).getReg())
10281      .addMemOperand(MMO);
10282  }
10283
10284  MI->eraseFromParent();   // The pseudo instruction is gone now.
10285
10286  return EndMBB;
10287}
10288
10289MachineBasicBlock *
10290X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10291                                     MachineBasicBlock *BB) const {
10292  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10293  DebugLoc DL = MI->getDebugLoc();
10294
10295  // To "insert" a SELECT_CC instruction, we actually have to insert the
10296  // diamond control-flow pattern.  The incoming instruction knows the
10297  // destination vreg to set, the condition code register to branch on, the
10298  // true/false values to select between, and a branch opcode to use.
10299  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10300  MachineFunction::iterator It = BB;
10301  ++It;
10302
10303  //  thisMBB:
10304  //  ...
10305  //   TrueVal = ...
10306  //   cmpTY ccX, r1, r2
10307  //   bCC copy1MBB
10308  //   fallthrough --> copy0MBB
10309  MachineBasicBlock *thisMBB = BB;
10310  MachineFunction *F = BB->getParent();
10311  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10312  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10313  F->insert(It, copy0MBB);
10314  F->insert(It, sinkMBB);
10315
10316  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10317  // live into the sink and copy blocks.
10318  const MachineFunction *MF = BB->getParent();
10319  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10320  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10321
10322  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10323    const MachineOperand &MO = MI->getOperand(I);
10324    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10325    unsigned Reg = MO.getReg();
10326    if (Reg != X86::EFLAGS) continue;
10327    copy0MBB->addLiveIn(Reg);
10328    sinkMBB->addLiveIn(Reg);
10329  }
10330
10331  // Transfer the remainder of BB and its successor edges to sinkMBB.
10332  sinkMBB->splice(sinkMBB->begin(), BB,
10333                  llvm::next(MachineBasicBlock::iterator(MI)),
10334                  BB->end());
10335  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10336
10337  // Add the true and fallthrough blocks as its successors.
10338  BB->addSuccessor(copy0MBB);
10339  BB->addSuccessor(sinkMBB);
10340
10341  // Create the conditional branch instruction.
10342  unsigned Opc =
10343    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10344  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10345
10346  //  copy0MBB:
10347  //   %FalseValue = ...
10348  //   # fallthrough to sinkMBB
10349  copy0MBB->addSuccessor(sinkMBB);
10350
10351  //  sinkMBB:
10352  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10353  //  ...
10354  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10355          TII->get(X86::PHI), MI->getOperand(0).getReg())
10356    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10357    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10358
10359  MI->eraseFromParent();   // The pseudo instruction is gone now.
10360  return sinkMBB;
10361}
10362
10363MachineBasicBlock *
10364X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10365                                          MachineBasicBlock *BB) const {
10366  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10367  DebugLoc DL = MI->getDebugLoc();
10368
10369  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10370  // non-trivial part is impdef of ESP.
10371  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
10372  // mingw-w64.
10373
10374  const char *StackProbeSymbol =
10375      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10376
10377  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10378    .addExternalSymbol(StackProbeSymbol)
10379    .addReg(X86::EAX, RegState::Implicit)
10380    .addReg(X86::ESP, RegState::Implicit)
10381    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10382    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10383    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10384
10385  MI->eraseFromParent();   // The pseudo instruction is gone now.
10386  return BB;
10387}
10388
10389MachineBasicBlock *
10390X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10391                                      MachineBasicBlock *BB) const {
10392  // This is pretty easy.  We're taking the value that we received from
10393  // our load from the relocation, sticking it in either RDI (x86-64)
10394  // or EAX and doing an indirect call.  The return value will then
10395  // be in the normal return register.
10396  const X86InstrInfo *TII
10397    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10398  DebugLoc DL = MI->getDebugLoc();
10399  MachineFunction *F = BB->getParent();
10400
10401  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10402  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10403
10404  if (Subtarget->is64Bit()) {
10405    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10406                                      TII->get(X86::MOV64rm), X86::RDI)
10407    .addReg(X86::RIP)
10408    .addImm(0).addReg(0)
10409    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10410                      MI->getOperand(3).getTargetFlags())
10411    .addReg(0);
10412    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10413    addDirectMem(MIB, X86::RDI);
10414  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10415    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10416                                      TII->get(X86::MOV32rm), X86::EAX)
10417    .addReg(0)
10418    .addImm(0).addReg(0)
10419    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10420                      MI->getOperand(3).getTargetFlags())
10421    .addReg(0);
10422    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10423    addDirectMem(MIB, X86::EAX);
10424  } else {
10425    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10426                                      TII->get(X86::MOV32rm), X86::EAX)
10427    .addReg(TII->getGlobalBaseReg(F))
10428    .addImm(0).addReg(0)
10429    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10430                      MI->getOperand(3).getTargetFlags())
10431    .addReg(0);
10432    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10433    addDirectMem(MIB, X86::EAX);
10434  }
10435
10436  MI->eraseFromParent(); // The pseudo instruction is gone now.
10437  return BB;
10438}
10439
10440MachineBasicBlock *
10441X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10442                                               MachineBasicBlock *BB) const {
10443  switch (MI->getOpcode()) {
10444  default: assert(false && "Unexpected instr type to insert");
10445  case X86::TAILJMPd64:
10446  case X86::TAILJMPr64:
10447  case X86::TAILJMPm64:
10448    assert(!"TAILJMP64 would not be touched here.");
10449  case X86::TCRETURNdi64:
10450  case X86::TCRETURNri64:
10451  case X86::TCRETURNmi64:
10452    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
10453    // On AMD64, additional defs should be added before register allocation.
10454    if (!Subtarget->isTargetWin64()) {
10455      MI->addRegisterDefined(X86::RSI);
10456      MI->addRegisterDefined(X86::RDI);
10457      MI->addRegisterDefined(X86::XMM6);
10458      MI->addRegisterDefined(X86::XMM7);
10459      MI->addRegisterDefined(X86::XMM8);
10460      MI->addRegisterDefined(X86::XMM9);
10461      MI->addRegisterDefined(X86::XMM10);
10462      MI->addRegisterDefined(X86::XMM11);
10463      MI->addRegisterDefined(X86::XMM12);
10464      MI->addRegisterDefined(X86::XMM13);
10465      MI->addRegisterDefined(X86::XMM14);
10466      MI->addRegisterDefined(X86::XMM15);
10467    }
10468    return BB;
10469  case X86::WIN_ALLOCA:
10470    return EmitLoweredWinAlloca(MI, BB);
10471  case X86::TLSCall_32:
10472  case X86::TLSCall_64:
10473    return EmitLoweredTLSCall(MI, BB);
10474  case X86::CMOV_GR8:
10475  case X86::CMOV_FR32:
10476  case X86::CMOV_FR64:
10477  case X86::CMOV_V4F32:
10478  case X86::CMOV_V2F64:
10479  case X86::CMOV_V2I64:
10480  case X86::CMOV_GR16:
10481  case X86::CMOV_GR32:
10482  case X86::CMOV_RFP32:
10483  case X86::CMOV_RFP64:
10484  case X86::CMOV_RFP80:
10485    return EmitLoweredSelect(MI, BB);
10486
10487  case X86::FP32_TO_INT16_IN_MEM:
10488  case X86::FP32_TO_INT32_IN_MEM:
10489  case X86::FP32_TO_INT64_IN_MEM:
10490  case X86::FP64_TO_INT16_IN_MEM:
10491  case X86::FP64_TO_INT32_IN_MEM:
10492  case X86::FP64_TO_INT64_IN_MEM:
10493  case X86::FP80_TO_INT16_IN_MEM:
10494  case X86::FP80_TO_INT32_IN_MEM:
10495  case X86::FP80_TO_INT64_IN_MEM: {
10496    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10497    DebugLoc DL = MI->getDebugLoc();
10498
10499    // Change the floating point control register to use "round towards zero"
10500    // mode when truncating to an integer value.
10501    MachineFunction *F = BB->getParent();
10502    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10503    addFrameReference(BuildMI(*BB, MI, DL,
10504                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10505
10506    // Load the old value of the high byte of the control word...
10507    unsigned OldCW =
10508      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10509    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10510                      CWFrameIdx);
10511
10512    // Set the high part to be round to zero...
10513    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10514      .addImm(0xC7F);
10515
10516    // Reload the modified control word now...
10517    addFrameReference(BuildMI(*BB, MI, DL,
10518                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10519
10520    // Restore the memory image of control word to original value
10521    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10522      .addReg(OldCW);
10523
10524    // Get the X86 opcode to use.
10525    unsigned Opc;
10526    switch (MI->getOpcode()) {
10527    default: llvm_unreachable("illegal opcode!");
10528    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10529    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10530    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10531    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10532    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10533    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10534    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10535    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10536    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10537    }
10538
10539    X86AddressMode AM;
10540    MachineOperand &Op = MI->getOperand(0);
10541    if (Op.isReg()) {
10542      AM.BaseType = X86AddressMode::RegBase;
10543      AM.Base.Reg = Op.getReg();
10544    } else {
10545      AM.BaseType = X86AddressMode::FrameIndexBase;
10546      AM.Base.FrameIndex = Op.getIndex();
10547    }
10548    Op = MI->getOperand(1);
10549    if (Op.isImm())
10550      AM.Scale = Op.getImm();
10551    Op = MI->getOperand(2);
10552    if (Op.isImm())
10553      AM.IndexReg = Op.getImm();
10554    Op = MI->getOperand(3);
10555    if (Op.isGlobal()) {
10556      AM.GV = Op.getGlobal();
10557    } else {
10558      AM.Disp = Op.getImm();
10559    }
10560    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10561                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10562
10563    // Reload the original control word now.
10564    addFrameReference(BuildMI(*BB, MI, DL,
10565                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10566
10567    MI->eraseFromParent();   // The pseudo instruction is gone now.
10568    return BB;
10569  }
10570    // String/text processing lowering.
10571  case X86::PCMPISTRM128REG:
10572  case X86::VPCMPISTRM128REG:
10573    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10574  case X86::PCMPISTRM128MEM:
10575  case X86::VPCMPISTRM128MEM:
10576    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10577  case X86::PCMPESTRM128REG:
10578  case X86::VPCMPESTRM128REG:
10579    return EmitPCMP(MI, BB, 5, false /* in mem */);
10580  case X86::PCMPESTRM128MEM:
10581  case X86::VPCMPESTRM128MEM:
10582    return EmitPCMP(MI, BB, 5, true /* in mem */);
10583
10584    // Thread synchronization.
10585  case X86::MONITOR:
10586    return EmitMonitor(MI, BB);
10587  case X86::MWAIT:
10588    return EmitMwait(MI, BB);
10589
10590    // Atomic Lowering.
10591  case X86::ATOMAND32:
10592    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10593                                               X86::AND32ri, X86::MOV32rm,
10594                                               X86::LCMPXCHG32,
10595                                               X86::NOT32r, X86::EAX,
10596                                               X86::GR32RegisterClass);
10597  case X86::ATOMOR32:
10598    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10599                                               X86::OR32ri, X86::MOV32rm,
10600                                               X86::LCMPXCHG32,
10601                                               X86::NOT32r, X86::EAX,
10602                                               X86::GR32RegisterClass);
10603  case X86::ATOMXOR32:
10604    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10605                                               X86::XOR32ri, X86::MOV32rm,
10606                                               X86::LCMPXCHG32,
10607                                               X86::NOT32r, X86::EAX,
10608                                               X86::GR32RegisterClass);
10609  case X86::ATOMNAND32:
10610    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10611                                               X86::AND32ri, X86::MOV32rm,
10612                                               X86::LCMPXCHG32,
10613                                               X86::NOT32r, X86::EAX,
10614                                               X86::GR32RegisterClass, true);
10615  case X86::ATOMMIN32:
10616    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10617  case X86::ATOMMAX32:
10618    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10619  case X86::ATOMUMIN32:
10620    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10621  case X86::ATOMUMAX32:
10622    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10623
10624  case X86::ATOMAND16:
10625    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10626                                               X86::AND16ri, X86::MOV16rm,
10627                                               X86::LCMPXCHG16,
10628                                               X86::NOT16r, X86::AX,
10629                                               X86::GR16RegisterClass);
10630  case X86::ATOMOR16:
10631    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10632                                               X86::OR16ri, X86::MOV16rm,
10633                                               X86::LCMPXCHG16,
10634                                               X86::NOT16r, X86::AX,
10635                                               X86::GR16RegisterClass);
10636  case X86::ATOMXOR16:
10637    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10638                                               X86::XOR16ri, X86::MOV16rm,
10639                                               X86::LCMPXCHG16,
10640                                               X86::NOT16r, X86::AX,
10641                                               X86::GR16RegisterClass);
10642  case X86::ATOMNAND16:
10643    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10644                                               X86::AND16ri, X86::MOV16rm,
10645                                               X86::LCMPXCHG16,
10646                                               X86::NOT16r, X86::AX,
10647                                               X86::GR16RegisterClass, true);
10648  case X86::ATOMMIN16:
10649    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10650  case X86::ATOMMAX16:
10651    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10652  case X86::ATOMUMIN16:
10653    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10654  case X86::ATOMUMAX16:
10655    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10656
10657  case X86::ATOMAND8:
10658    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10659                                               X86::AND8ri, X86::MOV8rm,
10660                                               X86::LCMPXCHG8,
10661                                               X86::NOT8r, X86::AL,
10662                                               X86::GR8RegisterClass);
10663  case X86::ATOMOR8:
10664    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10665                                               X86::OR8ri, X86::MOV8rm,
10666                                               X86::LCMPXCHG8,
10667                                               X86::NOT8r, X86::AL,
10668                                               X86::GR8RegisterClass);
10669  case X86::ATOMXOR8:
10670    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10671                                               X86::XOR8ri, X86::MOV8rm,
10672                                               X86::LCMPXCHG8,
10673                                               X86::NOT8r, X86::AL,
10674                                               X86::GR8RegisterClass);
10675  case X86::ATOMNAND8:
10676    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10677                                               X86::AND8ri, X86::MOV8rm,
10678                                               X86::LCMPXCHG8,
10679                                               X86::NOT8r, X86::AL,
10680                                               X86::GR8RegisterClass, true);
10681  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10682  // This group is for 64-bit host.
10683  case X86::ATOMAND64:
10684    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10685                                               X86::AND64ri32, X86::MOV64rm,
10686                                               X86::LCMPXCHG64,
10687                                               X86::NOT64r, X86::RAX,
10688                                               X86::GR64RegisterClass);
10689  case X86::ATOMOR64:
10690    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10691                                               X86::OR64ri32, X86::MOV64rm,
10692                                               X86::LCMPXCHG64,
10693                                               X86::NOT64r, X86::RAX,
10694                                               X86::GR64RegisterClass);
10695  case X86::ATOMXOR64:
10696    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10697                                               X86::XOR64ri32, X86::MOV64rm,
10698                                               X86::LCMPXCHG64,
10699                                               X86::NOT64r, X86::RAX,
10700                                               X86::GR64RegisterClass);
10701  case X86::ATOMNAND64:
10702    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10703                                               X86::AND64ri32, X86::MOV64rm,
10704                                               X86::LCMPXCHG64,
10705                                               X86::NOT64r, X86::RAX,
10706                                               X86::GR64RegisterClass, true);
10707  case X86::ATOMMIN64:
10708    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10709  case X86::ATOMMAX64:
10710    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10711  case X86::ATOMUMIN64:
10712    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10713  case X86::ATOMUMAX64:
10714    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10715
10716  // This group does 64-bit operations on a 32-bit host.
10717  case X86::ATOMAND6432:
10718    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10719                                               X86::AND32rr, X86::AND32rr,
10720                                               X86::AND32ri, X86::AND32ri,
10721                                               false);
10722  case X86::ATOMOR6432:
10723    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10724                                               X86::OR32rr, X86::OR32rr,
10725                                               X86::OR32ri, X86::OR32ri,
10726                                               false);
10727  case X86::ATOMXOR6432:
10728    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10729                                               X86::XOR32rr, X86::XOR32rr,
10730                                               X86::XOR32ri, X86::XOR32ri,
10731                                               false);
10732  case X86::ATOMNAND6432:
10733    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10734                                               X86::AND32rr, X86::AND32rr,
10735                                               X86::AND32ri, X86::AND32ri,
10736                                               true);
10737  case X86::ATOMADD6432:
10738    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10739                                               X86::ADD32rr, X86::ADC32rr,
10740                                               X86::ADD32ri, X86::ADC32ri,
10741                                               false);
10742  case X86::ATOMSUB6432:
10743    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10744                                               X86::SUB32rr, X86::SBB32rr,
10745                                               X86::SUB32ri, X86::SBB32ri,
10746                                               false);
10747  case X86::ATOMSWAP6432:
10748    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10749                                               X86::MOV32rr, X86::MOV32rr,
10750                                               X86::MOV32ri, X86::MOV32ri,
10751                                               false);
10752  case X86::VASTART_SAVE_XMM_REGS:
10753    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10754
10755  case X86::VAARG_64:
10756    return EmitVAARG64WithCustomInserter(MI, BB);
10757  }
10758}
10759
10760//===----------------------------------------------------------------------===//
10761//                           X86 Optimization Hooks
10762//===----------------------------------------------------------------------===//
10763
10764void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10765                                                       const APInt &Mask,
10766                                                       APInt &KnownZero,
10767                                                       APInt &KnownOne,
10768                                                       const SelectionDAG &DAG,
10769                                                       unsigned Depth) const {
10770  unsigned Opc = Op.getOpcode();
10771  assert((Opc >= ISD::BUILTIN_OP_END ||
10772          Opc == ISD::INTRINSIC_WO_CHAIN ||
10773          Opc == ISD::INTRINSIC_W_CHAIN ||
10774          Opc == ISD::INTRINSIC_VOID) &&
10775         "Should use MaskedValueIsZero if you don't know whether Op"
10776         " is a target node!");
10777
10778  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10779  switch (Opc) {
10780  default: break;
10781  case X86ISD::ADD:
10782  case X86ISD::SUB:
10783  case X86ISD::ADC:
10784  case X86ISD::SBB:
10785  case X86ISD::SMUL:
10786  case X86ISD::UMUL:
10787  case X86ISD::INC:
10788  case X86ISD::DEC:
10789  case X86ISD::OR:
10790  case X86ISD::XOR:
10791  case X86ISD::AND:
10792    // These nodes' second result is a boolean.
10793    if (Op.getResNo() == 0)
10794      break;
10795    // Fallthrough
10796  case X86ISD::SETCC:
10797    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10798                                       Mask.getBitWidth() - 1);
10799    break;
10800  }
10801}
10802
10803unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10804                                                         unsigned Depth) const {
10805  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10806  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10807    return Op.getValueType().getScalarType().getSizeInBits();
10808
10809  // Fallback case.
10810  return 1;
10811}
10812
10813/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10814/// node is a GlobalAddress + offset.
10815bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10816                                       const GlobalValue* &GA,
10817                                       int64_t &Offset) const {
10818  if (N->getOpcode() == X86ISD::Wrapper) {
10819    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10820      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10821      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10822      return true;
10823    }
10824  }
10825  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10826}
10827
10828/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10829/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10830/// if the load addresses are consecutive, non-overlapping, and in the right
10831/// order.
10832static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10833                                     TargetLowering::DAGCombinerInfo &DCI) {
10834  DebugLoc dl = N->getDebugLoc();
10835  EVT VT = N->getValueType(0);
10836
10837  if (VT.getSizeInBits() != 128)
10838    return SDValue();
10839
10840  // Don't create instructions with illegal types after legalize types has run.
10841  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10842  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
10843    return SDValue();
10844
10845  SmallVector<SDValue, 16> Elts;
10846  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10847    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10848
10849  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10850}
10851
10852/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10853/// generation and convert it from being a bunch of shuffles and extracts
10854/// to a simple store and scalar loads to extract the elements.
10855static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10856                                                const TargetLowering &TLI) {
10857  SDValue InputVector = N->getOperand(0);
10858
10859  // Only operate on vectors of 4 elements, where the alternative shuffling
10860  // gets to be more expensive.
10861  if (InputVector.getValueType() != MVT::v4i32)
10862    return SDValue();
10863
10864  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10865  // single use which is a sign-extend or zero-extend, and all elements are
10866  // used.
10867  SmallVector<SDNode *, 4> Uses;
10868  unsigned ExtractedElements = 0;
10869  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10870       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10871    if (UI.getUse().getResNo() != InputVector.getResNo())
10872      return SDValue();
10873
10874    SDNode *Extract = *UI;
10875    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10876      return SDValue();
10877
10878    if (Extract->getValueType(0) != MVT::i32)
10879      return SDValue();
10880    if (!Extract->hasOneUse())
10881      return SDValue();
10882    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10883        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10884      return SDValue();
10885    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10886      return SDValue();
10887
10888    // Record which element was extracted.
10889    ExtractedElements |=
10890      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10891
10892    Uses.push_back(Extract);
10893  }
10894
10895  // If not all the elements were used, this may not be worthwhile.
10896  if (ExtractedElements != 15)
10897    return SDValue();
10898
10899  // Ok, we've now decided to do the transformation.
10900  DebugLoc dl = InputVector.getDebugLoc();
10901
10902  // Store the value to a temporary stack slot.
10903  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10904  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10905                            MachinePointerInfo(), false, false, 0);
10906
10907  // Replace each use (extract) with a load of the appropriate element.
10908  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10909       UE = Uses.end(); UI != UE; ++UI) {
10910    SDNode *Extract = *UI;
10911
10912    // Compute the element's address.
10913    SDValue Idx = Extract->getOperand(1);
10914    unsigned EltSize =
10915        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10916    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10917    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10918
10919    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10920                                     StackPtr, OffsetVal);
10921
10922    // Load the scalar.
10923    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10924                                     ScalarAddr, MachinePointerInfo(),
10925                                     false, false, 0);
10926
10927    // Replace the exact with the load.
10928    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10929  }
10930
10931  // The replacement was made in place; don't return anything.
10932  return SDValue();
10933}
10934
10935/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10936static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10937                                    const X86Subtarget *Subtarget) {
10938  DebugLoc DL = N->getDebugLoc();
10939  SDValue Cond = N->getOperand(0);
10940  // Get the LHS/RHS of the select.
10941  SDValue LHS = N->getOperand(1);
10942  SDValue RHS = N->getOperand(2);
10943
10944  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10945  // instructions match the semantics of the common C idiom x<y?x:y but not
10946  // x<=y?x:y, because of how they handle negative zero (which can be
10947  // ignored in unsafe-math mode).
10948  if (Subtarget->hasSSE2() &&
10949      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10950      Cond.getOpcode() == ISD::SETCC) {
10951    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10952
10953    unsigned Opcode = 0;
10954    // Check for x CC y ? x : y.
10955    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10956        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10957      switch (CC) {
10958      default: break;
10959      case ISD::SETULT:
10960        // Converting this to a min would handle NaNs incorrectly, and swapping
10961        // the operands would cause it to handle comparisons between positive
10962        // and negative zero incorrectly.
10963        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10964          if (!UnsafeFPMath &&
10965              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10966            break;
10967          std::swap(LHS, RHS);
10968        }
10969        Opcode = X86ISD::FMIN;
10970        break;
10971      case ISD::SETOLE:
10972        // Converting this to a min would handle comparisons between positive
10973        // and negative zero incorrectly.
10974        if (!UnsafeFPMath &&
10975            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
10976          break;
10977        Opcode = X86ISD::FMIN;
10978        break;
10979      case ISD::SETULE:
10980        // Converting this to a min would handle both negative zeros and NaNs
10981        // incorrectly, but we can swap the operands to fix both.
10982        std::swap(LHS, RHS);
10983      case ISD::SETOLT:
10984      case ISD::SETLT:
10985      case ISD::SETLE:
10986        Opcode = X86ISD::FMIN;
10987        break;
10988
10989      case ISD::SETOGE:
10990        // Converting this to a max would handle comparisons between positive
10991        // and negative zero incorrectly.
10992        if (!UnsafeFPMath &&
10993            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
10994          break;
10995        Opcode = X86ISD::FMAX;
10996        break;
10997      case ISD::SETUGT:
10998        // Converting this to a max would handle NaNs incorrectly, and swapping
10999        // the operands would cause it to handle comparisons between positive
11000        // and negative zero incorrectly.
11001        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11002          if (!UnsafeFPMath &&
11003              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11004            break;
11005          std::swap(LHS, RHS);
11006        }
11007        Opcode = X86ISD::FMAX;
11008        break;
11009      case ISD::SETUGE:
11010        // Converting this to a max would handle both negative zeros and NaNs
11011        // incorrectly, but we can swap the operands to fix both.
11012        std::swap(LHS, RHS);
11013      case ISD::SETOGT:
11014      case ISD::SETGT:
11015      case ISD::SETGE:
11016        Opcode = X86ISD::FMAX;
11017        break;
11018      }
11019    // Check for x CC y ? y : x -- a min/max with reversed arms.
11020    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11021               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11022      switch (CC) {
11023      default: break;
11024      case ISD::SETOGE:
11025        // Converting this to a min would handle comparisons between positive
11026        // and negative zero incorrectly, and swapping the operands would
11027        // cause it to handle NaNs incorrectly.
11028        if (!UnsafeFPMath &&
11029            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11030          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11031            break;
11032          std::swap(LHS, RHS);
11033        }
11034        Opcode = X86ISD::FMIN;
11035        break;
11036      case ISD::SETUGT:
11037        // Converting this to a min would handle NaNs incorrectly.
11038        if (!UnsafeFPMath &&
11039            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11040          break;
11041        Opcode = X86ISD::FMIN;
11042        break;
11043      case ISD::SETUGE:
11044        // Converting this to a min would handle both negative zeros and NaNs
11045        // incorrectly, but we can swap the operands to fix both.
11046        std::swap(LHS, RHS);
11047      case ISD::SETOGT:
11048      case ISD::SETGT:
11049      case ISD::SETGE:
11050        Opcode = X86ISD::FMIN;
11051        break;
11052
11053      case ISD::SETULT:
11054        // Converting this to a max would handle NaNs incorrectly.
11055        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11056          break;
11057        Opcode = X86ISD::FMAX;
11058        break;
11059      case ISD::SETOLE:
11060        // Converting this to a max would handle comparisons between positive
11061        // and negative zero incorrectly, and swapping the operands would
11062        // cause it to handle NaNs incorrectly.
11063        if (!UnsafeFPMath &&
11064            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11065          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11066            break;
11067          std::swap(LHS, RHS);
11068        }
11069        Opcode = X86ISD::FMAX;
11070        break;
11071      case ISD::SETULE:
11072        // Converting this to a max would handle both negative zeros and NaNs
11073        // incorrectly, but we can swap the operands to fix both.
11074        std::swap(LHS, RHS);
11075      case ISD::SETOLT:
11076      case ISD::SETLT:
11077      case ISD::SETLE:
11078        Opcode = X86ISD::FMAX;
11079        break;
11080      }
11081    }
11082
11083    if (Opcode)
11084      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11085  }
11086
11087  // If this is a select between two integer constants, try to do some
11088  // optimizations.
11089  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11090    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11091      // Don't do this for crazy integer types.
11092      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11093        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11094        // so that TrueC (the true value) is larger than FalseC.
11095        bool NeedsCondInvert = false;
11096
11097        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11098            // Efficiently invertible.
11099            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11100             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11101              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11102          NeedsCondInvert = true;
11103          std::swap(TrueC, FalseC);
11104        }
11105
11106        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11107        if (FalseC->getAPIntValue() == 0 &&
11108            TrueC->getAPIntValue().isPowerOf2()) {
11109          if (NeedsCondInvert) // Invert the condition if needed.
11110            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11111                               DAG.getConstant(1, Cond.getValueType()));
11112
11113          // Zero extend the condition if needed.
11114          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11115
11116          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11117          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11118                             DAG.getConstant(ShAmt, MVT::i8));
11119        }
11120
11121        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11122        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11123          if (NeedsCondInvert) // Invert the condition if needed.
11124            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11125                               DAG.getConstant(1, Cond.getValueType()));
11126
11127          // Zero extend the condition if needed.
11128          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11129                             FalseC->getValueType(0), Cond);
11130          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11131                             SDValue(FalseC, 0));
11132        }
11133
11134        // Optimize cases that will turn into an LEA instruction.  This requires
11135        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11136        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11137          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11138          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11139
11140          bool isFastMultiplier = false;
11141          if (Diff < 10) {
11142            switch ((unsigned char)Diff) {
11143              default: break;
11144              case 1:  // result = add base, cond
11145              case 2:  // result = lea base(    , cond*2)
11146              case 3:  // result = lea base(cond, cond*2)
11147              case 4:  // result = lea base(    , cond*4)
11148              case 5:  // result = lea base(cond, cond*4)
11149              case 8:  // result = lea base(    , cond*8)
11150              case 9:  // result = lea base(cond, cond*8)
11151                isFastMultiplier = true;
11152                break;
11153            }
11154          }
11155
11156          if (isFastMultiplier) {
11157            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11158            if (NeedsCondInvert) // Invert the condition if needed.
11159              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11160                                 DAG.getConstant(1, Cond.getValueType()));
11161
11162            // Zero extend the condition if needed.
11163            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11164                               Cond);
11165            // Scale the condition by the difference.
11166            if (Diff != 1)
11167              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11168                                 DAG.getConstant(Diff, Cond.getValueType()));
11169
11170            // Add the base if non-zero.
11171            if (FalseC->getAPIntValue() != 0)
11172              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11173                                 SDValue(FalseC, 0));
11174            return Cond;
11175          }
11176        }
11177      }
11178  }
11179
11180  return SDValue();
11181}
11182
11183/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11184static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11185                                  TargetLowering::DAGCombinerInfo &DCI) {
11186  DebugLoc DL = N->getDebugLoc();
11187
11188  // If the flag operand isn't dead, don't touch this CMOV.
11189  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11190    return SDValue();
11191
11192  // If this is a select between two integer constants, try to do some
11193  // optimizations.  Note that the operands are ordered the opposite of SELECT
11194  // operands.
11195  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
11196    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
11197      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11198      // larger than FalseC (the false value).
11199      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11200
11201      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11202        CC = X86::GetOppositeBranchCondition(CC);
11203        std::swap(TrueC, FalseC);
11204      }
11205
11206      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11207      // This is efficient for any integer data type (including i8/i16) and
11208      // shift amount.
11209      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11210        SDValue Cond = N->getOperand(3);
11211        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11212                           DAG.getConstant(CC, MVT::i8), Cond);
11213
11214        // Zero extend the condition if needed.
11215        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11216
11217        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11218        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11219                           DAG.getConstant(ShAmt, MVT::i8));
11220        if (N->getNumValues() == 2)  // Dead flag value?
11221          return DCI.CombineTo(N, Cond, SDValue());
11222        return Cond;
11223      }
11224
11225      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11226      // for any integer data type, including i8/i16.
11227      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11228        SDValue Cond = N->getOperand(3);
11229        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11230                           DAG.getConstant(CC, MVT::i8), Cond);
11231
11232        // Zero extend the condition if needed.
11233        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11234                           FalseC->getValueType(0), Cond);
11235        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11236                           SDValue(FalseC, 0));
11237
11238        if (N->getNumValues() == 2)  // Dead flag value?
11239          return DCI.CombineTo(N, Cond, SDValue());
11240        return Cond;
11241      }
11242
11243      // Optimize cases that will turn into an LEA instruction.  This requires
11244      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11245      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11246        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11247        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11248
11249        bool isFastMultiplier = false;
11250        if (Diff < 10) {
11251          switch ((unsigned char)Diff) {
11252          default: break;
11253          case 1:  // result = add base, cond
11254          case 2:  // result = lea base(    , cond*2)
11255          case 3:  // result = lea base(cond, cond*2)
11256          case 4:  // result = lea base(    , cond*4)
11257          case 5:  // result = lea base(cond, cond*4)
11258          case 8:  // result = lea base(    , cond*8)
11259          case 9:  // result = lea base(cond, cond*8)
11260            isFastMultiplier = true;
11261            break;
11262          }
11263        }
11264
11265        if (isFastMultiplier) {
11266          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11267          SDValue Cond = N->getOperand(3);
11268          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11269                             DAG.getConstant(CC, MVT::i8), Cond);
11270          // Zero extend the condition if needed.
11271          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11272                             Cond);
11273          // Scale the condition by the difference.
11274          if (Diff != 1)
11275            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11276                               DAG.getConstant(Diff, Cond.getValueType()));
11277
11278          // Add the base if non-zero.
11279          if (FalseC->getAPIntValue() != 0)
11280            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11281                               SDValue(FalseC, 0));
11282          if (N->getNumValues() == 2)  // Dead flag value?
11283            return DCI.CombineTo(N, Cond, SDValue());
11284          return Cond;
11285        }
11286      }
11287    }
11288  }
11289  return SDValue();
11290}
11291
11292
11293/// PerformMulCombine - Optimize a single multiply with constant into two
11294/// in order to implement it with two cheaper instructions, e.g.
11295/// LEA + SHL, LEA + LEA.
11296static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11297                                 TargetLowering::DAGCombinerInfo &DCI) {
11298  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11299    return SDValue();
11300
11301  EVT VT = N->getValueType(0);
11302  if (VT != MVT::i64)
11303    return SDValue();
11304
11305  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11306  if (!C)
11307    return SDValue();
11308  uint64_t MulAmt = C->getZExtValue();
11309  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11310    return SDValue();
11311
11312  uint64_t MulAmt1 = 0;
11313  uint64_t MulAmt2 = 0;
11314  if ((MulAmt % 9) == 0) {
11315    MulAmt1 = 9;
11316    MulAmt2 = MulAmt / 9;
11317  } else if ((MulAmt % 5) == 0) {
11318    MulAmt1 = 5;
11319    MulAmt2 = MulAmt / 5;
11320  } else if ((MulAmt % 3) == 0) {
11321    MulAmt1 = 3;
11322    MulAmt2 = MulAmt / 3;
11323  }
11324  if (MulAmt2 &&
11325      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11326    DebugLoc DL = N->getDebugLoc();
11327
11328    if (isPowerOf2_64(MulAmt2) &&
11329        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11330      // If second multiplifer is pow2, issue it first. We want the multiply by
11331      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11332      // is an add.
11333      std::swap(MulAmt1, MulAmt2);
11334
11335    SDValue NewMul;
11336    if (isPowerOf2_64(MulAmt1))
11337      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11338                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11339    else
11340      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11341                           DAG.getConstant(MulAmt1, VT));
11342
11343    if (isPowerOf2_64(MulAmt2))
11344      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11345                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11346    else
11347      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11348                           DAG.getConstant(MulAmt2, VT));
11349
11350    // Do not add new nodes to DAG combiner worklist.
11351    DCI.CombineTo(N, NewMul, false);
11352  }
11353  return SDValue();
11354}
11355
11356static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11357  SDValue N0 = N->getOperand(0);
11358  SDValue N1 = N->getOperand(1);
11359  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11360  EVT VT = N0.getValueType();
11361
11362  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11363  // since the result of setcc_c is all zero's or all ones.
11364  if (N1C && N0.getOpcode() == ISD::AND &&
11365      N0.getOperand(1).getOpcode() == ISD::Constant) {
11366    SDValue N00 = N0.getOperand(0);
11367    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11368        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11369          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11370         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11371      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11372      APInt ShAmt = N1C->getAPIntValue();
11373      Mask = Mask.shl(ShAmt);
11374      if (Mask != 0)
11375        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11376                           N00, DAG.getConstant(Mask, VT));
11377    }
11378  }
11379
11380  return SDValue();
11381}
11382
11383/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
11384///                       when possible.
11385static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
11386                                   const X86Subtarget *Subtarget) {
11387  EVT VT = N->getValueType(0);
11388  if (!VT.isVector() && VT.isInteger() &&
11389      N->getOpcode() == ISD::SHL)
11390    return PerformSHLCombine(N, DAG);
11391
11392  // On X86 with SSE2 support, we can transform this to a vector shift if
11393  // all elements are shifted by the same amount.  We can't do this in legalize
11394  // because the a constant vector is typically transformed to a constant pool
11395  // so we have no knowledge of the shift amount.
11396  if (!Subtarget->hasSSE2())
11397    return SDValue();
11398
11399  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11400    return SDValue();
11401
11402  SDValue ShAmtOp = N->getOperand(1);
11403  EVT EltVT = VT.getVectorElementType();
11404  DebugLoc DL = N->getDebugLoc();
11405  SDValue BaseShAmt = SDValue();
11406  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11407    unsigned NumElts = VT.getVectorNumElements();
11408    unsigned i = 0;
11409    for (; i != NumElts; ++i) {
11410      SDValue Arg = ShAmtOp.getOperand(i);
11411      if (Arg.getOpcode() == ISD::UNDEF) continue;
11412      BaseShAmt = Arg;
11413      break;
11414    }
11415    for (; i != NumElts; ++i) {
11416      SDValue Arg = ShAmtOp.getOperand(i);
11417      if (Arg.getOpcode() == ISD::UNDEF) continue;
11418      if (Arg != BaseShAmt) {
11419        return SDValue();
11420      }
11421    }
11422  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
11423             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
11424    SDValue InVec = ShAmtOp.getOperand(0);
11425    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11426      unsigned NumElts = InVec.getValueType().getVectorNumElements();
11427      unsigned i = 0;
11428      for (; i != NumElts; ++i) {
11429        SDValue Arg = InVec.getOperand(i);
11430        if (Arg.getOpcode() == ISD::UNDEF) continue;
11431        BaseShAmt = Arg;
11432        break;
11433      }
11434    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11435       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11436         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
11437         if (C->getZExtValue() == SplatIdx)
11438           BaseShAmt = InVec.getOperand(1);
11439       }
11440    }
11441    if (BaseShAmt.getNode() == 0)
11442      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
11443                              DAG.getIntPtrConstant(0));
11444  } else
11445    return SDValue();
11446
11447  // The shift amount is an i32.
11448  if (EltVT.bitsGT(MVT::i32))
11449    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
11450  else if (EltVT.bitsLT(MVT::i32))
11451    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
11452
11453  // The shift amount is identical so we can do a vector shift.
11454  SDValue  ValOp = N->getOperand(0);
11455  switch (N->getOpcode()) {
11456  default:
11457    llvm_unreachable("Unknown shift opcode!");
11458    break;
11459  case ISD::SHL:
11460    if (VT == MVT::v2i64)
11461      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11462                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11463                         ValOp, BaseShAmt);
11464    if (VT == MVT::v4i32)
11465      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11466                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11467                         ValOp, BaseShAmt);
11468    if (VT == MVT::v8i16)
11469      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11470                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11471                         ValOp, BaseShAmt);
11472    break;
11473  case ISD::SRA:
11474    if (VT == MVT::v4i32)
11475      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11476                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11477                         ValOp, BaseShAmt);
11478    if (VT == MVT::v8i16)
11479      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11480                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11481                         ValOp, BaseShAmt);
11482    break;
11483  case ISD::SRL:
11484    if (VT == MVT::v2i64)
11485      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11486                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11487                         ValOp, BaseShAmt);
11488    if (VT == MVT::v4i32)
11489      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11490                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11491                         ValOp, BaseShAmt);
11492    if (VT ==  MVT::v8i16)
11493      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11494                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11495                         ValOp, BaseShAmt);
11496    break;
11497  }
11498  return SDValue();
11499}
11500
11501
11502static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
11503                                 TargetLowering::DAGCombinerInfo &DCI,
11504                                 const X86Subtarget *Subtarget) {
11505  if (DCI.isBeforeLegalizeOps())
11506    return SDValue();
11507
11508  // Want to form PANDN nodes, in the hopes of then easily combining them with
11509  // OR and AND nodes to form PBLEND/PSIGN.
11510  EVT VT = N->getValueType(0);
11511  if (VT != MVT::v2i64)
11512    return SDValue();
11513
11514  SDValue N0 = N->getOperand(0);
11515  SDValue N1 = N->getOperand(1);
11516  DebugLoc DL = N->getDebugLoc();
11517
11518  // Check LHS for vnot
11519  if (N0.getOpcode() == ISD::XOR &&
11520      ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
11521    return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1);
11522
11523  // Check RHS for vnot
11524  if (N1.getOpcode() == ISD::XOR &&
11525      ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
11526    return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0);
11527
11528  return SDValue();
11529}
11530
11531static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
11532                                TargetLowering::DAGCombinerInfo &DCI,
11533                                const X86Subtarget *Subtarget) {
11534  if (DCI.isBeforeLegalizeOps())
11535    return SDValue();
11536
11537  EVT VT = N->getValueType(0);
11538  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
11539    return SDValue();
11540
11541  SDValue N0 = N->getOperand(0);
11542  SDValue N1 = N->getOperand(1);
11543
11544  // look for psign/blend
11545  if (Subtarget->hasSSSE3()) {
11546    if (VT == MVT::v2i64) {
11547      // Canonicalize pandn to RHS
11548      if (N0.getOpcode() == X86ISD::PANDN)
11549        std::swap(N0, N1);
11550      // or (and (m, x), (pandn m, y))
11551      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) {
11552        SDValue Mask = N1.getOperand(0);
11553        SDValue X    = N1.getOperand(1);
11554        SDValue Y;
11555        if (N0.getOperand(0) == Mask)
11556          Y = N0.getOperand(1);
11557        if (N0.getOperand(1) == Mask)
11558          Y = N0.getOperand(0);
11559
11560        // Check to see if the mask appeared in both the AND and PANDN and
11561        if (!Y.getNode())
11562          return SDValue();
11563
11564        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
11565        if (Mask.getOpcode() != ISD::BITCAST ||
11566            X.getOpcode() != ISD::BITCAST ||
11567            Y.getOpcode() != ISD::BITCAST)
11568          return SDValue();
11569
11570        // Look through mask bitcast.
11571        Mask = Mask.getOperand(0);
11572        EVT MaskVT = Mask.getValueType();
11573
11574        // Validate that the Mask operand is a vector sra node.  The sra node
11575        // will be an intrinsic.
11576        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
11577          return SDValue();
11578
11579        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
11580        // there is no psrai.b
11581        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
11582        case Intrinsic::x86_sse2_psrai_w:
11583        case Intrinsic::x86_sse2_psrai_d:
11584          break;
11585        default: return SDValue();
11586        }
11587
11588        // Check that the SRA is all signbits.
11589        SDValue SraC = Mask.getOperand(2);
11590        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
11591        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
11592        if ((SraAmt + 1) != EltBits)
11593          return SDValue();
11594
11595        DebugLoc DL = N->getDebugLoc();
11596
11597        // Now we know we at least have a plendvb with the mask val.  See if
11598        // we can form a psignb/w/d.
11599        // psign = x.type == y.type == mask.type && y = sub(0, x);
11600        X = X.getOperand(0);
11601        Y = Y.getOperand(0);
11602        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
11603            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
11604            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
11605          unsigned Opc = 0;
11606          switch (EltBits) {
11607          case 8: Opc = X86ISD::PSIGNB; break;
11608          case 16: Opc = X86ISD::PSIGNW; break;
11609          case 32: Opc = X86ISD::PSIGND; break;
11610          default: break;
11611          }
11612          if (Opc) {
11613            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
11614            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
11615          }
11616        }
11617        // PBLENDVB only available on SSE 4.1
11618        if (!Subtarget->hasSSE41())
11619          return SDValue();
11620
11621        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
11622        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
11623        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
11624        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
11625        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
11626      }
11627    }
11628  }
11629
11630  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
11631  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
11632    std::swap(N0, N1);
11633  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
11634    return SDValue();
11635  if (!N0.hasOneUse() || !N1.hasOneUse())
11636    return SDValue();
11637
11638  SDValue ShAmt0 = N0.getOperand(1);
11639  if (ShAmt0.getValueType() != MVT::i8)
11640    return SDValue();
11641  SDValue ShAmt1 = N1.getOperand(1);
11642  if (ShAmt1.getValueType() != MVT::i8)
11643    return SDValue();
11644  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11645    ShAmt0 = ShAmt0.getOperand(0);
11646  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11647    ShAmt1 = ShAmt1.getOperand(0);
11648
11649  DebugLoc DL = N->getDebugLoc();
11650  unsigned Opc = X86ISD::SHLD;
11651  SDValue Op0 = N0.getOperand(0);
11652  SDValue Op1 = N1.getOperand(0);
11653  if (ShAmt0.getOpcode() == ISD::SUB) {
11654    Opc = X86ISD::SHRD;
11655    std::swap(Op0, Op1);
11656    std::swap(ShAmt0, ShAmt1);
11657  }
11658
11659  unsigned Bits = VT.getSizeInBits();
11660  if (ShAmt1.getOpcode() == ISD::SUB) {
11661    SDValue Sum = ShAmt1.getOperand(0);
11662    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11663      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11664      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11665        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11666      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11667        return DAG.getNode(Opc, DL, VT,
11668                           Op0, Op1,
11669                           DAG.getNode(ISD::TRUNCATE, DL,
11670                                       MVT::i8, ShAmt0));
11671    }
11672  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11673    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11674    if (ShAmt0C &&
11675        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11676      return DAG.getNode(Opc, DL, VT,
11677                         N0.getOperand(0), N1.getOperand(0),
11678                         DAG.getNode(ISD::TRUNCATE, DL,
11679                                       MVT::i8, ShAmt0));
11680  }
11681
11682  return SDValue();
11683}
11684
11685/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11686static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11687                                   const X86Subtarget *Subtarget) {
11688  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11689  // the FP state in cases where an emms may be missing.
11690  // A preferable solution to the general problem is to figure out the right
11691  // places to insert EMMS.  This qualifies as a quick hack.
11692
11693  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11694  StoreSDNode *St = cast<StoreSDNode>(N);
11695  EVT VT = St->getValue().getValueType();
11696  if (VT.getSizeInBits() != 64)
11697    return SDValue();
11698
11699  const Function *F = DAG.getMachineFunction().getFunction();
11700  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11701  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11702    && Subtarget->hasSSE2();
11703  if ((VT.isVector() ||
11704       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11705      isa<LoadSDNode>(St->getValue()) &&
11706      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11707      St->getChain().hasOneUse() && !St->isVolatile()) {
11708    SDNode* LdVal = St->getValue().getNode();
11709    LoadSDNode *Ld = 0;
11710    int TokenFactorIndex = -1;
11711    SmallVector<SDValue, 8> Ops;
11712    SDNode* ChainVal = St->getChain().getNode();
11713    // Must be a store of a load.  We currently handle two cases:  the load
11714    // is a direct child, and it's under an intervening TokenFactor.  It is
11715    // possible to dig deeper under nested TokenFactors.
11716    if (ChainVal == LdVal)
11717      Ld = cast<LoadSDNode>(St->getChain());
11718    else if (St->getValue().hasOneUse() &&
11719             ChainVal->getOpcode() == ISD::TokenFactor) {
11720      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11721        if (ChainVal->getOperand(i).getNode() == LdVal) {
11722          TokenFactorIndex = i;
11723          Ld = cast<LoadSDNode>(St->getValue());
11724        } else
11725          Ops.push_back(ChainVal->getOperand(i));
11726      }
11727    }
11728
11729    if (!Ld || !ISD::isNormalLoad(Ld))
11730      return SDValue();
11731
11732    // If this is not the MMX case, i.e. we are just turning i64 load/store
11733    // into f64 load/store, avoid the transformation if there are multiple
11734    // uses of the loaded value.
11735    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11736      return SDValue();
11737
11738    DebugLoc LdDL = Ld->getDebugLoc();
11739    DebugLoc StDL = N->getDebugLoc();
11740    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11741    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11742    // pair instead.
11743    if (Subtarget->is64Bit() || F64IsLegal) {
11744      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11745      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11746                                  Ld->getPointerInfo(), Ld->isVolatile(),
11747                                  Ld->isNonTemporal(), Ld->getAlignment());
11748      SDValue NewChain = NewLd.getValue(1);
11749      if (TokenFactorIndex != -1) {
11750        Ops.push_back(NewChain);
11751        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11752                               Ops.size());
11753      }
11754      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11755                          St->getPointerInfo(),
11756                          St->isVolatile(), St->isNonTemporal(),
11757                          St->getAlignment());
11758    }
11759
11760    // Otherwise, lower to two pairs of 32-bit loads / stores.
11761    SDValue LoAddr = Ld->getBasePtr();
11762    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11763                                 DAG.getConstant(4, MVT::i32));
11764
11765    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11766                               Ld->getPointerInfo(),
11767                               Ld->isVolatile(), Ld->isNonTemporal(),
11768                               Ld->getAlignment());
11769    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11770                               Ld->getPointerInfo().getWithOffset(4),
11771                               Ld->isVolatile(), Ld->isNonTemporal(),
11772                               MinAlign(Ld->getAlignment(), 4));
11773
11774    SDValue NewChain = LoLd.getValue(1);
11775    if (TokenFactorIndex != -1) {
11776      Ops.push_back(LoLd);
11777      Ops.push_back(HiLd);
11778      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11779                             Ops.size());
11780    }
11781
11782    LoAddr = St->getBasePtr();
11783    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11784                         DAG.getConstant(4, MVT::i32));
11785
11786    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11787                                St->getPointerInfo(),
11788                                St->isVolatile(), St->isNonTemporal(),
11789                                St->getAlignment());
11790    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11791                                St->getPointerInfo().getWithOffset(4),
11792                                St->isVolatile(),
11793                                St->isNonTemporal(),
11794                                MinAlign(St->getAlignment(), 4));
11795    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11796  }
11797  return SDValue();
11798}
11799
11800/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11801/// X86ISD::FXOR nodes.
11802static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11803  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11804  // F[X]OR(0.0, x) -> x
11805  // F[X]OR(x, 0.0) -> x
11806  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11807    if (C->getValueAPF().isPosZero())
11808      return N->getOperand(1);
11809  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11810    if (C->getValueAPF().isPosZero())
11811      return N->getOperand(0);
11812  return SDValue();
11813}
11814
11815/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11816static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11817  // FAND(0.0, x) -> 0.0
11818  // FAND(x, 0.0) -> 0.0
11819  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11820    if (C->getValueAPF().isPosZero())
11821      return N->getOperand(0);
11822  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11823    if (C->getValueAPF().isPosZero())
11824      return N->getOperand(1);
11825  return SDValue();
11826}
11827
11828static SDValue PerformBTCombine(SDNode *N,
11829                                SelectionDAG &DAG,
11830                                TargetLowering::DAGCombinerInfo &DCI) {
11831  // BT ignores high bits in the bit index operand.
11832  SDValue Op1 = N->getOperand(1);
11833  if (Op1.hasOneUse()) {
11834    unsigned BitWidth = Op1.getValueSizeInBits();
11835    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11836    APInt KnownZero, KnownOne;
11837    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11838                                          !DCI.isBeforeLegalizeOps());
11839    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11840    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11841        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11842      DCI.CommitTargetLoweringOpt(TLO);
11843  }
11844  return SDValue();
11845}
11846
11847static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11848  SDValue Op = N->getOperand(0);
11849  if (Op.getOpcode() == ISD::BITCAST)
11850    Op = Op.getOperand(0);
11851  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11852  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11853      VT.getVectorElementType().getSizeInBits() ==
11854      OpVT.getVectorElementType().getSizeInBits()) {
11855    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
11856  }
11857  return SDValue();
11858}
11859
11860static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11861  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
11862  //           (and (i32 x86isd::setcc_carry), 1)
11863  // This eliminates the zext. This transformation is necessary because
11864  // ISD::SETCC is always legalized to i8.
11865  DebugLoc dl = N->getDebugLoc();
11866  SDValue N0 = N->getOperand(0);
11867  EVT VT = N->getValueType(0);
11868  if (N0.getOpcode() == ISD::AND &&
11869      N0.hasOneUse() &&
11870      N0.getOperand(0).hasOneUse()) {
11871    SDValue N00 = N0.getOperand(0);
11872    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11873      return SDValue();
11874    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11875    if (!C || C->getZExtValue() != 1)
11876      return SDValue();
11877    return DAG.getNode(ISD::AND, dl, VT,
11878                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11879                                   N00.getOperand(0), N00.getOperand(1)),
11880                       DAG.getConstant(1, VT));
11881  }
11882
11883  return SDValue();
11884}
11885
11886// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
11887static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
11888  unsigned X86CC = N->getConstantOperandVal(0);
11889  SDValue EFLAG = N->getOperand(1);
11890  DebugLoc DL = N->getDebugLoc();
11891
11892  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
11893  // a zext and produces an all-ones bit which is more useful than 0/1 in some
11894  // cases.
11895  if (X86CC == X86::COND_B)
11896    return DAG.getNode(ISD::AND, DL, MVT::i8,
11897                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
11898                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
11899                       DAG.getConstant(1, MVT::i8));
11900
11901  return SDValue();
11902}
11903
11904// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
11905static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
11906                                 X86TargetLowering::DAGCombinerInfo &DCI) {
11907  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
11908  // the result is either zero or one (depending on the input carry bit).
11909  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
11910  if (X86::isZeroNode(N->getOperand(0)) &&
11911      X86::isZeroNode(N->getOperand(1)) &&
11912      // We don't have a good way to replace an EFLAGS use, so only do this when
11913      // dead right now.
11914      SDValue(N, 1).use_empty()) {
11915    DebugLoc DL = N->getDebugLoc();
11916    EVT VT = N->getValueType(0);
11917    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
11918    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
11919                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
11920                                           DAG.getConstant(X86::COND_B,MVT::i8),
11921                                           N->getOperand(2)),
11922                               DAG.getConstant(1, VT));
11923    return DCI.CombineTo(N, Res1, CarryOut);
11924  }
11925
11926  return SDValue();
11927}
11928
11929// fold (add Y, (sete  X, 0)) -> adc  0, Y
11930//      (add Y, (setne X, 0)) -> sbb -1, Y
11931//      (sub (sete  X, 0), Y) -> sbb  0, Y
11932//      (sub (setne X, 0), Y) -> adc -1, Y
11933static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
11934  DebugLoc DL = N->getDebugLoc();
11935
11936  // Look through ZExts.
11937  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
11938  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
11939    return SDValue();
11940
11941  SDValue SetCC = Ext.getOperand(0);
11942  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
11943    return SDValue();
11944
11945  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
11946  if (CC != X86::COND_E && CC != X86::COND_NE)
11947    return SDValue();
11948
11949  SDValue Cmp = SetCC.getOperand(1);
11950  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
11951      !X86::isZeroNode(Cmp.getOperand(1)) ||
11952      !Cmp.getOperand(0).getValueType().isInteger())
11953    return SDValue();
11954
11955  SDValue CmpOp0 = Cmp.getOperand(0);
11956  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
11957                               DAG.getConstant(1, CmpOp0.getValueType()));
11958
11959  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
11960  if (CC == X86::COND_NE)
11961    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
11962                       DL, OtherVal.getValueType(), OtherVal,
11963                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
11964  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
11965                     DL, OtherVal.getValueType(), OtherVal,
11966                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
11967}
11968
11969SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
11970                                             DAGCombinerInfo &DCI) const {
11971  SelectionDAG &DAG = DCI.DAG;
11972  switch (N->getOpcode()) {
11973  default: break;
11974  case ISD::EXTRACT_VECTOR_ELT:
11975    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
11976  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
11977  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
11978  case ISD::ADD:
11979  case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG);
11980  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
11981  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
11982  case ISD::SHL:
11983  case ISD::SRA:
11984  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
11985  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
11986  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
11987  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
11988  case X86ISD::FXOR:
11989  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
11990  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
11991  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
11992  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
11993  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
11994  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
11995  case X86ISD::SHUFPS:      // Handle all target specific shuffles
11996  case X86ISD::SHUFPD:
11997  case X86ISD::PALIGN:
11998  case X86ISD::PUNPCKHBW:
11999  case X86ISD::PUNPCKHWD:
12000  case X86ISD::PUNPCKHDQ:
12001  case X86ISD::PUNPCKHQDQ:
12002  case X86ISD::UNPCKHPS:
12003  case X86ISD::UNPCKHPD:
12004  case X86ISD::PUNPCKLBW:
12005  case X86ISD::PUNPCKLWD:
12006  case X86ISD::PUNPCKLDQ:
12007  case X86ISD::PUNPCKLQDQ:
12008  case X86ISD::UNPCKLPS:
12009  case X86ISD::UNPCKLPD:
12010  case X86ISD::VUNPCKLPS:
12011  case X86ISD::VUNPCKLPD:
12012  case X86ISD::VUNPCKLPSY:
12013  case X86ISD::VUNPCKLPDY:
12014  case X86ISD::MOVHLPS:
12015  case X86ISD::MOVLHPS:
12016  case X86ISD::PSHUFD:
12017  case X86ISD::PSHUFHW:
12018  case X86ISD::PSHUFLW:
12019  case X86ISD::MOVSS:
12020  case X86ISD::MOVSD:
12021  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12022  }
12023
12024  return SDValue();
12025}
12026
12027/// isTypeDesirableForOp - Return true if the target has native support for
12028/// the specified value type and it is 'desirable' to use the type for the
12029/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12030/// instruction encodings are longer and some i16 instructions are slow.
12031bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12032  if (!isTypeLegal(VT))
12033    return false;
12034  if (VT != MVT::i16)
12035    return true;
12036
12037  switch (Opc) {
12038  default:
12039    return true;
12040  case ISD::LOAD:
12041  case ISD::SIGN_EXTEND:
12042  case ISD::ZERO_EXTEND:
12043  case ISD::ANY_EXTEND:
12044  case ISD::SHL:
12045  case ISD::SRL:
12046  case ISD::SUB:
12047  case ISD::ADD:
12048  case ISD::MUL:
12049  case ISD::AND:
12050  case ISD::OR:
12051  case ISD::XOR:
12052    return false;
12053  }
12054}
12055
12056/// IsDesirableToPromoteOp - This method query the target whether it is
12057/// beneficial for dag combiner to promote the specified node. If true, it
12058/// should return the desired promotion type by reference.
12059bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12060  EVT VT = Op.getValueType();
12061  if (VT != MVT::i16)
12062    return false;
12063
12064  bool Promote = false;
12065  bool Commute = false;
12066  switch (Op.getOpcode()) {
12067  default: break;
12068  case ISD::LOAD: {
12069    LoadSDNode *LD = cast<LoadSDNode>(Op);
12070    // If the non-extending load has a single use and it's not live out, then it
12071    // might be folded.
12072    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
12073                                                     Op.hasOneUse()*/) {
12074      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12075             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
12076        // The only case where we'd want to promote LOAD (rather then it being
12077        // promoted as an operand is when it's only use is liveout.
12078        if (UI->getOpcode() != ISD::CopyToReg)
12079          return false;
12080      }
12081    }
12082    Promote = true;
12083    break;
12084  }
12085  case ISD::SIGN_EXTEND:
12086  case ISD::ZERO_EXTEND:
12087  case ISD::ANY_EXTEND:
12088    Promote = true;
12089    break;
12090  case ISD::SHL:
12091  case ISD::SRL: {
12092    SDValue N0 = Op.getOperand(0);
12093    // Look out for (store (shl (load), x)).
12094    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
12095      return false;
12096    Promote = true;
12097    break;
12098  }
12099  case ISD::ADD:
12100  case ISD::MUL:
12101  case ISD::AND:
12102  case ISD::OR:
12103  case ISD::XOR:
12104    Commute = true;
12105    // fallthrough
12106  case ISD::SUB: {
12107    SDValue N0 = Op.getOperand(0);
12108    SDValue N1 = Op.getOperand(1);
12109    if (!Commute && MayFoldLoad(N1))
12110      return false;
12111    // Avoid disabling potential load folding opportunities.
12112    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
12113      return false;
12114    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
12115      return false;
12116    Promote = true;
12117  }
12118  }
12119
12120  PVT = MVT::i32;
12121  return Promote;
12122}
12123
12124//===----------------------------------------------------------------------===//
12125//                           X86 Inline Assembly Support
12126//===----------------------------------------------------------------------===//
12127
12128bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
12129  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12130
12131  std::string AsmStr = IA->getAsmString();
12132
12133  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
12134  SmallVector<StringRef, 4> AsmPieces;
12135  SplitString(AsmStr, AsmPieces, ";\n");
12136
12137  switch (AsmPieces.size()) {
12138  default: return false;
12139  case 1:
12140    AsmStr = AsmPieces[0];
12141    AsmPieces.clear();
12142    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
12143
12144    // FIXME: this should verify that we are targetting a 486 or better.  If not,
12145    // we will turn this bswap into something that will be lowered to logical ops
12146    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
12147    // so don't worry about this.
12148    // bswap $0
12149    if (AsmPieces.size() == 2 &&
12150        (AsmPieces[0] == "bswap" ||
12151         AsmPieces[0] == "bswapq" ||
12152         AsmPieces[0] == "bswapl") &&
12153        (AsmPieces[1] == "$0" ||
12154         AsmPieces[1] == "${0:q}")) {
12155      // No need to check constraints, nothing other than the equivalent of
12156      // "=r,0" would be valid here.
12157      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12158      if (!Ty || Ty->getBitWidth() % 16 != 0)
12159        return false;
12160      return IntrinsicLowering::LowerToByteSwap(CI);
12161    }
12162    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
12163    if (CI->getType()->isIntegerTy(16) &&
12164        AsmPieces.size() == 3 &&
12165        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
12166        AsmPieces[1] == "$$8," &&
12167        AsmPieces[2] == "${0:w}" &&
12168        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12169      AsmPieces.clear();
12170      const std::string &ConstraintsStr = IA->getConstraintString();
12171      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12172      std::sort(AsmPieces.begin(), AsmPieces.end());
12173      if (AsmPieces.size() == 4 &&
12174          AsmPieces[0] == "~{cc}" &&
12175          AsmPieces[1] == "~{dirflag}" &&
12176          AsmPieces[2] == "~{flags}" &&
12177          AsmPieces[3] == "~{fpsr}") {
12178        const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12179        if (!Ty || Ty->getBitWidth() % 16 != 0)
12180          return false;
12181        return IntrinsicLowering::LowerToByteSwap(CI);
12182      }
12183    }
12184    break;
12185  case 3:
12186    if (CI->getType()->isIntegerTy(32) &&
12187        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12188      SmallVector<StringRef, 4> Words;
12189      SplitString(AsmPieces[0], Words, " \t,");
12190      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12191          Words[2] == "${0:w}") {
12192        Words.clear();
12193        SplitString(AsmPieces[1], Words, " \t,");
12194        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
12195            Words[2] == "$0") {
12196          Words.clear();
12197          SplitString(AsmPieces[2], Words, " \t,");
12198          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12199              Words[2] == "${0:w}") {
12200            AsmPieces.clear();
12201            const std::string &ConstraintsStr = IA->getConstraintString();
12202            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12203            std::sort(AsmPieces.begin(), AsmPieces.end());
12204            if (AsmPieces.size() == 4 &&
12205                AsmPieces[0] == "~{cc}" &&
12206                AsmPieces[1] == "~{dirflag}" &&
12207                AsmPieces[2] == "~{flags}" &&
12208                AsmPieces[3] == "~{fpsr}") {
12209              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12210              if (!Ty || Ty->getBitWidth() % 16 != 0)
12211                return false;
12212              return IntrinsicLowering::LowerToByteSwap(CI);
12213            }
12214          }
12215        }
12216      }
12217    }
12218
12219    if (CI->getType()->isIntegerTy(64)) {
12220      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
12221      if (Constraints.size() >= 2 &&
12222          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
12223          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
12224        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
12225        SmallVector<StringRef, 4> Words;
12226        SplitString(AsmPieces[0], Words, " \t");
12227        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
12228          Words.clear();
12229          SplitString(AsmPieces[1], Words, " \t");
12230          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
12231            Words.clear();
12232            SplitString(AsmPieces[2], Words, " \t,");
12233            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
12234                Words[2] == "%edx") {
12235              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12236              if (!Ty || Ty->getBitWidth() % 16 != 0)
12237                return false;
12238              return IntrinsicLowering::LowerToByteSwap(CI);
12239            }
12240          }
12241        }
12242      }
12243    }
12244    break;
12245  }
12246  return false;
12247}
12248
12249
12250
12251/// getConstraintType - Given a constraint letter, return the type of
12252/// constraint it is for this target.
12253X86TargetLowering::ConstraintType
12254X86TargetLowering::getConstraintType(const std::string &Constraint) const {
12255  if (Constraint.size() == 1) {
12256    switch (Constraint[0]) {
12257    case 'R':
12258    case 'q':
12259    case 'Q':
12260    case 'f':
12261    case 't':
12262    case 'u':
12263    case 'y':
12264    case 'x':
12265    case 'Y':
12266      return C_RegisterClass;
12267    case 'a':
12268    case 'b':
12269    case 'c':
12270    case 'd':
12271    case 'S':
12272    case 'D':
12273    case 'A':
12274      return C_Register;
12275    case 'I':
12276    case 'J':
12277    case 'K':
12278    case 'L':
12279    case 'M':
12280    case 'N':
12281    case 'G':
12282    case 'C':
12283    case 'e':
12284    case 'Z':
12285      return C_Other;
12286    default:
12287      break;
12288    }
12289  }
12290  return TargetLowering::getConstraintType(Constraint);
12291}
12292
12293/// Examine constraint type and operand type and determine a weight value.
12294/// This object must already have been set up with the operand type
12295/// and the current alternative constraint selected.
12296TargetLowering::ConstraintWeight
12297  X86TargetLowering::getSingleConstraintMatchWeight(
12298    AsmOperandInfo &info, const char *constraint) const {
12299  ConstraintWeight weight = CW_Invalid;
12300  Value *CallOperandVal = info.CallOperandVal;
12301    // If we don't have a value, we can't do a match,
12302    // but allow it at the lowest weight.
12303  if (CallOperandVal == NULL)
12304    return CW_Default;
12305  const Type *type = CallOperandVal->getType();
12306  // Look at the constraint type.
12307  switch (*constraint) {
12308  default:
12309    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12310  case 'R':
12311  case 'q':
12312  case 'Q':
12313  case 'a':
12314  case 'b':
12315  case 'c':
12316  case 'd':
12317  case 'S':
12318  case 'D':
12319  case 'A':
12320    if (CallOperandVal->getType()->isIntegerTy())
12321      weight = CW_SpecificReg;
12322    break;
12323  case 'f':
12324  case 't':
12325  case 'u':
12326      if (type->isFloatingPointTy())
12327        weight = CW_SpecificReg;
12328      break;
12329  case 'y':
12330      if (type->isX86_MMXTy() && Subtarget->hasMMX())
12331        weight = CW_SpecificReg;
12332      break;
12333  case 'x':
12334  case 'Y':
12335    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
12336      weight = CW_Register;
12337    break;
12338  case 'I':
12339    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
12340      if (C->getZExtValue() <= 31)
12341        weight = CW_Constant;
12342    }
12343    break;
12344  case 'J':
12345    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12346      if (C->getZExtValue() <= 63)
12347        weight = CW_Constant;
12348    }
12349    break;
12350  case 'K':
12351    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12352      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
12353        weight = CW_Constant;
12354    }
12355    break;
12356  case 'L':
12357    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12358      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
12359        weight = CW_Constant;
12360    }
12361    break;
12362  case 'M':
12363    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12364      if (C->getZExtValue() <= 3)
12365        weight = CW_Constant;
12366    }
12367    break;
12368  case 'N':
12369    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12370      if (C->getZExtValue() <= 0xff)
12371        weight = CW_Constant;
12372    }
12373    break;
12374  case 'G':
12375  case 'C':
12376    if (dyn_cast<ConstantFP>(CallOperandVal)) {
12377      weight = CW_Constant;
12378    }
12379    break;
12380  case 'e':
12381    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12382      if ((C->getSExtValue() >= -0x80000000LL) &&
12383          (C->getSExtValue() <= 0x7fffffffLL))
12384        weight = CW_Constant;
12385    }
12386    break;
12387  case 'Z':
12388    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12389      if (C->getZExtValue() <= 0xffffffff)
12390        weight = CW_Constant;
12391    }
12392    break;
12393  }
12394  return weight;
12395}
12396
12397/// LowerXConstraint - try to replace an X constraint, which matches anything,
12398/// with another that has more specific requirements based on the type of the
12399/// corresponding operand.
12400const char *X86TargetLowering::
12401LowerXConstraint(EVT ConstraintVT) const {
12402  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
12403  // 'f' like normal targets.
12404  if (ConstraintVT.isFloatingPoint()) {
12405    if (Subtarget->hasXMMInt())
12406      return "Y";
12407    if (Subtarget->hasXMM())
12408      return "x";
12409  }
12410
12411  return TargetLowering::LowerXConstraint(ConstraintVT);
12412}
12413
12414/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12415/// vector.  If it is invalid, don't add anything to Ops.
12416void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12417                                                     char Constraint,
12418                                                     std::vector<SDValue>&Ops,
12419                                                     SelectionDAG &DAG) const {
12420  SDValue Result(0, 0);
12421
12422  switch (Constraint) {
12423  default: break;
12424  case 'I':
12425    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12426      if (C->getZExtValue() <= 31) {
12427        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12428        break;
12429      }
12430    }
12431    return;
12432  case 'J':
12433    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12434      if (C->getZExtValue() <= 63) {
12435        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12436        break;
12437      }
12438    }
12439    return;
12440  case 'K':
12441    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12442      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
12443        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12444        break;
12445      }
12446    }
12447    return;
12448  case 'N':
12449    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12450      if (C->getZExtValue() <= 255) {
12451        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12452        break;
12453      }
12454    }
12455    return;
12456  case 'e': {
12457    // 32-bit signed value
12458    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12459      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12460                                           C->getSExtValue())) {
12461        // Widen to 64 bits here to get it sign extended.
12462        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
12463        break;
12464      }
12465    // FIXME gcc accepts some relocatable values here too, but only in certain
12466    // memory models; it's complicated.
12467    }
12468    return;
12469  }
12470  case 'Z': {
12471    // 32-bit unsigned value
12472    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12473      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12474                                           C->getZExtValue())) {
12475        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12476        break;
12477      }
12478    }
12479    // FIXME gcc accepts some relocatable values here too, but only in certain
12480    // memory models; it's complicated.
12481    return;
12482  }
12483  case 'i': {
12484    // Literal immediates are always ok.
12485    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
12486      // Widen to 64 bits here to get it sign extended.
12487      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
12488      break;
12489    }
12490
12491    // In any sort of PIC mode addresses need to be computed at runtime by
12492    // adding in a register or some sort of table lookup.  These can't
12493    // be used as immediates.
12494    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
12495      return;
12496
12497    // If we are in non-pic codegen mode, we allow the address of a global (with
12498    // an optional displacement) to be used with 'i'.
12499    GlobalAddressSDNode *GA = 0;
12500    int64_t Offset = 0;
12501
12502    // Match either (GA), (GA+C), (GA+C1+C2), etc.
12503    while (1) {
12504      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
12505        Offset += GA->getOffset();
12506        break;
12507      } else if (Op.getOpcode() == ISD::ADD) {
12508        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12509          Offset += C->getZExtValue();
12510          Op = Op.getOperand(0);
12511          continue;
12512        }
12513      } else if (Op.getOpcode() == ISD::SUB) {
12514        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12515          Offset += -C->getZExtValue();
12516          Op = Op.getOperand(0);
12517          continue;
12518        }
12519      }
12520
12521      // Otherwise, this isn't something we can handle, reject it.
12522      return;
12523    }
12524
12525    const GlobalValue *GV = GA->getGlobal();
12526    // If we require an extra load to get this address, as in PIC mode, we
12527    // can't accept it.
12528    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
12529                                                        getTargetMachine())))
12530      return;
12531
12532    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
12533                                        GA->getValueType(0), Offset);
12534    break;
12535  }
12536  }
12537
12538  if (Result.getNode()) {
12539    Ops.push_back(Result);
12540    return;
12541  }
12542  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12543}
12544
12545std::vector<unsigned> X86TargetLowering::
12546getRegClassForInlineAsmConstraint(const std::string &Constraint,
12547                                  EVT VT) const {
12548  if (Constraint.size() == 1) {
12549    // FIXME: not handling fp-stack yet!
12550    switch (Constraint[0]) {      // GCC X86 Constraint Letters
12551    default: break;  // Unknown constraint letter
12552    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
12553      if (Subtarget->is64Bit()) {
12554        if (VT == MVT::i32)
12555          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
12556                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
12557                                       X86::R10D,X86::R11D,X86::R12D,
12558                                       X86::R13D,X86::R14D,X86::R15D,
12559                                       X86::EBP, X86::ESP, 0);
12560        else if (VT == MVT::i16)
12561          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
12562                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
12563                                       X86::R10W,X86::R11W,X86::R12W,
12564                                       X86::R13W,X86::R14W,X86::R15W,
12565                                       X86::BP,  X86::SP, 0);
12566        else if (VT == MVT::i8)
12567          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
12568                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
12569                                       X86::R10B,X86::R11B,X86::R12B,
12570                                       X86::R13B,X86::R14B,X86::R15B,
12571                                       X86::BPL, X86::SPL, 0);
12572
12573        else if (VT == MVT::i64)
12574          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
12575                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
12576                                       X86::R10, X86::R11, X86::R12,
12577                                       X86::R13, X86::R14, X86::R15,
12578                                       X86::RBP, X86::RSP, 0);
12579
12580        break;
12581      }
12582      // 32-bit fallthrough
12583    case 'Q':   // Q_REGS
12584      if (VT == MVT::i32)
12585        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
12586      else if (VT == MVT::i16)
12587        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
12588      else if (VT == MVT::i8)
12589        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
12590      else if (VT == MVT::i64)
12591        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
12592      break;
12593    }
12594  }
12595
12596  return std::vector<unsigned>();
12597}
12598
12599std::pair<unsigned, const TargetRegisterClass*>
12600X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
12601                                                EVT VT) const {
12602  // First, see if this is a constraint that directly corresponds to an LLVM
12603  // register class.
12604  if (Constraint.size() == 1) {
12605    // GCC Constraint Letters
12606    switch (Constraint[0]) {
12607    default: break;
12608    case 'r':   // GENERAL_REGS
12609    case 'l':   // INDEX_REGS
12610      if (VT == MVT::i8)
12611        return std::make_pair(0U, X86::GR8RegisterClass);
12612      if (VT == MVT::i16)
12613        return std::make_pair(0U, X86::GR16RegisterClass);
12614      if (VT == MVT::i32 || !Subtarget->is64Bit())
12615        return std::make_pair(0U, X86::GR32RegisterClass);
12616      return std::make_pair(0U, X86::GR64RegisterClass);
12617    case 'R':   // LEGACY_REGS
12618      if (VT == MVT::i8)
12619        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
12620      if (VT == MVT::i16)
12621        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
12622      if (VT == MVT::i32 || !Subtarget->is64Bit())
12623        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
12624      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
12625    case 'f':  // FP Stack registers.
12626      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
12627      // value to the correct fpstack register class.
12628      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
12629        return std::make_pair(0U, X86::RFP32RegisterClass);
12630      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
12631        return std::make_pair(0U, X86::RFP64RegisterClass);
12632      return std::make_pair(0U, X86::RFP80RegisterClass);
12633    case 'y':   // MMX_REGS if MMX allowed.
12634      if (!Subtarget->hasMMX()) break;
12635      return std::make_pair(0U, X86::VR64RegisterClass);
12636    case 'Y':   // SSE_REGS if SSE2 allowed
12637      if (!Subtarget->hasXMMInt()) break;
12638      // FALL THROUGH.
12639    case 'x':   // SSE_REGS if SSE1 allowed
12640      if (!Subtarget->hasXMM()) break;
12641
12642      switch (VT.getSimpleVT().SimpleTy) {
12643      default: break;
12644      // Scalar SSE types.
12645      case MVT::f32:
12646      case MVT::i32:
12647        return std::make_pair(0U, X86::FR32RegisterClass);
12648      case MVT::f64:
12649      case MVT::i64:
12650        return std::make_pair(0U, X86::FR64RegisterClass);
12651      // Vector types.
12652      case MVT::v16i8:
12653      case MVT::v8i16:
12654      case MVT::v4i32:
12655      case MVT::v2i64:
12656      case MVT::v4f32:
12657      case MVT::v2f64:
12658        return std::make_pair(0U, X86::VR128RegisterClass);
12659      }
12660      break;
12661    }
12662  }
12663
12664  // Use the default implementation in TargetLowering to convert the register
12665  // constraint into a member of a register class.
12666  std::pair<unsigned, const TargetRegisterClass*> Res;
12667  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
12668
12669  // Not found as a standard register?
12670  if (Res.second == 0) {
12671    // Map st(0) -> st(7) -> ST0
12672    if (Constraint.size() == 7 && Constraint[0] == '{' &&
12673        tolower(Constraint[1]) == 's' &&
12674        tolower(Constraint[2]) == 't' &&
12675        Constraint[3] == '(' &&
12676        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
12677        Constraint[5] == ')' &&
12678        Constraint[6] == '}') {
12679
12680      Res.first = X86::ST0+Constraint[4]-'0';
12681      Res.second = X86::RFP80RegisterClass;
12682      return Res;
12683    }
12684
12685    // GCC allows "st(0)" to be called just plain "st".
12686    if (StringRef("{st}").equals_lower(Constraint)) {
12687      Res.first = X86::ST0;
12688      Res.second = X86::RFP80RegisterClass;
12689      return Res;
12690    }
12691
12692    // flags -> EFLAGS
12693    if (StringRef("{flags}").equals_lower(Constraint)) {
12694      Res.first = X86::EFLAGS;
12695      Res.second = X86::CCRRegisterClass;
12696      return Res;
12697    }
12698
12699    // 'A' means EAX + EDX.
12700    if (Constraint == "A") {
12701      Res.first = X86::EAX;
12702      Res.second = X86::GR32_ADRegisterClass;
12703      return Res;
12704    }
12705    return Res;
12706  }
12707
12708  // Otherwise, check to see if this is a register class of the wrong value
12709  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
12710  // turn into {ax},{dx}.
12711  if (Res.second->hasType(VT))
12712    return Res;   // Correct type already, nothing to do.
12713
12714  // All of the single-register GCC register classes map their values onto
12715  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
12716  // really want an 8-bit or 32-bit register, map to the appropriate register
12717  // class and return the appropriate register.
12718  if (Res.second == X86::GR16RegisterClass) {
12719    if (VT == MVT::i8) {
12720      unsigned DestReg = 0;
12721      switch (Res.first) {
12722      default: break;
12723      case X86::AX: DestReg = X86::AL; break;
12724      case X86::DX: DestReg = X86::DL; break;
12725      case X86::CX: DestReg = X86::CL; break;
12726      case X86::BX: DestReg = X86::BL; break;
12727      }
12728      if (DestReg) {
12729        Res.first = DestReg;
12730        Res.second = X86::GR8RegisterClass;
12731      }
12732    } else if (VT == MVT::i32) {
12733      unsigned DestReg = 0;
12734      switch (Res.first) {
12735      default: break;
12736      case X86::AX: DestReg = X86::EAX; break;
12737      case X86::DX: DestReg = X86::EDX; break;
12738      case X86::CX: DestReg = X86::ECX; break;
12739      case X86::BX: DestReg = X86::EBX; break;
12740      case X86::SI: DestReg = X86::ESI; break;
12741      case X86::DI: DestReg = X86::EDI; break;
12742      case X86::BP: DestReg = X86::EBP; break;
12743      case X86::SP: DestReg = X86::ESP; break;
12744      }
12745      if (DestReg) {
12746        Res.first = DestReg;
12747        Res.second = X86::GR32RegisterClass;
12748      }
12749    } else if (VT == MVT::i64) {
12750      unsigned DestReg = 0;
12751      switch (Res.first) {
12752      default: break;
12753      case X86::AX: DestReg = X86::RAX; break;
12754      case X86::DX: DestReg = X86::RDX; break;
12755      case X86::CX: DestReg = X86::RCX; break;
12756      case X86::BX: DestReg = X86::RBX; break;
12757      case X86::SI: DestReg = X86::RSI; break;
12758      case X86::DI: DestReg = X86::RDI; break;
12759      case X86::BP: DestReg = X86::RBP; break;
12760      case X86::SP: DestReg = X86::RSP; break;
12761      }
12762      if (DestReg) {
12763        Res.first = DestReg;
12764        Res.second = X86::GR64RegisterClass;
12765      }
12766    }
12767  } else if (Res.second == X86::FR32RegisterClass ||
12768             Res.second == X86::FR64RegisterClass ||
12769             Res.second == X86::VR128RegisterClass) {
12770    // Handle references to XMM physical registers that got mapped into the
12771    // wrong class.  This can happen with constraints like {xmm0} where the
12772    // target independent register mapper will just pick the first match it can
12773    // find, ignoring the required type.
12774    if (VT == MVT::f32)
12775      Res.second = X86::FR32RegisterClass;
12776    else if (VT == MVT::f64)
12777      Res.second = X86::FR64RegisterClass;
12778    else if (X86::VR128RegisterClass->hasType(VT))
12779      Res.second = X86::VR128RegisterClass;
12780  }
12781
12782  return Res;
12783}
12784