X86ISelLowering.cpp revision c5eaae4e9bc75b203b3a9922b480729bc4f340e2
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec,
66                                   SDValue Idx,
67                                   SelectionDAG &DAG,
68                                   DebugLoc dl) {
69  EVT VT = Vec.getValueType();
70  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
71  EVT ElVT = VT.getVectorElementType();
72  int Factor = VT.getSizeInBits()/128;
73  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
74                                  VT.getVectorNumElements()/Factor);
75
76  // Extract from UNDEF is UNDEF.
77  if (Vec.getOpcode() == ISD::UNDEF)
78    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
79
80  if (isa<ConstantSDNode>(Idx)) {
81    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
82
83    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
84    // we can match to VEXTRACTF128.
85    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
86
87    // This is the index of the first element of the 128-bit chunk
88    // we want.
89    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
90                                 * ElemsPerChunk);
91
92    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
93    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
94                                 VecIdx);
95
96    return Result;
97  }
98
99  return SDValue();
100}
101
102/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
103/// sets things up to match to an AVX VINSERTF128 instruction or a
104/// simple superregister reference.  Idx is an index in the 128 bits
105/// we want.  It need not be aligned to a 128-bit bounday.  That makes
106/// lowering INSERT_VECTOR_ELT operations easier.
107static SDValue Insert128BitVector(SDValue Result,
108                                  SDValue Vec,
109                                  SDValue Idx,
110                                  SelectionDAG &DAG,
111                                  DebugLoc dl) {
112  if (isa<ConstantSDNode>(Idx)) {
113    EVT VT = Vec.getValueType();
114    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
115
116    EVT ElVT = VT.getVectorElementType();
117    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
118    EVT ResultVT = Result.getValueType();
119
120    // Insert the relevant 128 bits.
121    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
122
123    // This is the index of the first element of the 128-bit chunk
124    // we want.
125    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
126                                 * ElemsPerChunk);
127
128    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
129    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
130                         VecIdx);
131    return Result;
132  }
133
134  return SDValue();
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X8664_MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetELF())
148    return new TargetLoweringObjectFileELF();
149  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
150    return new TargetLoweringObjectFileCOFF();
151  llvm_unreachable("unknown subtarget type");
152}
153
154X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
155  : TargetLowering(TM, createTLOF(TM)) {
156  Subtarget = &TM.getSubtarget<X86Subtarget>();
157  X86ScalarSSEf64 = Subtarget->hasSSE2();
158  X86ScalarSSEf32 = Subtarget->hasSSE1();
159  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
160
161  RegInfo = TM.getRegisterInfo();
162  TD = getTargetData();
163
164  // Set up the TargetLowering object.
165  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
166
167  // X86 is weird, it always uses i8 for shift amounts and setcc results.
168  setBooleanContents(ZeroOrOneBooleanContent);
169  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
170  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
171
172  // For 64-bit since we have so many registers use the ILP scheduler, for
173  // 32-bit code use the register pressure specific scheduling.
174  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
175  if (Subtarget->is64Bit())
176    setSchedulingPreference(Sched::ILP);
177  else if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::Hybrid);
179  else
180    setSchedulingPreference(Sched::RegPressure);
181  setStackPointerRegisterToSaveRestore(X86StackPtr);
182
183  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
184    // Setup Windows compiler runtime calls.
185    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
186    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
187    setLibcallName(RTLIB::SREM_I64, "_allrem");
188    setLibcallName(RTLIB::UREM_I64, "_aullrem");
189    setLibcallName(RTLIB::MUL_I64, "_allmul");
190    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
191    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
192    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
195
196    // The _ftol2 runtime function has an unusual calling conv, which
197    // is modeled by a special pseudo-instruction.
198    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
199    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
200    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
201    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
202  }
203
204  if (Subtarget->isTargetDarwin()) {
205    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
206    setUseUnderscoreSetJmp(false);
207    setUseUnderscoreLongJmp(false);
208  } else if (Subtarget->isTargetMingw()) {
209    // MS runtime is weird: it exports _setjmp, but longjmp!
210    setUseUnderscoreSetJmp(true);
211    setUseUnderscoreLongJmp(false);
212  } else {
213    setUseUnderscoreSetJmp(true);
214    setUseUnderscoreLongJmp(true);
215  }
216
217  // Set up the register classes.
218  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
219  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
220  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
221  if (Subtarget->is64Bit())
222    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
223
224  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
225
226  // We don't accept any truncstore of integer registers.
227  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
228  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
230  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
233
234  // SETOEQ and SETUNE require checking two conditions.
235  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
236  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
238  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
241
242  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
243  // operation.
244  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
247
248  if (Subtarget->is64Bit()) {
249    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251  } else if (!TM.Options.UseSoftFloat) {
252    // We have an algorithm for SSE2->double, and we turn this into a
253    // 64-bit FILD followed by conditional FADD for other targets.
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
255    // We have an algorithm for SSE2, and we turn this into a 64-bit
256    // FILD for other targets.
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
258  }
259
260  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
261  // this operation.
262  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
264
265  if (!TM.Options.UseSoftFloat) {
266    // SSE has no i16 to fp conversion, only i32
267    if (X86ScalarSSEf32) {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
269      // f32 and f64 cases are Legal, f80 case is not
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
271    } else {
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
274    }
275  } else {
276    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
278  }
279
280  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
281  // are Legal, f80 is custom lowered.
282  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
283  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
284
285  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
286  // this operation.
287  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
289
290  if (X86ScalarSSEf32) {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
292    // f32 and f64 cases are Legal, f80 case is not
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
294  } else {
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
297  }
298
299  // Handle FP_TO_UINT by promoting the destination to a larger signed
300  // conversion.
301  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
304
305  if (Subtarget->is64Bit()) {
306    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
308  } else if (!TM.Options.UseSoftFloat) {
309    // Since AVX is a superset of SSE3, only check for SSE here.
310    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
311      // Expand FP_TO_UINT into a select.
312      // FIXME: We would like to use a Custom expander here eventually to do
313      // the optimal thing for SSE vs. the default expansion in the legalizer.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
315    else
316      // With SSE3 we can use fisttpll to convert to a signed i64; without
317      // SSE, we're stuck with a fistpll.
318      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
319  }
320
321  if (isTargetFTOL()) {
322    // Use the _ftol2 runtime function, which has a pseudo-instruction
323    // to handle its weird calling convention.
324    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
325  }
326
327  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
328  if (!X86ScalarSSEf64) {
329    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
330    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
331    if (Subtarget->is64Bit()) {
332      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
333      // Without SSE, i64->f64 goes through memory.
334      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
335    }
336  }
337
338  // Scalar integer divide and remainder are lowered to use operations that
339  // produce two results, to match the available instructions. This exposes
340  // the two-result form to trivial CSE, which is able to combine x/y and x%y
341  // into a single instruction.
342  //
343  // Scalar integer multiply-high is also lowered to use two-result
344  // operations, to match the available instructions. However, plain multiply
345  // (low) operations are left as Legal, as there are single-result
346  // instructions for this in x86. Using the two-result multiply instructions
347  // when both high and low results are needed must be arranged by dagcombine.
348  for (unsigned i = 0, e = 4; i != e; ++i) {
349    MVT VT = IntVTs[i];
350    setOperationAction(ISD::MULHS, VT, Expand);
351    setOperationAction(ISD::MULHU, VT, Expand);
352    setOperationAction(ISD::SDIV, VT, Expand);
353    setOperationAction(ISD::UDIV, VT, Expand);
354    setOperationAction(ISD::SREM, VT, Expand);
355    setOperationAction(ISD::UREM, VT, Expand);
356
357    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
358    setOperationAction(ISD::ADDC, VT, Custom);
359    setOperationAction(ISD::ADDE, VT, Custom);
360    setOperationAction(ISD::SUBC, VT, Custom);
361    setOperationAction(ISD::SUBE, VT, Custom);
362  }
363
364  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
365  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
366  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
367  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
368  if (Subtarget->is64Bit())
369    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
373  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
377  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
378
379  // Promote the i8 variants and force them on up to i32 which has a shorter
380  // encoding.
381  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
382  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
383  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
385  if (Subtarget->hasBMI()) {
386    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
387    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
388    if (Subtarget->is64Bit())
389      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
390  } else {
391    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
392    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
395  }
396
397  if (Subtarget->hasLZCNT()) {
398    // When promoting the i8 variants, force them to i32 for a shorter
399    // encoding.
400    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
401    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
402    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
406    if (Subtarget->is64Bit())
407      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
408  } else {
409    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
410    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
411    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
412    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
415    if (Subtarget->is64Bit()) {
416      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
417      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
418    }
419  }
420
421  if (Subtarget->hasPOPCNT()) {
422    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
423  } else {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
425    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
426    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
427    if (Subtarget->is64Bit())
428      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
429  }
430
431  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
432  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
433
434  // These should be promoted to a larger select which is supported.
435  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
436  // X86 wants to expand cmov itself.
437  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
438  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
439  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
449  if (Subtarget->is64Bit()) {
450    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
451    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
452  }
453  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
454
455  // Darwin ABI issue.
456  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
457  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
458  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
459  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
460  if (Subtarget->is64Bit())
461    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
462  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
463  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
464  if (Subtarget->is64Bit()) {
465    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
466    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
467    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
468    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
469    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
470  }
471  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
472  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
473  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
474  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
475  if (Subtarget->is64Bit()) {
476    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
477    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
478    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
479  }
480
481  if (Subtarget->hasSSE1())
482    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
483
484  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
485  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
486
487  // On X86 and X86-64, atomic operations are lowered to locked instructions.
488  // Locked instructions, in turn, have implicit fence semantics (all memory
489  // operations are flushed before issuing the locked instruction, and they
490  // are not buffered), so we can fold away the common pattern of
491  // fence-atomic-fence.
492  setShouldFoldAtomicFences(true);
493
494  // Expand certain atomics
495  for (unsigned i = 0, e = 4; i != e; ++i) {
496    MVT VT = IntVTs[i];
497    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
498    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
499    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
500  }
501
502  if (!Subtarget->is64Bit()) {
503    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
511  }
512
513  if (Subtarget->hasCmpxchg16b()) {
514    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
515  }
516
517  // FIXME - use subtarget debug flags
518  if (!Subtarget->isTargetDarwin() &&
519      !Subtarget->isTargetELF() &&
520      !Subtarget->isTargetCygMing()) {
521    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
522  }
523
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
528  if (Subtarget->is64Bit()) {
529    setExceptionPointerRegister(X86::RAX);
530    setExceptionSelectorRegister(X86::RDX);
531  } else {
532    setExceptionPointerRegister(X86::EAX);
533    setExceptionSelectorRegister(X86::EDX);
534  }
535  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
536  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
537
538  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
539  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
540
541  setOperationAction(ISD::TRAP, MVT::Other, Legal);
542
543  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
544  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
545  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
546  if (Subtarget->is64Bit()) {
547    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
549  } else {
550    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
551    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
552  }
553
554  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
555  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
556
557  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
558    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
559                       MVT::i64 : MVT::i32, Custom);
560  else if (TM.Options.EnableSegmentedStacks)
561    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
562                       MVT::i64 : MVT::i32, Custom);
563  else
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Expand);
566
567  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
568    // f32 and f64 use SSE.
569    // Set up the FP register classes.
570    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
571    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
572
573    // Use ANDPD to simulate FABS.
574    setOperationAction(ISD::FABS , MVT::f64, Custom);
575    setOperationAction(ISD::FABS , MVT::f32, Custom);
576
577    // Use XORP to simulate FNEG.
578    setOperationAction(ISD::FNEG , MVT::f64, Custom);
579    setOperationAction(ISD::FNEG , MVT::f32, Custom);
580
581    // Use ANDPD and ORPD to simulate FCOPYSIGN.
582    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
583    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
584
585    // Lower this to FGETSIGNx86 plus an AND.
586    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
587    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
588
589    // We don't support sin/cos/fmod
590    setOperationAction(ISD::FSIN , MVT::f64, Expand);
591    setOperationAction(ISD::FCOS , MVT::f64, Expand);
592    setOperationAction(ISD::FSIN , MVT::f32, Expand);
593    setOperationAction(ISD::FCOS , MVT::f32, Expand);
594
595    // Expand FP immediates into loads from the stack, except for the special
596    // cases we handle.
597    addLegalFPImmediate(APFloat(+0.0)); // xorpd
598    addLegalFPImmediate(APFloat(+0.0f)); // xorps
599  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
600    // Use SSE for f32, x87 for f64.
601    // Set up the FP register classes.
602    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
603    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
604
605    // Use ANDPS to simulate FABS.
606    setOperationAction(ISD::FABS , MVT::f32, Custom);
607
608    // Use XORP to simulate FNEG.
609    setOperationAction(ISD::FNEG , MVT::f32, Custom);
610
611    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
612
613    // Use ANDPS and ORPS to simulate FCOPYSIGN.
614    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
615    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
616
617    // We don't support sin/cos/fmod
618    setOperationAction(ISD::FSIN , MVT::f32, Expand);
619    setOperationAction(ISD::FCOS , MVT::f32, Expand);
620
621    // Special cases we handle for FP constants.
622    addLegalFPImmediate(APFloat(+0.0f)); // xorps
623    addLegalFPImmediate(APFloat(+0.0)); // FLD0
624    addLegalFPImmediate(APFloat(+1.0)); // FLD1
625    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
626    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
627
628    if (!TM.Options.UnsafeFPMath) {
629      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
630      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
631    }
632  } else if (!TM.Options.UseSoftFloat) {
633    // f32 and f64 in x87.
634    // Set up the FP register classes.
635    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
636    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
637
638    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
639    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
640    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
641    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
642
643    if (!TM.Options.UnsafeFPMath) {
644      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
645      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
646    }
647    addLegalFPImmediate(APFloat(+0.0)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
651    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
652    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
653    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
654    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
655  }
656
657  // We don't support FMA.
658  setOperationAction(ISD::FMA, MVT::f64, Expand);
659  setOperationAction(ISD::FMA, MVT::f32, Expand);
660
661  // Long double always uses X87.
662  if (!TM.Options.UseSoftFloat) {
663    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
664    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
665    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
666    {
667      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
668      addLegalFPImmediate(TmpFlt);  // FLD0
669      TmpFlt.changeSign();
670      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
671
672      bool ignored;
673      APFloat TmpFlt2(+1.0);
674      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
675                      &ignored);
676      addLegalFPImmediate(TmpFlt2);  // FLD1
677      TmpFlt2.changeSign();
678      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
679    }
680
681    if (!TM.Options.UnsafeFPMath) {
682      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
683      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
684    }
685
686    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
687    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
688    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
689    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
690    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
691    setOperationAction(ISD::FMA, MVT::f80, Expand);
692  }
693
694  // Always use a library call for pow.
695  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
696  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
697  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
698
699  setOperationAction(ISD::FLOG, MVT::f80, Expand);
700  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
701  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
702  setOperationAction(ISD::FEXP, MVT::f80, Expand);
703  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
704
705  // First set operation action for all vector types to either promote
706  // (for widening) or expand (for scalarization). Then we will selectively
707  // turn on ones that can be effectively codegen'd.
708  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
709       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
710    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
725    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
762    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
767    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
768         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
769      setTruncStoreAction((MVT::SimpleValueType)VT,
770                          (MVT::SimpleValueType)InnerVT, Expand);
771    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
772    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
773    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
774  }
775
776  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
777  // with -msoft-float, disable use of MMX as well.
778  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
779    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
780    // No operations on x86mmx supported, everything uses intrinsics.
781  }
782
783  // MMX-sized vectors (other than x86mmx) are expected to be expanded
784  // into smaller operations.
785  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
786  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
787  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
788  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
789  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
790  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
791  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
792  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
793  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
794  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
795  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
796  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
797  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
798  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
799  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
800  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
801  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
802  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
805  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
806  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
807  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
810  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
811  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
814
815  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
816    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
817
818    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
819    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
820    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
823    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
824    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
825    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
826    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
827    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
828    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
829    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
830  }
831
832  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
833    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
834
835    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
836    // registers cannot be used even for integer operations.
837    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
838    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
839    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
840    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
841
842    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
843    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
844    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
845    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
846    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
847    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
848    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
849    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
850    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
851    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
852    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
853    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
854    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
857    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
858
859    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
860    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
861    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
863
864    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
865    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
866    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
867    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
869
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
871    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
875
876    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
877    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
878      EVT VT = (MVT::SimpleValueType)i;
879      // Do not attempt to custom lower non-power-of-2 vectors
880      if (!isPowerOf2_32(VT.getVectorNumElements()))
881        continue;
882      // Do not attempt to custom lower non-128-bit vectors
883      if (!VT.is128BitVector())
884        continue;
885      setOperationAction(ISD::BUILD_VECTOR,
886                         VT.getSimpleVT().SimpleTy, Custom);
887      setOperationAction(ISD::VECTOR_SHUFFLE,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
890                         VT.getSimpleVT().SimpleTy, Custom);
891    }
892
893    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
894    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
895    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
896    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
898    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
899
900    if (Subtarget->is64Bit()) {
901      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
902      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
903    }
904
905    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
906    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
907      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
908      EVT VT = SVT;
909
910      // Do not attempt to promote non-128-bit vectors
911      if (!VT.is128BitVector())
912        continue;
913
914      setOperationAction(ISD::AND,    SVT, Promote);
915      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
916      setOperationAction(ISD::OR,     SVT, Promote);
917      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
918      setOperationAction(ISD::XOR,    SVT, Promote);
919      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
920      setOperationAction(ISD::LOAD,   SVT, Promote);
921      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
922      setOperationAction(ISD::SELECT, SVT, Promote);
923      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
924    }
925
926    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
927
928    // Custom lower v2i64 and v2f64 selects.
929    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
930    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
931    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
932    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
933
934    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
935    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
936  }
937
938  if (Subtarget->hasSSE41()) {
939    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
940    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
941    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
942    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
943    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
944    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
945    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
946    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
947    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
948    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
949
950    // FIXME: Do we need to handle scalar-to-vector here?
951    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
952
953    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
954    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
955    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
958
959    // i8 and i16 vectors are custom , because the source register and source
960    // source memory operand types are not the same width.  f32 vectors are
961    // custom since the immediate controlling the insert encodes additional
962    // information.
963    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
967
968    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
969    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
972
973    // FIXME: these should be Legal but thats only for the case where
974    // the index is constant.  For now custom expand to deal with that.
975    if (Subtarget->is64Bit()) {
976      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
977      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
978    }
979  }
980
981  if (Subtarget->hasSSE2()) {
982    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
983    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
984
985    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
986    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
987
988    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
990
991    if (Subtarget->hasAVX2()) {
992      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
993      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
994
995      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
996      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
997
998      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
999    } else {
1000      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1001      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1002
1003      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1004      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1005
1006      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1007    }
1008  }
1009
1010  if (Subtarget->hasSSE42())
1011    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1012
1013  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1014    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1015    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1016    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1017    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1019    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1020
1021    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1024
1025    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1026    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1030    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1031
1032    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1033    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1034    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1037    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1038
1039    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1040    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1041    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1042
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1049
1050    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1051    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1052
1053    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1054    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1055
1056    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1060    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1063
1064    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1065    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1066    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1067
1068    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1069    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1072
1073    if (Subtarget->hasAVX2()) {
1074      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1075      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1076      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1078
1079      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1080      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1081      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1083
1084      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1085      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1086      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1087      // Don't lower v32i8 because there is no 128-bit byte mul
1088
1089      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1090
1091      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1092      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1093
1094      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1095      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1096
1097      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1098    } else {
1099      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1100      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1101      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1103
1104      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1105      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1106      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1108
1109      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1110      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1111      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1112      // Don't lower v32i8 because there is no 128-bit byte mul
1113
1114      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1116
1117      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1118      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1119
1120      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1121    }
1122
1123    // Custom lower several nodes for 256-bit types.
1124    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1125                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1126      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1127      EVT VT = SVT;
1128
1129      // Extract subvector is special because the value type
1130      // (result) is 128-bit but the source is 256-bit wide.
1131      if (VT.is128BitVector())
1132        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1133
1134      // Do not attempt to custom lower other non-256-bit vectors
1135      if (!VT.is256BitVector())
1136        continue;
1137
1138      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1139      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1140      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1141      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1142      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1143      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1144    }
1145
1146    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1147    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1148      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1149      EVT VT = SVT;
1150
1151      // Do not attempt to promote non-256-bit vectors
1152      if (!VT.is256BitVector())
1153        continue;
1154
1155      setOperationAction(ISD::AND,    SVT, Promote);
1156      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::OR,     SVT, Promote);
1158      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1159      setOperationAction(ISD::XOR,    SVT, Promote);
1160      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1161      setOperationAction(ISD::LOAD,   SVT, Promote);
1162      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1163      setOperationAction(ISD::SELECT, SVT, Promote);
1164      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1165    }
1166  }
1167
1168  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1169  // of this type with custom code.
1170  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1171         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1172    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1173                       Custom);
1174  }
1175
1176  // We want to custom lower some of our intrinsics.
1177  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1178
1179
1180  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1181  // handle type legalization for these operations here.
1182  //
1183  // FIXME: We really should do custom legalization for addition and
1184  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1185  // than generic legalization for 64-bit multiplication-with-overflow, though.
1186  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1187    // Add/Sub/Mul with overflow operations are custom lowered.
1188    MVT VT = IntVTs[i];
1189    setOperationAction(ISD::SADDO, VT, Custom);
1190    setOperationAction(ISD::UADDO, VT, Custom);
1191    setOperationAction(ISD::SSUBO, VT, Custom);
1192    setOperationAction(ISD::USUBO, VT, Custom);
1193    setOperationAction(ISD::SMULO, VT, Custom);
1194    setOperationAction(ISD::UMULO, VT, Custom);
1195  }
1196
1197  // There are no 8-bit 3-address imul/mul instructions
1198  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1199  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1200
1201  if (!Subtarget->is64Bit()) {
1202    // These libcalls are not available in 32-bit.
1203    setLibcallName(RTLIB::SHL_I128, 0);
1204    setLibcallName(RTLIB::SRL_I128, 0);
1205    setLibcallName(RTLIB::SRA_I128, 0);
1206  }
1207
1208  // We have target-specific dag combine patterns for the following nodes:
1209  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1210  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1211  setTargetDAGCombine(ISD::VSELECT);
1212  setTargetDAGCombine(ISD::SELECT);
1213  setTargetDAGCombine(ISD::SHL);
1214  setTargetDAGCombine(ISD::SRA);
1215  setTargetDAGCombine(ISD::SRL);
1216  setTargetDAGCombine(ISD::OR);
1217  setTargetDAGCombine(ISD::AND);
1218  setTargetDAGCombine(ISD::ADD);
1219  setTargetDAGCombine(ISD::FADD);
1220  setTargetDAGCombine(ISD::FSUB);
1221  setTargetDAGCombine(ISD::SUB);
1222  setTargetDAGCombine(ISD::LOAD);
1223  setTargetDAGCombine(ISD::STORE);
1224  setTargetDAGCombine(ISD::ZERO_EXTEND);
1225  setTargetDAGCombine(ISD::SIGN_EXTEND);
1226  setTargetDAGCombine(ISD::TRUNCATE);
1227  setTargetDAGCombine(ISD::SINT_TO_FP);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279  return;
1280}
1281
1282/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283/// function arguments in the caller parameter area. For X86, aggregates
1284/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285/// are at 4-byte boundaries.
1286unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287  if (Subtarget->is64Bit()) {
1288    // Max of 8 and alignment of type.
1289    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1290    if (TyAlign > 8)
1291      return TyAlign;
1292    return 8;
1293  }
1294
1295  unsigned Align = 4;
1296  if (Subtarget->hasSSE1())
1297    getMaxByValAlign(Ty, Align);
1298  return Align;
1299}
1300
1301/// getOptimalMemOpType - Returns the target specific optimal type for load
1302/// and store operations as a result of memset, memcpy, and memmove
1303/// lowering. If DstAlign is zero that means it's safe to destination
1304/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305/// means there isn't a need to check it against alignment requirement,
1306/// probably because the source does not need to be loaded. If
1307/// 'IsZeroVal' is true, that means it's safe to return a
1308/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310/// constant so it does not need to be loaded.
1311/// It returns EVT::Other if the type should be determined using generic
1312/// target-independent logic.
1313EVT
1314X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315                                       unsigned DstAlign, unsigned SrcAlign,
1316                                       bool IsZeroVal,
1317                                       bool MemcpyStrSrc,
1318                                       MachineFunction &MF) const {
1319  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320  // linux.  This is because the stack realignment code can't handle certain
1321  // cases like PR2962.  This should be removed when PR2962 is fixed.
1322  const Function *F = MF.getFunction();
1323  if (IsZeroVal &&
1324      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1325    if (Size >= 16 &&
1326        (Subtarget->isUnalignedMemAccessFast() ||
1327         ((DstAlign == 0 || DstAlign >= 16) &&
1328          (SrcAlign == 0 || SrcAlign >= 16))) &&
1329        Subtarget->getStackAlignment() >= 16) {
1330      if (Subtarget->getStackAlignment() >= 32) {
1331        if (Subtarget->hasAVX2())
1332          return MVT::v8i32;
1333        if (Subtarget->hasAVX())
1334          return MVT::v8f32;
1335      }
1336      if (Subtarget->hasSSE2())
1337        return MVT::v4i32;
1338      if (Subtarget->hasSSE1())
1339        return MVT::v4f32;
1340    } else if (!MemcpyStrSrc && Size >= 8 &&
1341               !Subtarget->is64Bit() &&
1342               Subtarget->getStackAlignment() >= 8 &&
1343               Subtarget->hasSSE2()) {
1344      // Do not use f64 to lower memcpy if source is string constant. It's
1345      // better to use i32 to avoid the loads.
1346      return MVT::f64;
1347    }
1348  }
1349  if (Subtarget->is64Bit() && Size >= 8)
1350    return MVT::i64;
1351  return MVT::i32;
1352}
1353
1354/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1355/// current function.  The returned value is a member of the
1356/// MachineJumpTableInfo::JTEntryKind enum.
1357unsigned X86TargetLowering::getJumpTableEncoding() const {
1358  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1359  // symbol.
1360  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1361      Subtarget->isPICStyleGOT())
1362    return MachineJumpTableInfo::EK_Custom32;
1363
1364  // Otherwise, use the normal jump table encoding heuristics.
1365  return TargetLowering::getJumpTableEncoding();
1366}
1367
1368const MCExpr *
1369X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1370                                             const MachineBasicBlock *MBB,
1371                                             unsigned uid,MCContext &Ctx) const{
1372  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1373         Subtarget->isPICStyleGOT());
1374  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1375  // entries.
1376  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1377                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1378}
1379
1380/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1381/// jumptable.
1382SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1383                                                    SelectionDAG &DAG) const {
1384  if (!Subtarget->is64Bit())
1385    // This doesn't have DebugLoc associated with it, but is not really the
1386    // same as a Register.
1387    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1388  return Table;
1389}
1390
1391/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1392/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1393/// MCExpr.
1394const MCExpr *X86TargetLowering::
1395getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1396                             MCContext &Ctx) const {
1397  // X86-64 uses RIP relative addressing based on the jump table label.
1398  if (Subtarget->isPICStyleRIPRel())
1399    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1400
1401  // Otherwise, the reference is relative to the PIC base.
1402  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1403}
1404
1405// FIXME: Why this routine is here? Move to RegInfo!
1406std::pair<const TargetRegisterClass*, uint8_t>
1407X86TargetLowering::findRepresentativeClass(EVT VT) const{
1408  const TargetRegisterClass *RRC = 0;
1409  uint8_t Cost = 1;
1410  switch (VT.getSimpleVT().SimpleTy) {
1411  default:
1412    return TargetLowering::findRepresentativeClass(VT);
1413  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1414    RRC = (Subtarget->is64Bit()
1415           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1416    break;
1417  case MVT::x86mmx:
1418    RRC = X86::VR64RegisterClass;
1419    break;
1420  case MVT::f32: case MVT::f64:
1421  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1422  case MVT::v4f32: case MVT::v2f64:
1423  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1424  case MVT::v4f64:
1425    RRC = X86::VR128RegisterClass;
1426    break;
1427  }
1428  return std::make_pair(RRC, Cost);
1429}
1430
1431bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1432                                               unsigned &Offset) const {
1433  if (!Subtarget->isTargetLinux())
1434    return false;
1435
1436  if (Subtarget->is64Bit()) {
1437    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1438    Offset = 0x28;
1439    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1440      AddressSpace = 256;
1441    else
1442      AddressSpace = 257;
1443  } else {
1444    // %gs:0x14 on i386
1445    Offset = 0x14;
1446    AddressSpace = 256;
1447  }
1448  return true;
1449}
1450
1451
1452//===----------------------------------------------------------------------===//
1453//               Return Value Calling Convention Implementation
1454//===----------------------------------------------------------------------===//
1455
1456#include "X86GenCallingConv.inc"
1457
1458bool
1459X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1460				  MachineFunction &MF, bool isVarArg,
1461                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1462                        LLVMContext &Context) const {
1463  SmallVector<CCValAssign, 16> RVLocs;
1464  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1465                 RVLocs, Context);
1466  return CCInfo.CheckReturn(Outs, RetCC_X86);
1467}
1468
1469SDValue
1470X86TargetLowering::LowerReturn(SDValue Chain,
1471                               CallingConv::ID CallConv, bool isVarArg,
1472                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1473                               const SmallVectorImpl<SDValue> &OutVals,
1474                               DebugLoc dl, SelectionDAG &DAG) const {
1475  MachineFunction &MF = DAG.getMachineFunction();
1476  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1477
1478  SmallVector<CCValAssign, 16> RVLocs;
1479  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1482
1483  // Add the regs to the liveout set for the function.
1484  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1485  for (unsigned i = 0; i != RVLocs.size(); ++i)
1486    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1487      MRI.addLiveOut(RVLocs[i].getLocReg());
1488
1489  SDValue Flag;
1490
1491  SmallVector<SDValue, 6> RetOps;
1492  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1493  // Operand #1 = Bytes To Pop
1494  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1495                   MVT::i16));
1496
1497  // Copy the result values into the output registers.
1498  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1499    CCValAssign &VA = RVLocs[i];
1500    assert(VA.isRegLoc() && "Can only return in registers!");
1501    SDValue ValToCopy = OutVals[i];
1502    EVT ValVT = ValToCopy.getValueType();
1503
1504    // If this is x86-64, and we disabled SSE, we can't return FP values,
1505    // or SSE or MMX vectors.
1506    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1507         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1508          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1509      report_fatal_error("SSE register return with SSE disabled");
1510    }
1511    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1512    // llvm-gcc has never done it right and no one has noticed, so this
1513    // should be OK for now.
1514    if (ValVT == MVT::f64 &&
1515        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1516      report_fatal_error("SSE2 register return with SSE2 disabled");
1517
1518    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1519    // the RET instruction and handled by the FP Stackifier.
1520    if (VA.getLocReg() == X86::ST0 ||
1521        VA.getLocReg() == X86::ST1) {
1522      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1523      // change the value to the FP stack register class.
1524      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1525        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1526      RetOps.push_back(ValToCopy);
1527      // Don't emit a copytoreg.
1528      continue;
1529    }
1530
1531    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1532    // which is returned in RAX / RDX.
1533    if (Subtarget->is64Bit()) {
1534      if (ValVT == MVT::x86mmx) {
1535        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1536          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1537          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1538                                  ValToCopy);
1539          // If we don't have SSE2 available, convert to v4f32 so the generated
1540          // register is legal.
1541          if (!Subtarget->hasSSE2())
1542            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1543        }
1544      }
1545    }
1546
1547    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1548    Flag = Chain.getValue(1);
1549  }
1550
1551  // The x86-64 ABI for returning structs by value requires that we copy
1552  // the sret argument into %rax for the return. We saved the argument into
1553  // a virtual register in the entry block, so now we copy the value out
1554  // and into %rax.
1555  if (Subtarget->is64Bit() &&
1556      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1557    MachineFunction &MF = DAG.getMachineFunction();
1558    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1559    unsigned Reg = FuncInfo->getSRetReturnReg();
1560    assert(Reg &&
1561           "SRetReturnReg should have been set in LowerFormalArguments().");
1562    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1563
1564    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1565    Flag = Chain.getValue(1);
1566
1567    // RAX now acts like a return value.
1568    MRI.addLiveOut(X86::RAX);
1569  }
1570
1571  RetOps[0] = Chain;  // Update chain.
1572
1573  // Add the flag if we have it.
1574  if (Flag.getNode())
1575    RetOps.push_back(Flag);
1576
1577  return DAG.getNode(X86ISD::RET_FLAG, dl,
1578                     MVT::Other, &RetOps[0], RetOps.size());
1579}
1580
1581bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1582  if (N->getNumValues() != 1)
1583    return false;
1584  if (!N->hasNUsesOfValue(1, 0))
1585    return false;
1586
1587  SDNode *Copy = *N->use_begin();
1588  if (Copy->getOpcode() == ISD::CopyToReg) {
1589    // If the copy has a glue operand, we conservatively assume it isn't safe to
1590    // perform a tail call.
1591    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1592      return false;
1593  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1594    return false;
1595
1596  bool HasRet = false;
1597  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1598       UI != UE; ++UI) {
1599    if (UI->getOpcode() != X86ISD::RET_FLAG)
1600      return false;
1601    HasRet = true;
1602  }
1603
1604  return HasRet;
1605}
1606
1607EVT
1608X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1609                                            ISD::NodeType ExtendKind) const {
1610  MVT ReturnMVT;
1611  // TODO: Is this also valid on 32-bit?
1612  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1613    ReturnMVT = MVT::i8;
1614  else
1615    ReturnMVT = MVT::i32;
1616
1617  EVT MinVT = getRegisterType(Context, ReturnMVT);
1618  return VT.bitsLT(MinVT) ? MinVT : VT;
1619}
1620
1621/// LowerCallResult - Lower the result values of a call into the
1622/// appropriate copies out of appropriate physical registers.
1623///
1624SDValue
1625X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1626                                   CallingConv::ID CallConv, bool isVarArg,
1627                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1628                                   DebugLoc dl, SelectionDAG &DAG,
1629                                   SmallVectorImpl<SDValue> &InVals) const {
1630
1631  // Assign locations to each value returned by this call.
1632  SmallVector<CCValAssign, 16> RVLocs;
1633  bool Is64Bit = Subtarget->is64Bit();
1634  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1635		 getTargetMachine(), RVLocs, *DAG.getContext());
1636  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1637
1638  // Copy all of the result registers out of their specified physreg.
1639  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1640    CCValAssign &VA = RVLocs[i];
1641    EVT CopyVT = VA.getValVT();
1642
1643    // If this is x86-64, and we disabled SSE, we can't return FP values
1644    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1645        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1646      report_fatal_error("SSE register return with SSE disabled");
1647    }
1648
1649    SDValue Val;
1650
1651    // If this is a call to a function that returns an fp value on the floating
1652    // point stack, we must guarantee the the value is popped from the stack, so
1653    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1654    // if the return value is not used. We use the FpPOP_RETVAL instruction
1655    // instead.
1656    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1657      // If we prefer to use the value in xmm registers, copy it out as f80 and
1658      // use a truncate to move it from fp stack reg to xmm reg.
1659      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1660      SDValue Ops[] = { Chain, InFlag };
1661      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1662                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1663      Val = Chain.getValue(0);
1664
1665      // Round the f80 to the right size, which also moves it to the appropriate
1666      // xmm register.
1667      if (CopyVT != VA.getValVT())
1668        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1669                          // This truncation won't change the value.
1670                          DAG.getIntPtrConstant(1));
1671    } else {
1672      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1673                                 CopyVT, InFlag).getValue(1);
1674      Val = Chain.getValue(0);
1675    }
1676    InFlag = Chain.getValue(2);
1677    InVals.push_back(Val);
1678  }
1679
1680  return Chain;
1681}
1682
1683
1684//===----------------------------------------------------------------------===//
1685//                C & StdCall & Fast Calling Convention implementation
1686//===----------------------------------------------------------------------===//
1687//  StdCall calling convention seems to be standard for many Windows' API
1688//  routines and around. It differs from C calling convention just a little:
1689//  callee should clean up the stack, not caller. Symbols should be also
1690//  decorated in some fancy way :) It doesn't support any vector arguments.
1691//  For info on fast calling convention see Fast Calling Convention (tail call)
1692//  implementation LowerX86_32FastCCCallTo.
1693
1694/// CallIsStructReturn - Determines whether a call uses struct return
1695/// semantics.
1696static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1697  if (Outs.empty())
1698    return false;
1699
1700  return Outs[0].Flags.isSRet();
1701}
1702
1703/// ArgsAreStructReturn - Determines whether a function uses struct
1704/// return semantics.
1705static bool
1706ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1707  if (Ins.empty())
1708    return false;
1709
1710  return Ins[0].Flags.isSRet();
1711}
1712
1713/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1714/// by "Src" to address "Dst" with size and alignment information specified by
1715/// the specific parameter attribute. The copy will be passed as a byval
1716/// function parameter.
1717static SDValue
1718CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1719                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1720                          DebugLoc dl) {
1721  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1722
1723  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1724                       /*isVolatile*/false, /*AlwaysInline=*/true,
1725                       MachinePointerInfo(), MachinePointerInfo());
1726}
1727
1728/// IsTailCallConvention - Return true if the calling convention is one that
1729/// supports tail call optimization.
1730static bool IsTailCallConvention(CallingConv::ID CC) {
1731  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1732}
1733
1734bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1735  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1736    return false;
1737
1738  CallSite CS(CI);
1739  CallingConv::ID CalleeCC = CS.getCallingConv();
1740  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1741    return false;
1742
1743  return true;
1744}
1745
1746/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1747/// a tailcall target by changing its ABI.
1748static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1749                                   bool GuaranteedTailCallOpt) {
1750  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1751}
1752
1753SDValue
1754X86TargetLowering::LowerMemArgument(SDValue Chain,
1755                                    CallingConv::ID CallConv,
1756                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1757                                    DebugLoc dl, SelectionDAG &DAG,
1758                                    const CCValAssign &VA,
1759                                    MachineFrameInfo *MFI,
1760                                    unsigned i) const {
1761  // Create the nodes corresponding to a load from this parameter slot.
1762  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1763  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1764                              getTargetMachine().Options.GuaranteedTailCallOpt);
1765  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1766  EVT ValVT;
1767
1768  // If value is passed by pointer we have address passed instead of the value
1769  // itself.
1770  if (VA.getLocInfo() == CCValAssign::Indirect)
1771    ValVT = VA.getLocVT();
1772  else
1773    ValVT = VA.getValVT();
1774
1775  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1776  // changed with more analysis.
1777  // In case of tail call optimization mark all arguments mutable. Since they
1778  // could be overwritten by lowering of arguments in case of a tail call.
1779  if (Flags.isByVal()) {
1780    unsigned Bytes = Flags.getByValSize();
1781    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1782    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1783    return DAG.getFrameIndex(FI, getPointerTy());
1784  } else {
1785    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1786                                    VA.getLocMemOffset(), isImmutable);
1787    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1788    return DAG.getLoad(ValVT, dl, Chain, FIN,
1789                       MachinePointerInfo::getFixedStack(FI),
1790                       false, false, false, 0);
1791  }
1792}
1793
1794SDValue
1795X86TargetLowering::LowerFormalArguments(SDValue Chain,
1796                                        CallingConv::ID CallConv,
1797                                        bool isVarArg,
1798                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1799                                        DebugLoc dl,
1800                                        SelectionDAG &DAG,
1801                                        SmallVectorImpl<SDValue> &InVals)
1802                                          const {
1803  MachineFunction &MF = DAG.getMachineFunction();
1804  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1805
1806  const Function* Fn = MF.getFunction();
1807  if (Fn->hasExternalLinkage() &&
1808      Subtarget->isTargetCygMing() &&
1809      Fn->getName() == "main")
1810    FuncInfo->setForceFramePointer(true);
1811
1812  MachineFrameInfo *MFI = MF.getFrameInfo();
1813  bool Is64Bit = Subtarget->is64Bit();
1814  bool IsWindows = Subtarget->isTargetWindows();
1815  bool IsWin64 = Subtarget->isTargetWin64();
1816
1817  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1818         "Var args not supported with calling convention fastcc or ghc");
1819
1820  // Assign locations to all of the incoming arguments.
1821  SmallVector<CCValAssign, 16> ArgLocs;
1822  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1823                 ArgLocs, *DAG.getContext());
1824
1825  // Allocate shadow area for Win64
1826  if (IsWin64) {
1827    CCInfo.AllocateStack(32, 8);
1828  }
1829
1830  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1831
1832  unsigned LastVal = ~0U;
1833  SDValue ArgValue;
1834  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1835    CCValAssign &VA = ArgLocs[i];
1836    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1837    // places.
1838    assert(VA.getValNo() != LastVal &&
1839           "Don't support value assigned to multiple locs yet");
1840    (void)LastVal;
1841    LastVal = VA.getValNo();
1842
1843    if (VA.isRegLoc()) {
1844      EVT RegVT = VA.getLocVT();
1845      const TargetRegisterClass *RC;
1846      if (RegVT == MVT::i32)
1847        RC = X86::GR32RegisterClass;
1848      else if (Is64Bit && RegVT == MVT::i64)
1849        RC = X86::GR64RegisterClass;
1850      else if (RegVT == MVT::f32)
1851        RC = X86::FR32RegisterClass;
1852      else if (RegVT == MVT::f64)
1853        RC = X86::FR64RegisterClass;
1854      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1855        RC = X86::VR256RegisterClass;
1856      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1857        RC = X86::VR128RegisterClass;
1858      else if (RegVT == MVT::x86mmx)
1859        RC = X86::VR64RegisterClass;
1860      else
1861        llvm_unreachable("Unknown argument type!");
1862
1863      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1864      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1865
1866      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1867      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1868      // right size.
1869      if (VA.getLocInfo() == CCValAssign::SExt)
1870        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1871                               DAG.getValueType(VA.getValVT()));
1872      else if (VA.getLocInfo() == CCValAssign::ZExt)
1873        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1874                               DAG.getValueType(VA.getValVT()));
1875      else if (VA.getLocInfo() == CCValAssign::BCvt)
1876        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1877
1878      if (VA.isExtInLoc()) {
1879        // Handle MMX values passed in XMM regs.
1880        if (RegVT.isVector()) {
1881          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1882                                 ArgValue);
1883        } else
1884          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1885      }
1886    } else {
1887      assert(VA.isMemLoc());
1888      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1889    }
1890
1891    // If value is passed via pointer - do a load.
1892    if (VA.getLocInfo() == CCValAssign::Indirect)
1893      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1894                             MachinePointerInfo(), false, false, false, 0);
1895
1896    InVals.push_back(ArgValue);
1897  }
1898
1899  // The x86-64 ABI for returning structs by value requires that we copy
1900  // the sret argument into %rax for the return. Save the argument into
1901  // a virtual register so that we can access it from the return points.
1902  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1903    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1904    unsigned Reg = FuncInfo->getSRetReturnReg();
1905    if (!Reg) {
1906      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1907      FuncInfo->setSRetReturnReg(Reg);
1908    }
1909    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1910    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1911  }
1912
1913  unsigned StackSize = CCInfo.getNextStackOffset();
1914  // Align stack specially for tail calls.
1915  if (FuncIsMadeTailCallSafe(CallConv,
1916                             MF.getTarget().Options.GuaranteedTailCallOpt))
1917    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1918
1919  // If the function takes variable number of arguments, make a frame index for
1920  // the start of the first vararg value... for expansion of llvm.va_start.
1921  if (isVarArg) {
1922    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1923                    CallConv != CallingConv::X86_ThisCall)) {
1924      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1925    }
1926    if (Is64Bit) {
1927      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1928
1929      // FIXME: We should really autogenerate these arrays
1930      static const uint16_t GPR64ArgRegsWin64[] = {
1931        X86::RCX, X86::RDX, X86::R8,  X86::R9
1932      };
1933      static const uint16_t GPR64ArgRegs64Bit[] = {
1934        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1935      };
1936      static const uint16_t XMMArgRegs64Bit[] = {
1937        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1938        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1939      };
1940      const uint16_t *GPR64ArgRegs;
1941      unsigned NumXMMRegs = 0;
1942
1943      if (IsWin64) {
1944        // The XMM registers which might contain var arg parameters are shadowed
1945        // in their paired GPR.  So we only need to save the GPR to their home
1946        // slots.
1947        TotalNumIntRegs = 4;
1948        GPR64ArgRegs = GPR64ArgRegsWin64;
1949      } else {
1950        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1951        GPR64ArgRegs = GPR64ArgRegs64Bit;
1952
1953        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1954                                                TotalNumXMMRegs);
1955      }
1956      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1957                                                       TotalNumIntRegs);
1958
1959      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1960      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1961             "SSE register cannot be used when SSE is disabled!");
1962      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1963               NoImplicitFloatOps) &&
1964             "SSE register cannot be used when SSE is disabled!");
1965      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1966          !Subtarget->hasSSE1())
1967        // Kernel mode asks for SSE to be disabled, so don't push them
1968        // on the stack.
1969        TotalNumXMMRegs = 0;
1970
1971      if (IsWin64) {
1972        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1973        // Get to the caller-allocated home save location.  Add 8 to account
1974        // for the return address.
1975        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1976        FuncInfo->setRegSaveFrameIndex(
1977          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1978        // Fixup to set vararg frame on shadow area (4 x i64).
1979        if (NumIntRegs < 4)
1980          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1981      } else {
1982        // For X86-64, if there are vararg parameters that are passed via
1983        // registers, then we must store them to their spots on the stack so
1984        // they may be loaded by deferencing the result of va_next.
1985        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1986        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1987        FuncInfo->setRegSaveFrameIndex(
1988          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1989                               false));
1990      }
1991
1992      // Store the integer parameter registers.
1993      SmallVector<SDValue, 8> MemOps;
1994      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1995                                        getPointerTy());
1996      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1997      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1998        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1999                                  DAG.getIntPtrConstant(Offset));
2000        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2001                                     X86::GR64RegisterClass);
2002        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2003        SDValue Store =
2004          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2005                       MachinePointerInfo::getFixedStack(
2006                         FuncInfo->getRegSaveFrameIndex(), Offset),
2007                       false, false, 0);
2008        MemOps.push_back(Store);
2009        Offset += 8;
2010      }
2011
2012      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2013        // Now store the XMM (fp + vector) parameter registers.
2014        SmallVector<SDValue, 11> SaveXMMOps;
2015        SaveXMMOps.push_back(Chain);
2016
2017        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2018        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2019        SaveXMMOps.push_back(ALVal);
2020
2021        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2022                               FuncInfo->getRegSaveFrameIndex()));
2023        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2024                               FuncInfo->getVarArgsFPOffset()));
2025
2026        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2027          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2028                                       X86::VR128RegisterClass);
2029          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2030          SaveXMMOps.push_back(Val);
2031        }
2032        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2033                                     MVT::Other,
2034                                     &SaveXMMOps[0], SaveXMMOps.size()));
2035      }
2036
2037      if (!MemOps.empty())
2038        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2039                            &MemOps[0], MemOps.size());
2040    }
2041  }
2042
2043  // Some CCs need callee pop.
2044  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2045                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2046    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2047  } else {
2048    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2049    // If this is an sret function, the return should pop the hidden pointer.
2050    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2051        ArgsAreStructReturn(Ins))
2052      FuncInfo->setBytesToPopOnReturn(4);
2053  }
2054
2055  if (!Is64Bit) {
2056    // RegSaveFrameIndex is X86-64 only.
2057    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2058    if (CallConv == CallingConv::X86_FastCall ||
2059        CallConv == CallingConv::X86_ThisCall)
2060      // fastcc functions can't have varargs.
2061      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2062  }
2063
2064  FuncInfo->setArgumentStackSize(StackSize);
2065
2066  return Chain;
2067}
2068
2069SDValue
2070X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2071                                    SDValue StackPtr, SDValue Arg,
2072                                    DebugLoc dl, SelectionDAG &DAG,
2073                                    const CCValAssign &VA,
2074                                    ISD::ArgFlagsTy Flags) const {
2075  unsigned LocMemOffset = VA.getLocMemOffset();
2076  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2077  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2078  if (Flags.isByVal())
2079    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2080
2081  return DAG.getStore(Chain, dl, Arg, PtrOff,
2082                      MachinePointerInfo::getStack(LocMemOffset),
2083                      false, false, 0);
2084}
2085
2086/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2087/// optimization is performed and it is required.
2088SDValue
2089X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2090                                           SDValue &OutRetAddr, SDValue Chain,
2091                                           bool IsTailCall, bool Is64Bit,
2092                                           int FPDiff, DebugLoc dl) const {
2093  // Adjust the Return address stack slot.
2094  EVT VT = getPointerTy();
2095  OutRetAddr = getReturnAddressFrameIndex(DAG);
2096
2097  // Load the "old" Return address.
2098  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2099                           false, false, false, 0);
2100  return SDValue(OutRetAddr.getNode(), 1);
2101}
2102
2103/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2104/// optimization is performed and it is required (FPDiff!=0).
2105static SDValue
2106EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2107                         SDValue Chain, SDValue RetAddrFrIdx,
2108                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2109  // Store the return address to the appropriate stack slot.
2110  if (!FPDiff) return Chain;
2111  // Calculate the new stack slot for the return address.
2112  int SlotSize = Is64Bit ? 8 : 4;
2113  int NewReturnAddrFI =
2114    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2115  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2116  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2117  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2118                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2119                       false, false, 0);
2120  return Chain;
2121}
2122
2123SDValue
2124X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2125                             CallingConv::ID CallConv, bool isVarArg,
2126                             bool doesNotRet, bool &isTailCall,
2127                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2128                             const SmallVectorImpl<SDValue> &OutVals,
2129                             const SmallVectorImpl<ISD::InputArg> &Ins,
2130                             DebugLoc dl, SelectionDAG &DAG,
2131                             SmallVectorImpl<SDValue> &InVals) const {
2132  MachineFunction &MF = DAG.getMachineFunction();
2133  bool Is64Bit        = Subtarget->is64Bit();
2134  bool IsWin64        = Subtarget->isTargetWin64();
2135  bool IsWindows      = Subtarget->isTargetWindows();
2136  bool IsStructRet    = CallIsStructReturn(Outs);
2137  bool IsSibcall      = false;
2138
2139  if (MF.getTarget().Options.DisableTailCalls)
2140    isTailCall = false;
2141
2142  if (isTailCall) {
2143    // Check if it's really possible to do a tail call.
2144    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2145                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2146                                                   Outs, OutVals, Ins, DAG);
2147
2148    // Sibcalls are automatically detected tailcalls which do not require
2149    // ABI changes.
2150    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2151      IsSibcall = true;
2152
2153    if (isTailCall)
2154      ++NumTailCalls;
2155  }
2156
2157  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2158         "Var args not supported with calling convention fastcc or ghc");
2159
2160  // Analyze operands of the call, assigning locations to each operand.
2161  SmallVector<CCValAssign, 16> ArgLocs;
2162  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2163                 ArgLocs, *DAG.getContext());
2164
2165  // Allocate shadow area for Win64
2166  if (IsWin64) {
2167    CCInfo.AllocateStack(32, 8);
2168  }
2169
2170  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2171
2172  // Get a count of how many bytes are to be pushed on the stack.
2173  unsigned NumBytes = CCInfo.getNextStackOffset();
2174  if (IsSibcall)
2175    // This is a sibcall. The memory operands are available in caller's
2176    // own caller's stack.
2177    NumBytes = 0;
2178  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2179           IsTailCallConvention(CallConv))
2180    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2181
2182  int FPDiff = 0;
2183  if (isTailCall && !IsSibcall) {
2184    // Lower arguments at fp - stackoffset + fpdiff.
2185    unsigned NumBytesCallerPushed =
2186      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2187    FPDiff = NumBytesCallerPushed - NumBytes;
2188
2189    // Set the delta of movement of the returnaddr stackslot.
2190    // But only set if delta is greater than previous delta.
2191    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2192      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2193  }
2194
2195  if (!IsSibcall)
2196    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2197
2198  SDValue RetAddrFrIdx;
2199  // Load return address for tail calls.
2200  if (isTailCall && FPDiff)
2201    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2202                                    Is64Bit, FPDiff, dl);
2203
2204  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2205  SmallVector<SDValue, 8> MemOpChains;
2206  SDValue StackPtr;
2207
2208  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2209  // of tail call optimization arguments are handle later.
2210  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2211    CCValAssign &VA = ArgLocs[i];
2212    EVT RegVT = VA.getLocVT();
2213    SDValue Arg = OutVals[i];
2214    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2215    bool isByVal = Flags.isByVal();
2216
2217    // Promote the value if needed.
2218    switch (VA.getLocInfo()) {
2219    default: llvm_unreachable("Unknown loc info!");
2220    case CCValAssign::Full: break;
2221    case CCValAssign::SExt:
2222      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2223      break;
2224    case CCValAssign::ZExt:
2225      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2226      break;
2227    case CCValAssign::AExt:
2228      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2229        // Special case: passing MMX values in XMM registers.
2230        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2231        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2232        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2233      } else
2234        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2235      break;
2236    case CCValAssign::BCvt:
2237      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2238      break;
2239    case CCValAssign::Indirect: {
2240      // Store the argument.
2241      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2242      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2243      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2244                           MachinePointerInfo::getFixedStack(FI),
2245                           false, false, 0);
2246      Arg = SpillSlot;
2247      break;
2248    }
2249    }
2250
2251    if (VA.isRegLoc()) {
2252      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2253      if (isVarArg && IsWin64) {
2254        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2255        // shadow reg if callee is a varargs function.
2256        unsigned ShadowReg = 0;
2257        switch (VA.getLocReg()) {
2258        case X86::XMM0: ShadowReg = X86::RCX; break;
2259        case X86::XMM1: ShadowReg = X86::RDX; break;
2260        case X86::XMM2: ShadowReg = X86::R8; break;
2261        case X86::XMM3: ShadowReg = X86::R9; break;
2262        }
2263        if (ShadowReg)
2264          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2265      }
2266    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2267      assert(VA.isMemLoc());
2268      if (StackPtr.getNode() == 0)
2269        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2270      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2271                                             dl, DAG, VA, Flags));
2272    }
2273  }
2274
2275  if (!MemOpChains.empty())
2276    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2277                        &MemOpChains[0], MemOpChains.size());
2278
2279  // Build a sequence of copy-to-reg nodes chained together with token chain
2280  // and flag operands which copy the outgoing args into registers.
2281  SDValue InFlag;
2282  // Tail call byval lowering might overwrite argument registers so in case of
2283  // tail call optimization the copies to registers are lowered later.
2284  if (!isTailCall)
2285    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2286      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2287                               RegsToPass[i].second, InFlag);
2288      InFlag = Chain.getValue(1);
2289    }
2290
2291  if (Subtarget->isPICStyleGOT()) {
2292    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2293    // GOT pointer.
2294    if (!isTailCall) {
2295      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2296                               DAG.getNode(X86ISD::GlobalBaseReg,
2297                                           DebugLoc(), getPointerTy()),
2298                               InFlag);
2299      InFlag = Chain.getValue(1);
2300    } else {
2301      // If we are tail calling and generating PIC/GOT style code load the
2302      // address of the callee into ECX. The value in ecx is used as target of
2303      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2304      // for tail calls on PIC/GOT architectures. Normally we would just put the
2305      // address of GOT into ebx and then call target@PLT. But for tail calls
2306      // ebx would be restored (since ebx is callee saved) before jumping to the
2307      // target@PLT.
2308
2309      // Note: The actual moving to ECX is done further down.
2310      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2311      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2312          !G->getGlobal()->hasProtectedVisibility())
2313        Callee = LowerGlobalAddress(Callee, DAG);
2314      else if (isa<ExternalSymbolSDNode>(Callee))
2315        Callee = LowerExternalSymbol(Callee, DAG);
2316    }
2317  }
2318
2319  if (Is64Bit && isVarArg && !IsWin64) {
2320    // From AMD64 ABI document:
2321    // For calls that may call functions that use varargs or stdargs
2322    // (prototype-less calls or calls to functions containing ellipsis (...) in
2323    // the declaration) %al is used as hidden argument to specify the number
2324    // of SSE registers used. The contents of %al do not need to match exactly
2325    // the number of registers, but must be an ubound on the number of SSE
2326    // registers used and is in the range 0 - 8 inclusive.
2327
2328    // Count the number of XMM registers allocated.
2329    static const uint16_t XMMArgRegs[] = {
2330      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2331      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2332    };
2333    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2334    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2335           && "SSE registers cannot be used when SSE is disabled");
2336
2337    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2338                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2339    InFlag = Chain.getValue(1);
2340  }
2341
2342
2343  // For tail calls lower the arguments to the 'real' stack slot.
2344  if (isTailCall) {
2345    // Force all the incoming stack arguments to be loaded from the stack
2346    // before any new outgoing arguments are stored to the stack, because the
2347    // outgoing stack slots may alias the incoming argument stack slots, and
2348    // the alias isn't otherwise explicit. This is slightly more conservative
2349    // than necessary, because it means that each store effectively depends
2350    // on every argument instead of just those arguments it would clobber.
2351    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2352
2353    SmallVector<SDValue, 8> MemOpChains2;
2354    SDValue FIN;
2355    int FI = 0;
2356    // Do not flag preceding copytoreg stuff together with the following stuff.
2357    InFlag = SDValue();
2358    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2359      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2360        CCValAssign &VA = ArgLocs[i];
2361        if (VA.isRegLoc())
2362          continue;
2363        assert(VA.isMemLoc());
2364        SDValue Arg = OutVals[i];
2365        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2366        // Create frame index.
2367        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2368        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2369        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2370        FIN = DAG.getFrameIndex(FI, getPointerTy());
2371
2372        if (Flags.isByVal()) {
2373          // Copy relative to framepointer.
2374          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2375          if (StackPtr.getNode() == 0)
2376            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2377                                          getPointerTy());
2378          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2379
2380          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2381                                                           ArgChain,
2382                                                           Flags, DAG, dl));
2383        } else {
2384          // Store relative to framepointer.
2385          MemOpChains2.push_back(
2386            DAG.getStore(ArgChain, dl, Arg, FIN,
2387                         MachinePointerInfo::getFixedStack(FI),
2388                         false, false, 0));
2389        }
2390      }
2391    }
2392
2393    if (!MemOpChains2.empty())
2394      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2395                          &MemOpChains2[0], MemOpChains2.size());
2396
2397    // Copy arguments to their registers.
2398    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2399      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2400                               RegsToPass[i].second, InFlag);
2401      InFlag = Chain.getValue(1);
2402    }
2403    InFlag =SDValue();
2404
2405    // Store the return address to the appropriate stack slot.
2406    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2407                                     FPDiff, dl);
2408  }
2409
2410  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2411    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2412    // In the 64-bit large code model, we have to make all calls
2413    // through a register, since the call instruction's 32-bit
2414    // pc-relative offset may not be large enough to hold the whole
2415    // address.
2416  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2417    // If the callee is a GlobalAddress node (quite common, every direct call
2418    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2419    // it.
2420
2421    // We should use extra load for direct calls to dllimported functions in
2422    // non-JIT mode.
2423    const GlobalValue *GV = G->getGlobal();
2424    if (!GV->hasDLLImportLinkage()) {
2425      unsigned char OpFlags = 0;
2426      bool ExtraLoad = false;
2427      unsigned WrapperKind = ISD::DELETED_NODE;
2428
2429      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2430      // external symbols most go through the PLT in PIC mode.  If the symbol
2431      // has hidden or protected visibility, or if it is static or local, then
2432      // we don't need to use the PLT - we can directly call it.
2433      if (Subtarget->isTargetELF() &&
2434          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2435          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2436        OpFlags = X86II::MO_PLT;
2437      } else if (Subtarget->isPICStyleStubAny() &&
2438                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2439                 (!Subtarget->getTargetTriple().isMacOSX() ||
2440                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2441        // PC-relative references to external symbols should go through $stub,
2442        // unless we're building with the leopard linker or later, which
2443        // automatically synthesizes these stubs.
2444        OpFlags = X86II::MO_DARWIN_STUB;
2445      } else if (Subtarget->isPICStyleRIPRel() &&
2446                 isa<Function>(GV) &&
2447                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2448        // If the function is marked as non-lazy, generate an indirect call
2449        // which loads from the GOT directly. This avoids runtime overhead
2450        // at the cost of eager binding (and one extra byte of encoding).
2451        OpFlags = X86II::MO_GOTPCREL;
2452        WrapperKind = X86ISD::WrapperRIP;
2453        ExtraLoad = true;
2454      }
2455
2456      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2457                                          G->getOffset(), OpFlags);
2458
2459      // Add a wrapper if needed.
2460      if (WrapperKind != ISD::DELETED_NODE)
2461        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2462      // Add extra indirection if needed.
2463      if (ExtraLoad)
2464        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2465                             MachinePointerInfo::getGOT(),
2466                             false, false, false, 0);
2467    }
2468  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2469    unsigned char OpFlags = 0;
2470
2471    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2472    // external symbols should go through the PLT.
2473    if (Subtarget->isTargetELF() &&
2474        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2475      OpFlags = X86II::MO_PLT;
2476    } else if (Subtarget->isPICStyleStubAny() &&
2477               (!Subtarget->getTargetTriple().isMacOSX() ||
2478                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2479      // PC-relative references to external symbols should go through $stub,
2480      // unless we're building with the leopard linker or later, which
2481      // automatically synthesizes these stubs.
2482      OpFlags = X86II::MO_DARWIN_STUB;
2483    }
2484
2485    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2486                                         OpFlags);
2487  }
2488
2489  // Returns a chain & a flag for retval copy to use.
2490  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2491  SmallVector<SDValue, 8> Ops;
2492
2493  if (!IsSibcall && isTailCall) {
2494    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2495                           DAG.getIntPtrConstant(0, true), InFlag);
2496    InFlag = Chain.getValue(1);
2497  }
2498
2499  Ops.push_back(Chain);
2500  Ops.push_back(Callee);
2501
2502  if (isTailCall)
2503    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2504
2505  // Add argument registers to the end of the list so that they are known live
2506  // into the call.
2507  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2508    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2509                                  RegsToPass[i].second.getValueType()));
2510
2511  // Add an implicit use GOT pointer in EBX.
2512  if (!isTailCall && Subtarget->isPICStyleGOT())
2513    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2514
2515  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2516  if (Is64Bit && isVarArg && !IsWin64)
2517    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2518
2519  // Add a register mask operand representing the call-preserved registers.
2520  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2521  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2522  assert(Mask && "Missing call preserved mask for calling convention");
2523  Ops.push_back(DAG.getRegisterMask(Mask));
2524
2525  if (InFlag.getNode())
2526    Ops.push_back(InFlag);
2527
2528  if (isTailCall) {
2529    // We used to do:
2530    //// If this is the first return lowered for this function, add the regs
2531    //// to the liveout set for the function.
2532    // This isn't right, although it's probably harmless on x86; liveouts
2533    // should be computed from returns not tail calls.  Consider a void
2534    // function making a tail call to a function returning int.
2535    return DAG.getNode(X86ISD::TC_RETURN, dl,
2536                       NodeTys, &Ops[0], Ops.size());
2537  }
2538
2539  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2540  InFlag = Chain.getValue(1);
2541
2542  // Create the CALLSEQ_END node.
2543  unsigned NumBytesForCalleeToPush;
2544  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2545                       getTargetMachine().Options.GuaranteedTailCallOpt))
2546    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2547  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2548           IsStructRet)
2549    // If this is a call to a struct-return function, the callee
2550    // pops the hidden struct pointer, so we have to push it back.
2551    // This is common for Darwin/X86, Linux & Mingw32 targets.
2552    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2553    NumBytesForCalleeToPush = 4;
2554  else
2555    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2556
2557  // Returns a flag for retval copy to use.
2558  if (!IsSibcall) {
2559    Chain = DAG.getCALLSEQ_END(Chain,
2560                               DAG.getIntPtrConstant(NumBytes, true),
2561                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2562                                                     true),
2563                               InFlag);
2564    InFlag = Chain.getValue(1);
2565  }
2566
2567  // Handle result values, copying them out of physregs into vregs that we
2568  // return.
2569  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2570                         Ins, dl, DAG, InVals);
2571}
2572
2573
2574//===----------------------------------------------------------------------===//
2575//                Fast Calling Convention (tail call) implementation
2576//===----------------------------------------------------------------------===//
2577
2578//  Like std call, callee cleans arguments, convention except that ECX is
2579//  reserved for storing the tail called function address. Only 2 registers are
2580//  free for argument passing (inreg). Tail call optimization is performed
2581//  provided:
2582//                * tailcallopt is enabled
2583//                * caller/callee are fastcc
2584//  On X86_64 architecture with GOT-style position independent code only local
2585//  (within module) calls are supported at the moment.
2586//  To keep the stack aligned according to platform abi the function
2587//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2588//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2589//  If a tail called function callee has more arguments than the caller the
2590//  caller needs to make sure that there is room to move the RETADDR to. This is
2591//  achieved by reserving an area the size of the argument delta right after the
2592//  original REtADDR, but before the saved framepointer or the spilled registers
2593//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2594//  stack layout:
2595//    arg1
2596//    arg2
2597//    RETADDR
2598//    [ new RETADDR
2599//      move area ]
2600//    (possible EBP)
2601//    ESI
2602//    EDI
2603//    local1 ..
2604
2605/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2606/// for a 16 byte align requirement.
2607unsigned
2608X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2609                                               SelectionDAG& DAG) const {
2610  MachineFunction &MF = DAG.getMachineFunction();
2611  const TargetMachine &TM = MF.getTarget();
2612  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2613  unsigned StackAlignment = TFI.getStackAlignment();
2614  uint64_t AlignMask = StackAlignment - 1;
2615  int64_t Offset = StackSize;
2616  uint64_t SlotSize = TD->getPointerSize();
2617  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2618    // Number smaller than 12 so just add the difference.
2619    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2620  } else {
2621    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2622    Offset = ((~AlignMask) & Offset) + StackAlignment +
2623      (StackAlignment-SlotSize);
2624  }
2625  return Offset;
2626}
2627
2628/// MatchingStackOffset - Return true if the given stack call argument is
2629/// already available in the same position (relatively) of the caller's
2630/// incoming argument stack.
2631static
2632bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2633                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2634                         const X86InstrInfo *TII) {
2635  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2636  int FI = INT_MAX;
2637  if (Arg.getOpcode() == ISD::CopyFromReg) {
2638    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2639    if (!TargetRegisterInfo::isVirtualRegister(VR))
2640      return false;
2641    MachineInstr *Def = MRI->getVRegDef(VR);
2642    if (!Def)
2643      return false;
2644    if (!Flags.isByVal()) {
2645      if (!TII->isLoadFromStackSlot(Def, FI))
2646        return false;
2647    } else {
2648      unsigned Opcode = Def->getOpcode();
2649      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2650          Def->getOperand(1).isFI()) {
2651        FI = Def->getOperand(1).getIndex();
2652        Bytes = Flags.getByValSize();
2653      } else
2654        return false;
2655    }
2656  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2657    if (Flags.isByVal())
2658      // ByVal argument is passed in as a pointer but it's now being
2659      // dereferenced. e.g.
2660      // define @foo(%struct.X* %A) {
2661      //   tail call @bar(%struct.X* byval %A)
2662      // }
2663      return false;
2664    SDValue Ptr = Ld->getBasePtr();
2665    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2666    if (!FINode)
2667      return false;
2668    FI = FINode->getIndex();
2669  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2670    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2671    FI = FINode->getIndex();
2672    Bytes = Flags.getByValSize();
2673  } else
2674    return false;
2675
2676  assert(FI != INT_MAX);
2677  if (!MFI->isFixedObjectIndex(FI))
2678    return false;
2679  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2680}
2681
2682/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2683/// for tail call optimization. Targets which want to do tail call
2684/// optimization should implement this function.
2685bool
2686X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2687                                                     CallingConv::ID CalleeCC,
2688                                                     bool isVarArg,
2689                                                     bool isCalleeStructRet,
2690                                                     bool isCallerStructRet,
2691                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2692                                    const SmallVectorImpl<SDValue> &OutVals,
2693                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2694                                                     SelectionDAG& DAG) const {
2695  if (!IsTailCallConvention(CalleeCC) &&
2696      CalleeCC != CallingConv::C)
2697    return false;
2698
2699  // If -tailcallopt is specified, make fastcc functions tail-callable.
2700  const MachineFunction &MF = DAG.getMachineFunction();
2701  const Function *CallerF = DAG.getMachineFunction().getFunction();
2702  CallingConv::ID CallerCC = CallerF->getCallingConv();
2703  bool CCMatch = CallerCC == CalleeCC;
2704
2705  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2706    if (IsTailCallConvention(CalleeCC) && CCMatch)
2707      return true;
2708    return false;
2709  }
2710
2711  // Look for obvious safe cases to perform tail call optimization that do not
2712  // require ABI changes. This is what gcc calls sibcall.
2713
2714  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2715  // emit a special epilogue.
2716  if (RegInfo->needsStackRealignment(MF))
2717    return false;
2718
2719  // Also avoid sibcall optimization if either caller or callee uses struct
2720  // return semantics.
2721  if (isCalleeStructRet || isCallerStructRet)
2722    return false;
2723
2724  // An stdcall caller is expected to clean up its arguments; the callee
2725  // isn't going to do that.
2726  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2727    return false;
2728
2729  // Do not sibcall optimize vararg calls unless all arguments are passed via
2730  // registers.
2731  if (isVarArg && !Outs.empty()) {
2732
2733    // Optimizing for varargs on Win64 is unlikely to be safe without
2734    // additional testing.
2735    if (Subtarget->isTargetWin64())
2736      return false;
2737
2738    SmallVector<CCValAssign, 16> ArgLocs;
2739    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2740		   getTargetMachine(), ArgLocs, *DAG.getContext());
2741
2742    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2743    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2744      if (!ArgLocs[i].isRegLoc())
2745        return false;
2746  }
2747
2748  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2749  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2750  // this into a sibcall.
2751  bool Unused = false;
2752  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2753    if (!Ins[i].Used) {
2754      Unused = true;
2755      break;
2756    }
2757  }
2758  if (Unused) {
2759    SmallVector<CCValAssign, 16> RVLocs;
2760    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2761		   getTargetMachine(), RVLocs, *DAG.getContext());
2762    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2763    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2764      CCValAssign &VA = RVLocs[i];
2765      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2766        return false;
2767    }
2768  }
2769
2770  // If the calling conventions do not match, then we'd better make sure the
2771  // results are returned in the same way as what the caller expects.
2772  if (!CCMatch) {
2773    SmallVector<CCValAssign, 16> RVLocs1;
2774    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2775		    getTargetMachine(), RVLocs1, *DAG.getContext());
2776    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2777
2778    SmallVector<CCValAssign, 16> RVLocs2;
2779    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2780		    getTargetMachine(), RVLocs2, *DAG.getContext());
2781    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2782
2783    if (RVLocs1.size() != RVLocs2.size())
2784      return false;
2785    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2786      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2787        return false;
2788      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2789        return false;
2790      if (RVLocs1[i].isRegLoc()) {
2791        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2792          return false;
2793      } else {
2794        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2795          return false;
2796      }
2797    }
2798  }
2799
2800  // If the callee takes no arguments then go on to check the results of the
2801  // call.
2802  if (!Outs.empty()) {
2803    // Check if stack adjustment is needed. For now, do not do this if any
2804    // argument is passed on the stack.
2805    SmallVector<CCValAssign, 16> ArgLocs;
2806    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2807		   getTargetMachine(), ArgLocs, *DAG.getContext());
2808
2809    // Allocate shadow area for Win64
2810    if (Subtarget->isTargetWin64()) {
2811      CCInfo.AllocateStack(32, 8);
2812    }
2813
2814    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2815    if (CCInfo.getNextStackOffset()) {
2816      MachineFunction &MF = DAG.getMachineFunction();
2817      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2818        return false;
2819
2820      // Check if the arguments are already laid out in the right way as
2821      // the caller's fixed stack objects.
2822      MachineFrameInfo *MFI = MF.getFrameInfo();
2823      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2824      const X86InstrInfo *TII =
2825        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2826      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2827        CCValAssign &VA = ArgLocs[i];
2828        SDValue Arg = OutVals[i];
2829        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2830        if (VA.getLocInfo() == CCValAssign::Indirect)
2831          return false;
2832        if (!VA.isRegLoc()) {
2833          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2834                                   MFI, MRI, TII))
2835            return false;
2836        }
2837      }
2838    }
2839
2840    // If the tailcall address may be in a register, then make sure it's
2841    // possible to register allocate for it. In 32-bit, the call address can
2842    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2843    // callee-saved registers are restored. These happen to be the same
2844    // registers used to pass 'inreg' arguments so watch out for those.
2845    if (!Subtarget->is64Bit() &&
2846        !isa<GlobalAddressSDNode>(Callee) &&
2847        !isa<ExternalSymbolSDNode>(Callee)) {
2848      unsigned NumInRegs = 0;
2849      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2850        CCValAssign &VA = ArgLocs[i];
2851        if (!VA.isRegLoc())
2852          continue;
2853        unsigned Reg = VA.getLocReg();
2854        switch (Reg) {
2855        default: break;
2856        case X86::EAX: case X86::EDX: case X86::ECX:
2857          if (++NumInRegs == 3)
2858            return false;
2859          break;
2860        }
2861      }
2862    }
2863  }
2864
2865  return true;
2866}
2867
2868FastISel *
2869X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2870  return X86::createFastISel(funcInfo);
2871}
2872
2873
2874//===----------------------------------------------------------------------===//
2875//                           Other Lowering Hooks
2876//===----------------------------------------------------------------------===//
2877
2878static bool MayFoldLoad(SDValue Op) {
2879  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2880}
2881
2882static bool MayFoldIntoStore(SDValue Op) {
2883  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2884}
2885
2886static bool isTargetShuffle(unsigned Opcode) {
2887  switch(Opcode) {
2888  default: return false;
2889  case X86ISD::PSHUFD:
2890  case X86ISD::PSHUFHW:
2891  case X86ISD::PSHUFLW:
2892  case X86ISD::SHUFP:
2893  case X86ISD::PALIGN:
2894  case X86ISD::MOVLHPS:
2895  case X86ISD::MOVLHPD:
2896  case X86ISD::MOVHLPS:
2897  case X86ISD::MOVLPS:
2898  case X86ISD::MOVLPD:
2899  case X86ISD::MOVSHDUP:
2900  case X86ISD::MOVSLDUP:
2901  case X86ISD::MOVDDUP:
2902  case X86ISD::MOVSS:
2903  case X86ISD::MOVSD:
2904  case X86ISD::UNPCKL:
2905  case X86ISD::UNPCKH:
2906  case X86ISD::VPERMILP:
2907  case X86ISD::VPERM2X128:
2908    return true;
2909  }
2910}
2911
2912static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2913                                               SDValue V1, SelectionDAG &DAG) {
2914  switch(Opc) {
2915  default: llvm_unreachable("Unknown x86 shuffle node");
2916  case X86ISD::MOVSHDUP:
2917  case X86ISD::MOVSLDUP:
2918  case X86ISD::MOVDDUP:
2919    return DAG.getNode(Opc, dl, VT, V1);
2920  }
2921}
2922
2923static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2924                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2925  switch(Opc) {
2926  default: llvm_unreachable("Unknown x86 shuffle node");
2927  case X86ISD::PSHUFD:
2928  case X86ISD::PSHUFHW:
2929  case X86ISD::PSHUFLW:
2930  case X86ISD::VPERMILP:
2931    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2932  }
2933}
2934
2935static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2936               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2937  switch(Opc) {
2938  default: llvm_unreachable("Unknown x86 shuffle node");
2939  case X86ISD::PALIGN:
2940  case X86ISD::SHUFP:
2941  case X86ISD::VPERM2X128:
2942    return DAG.getNode(Opc, dl, VT, V1, V2,
2943                       DAG.getConstant(TargetMask, MVT::i8));
2944  }
2945}
2946
2947static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2948                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2949  switch(Opc) {
2950  default: llvm_unreachable("Unknown x86 shuffle node");
2951  case X86ISD::MOVLHPS:
2952  case X86ISD::MOVLHPD:
2953  case X86ISD::MOVHLPS:
2954  case X86ISD::MOVLPS:
2955  case X86ISD::MOVLPD:
2956  case X86ISD::MOVSS:
2957  case X86ISD::MOVSD:
2958  case X86ISD::UNPCKL:
2959  case X86ISD::UNPCKH:
2960    return DAG.getNode(Opc, dl, VT, V1, V2);
2961  }
2962}
2963
2964SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2965  MachineFunction &MF = DAG.getMachineFunction();
2966  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2967  int ReturnAddrIndex = FuncInfo->getRAIndex();
2968
2969  if (ReturnAddrIndex == 0) {
2970    // Set up a frame object for the return address.
2971    uint64_t SlotSize = TD->getPointerSize();
2972    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2973                                                           false);
2974    FuncInfo->setRAIndex(ReturnAddrIndex);
2975  }
2976
2977  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2978}
2979
2980
2981bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2982                                       bool hasSymbolicDisplacement) {
2983  // Offset should fit into 32 bit immediate field.
2984  if (!isInt<32>(Offset))
2985    return false;
2986
2987  // If we don't have a symbolic displacement - we don't have any extra
2988  // restrictions.
2989  if (!hasSymbolicDisplacement)
2990    return true;
2991
2992  // FIXME: Some tweaks might be needed for medium code model.
2993  if (M != CodeModel::Small && M != CodeModel::Kernel)
2994    return false;
2995
2996  // For small code model we assume that latest object is 16MB before end of 31
2997  // bits boundary. We may also accept pretty large negative constants knowing
2998  // that all objects are in the positive half of address space.
2999  if (M == CodeModel::Small && Offset < 16*1024*1024)
3000    return true;
3001
3002  // For kernel code model we know that all object resist in the negative half
3003  // of 32bits address space. We may not accept negative offsets, since they may
3004  // be just off and we may accept pretty large positive ones.
3005  if (M == CodeModel::Kernel && Offset > 0)
3006    return true;
3007
3008  return false;
3009}
3010
3011/// isCalleePop - Determines whether the callee is required to pop its
3012/// own arguments. Callee pop is necessary to support tail calls.
3013bool X86::isCalleePop(CallingConv::ID CallingConv,
3014                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3015  if (IsVarArg)
3016    return false;
3017
3018  switch (CallingConv) {
3019  default:
3020    return false;
3021  case CallingConv::X86_StdCall:
3022    return !is64Bit;
3023  case CallingConv::X86_FastCall:
3024    return !is64Bit;
3025  case CallingConv::X86_ThisCall:
3026    return !is64Bit;
3027  case CallingConv::Fast:
3028    return TailCallOpt;
3029  case CallingConv::GHC:
3030    return TailCallOpt;
3031  }
3032}
3033
3034/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3035/// specific condition code, returning the condition code and the LHS/RHS of the
3036/// comparison to make.
3037static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3038                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3039  if (!isFP) {
3040    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3041      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3042        // X > -1   -> X == 0, jump !sign.
3043        RHS = DAG.getConstant(0, RHS.getValueType());
3044        return X86::COND_NS;
3045      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3046        // X < 0   -> X == 0, jump on sign.
3047        return X86::COND_S;
3048      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3049        // X < 1   -> X <= 0
3050        RHS = DAG.getConstant(0, RHS.getValueType());
3051        return X86::COND_LE;
3052      }
3053    }
3054
3055    switch (SetCCOpcode) {
3056    default: llvm_unreachable("Invalid integer condition!");
3057    case ISD::SETEQ:  return X86::COND_E;
3058    case ISD::SETGT:  return X86::COND_G;
3059    case ISD::SETGE:  return X86::COND_GE;
3060    case ISD::SETLT:  return X86::COND_L;
3061    case ISD::SETLE:  return X86::COND_LE;
3062    case ISD::SETNE:  return X86::COND_NE;
3063    case ISD::SETULT: return X86::COND_B;
3064    case ISD::SETUGT: return X86::COND_A;
3065    case ISD::SETULE: return X86::COND_BE;
3066    case ISD::SETUGE: return X86::COND_AE;
3067    }
3068  }
3069
3070  // First determine if it is required or is profitable to flip the operands.
3071
3072  // If LHS is a foldable load, but RHS is not, flip the condition.
3073  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3074      !ISD::isNON_EXTLoad(RHS.getNode())) {
3075    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3076    std::swap(LHS, RHS);
3077  }
3078
3079  switch (SetCCOpcode) {
3080  default: break;
3081  case ISD::SETOLT:
3082  case ISD::SETOLE:
3083  case ISD::SETUGT:
3084  case ISD::SETUGE:
3085    std::swap(LHS, RHS);
3086    break;
3087  }
3088
3089  // On a floating point condition, the flags are set as follows:
3090  // ZF  PF  CF   op
3091  //  0 | 0 | 0 | X > Y
3092  //  0 | 0 | 1 | X < Y
3093  //  1 | 0 | 0 | X == Y
3094  //  1 | 1 | 1 | unordered
3095  switch (SetCCOpcode) {
3096  default: llvm_unreachable("Condcode should be pre-legalized away");
3097  case ISD::SETUEQ:
3098  case ISD::SETEQ:   return X86::COND_E;
3099  case ISD::SETOLT:              // flipped
3100  case ISD::SETOGT:
3101  case ISD::SETGT:   return X86::COND_A;
3102  case ISD::SETOLE:              // flipped
3103  case ISD::SETOGE:
3104  case ISD::SETGE:   return X86::COND_AE;
3105  case ISD::SETUGT:              // flipped
3106  case ISD::SETULT:
3107  case ISD::SETLT:   return X86::COND_B;
3108  case ISD::SETUGE:              // flipped
3109  case ISD::SETULE:
3110  case ISD::SETLE:   return X86::COND_BE;
3111  case ISD::SETONE:
3112  case ISD::SETNE:   return X86::COND_NE;
3113  case ISD::SETUO:   return X86::COND_P;
3114  case ISD::SETO:    return X86::COND_NP;
3115  case ISD::SETOEQ:
3116  case ISD::SETUNE:  return X86::COND_INVALID;
3117  }
3118}
3119
3120/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3121/// code. Current x86 isa includes the following FP cmov instructions:
3122/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3123static bool hasFPCMov(unsigned X86CC) {
3124  switch (X86CC) {
3125  default:
3126    return false;
3127  case X86::COND_B:
3128  case X86::COND_BE:
3129  case X86::COND_E:
3130  case X86::COND_P:
3131  case X86::COND_A:
3132  case X86::COND_AE:
3133  case X86::COND_NE:
3134  case X86::COND_NP:
3135    return true;
3136  }
3137}
3138
3139/// isFPImmLegal - Returns true if the target can instruction select the
3140/// specified FP immediate natively. If false, the legalizer will
3141/// materialize the FP immediate as a load from a constant pool.
3142bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3143  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3144    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3145      return true;
3146  }
3147  return false;
3148}
3149
3150/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3151/// the specified range (L, H].
3152static bool isUndefOrInRange(int Val, int Low, int Hi) {
3153  return (Val < 0) || (Val >= Low && Val < Hi);
3154}
3155
3156/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3157/// specified value.
3158static bool isUndefOrEqual(int Val, int CmpVal) {
3159  if (Val < 0 || Val == CmpVal)
3160    return true;
3161  return false;
3162}
3163
3164/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3165/// from position Pos and ending in Pos+Size, falls within the specified
3166/// sequential range (L, L+Pos]. or is undef.
3167static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3168                                       int Pos, int Size, int Low) {
3169  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3170    if (!isUndefOrEqual(Mask[i], Low))
3171      return false;
3172  return true;
3173}
3174
3175/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3176/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3177/// the second operand.
3178static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3179  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3180    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3181  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3182    return (Mask[0] < 2 && Mask[1] < 2);
3183  return false;
3184}
3185
3186/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3187/// is suitable for input to PSHUFHW.
3188static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3189  if (VT != MVT::v8i16)
3190    return false;
3191
3192  // Lower quadword copied in order or undef.
3193  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3194    return false;
3195
3196  // Upper quadword shuffled.
3197  for (unsigned i = 4; i != 8; ++i)
3198    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3199      return false;
3200
3201  return true;
3202}
3203
3204/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3205/// is suitable for input to PSHUFLW.
3206static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3207  if (VT != MVT::v8i16)
3208    return false;
3209
3210  // Upper quadword copied in order.
3211  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3212    return false;
3213
3214  // Lower quadword shuffled.
3215  for (unsigned i = 0; i != 4; ++i)
3216    if (Mask[i] >= 4)
3217      return false;
3218
3219  return true;
3220}
3221
3222/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3223/// is suitable for input to PALIGNR.
3224static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3225                          const X86Subtarget *Subtarget) {
3226  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3227      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3228    return false;
3229
3230  unsigned NumElts = VT.getVectorNumElements();
3231  unsigned NumLanes = VT.getSizeInBits()/128;
3232  unsigned NumLaneElts = NumElts/NumLanes;
3233
3234  // Do not handle 64-bit element shuffles with palignr.
3235  if (NumLaneElts == 2)
3236    return false;
3237
3238  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3239    unsigned i;
3240    for (i = 0; i != NumLaneElts; ++i) {
3241      if (Mask[i+l] >= 0)
3242        break;
3243    }
3244
3245    // Lane is all undef, go to next lane
3246    if (i == NumLaneElts)
3247      continue;
3248
3249    int Start = Mask[i+l];
3250
3251    // Make sure its in this lane in one of the sources
3252    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3253        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3254      return false;
3255
3256    // If not lane 0, then we must match lane 0
3257    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3258      return false;
3259
3260    // Correct second source to be contiguous with first source
3261    if (Start >= (int)NumElts)
3262      Start -= NumElts - NumLaneElts;
3263
3264    // Make sure we're shifting in the right direction.
3265    if (Start <= (int)(i+l))
3266      return false;
3267
3268    Start -= i;
3269
3270    // Check the rest of the elements to see if they are consecutive.
3271    for (++i; i != NumLaneElts; ++i) {
3272      int Idx = Mask[i+l];
3273
3274      // Make sure its in this lane
3275      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3276          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3277        return false;
3278
3279      // If not lane 0, then we must match lane 0
3280      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3281        return false;
3282
3283      if (Idx >= (int)NumElts)
3284        Idx -= NumElts - NumLaneElts;
3285
3286      if (!isUndefOrEqual(Idx, Start+i))
3287        return false;
3288
3289    }
3290  }
3291
3292  return true;
3293}
3294
3295/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3296/// the two vector operands have swapped position.
3297static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3298                                     unsigned NumElems) {
3299  for (unsigned i = 0; i != NumElems; ++i) {
3300    int idx = Mask[i];
3301    if (idx < 0)
3302      continue;
3303    else if (idx < (int)NumElems)
3304      Mask[i] = idx + NumElems;
3305    else
3306      Mask[i] = idx - NumElems;
3307  }
3308}
3309
3310/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3311/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3312/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3313/// reverse of what x86 shuffles want.
3314static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3315                        bool Commuted = false) {
3316  if (!HasAVX && VT.getSizeInBits() == 256)
3317    return false;
3318
3319  unsigned NumElems = VT.getVectorNumElements();
3320  unsigned NumLanes = VT.getSizeInBits()/128;
3321  unsigned NumLaneElems = NumElems/NumLanes;
3322
3323  if (NumLaneElems != 2 && NumLaneElems != 4)
3324    return false;
3325
3326  // VSHUFPSY divides the resulting vector into 4 chunks.
3327  // The sources are also splitted into 4 chunks, and each destination
3328  // chunk must come from a different source chunk.
3329  //
3330  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3331  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3332  //
3333  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3334  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3335  //
3336  // VSHUFPDY divides the resulting vector into 4 chunks.
3337  // The sources are also splitted into 4 chunks, and each destination
3338  // chunk must come from a different source chunk.
3339  //
3340  //  SRC1 =>      X3       X2       X1       X0
3341  //  SRC2 =>      Y3       Y2       Y1       Y0
3342  //
3343  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3344  //
3345  unsigned HalfLaneElems = NumLaneElems/2;
3346  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3347    for (unsigned i = 0; i != NumLaneElems; ++i) {
3348      int Idx = Mask[i+l];
3349      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3350      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3351        return false;
3352      // For VSHUFPSY, the mask of the second half must be the same as the
3353      // first but with the appropriate offsets. This works in the same way as
3354      // VPERMILPS works with masks.
3355      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3356        continue;
3357      if (!isUndefOrEqual(Idx, Mask[i]+l))
3358        return false;
3359    }
3360  }
3361
3362  return true;
3363}
3364
3365/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3366/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3367static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3368  unsigned NumElems = VT.getVectorNumElements();
3369
3370  if (VT.getSizeInBits() != 128)
3371    return false;
3372
3373  if (NumElems != 4)
3374    return false;
3375
3376  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3377  return isUndefOrEqual(Mask[0], 6) &&
3378         isUndefOrEqual(Mask[1], 7) &&
3379         isUndefOrEqual(Mask[2], 2) &&
3380         isUndefOrEqual(Mask[3], 3);
3381}
3382
3383/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3384/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3385/// <2, 3, 2, 3>
3386static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3387  unsigned NumElems = VT.getVectorNumElements();
3388
3389  if (VT.getSizeInBits() != 128)
3390    return false;
3391
3392  if (NumElems != 4)
3393    return false;
3394
3395  return isUndefOrEqual(Mask[0], 2) &&
3396         isUndefOrEqual(Mask[1], 3) &&
3397         isUndefOrEqual(Mask[2], 2) &&
3398         isUndefOrEqual(Mask[3], 3);
3399}
3400
3401/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3402/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3403static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3404  if (VT.getSizeInBits() != 128)
3405    return false;
3406
3407  unsigned NumElems = VT.getVectorNumElements();
3408
3409  if (NumElems != 2 && NumElems != 4)
3410    return false;
3411
3412  for (unsigned i = 0; i != NumElems/2; ++i)
3413    if (!isUndefOrEqual(Mask[i], i + NumElems))
3414      return false;
3415
3416  for (unsigned i = NumElems/2; i != NumElems; ++i)
3417    if (!isUndefOrEqual(Mask[i], i))
3418      return false;
3419
3420  return true;
3421}
3422
3423/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3424/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3425static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3426  unsigned NumElems = VT.getVectorNumElements();
3427
3428  if ((NumElems != 2 && NumElems != 4)
3429      || VT.getSizeInBits() > 128)
3430    return false;
3431
3432  for (unsigned i = 0; i != NumElems/2; ++i)
3433    if (!isUndefOrEqual(Mask[i], i))
3434      return false;
3435
3436  for (unsigned i = 0; i != NumElems/2; ++i)
3437    if (!isUndefOrEqual(Mask[i + NumElems/2], i + NumElems))
3438      return false;
3439
3440  return true;
3441}
3442
3443/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3444/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3445static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3446                         bool HasAVX2, bool V2IsSplat = false) {
3447  unsigned NumElts = VT.getVectorNumElements();
3448
3449  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3450         "Unsupported vector type for unpckh");
3451
3452  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3453      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3454    return false;
3455
3456  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3457  // independently on 128-bit lanes.
3458  unsigned NumLanes = VT.getSizeInBits()/128;
3459  unsigned NumLaneElts = NumElts/NumLanes;
3460
3461  for (unsigned l = 0; l != NumLanes; ++l) {
3462    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3463         i != (l+1)*NumLaneElts;
3464         i += 2, ++j) {
3465      int BitI  = Mask[i];
3466      int BitI1 = Mask[i+1];
3467      if (!isUndefOrEqual(BitI, j))
3468        return false;
3469      if (V2IsSplat) {
3470        if (!isUndefOrEqual(BitI1, NumElts))
3471          return false;
3472      } else {
3473        if (!isUndefOrEqual(BitI1, j + NumElts))
3474          return false;
3475      }
3476    }
3477  }
3478
3479  return true;
3480}
3481
3482/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3483/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3484static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3485                         bool HasAVX2, bool V2IsSplat = false) {
3486  unsigned NumElts = VT.getVectorNumElements();
3487
3488  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3489         "Unsupported vector type for unpckh");
3490
3491  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3492      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3493    return false;
3494
3495  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3496  // independently on 128-bit lanes.
3497  unsigned NumLanes = VT.getSizeInBits()/128;
3498  unsigned NumLaneElts = NumElts/NumLanes;
3499
3500  for (unsigned l = 0; l != NumLanes; ++l) {
3501    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3502         i != (l+1)*NumLaneElts; i += 2, ++j) {
3503      int BitI  = Mask[i];
3504      int BitI1 = Mask[i+1];
3505      if (!isUndefOrEqual(BitI, j))
3506        return false;
3507      if (V2IsSplat) {
3508        if (isUndefOrEqual(BitI1, NumElts))
3509          return false;
3510      } else {
3511        if (!isUndefOrEqual(BitI1, j+NumElts))
3512          return false;
3513      }
3514    }
3515  }
3516  return true;
3517}
3518
3519/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3520/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3521/// <0, 0, 1, 1>
3522static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3523                                  bool HasAVX2) {
3524  unsigned NumElts = VT.getVectorNumElements();
3525
3526  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3527         "Unsupported vector type for unpckh");
3528
3529  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3530      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3531    return false;
3532
3533  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3534  // FIXME: Need a better way to get rid of this, there's no latency difference
3535  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3536  // the former later. We should also remove the "_undef" special mask.
3537  if (NumElts == 4 && VT.getSizeInBits() == 256)
3538    return false;
3539
3540  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3541  // independently on 128-bit lanes.
3542  unsigned NumLanes = VT.getSizeInBits()/128;
3543  unsigned NumLaneElts = NumElts/NumLanes;
3544
3545  for (unsigned l = 0; l != NumLanes; ++l) {
3546    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3547         i != (l+1)*NumLaneElts;
3548         i += 2, ++j) {
3549      int BitI  = Mask[i];
3550      int BitI1 = Mask[i+1];
3551
3552      if (!isUndefOrEqual(BitI, j))
3553        return false;
3554      if (!isUndefOrEqual(BitI1, j))
3555        return false;
3556    }
3557  }
3558
3559  return true;
3560}
3561
3562/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3563/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3564/// <2, 2, 3, 3>
3565static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3566  unsigned NumElts = VT.getVectorNumElements();
3567
3568  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3569         "Unsupported vector type for unpckh");
3570
3571  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3572      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3573    return false;
3574
3575  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3576  // independently on 128-bit lanes.
3577  unsigned NumLanes = VT.getSizeInBits()/128;
3578  unsigned NumLaneElts = NumElts/NumLanes;
3579
3580  for (unsigned l = 0; l != NumLanes; ++l) {
3581    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3582         i != (l+1)*NumLaneElts; i += 2, ++j) {
3583      int BitI  = Mask[i];
3584      int BitI1 = Mask[i+1];
3585      if (!isUndefOrEqual(BitI, j))
3586        return false;
3587      if (!isUndefOrEqual(BitI1, j))
3588        return false;
3589    }
3590  }
3591  return true;
3592}
3593
3594/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3595/// specifies a shuffle of elements that is suitable for input to MOVSS,
3596/// MOVSD, and MOVD, i.e. setting the lowest element.
3597static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3598  if (VT.getVectorElementType().getSizeInBits() < 32)
3599    return false;
3600  if (VT.getSizeInBits() == 256)
3601    return false;
3602
3603  unsigned NumElts = VT.getVectorNumElements();
3604
3605  if (!isUndefOrEqual(Mask[0], NumElts))
3606    return false;
3607
3608  for (unsigned i = 1; i != NumElts; ++i)
3609    if (!isUndefOrEqual(Mask[i], i))
3610      return false;
3611
3612  return true;
3613}
3614
3615/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3616/// as permutations between 128-bit chunks or halves. As an example: this
3617/// shuffle bellow:
3618///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3619/// The first half comes from the second half of V1 and the second half from the
3620/// the second half of V2.
3621static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3622  if (!HasAVX || VT.getSizeInBits() != 256)
3623    return false;
3624
3625  // The shuffle result is divided into half A and half B. In total the two
3626  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3627  // B must come from C, D, E or F.
3628  unsigned HalfSize = VT.getVectorNumElements()/2;
3629  bool MatchA = false, MatchB = false;
3630
3631  // Check if A comes from one of C, D, E, F.
3632  for (unsigned Half = 0; Half != 4; ++Half) {
3633    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3634      MatchA = true;
3635      break;
3636    }
3637  }
3638
3639  // Check if B comes from one of C, D, E, F.
3640  for (unsigned Half = 0; Half != 4; ++Half) {
3641    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3642      MatchB = true;
3643      break;
3644    }
3645  }
3646
3647  return MatchA && MatchB;
3648}
3649
3650/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3651/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3652static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3653  EVT VT = SVOp->getValueType(0);
3654
3655  unsigned HalfSize = VT.getVectorNumElements()/2;
3656
3657  unsigned FstHalf = 0, SndHalf = 0;
3658  for (unsigned i = 0; i < HalfSize; ++i) {
3659    if (SVOp->getMaskElt(i) > 0) {
3660      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3661      break;
3662    }
3663  }
3664  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3665    if (SVOp->getMaskElt(i) > 0) {
3666      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3667      break;
3668    }
3669  }
3670
3671  return (FstHalf | (SndHalf << 4));
3672}
3673
3674/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3675/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3676/// Note that VPERMIL mask matching is different depending whether theunderlying
3677/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3678/// to the same elements of the low, but to the higher half of the source.
3679/// In VPERMILPD the two lanes could be shuffled independently of each other
3680/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3681static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3682  if (!HasAVX)
3683    return false;
3684
3685  unsigned NumElts = VT.getVectorNumElements();
3686  // Only match 256-bit with 32/64-bit types
3687  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3688    return false;
3689
3690  unsigned NumLanes = VT.getSizeInBits()/128;
3691  unsigned LaneSize = NumElts/NumLanes;
3692  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3693    for (unsigned i = 0; i != LaneSize; ++i) {
3694      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3695        return false;
3696      if (NumElts != 8 || l == 0)
3697        continue;
3698      // VPERMILPS handling
3699      if (Mask[i] < 0)
3700        continue;
3701      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3702        return false;
3703    }
3704  }
3705
3706  return true;
3707}
3708
3709/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3710/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3711/// element of vector 2 and the other elements to come from vector 1 in order.
3712static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3713                               bool V2IsSplat = false, bool V2IsUndef = false) {
3714  unsigned NumOps = VT.getVectorNumElements();
3715  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3716    return false;
3717
3718  if (!isUndefOrEqual(Mask[0], 0))
3719    return false;
3720
3721  for (unsigned i = 1; i != NumOps; ++i)
3722    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3723          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3724          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3725      return false;
3726
3727  return true;
3728}
3729
3730/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3731/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3732/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3733static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3734                           const X86Subtarget *Subtarget) {
3735  if (!Subtarget->hasSSE3())
3736    return false;
3737
3738  unsigned NumElems = VT.getVectorNumElements();
3739
3740  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3741      (VT.getSizeInBits() == 256 && NumElems != 8))
3742    return false;
3743
3744  // "i+1" is the value the indexed mask element must have
3745  for (unsigned i = 0; i != NumElems; i += 2)
3746    if (!isUndefOrEqual(Mask[i], i+1) ||
3747        !isUndefOrEqual(Mask[i+1], i+1))
3748      return false;
3749
3750  return true;
3751}
3752
3753/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3754/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3755/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3756static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3757                           const X86Subtarget *Subtarget) {
3758  if (!Subtarget->hasSSE3())
3759    return false;
3760
3761  unsigned NumElems = VT.getVectorNumElements();
3762
3763  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3764      (VT.getSizeInBits() == 256 && NumElems != 8))
3765    return false;
3766
3767  // "i" is the value the indexed mask element must have
3768  for (unsigned i = 0; i != NumElems; i += 2)
3769    if (!isUndefOrEqual(Mask[i], i) ||
3770        !isUndefOrEqual(Mask[i+1], i))
3771      return false;
3772
3773  return true;
3774}
3775
3776/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3777/// specifies a shuffle of elements that is suitable for input to 256-bit
3778/// version of MOVDDUP.
3779static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3780  unsigned NumElts = VT.getVectorNumElements();
3781
3782  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3783    return false;
3784
3785  for (unsigned i = 0; i != NumElts/2; ++i)
3786    if (!isUndefOrEqual(Mask[i], 0))
3787      return false;
3788  for (unsigned i = NumElts/2; i != NumElts; ++i)
3789    if (!isUndefOrEqual(Mask[i], NumElts/2))
3790      return false;
3791  return true;
3792}
3793
3794/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3795/// specifies a shuffle of elements that is suitable for input to 128-bit
3796/// version of MOVDDUP.
3797static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3798  if (VT.getSizeInBits() != 128)
3799    return false;
3800
3801  unsigned e = VT.getVectorNumElements() / 2;
3802  for (unsigned i = 0; i != e; ++i)
3803    if (!isUndefOrEqual(Mask[i], i))
3804      return false;
3805  for (unsigned i = 0; i != e; ++i)
3806    if (!isUndefOrEqual(Mask[e+i], i))
3807      return false;
3808  return true;
3809}
3810
3811/// isVEXTRACTF128Index - Return true if the specified
3812/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3813/// suitable for input to VEXTRACTF128.
3814bool X86::isVEXTRACTF128Index(SDNode *N) {
3815  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3816    return false;
3817
3818  // The index should be aligned on a 128-bit boundary.
3819  uint64_t Index =
3820    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3821
3822  unsigned VL = N->getValueType(0).getVectorNumElements();
3823  unsigned VBits = N->getValueType(0).getSizeInBits();
3824  unsigned ElSize = VBits / VL;
3825  bool Result = (Index * ElSize) % 128 == 0;
3826
3827  return Result;
3828}
3829
3830/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3831/// operand specifies a subvector insert that is suitable for input to
3832/// VINSERTF128.
3833bool X86::isVINSERTF128Index(SDNode *N) {
3834  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3835    return false;
3836
3837  // The index should be aligned on a 128-bit boundary.
3838  uint64_t Index =
3839    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3840
3841  unsigned VL = N->getValueType(0).getVectorNumElements();
3842  unsigned VBits = N->getValueType(0).getSizeInBits();
3843  unsigned ElSize = VBits / VL;
3844  bool Result = (Index * ElSize) % 128 == 0;
3845
3846  return Result;
3847}
3848
3849/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3850/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3851/// Handles 128-bit and 256-bit.
3852static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3853  EVT VT = N->getValueType(0);
3854
3855  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3856         "Unsupported vector type for PSHUF/SHUFP");
3857
3858  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3859  // independently on 128-bit lanes.
3860  unsigned NumElts = VT.getVectorNumElements();
3861  unsigned NumLanes = VT.getSizeInBits()/128;
3862  unsigned NumLaneElts = NumElts/NumLanes;
3863
3864  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3865         "Only supports 2 or 4 elements per lane");
3866
3867  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3868  unsigned Mask = 0;
3869  for (unsigned i = 0; i != NumElts; ++i) {
3870    int Elt = N->getMaskElt(i);
3871    if (Elt < 0) continue;
3872    Elt %= NumLaneElts;
3873    unsigned ShAmt = i << Shift;
3874    if (ShAmt >= 8) ShAmt -= 8;
3875    Mask |= Elt << ShAmt;
3876  }
3877
3878  return Mask;
3879}
3880
3881/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3882/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3883static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3884  unsigned Mask = 0;
3885  // 8 nodes, but we only care about the last 4.
3886  for (unsigned i = 7; i >= 4; --i) {
3887    int Val = N->getMaskElt(i);
3888    if (Val >= 0)
3889      Mask |= (Val - 4);
3890    if (i != 4)
3891      Mask <<= 2;
3892  }
3893  return Mask;
3894}
3895
3896/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3897/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3898static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3899  unsigned Mask = 0;
3900  // 8 nodes, but we only care about the first 4.
3901  for (int i = 3; i >= 0; --i) {
3902    int Val = N->getMaskElt(i);
3903    if (Val >= 0)
3904      Mask |= Val;
3905    if (i != 0)
3906      Mask <<= 2;
3907  }
3908  return Mask;
3909}
3910
3911/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3912/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3913static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3914  EVT VT = SVOp->getValueType(0);
3915  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3916
3917  unsigned NumElts = VT.getVectorNumElements();
3918  unsigned NumLanes = VT.getSizeInBits()/128;
3919  unsigned NumLaneElts = NumElts/NumLanes;
3920
3921  int Val = 0;
3922  unsigned i;
3923  for (i = 0; i != NumElts; ++i) {
3924    Val = SVOp->getMaskElt(i);
3925    if (Val >= 0)
3926      break;
3927  }
3928  if (Val >= (int)NumElts)
3929    Val -= NumElts - NumLaneElts;
3930
3931  assert(Val - i > 0 && "PALIGNR imm should be positive");
3932  return (Val - i) * EltSize;
3933}
3934
3935/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3936/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3937/// instructions.
3938unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3939  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3940    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3941
3942  uint64_t Index =
3943    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3944
3945  EVT VecVT = N->getOperand(0).getValueType();
3946  EVT ElVT = VecVT.getVectorElementType();
3947
3948  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3949  return Index / NumElemsPerChunk;
3950}
3951
3952/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3953/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3954/// instructions.
3955unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3956  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3957    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3958
3959  uint64_t Index =
3960    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3961
3962  EVT VecVT = N->getValueType(0);
3963  EVT ElVT = VecVT.getVectorElementType();
3964
3965  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3966  return Index / NumElemsPerChunk;
3967}
3968
3969/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3970/// constant +0.0.
3971bool X86::isZeroNode(SDValue Elt) {
3972  return ((isa<ConstantSDNode>(Elt) &&
3973           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3974          (isa<ConstantFPSDNode>(Elt) &&
3975           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3976}
3977
3978/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3979/// their permute mask.
3980static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3981                                    SelectionDAG &DAG) {
3982  EVT VT = SVOp->getValueType(0);
3983  unsigned NumElems = VT.getVectorNumElements();
3984  SmallVector<int, 8> MaskVec;
3985
3986  for (unsigned i = 0; i != NumElems; ++i) {
3987    int idx = SVOp->getMaskElt(i);
3988    if (idx < 0)
3989      MaskVec.push_back(idx);
3990    else if (idx < (int)NumElems)
3991      MaskVec.push_back(idx + NumElems);
3992    else
3993      MaskVec.push_back(idx - NumElems);
3994  }
3995  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3996                              SVOp->getOperand(0), &MaskVec[0]);
3997}
3998
3999/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4000/// match movhlps. The lower half elements should come from upper half of
4001/// V1 (and in order), and the upper half elements should come from the upper
4002/// half of V2 (and in order).
4003static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4004  if (VT.getSizeInBits() != 128)
4005    return false;
4006  if (VT.getVectorNumElements() != 4)
4007    return false;
4008  for (unsigned i = 0, e = 2; i != e; ++i)
4009    if (!isUndefOrEqual(Mask[i], i+2))
4010      return false;
4011  for (unsigned i = 2; i != 4; ++i)
4012    if (!isUndefOrEqual(Mask[i], i+4))
4013      return false;
4014  return true;
4015}
4016
4017/// isScalarLoadToVector - Returns true if the node is a scalar load that
4018/// is promoted to a vector. It also returns the LoadSDNode by reference if
4019/// required.
4020static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4021  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4022    return false;
4023  N = N->getOperand(0).getNode();
4024  if (!ISD::isNON_EXTLoad(N))
4025    return false;
4026  if (LD)
4027    *LD = cast<LoadSDNode>(N);
4028  return true;
4029}
4030
4031// Test whether the given value is a vector value which will be legalized
4032// into a load.
4033static bool WillBeConstantPoolLoad(SDNode *N) {
4034  if (N->getOpcode() != ISD::BUILD_VECTOR)
4035    return false;
4036
4037  // Check for any non-constant elements.
4038  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4039    switch (N->getOperand(i).getNode()->getOpcode()) {
4040    case ISD::UNDEF:
4041    case ISD::ConstantFP:
4042    case ISD::Constant:
4043      break;
4044    default:
4045      return false;
4046    }
4047
4048  // Vectors of all-zeros and all-ones are materialized with special
4049  // instructions rather than being loaded.
4050  return !ISD::isBuildVectorAllZeros(N) &&
4051         !ISD::isBuildVectorAllOnes(N);
4052}
4053
4054/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4055/// match movlp{s|d}. The lower half elements should come from lower half of
4056/// V1 (and in order), and the upper half elements should come from the upper
4057/// half of V2 (and in order). And since V1 will become the source of the
4058/// MOVLP, it must be either a vector load or a scalar load to vector.
4059static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4060                               ArrayRef<int> Mask, EVT VT) {
4061  if (VT.getSizeInBits() != 128)
4062    return false;
4063
4064  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4065    return false;
4066  // Is V2 is a vector load, don't do this transformation. We will try to use
4067  // load folding shufps op.
4068  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4069    return false;
4070
4071  unsigned NumElems = VT.getVectorNumElements();
4072
4073  if (NumElems != 2 && NumElems != 4)
4074    return false;
4075  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4076    if (!isUndefOrEqual(Mask[i], i))
4077      return false;
4078  for (unsigned i = NumElems/2; i != NumElems; ++i)
4079    if (!isUndefOrEqual(Mask[i], i+NumElems))
4080      return false;
4081  return true;
4082}
4083
4084/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4085/// all the same.
4086static bool isSplatVector(SDNode *N) {
4087  if (N->getOpcode() != ISD::BUILD_VECTOR)
4088    return false;
4089
4090  SDValue SplatValue = N->getOperand(0);
4091  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4092    if (N->getOperand(i) != SplatValue)
4093      return false;
4094  return true;
4095}
4096
4097/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4098/// to an zero vector.
4099/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4100static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4101  SDValue V1 = N->getOperand(0);
4102  SDValue V2 = N->getOperand(1);
4103  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4104  for (unsigned i = 0; i != NumElems; ++i) {
4105    int Idx = N->getMaskElt(i);
4106    if (Idx >= (int)NumElems) {
4107      unsigned Opc = V2.getOpcode();
4108      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4109        continue;
4110      if (Opc != ISD::BUILD_VECTOR ||
4111          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4112        return false;
4113    } else if (Idx >= 0) {
4114      unsigned Opc = V1.getOpcode();
4115      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4116        continue;
4117      if (Opc != ISD::BUILD_VECTOR ||
4118          !X86::isZeroNode(V1.getOperand(Idx)))
4119        return false;
4120    }
4121  }
4122  return true;
4123}
4124
4125/// getZeroVector - Returns a vector of specified type with all zero elements.
4126///
4127static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4128                             SelectionDAG &DAG, DebugLoc dl) {
4129  assert(VT.isVector() && "Expected a vector type");
4130
4131  // Always build SSE zero vectors as <4 x i32> bitcasted
4132  // to their dest type. This ensures they get CSE'd.
4133  SDValue Vec;
4134  if (VT.getSizeInBits() == 128) {  // SSE
4135    if (Subtarget->hasSSE2()) {  // SSE2
4136      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4137      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4138    } else { // SSE1
4139      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4140      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4141    }
4142  } else if (VT.getSizeInBits() == 256) { // AVX
4143    if (Subtarget->hasAVX2()) { // AVX2
4144      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4145      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4146      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4147    } else {
4148      // 256-bit logic and arithmetic instructions in AVX are all
4149      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4150      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4151      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4152      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4153    }
4154  }
4155  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4156}
4157
4158/// getOnesVector - Returns a vector of specified type with all bits set.
4159/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4160/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4161/// Then bitcast to their original type, ensuring they get CSE'd.
4162static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4163                             DebugLoc dl) {
4164  assert(VT.isVector() && "Expected a vector type");
4165  assert((VT.is128BitVector() || VT.is256BitVector())
4166         && "Expected a 128-bit or 256-bit vector type");
4167
4168  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4169  SDValue Vec;
4170  if (VT.getSizeInBits() == 256) {
4171    if (HasAVX2) { // AVX2
4172      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4173      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4174    } else { // AVX
4175      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4176      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4177                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4178      Vec = Insert128BitVector(InsV, Vec,
4179                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4180    }
4181  } else {
4182    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4183  }
4184
4185  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4186}
4187
4188/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4189/// that point to V2 points to its first element.
4190static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4191  for (unsigned i = 0; i != NumElems; ++i) {
4192    if (Mask[i] > (int)NumElems) {
4193      Mask[i] = NumElems;
4194    }
4195  }
4196}
4197
4198/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4199/// operation of specified width.
4200static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4201                       SDValue V2) {
4202  unsigned NumElems = VT.getVectorNumElements();
4203  SmallVector<int, 8> Mask;
4204  Mask.push_back(NumElems);
4205  for (unsigned i = 1; i != NumElems; ++i)
4206    Mask.push_back(i);
4207  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4208}
4209
4210/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4211static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4212                          SDValue V2) {
4213  unsigned NumElems = VT.getVectorNumElements();
4214  SmallVector<int, 8> Mask;
4215  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4216    Mask.push_back(i);
4217    Mask.push_back(i + NumElems);
4218  }
4219  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4220}
4221
4222/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4223static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4224                          SDValue V2) {
4225  unsigned NumElems = VT.getVectorNumElements();
4226  unsigned Half = NumElems/2;
4227  SmallVector<int, 8> Mask;
4228  for (unsigned i = 0; i != Half; ++i) {
4229    Mask.push_back(i + Half);
4230    Mask.push_back(i + NumElems + Half);
4231  }
4232  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4233}
4234
4235// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4236// a generic shuffle instruction because the target has no such instructions.
4237// Generate shuffles which repeat i16 and i8 several times until they can be
4238// represented by v4f32 and then be manipulated by target suported shuffles.
4239static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4240  EVT VT = V.getValueType();
4241  int NumElems = VT.getVectorNumElements();
4242  DebugLoc dl = V.getDebugLoc();
4243
4244  while (NumElems > 4) {
4245    if (EltNo < NumElems/2) {
4246      V = getUnpackl(DAG, dl, VT, V, V);
4247    } else {
4248      V = getUnpackh(DAG, dl, VT, V, V);
4249      EltNo -= NumElems/2;
4250    }
4251    NumElems >>= 1;
4252  }
4253  return V;
4254}
4255
4256/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4257static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4258  EVT VT = V.getValueType();
4259  DebugLoc dl = V.getDebugLoc();
4260  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4261         && "Vector size not supported");
4262
4263  if (VT.getSizeInBits() == 128) {
4264    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4265    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4266    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4267                             &SplatMask[0]);
4268  } else {
4269    // To use VPERMILPS to splat scalars, the second half of indicies must
4270    // refer to the higher part, which is a duplication of the lower one,
4271    // because VPERMILPS can only handle in-lane permutations.
4272    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4273                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4274
4275    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4276    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4277                             &SplatMask[0]);
4278  }
4279
4280  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4281}
4282
4283/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4284static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4285  EVT SrcVT = SV->getValueType(0);
4286  SDValue V1 = SV->getOperand(0);
4287  DebugLoc dl = SV->getDebugLoc();
4288
4289  int EltNo = SV->getSplatIndex();
4290  int NumElems = SrcVT.getVectorNumElements();
4291  unsigned Size = SrcVT.getSizeInBits();
4292
4293  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4294          "Unknown how to promote splat for type");
4295
4296  // Extract the 128-bit part containing the splat element and update
4297  // the splat element index when it refers to the higher register.
4298  if (Size == 256) {
4299    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4300    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4301    if (Idx > 0)
4302      EltNo -= NumElems/2;
4303  }
4304
4305  // All i16 and i8 vector types can't be used directly by a generic shuffle
4306  // instruction because the target has no such instruction. Generate shuffles
4307  // which repeat i16 and i8 several times until they fit in i32, and then can
4308  // be manipulated by target suported shuffles.
4309  EVT EltVT = SrcVT.getVectorElementType();
4310  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4311    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4312
4313  // Recreate the 256-bit vector and place the same 128-bit vector
4314  // into the low and high part. This is necessary because we want
4315  // to use VPERM* to shuffle the vectors
4316  if (Size == 256) {
4317    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4318                         DAG.getConstant(0, MVT::i32), DAG, dl);
4319    V1 = Insert128BitVector(InsV, V1,
4320               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4321  }
4322
4323  return getLegalSplat(DAG, V1, EltNo);
4324}
4325
4326/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4327/// vector of zero or undef vector.  This produces a shuffle where the low
4328/// element of V2 is swizzled into the zero/undef vector, landing at element
4329/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4330static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4331                                           bool IsZero,
4332                                           const X86Subtarget *Subtarget,
4333                                           SelectionDAG &DAG) {
4334  EVT VT = V2.getValueType();
4335  SDValue V1 = IsZero
4336    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4337  unsigned NumElems = VT.getVectorNumElements();
4338  SmallVector<int, 16> MaskVec;
4339  for (unsigned i = 0; i != NumElems; ++i)
4340    // If this is the insertion idx, put the low elt of V2 here.
4341    MaskVec.push_back(i == Idx ? NumElems : i);
4342  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4343}
4344
4345/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4346/// element of the result of the vector shuffle.
4347static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4348                                   unsigned Depth) {
4349  if (Depth == 6)
4350    return SDValue();  // Limit search depth.
4351
4352  SDValue V = SDValue(N, 0);
4353  EVT VT = V.getValueType();
4354  unsigned Opcode = V.getOpcode();
4355
4356  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4357  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4358    Index = SV->getMaskElt(Index);
4359
4360    if (Index < 0)
4361      return DAG.getUNDEF(VT.getVectorElementType());
4362
4363    unsigned NumElems = VT.getVectorNumElements();
4364    SDValue NewV = (Index < (int)NumElems) ? SV->getOperand(0)
4365                                           : SV->getOperand(1);
4366    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4367  }
4368
4369  // Recurse into target specific vector shuffles to find scalars.
4370  if (isTargetShuffle(Opcode)) {
4371    unsigned NumElems = VT.getVectorNumElements();
4372    SmallVector<unsigned, 16> ShuffleMask;
4373    SDValue ImmN;
4374
4375    switch(Opcode) {
4376    case X86ISD::SHUFP:
4377      ImmN = N->getOperand(N->getNumOperands()-1);
4378      DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4379                      ShuffleMask);
4380      break;
4381    case X86ISD::UNPCKH:
4382      DecodeUNPCKHMask(VT, ShuffleMask);
4383      break;
4384    case X86ISD::UNPCKL:
4385      DecodeUNPCKLMask(VT, ShuffleMask);
4386      break;
4387    case X86ISD::MOVHLPS:
4388      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4389      break;
4390    case X86ISD::MOVLHPS:
4391      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4392      break;
4393    case X86ISD::PSHUFD:
4394    case X86ISD::VPERMILP:
4395      ImmN = N->getOperand(N->getNumOperands()-1);
4396      DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4397                      ShuffleMask);
4398      break;
4399    case X86ISD::PSHUFHW:
4400      ImmN = N->getOperand(N->getNumOperands()-1);
4401      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4402                        ShuffleMask);
4403      break;
4404    case X86ISD::PSHUFLW:
4405      ImmN = N->getOperand(N->getNumOperands()-1);
4406      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4407                        ShuffleMask);
4408      break;
4409    case X86ISD::MOVSS:
4410    case X86ISD::MOVSD: {
4411      // The index 0 always comes from the first element of the second source,
4412      // this is why MOVSS and MOVSD are used in the first place. The other
4413      // elements come from the other positions of the first source vector.
4414      unsigned OpNum = (Index == 0) ? 1 : 0;
4415      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4416                                 Depth+1);
4417    }
4418    case X86ISD::VPERM2X128:
4419      ImmN = N->getOperand(N->getNumOperands()-1);
4420      DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4421                           ShuffleMask);
4422      break;
4423    case X86ISD::MOVDDUP:
4424    case X86ISD::MOVLHPD:
4425    case X86ISD::MOVLPD:
4426    case X86ISD::MOVLPS:
4427    case X86ISD::MOVSHDUP:
4428    case X86ISD::MOVSLDUP:
4429    case X86ISD::PALIGN:
4430      return SDValue(); // Not yet implemented.
4431    default: llvm_unreachable("unknown target shuffle node");
4432    }
4433
4434    Index = ShuffleMask[Index];
4435    if (Index < 0)
4436      return DAG.getUNDEF(VT.getVectorElementType());
4437
4438    SDValue NewV = (Index < (int)NumElems) ? N->getOperand(0)
4439                                           : N->getOperand(1);
4440    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4441                               Depth+1);
4442  }
4443
4444  // Actual nodes that may contain scalar elements
4445  if (Opcode == ISD::BITCAST) {
4446    V = V.getOperand(0);
4447    EVT SrcVT = V.getValueType();
4448    unsigned NumElems = VT.getVectorNumElements();
4449
4450    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4451      return SDValue();
4452  }
4453
4454  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4455    return (Index == 0) ? V.getOperand(0)
4456                          : DAG.getUNDEF(VT.getVectorElementType());
4457
4458  if (V.getOpcode() == ISD::BUILD_VECTOR)
4459    return V.getOperand(Index);
4460
4461  return SDValue();
4462}
4463
4464/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4465/// shuffle operation which come from a consecutively from a zero. The
4466/// search can start in two different directions, from left or right.
4467static
4468unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4469                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4470  int i = 0;
4471
4472  while (i < NumElems) {
4473    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4474    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4475    if (!(Elt.getNode() &&
4476         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4477      break;
4478    ++i;
4479  }
4480
4481  return i;
4482}
4483
4484/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4485/// MaskE correspond consecutively to elements from one of the vector operands,
4486/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4487static
4488bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4489                              int OpIdx, int NumElems, unsigned &OpNum) {
4490  bool SeenV1 = false;
4491  bool SeenV2 = false;
4492
4493  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4494    int Idx = SVOp->getMaskElt(i);
4495    // Ignore undef indicies
4496    if (Idx < 0)
4497      continue;
4498
4499    if (Idx < NumElems)
4500      SeenV1 = true;
4501    else
4502      SeenV2 = true;
4503
4504    // Only accept consecutive elements from the same vector
4505    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4506      return false;
4507  }
4508
4509  OpNum = SeenV1 ? 0 : 1;
4510  return true;
4511}
4512
4513/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4514/// logical left shift of a vector.
4515static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4516                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4517  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4518  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4519              false /* check zeros from right */, DAG);
4520  unsigned OpSrc;
4521
4522  if (!NumZeros)
4523    return false;
4524
4525  // Considering the elements in the mask that are not consecutive zeros,
4526  // check if they consecutively come from only one of the source vectors.
4527  //
4528  //               V1 = {X, A, B, C}     0
4529  //                         \  \  \    /
4530  //   vector_shuffle V1, V2 <1, 2, 3, X>
4531  //
4532  if (!isShuffleMaskConsecutive(SVOp,
4533            0,                   // Mask Start Index
4534            NumElems-NumZeros-1, // Mask End Index
4535            NumZeros,            // Where to start looking in the src vector
4536            NumElems,            // Number of elements in vector
4537            OpSrc))              // Which source operand ?
4538    return false;
4539
4540  isLeft = false;
4541  ShAmt = NumZeros;
4542  ShVal = SVOp->getOperand(OpSrc);
4543  return true;
4544}
4545
4546/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4547/// logical left shift of a vector.
4548static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4549                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4550  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4551  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4552              true /* check zeros from left */, DAG);
4553  unsigned OpSrc;
4554
4555  if (!NumZeros)
4556    return false;
4557
4558  // Considering the elements in the mask that are not consecutive zeros,
4559  // check if they consecutively come from only one of the source vectors.
4560  //
4561  //                           0    { A, B, X, X } = V2
4562  //                          / \    /  /
4563  //   vector_shuffle V1, V2 <X, X, 4, 5>
4564  //
4565  if (!isShuffleMaskConsecutive(SVOp,
4566            NumZeros,     // Mask Start Index
4567            NumElems-1,   // Mask End Index
4568            0,            // Where to start looking in the src vector
4569            NumElems,     // Number of elements in vector
4570            OpSrc))       // Which source operand ?
4571    return false;
4572
4573  isLeft = true;
4574  ShAmt = NumZeros;
4575  ShVal = SVOp->getOperand(OpSrc);
4576  return true;
4577}
4578
4579/// isVectorShift - Returns true if the shuffle can be implemented as a
4580/// logical left or right shift of a vector.
4581static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4582                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4583  // Although the logic below support any bitwidth size, there are no
4584  // shift instructions which handle more than 128-bit vectors.
4585  if (SVOp->getValueType(0).getSizeInBits() > 128)
4586    return false;
4587
4588  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4589      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4590    return true;
4591
4592  return false;
4593}
4594
4595/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4596///
4597static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4598                                       unsigned NumNonZero, unsigned NumZero,
4599                                       SelectionDAG &DAG,
4600                                       const X86Subtarget* Subtarget,
4601                                       const TargetLowering &TLI) {
4602  if (NumNonZero > 8)
4603    return SDValue();
4604
4605  DebugLoc dl = Op.getDebugLoc();
4606  SDValue V(0, 0);
4607  bool First = true;
4608  for (unsigned i = 0; i < 16; ++i) {
4609    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4610    if (ThisIsNonZero && First) {
4611      if (NumZero)
4612        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4613      else
4614        V = DAG.getUNDEF(MVT::v8i16);
4615      First = false;
4616    }
4617
4618    if ((i & 1) != 0) {
4619      SDValue ThisElt(0, 0), LastElt(0, 0);
4620      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4621      if (LastIsNonZero) {
4622        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4623                              MVT::i16, Op.getOperand(i-1));
4624      }
4625      if (ThisIsNonZero) {
4626        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4627        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4628                              ThisElt, DAG.getConstant(8, MVT::i8));
4629        if (LastIsNonZero)
4630          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4631      } else
4632        ThisElt = LastElt;
4633
4634      if (ThisElt.getNode())
4635        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4636                        DAG.getIntPtrConstant(i/2));
4637    }
4638  }
4639
4640  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4641}
4642
4643/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4644///
4645static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4646                                     unsigned NumNonZero, unsigned NumZero,
4647                                     SelectionDAG &DAG,
4648                                     const X86Subtarget* Subtarget,
4649                                     const TargetLowering &TLI) {
4650  if (NumNonZero > 4)
4651    return SDValue();
4652
4653  DebugLoc dl = Op.getDebugLoc();
4654  SDValue V(0, 0);
4655  bool First = true;
4656  for (unsigned i = 0; i < 8; ++i) {
4657    bool isNonZero = (NonZeros & (1 << i)) != 0;
4658    if (isNonZero) {
4659      if (First) {
4660        if (NumZero)
4661          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4662        else
4663          V = DAG.getUNDEF(MVT::v8i16);
4664        First = false;
4665      }
4666      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4667                      MVT::v8i16, V, Op.getOperand(i),
4668                      DAG.getIntPtrConstant(i));
4669    }
4670  }
4671
4672  return V;
4673}
4674
4675/// getVShift - Return a vector logical shift node.
4676///
4677static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4678                         unsigned NumBits, SelectionDAG &DAG,
4679                         const TargetLowering &TLI, DebugLoc dl) {
4680  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4681  EVT ShVT = MVT::v2i64;
4682  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4683  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4684  return DAG.getNode(ISD::BITCAST, dl, VT,
4685                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4686                             DAG.getConstant(NumBits,
4687                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4688}
4689
4690SDValue
4691X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4692                                          SelectionDAG &DAG) const {
4693
4694  // Check if the scalar load can be widened into a vector load. And if
4695  // the address is "base + cst" see if the cst can be "absorbed" into
4696  // the shuffle mask.
4697  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4698    SDValue Ptr = LD->getBasePtr();
4699    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4700      return SDValue();
4701    EVT PVT = LD->getValueType(0);
4702    if (PVT != MVT::i32 && PVT != MVT::f32)
4703      return SDValue();
4704
4705    int FI = -1;
4706    int64_t Offset = 0;
4707    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4708      FI = FINode->getIndex();
4709      Offset = 0;
4710    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4711               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4712      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4713      Offset = Ptr.getConstantOperandVal(1);
4714      Ptr = Ptr.getOperand(0);
4715    } else {
4716      return SDValue();
4717    }
4718
4719    // FIXME: 256-bit vector instructions don't require a strict alignment,
4720    // improve this code to support it better.
4721    unsigned RequiredAlign = VT.getSizeInBits()/8;
4722    SDValue Chain = LD->getChain();
4723    // Make sure the stack object alignment is at least 16 or 32.
4724    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4725    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4726      if (MFI->isFixedObjectIndex(FI)) {
4727        // Can't change the alignment. FIXME: It's possible to compute
4728        // the exact stack offset and reference FI + adjust offset instead.
4729        // If someone *really* cares about this. That's the way to implement it.
4730        return SDValue();
4731      } else {
4732        MFI->setObjectAlignment(FI, RequiredAlign);
4733      }
4734    }
4735
4736    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4737    // Ptr + (Offset & ~15).
4738    if (Offset < 0)
4739      return SDValue();
4740    if ((Offset % RequiredAlign) & 3)
4741      return SDValue();
4742    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4743    if (StartOffset)
4744      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4745                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4746
4747    int EltNo = (Offset - StartOffset) >> 2;
4748    int NumElems = VT.getVectorNumElements();
4749
4750    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4751    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4752                             LD->getPointerInfo().getWithOffset(StartOffset),
4753                             false, false, false, 0);
4754
4755    SmallVector<int, 8> Mask;
4756    for (int i = 0; i < NumElems; ++i)
4757      Mask.push_back(EltNo);
4758
4759    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4760  }
4761
4762  return SDValue();
4763}
4764
4765/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4766/// vector of type 'VT', see if the elements can be replaced by a single large
4767/// load which has the same value as a build_vector whose operands are 'elts'.
4768///
4769/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4770///
4771/// FIXME: we'd also like to handle the case where the last elements are zero
4772/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4773/// There's even a handy isZeroNode for that purpose.
4774static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4775                                        DebugLoc &DL, SelectionDAG &DAG) {
4776  EVT EltVT = VT.getVectorElementType();
4777  unsigned NumElems = Elts.size();
4778
4779  LoadSDNode *LDBase = NULL;
4780  unsigned LastLoadedElt = -1U;
4781
4782  // For each element in the initializer, see if we've found a load or an undef.
4783  // If we don't find an initial load element, or later load elements are
4784  // non-consecutive, bail out.
4785  for (unsigned i = 0; i < NumElems; ++i) {
4786    SDValue Elt = Elts[i];
4787
4788    if (!Elt.getNode() ||
4789        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4790      return SDValue();
4791    if (!LDBase) {
4792      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4793        return SDValue();
4794      LDBase = cast<LoadSDNode>(Elt.getNode());
4795      LastLoadedElt = i;
4796      continue;
4797    }
4798    if (Elt.getOpcode() == ISD::UNDEF)
4799      continue;
4800
4801    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4802    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4803      return SDValue();
4804    LastLoadedElt = i;
4805  }
4806
4807  // If we have found an entire vector of loads and undefs, then return a large
4808  // load of the entire vector width starting at the base pointer.  If we found
4809  // consecutive loads for the low half, generate a vzext_load node.
4810  if (LastLoadedElt == NumElems - 1) {
4811    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4812      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4813                         LDBase->getPointerInfo(),
4814                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4815                         LDBase->isInvariant(), 0);
4816    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4817                       LDBase->getPointerInfo(),
4818                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4819                       LDBase->isInvariant(), LDBase->getAlignment());
4820  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4821             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4822    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4823    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4824    SDValue ResNode =
4825        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4826                                LDBase->getPointerInfo(),
4827                                LDBase->getAlignment(),
4828                                false/*isVolatile*/, true/*ReadMem*/,
4829                                false/*WriteMem*/);
4830    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4831  }
4832  return SDValue();
4833}
4834
4835/// isVectorBroadcast - Check if the node chain is suitable to be xformed to
4836/// a vbroadcast node. We support two patterns:
4837/// 1. A splat BUILD_VECTOR which uses a single scalar load.
4838/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4839/// a scalar load.
4840/// The scalar load node is returned when a pattern is found,
4841/// or SDValue() otherwise.
4842static SDValue isVectorBroadcast(SDValue &Op, const X86Subtarget *Subtarget) {
4843  if (!Subtarget->hasAVX())
4844    return SDValue();
4845
4846  EVT VT = Op.getValueType();
4847  SDValue V = Op;
4848
4849  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
4850    V = V.getOperand(0);
4851
4852  //A suspected load to be broadcasted.
4853  SDValue Ld;
4854
4855  switch (V.getOpcode()) {
4856    default:
4857      // Unknown pattern found.
4858      return SDValue();
4859
4860    case ISD::BUILD_VECTOR: {
4861      // The BUILD_VECTOR node must be a splat.
4862      if (!isSplatVector(V.getNode()))
4863        return SDValue();
4864
4865      Ld = V.getOperand(0);
4866
4867      // The suspected load node has several users. Make sure that all
4868      // of its users are from the BUILD_VECTOR node.
4869      if (!Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4870        return SDValue();
4871      break;
4872    }
4873
4874    case ISD::VECTOR_SHUFFLE: {
4875      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4876
4877      // Shuffles must have a splat mask where the first element is
4878      // broadcasted.
4879      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4880        return SDValue();
4881
4882      SDValue Sc = Op.getOperand(0);
4883      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4884        return SDValue();
4885
4886      Ld = Sc.getOperand(0);
4887
4888      // The scalar_to_vector node and the suspected
4889      // load node must have exactly one user.
4890      if (!Sc.hasOneUse() || !Ld.hasOneUse())
4891        return SDValue();
4892      break;
4893    }
4894  }
4895
4896  // The scalar source must be a normal load.
4897  if (!ISD::isNormalLoad(Ld.getNode()))
4898    return SDValue();
4899
4900  // Reject loads that have uses of the chain result
4901  if (Ld->hasAnyUseOfValue(1))
4902    return SDValue();
4903
4904  bool Is256 = VT.getSizeInBits() == 256;
4905  bool Is128 = VT.getSizeInBits() == 128;
4906  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4907
4908  // VBroadcast to YMM
4909  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4910    return Ld;
4911
4912  // VBroadcast to XMM
4913  if (Is128 && (ScalarSize == 32))
4914    return Ld;
4915
4916  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
4917  // double since there is vbroadcastsd xmm
4918  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
4919    // VBroadcast to YMM
4920    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
4921      return Ld;
4922
4923    // VBroadcast to XMM
4924    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
4925      return Ld;
4926  }
4927
4928  // Unsupported broadcast.
4929  return SDValue();
4930}
4931
4932SDValue
4933X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4934  DebugLoc dl = Op.getDebugLoc();
4935
4936  EVT VT = Op.getValueType();
4937  EVT ExtVT = VT.getVectorElementType();
4938  unsigned NumElems = Op.getNumOperands();
4939
4940  // Vectors containing all zeros can be matched by pxor and xorps later
4941  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
4942    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
4943    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
4944    if (VT == MVT::v4i32 || VT == MVT::v8i32)
4945      return Op;
4946
4947    return getZeroVector(VT, Subtarget, DAG, dl);
4948  }
4949
4950  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
4951  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
4952  // vpcmpeqd on 256-bit vectors.
4953  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
4954    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
4955      return Op;
4956
4957    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
4958  }
4959
4960  SDValue LD = isVectorBroadcast(Op, Subtarget);
4961  if (LD.getNode())
4962    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
4963
4964  unsigned EVTBits = ExtVT.getSizeInBits();
4965
4966  unsigned NumZero  = 0;
4967  unsigned NumNonZero = 0;
4968  unsigned NonZeros = 0;
4969  bool IsAllConstants = true;
4970  SmallSet<SDValue, 8> Values;
4971  for (unsigned i = 0; i < NumElems; ++i) {
4972    SDValue Elt = Op.getOperand(i);
4973    if (Elt.getOpcode() == ISD::UNDEF)
4974      continue;
4975    Values.insert(Elt);
4976    if (Elt.getOpcode() != ISD::Constant &&
4977        Elt.getOpcode() != ISD::ConstantFP)
4978      IsAllConstants = false;
4979    if (X86::isZeroNode(Elt))
4980      NumZero++;
4981    else {
4982      NonZeros |= (1 << i);
4983      NumNonZero++;
4984    }
4985  }
4986
4987  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4988  if (NumNonZero == 0)
4989    return DAG.getUNDEF(VT);
4990
4991  // Special case for single non-zero, non-undef, element.
4992  if (NumNonZero == 1) {
4993    unsigned Idx = CountTrailingZeros_32(NonZeros);
4994    SDValue Item = Op.getOperand(Idx);
4995
4996    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4997    // the value are obviously zero, truncate the value to i32 and do the
4998    // insertion that way.  Only do this if the value is non-constant or if the
4999    // value is a constant being inserted into element 0.  It is cheaper to do
5000    // a constant pool load than it is to do a movd + shuffle.
5001    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5002        (!IsAllConstants || Idx == 0)) {
5003      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5004        // Handle SSE only.
5005        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5006        EVT VecVT = MVT::v4i32;
5007        unsigned VecElts = 4;
5008
5009        // Truncate the value (which may itself be a constant) to i32, and
5010        // convert it to a vector with movd (S2V+shuffle to zero extend).
5011        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5012        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5013        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5014
5015        // Now we have our 32-bit value zero extended in the low element of
5016        // a vector.  If Idx != 0, swizzle it into place.
5017        if (Idx != 0) {
5018          SmallVector<int, 4> Mask;
5019          Mask.push_back(Idx);
5020          for (unsigned i = 1; i != VecElts; ++i)
5021            Mask.push_back(i);
5022          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5023                                      DAG.getUNDEF(Item.getValueType()),
5024                                      &Mask[0]);
5025        }
5026        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5027      }
5028    }
5029
5030    // If we have a constant or non-constant insertion into the low element of
5031    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5032    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5033    // depending on what the source datatype is.
5034    if (Idx == 0) {
5035      if (NumZero == 0)
5036        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5037
5038      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5039          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5040        if (VT.getSizeInBits() == 256) {
5041          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5042          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5043                             Item, DAG.getIntPtrConstant(0));
5044        }
5045        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5046        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5047        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5048        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5049      }
5050
5051      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5052        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5053        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5054        if (VT.getSizeInBits() == 256) {
5055          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5056          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5057                                    DAG, dl);
5058        } else {
5059          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5060          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5061        }
5062        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5063      }
5064    }
5065
5066    // Is it a vector logical left shift?
5067    if (NumElems == 2 && Idx == 1 &&
5068        X86::isZeroNode(Op.getOperand(0)) &&
5069        !X86::isZeroNode(Op.getOperand(1))) {
5070      unsigned NumBits = VT.getSizeInBits();
5071      return getVShift(true, VT,
5072                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5073                                   VT, Op.getOperand(1)),
5074                       NumBits/2, DAG, *this, dl);
5075    }
5076
5077    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5078      return SDValue();
5079
5080    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5081    // is a non-constant being inserted into an element other than the low one,
5082    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5083    // movd/movss) to move this into the low element, then shuffle it into
5084    // place.
5085    if (EVTBits == 32) {
5086      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5087
5088      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5089      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5090      SmallVector<int, 8> MaskVec;
5091      for (unsigned i = 0; i < NumElems; i++)
5092        MaskVec.push_back(i == Idx ? 0 : 1);
5093      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5094    }
5095  }
5096
5097  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5098  if (Values.size() == 1) {
5099    if (EVTBits == 32) {
5100      // Instead of a shuffle like this:
5101      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5102      // Check if it's possible to issue this instead.
5103      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5104      unsigned Idx = CountTrailingZeros_32(NonZeros);
5105      SDValue Item = Op.getOperand(Idx);
5106      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5107        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5108    }
5109    return SDValue();
5110  }
5111
5112  // A vector full of immediates; various special cases are already
5113  // handled, so this is best done with a single constant-pool load.
5114  if (IsAllConstants)
5115    return SDValue();
5116
5117  // For AVX-length vectors, build the individual 128-bit pieces and use
5118  // shuffles to put them in place.
5119  if (VT.getSizeInBits() == 256) {
5120    SmallVector<SDValue, 32> V;
5121    for (unsigned i = 0; i != NumElems; ++i)
5122      V.push_back(Op.getOperand(i));
5123
5124    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5125
5126    // Build both the lower and upper subvector.
5127    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5128    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5129                                NumElems/2);
5130
5131    // Recreate the wider vector with the lower and upper part.
5132    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5133                                DAG.getConstant(0, MVT::i32), DAG, dl);
5134    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5135                              DAG, dl);
5136  }
5137
5138  // Let legalizer expand 2-wide build_vectors.
5139  if (EVTBits == 64) {
5140    if (NumNonZero == 1) {
5141      // One half is zero or undef.
5142      unsigned Idx = CountTrailingZeros_32(NonZeros);
5143      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5144                                 Op.getOperand(Idx));
5145      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5146    }
5147    return SDValue();
5148  }
5149
5150  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5151  if (EVTBits == 8 && NumElems == 16) {
5152    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5153                                        Subtarget, *this);
5154    if (V.getNode()) return V;
5155  }
5156
5157  if (EVTBits == 16 && NumElems == 8) {
5158    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5159                                      Subtarget, *this);
5160    if (V.getNode()) return V;
5161  }
5162
5163  // If element VT is == 32 bits, turn it into a number of shuffles.
5164  SmallVector<SDValue, 8> V(NumElems);
5165  if (NumElems == 4 && NumZero > 0) {
5166    for (unsigned i = 0; i < 4; ++i) {
5167      bool isZero = !(NonZeros & (1 << i));
5168      if (isZero)
5169        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5170      else
5171        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5172    }
5173
5174    for (unsigned i = 0; i < 2; ++i) {
5175      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5176        default: break;
5177        case 0:
5178          V[i] = V[i*2];  // Must be a zero vector.
5179          break;
5180        case 1:
5181          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5182          break;
5183        case 2:
5184          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5185          break;
5186        case 3:
5187          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5188          break;
5189      }
5190    }
5191
5192    bool Reverse1 = (NonZeros & 0x3) == 2;
5193    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5194    int MaskVec[] = {
5195      Reverse1 ? 1 : 0,
5196      Reverse1 ? 0 : 1,
5197      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5198      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5199    };
5200    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5201  }
5202
5203  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5204    // Check for a build vector of consecutive loads.
5205    for (unsigned i = 0; i < NumElems; ++i)
5206      V[i] = Op.getOperand(i);
5207
5208    // Check for elements which are consecutive loads.
5209    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5210    if (LD.getNode())
5211      return LD;
5212
5213    // For SSE 4.1, use insertps to put the high elements into the low element.
5214    if (getSubtarget()->hasSSE41()) {
5215      SDValue Result;
5216      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5217        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5218      else
5219        Result = DAG.getUNDEF(VT);
5220
5221      for (unsigned i = 1; i < NumElems; ++i) {
5222        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5223        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5224                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5225      }
5226      return Result;
5227    }
5228
5229    // Otherwise, expand into a number of unpckl*, start by extending each of
5230    // our (non-undef) elements to the full vector width with the element in the
5231    // bottom slot of the vector (which generates no code for SSE).
5232    for (unsigned i = 0; i < NumElems; ++i) {
5233      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5234        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5235      else
5236        V[i] = DAG.getUNDEF(VT);
5237    }
5238
5239    // Next, we iteratively mix elements, e.g. for v4f32:
5240    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5241    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5242    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5243    unsigned EltStride = NumElems >> 1;
5244    while (EltStride != 0) {
5245      for (unsigned i = 0; i < EltStride; ++i) {
5246        // If V[i+EltStride] is undef and this is the first round of mixing,
5247        // then it is safe to just drop this shuffle: V[i] is already in the
5248        // right place, the one element (since it's the first round) being
5249        // inserted as undef can be dropped.  This isn't safe for successive
5250        // rounds because they will permute elements within both vectors.
5251        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5252            EltStride == NumElems/2)
5253          continue;
5254
5255        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5256      }
5257      EltStride >>= 1;
5258    }
5259    return V[0];
5260  }
5261  return SDValue();
5262}
5263
5264// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5265// them in a MMX register.  This is better than doing a stack convert.
5266static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5267  DebugLoc dl = Op.getDebugLoc();
5268  EVT ResVT = Op.getValueType();
5269
5270  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5271         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5272  int Mask[2];
5273  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5274  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5275  InVec = Op.getOperand(1);
5276  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5277    unsigned NumElts = ResVT.getVectorNumElements();
5278    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5279    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5280                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5281  } else {
5282    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5283    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5284    Mask[0] = 0; Mask[1] = 2;
5285    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5286  }
5287  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5288}
5289
5290// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5291// to create 256-bit vectors from two other 128-bit ones.
5292static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5293  DebugLoc dl = Op.getDebugLoc();
5294  EVT ResVT = Op.getValueType();
5295
5296  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5297
5298  SDValue V1 = Op.getOperand(0);
5299  SDValue V2 = Op.getOperand(1);
5300  unsigned NumElems = ResVT.getVectorNumElements();
5301
5302  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5303                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5304  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5305                            DAG, dl);
5306}
5307
5308SDValue
5309X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5310  EVT ResVT = Op.getValueType();
5311
5312  assert(Op.getNumOperands() == 2);
5313  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5314         "Unsupported CONCAT_VECTORS for value type");
5315
5316  // We support concatenate two MMX registers and place them in a MMX register.
5317  // This is better than doing a stack convert.
5318  if (ResVT.is128BitVector())
5319    return LowerMMXCONCAT_VECTORS(Op, DAG);
5320
5321  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5322  // from two other 128-bit ones.
5323  return LowerAVXCONCAT_VECTORS(Op, DAG);
5324}
5325
5326// v8i16 shuffles - Prefer shuffles in the following order:
5327// 1. [all]   pshuflw, pshufhw, optional move
5328// 2. [ssse3] 1 x pshufb
5329// 3. [ssse3] 2 x pshufb + 1 x por
5330// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5331SDValue
5332X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5333                                            SelectionDAG &DAG) const {
5334  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5335  SDValue V1 = SVOp->getOperand(0);
5336  SDValue V2 = SVOp->getOperand(1);
5337  DebugLoc dl = SVOp->getDebugLoc();
5338  SmallVector<int, 8> MaskVals;
5339
5340  // Determine if more than 1 of the words in each of the low and high quadwords
5341  // of the result come from the same quadword of one of the two inputs.  Undef
5342  // mask values count as coming from any quadword, for better codegen.
5343  unsigned LoQuad[] = { 0, 0, 0, 0 };
5344  unsigned HiQuad[] = { 0, 0, 0, 0 };
5345  std::bitset<4> InputQuads;
5346  for (unsigned i = 0; i < 8; ++i) {
5347    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5348    int EltIdx = SVOp->getMaskElt(i);
5349    MaskVals.push_back(EltIdx);
5350    if (EltIdx < 0) {
5351      ++Quad[0];
5352      ++Quad[1];
5353      ++Quad[2];
5354      ++Quad[3];
5355      continue;
5356    }
5357    ++Quad[EltIdx / 4];
5358    InputQuads.set(EltIdx / 4);
5359  }
5360
5361  int BestLoQuad = -1;
5362  unsigned MaxQuad = 1;
5363  for (unsigned i = 0; i < 4; ++i) {
5364    if (LoQuad[i] > MaxQuad) {
5365      BestLoQuad = i;
5366      MaxQuad = LoQuad[i];
5367    }
5368  }
5369
5370  int BestHiQuad = -1;
5371  MaxQuad = 1;
5372  for (unsigned i = 0; i < 4; ++i) {
5373    if (HiQuad[i] > MaxQuad) {
5374      BestHiQuad = i;
5375      MaxQuad = HiQuad[i];
5376    }
5377  }
5378
5379  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5380  // of the two input vectors, shuffle them into one input vector so only a
5381  // single pshufb instruction is necessary. If There are more than 2 input
5382  // quads, disable the next transformation since it does not help SSSE3.
5383  bool V1Used = InputQuads[0] || InputQuads[1];
5384  bool V2Used = InputQuads[2] || InputQuads[3];
5385  if (Subtarget->hasSSSE3()) {
5386    if (InputQuads.count() == 2 && V1Used && V2Used) {
5387      BestLoQuad = InputQuads[0] ? 0 : 1;
5388      BestHiQuad = InputQuads[2] ? 2 : 3;
5389    }
5390    if (InputQuads.count() > 2) {
5391      BestLoQuad = -1;
5392      BestHiQuad = -1;
5393    }
5394  }
5395
5396  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5397  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5398  // words from all 4 input quadwords.
5399  SDValue NewV;
5400  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5401    int MaskV[] = {
5402      BestLoQuad < 0 ? 0 : BestLoQuad,
5403      BestHiQuad < 0 ? 1 : BestHiQuad
5404    };
5405    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5406                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5407                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5408    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5409
5410    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5411    // source words for the shuffle, to aid later transformations.
5412    bool AllWordsInNewV = true;
5413    bool InOrder[2] = { true, true };
5414    for (unsigned i = 0; i != 8; ++i) {
5415      int idx = MaskVals[i];
5416      if (idx != (int)i)
5417        InOrder[i/4] = false;
5418      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5419        continue;
5420      AllWordsInNewV = false;
5421      break;
5422    }
5423
5424    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5425    if (AllWordsInNewV) {
5426      for (int i = 0; i != 8; ++i) {
5427        int idx = MaskVals[i];
5428        if (idx < 0)
5429          continue;
5430        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5431        if ((idx != i) && idx < 4)
5432          pshufhw = false;
5433        if ((idx != i) && idx > 3)
5434          pshuflw = false;
5435      }
5436      V1 = NewV;
5437      V2Used = false;
5438      BestLoQuad = 0;
5439      BestHiQuad = 1;
5440    }
5441
5442    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5443    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5444    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5445      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5446      unsigned TargetMask = 0;
5447      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5448                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5449      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5450      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5451                             getShufflePSHUFLWImmediate(SVOp);
5452      V1 = NewV.getOperand(0);
5453      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5454    }
5455  }
5456
5457  // If we have SSSE3, and all words of the result are from 1 input vector,
5458  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5459  // is present, fall back to case 4.
5460  if (Subtarget->hasSSSE3()) {
5461    SmallVector<SDValue,16> pshufbMask;
5462
5463    // If we have elements from both input vectors, set the high bit of the
5464    // shuffle mask element to zero out elements that come from V2 in the V1
5465    // mask, and elements that come from V1 in the V2 mask, so that the two
5466    // results can be OR'd together.
5467    bool TwoInputs = V1Used && V2Used;
5468    for (unsigned i = 0; i != 8; ++i) {
5469      int EltIdx = MaskVals[i] * 2;
5470      if (TwoInputs && (EltIdx >= 16)) {
5471        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5472        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5473        continue;
5474      }
5475      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5476      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5477    }
5478    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5479    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5480                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5481                                 MVT::v16i8, &pshufbMask[0], 16));
5482    if (!TwoInputs)
5483      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5484
5485    // Calculate the shuffle mask for the second input, shuffle it, and
5486    // OR it with the first shuffled input.
5487    pshufbMask.clear();
5488    for (unsigned i = 0; i != 8; ++i) {
5489      int EltIdx = MaskVals[i] * 2;
5490      if (EltIdx < 16) {
5491        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5492        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5493        continue;
5494      }
5495      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5496      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5497    }
5498    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5499    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5500                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5501                                 MVT::v16i8, &pshufbMask[0], 16));
5502    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5503    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5504  }
5505
5506  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5507  // and update MaskVals with new element order.
5508  std::bitset<8> InOrder;
5509  if (BestLoQuad >= 0) {
5510    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5511    for (int i = 0; i != 4; ++i) {
5512      int idx = MaskVals[i];
5513      if (idx < 0) {
5514        InOrder.set(i);
5515      } else if ((idx / 4) == BestLoQuad) {
5516        MaskV[i] = idx & 3;
5517        InOrder.set(i);
5518      }
5519    }
5520    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5521                                &MaskV[0]);
5522
5523    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5524      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5525      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5526                                  NewV.getOperand(0),
5527                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5528    }
5529  }
5530
5531  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5532  // and update MaskVals with the new element order.
5533  if (BestHiQuad >= 0) {
5534    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5535    for (unsigned i = 4; i != 8; ++i) {
5536      int idx = MaskVals[i];
5537      if (idx < 0) {
5538        InOrder.set(i);
5539      } else if ((idx / 4) == BestHiQuad) {
5540        MaskV[i] = (idx & 3) + 4;
5541        InOrder.set(i);
5542      }
5543    }
5544    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5545                                &MaskV[0]);
5546
5547    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5548      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5549      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5550                                  NewV.getOperand(0),
5551                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5552    }
5553  }
5554
5555  // In case BestHi & BestLo were both -1, which means each quadword has a word
5556  // from each of the four input quadwords, calculate the InOrder bitvector now
5557  // before falling through to the insert/extract cleanup.
5558  if (BestLoQuad == -1 && BestHiQuad == -1) {
5559    NewV = V1;
5560    for (int i = 0; i != 8; ++i)
5561      if (MaskVals[i] < 0 || MaskVals[i] == i)
5562        InOrder.set(i);
5563  }
5564
5565  // The other elements are put in the right place using pextrw and pinsrw.
5566  for (unsigned i = 0; i != 8; ++i) {
5567    if (InOrder[i])
5568      continue;
5569    int EltIdx = MaskVals[i];
5570    if (EltIdx < 0)
5571      continue;
5572    SDValue ExtOp = (EltIdx < 8)
5573    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5574                  DAG.getIntPtrConstant(EltIdx))
5575    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5576                  DAG.getIntPtrConstant(EltIdx - 8));
5577    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5578                       DAG.getIntPtrConstant(i));
5579  }
5580  return NewV;
5581}
5582
5583// v16i8 shuffles - Prefer shuffles in the following order:
5584// 1. [ssse3] 1 x pshufb
5585// 2. [ssse3] 2 x pshufb + 1 x por
5586// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5587static
5588SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5589                                 SelectionDAG &DAG,
5590                                 const X86TargetLowering &TLI) {
5591  SDValue V1 = SVOp->getOperand(0);
5592  SDValue V2 = SVOp->getOperand(1);
5593  DebugLoc dl = SVOp->getDebugLoc();
5594  ArrayRef<int> MaskVals = SVOp->getMask();
5595
5596  // If we have SSSE3, case 1 is generated when all result bytes come from
5597  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5598  // present, fall back to case 3.
5599  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5600  bool V1Only = true;
5601  bool V2Only = true;
5602  for (unsigned i = 0; i < 16; ++i) {
5603    int EltIdx = MaskVals[i];
5604    if (EltIdx < 0)
5605      continue;
5606    if (EltIdx < 16)
5607      V2Only = false;
5608    else
5609      V1Only = false;
5610  }
5611
5612  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5613  if (TLI.getSubtarget()->hasSSSE3()) {
5614    SmallVector<SDValue,16> pshufbMask;
5615
5616    // If all result elements are from one input vector, then only translate
5617    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5618    //
5619    // Otherwise, we have elements from both input vectors, and must zero out
5620    // elements that come from V2 in the first mask, and V1 in the second mask
5621    // so that we can OR them together.
5622    bool TwoInputs = !(V1Only || V2Only);
5623    for (unsigned i = 0; i != 16; ++i) {
5624      int EltIdx = MaskVals[i];
5625      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5626        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5627        continue;
5628      }
5629      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5630    }
5631    // If all the elements are from V2, assign it to V1 and return after
5632    // building the first pshufb.
5633    if (V2Only)
5634      V1 = V2;
5635    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5636                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5637                                 MVT::v16i8, &pshufbMask[0], 16));
5638    if (!TwoInputs)
5639      return V1;
5640
5641    // Calculate the shuffle mask for the second input, shuffle it, and
5642    // OR it with the first shuffled input.
5643    pshufbMask.clear();
5644    for (unsigned i = 0; i != 16; ++i) {
5645      int EltIdx = MaskVals[i];
5646      if (EltIdx < 16) {
5647        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5648        continue;
5649      }
5650      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5651    }
5652    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5653                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5654                                 MVT::v16i8, &pshufbMask[0], 16));
5655    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5656  }
5657
5658  // No SSSE3 - Calculate in place words and then fix all out of place words
5659  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5660  // the 16 different words that comprise the two doublequadword input vectors.
5661  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5662  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5663  SDValue NewV = V2Only ? V2 : V1;
5664  for (int i = 0; i != 8; ++i) {
5665    int Elt0 = MaskVals[i*2];
5666    int Elt1 = MaskVals[i*2+1];
5667
5668    // This word of the result is all undef, skip it.
5669    if (Elt0 < 0 && Elt1 < 0)
5670      continue;
5671
5672    // This word of the result is already in the correct place, skip it.
5673    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5674      continue;
5675    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5676      continue;
5677
5678    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5679    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5680    SDValue InsElt;
5681
5682    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5683    // using a single extract together, load it and store it.
5684    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5685      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5686                           DAG.getIntPtrConstant(Elt1 / 2));
5687      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5688                        DAG.getIntPtrConstant(i));
5689      continue;
5690    }
5691
5692    // If Elt1 is defined, extract it from the appropriate source.  If the
5693    // source byte is not also odd, shift the extracted word left 8 bits
5694    // otherwise clear the bottom 8 bits if we need to do an or.
5695    if (Elt1 >= 0) {
5696      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5697                           DAG.getIntPtrConstant(Elt1 / 2));
5698      if ((Elt1 & 1) == 0)
5699        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5700                             DAG.getConstant(8,
5701                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5702      else if (Elt0 >= 0)
5703        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5704                             DAG.getConstant(0xFF00, MVT::i16));
5705    }
5706    // If Elt0 is defined, extract it from the appropriate source.  If the
5707    // source byte is not also even, shift the extracted word right 8 bits. If
5708    // Elt1 was also defined, OR the extracted values together before
5709    // inserting them in the result.
5710    if (Elt0 >= 0) {
5711      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5712                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5713      if ((Elt0 & 1) != 0)
5714        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5715                              DAG.getConstant(8,
5716                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5717      else if (Elt1 >= 0)
5718        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5719                             DAG.getConstant(0x00FF, MVT::i16));
5720      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5721                         : InsElt0;
5722    }
5723    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5724                       DAG.getIntPtrConstant(i));
5725  }
5726  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5727}
5728
5729/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5730/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5731/// done when every pair / quad of shuffle mask elements point to elements in
5732/// the right sequence. e.g.
5733/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5734static
5735SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5736                                 SelectionDAG &DAG, DebugLoc dl) {
5737  EVT VT = SVOp->getValueType(0);
5738  SDValue V1 = SVOp->getOperand(0);
5739  SDValue V2 = SVOp->getOperand(1);
5740  unsigned NumElems = VT.getVectorNumElements();
5741  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5742  EVT NewVT;
5743  switch (VT.getSimpleVT().SimpleTy) {
5744  default: llvm_unreachable("Unexpected!");
5745  case MVT::v4f32: NewVT = MVT::v2f64; break;
5746  case MVT::v4i32: NewVT = MVT::v2i64; break;
5747  case MVT::v8i16: NewVT = MVT::v4i32; break;
5748  case MVT::v16i8: NewVT = MVT::v4i32; break;
5749  }
5750
5751  int Scale = NumElems / NewWidth;
5752  SmallVector<int, 8> MaskVec;
5753  for (unsigned i = 0; i < NumElems; i += Scale) {
5754    int StartIdx = -1;
5755    for (int j = 0; j < Scale; ++j) {
5756      int EltIdx = SVOp->getMaskElt(i+j);
5757      if (EltIdx < 0)
5758        continue;
5759      if (StartIdx == -1)
5760        StartIdx = EltIdx - (EltIdx % Scale);
5761      if (EltIdx != StartIdx + j)
5762        return SDValue();
5763    }
5764    if (StartIdx == -1)
5765      MaskVec.push_back(-1);
5766    else
5767      MaskVec.push_back(StartIdx / Scale);
5768  }
5769
5770  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5771  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5772  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5773}
5774
5775/// getVZextMovL - Return a zero-extending vector move low node.
5776///
5777static SDValue getVZextMovL(EVT VT, EVT OpVT,
5778                            SDValue SrcOp, SelectionDAG &DAG,
5779                            const X86Subtarget *Subtarget, DebugLoc dl) {
5780  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5781    LoadSDNode *LD = NULL;
5782    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5783      LD = dyn_cast<LoadSDNode>(SrcOp);
5784    if (!LD) {
5785      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5786      // instead.
5787      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5788      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5789          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5790          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5791          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5792        // PR2108
5793        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5794        return DAG.getNode(ISD::BITCAST, dl, VT,
5795                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5796                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5797                                                   OpVT,
5798                                                   SrcOp.getOperand(0)
5799                                                          .getOperand(0))));
5800      }
5801    }
5802  }
5803
5804  return DAG.getNode(ISD::BITCAST, dl, VT,
5805                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5806                                 DAG.getNode(ISD::BITCAST, dl,
5807                                             OpVT, SrcOp)));
5808}
5809
5810/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5811/// which could not be matched by any known target speficic shuffle
5812static SDValue
5813LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5814  EVT VT = SVOp->getValueType(0);
5815
5816  unsigned NumElems = VT.getVectorNumElements();
5817  unsigned NumLaneElems = NumElems / 2;
5818
5819  int MinRange[2][2] = { { static_cast<int>(NumElems),
5820                           static_cast<int>(NumElems) },
5821                         { static_cast<int>(NumElems),
5822                           static_cast<int>(NumElems) } };
5823  int MaxRange[2][2] = { { -1, -1 }, { -1, -1 } };
5824
5825  // Collect used ranges for each source in each lane
5826  for (unsigned l = 0; l < 2; ++l) {
5827    unsigned LaneStart = l*NumLaneElems;
5828    for (unsigned i = 0; i != NumLaneElems; ++i) {
5829      int Idx = SVOp->getMaskElt(i+LaneStart);
5830      if (Idx < 0)
5831        continue;
5832
5833      int Input = 0;
5834      if (Idx >= (int)NumElems) {
5835        Idx -= NumElems;
5836        Input = 1;
5837      }
5838
5839      if (Idx > MaxRange[l][Input])
5840        MaxRange[l][Input] = Idx;
5841      if (Idx < MinRange[l][Input])
5842        MinRange[l][Input] = Idx;
5843    }
5844  }
5845
5846  // Make sure each range is 128-bits
5847  int ExtractIdx[2][2] = { { -1, -1 }, { -1, -1 } };
5848  for (unsigned l = 0; l < 2; ++l) {
5849    for (unsigned Input = 0; Input < 2; ++Input) {
5850      if (MinRange[l][Input] == (int)NumElems && MaxRange[l][Input] < 0)
5851        continue;
5852
5853      if (MinRange[l][Input] >= 0 && MaxRange[l][Input] < (int)NumLaneElems)
5854        ExtractIdx[l][Input] = 0;
5855      else if (MinRange[l][Input] >= (int)NumLaneElems &&
5856               MaxRange[l][Input] < (int)NumElems)
5857        ExtractIdx[l][Input] = NumLaneElems;
5858      else
5859        return SDValue();
5860    }
5861  }
5862
5863  DebugLoc dl = SVOp->getDebugLoc();
5864  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5865  EVT NVT = MVT::getVectorVT(EltVT, NumElems/2);
5866
5867  SDValue Ops[2][2];
5868  for (unsigned l = 0; l < 2; ++l) {
5869    for (unsigned Input = 0; Input < 2; ++Input) {
5870      if (ExtractIdx[l][Input] >= 0)
5871        Ops[l][Input] = Extract128BitVector(SVOp->getOperand(Input),
5872                                DAG.getConstant(ExtractIdx[l][Input], MVT::i32),
5873                                                DAG, dl);
5874      else
5875        Ops[l][Input] = DAG.getUNDEF(NVT);
5876    }
5877  }
5878
5879  // Generate 128-bit shuffles
5880  SmallVector<int, 16> Mask1, Mask2;
5881  for (unsigned i = 0; i != NumLaneElems; ++i) {
5882    int Elt = SVOp->getMaskElt(i);
5883    if (Elt >= (int)NumElems) {
5884      Elt %= NumLaneElems;
5885      Elt += NumLaneElems;
5886    } else if (Elt >= 0) {
5887      Elt %= NumLaneElems;
5888    }
5889    Mask1.push_back(Elt);
5890  }
5891  for (unsigned i = NumLaneElems; i != NumElems; ++i) {
5892    int Elt = SVOp->getMaskElt(i);
5893    if (Elt >= (int)NumElems) {
5894      Elt %= NumLaneElems;
5895      Elt += NumLaneElems;
5896    } else if (Elt >= 0) {
5897      Elt %= NumLaneElems;
5898    }
5899    Mask2.push_back(Elt);
5900  }
5901
5902  SDValue Shuf1 = DAG.getVectorShuffle(NVT, dl, Ops[0][0], Ops[0][1], &Mask1[0]);
5903  SDValue Shuf2 = DAG.getVectorShuffle(NVT, dl, Ops[1][0], Ops[1][1], &Mask2[0]);
5904
5905  // Concatenate the result back
5906  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shuf1,
5907                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5908  return Insert128BitVector(V, Shuf2, DAG.getConstant(NumElems/2, MVT::i32),
5909                            DAG, dl);
5910}
5911
5912/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5913/// 4 elements, and match them with several different shuffle types.
5914static SDValue
5915LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5916  SDValue V1 = SVOp->getOperand(0);
5917  SDValue V2 = SVOp->getOperand(1);
5918  DebugLoc dl = SVOp->getDebugLoc();
5919  EVT VT = SVOp->getValueType(0);
5920
5921  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5922
5923  std::pair<int, int> Locs[4];
5924  int Mask1[] = { -1, -1, -1, -1 };
5925  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
5926
5927  unsigned NumHi = 0;
5928  unsigned NumLo = 0;
5929  for (unsigned i = 0; i != 4; ++i) {
5930    int Idx = PermMask[i];
5931    if (Idx < 0) {
5932      Locs[i] = std::make_pair(-1, -1);
5933    } else {
5934      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5935      if (Idx < 4) {
5936        Locs[i] = std::make_pair(0, NumLo);
5937        Mask1[NumLo] = Idx;
5938        NumLo++;
5939      } else {
5940        Locs[i] = std::make_pair(1, NumHi);
5941        if (2+NumHi < 4)
5942          Mask1[2+NumHi] = Idx;
5943        NumHi++;
5944      }
5945    }
5946  }
5947
5948  if (NumLo <= 2 && NumHi <= 2) {
5949    // If no more than two elements come from either vector. This can be
5950    // implemented with two shuffles. First shuffle gather the elements.
5951    // The second shuffle, which takes the first shuffle as both of its
5952    // vector operands, put the elements into the right order.
5953    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5954
5955    int Mask2[] = { -1, -1, -1, -1 };
5956
5957    for (unsigned i = 0; i != 4; ++i)
5958      if (Locs[i].first != -1) {
5959        unsigned Idx = (i < 2) ? 0 : 4;
5960        Idx += Locs[i].first * 2 + Locs[i].second;
5961        Mask2[i] = Idx;
5962      }
5963
5964    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5965  } else if (NumLo == 3 || NumHi == 3) {
5966    // Otherwise, we must have three elements from one vector, call it X, and
5967    // one element from the other, call it Y.  First, use a shufps to build an
5968    // intermediate vector with the one element from Y and the element from X
5969    // that will be in the same half in the final destination (the indexes don't
5970    // matter). Then, use a shufps to build the final vector, taking the half
5971    // containing the element from Y from the intermediate, and the other half
5972    // from X.
5973    if (NumHi == 3) {
5974      // Normalize it so the 3 elements come from V1.
5975      CommuteVectorShuffleMask(PermMask, 4);
5976      std::swap(V1, V2);
5977    }
5978
5979    // Find the element from V2.
5980    unsigned HiIndex;
5981    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5982      int Val = PermMask[HiIndex];
5983      if (Val < 0)
5984        continue;
5985      if (Val >= 4)
5986        break;
5987    }
5988
5989    Mask1[0] = PermMask[HiIndex];
5990    Mask1[1] = -1;
5991    Mask1[2] = PermMask[HiIndex^1];
5992    Mask1[3] = -1;
5993    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5994
5995    if (HiIndex >= 2) {
5996      Mask1[0] = PermMask[0];
5997      Mask1[1] = PermMask[1];
5998      Mask1[2] = HiIndex & 1 ? 6 : 4;
5999      Mask1[3] = HiIndex & 1 ? 4 : 6;
6000      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6001    } else {
6002      Mask1[0] = HiIndex & 1 ? 2 : 0;
6003      Mask1[1] = HiIndex & 1 ? 0 : 2;
6004      Mask1[2] = PermMask[2];
6005      Mask1[3] = PermMask[3];
6006      if (Mask1[2] >= 0)
6007        Mask1[2] += 4;
6008      if (Mask1[3] >= 0)
6009        Mask1[3] += 4;
6010      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6011    }
6012  }
6013
6014  // Break it into (shuffle shuffle_hi, shuffle_lo).
6015  int LoMask[] = { -1, -1, -1, -1 };
6016  int HiMask[] = { -1, -1, -1, -1 };
6017
6018  int *MaskPtr = LoMask;
6019  unsigned MaskIdx = 0;
6020  unsigned LoIdx = 0;
6021  unsigned HiIdx = 2;
6022  for (unsigned i = 0; i != 4; ++i) {
6023    if (i == 2) {
6024      MaskPtr = HiMask;
6025      MaskIdx = 1;
6026      LoIdx = 0;
6027      HiIdx = 2;
6028    }
6029    int Idx = PermMask[i];
6030    if (Idx < 0) {
6031      Locs[i] = std::make_pair(-1, -1);
6032    } else if (Idx < 4) {
6033      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6034      MaskPtr[LoIdx] = Idx;
6035      LoIdx++;
6036    } else {
6037      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6038      MaskPtr[HiIdx] = Idx;
6039      HiIdx++;
6040    }
6041  }
6042
6043  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6044  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6045  int MaskOps[] = { -1, -1, -1, -1 };
6046  for (unsigned i = 0; i != 4; ++i)
6047    if (Locs[i].first != -1)
6048      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6049  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6050}
6051
6052static bool MayFoldVectorLoad(SDValue V) {
6053  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6054    V = V.getOperand(0);
6055  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6056    V = V.getOperand(0);
6057  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6058      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6059    // BUILD_VECTOR (load), undef
6060    V = V.getOperand(0);
6061  if (MayFoldLoad(V))
6062    return true;
6063  return false;
6064}
6065
6066// FIXME: the version above should always be used. Since there's
6067// a bug where several vector shuffles can't be folded because the
6068// DAG is not updated during lowering and a node claims to have two
6069// uses while it only has one, use this version, and let isel match
6070// another instruction if the load really happens to have more than
6071// one use. Remove this version after this bug get fixed.
6072// rdar://8434668, PR8156
6073static bool RelaxedMayFoldVectorLoad(SDValue V) {
6074  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6075    V = V.getOperand(0);
6076  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6077    V = V.getOperand(0);
6078  if (ISD::isNormalLoad(V.getNode()))
6079    return true;
6080  return false;
6081}
6082
6083/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6084/// a vector extract, and if both can be later optimized into a single load.
6085/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6086/// here because otherwise a target specific shuffle node is going to be
6087/// emitted for this shuffle, and the optimization not done.
6088/// FIXME: This is probably not the best approach, but fix the problem
6089/// until the right path is decided.
6090static
6091bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6092                                         const TargetLowering &TLI) {
6093  EVT VT = V.getValueType();
6094  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6095
6096  // Be sure that the vector shuffle is present in a pattern like this:
6097  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6098  if (!V.hasOneUse())
6099    return false;
6100
6101  SDNode *N = *V.getNode()->use_begin();
6102  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6103    return false;
6104
6105  SDValue EltNo = N->getOperand(1);
6106  if (!isa<ConstantSDNode>(EltNo))
6107    return false;
6108
6109  // If the bit convert changed the number of elements, it is unsafe
6110  // to examine the mask.
6111  bool HasShuffleIntoBitcast = false;
6112  if (V.getOpcode() == ISD::BITCAST) {
6113    EVT SrcVT = V.getOperand(0).getValueType();
6114    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6115      return false;
6116    V = V.getOperand(0);
6117    HasShuffleIntoBitcast = true;
6118  }
6119
6120  // Select the input vector, guarding against out of range extract vector.
6121  unsigned NumElems = VT.getVectorNumElements();
6122  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6123  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6124  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6125
6126  // If we are accessing the upper part of a YMM register
6127  // then the EXTRACT_VECTOR_ELT is likely to be legalized to a sequence of
6128  // EXTRACT_SUBVECTOR + EXTRACT_VECTOR_ELT, which are not detected at this point
6129  // because the legalization of N did not happen yet.
6130  if (Idx >= (int)NumElems/2 && VT.getSizeInBits() == 256)
6131    return false;
6132
6133  // Skip one more bit_convert if necessary
6134  if (V.getOpcode() == ISD::BITCAST) {
6135    if (!V.hasOneUse())
6136      return false;
6137    V = V.getOperand(0);
6138  }
6139
6140  if (!ISD::isNormalLoad(V.getNode()))
6141    return false;
6142
6143  // Is the original load suitable?
6144  LoadSDNode *LN0 = cast<LoadSDNode>(V);
6145
6146  if (!LN0 || !LN0->hasNUsesOfValue(1,0) || LN0->isVolatile())
6147    return false;
6148
6149  if (!HasShuffleIntoBitcast)
6150    return true;
6151
6152  // If there's a bitcast before the shuffle, check if the load type and
6153  // alignment is valid.
6154  unsigned Align = LN0->getAlignment();
6155  unsigned NewAlign =
6156    TLI.getTargetData()->getABITypeAlignment(
6157                                  VT.getTypeForEVT(*DAG.getContext()));
6158
6159  if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6160    return false;
6161
6162  return true;
6163}
6164
6165static
6166SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6167  EVT VT = Op.getValueType();
6168
6169  // Canonizalize to v2f64.
6170  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6171  return DAG.getNode(ISD::BITCAST, dl, VT,
6172                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6173                                          V1, DAG));
6174}
6175
6176static
6177SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6178                        bool HasSSE2) {
6179  SDValue V1 = Op.getOperand(0);
6180  SDValue V2 = Op.getOperand(1);
6181  EVT VT = Op.getValueType();
6182
6183  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6184
6185  if (HasSSE2 && VT == MVT::v2f64)
6186    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6187
6188  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6189  return DAG.getNode(ISD::BITCAST, dl, VT,
6190                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6191                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6192                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6193}
6194
6195static
6196SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6197  SDValue V1 = Op.getOperand(0);
6198  SDValue V2 = Op.getOperand(1);
6199  EVT VT = Op.getValueType();
6200
6201  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6202         "unsupported shuffle type");
6203
6204  if (V2.getOpcode() == ISD::UNDEF)
6205    V2 = V1;
6206
6207  // v4i32 or v4f32
6208  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6209}
6210
6211static
6212SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6213  SDValue V1 = Op.getOperand(0);
6214  SDValue V2 = Op.getOperand(1);
6215  EVT VT = Op.getValueType();
6216  unsigned NumElems = VT.getVectorNumElements();
6217
6218  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6219  // operand of these instructions is only memory, so check if there's a
6220  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6221  // same masks.
6222  bool CanFoldLoad = false;
6223
6224  // Trivial case, when V2 comes from a load.
6225  if (MayFoldVectorLoad(V2))
6226    CanFoldLoad = true;
6227
6228  // When V1 is a load, it can be folded later into a store in isel, example:
6229  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6230  //    turns into:
6231  //  (MOVLPSmr addr:$src1, VR128:$src2)
6232  // So, recognize this potential and also use MOVLPS or MOVLPD
6233  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6234    CanFoldLoad = true;
6235
6236  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6237  if (CanFoldLoad) {
6238    if (HasSSE2 && NumElems == 2)
6239      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6240
6241    if (NumElems == 4)
6242      // If we don't care about the second element, procede to use movss.
6243      if (SVOp->getMaskElt(1) != -1)
6244        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6245  }
6246
6247  // movl and movlp will both match v2i64, but v2i64 is never matched by
6248  // movl earlier because we make it strict to avoid messing with the movlp load
6249  // folding logic (see the code above getMOVLP call). Match it here then,
6250  // this is horrible, but will stay like this until we move all shuffle
6251  // matching to x86 specific nodes. Note that for the 1st condition all
6252  // types are matched with movsd.
6253  if (HasSSE2) {
6254    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6255    // as to remove this logic from here, as much as possible
6256    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6257      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6258    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6259  }
6260
6261  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6262
6263  // Invert the operand order and use SHUFPS to match it.
6264  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6265                              getShuffleSHUFImmediate(SVOp), DAG);
6266}
6267
6268static
6269SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6270                               const TargetLowering &TLI,
6271                               const X86Subtarget *Subtarget) {
6272  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6273  EVT VT = Op.getValueType();
6274  DebugLoc dl = Op.getDebugLoc();
6275  SDValue V1 = Op.getOperand(0);
6276  SDValue V2 = Op.getOperand(1);
6277
6278  if (isZeroShuffle(SVOp))
6279    return getZeroVector(VT, Subtarget, DAG, dl);
6280
6281  // Handle splat operations
6282  if (SVOp->isSplat()) {
6283    unsigned NumElem = VT.getVectorNumElements();
6284    int Size = VT.getSizeInBits();
6285    // Special case, this is the only place now where it's allowed to return
6286    // a vector_shuffle operation without using a target specific node, because
6287    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6288    // this be moved to DAGCombine instead?
6289    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6290      return Op;
6291
6292    // Use vbroadcast whenever the splat comes from a foldable load
6293    SDValue LD = isVectorBroadcast(Op, Subtarget);
6294    if (LD.getNode())
6295      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, LD);
6296
6297    // Handle splats by matching through known shuffle masks
6298    if ((Size == 128 && NumElem <= 4) ||
6299        (Size == 256 && NumElem < 8))
6300      return SDValue();
6301
6302    // All remaning splats are promoted to target supported vector shuffles.
6303    return PromoteSplat(SVOp, DAG);
6304  }
6305
6306  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6307  // do it!
6308  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6309    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6310    if (NewOp.getNode())
6311      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6312  } else if ((VT == MVT::v4i32 ||
6313             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6314    // FIXME: Figure out a cleaner way to do this.
6315    // Try to make use of movq to zero out the top part.
6316    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6317      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6318      if (NewOp.getNode()) {
6319        EVT NewVT = NewOp.getValueType();
6320        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6321                               NewVT, true, false))
6322          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6323                              DAG, Subtarget, dl);
6324      }
6325    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6326      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6327      if (NewOp.getNode()) {
6328        EVT NewVT = NewOp.getValueType();
6329        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6330          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6331                              DAG, Subtarget, dl);
6332      }
6333    }
6334  }
6335  return SDValue();
6336}
6337
6338SDValue
6339X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6340  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6341  SDValue V1 = Op.getOperand(0);
6342  SDValue V2 = Op.getOperand(1);
6343  EVT VT = Op.getValueType();
6344  DebugLoc dl = Op.getDebugLoc();
6345  unsigned NumElems = VT.getVectorNumElements();
6346  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6347  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6348  bool V1IsSplat = false;
6349  bool V2IsSplat = false;
6350  bool HasSSE2 = Subtarget->hasSSE2();
6351  bool HasAVX    = Subtarget->hasAVX();
6352  bool HasAVX2   = Subtarget->hasAVX2();
6353  MachineFunction &MF = DAG.getMachineFunction();
6354  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6355
6356  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6357
6358  if (V1IsUndef && V2IsUndef)
6359    return DAG.getUNDEF(VT);
6360
6361  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6362
6363  // Vector shuffle lowering takes 3 steps:
6364  //
6365  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6366  //    narrowing and commutation of operands should be handled.
6367  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6368  //    shuffle nodes.
6369  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6370  //    so the shuffle can be broken into other shuffles and the legalizer can
6371  //    try the lowering again.
6372  //
6373  // The general idea is that no vector_shuffle operation should be left to
6374  // be matched during isel, all of them must be converted to a target specific
6375  // node here.
6376
6377  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6378  // narrowing and commutation of operands should be handled. The actual code
6379  // doesn't include all of those, work in progress...
6380  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6381  if (NewOp.getNode())
6382    return NewOp;
6383
6384  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6385
6386  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6387  // unpckh_undef). Only use pshufd if speed is more important than size.
6388  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6389    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6390  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6391    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6392
6393  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6394      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6395    return getMOVDDup(Op, dl, V1, DAG);
6396
6397  if (isMOVHLPS_v_undef_Mask(M, VT))
6398    return getMOVHighToLow(Op, dl, DAG);
6399
6400  // Use to match splats
6401  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6402      (VT == MVT::v2f64 || VT == MVT::v2i64))
6403    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6404
6405  if (isPSHUFDMask(M, VT)) {
6406    // The actual implementation will match the mask in the if above and then
6407    // during isel it can match several different instructions, not only pshufd
6408    // as its name says, sad but true, emulate the behavior for now...
6409    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6410      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6411
6412    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6413
6414    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6415      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6416
6417    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6418      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6419
6420    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6421                                TargetMask, DAG);
6422  }
6423
6424  // Check if this can be converted into a logical shift.
6425  bool isLeft = false;
6426  unsigned ShAmt = 0;
6427  SDValue ShVal;
6428  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6429  if (isShift && ShVal.hasOneUse()) {
6430    // If the shifted value has multiple uses, it may be cheaper to use
6431    // v_set0 + movlhps or movhlps, etc.
6432    EVT EltVT = VT.getVectorElementType();
6433    ShAmt *= EltVT.getSizeInBits();
6434    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6435  }
6436
6437  if (isMOVLMask(M, VT)) {
6438    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6439      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6440    if (!isMOVLPMask(M, VT)) {
6441      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6442        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6443
6444      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6445        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6446    }
6447  }
6448
6449  // FIXME: fold these into legal mask.
6450  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6451    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6452
6453  if (isMOVHLPSMask(M, VT))
6454    return getMOVHighToLow(Op, dl, DAG);
6455
6456  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6457    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6458
6459  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6460    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6461
6462  if (isMOVLPMask(M, VT))
6463    return getMOVLP(Op, dl, DAG, HasSSE2);
6464
6465  if (ShouldXformToMOVHLPS(M, VT) ||
6466      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6467    return CommuteVectorShuffle(SVOp, DAG);
6468
6469  if (isShift) {
6470    // No better options. Use a vshldq / vsrldq.
6471    EVT EltVT = VT.getVectorElementType();
6472    ShAmt *= EltVT.getSizeInBits();
6473    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6474  }
6475
6476  bool Commuted = false;
6477  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6478  // 1,1,1,1 -> v8i16 though.
6479  V1IsSplat = isSplatVector(V1.getNode());
6480  V2IsSplat = isSplatVector(V2.getNode());
6481
6482  // Canonicalize the splat or undef, if present, to be on the RHS.
6483  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6484    CommuteVectorShuffleMask(M, NumElems);
6485    std::swap(V1, V2);
6486    std::swap(V1IsSplat, V2IsSplat);
6487    Commuted = true;
6488  }
6489
6490  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6491    // Shuffling low element of v1 into undef, just return v1.
6492    if (V2IsUndef)
6493      return V1;
6494    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6495    // the instruction selector will not match, so get a canonical MOVL with
6496    // swapped operands to undo the commute.
6497    return getMOVL(DAG, dl, VT, V2, V1);
6498  }
6499
6500  if (isUNPCKLMask(M, VT, HasAVX2))
6501    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6502
6503  if (isUNPCKHMask(M, VT, HasAVX2))
6504    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6505
6506  if (V2IsSplat) {
6507    // Normalize mask so all entries that point to V2 points to its first
6508    // element then try to match unpck{h|l} again. If match, return a
6509    // new vector_shuffle with the corrected mask.p
6510    SmallVector<int, 8> NewMask(M.begin(), M.end());
6511    NormalizeMask(NewMask, NumElems);
6512    if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) {
6513      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6514    } else if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) {
6515      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6516    }
6517  }
6518
6519  if (Commuted) {
6520    // Commute is back and try unpck* again.
6521    // FIXME: this seems wrong.
6522    CommuteVectorShuffleMask(M, NumElems);
6523    std::swap(V1, V2);
6524    std::swap(V1IsSplat, V2IsSplat);
6525    Commuted = false;
6526
6527    if (isUNPCKLMask(M, VT, HasAVX2))
6528      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6529
6530    if (isUNPCKHMask(M, VT, HasAVX2))
6531      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6532  }
6533
6534  // Normalize the node to match x86 shuffle ops if needed
6535  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6536    return CommuteVectorShuffle(SVOp, DAG);
6537
6538  // The checks below are all present in isShuffleMaskLegal, but they are
6539  // inlined here right now to enable us to directly emit target specific
6540  // nodes, and remove one by one until they don't return Op anymore.
6541
6542  if (isPALIGNRMask(M, VT, Subtarget))
6543    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6544                                getShufflePALIGNRImmediate(SVOp),
6545                                DAG);
6546
6547  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6548      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6549    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6550      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6551  }
6552
6553  if (isPSHUFHWMask(M, VT))
6554    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6555                                getShufflePSHUFHWImmediate(SVOp),
6556                                DAG);
6557
6558  if (isPSHUFLWMask(M, VT))
6559    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6560                                getShufflePSHUFLWImmediate(SVOp),
6561                                DAG);
6562
6563  if (isSHUFPMask(M, VT, HasAVX))
6564    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6565                                getShuffleSHUFImmediate(SVOp), DAG);
6566
6567  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6568    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6569  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6570    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6571
6572  //===--------------------------------------------------------------------===//
6573  // Generate target specific nodes for 128 or 256-bit shuffles only
6574  // supported in the AVX instruction set.
6575  //
6576
6577  // Handle VMOVDDUPY permutations
6578  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6579    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6580
6581  // Handle VPERMILPS/D* permutations
6582  if (isVPERMILPMask(M, VT, HasAVX)) {
6583    if (HasAVX2 && VT == MVT::v8i32)
6584      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6585                                  getShuffleSHUFImmediate(SVOp), DAG);
6586    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6587                                getShuffleSHUFImmediate(SVOp), DAG);
6588  }
6589
6590  // Handle VPERM2F128/VPERM2I128 permutations
6591  if (isVPERM2X128Mask(M, VT, HasAVX))
6592    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6593                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6594
6595  //===--------------------------------------------------------------------===//
6596  // Since no target specific shuffle was selected for this generic one,
6597  // lower it into other known shuffles. FIXME: this isn't true yet, but
6598  // this is the plan.
6599  //
6600
6601  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6602  if (VT == MVT::v8i16) {
6603    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6604    if (NewOp.getNode())
6605      return NewOp;
6606  }
6607
6608  if (VT == MVT::v16i8) {
6609    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6610    if (NewOp.getNode())
6611      return NewOp;
6612  }
6613
6614  // Handle all 128-bit wide vectors with 4 elements, and match them with
6615  // several different shuffle types.
6616  if (NumElems == 4 && VT.getSizeInBits() == 128)
6617    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6618
6619  // Handle general 256-bit shuffles
6620  if (VT.is256BitVector())
6621    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6622
6623  return SDValue();
6624}
6625
6626SDValue
6627X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6628                                                SelectionDAG &DAG) const {
6629  EVT VT = Op.getValueType();
6630  DebugLoc dl = Op.getDebugLoc();
6631
6632  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6633    return SDValue();
6634
6635  if (VT.getSizeInBits() == 8) {
6636    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6637                                    Op.getOperand(0), Op.getOperand(1));
6638    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6639                                    DAG.getValueType(VT));
6640    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6641  } else if (VT.getSizeInBits() == 16) {
6642    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6643    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6644    if (Idx == 0)
6645      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6646                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6647                                     DAG.getNode(ISD::BITCAST, dl,
6648                                                 MVT::v4i32,
6649                                                 Op.getOperand(0)),
6650                                     Op.getOperand(1)));
6651    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6652                                    Op.getOperand(0), Op.getOperand(1));
6653    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6654                                    DAG.getValueType(VT));
6655    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6656  } else if (VT == MVT::f32) {
6657    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6658    // the result back to FR32 register. It's only worth matching if the
6659    // result has a single use which is a store or a bitcast to i32.  And in
6660    // the case of a store, it's not worth it if the index is a constant 0,
6661    // because a MOVSSmr can be used instead, which is smaller and faster.
6662    if (!Op.hasOneUse())
6663      return SDValue();
6664    SDNode *User = *Op.getNode()->use_begin();
6665    if ((User->getOpcode() != ISD::STORE ||
6666         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6667          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6668        (User->getOpcode() != ISD::BITCAST ||
6669         User->getValueType(0) != MVT::i32))
6670      return SDValue();
6671    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6672                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6673                                              Op.getOperand(0)),
6674                                              Op.getOperand(1));
6675    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6676  } else if (VT == MVT::i32 || VT == MVT::i64) {
6677    // ExtractPS/pextrq works with constant index.
6678    if (isa<ConstantSDNode>(Op.getOperand(1)))
6679      return Op;
6680  }
6681  return SDValue();
6682}
6683
6684
6685SDValue
6686X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6687                                           SelectionDAG &DAG) const {
6688  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6689    return SDValue();
6690
6691  SDValue Vec = Op.getOperand(0);
6692  EVT VecVT = Vec.getValueType();
6693
6694  // If this is a 256-bit vector result, first extract the 128-bit vector and
6695  // then extract the element from the 128-bit vector.
6696  if (VecVT.getSizeInBits() == 256) {
6697    DebugLoc dl = Op.getNode()->getDebugLoc();
6698    unsigned NumElems = VecVT.getVectorNumElements();
6699    SDValue Idx = Op.getOperand(1);
6700    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6701
6702    // Get the 128-bit vector.
6703    bool Upper = IdxVal >= NumElems/2;
6704    Vec = Extract128BitVector(Vec,
6705                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6706
6707    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6708                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6709  }
6710
6711  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6712
6713  if (Subtarget->hasSSE41()) {
6714    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6715    if (Res.getNode())
6716      return Res;
6717  }
6718
6719  EVT VT = Op.getValueType();
6720  DebugLoc dl = Op.getDebugLoc();
6721  // TODO: handle v16i8.
6722  if (VT.getSizeInBits() == 16) {
6723    SDValue Vec = Op.getOperand(0);
6724    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6725    if (Idx == 0)
6726      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6727                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6728                                     DAG.getNode(ISD::BITCAST, dl,
6729                                                 MVT::v4i32, Vec),
6730                                     Op.getOperand(1)));
6731    // Transform it so it match pextrw which produces a 32-bit result.
6732    EVT EltVT = MVT::i32;
6733    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6734                                    Op.getOperand(0), Op.getOperand(1));
6735    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6736                                    DAG.getValueType(VT));
6737    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6738  } else if (VT.getSizeInBits() == 32) {
6739    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6740    if (Idx == 0)
6741      return Op;
6742
6743    // SHUFPS the element to the lowest double word, then movss.
6744    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6745    EVT VVT = Op.getOperand(0).getValueType();
6746    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6747                                       DAG.getUNDEF(VVT), Mask);
6748    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6749                       DAG.getIntPtrConstant(0));
6750  } else if (VT.getSizeInBits() == 64) {
6751    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6752    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6753    //        to match extract_elt for f64.
6754    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6755    if (Idx == 0)
6756      return Op;
6757
6758    // UNPCKHPD the element to the lowest double word, then movsd.
6759    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6760    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6761    int Mask[2] = { 1, -1 };
6762    EVT VVT = Op.getOperand(0).getValueType();
6763    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6764                                       DAG.getUNDEF(VVT), Mask);
6765    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6766                       DAG.getIntPtrConstant(0));
6767  }
6768
6769  return SDValue();
6770}
6771
6772SDValue
6773X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6774                                               SelectionDAG &DAG) const {
6775  EVT VT = Op.getValueType();
6776  EVT EltVT = VT.getVectorElementType();
6777  DebugLoc dl = Op.getDebugLoc();
6778
6779  SDValue N0 = Op.getOperand(0);
6780  SDValue N1 = Op.getOperand(1);
6781  SDValue N2 = Op.getOperand(2);
6782
6783  if (VT.getSizeInBits() == 256)
6784    return SDValue();
6785
6786  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6787      isa<ConstantSDNode>(N2)) {
6788    unsigned Opc;
6789    if (VT == MVT::v8i16)
6790      Opc = X86ISD::PINSRW;
6791    else if (VT == MVT::v16i8)
6792      Opc = X86ISD::PINSRB;
6793    else
6794      Opc = X86ISD::PINSRB;
6795
6796    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6797    // argument.
6798    if (N1.getValueType() != MVT::i32)
6799      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6800    if (N2.getValueType() != MVT::i32)
6801      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6802    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6803  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6804    // Bits [7:6] of the constant are the source select.  This will always be
6805    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6806    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6807    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6808    // Bits [5:4] of the constant are the destination select.  This is the
6809    //  value of the incoming immediate.
6810    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6811    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6812    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6813    // Create this as a scalar to vector..
6814    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6815    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6816  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6817             isa<ConstantSDNode>(N2)) {
6818    // PINSR* works with constant index.
6819    return Op;
6820  }
6821  return SDValue();
6822}
6823
6824SDValue
6825X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6826  EVT VT = Op.getValueType();
6827  EVT EltVT = VT.getVectorElementType();
6828
6829  DebugLoc dl = Op.getDebugLoc();
6830  SDValue N0 = Op.getOperand(0);
6831  SDValue N1 = Op.getOperand(1);
6832  SDValue N2 = Op.getOperand(2);
6833
6834  // If this is a 256-bit vector result, first extract the 128-bit vector,
6835  // insert the element into the extracted half and then place it back.
6836  if (VT.getSizeInBits() == 256) {
6837    if (!isa<ConstantSDNode>(N2))
6838      return SDValue();
6839
6840    // Get the desired 128-bit vector half.
6841    unsigned NumElems = VT.getVectorNumElements();
6842    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6843    bool Upper = IdxVal >= NumElems/2;
6844    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6845    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6846
6847    // Insert the element into the desired half.
6848    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6849                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6850
6851    // Insert the changed part back to the 256-bit vector
6852    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6853  }
6854
6855  if (Subtarget->hasSSE41())
6856    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6857
6858  if (EltVT == MVT::i8)
6859    return SDValue();
6860
6861  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6862    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6863    // as its second argument.
6864    if (N1.getValueType() != MVT::i32)
6865      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6866    if (N2.getValueType() != MVT::i32)
6867      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6868    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6869  }
6870  return SDValue();
6871}
6872
6873SDValue
6874X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6875  LLVMContext *Context = DAG.getContext();
6876  DebugLoc dl = Op.getDebugLoc();
6877  EVT OpVT = Op.getValueType();
6878
6879  // If this is a 256-bit vector result, first insert into a 128-bit
6880  // vector and then insert into the 256-bit vector.
6881  if (OpVT.getSizeInBits() > 128) {
6882    // Insert into a 128-bit vector.
6883    EVT VT128 = EVT::getVectorVT(*Context,
6884                                 OpVT.getVectorElementType(),
6885                                 OpVT.getVectorNumElements() / 2);
6886
6887    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6888
6889    // Insert the 128-bit vector.
6890    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6891                              DAG.getConstant(0, MVT::i32),
6892                              DAG, dl);
6893  }
6894
6895  if (Op.getValueType() == MVT::v1i64 &&
6896      Op.getOperand(0).getValueType() == MVT::i64)
6897    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6898
6899  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6900  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6901         "Expected an SSE type!");
6902  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6903                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6904}
6905
6906// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6907// a simple subregister reference or explicit instructions to grab
6908// upper bits of a vector.
6909SDValue
6910X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6911  if (Subtarget->hasAVX()) {
6912    DebugLoc dl = Op.getNode()->getDebugLoc();
6913    SDValue Vec = Op.getNode()->getOperand(0);
6914    SDValue Idx = Op.getNode()->getOperand(1);
6915
6916    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6917        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6918        return Extract128BitVector(Vec, Idx, DAG, dl);
6919    }
6920  }
6921  return SDValue();
6922}
6923
6924// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6925// simple superregister reference or explicit instructions to insert
6926// the upper bits of a vector.
6927SDValue
6928X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6929  if (Subtarget->hasAVX()) {
6930    DebugLoc dl = Op.getNode()->getDebugLoc();
6931    SDValue Vec = Op.getNode()->getOperand(0);
6932    SDValue SubVec = Op.getNode()->getOperand(1);
6933    SDValue Idx = Op.getNode()->getOperand(2);
6934
6935    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6936        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6937      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6938    }
6939  }
6940  return SDValue();
6941}
6942
6943// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6944// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6945// one of the above mentioned nodes. It has to be wrapped because otherwise
6946// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6947// be used to form addressing mode. These wrapped nodes will be selected
6948// into MOV32ri.
6949SDValue
6950X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6951  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6952
6953  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6954  // global base reg.
6955  unsigned char OpFlag = 0;
6956  unsigned WrapperKind = X86ISD::Wrapper;
6957  CodeModel::Model M = getTargetMachine().getCodeModel();
6958
6959  if (Subtarget->isPICStyleRIPRel() &&
6960      (M == CodeModel::Small || M == CodeModel::Kernel))
6961    WrapperKind = X86ISD::WrapperRIP;
6962  else if (Subtarget->isPICStyleGOT())
6963    OpFlag = X86II::MO_GOTOFF;
6964  else if (Subtarget->isPICStyleStubPIC())
6965    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6966
6967  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6968                                             CP->getAlignment(),
6969                                             CP->getOffset(), OpFlag);
6970  DebugLoc DL = CP->getDebugLoc();
6971  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6972  // With PIC, the address is actually $g + Offset.
6973  if (OpFlag) {
6974    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6975                         DAG.getNode(X86ISD::GlobalBaseReg,
6976                                     DebugLoc(), getPointerTy()),
6977                         Result);
6978  }
6979
6980  return Result;
6981}
6982
6983SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6984  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6985
6986  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6987  // global base reg.
6988  unsigned char OpFlag = 0;
6989  unsigned WrapperKind = X86ISD::Wrapper;
6990  CodeModel::Model M = getTargetMachine().getCodeModel();
6991
6992  if (Subtarget->isPICStyleRIPRel() &&
6993      (M == CodeModel::Small || M == CodeModel::Kernel))
6994    WrapperKind = X86ISD::WrapperRIP;
6995  else if (Subtarget->isPICStyleGOT())
6996    OpFlag = X86II::MO_GOTOFF;
6997  else if (Subtarget->isPICStyleStubPIC())
6998    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6999
7000  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7001                                          OpFlag);
7002  DebugLoc DL = JT->getDebugLoc();
7003  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7004
7005  // With PIC, the address is actually $g + Offset.
7006  if (OpFlag)
7007    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7008                         DAG.getNode(X86ISD::GlobalBaseReg,
7009                                     DebugLoc(), getPointerTy()),
7010                         Result);
7011
7012  return Result;
7013}
7014
7015SDValue
7016X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7017  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7018
7019  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7020  // global base reg.
7021  unsigned char OpFlag = 0;
7022  unsigned WrapperKind = X86ISD::Wrapper;
7023  CodeModel::Model M = getTargetMachine().getCodeModel();
7024
7025  if (Subtarget->isPICStyleRIPRel() &&
7026      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7027    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7028      OpFlag = X86II::MO_GOTPCREL;
7029    WrapperKind = X86ISD::WrapperRIP;
7030  } else if (Subtarget->isPICStyleGOT()) {
7031    OpFlag = X86II::MO_GOT;
7032  } else if (Subtarget->isPICStyleStubPIC()) {
7033    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7034  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7035    OpFlag = X86II::MO_DARWIN_NONLAZY;
7036  }
7037
7038  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7039
7040  DebugLoc DL = Op.getDebugLoc();
7041  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7042
7043
7044  // With PIC, the address is actually $g + Offset.
7045  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7046      !Subtarget->is64Bit()) {
7047    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7048                         DAG.getNode(X86ISD::GlobalBaseReg,
7049                                     DebugLoc(), getPointerTy()),
7050                         Result);
7051  }
7052
7053  // For symbols that require a load from a stub to get the address, emit the
7054  // load.
7055  if (isGlobalStubReference(OpFlag))
7056    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7057                         MachinePointerInfo::getGOT(), false, false, false, 0);
7058
7059  return Result;
7060}
7061
7062SDValue
7063X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7064  // Create the TargetBlockAddressAddress node.
7065  unsigned char OpFlags =
7066    Subtarget->ClassifyBlockAddressReference();
7067  CodeModel::Model M = getTargetMachine().getCodeModel();
7068  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7069  DebugLoc dl = Op.getDebugLoc();
7070  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7071                                       /*isTarget=*/true, OpFlags);
7072
7073  if (Subtarget->isPICStyleRIPRel() &&
7074      (M == CodeModel::Small || M == CodeModel::Kernel))
7075    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7076  else
7077    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7078
7079  // With PIC, the address is actually $g + Offset.
7080  if (isGlobalRelativeToPICBase(OpFlags)) {
7081    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7082                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7083                         Result);
7084  }
7085
7086  return Result;
7087}
7088
7089SDValue
7090X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7091                                      int64_t Offset,
7092                                      SelectionDAG &DAG) const {
7093  // Create the TargetGlobalAddress node, folding in the constant
7094  // offset if it is legal.
7095  unsigned char OpFlags =
7096    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7097  CodeModel::Model M = getTargetMachine().getCodeModel();
7098  SDValue Result;
7099  if (OpFlags == X86II::MO_NO_FLAG &&
7100      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7101    // A direct static reference to a global.
7102    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7103    Offset = 0;
7104  } else {
7105    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7106  }
7107
7108  if (Subtarget->isPICStyleRIPRel() &&
7109      (M == CodeModel::Small || M == CodeModel::Kernel))
7110    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7111  else
7112    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7113
7114  // With PIC, the address is actually $g + Offset.
7115  if (isGlobalRelativeToPICBase(OpFlags)) {
7116    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7117                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7118                         Result);
7119  }
7120
7121  // For globals that require a load from a stub to get the address, emit the
7122  // load.
7123  if (isGlobalStubReference(OpFlags))
7124    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7125                         MachinePointerInfo::getGOT(), false, false, false, 0);
7126
7127  // If there was a non-zero offset that we didn't fold, create an explicit
7128  // addition for it.
7129  if (Offset != 0)
7130    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7131                         DAG.getConstant(Offset, getPointerTy()));
7132
7133  return Result;
7134}
7135
7136SDValue
7137X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7138  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7139  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7140  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7141}
7142
7143static SDValue
7144GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7145           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7146           unsigned char OperandFlags) {
7147  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7148  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7149  DebugLoc dl = GA->getDebugLoc();
7150  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7151                                           GA->getValueType(0),
7152                                           GA->getOffset(),
7153                                           OperandFlags);
7154  if (InFlag) {
7155    SDValue Ops[] = { Chain,  TGA, *InFlag };
7156    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7157  } else {
7158    SDValue Ops[]  = { Chain, TGA };
7159    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7160  }
7161
7162  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7163  MFI->setAdjustsStack(true);
7164
7165  SDValue Flag = Chain.getValue(1);
7166  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7167}
7168
7169// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7170static SDValue
7171LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7172                                const EVT PtrVT) {
7173  SDValue InFlag;
7174  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7175  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7176                                     DAG.getNode(X86ISD::GlobalBaseReg,
7177                                                 DebugLoc(), PtrVT), InFlag);
7178  InFlag = Chain.getValue(1);
7179
7180  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7181}
7182
7183// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7184static SDValue
7185LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7186                                const EVT PtrVT) {
7187  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7188                    X86::RAX, X86II::MO_TLSGD);
7189}
7190
7191// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7192// "local exec" model.
7193static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7194                                   const EVT PtrVT, TLSModel::Model model,
7195                                   bool is64Bit) {
7196  DebugLoc dl = GA->getDebugLoc();
7197
7198  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7199  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7200                                                         is64Bit ? 257 : 256));
7201
7202  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7203                                      DAG.getIntPtrConstant(0),
7204                                      MachinePointerInfo(Ptr),
7205                                      false, false, false, 0);
7206
7207  unsigned char OperandFlags = 0;
7208  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7209  // initialexec.
7210  unsigned WrapperKind = X86ISD::Wrapper;
7211  if (model == TLSModel::LocalExec) {
7212    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7213  } else if (is64Bit) {
7214    assert(model == TLSModel::InitialExec);
7215    OperandFlags = X86II::MO_GOTTPOFF;
7216    WrapperKind = X86ISD::WrapperRIP;
7217  } else {
7218    assert(model == TLSModel::InitialExec);
7219    OperandFlags = X86II::MO_INDNTPOFF;
7220  }
7221
7222  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7223  // exec)
7224  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7225                                           GA->getValueType(0),
7226                                           GA->getOffset(), OperandFlags);
7227  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7228
7229  if (model == TLSModel::InitialExec)
7230    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7231                         MachinePointerInfo::getGOT(), false, false, false, 0);
7232
7233  // The address of the thread local variable is the add of the thread
7234  // pointer with the offset of the variable.
7235  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7236}
7237
7238SDValue
7239X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7240
7241  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7242  const GlobalValue *GV = GA->getGlobal();
7243
7244  if (Subtarget->isTargetELF()) {
7245    // TODO: implement the "local dynamic" model
7246    // TODO: implement the "initial exec"model for pic executables
7247
7248    // If GV is an alias then use the aliasee for determining
7249    // thread-localness.
7250    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7251      GV = GA->resolveAliasedGlobal(false);
7252
7253    TLSModel::Model model
7254      = getTLSModel(GV, getTargetMachine().getRelocationModel());
7255
7256    switch (model) {
7257      case TLSModel::GeneralDynamic:
7258      case TLSModel::LocalDynamic: // not implemented
7259        if (Subtarget->is64Bit())
7260          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7261        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7262
7263      case TLSModel::InitialExec:
7264      case TLSModel::LocalExec:
7265        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7266                                   Subtarget->is64Bit());
7267    }
7268  } else if (Subtarget->isTargetDarwin()) {
7269    // Darwin only has one model of TLS.  Lower to that.
7270    unsigned char OpFlag = 0;
7271    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7272                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7273
7274    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7275    // global base reg.
7276    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7277                  !Subtarget->is64Bit();
7278    if (PIC32)
7279      OpFlag = X86II::MO_TLVP_PIC_BASE;
7280    else
7281      OpFlag = X86II::MO_TLVP;
7282    DebugLoc DL = Op.getDebugLoc();
7283    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7284                                                GA->getValueType(0),
7285                                                GA->getOffset(), OpFlag);
7286    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7287
7288    // With PIC32, the address is actually $g + Offset.
7289    if (PIC32)
7290      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7291                           DAG.getNode(X86ISD::GlobalBaseReg,
7292                                       DebugLoc(), getPointerTy()),
7293                           Offset);
7294
7295    // Lowering the machine isd will make sure everything is in the right
7296    // location.
7297    SDValue Chain = DAG.getEntryNode();
7298    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7299    SDValue Args[] = { Chain, Offset };
7300    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7301
7302    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7303    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7304    MFI->setAdjustsStack(true);
7305
7306    // And our return value (tls address) is in the standard call return value
7307    // location.
7308    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7309    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7310                              Chain.getValue(1));
7311  } else if (Subtarget->isTargetWindows()) {
7312    // Just use the implicit TLS architecture
7313    // Need to generate someting similar to:
7314    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7315    //                                  ; from TEB
7316    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7317    //   mov     rcx, qword [rdx+rcx*8]
7318    //   mov     eax, .tls$:tlsvar
7319    //   [rax+rcx] contains the address
7320    // Windows 64bit: gs:0x58
7321    // Windows 32bit: fs:__tls_array
7322
7323    // If GV is an alias then use the aliasee for determining
7324    // thread-localness.
7325    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7326      GV = GA->resolveAliasedGlobal(false);
7327    DebugLoc dl = GA->getDebugLoc();
7328    SDValue Chain = DAG.getEntryNode();
7329
7330    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7331    // %gs:0x58 (64-bit).
7332    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7333                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7334                                                             256)
7335                                        : Type::getInt32PtrTy(*DAG.getContext(),
7336                                                              257));
7337
7338    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7339                                        Subtarget->is64Bit()
7340                                        ? DAG.getIntPtrConstant(0x58)
7341                                        : DAG.getExternalSymbol("_tls_array",
7342                                                                getPointerTy()),
7343                                        MachinePointerInfo(Ptr),
7344                                        false, false, false, 0);
7345
7346    // Load the _tls_index variable
7347    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7348    if (Subtarget->is64Bit())
7349      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7350                           IDX, MachinePointerInfo(), MVT::i32,
7351                           false, false, 0);
7352    else
7353      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7354                        false, false, false, 0);
7355
7356    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7357		                            getPointerTy());
7358    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7359
7360    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7361    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7362                      false, false, false, 0);
7363
7364    // Get the offset of start of .tls section
7365    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7366                                             GA->getValueType(0),
7367                                             GA->getOffset(), X86II::MO_SECREL);
7368    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7369
7370    // The address of the thread local variable is the add of the thread
7371    // pointer with the offset of the variable.
7372    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7373  }
7374
7375  llvm_unreachable("TLS not implemented for this target.");
7376}
7377
7378
7379/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7380/// and take a 2 x i32 value to shift plus a shift amount.
7381SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7382  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7383  EVT VT = Op.getValueType();
7384  unsigned VTBits = VT.getSizeInBits();
7385  DebugLoc dl = Op.getDebugLoc();
7386  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7387  SDValue ShOpLo = Op.getOperand(0);
7388  SDValue ShOpHi = Op.getOperand(1);
7389  SDValue ShAmt  = Op.getOperand(2);
7390  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7391                                     DAG.getConstant(VTBits - 1, MVT::i8))
7392                       : DAG.getConstant(0, VT);
7393
7394  SDValue Tmp2, Tmp3;
7395  if (Op.getOpcode() == ISD::SHL_PARTS) {
7396    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7397    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7398  } else {
7399    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7400    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7401  }
7402
7403  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7404                                DAG.getConstant(VTBits, MVT::i8));
7405  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7406                             AndNode, DAG.getConstant(0, MVT::i8));
7407
7408  SDValue Hi, Lo;
7409  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7410  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7411  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7412
7413  if (Op.getOpcode() == ISD::SHL_PARTS) {
7414    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7415    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7416  } else {
7417    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7418    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7419  }
7420
7421  SDValue Ops[2] = { Lo, Hi };
7422  return DAG.getMergeValues(Ops, 2, dl);
7423}
7424
7425SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7426                                           SelectionDAG &DAG) const {
7427  EVT SrcVT = Op.getOperand(0).getValueType();
7428
7429  if (SrcVT.isVector())
7430    return SDValue();
7431
7432  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7433         "Unknown SINT_TO_FP to lower!");
7434
7435  // These are really Legal; return the operand so the caller accepts it as
7436  // Legal.
7437  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7438    return Op;
7439  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7440      Subtarget->is64Bit()) {
7441    return Op;
7442  }
7443
7444  DebugLoc dl = Op.getDebugLoc();
7445  unsigned Size = SrcVT.getSizeInBits()/8;
7446  MachineFunction &MF = DAG.getMachineFunction();
7447  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7448  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7449  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7450                               StackSlot,
7451                               MachinePointerInfo::getFixedStack(SSFI),
7452                               false, false, 0);
7453  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7454}
7455
7456SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7457                                     SDValue StackSlot,
7458                                     SelectionDAG &DAG) const {
7459  // Build the FILD
7460  DebugLoc DL = Op.getDebugLoc();
7461  SDVTList Tys;
7462  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7463  if (useSSE)
7464    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7465  else
7466    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7467
7468  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7469
7470  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7471  MachineMemOperand *MMO;
7472  if (FI) {
7473    int SSFI = FI->getIndex();
7474    MMO =
7475      DAG.getMachineFunction()
7476      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7477                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7478  } else {
7479    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7480    StackSlot = StackSlot.getOperand(1);
7481  }
7482  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7483  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7484                                           X86ISD::FILD, DL,
7485                                           Tys, Ops, array_lengthof(Ops),
7486                                           SrcVT, MMO);
7487
7488  if (useSSE) {
7489    Chain = Result.getValue(1);
7490    SDValue InFlag = Result.getValue(2);
7491
7492    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7493    // shouldn't be necessary except that RFP cannot be live across
7494    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7495    MachineFunction &MF = DAG.getMachineFunction();
7496    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7497    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7498    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7499    Tys = DAG.getVTList(MVT::Other);
7500    SDValue Ops[] = {
7501      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7502    };
7503    MachineMemOperand *MMO =
7504      DAG.getMachineFunction()
7505      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7506                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7507
7508    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7509                                    Ops, array_lengthof(Ops),
7510                                    Op.getValueType(), MMO);
7511    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7512                         MachinePointerInfo::getFixedStack(SSFI),
7513                         false, false, false, 0);
7514  }
7515
7516  return Result;
7517}
7518
7519// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7520SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7521                                               SelectionDAG &DAG) const {
7522  // This algorithm is not obvious. Here it is what we're trying to output:
7523  /*
7524     movq       %rax,  %xmm0
7525     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7526     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7527     #ifdef __SSE3__
7528       haddpd   %xmm0, %xmm0
7529     #else
7530       pshufd   $0x4e, %xmm0, %xmm1
7531       addpd    %xmm1, %xmm0
7532     #endif
7533  */
7534
7535  DebugLoc dl = Op.getDebugLoc();
7536  LLVMContext *Context = DAG.getContext();
7537
7538  // Build some magic constants.
7539  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7540  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7541  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7542
7543  SmallVector<Constant*,2> CV1;
7544  CV1.push_back(
7545        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7546  CV1.push_back(
7547        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7548  Constant *C1 = ConstantVector::get(CV1);
7549  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7550
7551  // Load the 64-bit value into an XMM register.
7552  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7553                            Op.getOperand(0));
7554  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7555                              MachinePointerInfo::getConstantPool(),
7556                              false, false, false, 16);
7557  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7558                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7559                              CLod0);
7560
7561  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7562                              MachinePointerInfo::getConstantPool(),
7563                              false, false, false, 16);
7564  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7565  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7566  SDValue Result;
7567
7568  if (Subtarget->hasSSE3()) {
7569    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7570    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7571  } else {
7572    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7573    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7574                                           S2F, 0x4E, DAG);
7575    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7576                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7577                         Sub);
7578  }
7579
7580  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7581                     DAG.getIntPtrConstant(0));
7582}
7583
7584// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7585SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7586                                               SelectionDAG &DAG) const {
7587  DebugLoc dl = Op.getDebugLoc();
7588  // FP constant to bias correct the final result.
7589  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7590                                   MVT::f64);
7591
7592  // Load the 32-bit value into an XMM register.
7593  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7594                             Op.getOperand(0));
7595
7596  // Zero out the upper parts of the register.
7597  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7598
7599  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7600                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7601                     DAG.getIntPtrConstant(0));
7602
7603  // Or the load with the bias.
7604  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7605                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7606                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7607                                                   MVT::v2f64, Load)),
7608                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7609                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7610                                                   MVT::v2f64, Bias)));
7611  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7612                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7613                   DAG.getIntPtrConstant(0));
7614
7615  // Subtract the bias.
7616  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7617
7618  // Handle final rounding.
7619  EVT DestVT = Op.getValueType();
7620
7621  if (DestVT.bitsLT(MVT::f64)) {
7622    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7623                       DAG.getIntPtrConstant(0));
7624  } else if (DestVT.bitsGT(MVT::f64)) {
7625    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7626  }
7627
7628  // Handle final rounding.
7629  return Sub;
7630}
7631
7632SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7633                                           SelectionDAG &DAG) const {
7634  SDValue N0 = Op.getOperand(0);
7635  DebugLoc dl = Op.getDebugLoc();
7636
7637  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7638  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7639  // the optimization here.
7640  if (DAG.SignBitIsZero(N0))
7641    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7642
7643  EVT SrcVT = N0.getValueType();
7644  EVT DstVT = Op.getValueType();
7645  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7646    return LowerUINT_TO_FP_i64(Op, DAG);
7647  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7648    return LowerUINT_TO_FP_i32(Op, DAG);
7649  else if (Subtarget->is64Bit() &&
7650           SrcVT == MVT::i64 && DstVT == MVT::f32)
7651    return SDValue();
7652
7653  // Make a 64-bit buffer, and use it to build an FILD.
7654  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7655  if (SrcVT == MVT::i32) {
7656    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7657    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7658                                     getPointerTy(), StackSlot, WordOff);
7659    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7660                                  StackSlot, MachinePointerInfo(),
7661                                  false, false, 0);
7662    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7663                                  OffsetSlot, MachinePointerInfo(),
7664                                  false, false, 0);
7665    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7666    return Fild;
7667  }
7668
7669  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7670  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7671                               StackSlot, MachinePointerInfo(),
7672                               false, false, 0);
7673  // For i64 source, we need to add the appropriate power of 2 if the input
7674  // was negative.  This is the same as the optimization in
7675  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7676  // we must be careful to do the computation in x87 extended precision, not
7677  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7678  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7679  MachineMemOperand *MMO =
7680    DAG.getMachineFunction()
7681    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7682                          MachineMemOperand::MOLoad, 8, 8);
7683
7684  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7685  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7686  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7687                                         MVT::i64, MMO);
7688
7689  APInt FF(32, 0x5F800000ULL);
7690
7691  // Check whether the sign bit is set.
7692  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7693                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7694                                 ISD::SETLT);
7695
7696  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7697  SDValue FudgePtr = DAG.getConstantPool(
7698                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7699                                         getPointerTy());
7700
7701  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7702  SDValue Zero = DAG.getIntPtrConstant(0);
7703  SDValue Four = DAG.getIntPtrConstant(4);
7704  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7705                               Zero, Four);
7706  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7707
7708  // Load the value out, extending it from f32 to f80.
7709  // FIXME: Avoid the extend by constructing the right constant pool?
7710  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7711                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7712                                 MVT::f32, false, false, 4);
7713  // Extend everything to 80 bits to force it to be done on x87.
7714  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7715  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7716}
7717
7718std::pair<SDValue,SDValue> X86TargetLowering::
7719FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7720  DebugLoc DL = Op.getDebugLoc();
7721
7722  EVT DstTy = Op.getValueType();
7723
7724  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7725    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7726    DstTy = MVT::i64;
7727  }
7728
7729  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7730         DstTy.getSimpleVT() >= MVT::i16 &&
7731         "Unknown FP_TO_INT to lower!");
7732
7733  // These are really Legal.
7734  if (DstTy == MVT::i32 &&
7735      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7736    return std::make_pair(SDValue(), SDValue());
7737  if (Subtarget->is64Bit() &&
7738      DstTy == MVT::i64 &&
7739      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7740    return std::make_pair(SDValue(), SDValue());
7741
7742  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7743  // stack slot, or into the FTOL runtime function.
7744  MachineFunction &MF = DAG.getMachineFunction();
7745  unsigned MemSize = DstTy.getSizeInBits()/8;
7746  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7747  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7748
7749  unsigned Opc;
7750  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7751    Opc = X86ISD::WIN_FTOL;
7752  else
7753    switch (DstTy.getSimpleVT().SimpleTy) {
7754    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7755    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7756    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7757    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7758    }
7759
7760  SDValue Chain = DAG.getEntryNode();
7761  SDValue Value = Op.getOperand(0);
7762  EVT TheVT = Op.getOperand(0).getValueType();
7763  // FIXME This causes a redundant load/store if the SSE-class value is already
7764  // in memory, such as if it is on the callstack.
7765  if (isScalarFPTypeInSSEReg(TheVT)) {
7766    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7767    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7768                         MachinePointerInfo::getFixedStack(SSFI),
7769                         false, false, 0);
7770    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7771    SDValue Ops[] = {
7772      Chain, StackSlot, DAG.getValueType(TheVT)
7773    };
7774
7775    MachineMemOperand *MMO =
7776      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7777                              MachineMemOperand::MOLoad, MemSize, MemSize);
7778    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7779                                    DstTy, MMO);
7780    Chain = Value.getValue(1);
7781    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7782    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7783  }
7784
7785  MachineMemOperand *MMO =
7786    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7787                            MachineMemOperand::MOStore, MemSize, MemSize);
7788
7789  if (Opc != X86ISD::WIN_FTOL) {
7790    // Build the FP_TO_INT*_IN_MEM
7791    SDValue Ops[] = { Chain, Value, StackSlot };
7792    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7793                                           Ops, 3, DstTy, MMO);
7794    return std::make_pair(FIST, StackSlot);
7795  } else {
7796    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7797      DAG.getVTList(MVT::Other, MVT::Glue),
7798      Chain, Value);
7799    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7800      MVT::i32, ftol.getValue(1));
7801    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7802      MVT::i32, eax.getValue(2));
7803    SDValue Ops[] = { eax, edx };
7804    SDValue pair = IsReplace
7805      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7806      : DAG.getMergeValues(Ops, 2, DL);
7807    return std::make_pair(pair, SDValue());
7808  }
7809}
7810
7811SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7812                                           SelectionDAG &DAG) const {
7813  if (Op.getValueType().isVector())
7814    return SDValue();
7815
7816  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7817    /*IsSigned=*/ true, /*IsReplace=*/ false);
7818  SDValue FIST = Vals.first, StackSlot = Vals.second;
7819  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7820  if (FIST.getNode() == 0) return Op;
7821
7822  if (StackSlot.getNode())
7823    // Load the result.
7824    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7825                       FIST, StackSlot, MachinePointerInfo(),
7826                       false, false, false, 0);
7827  else
7828    // The node is the result.
7829    return FIST;
7830}
7831
7832SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7833                                           SelectionDAG &DAG) const {
7834  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7835    /*IsSigned=*/ false, /*IsReplace=*/ false);
7836  SDValue FIST = Vals.first, StackSlot = Vals.second;
7837  assert(FIST.getNode() && "Unexpected failure");
7838
7839  if (StackSlot.getNode())
7840    // Load the result.
7841    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7842                       FIST, StackSlot, MachinePointerInfo(),
7843                       false, false, false, 0);
7844  else
7845    // The node is the result.
7846    return FIST;
7847}
7848
7849SDValue X86TargetLowering::LowerFABS(SDValue Op,
7850                                     SelectionDAG &DAG) const {
7851  LLVMContext *Context = DAG.getContext();
7852  DebugLoc dl = Op.getDebugLoc();
7853  EVT VT = Op.getValueType();
7854  EVT EltVT = VT;
7855  if (VT.isVector())
7856    EltVT = VT.getVectorElementType();
7857  Constant *C;
7858  if (EltVT == MVT::f64) {
7859    C = ConstantVector::getSplat(2,
7860                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7861  } else {
7862    C = ConstantVector::getSplat(4,
7863               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7864  }
7865  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7866  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7867                             MachinePointerInfo::getConstantPool(),
7868                             false, false, false, 16);
7869  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7870}
7871
7872SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7873  LLVMContext *Context = DAG.getContext();
7874  DebugLoc dl = Op.getDebugLoc();
7875  EVT VT = Op.getValueType();
7876  EVT EltVT = VT;
7877  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7878  if (VT.isVector()) {
7879    EltVT = VT.getVectorElementType();
7880    NumElts = VT.getVectorNumElements();
7881  }
7882  Constant *C;
7883  if (EltVT == MVT::f64)
7884    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7885  else
7886    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7887  C = ConstantVector::getSplat(NumElts, C);
7888  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7889  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7890                             MachinePointerInfo::getConstantPool(),
7891                             false, false, false, 16);
7892  if (VT.isVector()) {
7893    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7894    return DAG.getNode(ISD::BITCAST, dl, VT,
7895                       DAG.getNode(ISD::XOR, dl, XORVT,
7896                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7897                                Op.getOperand(0)),
7898                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7899  } else {
7900    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7901  }
7902}
7903
7904SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7905  LLVMContext *Context = DAG.getContext();
7906  SDValue Op0 = Op.getOperand(0);
7907  SDValue Op1 = Op.getOperand(1);
7908  DebugLoc dl = Op.getDebugLoc();
7909  EVT VT = Op.getValueType();
7910  EVT SrcVT = Op1.getValueType();
7911
7912  // If second operand is smaller, extend it first.
7913  if (SrcVT.bitsLT(VT)) {
7914    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7915    SrcVT = VT;
7916  }
7917  // And if it is bigger, shrink it first.
7918  if (SrcVT.bitsGT(VT)) {
7919    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7920    SrcVT = VT;
7921  }
7922
7923  // At this point the operands and the result should have the same
7924  // type, and that won't be f80 since that is not custom lowered.
7925
7926  // First get the sign bit of second operand.
7927  SmallVector<Constant*,4> CV;
7928  if (SrcVT == MVT::f64) {
7929    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7930    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7931  } else {
7932    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7933    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7934    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7935    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7936  }
7937  Constant *C = ConstantVector::get(CV);
7938  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7939  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7940                              MachinePointerInfo::getConstantPool(),
7941                              false, false, false, 16);
7942  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7943
7944  // Shift sign bit right or left if the two operands have different types.
7945  if (SrcVT.bitsGT(VT)) {
7946    // Op0 is MVT::f32, Op1 is MVT::f64.
7947    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7948    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7949                          DAG.getConstant(32, MVT::i32));
7950    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7951    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7952                          DAG.getIntPtrConstant(0));
7953  }
7954
7955  // Clear first operand sign bit.
7956  CV.clear();
7957  if (VT == MVT::f64) {
7958    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7959    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7960  } else {
7961    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7962    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7963    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7964    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7965  }
7966  C = ConstantVector::get(CV);
7967  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7968  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7969                              MachinePointerInfo::getConstantPool(),
7970                              false, false, false, 16);
7971  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7972
7973  // Or the value with the sign bit.
7974  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7975}
7976
7977SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7978  SDValue N0 = Op.getOperand(0);
7979  DebugLoc dl = Op.getDebugLoc();
7980  EVT VT = Op.getValueType();
7981
7982  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7983  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7984                                  DAG.getConstant(1, VT));
7985  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7986}
7987
7988/// Emit nodes that will be selected as "test Op0,Op0", or something
7989/// equivalent.
7990SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7991                                    SelectionDAG &DAG) const {
7992  DebugLoc dl = Op.getDebugLoc();
7993
7994  // CF and OF aren't always set the way we want. Determine which
7995  // of these we need.
7996  bool NeedCF = false;
7997  bool NeedOF = false;
7998  switch (X86CC) {
7999  default: break;
8000  case X86::COND_A: case X86::COND_AE:
8001  case X86::COND_B: case X86::COND_BE:
8002    NeedCF = true;
8003    break;
8004  case X86::COND_G: case X86::COND_GE:
8005  case X86::COND_L: case X86::COND_LE:
8006  case X86::COND_O: case X86::COND_NO:
8007    NeedOF = true;
8008    break;
8009  }
8010
8011  // See if we can use the EFLAGS value from the operand instead of
8012  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8013  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8014  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8015    // Emit a CMP with 0, which is the TEST pattern.
8016    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8017                       DAG.getConstant(0, Op.getValueType()));
8018
8019  unsigned Opcode = 0;
8020  unsigned NumOperands = 0;
8021  switch (Op.getNode()->getOpcode()) {
8022  case ISD::ADD:
8023    // Due to an isel shortcoming, be conservative if this add is likely to be
8024    // selected as part of a load-modify-store instruction. When the root node
8025    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8026    // uses of other nodes in the match, such as the ADD in this case. This
8027    // leads to the ADD being left around and reselected, with the result being
8028    // two adds in the output.  Alas, even if none our users are stores, that
8029    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8030    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8031    // climbing the DAG back to the root, and it doesn't seem to be worth the
8032    // effort.
8033    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8034         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8035      if (UI->getOpcode() != ISD::CopyToReg &&
8036          UI->getOpcode() != ISD::SETCC &&
8037          UI->getOpcode() != ISD::STORE)
8038        goto default_case;
8039
8040    if (ConstantSDNode *C =
8041        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8042      // An add of one will be selected as an INC.
8043      if (C->getAPIntValue() == 1) {
8044        Opcode = X86ISD::INC;
8045        NumOperands = 1;
8046        break;
8047      }
8048
8049      // An add of negative one (subtract of one) will be selected as a DEC.
8050      if (C->getAPIntValue().isAllOnesValue()) {
8051        Opcode = X86ISD::DEC;
8052        NumOperands = 1;
8053        break;
8054      }
8055    }
8056
8057    // Otherwise use a regular EFLAGS-setting add.
8058    Opcode = X86ISD::ADD;
8059    NumOperands = 2;
8060    break;
8061  case ISD::AND: {
8062    // If the primary and result isn't used, don't bother using X86ISD::AND,
8063    // because a TEST instruction will be better.
8064    bool NonFlagUse = false;
8065    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8066           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8067      SDNode *User = *UI;
8068      unsigned UOpNo = UI.getOperandNo();
8069      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8070        // Look pass truncate.
8071        UOpNo = User->use_begin().getOperandNo();
8072        User = *User->use_begin();
8073      }
8074
8075      if (User->getOpcode() != ISD::BRCOND &&
8076          User->getOpcode() != ISD::SETCC &&
8077          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8078        NonFlagUse = true;
8079        break;
8080      }
8081    }
8082
8083    if (!NonFlagUse)
8084      break;
8085  }
8086    // FALL THROUGH
8087  case ISD::SUB:
8088  case ISD::OR:
8089  case ISD::XOR:
8090    // Due to the ISEL shortcoming noted above, be conservative if this op is
8091    // likely to be selected as part of a load-modify-store instruction.
8092    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8093           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8094      if (UI->getOpcode() == ISD::STORE)
8095        goto default_case;
8096
8097    // Otherwise use a regular EFLAGS-setting instruction.
8098    switch (Op.getNode()->getOpcode()) {
8099    default: llvm_unreachable("unexpected operator!");
8100    case ISD::SUB: Opcode = X86ISD::SUB; break;
8101    case ISD::OR:  Opcode = X86ISD::OR;  break;
8102    case ISD::XOR: Opcode = X86ISD::XOR; break;
8103    case ISD::AND: Opcode = X86ISD::AND; break;
8104    }
8105
8106    NumOperands = 2;
8107    break;
8108  case X86ISD::ADD:
8109  case X86ISD::SUB:
8110  case X86ISD::INC:
8111  case X86ISD::DEC:
8112  case X86ISD::OR:
8113  case X86ISD::XOR:
8114  case X86ISD::AND:
8115    return SDValue(Op.getNode(), 1);
8116  default:
8117  default_case:
8118    break;
8119  }
8120
8121  if (Opcode == 0)
8122    // Emit a CMP with 0, which is the TEST pattern.
8123    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8124                       DAG.getConstant(0, Op.getValueType()));
8125
8126  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8127  SmallVector<SDValue, 4> Ops;
8128  for (unsigned i = 0; i != NumOperands; ++i)
8129    Ops.push_back(Op.getOperand(i));
8130
8131  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8132  DAG.ReplaceAllUsesWith(Op, New);
8133  return SDValue(New.getNode(), 1);
8134}
8135
8136/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8137/// equivalent.
8138SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8139                                   SelectionDAG &DAG) const {
8140  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8141    if (C->getAPIntValue() == 0)
8142      return EmitTest(Op0, X86CC, DAG);
8143
8144  DebugLoc dl = Op0.getDebugLoc();
8145  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8146}
8147
8148/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8149/// if it's possible.
8150SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8151                                     DebugLoc dl, SelectionDAG &DAG) const {
8152  SDValue Op0 = And.getOperand(0);
8153  SDValue Op1 = And.getOperand(1);
8154  if (Op0.getOpcode() == ISD::TRUNCATE)
8155    Op0 = Op0.getOperand(0);
8156  if (Op1.getOpcode() == ISD::TRUNCATE)
8157    Op1 = Op1.getOperand(0);
8158
8159  SDValue LHS, RHS;
8160  if (Op1.getOpcode() == ISD::SHL)
8161    std::swap(Op0, Op1);
8162  if (Op0.getOpcode() == ISD::SHL) {
8163    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8164      if (And00C->getZExtValue() == 1) {
8165        // If we looked past a truncate, check that it's only truncating away
8166        // known zeros.
8167        unsigned BitWidth = Op0.getValueSizeInBits();
8168        unsigned AndBitWidth = And.getValueSizeInBits();
8169        if (BitWidth > AndBitWidth) {
8170          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8171          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8172          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8173            return SDValue();
8174        }
8175        LHS = Op1;
8176        RHS = Op0.getOperand(1);
8177      }
8178  } else if (Op1.getOpcode() == ISD::Constant) {
8179    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8180    uint64_t AndRHSVal = AndRHS->getZExtValue();
8181    SDValue AndLHS = Op0;
8182
8183    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8184      LHS = AndLHS.getOperand(0);
8185      RHS = AndLHS.getOperand(1);
8186    }
8187
8188    // Use BT if the immediate can't be encoded in a TEST instruction.
8189    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8190      LHS = AndLHS;
8191      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8192    }
8193  }
8194
8195  if (LHS.getNode()) {
8196    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8197    // instruction.  Since the shift amount is in-range-or-undefined, we know
8198    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8199    // the encoding for the i16 version is larger than the i32 version.
8200    // Also promote i16 to i32 for performance / code size reason.
8201    if (LHS.getValueType() == MVT::i8 ||
8202        LHS.getValueType() == MVT::i16)
8203      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8204
8205    // If the operand types disagree, extend the shift amount to match.  Since
8206    // BT ignores high bits (like shifts) we can use anyextend.
8207    if (LHS.getValueType() != RHS.getValueType())
8208      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8209
8210    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8211    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8212    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8213                       DAG.getConstant(Cond, MVT::i8), BT);
8214  }
8215
8216  return SDValue();
8217}
8218
8219SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8220
8221  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8222
8223  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8224  SDValue Op0 = Op.getOperand(0);
8225  SDValue Op1 = Op.getOperand(1);
8226  DebugLoc dl = Op.getDebugLoc();
8227  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8228
8229  // Optimize to BT if possible.
8230  // Lower (X & (1 << N)) == 0 to BT(X, N).
8231  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8232  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8233  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8234      Op1.getOpcode() == ISD::Constant &&
8235      cast<ConstantSDNode>(Op1)->isNullValue() &&
8236      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8237    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8238    if (NewSetCC.getNode())
8239      return NewSetCC;
8240  }
8241
8242  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8243  // these.
8244  if (Op1.getOpcode() == ISD::Constant &&
8245      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8246       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8247      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8248
8249    // If the input is a setcc, then reuse the input setcc or use a new one with
8250    // the inverted condition.
8251    if (Op0.getOpcode() == X86ISD::SETCC) {
8252      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8253      bool Invert = (CC == ISD::SETNE) ^
8254        cast<ConstantSDNode>(Op1)->isNullValue();
8255      if (!Invert) return Op0;
8256
8257      CCode = X86::GetOppositeBranchCondition(CCode);
8258      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8259                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8260    }
8261  }
8262
8263  bool isFP = Op1.getValueType().isFloatingPoint();
8264  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8265  if (X86CC == X86::COND_INVALID)
8266    return SDValue();
8267
8268  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8269  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8270                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8271}
8272
8273// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8274// ones, and then concatenate the result back.
8275static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8276  EVT VT = Op.getValueType();
8277
8278  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8279         "Unsupported value type for operation");
8280
8281  int NumElems = VT.getVectorNumElements();
8282  DebugLoc dl = Op.getDebugLoc();
8283  SDValue CC = Op.getOperand(2);
8284  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8285  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8286
8287  // Extract the LHS vectors
8288  SDValue LHS = Op.getOperand(0);
8289  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8290  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8291
8292  // Extract the RHS vectors
8293  SDValue RHS = Op.getOperand(1);
8294  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8295  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8296
8297  // Issue the operation on the smaller types and concatenate the result back
8298  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8299  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8300  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8301                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8302                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8303}
8304
8305
8306SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8307  SDValue Cond;
8308  SDValue Op0 = Op.getOperand(0);
8309  SDValue Op1 = Op.getOperand(1);
8310  SDValue CC = Op.getOperand(2);
8311  EVT VT = Op.getValueType();
8312  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8313  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8314  DebugLoc dl = Op.getDebugLoc();
8315
8316  if (isFP) {
8317    unsigned SSECC = 8;
8318    EVT EltVT = Op0.getValueType().getVectorElementType();
8319    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8320
8321    bool Swap = false;
8322
8323    // SSE Condition code mapping:
8324    //  0 - EQ
8325    //  1 - LT
8326    //  2 - LE
8327    //  3 - UNORD
8328    //  4 - NEQ
8329    //  5 - NLT
8330    //  6 - NLE
8331    //  7 - ORD
8332    switch (SetCCOpcode) {
8333    default: break;
8334    case ISD::SETOEQ:
8335    case ISD::SETEQ:  SSECC = 0; break;
8336    case ISD::SETOGT:
8337    case ISD::SETGT: Swap = true; // Fallthrough
8338    case ISD::SETLT:
8339    case ISD::SETOLT: SSECC = 1; break;
8340    case ISD::SETOGE:
8341    case ISD::SETGE: Swap = true; // Fallthrough
8342    case ISD::SETLE:
8343    case ISD::SETOLE: SSECC = 2; break;
8344    case ISD::SETUO:  SSECC = 3; break;
8345    case ISD::SETUNE:
8346    case ISD::SETNE:  SSECC = 4; break;
8347    case ISD::SETULE: Swap = true;
8348    case ISD::SETUGE: SSECC = 5; break;
8349    case ISD::SETULT: Swap = true;
8350    case ISD::SETUGT: SSECC = 6; break;
8351    case ISD::SETO:   SSECC = 7; break;
8352    }
8353    if (Swap)
8354      std::swap(Op0, Op1);
8355
8356    // In the two special cases we can't handle, emit two comparisons.
8357    if (SSECC == 8) {
8358      if (SetCCOpcode == ISD::SETUEQ) {
8359        SDValue UNORD, EQ;
8360        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8361                            DAG.getConstant(3, MVT::i8));
8362        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8363                         DAG.getConstant(0, MVT::i8));
8364        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8365      } else if (SetCCOpcode == ISD::SETONE) {
8366        SDValue ORD, NEQ;
8367        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8368                          DAG.getConstant(7, MVT::i8));
8369        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8370                          DAG.getConstant(4, MVT::i8));
8371        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8372      }
8373      llvm_unreachable("Illegal FP comparison");
8374    }
8375    // Handle all other FP comparisons here.
8376    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8377                       DAG.getConstant(SSECC, MVT::i8));
8378  }
8379
8380  // Break 256-bit integer vector compare into smaller ones.
8381  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8382    return Lower256IntVSETCC(Op, DAG);
8383
8384  // We are handling one of the integer comparisons here.  Since SSE only has
8385  // GT and EQ comparisons for integer, swapping operands and multiple
8386  // operations may be required for some comparisons.
8387  unsigned Opc = 0;
8388  bool Swap = false, Invert = false, FlipSigns = false;
8389
8390  switch (SetCCOpcode) {
8391  default: break;
8392  case ISD::SETNE:  Invert = true;
8393  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8394  case ISD::SETLT:  Swap = true;
8395  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8396  case ISD::SETGE:  Swap = true;
8397  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8398  case ISD::SETULT: Swap = true;
8399  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8400  case ISD::SETUGE: Swap = true;
8401  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8402  }
8403  if (Swap)
8404    std::swap(Op0, Op1);
8405
8406  // Check that the operation in question is available (most are plain SSE2,
8407  // but PCMPGTQ and PCMPEQQ have different requirements).
8408  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8409    return SDValue();
8410  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8411    return SDValue();
8412
8413  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8414  // bits of the inputs before performing those operations.
8415  if (FlipSigns) {
8416    EVT EltVT = VT.getVectorElementType();
8417    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8418                                      EltVT);
8419    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8420    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8421                                    SignBits.size());
8422    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8423    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8424  }
8425
8426  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8427
8428  // If the logical-not of the result is required, perform that now.
8429  if (Invert)
8430    Result = DAG.getNOT(dl, Result, VT);
8431
8432  return Result;
8433}
8434
8435// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8436static bool isX86LogicalCmp(SDValue Op) {
8437  unsigned Opc = Op.getNode()->getOpcode();
8438  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8439    return true;
8440  if (Op.getResNo() == 1 &&
8441      (Opc == X86ISD::ADD ||
8442       Opc == X86ISD::SUB ||
8443       Opc == X86ISD::ADC ||
8444       Opc == X86ISD::SBB ||
8445       Opc == X86ISD::SMUL ||
8446       Opc == X86ISD::UMUL ||
8447       Opc == X86ISD::INC ||
8448       Opc == X86ISD::DEC ||
8449       Opc == X86ISD::OR ||
8450       Opc == X86ISD::XOR ||
8451       Opc == X86ISD::AND))
8452    return true;
8453
8454  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8455    return true;
8456
8457  return false;
8458}
8459
8460static bool isZero(SDValue V) {
8461  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8462  return C && C->isNullValue();
8463}
8464
8465static bool isAllOnes(SDValue V) {
8466  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8467  return C && C->isAllOnesValue();
8468}
8469
8470SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8471  bool addTest = true;
8472  SDValue Cond  = Op.getOperand(0);
8473  SDValue Op1 = Op.getOperand(1);
8474  SDValue Op2 = Op.getOperand(2);
8475  DebugLoc DL = Op.getDebugLoc();
8476  SDValue CC;
8477
8478  if (Cond.getOpcode() == ISD::SETCC) {
8479    SDValue NewCond = LowerSETCC(Cond, DAG);
8480    if (NewCond.getNode())
8481      Cond = NewCond;
8482  }
8483
8484  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8485  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8486  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8487  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8488  if (Cond.getOpcode() == X86ISD::SETCC &&
8489      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8490      isZero(Cond.getOperand(1).getOperand(1))) {
8491    SDValue Cmp = Cond.getOperand(1);
8492
8493    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8494
8495    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8496        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8497      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8498
8499      SDValue CmpOp0 = Cmp.getOperand(0);
8500      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8501                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8502
8503      SDValue Res =   // Res = 0 or -1.
8504        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8505                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8506
8507      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8508        Res = DAG.getNOT(DL, Res, Res.getValueType());
8509
8510      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8511      if (N2C == 0 || !N2C->isNullValue())
8512        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8513      return Res;
8514    }
8515  }
8516
8517  // Look past (and (setcc_carry (cmp ...)), 1).
8518  if (Cond.getOpcode() == ISD::AND &&
8519      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8520    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8521    if (C && C->getAPIntValue() == 1)
8522      Cond = Cond.getOperand(0);
8523  }
8524
8525  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8526  // setting operand in place of the X86ISD::SETCC.
8527  unsigned CondOpcode = Cond.getOpcode();
8528  if (CondOpcode == X86ISD::SETCC ||
8529      CondOpcode == X86ISD::SETCC_CARRY) {
8530    CC = Cond.getOperand(0);
8531
8532    SDValue Cmp = Cond.getOperand(1);
8533    unsigned Opc = Cmp.getOpcode();
8534    EVT VT = Op.getValueType();
8535
8536    bool IllegalFPCMov = false;
8537    if (VT.isFloatingPoint() && !VT.isVector() &&
8538        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8539      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8540
8541    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8542        Opc == X86ISD::BT) { // FIXME
8543      Cond = Cmp;
8544      addTest = false;
8545    }
8546  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8547             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8548             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8549              Cond.getOperand(0).getValueType() != MVT::i8)) {
8550    SDValue LHS = Cond.getOperand(0);
8551    SDValue RHS = Cond.getOperand(1);
8552    unsigned X86Opcode;
8553    unsigned X86Cond;
8554    SDVTList VTs;
8555    switch (CondOpcode) {
8556    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8557    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8558    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8559    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8560    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8561    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8562    default: llvm_unreachable("unexpected overflowing operator");
8563    }
8564    if (CondOpcode == ISD::UMULO)
8565      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8566                          MVT::i32);
8567    else
8568      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8569
8570    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8571
8572    if (CondOpcode == ISD::UMULO)
8573      Cond = X86Op.getValue(2);
8574    else
8575      Cond = X86Op.getValue(1);
8576
8577    CC = DAG.getConstant(X86Cond, MVT::i8);
8578    addTest = false;
8579  }
8580
8581  if (addTest) {
8582    // Look pass the truncate.
8583    if (Cond.getOpcode() == ISD::TRUNCATE)
8584      Cond = Cond.getOperand(0);
8585
8586    // We know the result of AND is compared against zero. Try to match
8587    // it to BT.
8588    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8589      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8590      if (NewSetCC.getNode()) {
8591        CC = NewSetCC.getOperand(0);
8592        Cond = NewSetCC.getOperand(1);
8593        addTest = false;
8594      }
8595    }
8596  }
8597
8598  if (addTest) {
8599    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8600    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8601  }
8602
8603  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8604  // a <  b ?  0 : -1 -> RES = setcc_carry
8605  // a >= b ? -1 :  0 -> RES = setcc_carry
8606  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8607  if (Cond.getOpcode() == X86ISD::CMP) {
8608    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8609
8610    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8611        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8612      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8613                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8614      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8615        return DAG.getNOT(DL, Res, Res.getValueType());
8616      return Res;
8617    }
8618  }
8619
8620  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8621  // condition is true.
8622  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8623  SDValue Ops[] = { Op2, Op1, CC, Cond };
8624  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8625}
8626
8627// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8628// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8629// from the AND / OR.
8630static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8631  Opc = Op.getOpcode();
8632  if (Opc != ISD::OR && Opc != ISD::AND)
8633    return false;
8634  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8635          Op.getOperand(0).hasOneUse() &&
8636          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8637          Op.getOperand(1).hasOneUse());
8638}
8639
8640// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8641// 1 and that the SETCC node has a single use.
8642static bool isXor1OfSetCC(SDValue Op) {
8643  if (Op.getOpcode() != ISD::XOR)
8644    return false;
8645  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8646  if (N1C && N1C->getAPIntValue() == 1) {
8647    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8648      Op.getOperand(0).hasOneUse();
8649  }
8650  return false;
8651}
8652
8653SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8654  bool addTest = true;
8655  SDValue Chain = Op.getOperand(0);
8656  SDValue Cond  = Op.getOperand(1);
8657  SDValue Dest  = Op.getOperand(2);
8658  DebugLoc dl = Op.getDebugLoc();
8659  SDValue CC;
8660  bool Inverted = false;
8661
8662  if (Cond.getOpcode() == ISD::SETCC) {
8663    // Check for setcc([su]{add,sub,mul}o == 0).
8664    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8665        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8666        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8667        Cond.getOperand(0).getResNo() == 1 &&
8668        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8669         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8670         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8671         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8672         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8673         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8674      Inverted = true;
8675      Cond = Cond.getOperand(0);
8676    } else {
8677      SDValue NewCond = LowerSETCC(Cond, DAG);
8678      if (NewCond.getNode())
8679        Cond = NewCond;
8680    }
8681  }
8682#if 0
8683  // FIXME: LowerXALUO doesn't handle these!!
8684  else if (Cond.getOpcode() == X86ISD::ADD  ||
8685           Cond.getOpcode() == X86ISD::SUB  ||
8686           Cond.getOpcode() == X86ISD::SMUL ||
8687           Cond.getOpcode() == X86ISD::UMUL)
8688    Cond = LowerXALUO(Cond, DAG);
8689#endif
8690
8691  // Look pass (and (setcc_carry (cmp ...)), 1).
8692  if (Cond.getOpcode() == ISD::AND &&
8693      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8694    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8695    if (C && C->getAPIntValue() == 1)
8696      Cond = Cond.getOperand(0);
8697  }
8698
8699  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8700  // setting operand in place of the X86ISD::SETCC.
8701  unsigned CondOpcode = Cond.getOpcode();
8702  if (CondOpcode == X86ISD::SETCC ||
8703      CondOpcode == X86ISD::SETCC_CARRY) {
8704    CC = Cond.getOperand(0);
8705
8706    SDValue Cmp = Cond.getOperand(1);
8707    unsigned Opc = Cmp.getOpcode();
8708    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8709    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8710      Cond = Cmp;
8711      addTest = false;
8712    } else {
8713      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8714      default: break;
8715      case X86::COND_O:
8716      case X86::COND_B:
8717        // These can only come from an arithmetic instruction with overflow,
8718        // e.g. SADDO, UADDO.
8719        Cond = Cond.getNode()->getOperand(1);
8720        addTest = false;
8721        break;
8722      }
8723    }
8724  }
8725  CondOpcode = Cond.getOpcode();
8726  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8727      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8728      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8729       Cond.getOperand(0).getValueType() != MVT::i8)) {
8730    SDValue LHS = Cond.getOperand(0);
8731    SDValue RHS = Cond.getOperand(1);
8732    unsigned X86Opcode;
8733    unsigned X86Cond;
8734    SDVTList VTs;
8735    switch (CondOpcode) {
8736    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8737    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8738    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8739    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8740    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8741    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8742    default: llvm_unreachable("unexpected overflowing operator");
8743    }
8744    if (Inverted)
8745      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8746    if (CondOpcode == ISD::UMULO)
8747      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8748                          MVT::i32);
8749    else
8750      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8751
8752    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8753
8754    if (CondOpcode == ISD::UMULO)
8755      Cond = X86Op.getValue(2);
8756    else
8757      Cond = X86Op.getValue(1);
8758
8759    CC = DAG.getConstant(X86Cond, MVT::i8);
8760    addTest = false;
8761  } else {
8762    unsigned CondOpc;
8763    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8764      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8765      if (CondOpc == ISD::OR) {
8766        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8767        // two branches instead of an explicit OR instruction with a
8768        // separate test.
8769        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8770            isX86LogicalCmp(Cmp)) {
8771          CC = Cond.getOperand(0).getOperand(0);
8772          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8773                              Chain, Dest, CC, Cmp);
8774          CC = Cond.getOperand(1).getOperand(0);
8775          Cond = Cmp;
8776          addTest = false;
8777        }
8778      } else { // ISD::AND
8779        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8780        // two branches instead of an explicit AND instruction with a
8781        // separate test. However, we only do this if this block doesn't
8782        // have a fall-through edge, because this requires an explicit
8783        // jmp when the condition is false.
8784        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8785            isX86LogicalCmp(Cmp) &&
8786            Op.getNode()->hasOneUse()) {
8787          X86::CondCode CCode =
8788            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8789          CCode = X86::GetOppositeBranchCondition(CCode);
8790          CC = DAG.getConstant(CCode, MVT::i8);
8791          SDNode *User = *Op.getNode()->use_begin();
8792          // Look for an unconditional branch following this conditional branch.
8793          // We need this because we need to reverse the successors in order
8794          // to implement FCMP_OEQ.
8795          if (User->getOpcode() == ISD::BR) {
8796            SDValue FalseBB = User->getOperand(1);
8797            SDNode *NewBR =
8798              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8799            assert(NewBR == User);
8800            (void)NewBR;
8801            Dest = FalseBB;
8802
8803            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8804                                Chain, Dest, CC, Cmp);
8805            X86::CondCode CCode =
8806              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8807            CCode = X86::GetOppositeBranchCondition(CCode);
8808            CC = DAG.getConstant(CCode, MVT::i8);
8809            Cond = Cmp;
8810            addTest = false;
8811          }
8812        }
8813      }
8814    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8815      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8816      // It should be transformed during dag combiner except when the condition
8817      // is set by a arithmetics with overflow node.
8818      X86::CondCode CCode =
8819        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8820      CCode = X86::GetOppositeBranchCondition(CCode);
8821      CC = DAG.getConstant(CCode, MVT::i8);
8822      Cond = Cond.getOperand(0).getOperand(1);
8823      addTest = false;
8824    } else if (Cond.getOpcode() == ISD::SETCC &&
8825               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8826      // For FCMP_OEQ, we can emit
8827      // two branches instead of an explicit AND instruction with a
8828      // separate test. However, we only do this if this block doesn't
8829      // have a fall-through edge, because this requires an explicit
8830      // jmp when the condition is false.
8831      if (Op.getNode()->hasOneUse()) {
8832        SDNode *User = *Op.getNode()->use_begin();
8833        // Look for an unconditional branch following this conditional branch.
8834        // We need this because we need to reverse the successors in order
8835        // to implement FCMP_OEQ.
8836        if (User->getOpcode() == ISD::BR) {
8837          SDValue FalseBB = User->getOperand(1);
8838          SDNode *NewBR =
8839            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8840          assert(NewBR == User);
8841          (void)NewBR;
8842          Dest = FalseBB;
8843
8844          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8845                                    Cond.getOperand(0), Cond.getOperand(1));
8846          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8847          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8848                              Chain, Dest, CC, Cmp);
8849          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8850          Cond = Cmp;
8851          addTest = false;
8852        }
8853      }
8854    } else if (Cond.getOpcode() == ISD::SETCC &&
8855               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8856      // For FCMP_UNE, we can emit
8857      // two branches instead of an explicit AND instruction with a
8858      // separate test. However, we only do this if this block doesn't
8859      // have a fall-through edge, because this requires an explicit
8860      // jmp when the condition is false.
8861      if (Op.getNode()->hasOneUse()) {
8862        SDNode *User = *Op.getNode()->use_begin();
8863        // Look for an unconditional branch following this conditional branch.
8864        // We need this because we need to reverse the successors in order
8865        // to implement FCMP_UNE.
8866        if (User->getOpcode() == ISD::BR) {
8867          SDValue FalseBB = User->getOperand(1);
8868          SDNode *NewBR =
8869            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8870          assert(NewBR == User);
8871          (void)NewBR;
8872
8873          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8874                                    Cond.getOperand(0), Cond.getOperand(1));
8875          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8876          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8877                              Chain, Dest, CC, Cmp);
8878          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8879          Cond = Cmp;
8880          addTest = false;
8881          Dest = FalseBB;
8882        }
8883      }
8884    }
8885  }
8886
8887  if (addTest) {
8888    // Look pass the truncate.
8889    if (Cond.getOpcode() == ISD::TRUNCATE)
8890      Cond = Cond.getOperand(0);
8891
8892    // We know the result of AND is compared against zero. Try to match
8893    // it to BT.
8894    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8895      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8896      if (NewSetCC.getNode()) {
8897        CC = NewSetCC.getOperand(0);
8898        Cond = NewSetCC.getOperand(1);
8899        addTest = false;
8900      }
8901    }
8902  }
8903
8904  if (addTest) {
8905    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8906    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8907  }
8908  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8909                     Chain, Dest, CC, Cond);
8910}
8911
8912
8913// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8914// Calls to _alloca is needed to probe the stack when allocating more than 4k
8915// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8916// that the guard pages used by the OS virtual memory manager are allocated in
8917// correct sequence.
8918SDValue
8919X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8920                                           SelectionDAG &DAG) const {
8921  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8922          getTargetMachine().Options.EnableSegmentedStacks) &&
8923         "This should be used only on Windows targets or when segmented stacks "
8924         "are being used");
8925  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8926  DebugLoc dl = Op.getDebugLoc();
8927
8928  // Get the inputs.
8929  SDValue Chain = Op.getOperand(0);
8930  SDValue Size  = Op.getOperand(1);
8931  // FIXME: Ensure alignment here
8932
8933  bool Is64Bit = Subtarget->is64Bit();
8934  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8935
8936  if (getTargetMachine().Options.EnableSegmentedStacks) {
8937    MachineFunction &MF = DAG.getMachineFunction();
8938    MachineRegisterInfo &MRI = MF.getRegInfo();
8939
8940    if (Is64Bit) {
8941      // The 64 bit implementation of segmented stacks needs to clobber both r10
8942      // r11. This makes it impossible to use it along with nested parameters.
8943      const Function *F = MF.getFunction();
8944
8945      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8946           I != E; I++)
8947        if (I->hasNestAttr())
8948          report_fatal_error("Cannot use segmented stacks with functions that "
8949                             "have nested arguments.");
8950    }
8951
8952    const TargetRegisterClass *AddrRegClass =
8953      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8954    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8955    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8956    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8957                                DAG.getRegister(Vreg, SPTy));
8958    SDValue Ops1[2] = { Value, Chain };
8959    return DAG.getMergeValues(Ops1, 2, dl);
8960  } else {
8961    SDValue Flag;
8962    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8963
8964    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8965    Flag = Chain.getValue(1);
8966    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8967
8968    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8969    Flag = Chain.getValue(1);
8970
8971    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8972
8973    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8974    return DAG.getMergeValues(Ops1, 2, dl);
8975  }
8976}
8977
8978SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8979  MachineFunction &MF = DAG.getMachineFunction();
8980  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8981
8982  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8983  DebugLoc DL = Op.getDebugLoc();
8984
8985  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8986    // vastart just stores the address of the VarArgsFrameIndex slot into the
8987    // memory location argument.
8988    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8989                                   getPointerTy());
8990    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8991                        MachinePointerInfo(SV), false, false, 0);
8992  }
8993
8994  // __va_list_tag:
8995  //   gp_offset         (0 - 6 * 8)
8996  //   fp_offset         (48 - 48 + 8 * 16)
8997  //   overflow_arg_area (point to parameters coming in memory).
8998  //   reg_save_area
8999  SmallVector<SDValue, 8> MemOps;
9000  SDValue FIN = Op.getOperand(1);
9001  // Store gp_offset
9002  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9003                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9004                                               MVT::i32),
9005                               FIN, MachinePointerInfo(SV), false, false, 0);
9006  MemOps.push_back(Store);
9007
9008  // Store fp_offset
9009  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9010                    FIN, DAG.getIntPtrConstant(4));
9011  Store = DAG.getStore(Op.getOperand(0), DL,
9012                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9013                                       MVT::i32),
9014                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9015  MemOps.push_back(Store);
9016
9017  // Store ptr to overflow_arg_area
9018  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9019                    FIN, DAG.getIntPtrConstant(4));
9020  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9021                                    getPointerTy());
9022  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9023                       MachinePointerInfo(SV, 8),
9024                       false, false, 0);
9025  MemOps.push_back(Store);
9026
9027  // Store ptr to reg_save_area.
9028  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9029                    FIN, DAG.getIntPtrConstant(8));
9030  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9031                                    getPointerTy());
9032  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9033                       MachinePointerInfo(SV, 16), false, false, 0);
9034  MemOps.push_back(Store);
9035  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9036                     &MemOps[0], MemOps.size());
9037}
9038
9039SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9040  assert(Subtarget->is64Bit() &&
9041         "LowerVAARG only handles 64-bit va_arg!");
9042  assert((Subtarget->isTargetLinux() ||
9043          Subtarget->isTargetDarwin()) &&
9044          "Unhandled target in LowerVAARG");
9045  assert(Op.getNode()->getNumOperands() == 4);
9046  SDValue Chain = Op.getOperand(0);
9047  SDValue SrcPtr = Op.getOperand(1);
9048  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9049  unsigned Align = Op.getConstantOperandVal(3);
9050  DebugLoc dl = Op.getDebugLoc();
9051
9052  EVT ArgVT = Op.getNode()->getValueType(0);
9053  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9054  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9055  uint8_t ArgMode;
9056
9057  // Decide which area this value should be read from.
9058  // TODO: Implement the AMD64 ABI in its entirety. This simple
9059  // selection mechanism works only for the basic types.
9060  if (ArgVT == MVT::f80) {
9061    llvm_unreachable("va_arg for f80 not yet implemented");
9062  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9063    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9064  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9065    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9066  } else {
9067    llvm_unreachable("Unhandled argument type in LowerVAARG");
9068  }
9069
9070  if (ArgMode == 2) {
9071    // Sanity Check: Make sure using fp_offset makes sense.
9072    assert(!getTargetMachine().Options.UseSoftFloat &&
9073           !(DAG.getMachineFunction()
9074                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9075           Subtarget->hasSSE1());
9076  }
9077
9078  // Insert VAARG_64 node into the DAG
9079  // VAARG_64 returns two values: Variable Argument Address, Chain
9080  SmallVector<SDValue, 11> InstOps;
9081  InstOps.push_back(Chain);
9082  InstOps.push_back(SrcPtr);
9083  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9084  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9085  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9086  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9087  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9088                                          VTs, &InstOps[0], InstOps.size(),
9089                                          MVT::i64,
9090                                          MachinePointerInfo(SV),
9091                                          /*Align=*/0,
9092                                          /*Volatile=*/false,
9093                                          /*ReadMem=*/true,
9094                                          /*WriteMem=*/true);
9095  Chain = VAARG.getValue(1);
9096
9097  // Load the next argument and return it
9098  return DAG.getLoad(ArgVT, dl,
9099                     Chain,
9100                     VAARG,
9101                     MachinePointerInfo(),
9102                     false, false, false, 0);
9103}
9104
9105SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9106  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9107  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9108  SDValue Chain = Op.getOperand(0);
9109  SDValue DstPtr = Op.getOperand(1);
9110  SDValue SrcPtr = Op.getOperand(2);
9111  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9112  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9113  DebugLoc DL = Op.getDebugLoc();
9114
9115  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9116                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9117                       false,
9118                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9119}
9120
9121// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9122// may or may not be a constant. Takes immediate version of shift as input.
9123static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9124                                   SDValue SrcOp, SDValue ShAmt,
9125                                   SelectionDAG &DAG) {
9126  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9127
9128  if (isa<ConstantSDNode>(ShAmt)) {
9129    switch (Opc) {
9130      default: llvm_unreachable("Unknown target vector shift node");
9131      case X86ISD::VSHLI:
9132      case X86ISD::VSRLI:
9133      case X86ISD::VSRAI:
9134        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9135    }
9136  }
9137
9138  // Change opcode to non-immediate version
9139  switch (Opc) {
9140    default: llvm_unreachable("Unknown target vector shift node");
9141    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9142    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9143    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9144  }
9145
9146  // Need to build a vector containing shift amount
9147  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9148  SDValue ShOps[4];
9149  ShOps[0] = ShAmt;
9150  ShOps[1] = DAG.getConstant(0, MVT::i32);
9151  ShOps[2] = DAG.getUNDEF(MVT::i32);
9152  ShOps[3] = DAG.getUNDEF(MVT::i32);
9153  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9154  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9155  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9156}
9157
9158SDValue
9159X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9160  DebugLoc dl = Op.getDebugLoc();
9161  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9162  switch (IntNo) {
9163  default: return SDValue();    // Don't custom lower most intrinsics.
9164  // Comparison intrinsics.
9165  case Intrinsic::x86_sse_comieq_ss:
9166  case Intrinsic::x86_sse_comilt_ss:
9167  case Intrinsic::x86_sse_comile_ss:
9168  case Intrinsic::x86_sse_comigt_ss:
9169  case Intrinsic::x86_sse_comige_ss:
9170  case Intrinsic::x86_sse_comineq_ss:
9171  case Intrinsic::x86_sse_ucomieq_ss:
9172  case Intrinsic::x86_sse_ucomilt_ss:
9173  case Intrinsic::x86_sse_ucomile_ss:
9174  case Intrinsic::x86_sse_ucomigt_ss:
9175  case Intrinsic::x86_sse_ucomige_ss:
9176  case Intrinsic::x86_sse_ucomineq_ss:
9177  case Intrinsic::x86_sse2_comieq_sd:
9178  case Intrinsic::x86_sse2_comilt_sd:
9179  case Intrinsic::x86_sse2_comile_sd:
9180  case Intrinsic::x86_sse2_comigt_sd:
9181  case Intrinsic::x86_sse2_comige_sd:
9182  case Intrinsic::x86_sse2_comineq_sd:
9183  case Intrinsic::x86_sse2_ucomieq_sd:
9184  case Intrinsic::x86_sse2_ucomilt_sd:
9185  case Intrinsic::x86_sse2_ucomile_sd:
9186  case Intrinsic::x86_sse2_ucomigt_sd:
9187  case Intrinsic::x86_sse2_ucomige_sd:
9188  case Intrinsic::x86_sse2_ucomineq_sd: {
9189    unsigned Opc = 0;
9190    ISD::CondCode CC = ISD::SETCC_INVALID;
9191    switch (IntNo) {
9192    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9193    case Intrinsic::x86_sse_comieq_ss:
9194    case Intrinsic::x86_sse2_comieq_sd:
9195      Opc = X86ISD::COMI;
9196      CC = ISD::SETEQ;
9197      break;
9198    case Intrinsic::x86_sse_comilt_ss:
9199    case Intrinsic::x86_sse2_comilt_sd:
9200      Opc = X86ISD::COMI;
9201      CC = ISD::SETLT;
9202      break;
9203    case Intrinsic::x86_sse_comile_ss:
9204    case Intrinsic::x86_sse2_comile_sd:
9205      Opc = X86ISD::COMI;
9206      CC = ISD::SETLE;
9207      break;
9208    case Intrinsic::x86_sse_comigt_ss:
9209    case Intrinsic::x86_sse2_comigt_sd:
9210      Opc = X86ISD::COMI;
9211      CC = ISD::SETGT;
9212      break;
9213    case Intrinsic::x86_sse_comige_ss:
9214    case Intrinsic::x86_sse2_comige_sd:
9215      Opc = X86ISD::COMI;
9216      CC = ISD::SETGE;
9217      break;
9218    case Intrinsic::x86_sse_comineq_ss:
9219    case Intrinsic::x86_sse2_comineq_sd:
9220      Opc = X86ISD::COMI;
9221      CC = ISD::SETNE;
9222      break;
9223    case Intrinsic::x86_sse_ucomieq_ss:
9224    case Intrinsic::x86_sse2_ucomieq_sd:
9225      Opc = X86ISD::UCOMI;
9226      CC = ISD::SETEQ;
9227      break;
9228    case Intrinsic::x86_sse_ucomilt_ss:
9229    case Intrinsic::x86_sse2_ucomilt_sd:
9230      Opc = X86ISD::UCOMI;
9231      CC = ISD::SETLT;
9232      break;
9233    case Intrinsic::x86_sse_ucomile_ss:
9234    case Intrinsic::x86_sse2_ucomile_sd:
9235      Opc = X86ISD::UCOMI;
9236      CC = ISD::SETLE;
9237      break;
9238    case Intrinsic::x86_sse_ucomigt_ss:
9239    case Intrinsic::x86_sse2_ucomigt_sd:
9240      Opc = X86ISD::UCOMI;
9241      CC = ISD::SETGT;
9242      break;
9243    case Intrinsic::x86_sse_ucomige_ss:
9244    case Intrinsic::x86_sse2_ucomige_sd:
9245      Opc = X86ISD::UCOMI;
9246      CC = ISD::SETGE;
9247      break;
9248    case Intrinsic::x86_sse_ucomineq_ss:
9249    case Intrinsic::x86_sse2_ucomineq_sd:
9250      Opc = X86ISD::UCOMI;
9251      CC = ISD::SETNE;
9252      break;
9253    }
9254
9255    SDValue LHS = Op.getOperand(1);
9256    SDValue RHS = Op.getOperand(2);
9257    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9258    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9259    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9260    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9261                                DAG.getConstant(X86CC, MVT::i8), Cond);
9262    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9263  }
9264  // XOP comparison intrinsics
9265  case Intrinsic::x86_xop_vpcomltb:
9266  case Intrinsic::x86_xop_vpcomltw:
9267  case Intrinsic::x86_xop_vpcomltd:
9268  case Intrinsic::x86_xop_vpcomltq:
9269  case Intrinsic::x86_xop_vpcomltub:
9270  case Intrinsic::x86_xop_vpcomltuw:
9271  case Intrinsic::x86_xop_vpcomltud:
9272  case Intrinsic::x86_xop_vpcomltuq:
9273  case Intrinsic::x86_xop_vpcomleb:
9274  case Intrinsic::x86_xop_vpcomlew:
9275  case Intrinsic::x86_xop_vpcomled:
9276  case Intrinsic::x86_xop_vpcomleq:
9277  case Intrinsic::x86_xop_vpcomleub:
9278  case Intrinsic::x86_xop_vpcomleuw:
9279  case Intrinsic::x86_xop_vpcomleud:
9280  case Intrinsic::x86_xop_vpcomleuq:
9281  case Intrinsic::x86_xop_vpcomgtb:
9282  case Intrinsic::x86_xop_vpcomgtw:
9283  case Intrinsic::x86_xop_vpcomgtd:
9284  case Intrinsic::x86_xop_vpcomgtq:
9285  case Intrinsic::x86_xop_vpcomgtub:
9286  case Intrinsic::x86_xop_vpcomgtuw:
9287  case Intrinsic::x86_xop_vpcomgtud:
9288  case Intrinsic::x86_xop_vpcomgtuq:
9289  case Intrinsic::x86_xop_vpcomgeb:
9290  case Intrinsic::x86_xop_vpcomgew:
9291  case Intrinsic::x86_xop_vpcomged:
9292  case Intrinsic::x86_xop_vpcomgeq:
9293  case Intrinsic::x86_xop_vpcomgeub:
9294  case Intrinsic::x86_xop_vpcomgeuw:
9295  case Intrinsic::x86_xop_vpcomgeud:
9296  case Intrinsic::x86_xop_vpcomgeuq:
9297  case Intrinsic::x86_xop_vpcomeqb:
9298  case Intrinsic::x86_xop_vpcomeqw:
9299  case Intrinsic::x86_xop_vpcomeqd:
9300  case Intrinsic::x86_xop_vpcomeqq:
9301  case Intrinsic::x86_xop_vpcomequb:
9302  case Intrinsic::x86_xop_vpcomequw:
9303  case Intrinsic::x86_xop_vpcomequd:
9304  case Intrinsic::x86_xop_vpcomequq:
9305  case Intrinsic::x86_xop_vpcomneb:
9306  case Intrinsic::x86_xop_vpcomnew:
9307  case Intrinsic::x86_xop_vpcomned:
9308  case Intrinsic::x86_xop_vpcomneq:
9309  case Intrinsic::x86_xop_vpcomneub:
9310  case Intrinsic::x86_xop_vpcomneuw:
9311  case Intrinsic::x86_xop_vpcomneud:
9312  case Intrinsic::x86_xop_vpcomneuq:
9313  case Intrinsic::x86_xop_vpcomfalseb:
9314  case Intrinsic::x86_xop_vpcomfalsew:
9315  case Intrinsic::x86_xop_vpcomfalsed:
9316  case Intrinsic::x86_xop_vpcomfalseq:
9317  case Intrinsic::x86_xop_vpcomfalseub:
9318  case Intrinsic::x86_xop_vpcomfalseuw:
9319  case Intrinsic::x86_xop_vpcomfalseud:
9320  case Intrinsic::x86_xop_vpcomfalseuq:
9321  case Intrinsic::x86_xop_vpcomtrueb:
9322  case Intrinsic::x86_xop_vpcomtruew:
9323  case Intrinsic::x86_xop_vpcomtrued:
9324  case Intrinsic::x86_xop_vpcomtrueq:
9325  case Intrinsic::x86_xop_vpcomtrueub:
9326  case Intrinsic::x86_xop_vpcomtrueuw:
9327  case Intrinsic::x86_xop_vpcomtrueud:
9328  case Intrinsic::x86_xop_vpcomtrueuq: {
9329    unsigned CC = 0;
9330    unsigned Opc = 0;
9331
9332    switch (IntNo) {
9333    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9334    case Intrinsic::x86_xop_vpcomltb:
9335    case Intrinsic::x86_xop_vpcomltw:
9336    case Intrinsic::x86_xop_vpcomltd:
9337    case Intrinsic::x86_xop_vpcomltq:
9338      CC = 0;
9339      Opc = X86ISD::VPCOM;
9340      break;
9341    case Intrinsic::x86_xop_vpcomltub:
9342    case Intrinsic::x86_xop_vpcomltuw:
9343    case Intrinsic::x86_xop_vpcomltud:
9344    case Intrinsic::x86_xop_vpcomltuq:
9345      CC = 0;
9346      Opc = X86ISD::VPCOMU;
9347      break;
9348    case Intrinsic::x86_xop_vpcomleb:
9349    case Intrinsic::x86_xop_vpcomlew:
9350    case Intrinsic::x86_xop_vpcomled:
9351    case Intrinsic::x86_xop_vpcomleq:
9352      CC = 1;
9353      Opc = X86ISD::VPCOM;
9354      break;
9355    case Intrinsic::x86_xop_vpcomleub:
9356    case Intrinsic::x86_xop_vpcomleuw:
9357    case Intrinsic::x86_xop_vpcomleud:
9358    case Intrinsic::x86_xop_vpcomleuq:
9359      CC = 1;
9360      Opc = X86ISD::VPCOMU;
9361      break;
9362    case Intrinsic::x86_xop_vpcomgtb:
9363    case Intrinsic::x86_xop_vpcomgtw:
9364    case Intrinsic::x86_xop_vpcomgtd:
9365    case Intrinsic::x86_xop_vpcomgtq:
9366      CC = 2;
9367      Opc = X86ISD::VPCOM;
9368      break;
9369    case Intrinsic::x86_xop_vpcomgtub:
9370    case Intrinsic::x86_xop_vpcomgtuw:
9371    case Intrinsic::x86_xop_vpcomgtud:
9372    case Intrinsic::x86_xop_vpcomgtuq:
9373      CC = 2;
9374      Opc = X86ISD::VPCOMU;
9375      break;
9376    case Intrinsic::x86_xop_vpcomgeb:
9377    case Intrinsic::x86_xop_vpcomgew:
9378    case Intrinsic::x86_xop_vpcomged:
9379    case Intrinsic::x86_xop_vpcomgeq:
9380      CC = 3;
9381      Opc = X86ISD::VPCOM;
9382      break;
9383    case Intrinsic::x86_xop_vpcomgeub:
9384    case Intrinsic::x86_xop_vpcomgeuw:
9385    case Intrinsic::x86_xop_vpcomgeud:
9386    case Intrinsic::x86_xop_vpcomgeuq:
9387      CC = 3;
9388      Opc = X86ISD::VPCOMU;
9389      break;
9390    case Intrinsic::x86_xop_vpcomeqb:
9391    case Intrinsic::x86_xop_vpcomeqw:
9392    case Intrinsic::x86_xop_vpcomeqd:
9393    case Intrinsic::x86_xop_vpcomeqq:
9394      CC = 4;
9395      Opc = X86ISD::VPCOM;
9396      break;
9397    case Intrinsic::x86_xop_vpcomequb:
9398    case Intrinsic::x86_xop_vpcomequw:
9399    case Intrinsic::x86_xop_vpcomequd:
9400    case Intrinsic::x86_xop_vpcomequq:
9401      CC = 4;
9402      Opc = X86ISD::VPCOMU;
9403      break;
9404    case Intrinsic::x86_xop_vpcomneb:
9405    case Intrinsic::x86_xop_vpcomnew:
9406    case Intrinsic::x86_xop_vpcomned:
9407    case Intrinsic::x86_xop_vpcomneq:
9408      CC = 5;
9409      Opc = X86ISD::VPCOM;
9410      break;
9411    case Intrinsic::x86_xop_vpcomneub:
9412    case Intrinsic::x86_xop_vpcomneuw:
9413    case Intrinsic::x86_xop_vpcomneud:
9414    case Intrinsic::x86_xop_vpcomneuq:
9415      CC = 5;
9416      Opc = X86ISD::VPCOMU;
9417      break;
9418    case Intrinsic::x86_xop_vpcomfalseb:
9419    case Intrinsic::x86_xop_vpcomfalsew:
9420    case Intrinsic::x86_xop_vpcomfalsed:
9421    case Intrinsic::x86_xop_vpcomfalseq:
9422      CC = 6;
9423      Opc = X86ISD::VPCOM;
9424      break;
9425    case Intrinsic::x86_xop_vpcomfalseub:
9426    case Intrinsic::x86_xop_vpcomfalseuw:
9427    case Intrinsic::x86_xop_vpcomfalseud:
9428    case Intrinsic::x86_xop_vpcomfalseuq:
9429      CC = 6;
9430      Opc = X86ISD::VPCOMU;
9431      break;
9432    case Intrinsic::x86_xop_vpcomtrueb:
9433    case Intrinsic::x86_xop_vpcomtruew:
9434    case Intrinsic::x86_xop_vpcomtrued:
9435    case Intrinsic::x86_xop_vpcomtrueq:
9436      CC = 7;
9437      Opc = X86ISD::VPCOM;
9438      break;
9439    case Intrinsic::x86_xop_vpcomtrueub:
9440    case Intrinsic::x86_xop_vpcomtrueuw:
9441    case Intrinsic::x86_xop_vpcomtrueud:
9442    case Intrinsic::x86_xop_vpcomtrueuq:
9443      CC = 7;
9444      Opc = X86ISD::VPCOMU;
9445      break;
9446    }
9447
9448    SDValue LHS = Op.getOperand(1);
9449    SDValue RHS = Op.getOperand(2);
9450    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9451                       DAG.getConstant(CC, MVT::i8));
9452  }
9453
9454  // Arithmetic intrinsics.
9455  case Intrinsic::x86_sse2_pmulu_dq:
9456  case Intrinsic::x86_avx2_pmulu_dq:
9457    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9458                       Op.getOperand(1), Op.getOperand(2));
9459  case Intrinsic::x86_sse3_hadd_ps:
9460  case Intrinsic::x86_sse3_hadd_pd:
9461  case Intrinsic::x86_avx_hadd_ps_256:
9462  case Intrinsic::x86_avx_hadd_pd_256:
9463    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9464                       Op.getOperand(1), Op.getOperand(2));
9465  case Intrinsic::x86_sse3_hsub_ps:
9466  case Intrinsic::x86_sse3_hsub_pd:
9467  case Intrinsic::x86_avx_hsub_ps_256:
9468  case Intrinsic::x86_avx_hsub_pd_256:
9469    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9470                       Op.getOperand(1), Op.getOperand(2));
9471  case Intrinsic::x86_ssse3_phadd_w_128:
9472  case Intrinsic::x86_ssse3_phadd_d_128:
9473  case Intrinsic::x86_avx2_phadd_w:
9474  case Intrinsic::x86_avx2_phadd_d:
9475    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9476                       Op.getOperand(1), Op.getOperand(2));
9477  case Intrinsic::x86_ssse3_phsub_w_128:
9478  case Intrinsic::x86_ssse3_phsub_d_128:
9479  case Intrinsic::x86_avx2_phsub_w:
9480  case Intrinsic::x86_avx2_phsub_d:
9481    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9482                       Op.getOperand(1), Op.getOperand(2));
9483  case Intrinsic::x86_avx2_psllv_d:
9484  case Intrinsic::x86_avx2_psllv_q:
9485  case Intrinsic::x86_avx2_psllv_d_256:
9486  case Intrinsic::x86_avx2_psllv_q_256:
9487    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9488                      Op.getOperand(1), Op.getOperand(2));
9489  case Intrinsic::x86_avx2_psrlv_d:
9490  case Intrinsic::x86_avx2_psrlv_q:
9491  case Intrinsic::x86_avx2_psrlv_d_256:
9492  case Intrinsic::x86_avx2_psrlv_q_256:
9493    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9494                      Op.getOperand(1), Op.getOperand(2));
9495  case Intrinsic::x86_avx2_psrav_d:
9496  case Intrinsic::x86_avx2_psrav_d_256:
9497    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9498                      Op.getOperand(1), Op.getOperand(2));
9499  case Intrinsic::x86_ssse3_pshuf_b_128:
9500  case Intrinsic::x86_avx2_pshuf_b:
9501    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9502                       Op.getOperand(1), Op.getOperand(2));
9503  case Intrinsic::x86_ssse3_psign_b_128:
9504  case Intrinsic::x86_ssse3_psign_w_128:
9505  case Intrinsic::x86_ssse3_psign_d_128:
9506  case Intrinsic::x86_avx2_psign_b:
9507  case Intrinsic::x86_avx2_psign_w:
9508  case Intrinsic::x86_avx2_psign_d:
9509    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9510                       Op.getOperand(1), Op.getOperand(2));
9511  case Intrinsic::x86_sse41_insertps:
9512    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9513                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9514  case Intrinsic::x86_avx_vperm2f128_ps_256:
9515  case Intrinsic::x86_avx_vperm2f128_pd_256:
9516  case Intrinsic::x86_avx_vperm2f128_si_256:
9517  case Intrinsic::x86_avx2_vperm2i128:
9518    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9519                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9520  case Intrinsic::x86_avx_vpermil_ps:
9521  case Intrinsic::x86_avx_vpermil_pd:
9522  case Intrinsic::x86_avx_vpermil_ps_256:
9523  case Intrinsic::x86_avx_vpermil_pd_256:
9524    return DAG.getNode(X86ISD::VPERMILP, dl, Op.getValueType(),
9525                       Op.getOperand(1), Op.getOperand(2));
9526
9527  // ptest and testp intrinsics. The intrinsic these come from are designed to
9528  // return an integer value, not just an instruction so lower it to the ptest
9529  // or testp pattern and a setcc for the result.
9530  case Intrinsic::x86_sse41_ptestz:
9531  case Intrinsic::x86_sse41_ptestc:
9532  case Intrinsic::x86_sse41_ptestnzc:
9533  case Intrinsic::x86_avx_ptestz_256:
9534  case Intrinsic::x86_avx_ptestc_256:
9535  case Intrinsic::x86_avx_ptestnzc_256:
9536  case Intrinsic::x86_avx_vtestz_ps:
9537  case Intrinsic::x86_avx_vtestc_ps:
9538  case Intrinsic::x86_avx_vtestnzc_ps:
9539  case Intrinsic::x86_avx_vtestz_pd:
9540  case Intrinsic::x86_avx_vtestc_pd:
9541  case Intrinsic::x86_avx_vtestnzc_pd:
9542  case Intrinsic::x86_avx_vtestz_ps_256:
9543  case Intrinsic::x86_avx_vtestc_ps_256:
9544  case Intrinsic::x86_avx_vtestnzc_ps_256:
9545  case Intrinsic::x86_avx_vtestz_pd_256:
9546  case Intrinsic::x86_avx_vtestc_pd_256:
9547  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9548    bool IsTestPacked = false;
9549    unsigned X86CC = 0;
9550    switch (IntNo) {
9551    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9552    case Intrinsic::x86_avx_vtestz_ps:
9553    case Intrinsic::x86_avx_vtestz_pd:
9554    case Intrinsic::x86_avx_vtestz_ps_256:
9555    case Intrinsic::x86_avx_vtestz_pd_256:
9556      IsTestPacked = true; // Fallthrough
9557    case Intrinsic::x86_sse41_ptestz:
9558    case Intrinsic::x86_avx_ptestz_256:
9559      // ZF = 1
9560      X86CC = X86::COND_E;
9561      break;
9562    case Intrinsic::x86_avx_vtestc_ps:
9563    case Intrinsic::x86_avx_vtestc_pd:
9564    case Intrinsic::x86_avx_vtestc_ps_256:
9565    case Intrinsic::x86_avx_vtestc_pd_256:
9566      IsTestPacked = true; // Fallthrough
9567    case Intrinsic::x86_sse41_ptestc:
9568    case Intrinsic::x86_avx_ptestc_256:
9569      // CF = 1
9570      X86CC = X86::COND_B;
9571      break;
9572    case Intrinsic::x86_avx_vtestnzc_ps:
9573    case Intrinsic::x86_avx_vtestnzc_pd:
9574    case Intrinsic::x86_avx_vtestnzc_ps_256:
9575    case Intrinsic::x86_avx_vtestnzc_pd_256:
9576      IsTestPacked = true; // Fallthrough
9577    case Intrinsic::x86_sse41_ptestnzc:
9578    case Intrinsic::x86_avx_ptestnzc_256:
9579      // ZF and CF = 0
9580      X86CC = X86::COND_A;
9581      break;
9582    }
9583
9584    SDValue LHS = Op.getOperand(1);
9585    SDValue RHS = Op.getOperand(2);
9586    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9587    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9588    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9589    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9590    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9591  }
9592
9593  // SSE/AVX shift intrinsics
9594  case Intrinsic::x86_sse2_psll_w:
9595  case Intrinsic::x86_sse2_psll_d:
9596  case Intrinsic::x86_sse2_psll_q:
9597  case Intrinsic::x86_avx2_psll_w:
9598  case Intrinsic::x86_avx2_psll_d:
9599  case Intrinsic::x86_avx2_psll_q:
9600    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9601                       Op.getOperand(1), Op.getOperand(2));
9602  case Intrinsic::x86_sse2_psrl_w:
9603  case Intrinsic::x86_sse2_psrl_d:
9604  case Intrinsic::x86_sse2_psrl_q:
9605  case Intrinsic::x86_avx2_psrl_w:
9606  case Intrinsic::x86_avx2_psrl_d:
9607  case Intrinsic::x86_avx2_psrl_q:
9608    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9609                       Op.getOperand(1), Op.getOperand(2));
9610  case Intrinsic::x86_sse2_psra_w:
9611  case Intrinsic::x86_sse2_psra_d:
9612  case Intrinsic::x86_avx2_psra_w:
9613  case Intrinsic::x86_avx2_psra_d:
9614    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9615                       Op.getOperand(1), Op.getOperand(2));
9616  case Intrinsic::x86_sse2_pslli_w:
9617  case Intrinsic::x86_sse2_pslli_d:
9618  case Intrinsic::x86_sse2_pslli_q:
9619  case Intrinsic::x86_avx2_pslli_w:
9620  case Intrinsic::x86_avx2_pslli_d:
9621  case Intrinsic::x86_avx2_pslli_q:
9622    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9623                               Op.getOperand(1), Op.getOperand(2), DAG);
9624  case Intrinsic::x86_sse2_psrli_w:
9625  case Intrinsic::x86_sse2_psrli_d:
9626  case Intrinsic::x86_sse2_psrli_q:
9627  case Intrinsic::x86_avx2_psrli_w:
9628  case Intrinsic::x86_avx2_psrli_d:
9629  case Intrinsic::x86_avx2_psrli_q:
9630    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9631                               Op.getOperand(1), Op.getOperand(2), DAG);
9632  case Intrinsic::x86_sse2_psrai_w:
9633  case Intrinsic::x86_sse2_psrai_d:
9634  case Intrinsic::x86_avx2_psrai_w:
9635  case Intrinsic::x86_avx2_psrai_d:
9636    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9637                               Op.getOperand(1), Op.getOperand(2), DAG);
9638  // Fix vector shift instructions where the last operand is a non-immediate
9639  // i32 value.
9640  case Intrinsic::x86_mmx_pslli_w:
9641  case Intrinsic::x86_mmx_pslli_d:
9642  case Intrinsic::x86_mmx_pslli_q:
9643  case Intrinsic::x86_mmx_psrli_w:
9644  case Intrinsic::x86_mmx_psrli_d:
9645  case Intrinsic::x86_mmx_psrli_q:
9646  case Intrinsic::x86_mmx_psrai_w:
9647  case Intrinsic::x86_mmx_psrai_d: {
9648    SDValue ShAmt = Op.getOperand(2);
9649    if (isa<ConstantSDNode>(ShAmt))
9650      return SDValue();
9651
9652    unsigned NewIntNo = 0;
9653    switch (IntNo) {
9654    case Intrinsic::x86_mmx_pslli_w:
9655      NewIntNo = Intrinsic::x86_mmx_psll_w;
9656      break;
9657    case Intrinsic::x86_mmx_pslli_d:
9658      NewIntNo = Intrinsic::x86_mmx_psll_d;
9659      break;
9660    case Intrinsic::x86_mmx_pslli_q:
9661      NewIntNo = Intrinsic::x86_mmx_psll_q;
9662      break;
9663    case Intrinsic::x86_mmx_psrli_w:
9664      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9665      break;
9666    case Intrinsic::x86_mmx_psrli_d:
9667      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9668      break;
9669    case Intrinsic::x86_mmx_psrli_q:
9670      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9671      break;
9672    case Intrinsic::x86_mmx_psrai_w:
9673      NewIntNo = Intrinsic::x86_mmx_psra_w;
9674      break;
9675    case Intrinsic::x86_mmx_psrai_d:
9676      NewIntNo = Intrinsic::x86_mmx_psra_d;
9677      break;
9678    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9679    }
9680
9681    // The vector shift intrinsics with scalars uses 32b shift amounts but
9682    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9683    // to be zero.
9684    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9685                         DAG.getConstant(0, MVT::i32));
9686// FIXME this must be lowered to get rid of the invalid type.
9687
9688    EVT VT = Op.getValueType();
9689    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9690    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9691                       DAG.getConstant(NewIntNo, MVT::i32),
9692                       Op.getOperand(1), ShAmt);
9693  }
9694  }
9695}
9696
9697SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9698                                           SelectionDAG &DAG) const {
9699  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9700  MFI->setReturnAddressIsTaken(true);
9701
9702  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9703  DebugLoc dl = Op.getDebugLoc();
9704
9705  if (Depth > 0) {
9706    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9707    SDValue Offset =
9708      DAG.getConstant(TD->getPointerSize(),
9709                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9710    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9711                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9712                                   FrameAddr, Offset),
9713                       MachinePointerInfo(), false, false, false, 0);
9714  }
9715
9716  // Just load the return address.
9717  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9718  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9719                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9720}
9721
9722SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9723  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9724  MFI->setFrameAddressIsTaken(true);
9725
9726  EVT VT = Op.getValueType();
9727  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9728  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9729  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9730  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9731  while (Depth--)
9732    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9733                            MachinePointerInfo(),
9734                            false, false, false, 0);
9735  return FrameAddr;
9736}
9737
9738SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9739                                                     SelectionDAG &DAG) const {
9740  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9741}
9742
9743SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9744  MachineFunction &MF = DAG.getMachineFunction();
9745  SDValue Chain     = Op.getOperand(0);
9746  SDValue Offset    = Op.getOperand(1);
9747  SDValue Handler   = Op.getOperand(2);
9748  DebugLoc dl       = Op.getDebugLoc();
9749
9750  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9751                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9752                                     getPointerTy());
9753  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9754
9755  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9756                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9757  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9758  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9759                       false, false, 0);
9760  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9761  MF.getRegInfo().addLiveOut(StoreAddrReg);
9762
9763  return DAG.getNode(X86ISD::EH_RETURN, dl,
9764                     MVT::Other,
9765                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9766}
9767
9768SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9769                                                  SelectionDAG &DAG) const {
9770  return Op.getOperand(0);
9771}
9772
9773SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9774                                                SelectionDAG &DAG) const {
9775  SDValue Root = Op.getOperand(0);
9776  SDValue Trmp = Op.getOperand(1); // trampoline
9777  SDValue FPtr = Op.getOperand(2); // nested function
9778  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9779  DebugLoc dl  = Op.getDebugLoc();
9780
9781  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9782
9783  if (Subtarget->is64Bit()) {
9784    SDValue OutChains[6];
9785
9786    // Large code-model.
9787    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9788    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9789
9790    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9791    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9792
9793    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9794
9795    // Load the pointer to the nested function into R11.
9796    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9797    SDValue Addr = Trmp;
9798    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9799                                Addr, MachinePointerInfo(TrmpAddr),
9800                                false, false, 0);
9801
9802    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9803                       DAG.getConstant(2, MVT::i64));
9804    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9805                                MachinePointerInfo(TrmpAddr, 2),
9806                                false, false, 2);
9807
9808    // Load the 'nest' parameter value into R10.
9809    // R10 is specified in X86CallingConv.td
9810    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9811    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9812                       DAG.getConstant(10, MVT::i64));
9813    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9814                                Addr, MachinePointerInfo(TrmpAddr, 10),
9815                                false, false, 0);
9816
9817    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9818                       DAG.getConstant(12, MVT::i64));
9819    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9820                                MachinePointerInfo(TrmpAddr, 12),
9821                                false, false, 2);
9822
9823    // Jump to the nested function.
9824    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9825    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9826                       DAG.getConstant(20, MVT::i64));
9827    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9828                                Addr, MachinePointerInfo(TrmpAddr, 20),
9829                                false, false, 0);
9830
9831    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9832    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9833                       DAG.getConstant(22, MVT::i64));
9834    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9835                                MachinePointerInfo(TrmpAddr, 22),
9836                                false, false, 0);
9837
9838    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9839  } else {
9840    const Function *Func =
9841      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9842    CallingConv::ID CC = Func->getCallingConv();
9843    unsigned NestReg;
9844
9845    switch (CC) {
9846    default:
9847      llvm_unreachable("Unsupported calling convention");
9848    case CallingConv::C:
9849    case CallingConv::X86_StdCall: {
9850      // Pass 'nest' parameter in ECX.
9851      // Must be kept in sync with X86CallingConv.td
9852      NestReg = X86::ECX;
9853
9854      // Check that ECX wasn't needed by an 'inreg' parameter.
9855      FunctionType *FTy = Func->getFunctionType();
9856      const AttrListPtr &Attrs = Func->getAttributes();
9857
9858      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9859        unsigned InRegCount = 0;
9860        unsigned Idx = 1;
9861
9862        for (FunctionType::param_iterator I = FTy->param_begin(),
9863             E = FTy->param_end(); I != E; ++I, ++Idx)
9864          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9865            // FIXME: should only count parameters that are lowered to integers.
9866            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9867
9868        if (InRegCount > 2) {
9869          report_fatal_error("Nest register in use - reduce number of inreg"
9870                             " parameters!");
9871        }
9872      }
9873      break;
9874    }
9875    case CallingConv::X86_FastCall:
9876    case CallingConv::X86_ThisCall:
9877    case CallingConv::Fast:
9878      // Pass 'nest' parameter in EAX.
9879      // Must be kept in sync with X86CallingConv.td
9880      NestReg = X86::EAX;
9881      break;
9882    }
9883
9884    SDValue OutChains[4];
9885    SDValue Addr, Disp;
9886
9887    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9888                       DAG.getConstant(10, MVT::i32));
9889    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9890
9891    // This is storing the opcode for MOV32ri.
9892    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9893    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9894    OutChains[0] = DAG.getStore(Root, dl,
9895                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9896                                Trmp, MachinePointerInfo(TrmpAddr),
9897                                false, false, 0);
9898
9899    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9900                       DAG.getConstant(1, MVT::i32));
9901    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9902                                MachinePointerInfo(TrmpAddr, 1),
9903                                false, false, 1);
9904
9905    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9906    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9907                       DAG.getConstant(5, MVT::i32));
9908    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9909                                MachinePointerInfo(TrmpAddr, 5),
9910                                false, false, 1);
9911
9912    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9913                       DAG.getConstant(6, MVT::i32));
9914    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9915                                MachinePointerInfo(TrmpAddr, 6),
9916                                false, false, 1);
9917
9918    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9919  }
9920}
9921
9922SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9923                                            SelectionDAG &DAG) const {
9924  /*
9925   The rounding mode is in bits 11:10 of FPSR, and has the following
9926   settings:
9927     00 Round to nearest
9928     01 Round to -inf
9929     10 Round to +inf
9930     11 Round to 0
9931
9932  FLT_ROUNDS, on the other hand, expects the following:
9933    -1 Undefined
9934     0 Round to 0
9935     1 Round to nearest
9936     2 Round to +inf
9937     3 Round to -inf
9938
9939  To perform the conversion, we do:
9940    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9941  */
9942
9943  MachineFunction &MF = DAG.getMachineFunction();
9944  const TargetMachine &TM = MF.getTarget();
9945  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9946  unsigned StackAlignment = TFI.getStackAlignment();
9947  EVT VT = Op.getValueType();
9948  DebugLoc DL = Op.getDebugLoc();
9949
9950  // Save FP Control Word to stack slot
9951  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9952  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9953
9954
9955  MachineMemOperand *MMO =
9956   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9957                           MachineMemOperand::MOStore, 2, 2);
9958
9959  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9960  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9961                                          DAG.getVTList(MVT::Other),
9962                                          Ops, 2, MVT::i16, MMO);
9963
9964  // Load FP Control Word from stack slot
9965  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9966                            MachinePointerInfo(), false, false, false, 0);
9967
9968  // Transform as necessary
9969  SDValue CWD1 =
9970    DAG.getNode(ISD::SRL, DL, MVT::i16,
9971                DAG.getNode(ISD::AND, DL, MVT::i16,
9972                            CWD, DAG.getConstant(0x800, MVT::i16)),
9973                DAG.getConstant(11, MVT::i8));
9974  SDValue CWD2 =
9975    DAG.getNode(ISD::SRL, DL, MVT::i16,
9976                DAG.getNode(ISD::AND, DL, MVT::i16,
9977                            CWD, DAG.getConstant(0x400, MVT::i16)),
9978                DAG.getConstant(9, MVT::i8));
9979
9980  SDValue RetVal =
9981    DAG.getNode(ISD::AND, DL, MVT::i16,
9982                DAG.getNode(ISD::ADD, DL, MVT::i16,
9983                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9984                            DAG.getConstant(1, MVT::i16)),
9985                DAG.getConstant(3, MVT::i16));
9986
9987
9988  return DAG.getNode((VT.getSizeInBits() < 16 ?
9989                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9990}
9991
9992SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9993  EVT VT = Op.getValueType();
9994  EVT OpVT = VT;
9995  unsigned NumBits = VT.getSizeInBits();
9996  DebugLoc dl = Op.getDebugLoc();
9997
9998  Op = Op.getOperand(0);
9999  if (VT == MVT::i8) {
10000    // Zero extend to i32 since there is not an i8 bsr.
10001    OpVT = MVT::i32;
10002    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10003  }
10004
10005  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10006  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10007  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10008
10009  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10010  SDValue Ops[] = {
10011    Op,
10012    DAG.getConstant(NumBits+NumBits-1, OpVT),
10013    DAG.getConstant(X86::COND_E, MVT::i8),
10014    Op.getValue(1)
10015  };
10016  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10017
10018  // Finally xor with NumBits-1.
10019  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10020
10021  if (VT == MVT::i8)
10022    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10023  return Op;
10024}
10025
10026SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10027                                                SelectionDAG &DAG) const {
10028  EVT VT = Op.getValueType();
10029  EVT OpVT = VT;
10030  unsigned NumBits = VT.getSizeInBits();
10031  DebugLoc dl = Op.getDebugLoc();
10032
10033  Op = Op.getOperand(0);
10034  if (VT == MVT::i8) {
10035    // Zero extend to i32 since there is not an i8 bsr.
10036    OpVT = MVT::i32;
10037    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10038  }
10039
10040  // Issue a bsr (scan bits in reverse).
10041  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10042  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10043
10044  // And xor with NumBits-1.
10045  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10046
10047  if (VT == MVT::i8)
10048    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10049  return Op;
10050}
10051
10052SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10053  EVT VT = Op.getValueType();
10054  unsigned NumBits = VT.getSizeInBits();
10055  DebugLoc dl = Op.getDebugLoc();
10056  Op = Op.getOperand(0);
10057
10058  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10059  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10060  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10061
10062  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10063  SDValue Ops[] = {
10064    Op,
10065    DAG.getConstant(NumBits, VT),
10066    DAG.getConstant(X86::COND_E, MVT::i8),
10067    Op.getValue(1)
10068  };
10069  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10070}
10071
10072// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10073// ones, and then concatenate the result back.
10074static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10075  EVT VT = Op.getValueType();
10076
10077  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10078         "Unsupported value type for operation");
10079
10080  int NumElems = VT.getVectorNumElements();
10081  DebugLoc dl = Op.getDebugLoc();
10082  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10083  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10084
10085  // Extract the LHS vectors
10086  SDValue LHS = Op.getOperand(0);
10087  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10088  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10089
10090  // Extract the RHS vectors
10091  SDValue RHS = Op.getOperand(1);
10092  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10093  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10094
10095  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10096  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10097
10098  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10099                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10100                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10101}
10102
10103SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10104  assert(Op.getValueType().getSizeInBits() == 256 &&
10105         Op.getValueType().isInteger() &&
10106         "Only handle AVX 256-bit vector integer operation");
10107  return Lower256IntArith(Op, DAG);
10108}
10109
10110SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10111  assert(Op.getValueType().getSizeInBits() == 256 &&
10112         Op.getValueType().isInteger() &&
10113         "Only handle AVX 256-bit vector integer operation");
10114  return Lower256IntArith(Op, DAG);
10115}
10116
10117SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10118  EVT VT = Op.getValueType();
10119
10120  // Decompose 256-bit ops into smaller 128-bit ops.
10121  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10122    return Lower256IntArith(Op, DAG);
10123
10124  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10125         "Only know how to lower V2I64/V4I64 multiply");
10126
10127  DebugLoc dl = Op.getDebugLoc();
10128
10129  //  Ahi = psrlqi(a, 32);
10130  //  Bhi = psrlqi(b, 32);
10131  //
10132  //  AloBlo = pmuludq(a, b);
10133  //  AloBhi = pmuludq(a, Bhi);
10134  //  AhiBlo = pmuludq(Ahi, b);
10135
10136  //  AloBhi = psllqi(AloBhi, 32);
10137  //  AhiBlo = psllqi(AhiBlo, 32);
10138  //  return AloBlo + AloBhi + AhiBlo;
10139
10140  SDValue A = Op.getOperand(0);
10141  SDValue B = Op.getOperand(1);
10142
10143  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10144
10145  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10146  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10147
10148  // Bit cast to 32-bit vectors for MULUDQ
10149  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10150  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10151  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10152  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10153  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10154
10155  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10156  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10157  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10158
10159  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10160  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10161
10162  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10163  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10164}
10165
10166SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10167
10168  EVT VT = Op.getValueType();
10169  DebugLoc dl = Op.getDebugLoc();
10170  SDValue R = Op.getOperand(0);
10171  SDValue Amt = Op.getOperand(1);
10172  LLVMContext *Context = DAG.getContext();
10173
10174  if (!Subtarget->hasSSE2())
10175    return SDValue();
10176
10177  // Optimize shl/srl/sra with constant shift amount.
10178  if (isSplatVector(Amt.getNode())) {
10179    SDValue SclrAmt = Amt->getOperand(0);
10180    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10181      uint64_t ShiftAmt = C->getZExtValue();
10182
10183      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10184          (Subtarget->hasAVX2() &&
10185           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10186        if (Op.getOpcode() == ISD::SHL)
10187          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10188                             DAG.getConstant(ShiftAmt, MVT::i32));
10189        if (Op.getOpcode() == ISD::SRL)
10190          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10191                             DAG.getConstant(ShiftAmt, MVT::i32));
10192        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10193          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10194                             DAG.getConstant(ShiftAmt, MVT::i32));
10195      }
10196
10197      if (VT == MVT::v16i8) {
10198        if (Op.getOpcode() == ISD::SHL) {
10199          // Make a large shift.
10200          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10201                                    DAG.getConstant(ShiftAmt, MVT::i32));
10202          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10203          // Zero out the rightmost bits.
10204          SmallVector<SDValue, 16> V(16,
10205                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10206                                                     MVT::i8));
10207          return DAG.getNode(ISD::AND, dl, VT, SHL,
10208                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10209        }
10210        if (Op.getOpcode() == ISD::SRL) {
10211          // Make a large shift.
10212          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10213                                    DAG.getConstant(ShiftAmt, MVT::i32));
10214          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10215          // Zero out the leftmost bits.
10216          SmallVector<SDValue, 16> V(16,
10217                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10218                                                     MVT::i8));
10219          return DAG.getNode(ISD::AND, dl, VT, SRL,
10220                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10221        }
10222        if (Op.getOpcode() == ISD::SRA) {
10223          if (ShiftAmt == 7) {
10224            // R s>> 7  ===  R s< 0
10225            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10226            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10227          }
10228
10229          // R s>> a === ((R u>> a) ^ m) - m
10230          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10231          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10232                                                         MVT::i8));
10233          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10234          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10235          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10236          return Res;
10237        }
10238      }
10239
10240      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10241        if (Op.getOpcode() == ISD::SHL) {
10242          // Make a large shift.
10243          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10244                                    DAG.getConstant(ShiftAmt, MVT::i32));
10245          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10246          // Zero out the rightmost bits.
10247          SmallVector<SDValue, 32> V(32,
10248                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10249                                                     MVT::i8));
10250          return DAG.getNode(ISD::AND, dl, VT, SHL,
10251                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10252        }
10253        if (Op.getOpcode() == ISD::SRL) {
10254          // Make a large shift.
10255          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10256                                    DAG.getConstant(ShiftAmt, MVT::i32));
10257          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10258          // Zero out the leftmost bits.
10259          SmallVector<SDValue, 32> V(32,
10260                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10261                                                     MVT::i8));
10262          return DAG.getNode(ISD::AND, dl, VT, SRL,
10263                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10264        }
10265        if (Op.getOpcode() == ISD::SRA) {
10266          if (ShiftAmt == 7) {
10267            // R s>> 7  ===  R s< 0
10268            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10269            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10270          }
10271
10272          // R s>> a === ((R u>> a) ^ m) - m
10273          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10274          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10275                                                         MVT::i8));
10276          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10277          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10278          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10279          return Res;
10280        }
10281      }
10282    }
10283  }
10284
10285  // Lower SHL with variable shift amount.
10286  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10287    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10288                     DAG.getConstant(23, MVT::i32));
10289
10290    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10291    Constant *C = ConstantDataVector::get(*Context, CV);
10292    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10293    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10294                                 MachinePointerInfo::getConstantPool(),
10295                                 false, false, false, 16);
10296
10297    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10298    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10299    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10300    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10301  }
10302  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10303    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10304
10305    // a = a << 5;
10306    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10307                     DAG.getConstant(5, MVT::i32));
10308    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10309
10310    // Turn 'a' into a mask suitable for VSELECT
10311    SDValue VSelM = DAG.getConstant(0x80, VT);
10312    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10313    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10314
10315    SDValue CM1 = DAG.getConstant(0x0f, VT);
10316    SDValue CM2 = DAG.getConstant(0x3f, VT);
10317
10318    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10319    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10320    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10321                            DAG.getConstant(4, MVT::i32), DAG);
10322    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10323    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10324
10325    // a += a
10326    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10327    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10328    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10329
10330    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10331    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10332    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10333                            DAG.getConstant(2, MVT::i32), DAG);
10334    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10335    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10336
10337    // a += a
10338    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10339    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10340    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10341
10342    // return VSELECT(r, r+r, a);
10343    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10344                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10345    return R;
10346  }
10347
10348  // Decompose 256-bit shifts into smaller 128-bit shifts.
10349  if (VT.getSizeInBits() == 256) {
10350    unsigned NumElems = VT.getVectorNumElements();
10351    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10352    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10353
10354    // Extract the two vectors
10355    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10356    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10357                                     DAG, dl);
10358
10359    // Recreate the shift amount vectors
10360    SDValue Amt1, Amt2;
10361    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10362      // Constant shift amount
10363      SmallVector<SDValue, 4> Amt1Csts;
10364      SmallVector<SDValue, 4> Amt2Csts;
10365      for (unsigned i = 0; i != NumElems/2; ++i)
10366        Amt1Csts.push_back(Amt->getOperand(i));
10367      for (unsigned i = NumElems/2; i != NumElems; ++i)
10368        Amt2Csts.push_back(Amt->getOperand(i));
10369
10370      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10371                                 &Amt1Csts[0], NumElems/2);
10372      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10373                                 &Amt2Csts[0], NumElems/2);
10374    } else {
10375      // Variable shift amount
10376      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10377      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10378                                 DAG, dl);
10379    }
10380
10381    // Issue new vector shifts for the smaller types
10382    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10383    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10384
10385    // Concatenate the result back
10386    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10387  }
10388
10389  return SDValue();
10390}
10391
10392SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10393  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10394  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10395  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10396  // has only one use.
10397  SDNode *N = Op.getNode();
10398  SDValue LHS = N->getOperand(0);
10399  SDValue RHS = N->getOperand(1);
10400  unsigned BaseOp = 0;
10401  unsigned Cond = 0;
10402  DebugLoc DL = Op.getDebugLoc();
10403  switch (Op.getOpcode()) {
10404  default: llvm_unreachable("Unknown ovf instruction!");
10405  case ISD::SADDO:
10406    // A subtract of one will be selected as a INC. Note that INC doesn't
10407    // set CF, so we can't do this for UADDO.
10408    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10409      if (C->isOne()) {
10410        BaseOp = X86ISD::INC;
10411        Cond = X86::COND_O;
10412        break;
10413      }
10414    BaseOp = X86ISD::ADD;
10415    Cond = X86::COND_O;
10416    break;
10417  case ISD::UADDO:
10418    BaseOp = X86ISD::ADD;
10419    Cond = X86::COND_B;
10420    break;
10421  case ISD::SSUBO:
10422    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10423    // set CF, so we can't do this for USUBO.
10424    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10425      if (C->isOne()) {
10426        BaseOp = X86ISD::DEC;
10427        Cond = X86::COND_O;
10428        break;
10429      }
10430    BaseOp = X86ISD::SUB;
10431    Cond = X86::COND_O;
10432    break;
10433  case ISD::USUBO:
10434    BaseOp = X86ISD::SUB;
10435    Cond = X86::COND_B;
10436    break;
10437  case ISD::SMULO:
10438    BaseOp = X86ISD::SMUL;
10439    Cond = X86::COND_O;
10440    break;
10441  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10442    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10443                                 MVT::i32);
10444    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10445
10446    SDValue SetCC =
10447      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10448                  DAG.getConstant(X86::COND_O, MVT::i32),
10449                  SDValue(Sum.getNode(), 2));
10450
10451    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10452  }
10453  }
10454
10455  // Also sets EFLAGS.
10456  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10457  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10458
10459  SDValue SetCC =
10460    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10461                DAG.getConstant(Cond, MVT::i32),
10462                SDValue(Sum.getNode(), 1));
10463
10464  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10465}
10466
10467SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10468                                                  SelectionDAG &DAG) const {
10469  DebugLoc dl = Op.getDebugLoc();
10470  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10471  EVT VT = Op.getValueType();
10472
10473  if (!Subtarget->hasSSE2() || !VT.isVector())
10474    return SDValue();
10475
10476  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10477                      ExtraVT.getScalarType().getSizeInBits();
10478  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10479
10480  switch (VT.getSimpleVT().SimpleTy) {
10481    default: return SDValue();
10482    case MVT::v8i32:
10483    case MVT::v16i16:
10484      if (!Subtarget->hasAVX())
10485        return SDValue();
10486      if (!Subtarget->hasAVX2()) {
10487        // needs to be split
10488        int NumElems = VT.getVectorNumElements();
10489        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10490        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10491
10492        // Extract the LHS vectors
10493        SDValue LHS = Op.getOperand(0);
10494        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10495        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10496
10497        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10498        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10499
10500        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10501        int ExtraNumElems = ExtraVT.getVectorNumElements();
10502        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10503                                   ExtraNumElems/2);
10504        SDValue Extra = DAG.getValueType(ExtraVT);
10505
10506        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10507        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10508
10509        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10510      }
10511      // fall through
10512    case MVT::v4i32:
10513    case MVT::v8i16: {
10514      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10515                                         Op.getOperand(0), ShAmt, DAG);
10516      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10517    }
10518  }
10519}
10520
10521
10522SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10523  DebugLoc dl = Op.getDebugLoc();
10524
10525  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10526  // There isn't any reason to disable it if the target processor supports it.
10527  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10528    SDValue Chain = Op.getOperand(0);
10529    SDValue Zero = DAG.getConstant(0, MVT::i32);
10530    SDValue Ops[] = {
10531      DAG.getRegister(X86::ESP, MVT::i32), // Base
10532      DAG.getTargetConstant(1, MVT::i8),   // Scale
10533      DAG.getRegister(0, MVT::i32),        // Index
10534      DAG.getTargetConstant(0, MVT::i32),  // Disp
10535      DAG.getRegister(0, MVT::i32),        // Segment.
10536      Zero,
10537      Chain
10538    };
10539    SDNode *Res =
10540      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10541                          array_lengthof(Ops));
10542    return SDValue(Res, 0);
10543  }
10544
10545  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10546  if (!isDev)
10547    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10548
10549  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10550  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10551  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10552  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10553
10554  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10555  if (!Op1 && !Op2 && !Op3 && Op4)
10556    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10557
10558  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10559  if (Op1 && !Op2 && !Op3 && !Op4)
10560    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10561
10562  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10563  //           (MFENCE)>;
10564  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10565}
10566
10567SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10568                                             SelectionDAG &DAG) const {
10569  DebugLoc dl = Op.getDebugLoc();
10570  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10571    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10572  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10573    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10574
10575  // The only fence that needs an instruction is a sequentially-consistent
10576  // cross-thread fence.
10577  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10578    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10579    // no-sse2). There isn't any reason to disable it if the target processor
10580    // supports it.
10581    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10582      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10583
10584    SDValue Chain = Op.getOperand(0);
10585    SDValue Zero = DAG.getConstant(0, MVT::i32);
10586    SDValue Ops[] = {
10587      DAG.getRegister(X86::ESP, MVT::i32), // Base
10588      DAG.getTargetConstant(1, MVT::i8),   // Scale
10589      DAG.getRegister(0, MVT::i32),        // Index
10590      DAG.getTargetConstant(0, MVT::i32),  // Disp
10591      DAG.getRegister(0, MVT::i32),        // Segment.
10592      Zero,
10593      Chain
10594    };
10595    SDNode *Res =
10596      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10597                         array_lengthof(Ops));
10598    return SDValue(Res, 0);
10599  }
10600
10601  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10602  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10603}
10604
10605
10606SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10607  EVT T = Op.getValueType();
10608  DebugLoc DL = Op.getDebugLoc();
10609  unsigned Reg = 0;
10610  unsigned size = 0;
10611  switch(T.getSimpleVT().SimpleTy) {
10612  default: llvm_unreachable("Invalid value type!");
10613  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10614  case MVT::i16: Reg = X86::AX;  size = 2; break;
10615  case MVT::i32: Reg = X86::EAX; size = 4; break;
10616  case MVT::i64:
10617    assert(Subtarget->is64Bit() && "Node not type legal!");
10618    Reg = X86::RAX; size = 8;
10619    break;
10620  }
10621  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10622                                    Op.getOperand(2), SDValue());
10623  SDValue Ops[] = { cpIn.getValue(0),
10624                    Op.getOperand(1),
10625                    Op.getOperand(3),
10626                    DAG.getTargetConstant(size, MVT::i8),
10627                    cpIn.getValue(1) };
10628  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10629  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10630  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10631                                           Ops, 5, T, MMO);
10632  SDValue cpOut =
10633    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10634  return cpOut;
10635}
10636
10637SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10638                                                 SelectionDAG &DAG) const {
10639  assert(Subtarget->is64Bit() && "Result not type legalized?");
10640  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10641  SDValue TheChain = Op.getOperand(0);
10642  DebugLoc dl = Op.getDebugLoc();
10643  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10644  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10645  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10646                                   rax.getValue(2));
10647  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10648                            DAG.getConstant(32, MVT::i8));
10649  SDValue Ops[] = {
10650    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10651    rdx.getValue(1)
10652  };
10653  return DAG.getMergeValues(Ops, 2, dl);
10654}
10655
10656SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10657                                            SelectionDAG &DAG) const {
10658  EVT SrcVT = Op.getOperand(0).getValueType();
10659  EVT DstVT = Op.getValueType();
10660  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10661         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10662  assert((DstVT == MVT::i64 ||
10663          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10664         "Unexpected custom BITCAST");
10665  // i64 <=> MMX conversions are Legal.
10666  if (SrcVT==MVT::i64 && DstVT.isVector())
10667    return Op;
10668  if (DstVT==MVT::i64 && SrcVT.isVector())
10669    return Op;
10670  // MMX <=> MMX conversions are Legal.
10671  if (SrcVT.isVector() && DstVT.isVector())
10672    return Op;
10673  // All other conversions need to be expanded.
10674  return SDValue();
10675}
10676
10677SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10678  SDNode *Node = Op.getNode();
10679  DebugLoc dl = Node->getDebugLoc();
10680  EVT T = Node->getValueType(0);
10681  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10682                              DAG.getConstant(0, T), Node->getOperand(2));
10683  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10684                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10685                       Node->getOperand(0),
10686                       Node->getOperand(1), negOp,
10687                       cast<AtomicSDNode>(Node)->getSrcValue(),
10688                       cast<AtomicSDNode>(Node)->getAlignment(),
10689                       cast<AtomicSDNode>(Node)->getOrdering(),
10690                       cast<AtomicSDNode>(Node)->getSynchScope());
10691}
10692
10693static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10694  SDNode *Node = Op.getNode();
10695  DebugLoc dl = Node->getDebugLoc();
10696  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10697
10698  // Convert seq_cst store -> xchg
10699  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10700  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10701  //        (The only way to get a 16-byte store is cmpxchg16b)
10702  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10703  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10704      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10705    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10706                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10707                                 Node->getOperand(0),
10708                                 Node->getOperand(1), Node->getOperand(2),
10709                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10710                                 cast<AtomicSDNode>(Node)->getOrdering(),
10711                                 cast<AtomicSDNode>(Node)->getSynchScope());
10712    return Swap.getValue(1);
10713  }
10714  // Other atomic stores have a simple pattern.
10715  return Op;
10716}
10717
10718static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10719  EVT VT = Op.getNode()->getValueType(0);
10720
10721  // Let legalize expand this if it isn't a legal type yet.
10722  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10723    return SDValue();
10724
10725  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10726
10727  unsigned Opc;
10728  bool ExtraOp = false;
10729  switch (Op.getOpcode()) {
10730  default: llvm_unreachable("Invalid code");
10731  case ISD::ADDC: Opc = X86ISD::ADD; break;
10732  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10733  case ISD::SUBC: Opc = X86ISD::SUB; break;
10734  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10735  }
10736
10737  if (!ExtraOp)
10738    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10739                       Op.getOperand(1));
10740  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10741                     Op.getOperand(1), Op.getOperand(2));
10742}
10743
10744/// LowerOperation - Provide custom lowering hooks for some operations.
10745///
10746SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10747  switch (Op.getOpcode()) {
10748  default: llvm_unreachable("Should not custom lower this!");
10749  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10750  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10751  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10752  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10753  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10754  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10755  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10756  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10757  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10758  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10759  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10760  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10761  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10762  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10763  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10764  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10765  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10766  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10767  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10768  case ISD::SHL_PARTS:
10769  case ISD::SRA_PARTS:
10770  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10771  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10772  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10773  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10774  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10775  case ISD::FABS:               return LowerFABS(Op, DAG);
10776  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10777  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10778  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10779  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10780  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10781  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10782  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10783  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10784  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10785  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10786  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10787  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10788  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10789  case ISD::FRAME_TO_ARGS_OFFSET:
10790                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10791  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10792  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10793  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10794  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10795  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10796  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10797  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10798  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10799  case ISD::MUL:                return LowerMUL(Op, DAG);
10800  case ISD::SRA:
10801  case ISD::SRL:
10802  case ISD::SHL:                return LowerShift(Op, DAG);
10803  case ISD::SADDO:
10804  case ISD::UADDO:
10805  case ISD::SSUBO:
10806  case ISD::USUBO:
10807  case ISD::SMULO:
10808  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10809  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10810  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10811  case ISD::ADDC:
10812  case ISD::ADDE:
10813  case ISD::SUBC:
10814  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10815  case ISD::ADD:                return LowerADD(Op, DAG);
10816  case ISD::SUB:                return LowerSUB(Op, DAG);
10817  }
10818}
10819
10820static void ReplaceATOMIC_LOAD(SDNode *Node,
10821                                  SmallVectorImpl<SDValue> &Results,
10822                                  SelectionDAG &DAG) {
10823  DebugLoc dl = Node->getDebugLoc();
10824  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10825
10826  // Convert wide load -> cmpxchg8b/cmpxchg16b
10827  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10828  //        (The only way to get a 16-byte load is cmpxchg16b)
10829  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10830  SDValue Zero = DAG.getConstant(0, VT);
10831  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10832                               Node->getOperand(0),
10833                               Node->getOperand(1), Zero, Zero,
10834                               cast<AtomicSDNode>(Node)->getMemOperand(),
10835                               cast<AtomicSDNode>(Node)->getOrdering(),
10836                               cast<AtomicSDNode>(Node)->getSynchScope());
10837  Results.push_back(Swap.getValue(0));
10838  Results.push_back(Swap.getValue(1));
10839}
10840
10841void X86TargetLowering::
10842ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10843                        SelectionDAG &DAG, unsigned NewOp) const {
10844  DebugLoc dl = Node->getDebugLoc();
10845  assert (Node->getValueType(0) == MVT::i64 &&
10846          "Only know how to expand i64 atomics");
10847
10848  SDValue Chain = Node->getOperand(0);
10849  SDValue In1 = Node->getOperand(1);
10850  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10851                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10852  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10853                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10854  SDValue Ops[] = { Chain, In1, In2L, In2H };
10855  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10856  SDValue Result =
10857    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10858                            cast<MemSDNode>(Node)->getMemOperand());
10859  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10860  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10861  Results.push_back(Result.getValue(2));
10862}
10863
10864/// ReplaceNodeResults - Replace a node with an illegal result type
10865/// with a new node built out of custom code.
10866void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10867                                           SmallVectorImpl<SDValue>&Results,
10868                                           SelectionDAG &DAG) const {
10869  DebugLoc dl = N->getDebugLoc();
10870  switch (N->getOpcode()) {
10871  default:
10872    llvm_unreachable("Do not know how to custom type legalize this operation!");
10873  case ISD::SIGN_EXTEND_INREG:
10874  case ISD::ADDC:
10875  case ISD::ADDE:
10876  case ISD::SUBC:
10877  case ISD::SUBE:
10878    // We don't want to expand or promote these.
10879    return;
10880  case ISD::FP_TO_SINT:
10881  case ISD::FP_TO_UINT: {
10882    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
10883
10884    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
10885      return;
10886
10887    std::pair<SDValue,SDValue> Vals =
10888        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
10889    SDValue FIST = Vals.first, StackSlot = Vals.second;
10890    if (FIST.getNode() != 0) {
10891      EVT VT = N->getValueType(0);
10892      // Return a load from the stack slot.
10893      if (StackSlot.getNode() != 0)
10894        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10895                                      MachinePointerInfo(),
10896                                      false, false, false, 0));
10897      else
10898        Results.push_back(FIST);
10899    }
10900    return;
10901  }
10902  case ISD::READCYCLECOUNTER: {
10903    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10904    SDValue TheChain = N->getOperand(0);
10905    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10906    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10907                                     rd.getValue(1));
10908    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10909                                     eax.getValue(2));
10910    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10911    SDValue Ops[] = { eax, edx };
10912    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10913    Results.push_back(edx.getValue(1));
10914    return;
10915  }
10916  case ISD::ATOMIC_CMP_SWAP: {
10917    EVT T = N->getValueType(0);
10918    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10919    bool Regs64bit = T == MVT::i128;
10920    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10921    SDValue cpInL, cpInH;
10922    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10923                        DAG.getConstant(0, HalfT));
10924    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10925                        DAG.getConstant(1, HalfT));
10926    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10927                             Regs64bit ? X86::RAX : X86::EAX,
10928                             cpInL, SDValue());
10929    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10930                             Regs64bit ? X86::RDX : X86::EDX,
10931                             cpInH, cpInL.getValue(1));
10932    SDValue swapInL, swapInH;
10933    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10934                          DAG.getConstant(0, HalfT));
10935    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10936                          DAG.getConstant(1, HalfT));
10937    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10938                               Regs64bit ? X86::RBX : X86::EBX,
10939                               swapInL, cpInH.getValue(1));
10940    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10941                               Regs64bit ? X86::RCX : X86::ECX,
10942                               swapInH, swapInL.getValue(1));
10943    SDValue Ops[] = { swapInH.getValue(0),
10944                      N->getOperand(1),
10945                      swapInH.getValue(1) };
10946    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10947    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10948    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10949                                  X86ISD::LCMPXCHG8_DAG;
10950    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10951                                             Ops, 3, T, MMO);
10952    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10953                                        Regs64bit ? X86::RAX : X86::EAX,
10954                                        HalfT, Result.getValue(1));
10955    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10956                                        Regs64bit ? X86::RDX : X86::EDX,
10957                                        HalfT, cpOutL.getValue(2));
10958    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10959    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10960    Results.push_back(cpOutH.getValue(1));
10961    return;
10962  }
10963  case ISD::ATOMIC_LOAD_ADD:
10964    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10965    return;
10966  case ISD::ATOMIC_LOAD_AND:
10967    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10968    return;
10969  case ISD::ATOMIC_LOAD_NAND:
10970    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10971    return;
10972  case ISD::ATOMIC_LOAD_OR:
10973    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10974    return;
10975  case ISD::ATOMIC_LOAD_SUB:
10976    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10977    return;
10978  case ISD::ATOMIC_LOAD_XOR:
10979    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10980    return;
10981  case ISD::ATOMIC_SWAP:
10982    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10983    return;
10984  case ISD::ATOMIC_LOAD:
10985    ReplaceATOMIC_LOAD(N, Results, DAG);
10986  }
10987}
10988
10989const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10990  switch (Opcode) {
10991  default: return NULL;
10992  case X86ISD::BSF:                return "X86ISD::BSF";
10993  case X86ISD::BSR:                return "X86ISD::BSR";
10994  case X86ISD::SHLD:               return "X86ISD::SHLD";
10995  case X86ISD::SHRD:               return "X86ISD::SHRD";
10996  case X86ISD::FAND:               return "X86ISD::FAND";
10997  case X86ISD::FOR:                return "X86ISD::FOR";
10998  case X86ISD::FXOR:               return "X86ISD::FXOR";
10999  case X86ISD::FSRL:               return "X86ISD::FSRL";
11000  case X86ISD::FILD:               return "X86ISD::FILD";
11001  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11002  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11003  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11004  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11005  case X86ISD::FLD:                return "X86ISD::FLD";
11006  case X86ISD::FST:                return "X86ISD::FST";
11007  case X86ISD::CALL:               return "X86ISD::CALL";
11008  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11009  case X86ISD::BT:                 return "X86ISD::BT";
11010  case X86ISD::CMP:                return "X86ISD::CMP";
11011  case X86ISD::COMI:               return "X86ISD::COMI";
11012  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11013  case X86ISD::SETCC:              return "X86ISD::SETCC";
11014  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11015  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11016  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11017  case X86ISD::CMOV:               return "X86ISD::CMOV";
11018  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11019  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11020  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11021  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11022  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11023  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11024  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11025  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11026  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11027  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11028  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11029  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11030  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11031  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11032  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11033  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11034  case X86ISD::HADD:               return "X86ISD::HADD";
11035  case X86ISD::HSUB:               return "X86ISD::HSUB";
11036  case X86ISD::FHADD:              return "X86ISD::FHADD";
11037  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11038  case X86ISD::FMAX:               return "X86ISD::FMAX";
11039  case X86ISD::FMIN:               return "X86ISD::FMIN";
11040  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11041  case X86ISD::FRCP:               return "X86ISD::FRCP";
11042  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11043  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11044  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11045  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11046  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11047  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11048  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11049  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11050  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11051  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11052  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11053  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11054  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11055  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11056  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11057  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11058  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11059  case X86ISD::VSHL:               return "X86ISD::VSHL";
11060  case X86ISD::VSRL:               return "X86ISD::VSRL";
11061  case X86ISD::VSRA:               return "X86ISD::VSRA";
11062  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11063  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11064  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11065  case X86ISD::CMPP:               return "X86ISD::CMPP";
11066  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11067  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11068  case X86ISD::ADD:                return "X86ISD::ADD";
11069  case X86ISD::SUB:                return "X86ISD::SUB";
11070  case X86ISD::ADC:                return "X86ISD::ADC";
11071  case X86ISD::SBB:                return "X86ISD::SBB";
11072  case X86ISD::SMUL:               return "X86ISD::SMUL";
11073  case X86ISD::UMUL:               return "X86ISD::UMUL";
11074  case X86ISD::INC:                return "X86ISD::INC";
11075  case X86ISD::DEC:                return "X86ISD::DEC";
11076  case X86ISD::OR:                 return "X86ISD::OR";
11077  case X86ISD::XOR:                return "X86ISD::XOR";
11078  case X86ISD::AND:                return "X86ISD::AND";
11079  case X86ISD::ANDN:               return "X86ISD::ANDN";
11080  case X86ISD::BLSI:               return "X86ISD::BLSI";
11081  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11082  case X86ISD::BLSR:               return "X86ISD::BLSR";
11083  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11084  case X86ISD::PTEST:              return "X86ISD::PTEST";
11085  case X86ISD::TESTP:              return "X86ISD::TESTP";
11086  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11087  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11088  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11089  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11090  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11091  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11092  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11093  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11094  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11095  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11096  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11097  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11098  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11099  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11100  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11101  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11102  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11103  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11104  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11105  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11106  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11107  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11108  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11109  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11110  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11111  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11112  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11113  }
11114}
11115
11116// isLegalAddressingMode - Return true if the addressing mode represented
11117// by AM is legal for this target, for a load/store of the specified type.
11118bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11119                                              Type *Ty) const {
11120  // X86 supports extremely general addressing modes.
11121  CodeModel::Model M = getTargetMachine().getCodeModel();
11122  Reloc::Model R = getTargetMachine().getRelocationModel();
11123
11124  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11125  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11126    return false;
11127
11128  if (AM.BaseGV) {
11129    unsigned GVFlags =
11130      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11131
11132    // If a reference to this global requires an extra load, we can't fold it.
11133    if (isGlobalStubReference(GVFlags))
11134      return false;
11135
11136    // If BaseGV requires a register for the PIC base, we cannot also have a
11137    // BaseReg specified.
11138    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11139      return false;
11140
11141    // If lower 4G is not available, then we must use rip-relative addressing.
11142    if ((M != CodeModel::Small || R != Reloc::Static) &&
11143        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11144      return false;
11145  }
11146
11147  switch (AM.Scale) {
11148  case 0:
11149  case 1:
11150  case 2:
11151  case 4:
11152  case 8:
11153    // These scales always work.
11154    break;
11155  case 3:
11156  case 5:
11157  case 9:
11158    // These scales are formed with basereg+scalereg.  Only accept if there is
11159    // no basereg yet.
11160    if (AM.HasBaseReg)
11161      return false;
11162    break;
11163  default:  // Other stuff never works.
11164    return false;
11165  }
11166
11167  return true;
11168}
11169
11170
11171bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11172  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11173    return false;
11174  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11175  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11176  if (NumBits1 <= NumBits2)
11177    return false;
11178  return true;
11179}
11180
11181bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11182  if (!VT1.isInteger() || !VT2.isInteger())
11183    return false;
11184  unsigned NumBits1 = VT1.getSizeInBits();
11185  unsigned NumBits2 = VT2.getSizeInBits();
11186  if (NumBits1 <= NumBits2)
11187    return false;
11188  return true;
11189}
11190
11191bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11192  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11193  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11194}
11195
11196bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11197  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11198  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11199}
11200
11201bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11202  // i16 instructions are longer (0x66 prefix) and potentially slower.
11203  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11204}
11205
11206/// isShuffleMaskLegal - Targets can use this to indicate that they only
11207/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11208/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11209/// are assumed to be legal.
11210bool
11211X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11212                                      EVT VT) const {
11213  // Very little shuffling can be done for 64-bit vectors right now.
11214  if (VT.getSizeInBits() == 64)
11215    return false;
11216
11217  // FIXME: pshufb, blends, shifts.
11218  return (VT.getVectorNumElements() == 2 ||
11219          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11220          isMOVLMask(M, VT) ||
11221          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11222          isPSHUFDMask(M, VT) ||
11223          isPSHUFHWMask(M, VT) ||
11224          isPSHUFLWMask(M, VT) ||
11225          isPALIGNRMask(M, VT, Subtarget) ||
11226          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11227          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11228          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11229          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11230}
11231
11232bool
11233X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11234                                          EVT VT) const {
11235  unsigned NumElts = VT.getVectorNumElements();
11236  // FIXME: This collection of masks seems suspect.
11237  if (NumElts == 2)
11238    return true;
11239  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11240    return (isMOVLMask(Mask, VT)  ||
11241            isCommutedMOVLMask(Mask, VT, true) ||
11242            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11243            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11244  }
11245  return false;
11246}
11247
11248//===----------------------------------------------------------------------===//
11249//                           X86 Scheduler Hooks
11250//===----------------------------------------------------------------------===//
11251
11252// private utility function
11253MachineBasicBlock *
11254X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11255                                                       MachineBasicBlock *MBB,
11256                                                       unsigned regOpc,
11257                                                       unsigned immOpc,
11258                                                       unsigned LoadOpc,
11259                                                       unsigned CXchgOpc,
11260                                                       unsigned notOpc,
11261                                                       unsigned EAXreg,
11262                                                 const TargetRegisterClass *RC,
11263                                                       bool invSrc) const {
11264  // For the atomic bitwise operator, we generate
11265  //   thisMBB:
11266  //   newMBB:
11267  //     ld  t1 = [bitinstr.addr]
11268  //     op  t2 = t1, [bitinstr.val]
11269  //     mov EAX = t1
11270  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11271  //     bz  newMBB
11272  //     fallthrough -->nextMBB
11273  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11274  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11275  MachineFunction::iterator MBBIter = MBB;
11276  ++MBBIter;
11277
11278  /// First build the CFG
11279  MachineFunction *F = MBB->getParent();
11280  MachineBasicBlock *thisMBB = MBB;
11281  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11282  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11283  F->insert(MBBIter, newMBB);
11284  F->insert(MBBIter, nextMBB);
11285
11286  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11287  nextMBB->splice(nextMBB->begin(), thisMBB,
11288                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11289                  thisMBB->end());
11290  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11291
11292  // Update thisMBB to fall through to newMBB
11293  thisMBB->addSuccessor(newMBB);
11294
11295  // newMBB jumps to itself and fall through to nextMBB
11296  newMBB->addSuccessor(nextMBB);
11297  newMBB->addSuccessor(newMBB);
11298
11299  // Insert instructions into newMBB based on incoming instruction
11300  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11301         "unexpected number of operands");
11302  DebugLoc dl = bInstr->getDebugLoc();
11303  MachineOperand& destOper = bInstr->getOperand(0);
11304  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11305  int numArgs = bInstr->getNumOperands() - 1;
11306  for (int i=0; i < numArgs; ++i)
11307    argOpers[i] = &bInstr->getOperand(i+1);
11308
11309  // x86 address has 4 operands: base, index, scale, and displacement
11310  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11311  int valArgIndx = lastAddrIndx + 1;
11312
11313  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11314  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11315  for (int i=0; i <= lastAddrIndx; ++i)
11316    (*MIB).addOperand(*argOpers[i]);
11317
11318  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11319  if (invSrc) {
11320    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11321  }
11322  else
11323    tt = t1;
11324
11325  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11326  assert((argOpers[valArgIndx]->isReg() ||
11327          argOpers[valArgIndx]->isImm()) &&
11328         "invalid operand");
11329  if (argOpers[valArgIndx]->isReg())
11330    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11331  else
11332    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11333  MIB.addReg(tt);
11334  (*MIB).addOperand(*argOpers[valArgIndx]);
11335
11336  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11337  MIB.addReg(t1);
11338
11339  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11340  for (int i=0; i <= lastAddrIndx; ++i)
11341    (*MIB).addOperand(*argOpers[i]);
11342  MIB.addReg(t2);
11343  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11344  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11345                    bInstr->memoperands_end());
11346
11347  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11348  MIB.addReg(EAXreg);
11349
11350  // insert branch
11351  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11352
11353  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11354  return nextMBB;
11355}
11356
11357// private utility function:  64 bit atomics on 32 bit host.
11358MachineBasicBlock *
11359X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11360                                                       MachineBasicBlock *MBB,
11361                                                       unsigned regOpcL,
11362                                                       unsigned regOpcH,
11363                                                       unsigned immOpcL,
11364                                                       unsigned immOpcH,
11365                                                       bool invSrc) const {
11366  // For the atomic bitwise operator, we generate
11367  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11368  //     ld t1,t2 = [bitinstr.addr]
11369  //   newMBB:
11370  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11371  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11372  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11373  //     mov ECX, EBX <- t5, t6
11374  //     mov EAX, EDX <- t1, t2
11375  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11376  //     mov t3, t4 <- EAX, EDX
11377  //     bz  newMBB
11378  //     result in out1, out2
11379  //     fallthrough -->nextMBB
11380
11381  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11382  const unsigned LoadOpc = X86::MOV32rm;
11383  const unsigned NotOpc = X86::NOT32r;
11384  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11385  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11386  MachineFunction::iterator MBBIter = MBB;
11387  ++MBBIter;
11388
11389  /// First build the CFG
11390  MachineFunction *F = MBB->getParent();
11391  MachineBasicBlock *thisMBB = MBB;
11392  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11393  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11394  F->insert(MBBIter, newMBB);
11395  F->insert(MBBIter, nextMBB);
11396
11397  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11398  nextMBB->splice(nextMBB->begin(), thisMBB,
11399                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11400                  thisMBB->end());
11401  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11402
11403  // Update thisMBB to fall through to newMBB
11404  thisMBB->addSuccessor(newMBB);
11405
11406  // newMBB jumps to itself and fall through to nextMBB
11407  newMBB->addSuccessor(nextMBB);
11408  newMBB->addSuccessor(newMBB);
11409
11410  DebugLoc dl = bInstr->getDebugLoc();
11411  // Insert instructions into newMBB based on incoming instruction
11412  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11413  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11414         "unexpected number of operands");
11415  MachineOperand& dest1Oper = bInstr->getOperand(0);
11416  MachineOperand& dest2Oper = bInstr->getOperand(1);
11417  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11418  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11419    argOpers[i] = &bInstr->getOperand(i+2);
11420
11421    // We use some of the operands multiple times, so conservatively just
11422    // clear any kill flags that might be present.
11423    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11424      argOpers[i]->setIsKill(false);
11425  }
11426
11427  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11428  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11429
11430  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11431  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11432  for (int i=0; i <= lastAddrIndx; ++i)
11433    (*MIB).addOperand(*argOpers[i]);
11434  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11435  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11436  // add 4 to displacement.
11437  for (int i=0; i <= lastAddrIndx-2; ++i)
11438    (*MIB).addOperand(*argOpers[i]);
11439  MachineOperand newOp3 = *(argOpers[3]);
11440  if (newOp3.isImm())
11441    newOp3.setImm(newOp3.getImm()+4);
11442  else
11443    newOp3.setOffset(newOp3.getOffset()+4);
11444  (*MIB).addOperand(newOp3);
11445  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11446
11447  // t3/4 are defined later, at the bottom of the loop
11448  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11449  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11450  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11451    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11452  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11453    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11454
11455  // The subsequent operations should be using the destination registers of
11456  //the PHI instructions.
11457  if (invSrc) {
11458    t1 = F->getRegInfo().createVirtualRegister(RC);
11459    t2 = F->getRegInfo().createVirtualRegister(RC);
11460    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11461    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11462  } else {
11463    t1 = dest1Oper.getReg();
11464    t2 = dest2Oper.getReg();
11465  }
11466
11467  int valArgIndx = lastAddrIndx + 1;
11468  assert((argOpers[valArgIndx]->isReg() ||
11469          argOpers[valArgIndx]->isImm()) &&
11470         "invalid operand");
11471  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11472  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11473  if (argOpers[valArgIndx]->isReg())
11474    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11475  else
11476    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11477  if (regOpcL != X86::MOV32rr)
11478    MIB.addReg(t1);
11479  (*MIB).addOperand(*argOpers[valArgIndx]);
11480  assert(argOpers[valArgIndx + 1]->isReg() ==
11481         argOpers[valArgIndx]->isReg());
11482  assert(argOpers[valArgIndx + 1]->isImm() ==
11483         argOpers[valArgIndx]->isImm());
11484  if (argOpers[valArgIndx + 1]->isReg())
11485    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11486  else
11487    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11488  if (regOpcH != X86::MOV32rr)
11489    MIB.addReg(t2);
11490  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11491
11492  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11493  MIB.addReg(t1);
11494  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11495  MIB.addReg(t2);
11496
11497  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11498  MIB.addReg(t5);
11499  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11500  MIB.addReg(t6);
11501
11502  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11503  for (int i=0; i <= lastAddrIndx; ++i)
11504    (*MIB).addOperand(*argOpers[i]);
11505
11506  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11507  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11508                    bInstr->memoperands_end());
11509
11510  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11511  MIB.addReg(X86::EAX);
11512  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11513  MIB.addReg(X86::EDX);
11514
11515  // insert branch
11516  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11517
11518  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11519  return nextMBB;
11520}
11521
11522// private utility function
11523MachineBasicBlock *
11524X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11525                                                      MachineBasicBlock *MBB,
11526                                                      unsigned cmovOpc) const {
11527  // For the atomic min/max operator, we generate
11528  //   thisMBB:
11529  //   newMBB:
11530  //     ld t1 = [min/max.addr]
11531  //     mov t2 = [min/max.val]
11532  //     cmp  t1, t2
11533  //     cmov[cond] t2 = t1
11534  //     mov EAX = t1
11535  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11536  //     bz   newMBB
11537  //     fallthrough -->nextMBB
11538  //
11539  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11540  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11541  MachineFunction::iterator MBBIter = MBB;
11542  ++MBBIter;
11543
11544  /// First build the CFG
11545  MachineFunction *F = MBB->getParent();
11546  MachineBasicBlock *thisMBB = MBB;
11547  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11548  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11549  F->insert(MBBIter, newMBB);
11550  F->insert(MBBIter, nextMBB);
11551
11552  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11553  nextMBB->splice(nextMBB->begin(), thisMBB,
11554                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11555                  thisMBB->end());
11556  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11557
11558  // Update thisMBB to fall through to newMBB
11559  thisMBB->addSuccessor(newMBB);
11560
11561  // newMBB jumps to newMBB and fall through to nextMBB
11562  newMBB->addSuccessor(nextMBB);
11563  newMBB->addSuccessor(newMBB);
11564
11565  DebugLoc dl = mInstr->getDebugLoc();
11566  // Insert instructions into newMBB based on incoming instruction
11567  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11568         "unexpected number of operands");
11569  MachineOperand& destOper = mInstr->getOperand(0);
11570  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11571  int numArgs = mInstr->getNumOperands() - 1;
11572  for (int i=0; i < numArgs; ++i)
11573    argOpers[i] = &mInstr->getOperand(i+1);
11574
11575  // x86 address has 4 operands: base, index, scale, and displacement
11576  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11577  int valArgIndx = lastAddrIndx + 1;
11578
11579  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11580  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11581  for (int i=0; i <= lastAddrIndx; ++i)
11582    (*MIB).addOperand(*argOpers[i]);
11583
11584  // We only support register and immediate values
11585  assert((argOpers[valArgIndx]->isReg() ||
11586          argOpers[valArgIndx]->isImm()) &&
11587         "invalid operand");
11588
11589  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11590  if (argOpers[valArgIndx]->isReg())
11591    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11592  else
11593    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11594  (*MIB).addOperand(*argOpers[valArgIndx]);
11595
11596  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11597  MIB.addReg(t1);
11598
11599  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11600  MIB.addReg(t1);
11601  MIB.addReg(t2);
11602
11603  // Generate movc
11604  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11605  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11606  MIB.addReg(t2);
11607  MIB.addReg(t1);
11608
11609  // Cmp and exchange if none has modified the memory location
11610  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11611  for (int i=0; i <= lastAddrIndx; ++i)
11612    (*MIB).addOperand(*argOpers[i]);
11613  MIB.addReg(t3);
11614  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11615  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11616                    mInstr->memoperands_end());
11617
11618  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11619  MIB.addReg(X86::EAX);
11620
11621  // insert branch
11622  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11623
11624  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11625  return nextMBB;
11626}
11627
11628// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11629// or XMM0_V32I8 in AVX all of this code can be replaced with that
11630// in the .td file.
11631MachineBasicBlock *
11632X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11633                            unsigned numArgs, bool memArg) const {
11634  assert(Subtarget->hasSSE42() &&
11635         "Target must have SSE4.2 or AVX features enabled");
11636
11637  DebugLoc dl = MI->getDebugLoc();
11638  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11639  unsigned Opc;
11640  if (!Subtarget->hasAVX()) {
11641    if (memArg)
11642      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11643    else
11644      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11645  } else {
11646    if (memArg)
11647      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11648    else
11649      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11650  }
11651
11652  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11653  for (unsigned i = 0; i < numArgs; ++i) {
11654    MachineOperand &Op = MI->getOperand(i+1);
11655    if (!(Op.isReg() && Op.isImplicit()))
11656      MIB.addOperand(Op);
11657  }
11658  BuildMI(*BB, MI, dl,
11659    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11660             MI->getOperand(0).getReg())
11661    .addReg(X86::XMM0);
11662
11663  MI->eraseFromParent();
11664  return BB;
11665}
11666
11667MachineBasicBlock *
11668X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11669  DebugLoc dl = MI->getDebugLoc();
11670  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11671
11672  // Address into RAX/EAX, other two args into ECX, EDX.
11673  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11674  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11675  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11676  for (int i = 0; i < X86::AddrNumOperands; ++i)
11677    MIB.addOperand(MI->getOperand(i));
11678
11679  unsigned ValOps = X86::AddrNumOperands;
11680  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11681    .addReg(MI->getOperand(ValOps).getReg());
11682  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11683    .addReg(MI->getOperand(ValOps+1).getReg());
11684
11685  // The instruction doesn't actually take any operands though.
11686  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11687
11688  MI->eraseFromParent(); // The pseudo is gone now.
11689  return BB;
11690}
11691
11692MachineBasicBlock *
11693X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11694  DebugLoc dl = MI->getDebugLoc();
11695  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11696
11697  // First arg in ECX, the second in EAX.
11698  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11699    .addReg(MI->getOperand(0).getReg());
11700  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11701    .addReg(MI->getOperand(1).getReg());
11702
11703  // The instruction doesn't actually take any operands though.
11704  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11705
11706  MI->eraseFromParent(); // The pseudo is gone now.
11707  return BB;
11708}
11709
11710MachineBasicBlock *
11711X86TargetLowering::EmitVAARG64WithCustomInserter(
11712                   MachineInstr *MI,
11713                   MachineBasicBlock *MBB) const {
11714  // Emit va_arg instruction on X86-64.
11715
11716  // Operands to this pseudo-instruction:
11717  // 0  ) Output        : destination address (reg)
11718  // 1-5) Input         : va_list address (addr, i64mem)
11719  // 6  ) ArgSize       : Size (in bytes) of vararg type
11720  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11721  // 8  ) Align         : Alignment of type
11722  // 9  ) EFLAGS (implicit-def)
11723
11724  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11725  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11726
11727  unsigned DestReg = MI->getOperand(0).getReg();
11728  MachineOperand &Base = MI->getOperand(1);
11729  MachineOperand &Scale = MI->getOperand(2);
11730  MachineOperand &Index = MI->getOperand(3);
11731  MachineOperand &Disp = MI->getOperand(4);
11732  MachineOperand &Segment = MI->getOperand(5);
11733  unsigned ArgSize = MI->getOperand(6).getImm();
11734  unsigned ArgMode = MI->getOperand(7).getImm();
11735  unsigned Align = MI->getOperand(8).getImm();
11736
11737  // Memory Reference
11738  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11739  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11740  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11741
11742  // Machine Information
11743  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11744  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11745  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11746  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11747  DebugLoc DL = MI->getDebugLoc();
11748
11749  // struct va_list {
11750  //   i32   gp_offset
11751  //   i32   fp_offset
11752  //   i64   overflow_area (address)
11753  //   i64   reg_save_area (address)
11754  // }
11755  // sizeof(va_list) = 24
11756  // alignment(va_list) = 8
11757
11758  unsigned TotalNumIntRegs = 6;
11759  unsigned TotalNumXMMRegs = 8;
11760  bool UseGPOffset = (ArgMode == 1);
11761  bool UseFPOffset = (ArgMode == 2);
11762  unsigned MaxOffset = TotalNumIntRegs * 8 +
11763                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11764
11765  /* Align ArgSize to a multiple of 8 */
11766  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11767  bool NeedsAlign = (Align > 8);
11768
11769  MachineBasicBlock *thisMBB = MBB;
11770  MachineBasicBlock *overflowMBB;
11771  MachineBasicBlock *offsetMBB;
11772  MachineBasicBlock *endMBB;
11773
11774  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11775  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11776  unsigned OffsetReg = 0;
11777
11778  if (!UseGPOffset && !UseFPOffset) {
11779    // If we only pull from the overflow region, we don't create a branch.
11780    // We don't need to alter control flow.
11781    OffsetDestReg = 0; // unused
11782    OverflowDestReg = DestReg;
11783
11784    offsetMBB = NULL;
11785    overflowMBB = thisMBB;
11786    endMBB = thisMBB;
11787  } else {
11788    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11789    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11790    // If not, pull from overflow_area. (branch to overflowMBB)
11791    //
11792    //       thisMBB
11793    //         |     .
11794    //         |        .
11795    //     offsetMBB   overflowMBB
11796    //         |        .
11797    //         |     .
11798    //        endMBB
11799
11800    // Registers for the PHI in endMBB
11801    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11802    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11803
11804    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11805    MachineFunction *MF = MBB->getParent();
11806    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11807    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11808    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11809
11810    MachineFunction::iterator MBBIter = MBB;
11811    ++MBBIter;
11812
11813    // Insert the new basic blocks
11814    MF->insert(MBBIter, offsetMBB);
11815    MF->insert(MBBIter, overflowMBB);
11816    MF->insert(MBBIter, endMBB);
11817
11818    // Transfer the remainder of MBB and its successor edges to endMBB.
11819    endMBB->splice(endMBB->begin(), thisMBB,
11820                    llvm::next(MachineBasicBlock::iterator(MI)),
11821                    thisMBB->end());
11822    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11823
11824    // Make offsetMBB and overflowMBB successors of thisMBB
11825    thisMBB->addSuccessor(offsetMBB);
11826    thisMBB->addSuccessor(overflowMBB);
11827
11828    // endMBB is a successor of both offsetMBB and overflowMBB
11829    offsetMBB->addSuccessor(endMBB);
11830    overflowMBB->addSuccessor(endMBB);
11831
11832    // Load the offset value into a register
11833    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11834    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11835      .addOperand(Base)
11836      .addOperand(Scale)
11837      .addOperand(Index)
11838      .addDisp(Disp, UseFPOffset ? 4 : 0)
11839      .addOperand(Segment)
11840      .setMemRefs(MMOBegin, MMOEnd);
11841
11842    // Check if there is enough room left to pull this argument.
11843    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11844      .addReg(OffsetReg)
11845      .addImm(MaxOffset + 8 - ArgSizeA8);
11846
11847    // Branch to "overflowMBB" if offset >= max
11848    // Fall through to "offsetMBB" otherwise
11849    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11850      .addMBB(overflowMBB);
11851  }
11852
11853  // In offsetMBB, emit code to use the reg_save_area.
11854  if (offsetMBB) {
11855    assert(OffsetReg != 0);
11856
11857    // Read the reg_save_area address.
11858    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11859    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11860      .addOperand(Base)
11861      .addOperand(Scale)
11862      .addOperand(Index)
11863      .addDisp(Disp, 16)
11864      .addOperand(Segment)
11865      .setMemRefs(MMOBegin, MMOEnd);
11866
11867    // Zero-extend the offset
11868    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11869      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11870        .addImm(0)
11871        .addReg(OffsetReg)
11872        .addImm(X86::sub_32bit);
11873
11874    // Add the offset to the reg_save_area to get the final address.
11875    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11876      .addReg(OffsetReg64)
11877      .addReg(RegSaveReg);
11878
11879    // Compute the offset for the next argument
11880    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11881    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11882      .addReg(OffsetReg)
11883      .addImm(UseFPOffset ? 16 : 8);
11884
11885    // Store it back into the va_list.
11886    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11887      .addOperand(Base)
11888      .addOperand(Scale)
11889      .addOperand(Index)
11890      .addDisp(Disp, UseFPOffset ? 4 : 0)
11891      .addOperand(Segment)
11892      .addReg(NextOffsetReg)
11893      .setMemRefs(MMOBegin, MMOEnd);
11894
11895    // Jump to endMBB
11896    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11897      .addMBB(endMBB);
11898  }
11899
11900  //
11901  // Emit code to use overflow area
11902  //
11903
11904  // Load the overflow_area address into a register.
11905  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11906  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11907    .addOperand(Base)
11908    .addOperand(Scale)
11909    .addOperand(Index)
11910    .addDisp(Disp, 8)
11911    .addOperand(Segment)
11912    .setMemRefs(MMOBegin, MMOEnd);
11913
11914  // If we need to align it, do so. Otherwise, just copy the address
11915  // to OverflowDestReg.
11916  if (NeedsAlign) {
11917    // Align the overflow address
11918    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11919    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11920
11921    // aligned_addr = (addr + (align-1)) & ~(align-1)
11922    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11923      .addReg(OverflowAddrReg)
11924      .addImm(Align-1);
11925
11926    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11927      .addReg(TmpReg)
11928      .addImm(~(uint64_t)(Align-1));
11929  } else {
11930    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11931      .addReg(OverflowAddrReg);
11932  }
11933
11934  // Compute the next overflow address after this argument.
11935  // (the overflow address should be kept 8-byte aligned)
11936  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11937  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11938    .addReg(OverflowDestReg)
11939    .addImm(ArgSizeA8);
11940
11941  // Store the new overflow address.
11942  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11943    .addOperand(Base)
11944    .addOperand(Scale)
11945    .addOperand(Index)
11946    .addDisp(Disp, 8)
11947    .addOperand(Segment)
11948    .addReg(NextAddrReg)
11949    .setMemRefs(MMOBegin, MMOEnd);
11950
11951  // If we branched, emit the PHI to the front of endMBB.
11952  if (offsetMBB) {
11953    BuildMI(*endMBB, endMBB->begin(), DL,
11954            TII->get(X86::PHI), DestReg)
11955      .addReg(OffsetDestReg).addMBB(offsetMBB)
11956      .addReg(OverflowDestReg).addMBB(overflowMBB);
11957  }
11958
11959  // Erase the pseudo instruction
11960  MI->eraseFromParent();
11961
11962  return endMBB;
11963}
11964
11965MachineBasicBlock *
11966X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11967                                                 MachineInstr *MI,
11968                                                 MachineBasicBlock *MBB) const {
11969  // Emit code to save XMM registers to the stack. The ABI says that the
11970  // number of registers to save is given in %al, so it's theoretically
11971  // possible to do an indirect jump trick to avoid saving all of them,
11972  // however this code takes a simpler approach and just executes all
11973  // of the stores if %al is non-zero. It's less code, and it's probably
11974  // easier on the hardware branch predictor, and stores aren't all that
11975  // expensive anyway.
11976
11977  // Create the new basic blocks. One block contains all the XMM stores,
11978  // and one block is the final destination regardless of whether any
11979  // stores were performed.
11980  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11981  MachineFunction *F = MBB->getParent();
11982  MachineFunction::iterator MBBIter = MBB;
11983  ++MBBIter;
11984  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11985  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11986  F->insert(MBBIter, XMMSaveMBB);
11987  F->insert(MBBIter, EndMBB);
11988
11989  // Transfer the remainder of MBB and its successor edges to EndMBB.
11990  EndMBB->splice(EndMBB->begin(), MBB,
11991                 llvm::next(MachineBasicBlock::iterator(MI)),
11992                 MBB->end());
11993  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11994
11995  // The original block will now fall through to the XMM save block.
11996  MBB->addSuccessor(XMMSaveMBB);
11997  // The XMMSaveMBB will fall through to the end block.
11998  XMMSaveMBB->addSuccessor(EndMBB);
11999
12000  // Now add the instructions.
12001  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12002  DebugLoc DL = MI->getDebugLoc();
12003
12004  unsigned CountReg = MI->getOperand(0).getReg();
12005  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12006  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12007
12008  if (!Subtarget->isTargetWin64()) {
12009    // If %al is 0, branch around the XMM save block.
12010    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12011    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12012    MBB->addSuccessor(EndMBB);
12013  }
12014
12015  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12016  // In the XMM save block, save all the XMM argument registers.
12017  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12018    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12019    MachineMemOperand *MMO =
12020      F->getMachineMemOperand(
12021          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12022        MachineMemOperand::MOStore,
12023        /*Size=*/16, /*Align=*/16);
12024    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12025      .addFrameIndex(RegSaveFrameIndex)
12026      .addImm(/*Scale=*/1)
12027      .addReg(/*IndexReg=*/0)
12028      .addImm(/*Disp=*/Offset)
12029      .addReg(/*Segment=*/0)
12030      .addReg(MI->getOperand(i).getReg())
12031      .addMemOperand(MMO);
12032  }
12033
12034  MI->eraseFromParent();   // The pseudo instruction is gone now.
12035
12036  return EndMBB;
12037}
12038
12039// The EFLAGS operand of SelectItr might be missing a kill marker
12040// because there were multiple uses of EFLAGS, and ISel didn't know
12041// which to mark. Figure out whether SelectItr should have had a
12042// kill marker, and set it if it should. Returns the correct kill
12043// marker value.
12044static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12045                                     MachineBasicBlock* BB,
12046                                     const TargetRegisterInfo* TRI) {
12047  // Scan forward through BB for a use/def of EFLAGS.
12048  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12049  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12050    const MachineInstr& mi = *miI;
12051    if (mi.readsRegister(X86::EFLAGS))
12052      return false;
12053    if (mi.definesRegister(X86::EFLAGS))
12054      break; // Should have kill-flag - update below.
12055  }
12056
12057  // If we hit the end of the block, check whether EFLAGS is live into a
12058  // successor.
12059  if (miI == BB->end()) {
12060    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12061                                          sEnd = BB->succ_end();
12062         sItr != sEnd; ++sItr) {
12063      MachineBasicBlock* succ = *sItr;
12064      if (succ->isLiveIn(X86::EFLAGS))
12065        return false;
12066    }
12067  }
12068
12069  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12070  // out. SelectMI should have a kill flag on EFLAGS.
12071  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12072  return true;
12073}
12074
12075MachineBasicBlock *
12076X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12077                                     MachineBasicBlock *BB) const {
12078  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12079  DebugLoc DL = MI->getDebugLoc();
12080
12081  // To "insert" a SELECT_CC instruction, we actually have to insert the
12082  // diamond control-flow pattern.  The incoming instruction knows the
12083  // destination vreg to set, the condition code register to branch on, the
12084  // true/false values to select between, and a branch opcode to use.
12085  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12086  MachineFunction::iterator It = BB;
12087  ++It;
12088
12089  //  thisMBB:
12090  //  ...
12091  //   TrueVal = ...
12092  //   cmpTY ccX, r1, r2
12093  //   bCC copy1MBB
12094  //   fallthrough --> copy0MBB
12095  MachineBasicBlock *thisMBB = BB;
12096  MachineFunction *F = BB->getParent();
12097  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12098  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12099  F->insert(It, copy0MBB);
12100  F->insert(It, sinkMBB);
12101
12102  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12103  // live into the sink and copy blocks.
12104  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12105  if (!MI->killsRegister(X86::EFLAGS) &&
12106      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12107    copy0MBB->addLiveIn(X86::EFLAGS);
12108    sinkMBB->addLiveIn(X86::EFLAGS);
12109  }
12110
12111  // Transfer the remainder of BB and its successor edges to sinkMBB.
12112  sinkMBB->splice(sinkMBB->begin(), BB,
12113                  llvm::next(MachineBasicBlock::iterator(MI)),
12114                  BB->end());
12115  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12116
12117  // Add the true and fallthrough blocks as its successors.
12118  BB->addSuccessor(copy0MBB);
12119  BB->addSuccessor(sinkMBB);
12120
12121  // Create the conditional branch instruction.
12122  unsigned Opc =
12123    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12124  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12125
12126  //  copy0MBB:
12127  //   %FalseValue = ...
12128  //   # fallthrough to sinkMBB
12129  copy0MBB->addSuccessor(sinkMBB);
12130
12131  //  sinkMBB:
12132  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12133  //  ...
12134  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12135          TII->get(X86::PHI), MI->getOperand(0).getReg())
12136    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12137    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12138
12139  MI->eraseFromParent();   // The pseudo instruction is gone now.
12140  return sinkMBB;
12141}
12142
12143MachineBasicBlock *
12144X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12145                                        bool Is64Bit) const {
12146  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12147  DebugLoc DL = MI->getDebugLoc();
12148  MachineFunction *MF = BB->getParent();
12149  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12150
12151  assert(getTargetMachine().Options.EnableSegmentedStacks);
12152
12153  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12154  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12155
12156  // BB:
12157  //  ... [Till the alloca]
12158  // If stacklet is not large enough, jump to mallocMBB
12159  //
12160  // bumpMBB:
12161  //  Allocate by subtracting from RSP
12162  //  Jump to continueMBB
12163  //
12164  // mallocMBB:
12165  //  Allocate by call to runtime
12166  //
12167  // continueMBB:
12168  //  ...
12169  //  [rest of original BB]
12170  //
12171
12172  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12173  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12174  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12175
12176  MachineRegisterInfo &MRI = MF->getRegInfo();
12177  const TargetRegisterClass *AddrRegClass =
12178    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12179
12180  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12181    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12182    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12183    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12184    sizeVReg = MI->getOperand(1).getReg(),
12185    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12186
12187  MachineFunction::iterator MBBIter = BB;
12188  ++MBBIter;
12189
12190  MF->insert(MBBIter, bumpMBB);
12191  MF->insert(MBBIter, mallocMBB);
12192  MF->insert(MBBIter, continueMBB);
12193
12194  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12195                      (MachineBasicBlock::iterator(MI)), BB->end());
12196  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12197
12198  // Add code to the main basic block to check if the stack limit has been hit,
12199  // and if so, jump to mallocMBB otherwise to bumpMBB.
12200  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12201  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12202    .addReg(tmpSPVReg).addReg(sizeVReg);
12203  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12204    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12205    .addReg(SPLimitVReg);
12206  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12207
12208  // bumpMBB simply decreases the stack pointer, since we know the current
12209  // stacklet has enough space.
12210  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12211    .addReg(SPLimitVReg);
12212  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12213    .addReg(SPLimitVReg);
12214  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12215
12216  // Calls into a routine in libgcc to allocate more space from the heap.
12217  const uint32_t *RegMask =
12218    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12219  if (Is64Bit) {
12220    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12221      .addReg(sizeVReg);
12222    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12223      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12224      .addRegMask(RegMask)
12225      .addReg(X86::RAX, RegState::ImplicitDefine);
12226  } else {
12227    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12228      .addImm(12);
12229    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12230    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12231      .addExternalSymbol("__morestack_allocate_stack_space")
12232      .addRegMask(RegMask)
12233      .addReg(X86::EAX, RegState::ImplicitDefine);
12234  }
12235
12236  if (!Is64Bit)
12237    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12238      .addImm(16);
12239
12240  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12241    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12242  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12243
12244  // Set up the CFG correctly.
12245  BB->addSuccessor(bumpMBB);
12246  BB->addSuccessor(mallocMBB);
12247  mallocMBB->addSuccessor(continueMBB);
12248  bumpMBB->addSuccessor(continueMBB);
12249
12250  // Take care of the PHI nodes.
12251  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12252          MI->getOperand(0).getReg())
12253    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12254    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12255
12256  // Delete the original pseudo instruction.
12257  MI->eraseFromParent();
12258
12259  // And we're done.
12260  return continueMBB;
12261}
12262
12263MachineBasicBlock *
12264X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12265                                          MachineBasicBlock *BB) const {
12266  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12267  DebugLoc DL = MI->getDebugLoc();
12268
12269  assert(!Subtarget->isTargetEnvMacho());
12270
12271  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12272  // non-trivial part is impdef of ESP.
12273
12274  if (Subtarget->isTargetWin64()) {
12275    if (Subtarget->isTargetCygMing()) {
12276      // ___chkstk(Mingw64):
12277      // Clobbers R10, R11, RAX and EFLAGS.
12278      // Updates RSP.
12279      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12280        .addExternalSymbol("___chkstk")
12281        .addReg(X86::RAX, RegState::Implicit)
12282        .addReg(X86::RSP, RegState::Implicit)
12283        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12284        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12285        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12286    } else {
12287      // __chkstk(MSVCRT): does not update stack pointer.
12288      // Clobbers R10, R11 and EFLAGS.
12289      // FIXME: RAX(allocated size) might be reused and not killed.
12290      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12291        .addExternalSymbol("__chkstk")
12292        .addReg(X86::RAX, RegState::Implicit)
12293        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12294      // RAX has the offset to subtracted from RSP.
12295      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12296        .addReg(X86::RSP)
12297        .addReg(X86::RAX);
12298    }
12299  } else {
12300    const char *StackProbeSymbol =
12301      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12302
12303    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12304      .addExternalSymbol(StackProbeSymbol)
12305      .addReg(X86::EAX, RegState::Implicit)
12306      .addReg(X86::ESP, RegState::Implicit)
12307      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12308      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12309      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12310  }
12311
12312  MI->eraseFromParent();   // The pseudo instruction is gone now.
12313  return BB;
12314}
12315
12316MachineBasicBlock *
12317X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12318                                      MachineBasicBlock *BB) const {
12319  // This is pretty easy.  We're taking the value that we received from
12320  // our load from the relocation, sticking it in either RDI (x86-64)
12321  // or EAX and doing an indirect call.  The return value will then
12322  // be in the normal return register.
12323  const X86InstrInfo *TII
12324    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12325  DebugLoc DL = MI->getDebugLoc();
12326  MachineFunction *F = BB->getParent();
12327
12328  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12329  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12330
12331  // Get a register mask for the lowered call.
12332  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12333  // proper register mask.
12334  const uint32_t *RegMask =
12335    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12336  if (Subtarget->is64Bit()) {
12337    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12338                                      TII->get(X86::MOV64rm), X86::RDI)
12339    .addReg(X86::RIP)
12340    .addImm(0).addReg(0)
12341    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12342                      MI->getOperand(3).getTargetFlags())
12343    .addReg(0);
12344    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12345    addDirectMem(MIB, X86::RDI);
12346    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12347  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12348    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12349                                      TII->get(X86::MOV32rm), X86::EAX)
12350    .addReg(0)
12351    .addImm(0).addReg(0)
12352    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12353                      MI->getOperand(3).getTargetFlags())
12354    .addReg(0);
12355    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12356    addDirectMem(MIB, X86::EAX);
12357    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12358  } else {
12359    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12360                                      TII->get(X86::MOV32rm), X86::EAX)
12361    .addReg(TII->getGlobalBaseReg(F))
12362    .addImm(0).addReg(0)
12363    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12364                      MI->getOperand(3).getTargetFlags())
12365    .addReg(0);
12366    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12367    addDirectMem(MIB, X86::EAX);
12368    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12369  }
12370
12371  MI->eraseFromParent(); // The pseudo instruction is gone now.
12372  return BB;
12373}
12374
12375MachineBasicBlock *
12376X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12377                                               MachineBasicBlock *BB) const {
12378  switch (MI->getOpcode()) {
12379  default: llvm_unreachable("Unexpected instr type to insert");
12380  case X86::TAILJMPd64:
12381  case X86::TAILJMPr64:
12382  case X86::TAILJMPm64:
12383    llvm_unreachable("TAILJMP64 would not be touched here.");
12384  case X86::TCRETURNdi64:
12385  case X86::TCRETURNri64:
12386  case X86::TCRETURNmi64:
12387    return BB;
12388  case X86::WIN_ALLOCA:
12389    return EmitLoweredWinAlloca(MI, BB);
12390  case X86::SEG_ALLOCA_32:
12391    return EmitLoweredSegAlloca(MI, BB, false);
12392  case X86::SEG_ALLOCA_64:
12393    return EmitLoweredSegAlloca(MI, BB, true);
12394  case X86::TLSCall_32:
12395  case X86::TLSCall_64:
12396    return EmitLoweredTLSCall(MI, BB);
12397  case X86::CMOV_GR8:
12398  case X86::CMOV_FR32:
12399  case X86::CMOV_FR64:
12400  case X86::CMOV_V4F32:
12401  case X86::CMOV_V2F64:
12402  case X86::CMOV_V2I64:
12403  case X86::CMOV_V8F32:
12404  case X86::CMOV_V4F64:
12405  case X86::CMOV_V4I64:
12406  case X86::CMOV_GR16:
12407  case X86::CMOV_GR32:
12408  case X86::CMOV_RFP32:
12409  case X86::CMOV_RFP64:
12410  case X86::CMOV_RFP80:
12411    return EmitLoweredSelect(MI, BB);
12412
12413  case X86::FP32_TO_INT16_IN_MEM:
12414  case X86::FP32_TO_INT32_IN_MEM:
12415  case X86::FP32_TO_INT64_IN_MEM:
12416  case X86::FP64_TO_INT16_IN_MEM:
12417  case X86::FP64_TO_INT32_IN_MEM:
12418  case X86::FP64_TO_INT64_IN_MEM:
12419  case X86::FP80_TO_INT16_IN_MEM:
12420  case X86::FP80_TO_INT32_IN_MEM:
12421  case X86::FP80_TO_INT64_IN_MEM: {
12422    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12423    DebugLoc DL = MI->getDebugLoc();
12424
12425    // Change the floating point control register to use "round towards zero"
12426    // mode when truncating to an integer value.
12427    MachineFunction *F = BB->getParent();
12428    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12429    addFrameReference(BuildMI(*BB, MI, DL,
12430                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12431
12432    // Load the old value of the high byte of the control word...
12433    unsigned OldCW =
12434      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12435    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12436                      CWFrameIdx);
12437
12438    // Set the high part to be round to zero...
12439    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12440      .addImm(0xC7F);
12441
12442    // Reload the modified control word now...
12443    addFrameReference(BuildMI(*BB, MI, DL,
12444                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12445
12446    // Restore the memory image of control word to original value
12447    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12448      .addReg(OldCW);
12449
12450    // Get the X86 opcode to use.
12451    unsigned Opc;
12452    switch (MI->getOpcode()) {
12453    default: llvm_unreachable("illegal opcode!");
12454    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12455    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12456    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12457    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12458    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12459    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12460    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12461    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12462    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12463    }
12464
12465    X86AddressMode AM;
12466    MachineOperand &Op = MI->getOperand(0);
12467    if (Op.isReg()) {
12468      AM.BaseType = X86AddressMode::RegBase;
12469      AM.Base.Reg = Op.getReg();
12470    } else {
12471      AM.BaseType = X86AddressMode::FrameIndexBase;
12472      AM.Base.FrameIndex = Op.getIndex();
12473    }
12474    Op = MI->getOperand(1);
12475    if (Op.isImm())
12476      AM.Scale = Op.getImm();
12477    Op = MI->getOperand(2);
12478    if (Op.isImm())
12479      AM.IndexReg = Op.getImm();
12480    Op = MI->getOperand(3);
12481    if (Op.isGlobal()) {
12482      AM.GV = Op.getGlobal();
12483    } else {
12484      AM.Disp = Op.getImm();
12485    }
12486    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12487                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12488
12489    // Reload the original control word now.
12490    addFrameReference(BuildMI(*BB, MI, DL,
12491                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12492
12493    MI->eraseFromParent();   // The pseudo instruction is gone now.
12494    return BB;
12495  }
12496    // String/text processing lowering.
12497  case X86::PCMPISTRM128REG:
12498  case X86::VPCMPISTRM128REG:
12499    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12500  case X86::PCMPISTRM128MEM:
12501  case X86::VPCMPISTRM128MEM:
12502    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12503  case X86::PCMPESTRM128REG:
12504  case X86::VPCMPESTRM128REG:
12505    return EmitPCMP(MI, BB, 5, false /* in mem */);
12506  case X86::PCMPESTRM128MEM:
12507  case X86::VPCMPESTRM128MEM:
12508    return EmitPCMP(MI, BB, 5, true /* in mem */);
12509
12510    // Thread synchronization.
12511  case X86::MONITOR:
12512    return EmitMonitor(MI, BB);
12513  case X86::MWAIT:
12514    return EmitMwait(MI, BB);
12515
12516    // Atomic Lowering.
12517  case X86::ATOMAND32:
12518    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12519                                               X86::AND32ri, X86::MOV32rm,
12520                                               X86::LCMPXCHG32,
12521                                               X86::NOT32r, X86::EAX,
12522                                               X86::GR32RegisterClass);
12523  case X86::ATOMOR32:
12524    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12525                                               X86::OR32ri, X86::MOV32rm,
12526                                               X86::LCMPXCHG32,
12527                                               X86::NOT32r, X86::EAX,
12528                                               X86::GR32RegisterClass);
12529  case X86::ATOMXOR32:
12530    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12531                                               X86::XOR32ri, X86::MOV32rm,
12532                                               X86::LCMPXCHG32,
12533                                               X86::NOT32r, X86::EAX,
12534                                               X86::GR32RegisterClass);
12535  case X86::ATOMNAND32:
12536    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12537                                               X86::AND32ri, X86::MOV32rm,
12538                                               X86::LCMPXCHG32,
12539                                               X86::NOT32r, X86::EAX,
12540                                               X86::GR32RegisterClass, true);
12541  case X86::ATOMMIN32:
12542    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12543  case X86::ATOMMAX32:
12544    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12545  case X86::ATOMUMIN32:
12546    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12547  case X86::ATOMUMAX32:
12548    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12549
12550  case X86::ATOMAND16:
12551    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12552                                               X86::AND16ri, X86::MOV16rm,
12553                                               X86::LCMPXCHG16,
12554                                               X86::NOT16r, X86::AX,
12555                                               X86::GR16RegisterClass);
12556  case X86::ATOMOR16:
12557    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12558                                               X86::OR16ri, X86::MOV16rm,
12559                                               X86::LCMPXCHG16,
12560                                               X86::NOT16r, X86::AX,
12561                                               X86::GR16RegisterClass);
12562  case X86::ATOMXOR16:
12563    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12564                                               X86::XOR16ri, X86::MOV16rm,
12565                                               X86::LCMPXCHG16,
12566                                               X86::NOT16r, X86::AX,
12567                                               X86::GR16RegisterClass);
12568  case X86::ATOMNAND16:
12569    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12570                                               X86::AND16ri, X86::MOV16rm,
12571                                               X86::LCMPXCHG16,
12572                                               X86::NOT16r, X86::AX,
12573                                               X86::GR16RegisterClass, true);
12574  case X86::ATOMMIN16:
12575    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12576  case X86::ATOMMAX16:
12577    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12578  case X86::ATOMUMIN16:
12579    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12580  case X86::ATOMUMAX16:
12581    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12582
12583  case X86::ATOMAND8:
12584    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12585                                               X86::AND8ri, X86::MOV8rm,
12586                                               X86::LCMPXCHG8,
12587                                               X86::NOT8r, X86::AL,
12588                                               X86::GR8RegisterClass);
12589  case X86::ATOMOR8:
12590    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12591                                               X86::OR8ri, X86::MOV8rm,
12592                                               X86::LCMPXCHG8,
12593                                               X86::NOT8r, X86::AL,
12594                                               X86::GR8RegisterClass);
12595  case X86::ATOMXOR8:
12596    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12597                                               X86::XOR8ri, X86::MOV8rm,
12598                                               X86::LCMPXCHG8,
12599                                               X86::NOT8r, X86::AL,
12600                                               X86::GR8RegisterClass);
12601  case X86::ATOMNAND8:
12602    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12603                                               X86::AND8ri, X86::MOV8rm,
12604                                               X86::LCMPXCHG8,
12605                                               X86::NOT8r, X86::AL,
12606                                               X86::GR8RegisterClass, true);
12607  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12608  // This group is for 64-bit host.
12609  case X86::ATOMAND64:
12610    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12611                                               X86::AND64ri32, X86::MOV64rm,
12612                                               X86::LCMPXCHG64,
12613                                               X86::NOT64r, X86::RAX,
12614                                               X86::GR64RegisterClass);
12615  case X86::ATOMOR64:
12616    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12617                                               X86::OR64ri32, X86::MOV64rm,
12618                                               X86::LCMPXCHG64,
12619                                               X86::NOT64r, X86::RAX,
12620                                               X86::GR64RegisterClass);
12621  case X86::ATOMXOR64:
12622    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12623                                               X86::XOR64ri32, X86::MOV64rm,
12624                                               X86::LCMPXCHG64,
12625                                               X86::NOT64r, X86::RAX,
12626                                               X86::GR64RegisterClass);
12627  case X86::ATOMNAND64:
12628    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12629                                               X86::AND64ri32, X86::MOV64rm,
12630                                               X86::LCMPXCHG64,
12631                                               X86::NOT64r, X86::RAX,
12632                                               X86::GR64RegisterClass, true);
12633  case X86::ATOMMIN64:
12634    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12635  case X86::ATOMMAX64:
12636    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12637  case X86::ATOMUMIN64:
12638    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12639  case X86::ATOMUMAX64:
12640    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12641
12642  // This group does 64-bit operations on a 32-bit host.
12643  case X86::ATOMAND6432:
12644    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12645                                               X86::AND32rr, X86::AND32rr,
12646                                               X86::AND32ri, X86::AND32ri,
12647                                               false);
12648  case X86::ATOMOR6432:
12649    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12650                                               X86::OR32rr, X86::OR32rr,
12651                                               X86::OR32ri, X86::OR32ri,
12652                                               false);
12653  case X86::ATOMXOR6432:
12654    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12655                                               X86::XOR32rr, X86::XOR32rr,
12656                                               X86::XOR32ri, X86::XOR32ri,
12657                                               false);
12658  case X86::ATOMNAND6432:
12659    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12660                                               X86::AND32rr, X86::AND32rr,
12661                                               X86::AND32ri, X86::AND32ri,
12662                                               true);
12663  case X86::ATOMADD6432:
12664    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12665                                               X86::ADD32rr, X86::ADC32rr,
12666                                               X86::ADD32ri, X86::ADC32ri,
12667                                               false);
12668  case X86::ATOMSUB6432:
12669    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12670                                               X86::SUB32rr, X86::SBB32rr,
12671                                               X86::SUB32ri, X86::SBB32ri,
12672                                               false);
12673  case X86::ATOMSWAP6432:
12674    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12675                                               X86::MOV32rr, X86::MOV32rr,
12676                                               X86::MOV32ri, X86::MOV32ri,
12677                                               false);
12678  case X86::VASTART_SAVE_XMM_REGS:
12679    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12680
12681  case X86::VAARG_64:
12682    return EmitVAARG64WithCustomInserter(MI, BB);
12683  }
12684}
12685
12686//===----------------------------------------------------------------------===//
12687//                           X86 Optimization Hooks
12688//===----------------------------------------------------------------------===//
12689
12690void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12691                                                       const APInt &Mask,
12692                                                       APInt &KnownZero,
12693                                                       APInt &KnownOne,
12694                                                       const SelectionDAG &DAG,
12695                                                       unsigned Depth) const {
12696  unsigned Opc = Op.getOpcode();
12697  assert((Opc >= ISD::BUILTIN_OP_END ||
12698          Opc == ISD::INTRINSIC_WO_CHAIN ||
12699          Opc == ISD::INTRINSIC_W_CHAIN ||
12700          Opc == ISD::INTRINSIC_VOID) &&
12701         "Should use MaskedValueIsZero if you don't know whether Op"
12702         " is a target node!");
12703
12704  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12705  switch (Opc) {
12706  default: break;
12707  case X86ISD::ADD:
12708  case X86ISD::SUB:
12709  case X86ISD::ADC:
12710  case X86ISD::SBB:
12711  case X86ISD::SMUL:
12712  case X86ISD::UMUL:
12713  case X86ISD::INC:
12714  case X86ISD::DEC:
12715  case X86ISD::OR:
12716  case X86ISD::XOR:
12717  case X86ISD::AND:
12718    // These nodes' second result is a boolean.
12719    if (Op.getResNo() == 0)
12720      break;
12721    // Fallthrough
12722  case X86ISD::SETCC:
12723    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12724                                       Mask.getBitWidth() - 1);
12725    break;
12726  case ISD::INTRINSIC_WO_CHAIN: {
12727    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12728    unsigned NumLoBits = 0;
12729    switch (IntId) {
12730    default: break;
12731    case Intrinsic::x86_sse_movmsk_ps:
12732    case Intrinsic::x86_avx_movmsk_ps_256:
12733    case Intrinsic::x86_sse2_movmsk_pd:
12734    case Intrinsic::x86_avx_movmsk_pd_256:
12735    case Intrinsic::x86_mmx_pmovmskb:
12736    case Intrinsic::x86_sse2_pmovmskb_128:
12737    case Intrinsic::x86_avx2_pmovmskb: {
12738      // High bits of movmskp{s|d}, pmovmskb are known zero.
12739      switch (IntId) {
12740        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12741        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12742        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12743        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12744        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12745        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12746        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12747        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12748      }
12749      KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12750                                        Mask.getBitWidth() - NumLoBits);
12751      break;
12752    }
12753    }
12754    break;
12755  }
12756  }
12757}
12758
12759unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12760                                                         unsigned Depth) const {
12761  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12762  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12763    return Op.getValueType().getScalarType().getSizeInBits();
12764
12765  // Fallback case.
12766  return 1;
12767}
12768
12769/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12770/// node is a GlobalAddress + offset.
12771bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12772                                       const GlobalValue* &GA,
12773                                       int64_t &Offset) const {
12774  if (N->getOpcode() == X86ISD::Wrapper) {
12775    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12776      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12777      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12778      return true;
12779    }
12780  }
12781  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12782}
12783
12784/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12785/// same as extracting the high 128-bit part of 256-bit vector and then
12786/// inserting the result into the low part of a new 256-bit vector
12787static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12788  EVT VT = SVOp->getValueType(0);
12789  int NumElems = VT.getVectorNumElements();
12790
12791  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12792  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12793    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12794        SVOp->getMaskElt(j) >= 0)
12795      return false;
12796
12797  return true;
12798}
12799
12800/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12801/// same as extracting the low 128-bit part of 256-bit vector and then
12802/// inserting the result into the high part of a new 256-bit vector
12803static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12804  EVT VT = SVOp->getValueType(0);
12805  int NumElems = VT.getVectorNumElements();
12806
12807  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12808  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12809    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12810        SVOp->getMaskElt(j) >= 0)
12811      return false;
12812
12813  return true;
12814}
12815
12816/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12817static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12818                                        TargetLowering::DAGCombinerInfo &DCI,
12819                                        const X86Subtarget* Subtarget) {
12820  DebugLoc dl = N->getDebugLoc();
12821  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12822  SDValue V1 = SVOp->getOperand(0);
12823  SDValue V2 = SVOp->getOperand(1);
12824  EVT VT = SVOp->getValueType(0);
12825  int NumElems = VT.getVectorNumElements();
12826
12827  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12828      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12829    //
12830    //                   0,0,0,...
12831    //                      |
12832    //    V      UNDEF    BUILD_VECTOR    UNDEF
12833    //     \      /           \           /
12834    //  CONCAT_VECTOR         CONCAT_VECTOR
12835    //         \                  /
12836    //          \                /
12837    //          RESULT: V + zero extended
12838    //
12839    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12840        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12841        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12842      return SDValue();
12843
12844    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12845      return SDValue();
12846
12847    // To match the shuffle mask, the first half of the mask should
12848    // be exactly the first vector, and all the rest a splat with the
12849    // first element of the second one.
12850    for (int i = 0; i < NumElems/2; ++i)
12851      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12852          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12853        return SDValue();
12854
12855    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12856    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12857      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12858      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12859      SDValue ResNode =
12860        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12861                                Ld->getMemoryVT(),
12862                                Ld->getPointerInfo(),
12863                                Ld->getAlignment(),
12864                                false/*isVolatile*/, true/*ReadMem*/,
12865                                false/*WriteMem*/);
12866      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12867    }
12868
12869    // Emit a zeroed vector and insert the desired subvector on its
12870    // first half.
12871    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12872    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12873                         DAG.getConstant(0, MVT::i32), DAG, dl);
12874    return DCI.CombineTo(N, InsV);
12875  }
12876
12877  //===--------------------------------------------------------------------===//
12878  // Combine some shuffles into subvector extracts and inserts:
12879  //
12880
12881  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12882  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12883    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12884                                    DAG, dl);
12885    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12886                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12887    return DCI.CombineTo(N, InsV);
12888  }
12889
12890  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12891  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12892    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12893    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12894                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12895    return DCI.CombineTo(N, InsV);
12896  }
12897
12898  return SDValue();
12899}
12900
12901/// PerformShuffleCombine - Performs several different shuffle combines.
12902static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12903                                     TargetLowering::DAGCombinerInfo &DCI,
12904                                     const X86Subtarget *Subtarget) {
12905  DebugLoc dl = N->getDebugLoc();
12906  EVT VT = N->getValueType(0);
12907
12908  // Don't create instructions with illegal types after legalize types has run.
12909  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12910  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12911    return SDValue();
12912
12913  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12914  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12915      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12916    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
12917
12918  // Only handle 128 wide vector from here on.
12919  if (VT.getSizeInBits() != 128)
12920    return SDValue();
12921
12922  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12923  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12924  // consecutive, non-overlapping, and in the right order.
12925  SmallVector<SDValue, 16> Elts;
12926  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12927    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12928
12929  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12930}
12931
12932
12933/// PerformTruncateCombine - Converts truncate operation to
12934/// a sequence of vector shuffle operations.
12935/// It is possible when we truncate 256-bit vector to 128-bit vector
12936
12937SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
12938                                                  DAGCombinerInfo &DCI) const {
12939  if (!DCI.isBeforeLegalizeOps())
12940    return SDValue();
12941
12942  if (!Subtarget->hasAVX()) return SDValue();
12943
12944  EVT VT = N->getValueType(0);
12945  SDValue Op = N->getOperand(0);
12946  EVT OpVT = Op.getValueType();
12947  DebugLoc dl = N->getDebugLoc();
12948
12949  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
12950
12951    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12952                          DAG.getIntPtrConstant(0));
12953
12954    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12955                          DAG.getIntPtrConstant(2));
12956
12957    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12958    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12959
12960    // PSHUFD
12961    int ShufMask1[] = {0, 2, 0, 0};
12962
12963    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
12964                                ShufMask1);
12965    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
12966                                ShufMask1);
12967
12968    // MOVLHPS
12969    int ShufMask2[] = {0, 1, 4, 5};
12970
12971    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
12972  }
12973  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
12974
12975    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12976                          DAG.getIntPtrConstant(0));
12977
12978    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12979                          DAG.getIntPtrConstant(4));
12980
12981    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
12982    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
12983
12984    // PSHUFB
12985    int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
12986                      -1, -1, -1, -1, -1, -1, -1, -1};
12987
12988    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
12989                                DAG.getUNDEF(MVT::v16i8),
12990                                ShufMask1);
12991    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
12992                                DAG.getUNDEF(MVT::v16i8),
12993                                ShufMask1);
12994
12995    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12996    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12997
12998    // MOVLHPS
12999    int ShufMask2[] = {0, 1, 4, 5};
13000
13001    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13002    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13003  }
13004
13005  return SDValue();
13006}
13007
13008/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13009/// generation and convert it from being a bunch of shuffles and extracts
13010/// to a simple store and scalar loads to extract the elements.
13011static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13012                                                const TargetLowering &TLI) {
13013  SDValue InputVector = N->getOperand(0);
13014
13015  // Only operate on vectors of 4 elements, where the alternative shuffling
13016  // gets to be more expensive.
13017  if (InputVector.getValueType() != MVT::v4i32)
13018    return SDValue();
13019
13020  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13021  // single use which is a sign-extend or zero-extend, and all elements are
13022  // used.
13023  SmallVector<SDNode *, 4> Uses;
13024  unsigned ExtractedElements = 0;
13025  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13026       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13027    if (UI.getUse().getResNo() != InputVector.getResNo())
13028      return SDValue();
13029
13030    SDNode *Extract = *UI;
13031    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13032      return SDValue();
13033
13034    if (Extract->getValueType(0) != MVT::i32)
13035      return SDValue();
13036    if (!Extract->hasOneUse())
13037      return SDValue();
13038    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13039        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13040      return SDValue();
13041    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13042      return SDValue();
13043
13044    // Record which element was extracted.
13045    ExtractedElements |=
13046      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13047
13048    Uses.push_back(Extract);
13049  }
13050
13051  // If not all the elements were used, this may not be worthwhile.
13052  if (ExtractedElements != 15)
13053    return SDValue();
13054
13055  // Ok, we've now decided to do the transformation.
13056  DebugLoc dl = InputVector.getDebugLoc();
13057
13058  // Store the value to a temporary stack slot.
13059  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13060  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13061                            MachinePointerInfo(), false, false, 0);
13062
13063  // Replace each use (extract) with a load of the appropriate element.
13064  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13065       UE = Uses.end(); UI != UE; ++UI) {
13066    SDNode *Extract = *UI;
13067
13068    // cOMpute the element's address.
13069    SDValue Idx = Extract->getOperand(1);
13070    unsigned EltSize =
13071        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13072    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13073    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13074
13075    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13076                                     StackPtr, OffsetVal);
13077
13078    // Load the scalar.
13079    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13080                                     ScalarAddr, MachinePointerInfo(),
13081                                     false, false, false, 0);
13082
13083    // Replace the exact with the load.
13084    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13085  }
13086
13087  // The replacement was made in place; don't return anything.
13088  return SDValue();
13089}
13090
13091/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13092/// nodes.
13093static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13094                                    TargetLowering::DAGCombinerInfo &DCI,
13095                                    const X86Subtarget *Subtarget) {
13096  DebugLoc DL = N->getDebugLoc();
13097  SDValue Cond = N->getOperand(0);
13098  // Get the LHS/RHS of the select.
13099  SDValue LHS = N->getOperand(1);
13100  SDValue RHS = N->getOperand(2);
13101  EVT VT = LHS.getValueType();
13102
13103  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13104  // instructions match the semantics of the common C idiom x<y?x:y but not
13105  // x<=y?x:y, because of how they handle negative zero (which can be
13106  // ignored in unsafe-math mode).
13107  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13108      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13109      (Subtarget->hasSSE2() ||
13110       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13111    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13112
13113    unsigned Opcode = 0;
13114    // Check for x CC y ? x : y.
13115    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13116        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13117      switch (CC) {
13118      default: break;
13119      case ISD::SETULT:
13120        // Converting this to a min would handle NaNs incorrectly, and swapping
13121        // the operands would cause it to handle comparisons between positive
13122        // and negative zero incorrectly.
13123        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13124          if (!DAG.getTarget().Options.UnsafeFPMath &&
13125              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13126            break;
13127          std::swap(LHS, RHS);
13128        }
13129        Opcode = X86ISD::FMIN;
13130        break;
13131      case ISD::SETOLE:
13132        // Converting this to a min would handle comparisons between positive
13133        // and negative zero incorrectly.
13134        if (!DAG.getTarget().Options.UnsafeFPMath &&
13135            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13136          break;
13137        Opcode = X86ISD::FMIN;
13138        break;
13139      case ISD::SETULE:
13140        // Converting this to a min would handle both negative zeros and NaNs
13141        // incorrectly, but we can swap the operands to fix both.
13142        std::swap(LHS, RHS);
13143      case ISD::SETOLT:
13144      case ISD::SETLT:
13145      case ISD::SETLE:
13146        Opcode = X86ISD::FMIN;
13147        break;
13148
13149      case ISD::SETOGE:
13150        // Converting this to a max would handle comparisons between positive
13151        // and negative zero incorrectly.
13152        if (!DAG.getTarget().Options.UnsafeFPMath &&
13153            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13154          break;
13155        Opcode = X86ISD::FMAX;
13156        break;
13157      case ISD::SETUGT:
13158        // Converting this to a max would handle NaNs incorrectly, and swapping
13159        // the operands would cause it to handle comparisons between positive
13160        // and negative zero incorrectly.
13161        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13162          if (!DAG.getTarget().Options.UnsafeFPMath &&
13163              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13164            break;
13165          std::swap(LHS, RHS);
13166        }
13167        Opcode = X86ISD::FMAX;
13168        break;
13169      case ISD::SETUGE:
13170        // Converting this to a max would handle both negative zeros and NaNs
13171        // incorrectly, but we can swap the operands to fix both.
13172        std::swap(LHS, RHS);
13173      case ISD::SETOGT:
13174      case ISD::SETGT:
13175      case ISD::SETGE:
13176        Opcode = X86ISD::FMAX;
13177        break;
13178      }
13179    // Check for x CC y ? y : x -- a min/max with reversed arms.
13180    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13181               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13182      switch (CC) {
13183      default: break;
13184      case ISD::SETOGE:
13185        // Converting this to a min would handle comparisons between positive
13186        // and negative zero incorrectly, and swapping the operands would
13187        // cause it to handle NaNs incorrectly.
13188        if (!DAG.getTarget().Options.UnsafeFPMath &&
13189            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13190          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13191            break;
13192          std::swap(LHS, RHS);
13193        }
13194        Opcode = X86ISD::FMIN;
13195        break;
13196      case ISD::SETUGT:
13197        // Converting this to a min would handle NaNs incorrectly.
13198        if (!DAG.getTarget().Options.UnsafeFPMath &&
13199            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13200          break;
13201        Opcode = X86ISD::FMIN;
13202        break;
13203      case ISD::SETUGE:
13204        // Converting this to a min would handle both negative zeros and NaNs
13205        // incorrectly, but we can swap the operands to fix both.
13206        std::swap(LHS, RHS);
13207      case ISD::SETOGT:
13208      case ISD::SETGT:
13209      case ISD::SETGE:
13210        Opcode = X86ISD::FMIN;
13211        break;
13212
13213      case ISD::SETULT:
13214        // Converting this to a max would handle NaNs incorrectly.
13215        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13216          break;
13217        Opcode = X86ISD::FMAX;
13218        break;
13219      case ISD::SETOLE:
13220        // Converting this to a max would handle comparisons between positive
13221        // and negative zero incorrectly, and swapping the operands would
13222        // cause it to handle NaNs incorrectly.
13223        if (!DAG.getTarget().Options.UnsafeFPMath &&
13224            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13225          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13226            break;
13227          std::swap(LHS, RHS);
13228        }
13229        Opcode = X86ISD::FMAX;
13230        break;
13231      case ISD::SETULE:
13232        // Converting this to a max would handle both negative zeros and NaNs
13233        // incorrectly, but we can swap the operands to fix both.
13234        std::swap(LHS, RHS);
13235      case ISD::SETOLT:
13236      case ISD::SETLT:
13237      case ISD::SETLE:
13238        Opcode = X86ISD::FMAX;
13239        break;
13240      }
13241    }
13242
13243    if (Opcode)
13244      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13245  }
13246
13247  // If this is a select between two integer constants, try to do some
13248  // optimizations.
13249  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13250    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13251      // Don't do this for crazy integer types.
13252      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13253        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13254        // so that TrueC (the true value) is larger than FalseC.
13255        bool NeedsCondInvert = false;
13256
13257        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13258            // Efficiently invertible.
13259            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13260             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13261              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13262          NeedsCondInvert = true;
13263          std::swap(TrueC, FalseC);
13264        }
13265
13266        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13267        if (FalseC->getAPIntValue() == 0 &&
13268            TrueC->getAPIntValue().isPowerOf2()) {
13269          if (NeedsCondInvert) // Invert the condition if needed.
13270            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13271                               DAG.getConstant(1, Cond.getValueType()));
13272
13273          // Zero extend the condition if needed.
13274          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13275
13276          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13277          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13278                             DAG.getConstant(ShAmt, MVT::i8));
13279        }
13280
13281        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13282        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13283          if (NeedsCondInvert) // Invert the condition if needed.
13284            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13285                               DAG.getConstant(1, Cond.getValueType()));
13286
13287          // Zero extend the condition if needed.
13288          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13289                             FalseC->getValueType(0), Cond);
13290          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13291                             SDValue(FalseC, 0));
13292        }
13293
13294        // Optimize cases that will turn into an LEA instruction.  This requires
13295        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13296        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13297          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13298          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13299
13300          bool isFastMultiplier = false;
13301          if (Diff < 10) {
13302            switch ((unsigned char)Diff) {
13303              default: break;
13304              case 1:  // result = add base, cond
13305              case 2:  // result = lea base(    , cond*2)
13306              case 3:  // result = lea base(cond, cond*2)
13307              case 4:  // result = lea base(    , cond*4)
13308              case 5:  // result = lea base(cond, cond*4)
13309              case 8:  // result = lea base(    , cond*8)
13310              case 9:  // result = lea base(cond, cond*8)
13311                isFastMultiplier = true;
13312                break;
13313            }
13314          }
13315
13316          if (isFastMultiplier) {
13317            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13318            if (NeedsCondInvert) // Invert the condition if needed.
13319              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13320                                 DAG.getConstant(1, Cond.getValueType()));
13321
13322            // Zero extend the condition if needed.
13323            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13324                               Cond);
13325            // Scale the condition by the difference.
13326            if (Diff != 1)
13327              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13328                                 DAG.getConstant(Diff, Cond.getValueType()));
13329
13330            // Add the base if non-zero.
13331            if (FalseC->getAPIntValue() != 0)
13332              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13333                                 SDValue(FalseC, 0));
13334            return Cond;
13335          }
13336        }
13337      }
13338  }
13339
13340  // Canonicalize max and min:
13341  // (x > y) ? x : y -> (x >= y) ? x : y
13342  // (x < y) ? x : y -> (x <= y) ? x : y
13343  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13344  // the need for an extra compare
13345  // against zero. e.g.
13346  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13347  // subl   %esi, %edi
13348  // testl  %edi, %edi
13349  // movl   $0, %eax
13350  // cmovgl %edi, %eax
13351  // =>
13352  // xorl   %eax, %eax
13353  // subl   %esi, $edi
13354  // cmovsl %eax, %edi
13355  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13356      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13357      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13358    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13359    switch (CC) {
13360    default: break;
13361    case ISD::SETLT:
13362    case ISD::SETGT: {
13363      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13364      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13365                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13366      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13367    }
13368    }
13369  }
13370
13371  // If we know that this node is legal then we know that it is going to be
13372  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13373  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13374  // to simplify previous instructions.
13375  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13376  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13377      !DCI.isBeforeLegalize() &&
13378      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13379    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13380    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13381    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13382
13383    APInt KnownZero, KnownOne;
13384    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13385                                          DCI.isBeforeLegalizeOps());
13386    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13387        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13388      DCI.CommitTargetLoweringOpt(TLO);
13389  }
13390
13391  return SDValue();
13392}
13393
13394/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13395static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13396                                  TargetLowering::DAGCombinerInfo &DCI) {
13397  DebugLoc DL = N->getDebugLoc();
13398
13399  // If the flag operand isn't dead, don't touch this CMOV.
13400  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13401    return SDValue();
13402
13403  SDValue FalseOp = N->getOperand(0);
13404  SDValue TrueOp = N->getOperand(1);
13405  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13406  SDValue Cond = N->getOperand(3);
13407  if (CC == X86::COND_E || CC == X86::COND_NE) {
13408    switch (Cond.getOpcode()) {
13409    default: break;
13410    case X86ISD::BSR:
13411    case X86ISD::BSF:
13412      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13413      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13414        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13415    }
13416  }
13417
13418  // If this is a select between two integer constants, try to do some
13419  // optimizations.  Note that the operands are ordered the opposite of SELECT
13420  // operands.
13421  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13422    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13423      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13424      // larger than FalseC (the false value).
13425      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13426        CC = X86::GetOppositeBranchCondition(CC);
13427        std::swap(TrueC, FalseC);
13428      }
13429
13430      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13431      // This is efficient for any integer data type (including i8/i16) and
13432      // shift amount.
13433      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13434        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13435                           DAG.getConstant(CC, MVT::i8), Cond);
13436
13437        // Zero extend the condition if needed.
13438        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13439
13440        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13441        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13442                           DAG.getConstant(ShAmt, MVT::i8));
13443        if (N->getNumValues() == 2)  // Dead flag value?
13444          return DCI.CombineTo(N, Cond, SDValue());
13445        return Cond;
13446      }
13447
13448      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13449      // for any integer data type, including i8/i16.
13450      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13451        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13452                           DAG.getConstant(CC, MVT::i8), Cond);
13453
13454        // Zero extend the condition if needed.
13455        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13456                           FalseC->getValueType(0), Cond);
13457        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13458                           SDValue(FalseC, 0));
13459
13460        if (N->getNumValues() == 2)  // Dead flag value?
13461          return DCI.CombineTo(N, Cond, SDValue());
13462        return Cond;
13463      }
13464
13465      // Optimize cases that will turn into an LEA instruction.  This requires
13466      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13467      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13468        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13469        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13470
13471        bool isFastMultiplier = false;
13472        if (Diff < 10) {
13473          switch ((unsigned char)Diff) {
13474          default: break;
13475          case 1:  // result = add base, cond
13476          case 2:  // result = lea base(    , cond*2)
13477          case 3:  // result = lea base(cond, cond*2)
13478          case 4:  // result = lea base(    , cond*4)
13479          case 5:  // result = lea base(cond, cond*4)
13480          case 8:  // result = lea base(    , cond*8)
13481          case 9:  // result = lea base(cond, cond*8)
13482            isFastMultiplier = true;
13483            break;
13484          }
13485        }
13486
13487        if (isFastMultiplier) {
13488          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13489          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13490                             DAG.getConstant(CC, MVT::i8), Cond);
13491          // Zero extend the condition if needed.
13492          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13493                             Cond);
13494          // Scale the condition by the difference.
13495          if (Diff != 1)
13496            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13497                               DAG.getConstant(Diff, Cond.getValueType()));
13498
13499          // Add the base if non-zero.
13500          if (FalseC->getAPIntValue() != 0)
13501            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13502                               SDValue(FalseC, 0));
13503          if (N->getNumValues() == 2)  // Dead flag value?
13504            return DCI.CombineTo(N, Cond, SDValue());
13505          return Cond;
13506        }
13507      }
13508    }
13509  }
13510  return SDValue();
13511}
13512
13513
13514/// PerformMulCombine - Optimize a single multiply with constant into two
13515/// in order to implement it with two cheaper instructions, e.g.
13516/// LEA + SHL, LEA + LEA.
13517static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13518                                 TargetLowering::DAGCombinerInfo &DCI) {
13519  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13520    return SDValue();
13521
13522  EVT VT = N->getValueType(0);
13523  if (VT != MVT::i64)
13524    return SDValue();
13525
13526  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13527  if (!C)
13528    return SDValue();
13529  uint64_t MulAmt = C->getZExtValue();
13530  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13531    return SDValue();
13532
13533  uint64_t MulAmt1 = 0;
13534  uint64_t MulAmt2 = 0;
13535  if ((MulAmt % 9) == 0) {
13536    MulAmt1 = 9;
13537    MulAmt2 = MulAmt / 9;
13538  } else if ((MulAmt % 5) == 0) {
13539    MulAmt1 = 5;
13540    MulAmt2 = MulAmt / 5;
13541  } else if ((MulAmt % 3) == 0) {
13542    MulAmt1 = 3;
13543    MulAmt2 = MulAmt / 3;
13544  }
13545  if (MulAmt2 &&
13546      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13547    DebugLoc DL = N->getDebugLoc();
13548
13549    if (isPowerOf2_64(MulAmt2) &&
13550        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13551      // If second multiplifer is pow2, issue it first. We want the multiply by
13552      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13553      // is an add.
13554      std::swap(MulAmt1, MulAmt2);
13555
13556    SDValue NewMul;
13557    if (isPowerOf2_64(MulAmt1))
13558      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13559                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13560    else
13561      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13562                           DAG.getConstant(MulAmt1, VT));
13563
13564    if (isPowerOf2_64(MulAmt2))
13565      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13566                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13567    else
13568      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13569                           DAG.getConstant(MulAmt2, VT));
13570
13571    // Do not add new nodes to DAG combiner worklist.
13572    DCI.CombineTo(N, NewMul, false);
13573  }
13574  return SDValue();
13575}
13576
13577static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13578  SDValue N0 = N->getOperand(0);
13579  SDValue N1 = N->getOperand(1);
13580  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13581  EVT VT = N0.getValueType();
13582
13583  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13584  // since the result of setcc_c is all zero's or all ones.
13585  if (VT.isInteger() && !VT.isVector() &&
13586      N1C && N0.getOpcode() == ISD::AND &&
13587      N0.getOperand(1).getOpcode() == ISD::Constant) {
13588    SDValue N00 = N0.getOperand(0);
13589    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13590        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13591          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13592         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13593      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13594      APInt ShAmt = N1C->getAPIntValue();
13595      Mask = Mask.shl(ShAmt);
13596      if (Mask != 0)
13597        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13598                           N00, DAG.getConstant(Mask, VT));
13599    }
13600  }
13601
13602
13603  // Hardware support for vector shifts is sparse which makes us scalarize the
13604  // vector operations in many cases. Also, on sandybridge ADD is faster than
13605  // shl.
13606  // (shl V, 1) -> add V,V
13607  if (isSplatVector(N1.getNode())) {
13608    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13609    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13610    // We shift all of the values by one. In many cases we do not have
13611    // hardware support for this operation. This is better expressed as an ADD
13612    // of two values.
13613    if (N1C && (1 == N1C->getZExtValue())) {
13614      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13615    }
13616  }
13617
13618  return SDValue();
13619}
13620
13621/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13622///                       when possible.
13623static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13624                                   TargetLowering::DAGCombinerInfo &DCI,
13625                                   const X86Subtarget *Subtarget) {
13626  EVT VT = N->getValueType(0);
13627  if (N->getOpcode() == ISD::SHL) {
13628    SDValue V = PerformSHLCombine(N, DAG);
13629    if (V.getNode()) return V;
13630  }
13631
13632  // On X86 with SSE2 support, we can transform this to a vector shift if
13633  // all elements are shifted by the same amount.  We can't do this in legalize
13634  // because the a constant vector is typically transformed to a constant pool
13635  // so we have no knowledge of the shift amount.
13636  if (!Subtarget->hasSSE2())
13637    return SDValue();
13638
13639  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13640      (!Subtarget->hasAVX2() ||
13641       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13642    return SDValue();
13643
13644  SDValue ShAmtOp = N->getOperand(1);
13645  EVT EltVT = VT.getVectorElementType();
13646  DebugLoc DL = N->getDebugLoc();
13647  SDValue BaseShAmt = SDValue();
13648  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13649    unsigned NumElts = VT.getVectorNumElements();
13650    unsigned i = 0;
13651    for (; i != NumElts; ++i) {
13652      SDValue Arg = ShAmtOp.getOperand(i);
13653      if (Arg.getOpcode() == ISD::UNDEF) continue;
13654      BaseShAmt = Arg;
13655      break;
13656    }
13657    // Handle the case where the build_vector is all undef
13658    // FIXME: Should DAG allow this?
13659    if (i == NumElts)
13660      return SDValue();
13661
13662    for (; i != NumElts; ++i) {
13663      SDValue Arg = ShAmtOp.getOperand(i);
13664      if (Arg.getOpcode() == ISD::UNDEF) continue;
13665      if (Arg != BaseShAmt) {
13666        return SDValue();
13667      }
13668    }
13669  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13670             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13671    SDValue InVec = ShAmtOp.getOperand(0);
13672    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13673      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13674      unsigned i = 0;
13675      for (; i != NumElts; ++i) {
13676        SDValue Arg = InVec.getOperand(i);
13677        if (Arg.getOpcode() == ISD::UNDEF) continue;
13678        BaseShAmt = Arg;
13679        break;
13680      }
13681    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13682       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13683         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13684         if (C->getZExtValue() == SplatIdx)
13685           BaseShAmt = InVec.getOperand(1);
13686       }
13687    }
13688    if (BaseShAmt.getNode() == 0) {
13689      // Don't create instructions with illegal types after legalize
13690      // types has run.
13691      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13692          !DCI.isBeforeLegalize())
13693        return SDValue();
13694
13695      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13696                              DAG.getIntPtrConstant(0));
13697    }
13698  } else
13699    return SDValue();
13700
13701  // The shift amount is an i32.
13702  if (EltVT.bitsGT(MVT::i32))
13703    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13704  else if (EltVT.bitsLT(MVT::i32))
13705    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13706
13707  // The shift amount is identical so we can do a vector shift.
13708  SDValue  ValOp = N->getOperand(0);
13709  switch (N->getOpcode()) {
13710  default:
13711    llvm_unreachable("Unknown shift opcode!");
13712  case ISD::SHL:
13713    switch (VT.getSimpleVT().SimpleTy) {
13714    default: return SDValue();
13715    case MVT::v2i64:
13716    case MVT::v4i32:
13717    case MVT::v8i16:
13718    case MVT::v4i64:
13719    case MVT::v8i32:
13720    case MVT::v16i16:
13721      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13722    }
13723  case ISD::SRA:
13724    switch (VT.getSimpleVT().SimpleTy) {
13725    default: return SDValue();
13726    case MVT::v4i32:
13727    case MVT::v8i16:
13728    case MVT::v8i32:
13729    case MVT::v16i16:
13730      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13731    }
13732  case ISD::SRL:
13733    switch (VT.getSimpleVT().SimpleTy) {
13734    default: return SDValue();
13735    case MVT::v2i64:
13736    case MVT::v4i32:
13737    case MVT::v8i16:
13738    case MVT::v4i64:
13739    case MVT::v8i32:
13740    case MVT::v16i16:
13741      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13742    }
13743  }
13744}
13745
13746
13747// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13748// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13749// and friends.  Likewise for OR -> CMPNEQSS.
13750static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13751                            TargetLowering::DAGCombinerInfo &DCI,
13752                            const X86Subtarget *Subtarget) {
13753  unsigned opcode;
13754
13755  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13756  // we're requiring SSE2 for both.
13757  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13758    SDValue N0 = N->getOperand(0);
13759    SDValue N1 = N->getOperand(1);
13760    SDValue CMP0 = N0->getOperand(1);
13761    SDValue CMP1 = N1->getOperand(1);
13762    DebugLoc DL = N->getDebugLoc();
13763
13764    // The SETCCs should both refer to the same CMP.
13765    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13766      return SDValue();
13767
13768    SDValue CMP00 = CMP0->getOperand(0);
13769    SDValue CMP01 = CMP0->getOperand(1);
13770    EVT     VT    = CMP00.getValueType();
13771
13772    if (VT == MVT::f32 || VT == MVT::f64) {
13773      bool ExpectingFlags = false;
13774      // Check for any users that want flags:
13775      for (SDNode::use_iterator UI = N->use_begin(),
13776             UE = N->use_end();
13777           !ExpectingFlags && UI != UE; ++UI)
13778        switch (UI->getOpcode()) {
13779        default:
13780        case ISD::BR_CC:
13781        case ISD::BRCOND:
13782        case ISD::SELECT:
13783          ExpectingFlags = true;
13784          break;
13785        case ISD::CopyToReg:
13786        case ISD::SIGN_EXTEND:
13787        case ISD::ZERO_EXTEND:
13788        case ISD::ANY_EXTEND:
13789          break;
13790        }
13791
13792      if (!ExpectingFlags) {
13793        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13794        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13795
13796        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13797          X86::CondCode tmp = cc0;
13798          cc0 = cc1;
13799          cc1 = tmp;
13800        }
13801
13802        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13803            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13804          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13805          X86ISD::NodeType NTOperator = is64BitFP ?
13806            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13807          // FIXME: need symbolic constants for these magic numbers.
13808          // See X86ATTInstPrinter.cpp:printSSECC().
13809          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13810          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13811                                              DAG.getConstant(x86cc, MVT::i8));
13812          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13813                                              OnesOrZeroesF);
13814          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13815                                      DAG.getConstant(1, MVT::i32));
13816          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13817          return OneBitOfTruth;
13818        }
13819      }
13820    }
13821  }
13822  return SDValue();
13823}
13824
13825/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13826/// so it can be folded inside ANDNP.
13827static bool CanFoldXORWithAllOnes(const SDNode *N) {
13828  EVT VT = N->getValueType(0);
13829
13830  // Match direct AllOnes for 128 and 256-bit vectors
13831  if (ISD::isBuildVectorAllOnes(N))
13832    return true;
13833
13834  // Look through a bit convert.
13835  if (N->getOpcode() == ISD::BITCAST)
13836    N = N->getOperand(0).getNode();
13837
13838  // Sometimes the operand may come from a insert_subvector building a 256-bit
13839  // allones vector
13840  if (VT.getSizeInBits() == 256 &&
13841      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13842    SDValue V1 = N->getOperand(0);
13843    SDValue V2 = N->getOperand(1);
13844
13845    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13846        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13847        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13848        ISD::isBuildVectorAllOnes(V2.getNode()))
13849      return true;
13850  }
13851
13852  return false;
13853}
13854
13855static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13856                                 TargetLowering::DAGCombinerInfo &DCI,
13857                                 const X86Subtarget *Subtarget) {
13858  if (DCI.isBeforeLegalizeOps())
13859    return SDValue();
13860
13861  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13862  if (R.getNode())
13863    return R;
13864
13865  EVT VT = N->getValueType(0);
13866
13867  // Create ANDN, BLSI, and BLSR instructions
13868  // BLSI is X & (-X)
13869  // BLSR is X & (X-1)
13870  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13871    SDValue N0 = N->getOperand(0);
13872    SDValue N1 = N->getOperand(1);
13873    DebugLoc DL = N->getDebugLoc();
13874
13875    // Check LHS for not
13876    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13877      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13878    // Check RHS for not
13879    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13880      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13881
13882    // Check LHS for neg
13883    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
13884        isZero(N0.getOperand(0)))
13885      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
13886
13887    // Check RHS for neg
13888    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
13889        isZero(N1.getOperand(0)))
13890      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
13891
13892    // Check LHS for X-1
13893    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
13894        isAllOnes(N0.getOperand(1)))
13895      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
13896
13897    // Check RHS for X-1
13898    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
13899        isAllOnes(N1.getOperand(1)))
13900      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
13901
13902    return SDValue();
13903  }
13904
13905  // Want to form ANDNP nodes:
13906  // 1) In the hopes of then easily combining them with OR and AND nodes
13907  //    to form PBLEND/PSIGN.
13908  // 2) To match ANDN packed intrinsics
13909  if (VT != MVT::v2i64 && VT != MVT::v4i64)
13910    return SDValue();
13911
13912  SDValue N0 = N->getOperand(0);
13913  SDValue N1 = N->getOperand(1);
13914  DebugLoc DL = N->getDebugLoc();
13915
13916  // Check LHS for vnot
13917  if (N0.getOpcode() == ISD::XOR &&
13918      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13919      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13920    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13921
13922  // Check RHS for vnot
13923  if (N1.getOpcode() == ISD::XOR &&
13924      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13925      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13926    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13927
13928  return SDValue();
13929}
13930
13931static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13932                                TargetLowering::DAGCombinerInfo &DCI,
13933                                const X86Subtarget *Subtarget) {
13934  if (DCI.isBeforeLegalizeOps())
13935    return SDValue();
13936
13937  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13938  if (R.getNode())
13939    return R;
13940
13941  EVT VT = N->getValueType(0);
13942
13943  SDValue N0 = N->getOperand(0);
13944  SDValue N1 = N->getOperand(1);
13945
13946  // look for psign/blend
13947  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
13948    if (!Subtarget->hasSSSE3() ||
13949        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
13950      return SDValue();
13951
13952    // Canonicalize pandn to RHS
13953    if (N0.getOpcode() == X86ISD::ANDNP)
13954      std::swap(N0, N1);
13955    // or (and (m, y), (pandn m, x))
13956    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13957      SDValue Mask = N1.getOperand(0);
13958      SDValue X    = N1.getOperand(1);
13959      SDValue Y;
13960      if (N0.getOperand(0) == Mask)
13961        Y = N0.getOperand(1);
13962      if (N0.getOperand(1) == Mask)
13963        Y = N0.getOperand(0);
13964
13965      // Check to see if the mask appeared in both the AND and ANDNP and
13966      if (!Y.getNode())
13967        return SDValue();
13968
13969      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13970      if (Mask.getOpcode() != ISD::BITCAST ||
13971          X.getOpcode() != ISD::BITCAST ||
13972          Y.getOpcode() != ISD::BITCAST)
13973        return SDValue();
13974
13975      // Look through mask bitcast.
13976      Mask = Mask.getOperand(0);
13977      EVT MaskVT = Mask.getValueType();
13978
13979      // Validate that the Mask operand is a vector sra node.
13980      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13981      // there is no psrai.b
13982      if (Mask.getOpcode() != X86ISD::VSRAI)
13983        return SDValue();
13984
13985      // Check that the SRA is all signbits.
13986      SDValue SraC = Mask.getOperand(1);
13987      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13988      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13989      if ((SraAmt + 1) != EltBits)
13990        return SDValue();
13991
13992      DebugLoc DL = N->getDebugLoc();
13993
13994      // Now we know we at least have a plendvb with the mask val.  See if
13995      // we can form a psignb/w/d.
13996      // psign = x.type == y.type == mask.type && y = sub(0, x);
13997      X = X.getOperand(0);
13998      Y = Y.getOperand(0);
13999      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14000          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14001          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14002        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14003               "Unsupported VT for PSIGN");
14004        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14005        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14006      }
14007      // PBLENDVB only available on SSE 4.1
14008      if (!Subtarget->hasSSE41())
14009        return SDValue();
14010
14011      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14012
14013      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14014      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14015      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14016      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14017      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14018    }
14019  }
14020
14021  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14022    return SDValue();
14023
14024  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14025  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14026    std::swap(N0, N1);
14027  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14028    return SDValue();
14029  if (!N0.hasOneUse() || !N1.hasOneUse())
14030    return SDValue();
14031
14032  SDValue ShAmt0 = N0.getOperand(1);
14033  if (ShAmt0.getValueType() != MVT::i8)
14034    return SDValue();
14035  SDValue ShAmt1 = N1.getOperand(1);
14036  if (ShAmt1.getValueType() != MVT::i8)
14037    return SDValue();
14038  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14039    ShAmt0 = ShAmt0.getOperand(0);
14040  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14041    ShAmt1 = ShAmt1.getOperand(0);
14042
14043  DebugLoc DL = N->getDebugLoc();
14044  unsigned Opc = X86ISD::SHLD;
14045  SDValue Op0 = N0.getOperand(0);
14046  SDValue Op1 = N1.getOperand(0);
14047  if (ShAmt0.getOpcode() == ISD::SUB) {
14048    Opc = X86ISD::SHRD;
14049    std::swap(Op0, Op1);
14050    std::swap(ShAmt0, ShAmt1);
14051  }
14052
14053  unsigned Bits = VT.getSizeInBits();
14054  if (ShAmt1.getOpcode() == ISD::SUB) {
14055    SDValue Sum = ShAmt1.getOperand(0);
14056    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14057      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14058      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14059        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14060      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14061        return DAG.getNode(Opc, DL, VT,
14062                           Op0, Op1,
14063                           DAG.getNode(ISD::TRUNCATE, DL,
14064                                       MVT::i8, ShAmt0));
14065    }
14066  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14067    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14068    if (ShAmt0C &&
14069        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14070      return DAG.getNode(Opc, DL, VT,
14071                         N0.getOperand(0), N1.getOperand(0),
14072                         DAG.getNode(ISD::TRUNCATE, DL,
14073                                       MVT::i8, ShAmt0));
14074  }
14075
14076  return SDValue();
14077}
14078
14079// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14080static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14081                                 TargetLowering::DAGCombinerInfo &DCI,
14082                                 const X86Subtarget *Subtarget) {
14083  if (DCI.isBeforeLegalizeOps())
14084    return SDValue();
14085
14086  EVT VT = N->getValueType(0);
14087
14088  if (VT != MVT::i32 && VT != MVT::i64)
14089    return SDValue();
14090
14091  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14092
14093  // Create BLSMSK instructions by finding X ^ (X-1)
14094  SDValue N0 = N->getOperand(0);
14095  SDValue N1 = N->getOperand(1);
14096  DebugLoc DL = N->getDebugLoc();
14097
14098  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14099      isAllOnes(N0.getOperand(1)))
14100    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14101
14102  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14103      isAllOnes(N1.getOperand(1)))
14104    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14105
14106  return SDValue();
14107}
14108
14109/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14110static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14111                                   const X86Subtarget *Subtarget) {
14112  LoadSDNode *Ld = cast<LoadSDNode>(N);
14113  EVT RegVT = Ld->getValueType(0);
14114  EVT MemVT = Ld->getMemoryVT();
14115  DebugLoc dl = Ld->getDebugLoc();
14116  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14117
14118  ISD::LoadExtType Ext = Ld->getExtensionType();
14119
14120  // If this is a vector EXT Load then attempt to optimize it using a
14121  // shuffle. We need SSE4 for the shuffles.
14122  // TODO: It is possible to support ZExt by zeroing the undef values
14123  // during the shuffle phase or after the shuffle.
14124  if (RegVT.isVector() && RegVT.isInteger() &&
14125      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14126    assert(MemVT != RegVT && "Cannot extend to the same type");
14127    assert(MemVT.isVector() && "Must load a vector from memory");
14128
14129    unsigned NumElems = RegVT.getVectorNumElements();
14130    unsigned RegSz = RegVT.getSizeInBits();
14131    unsigned MemSz = MemVT.getSizeInBits();
14132    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14133    // All sizes must be a power of two
14134    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14135
14136    // Attempt to load the original value using a single load op.
14137    // Find a scalar type which is equal to the loaded word size.
14138    MVT SclrLoadTy = MVT::i8;
14139    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14140         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14141      MVT Tp = (MVT::SimpleValueType)tp;
14142      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14143        SclrLoadTy = Tp;
14144        break;
14145      }
14146    }
14147
14148    // Proceed if a load word is found.
14149    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14150
14151    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14152      RegSz/SclrLoadTy.getSizeInBits());
14153
14154    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14155                                  RegSz/MemVT.getScalarType().getSizeInBits());
14156    // Can't shuffle using an illegal type.
14157    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14158
14159    // Perform a single load.
14160    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14161                                  Ld->getBasePtr(),
14162                                  Ld->getPointerInfo(), Ld->isVolatile(),
14163                                  Ld->isNonTemporal(), Ld->isInvariant(),
14164                                  Ld->getAlignment());
14165
14166    // Insert the word loaded into a vector.
14167    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14168      LoadUnitVecVT, ScalarLoad);
14169
14170    // Bitcast the loaded value to a vector of the original element type, in
14171    // the size of the target vector type.
14172    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14173                                    ScalarInVector);
14174    unsigned SizeRatio = RegSz/MemSz;
14175
14176    // Redistribute the loaded elements into the different locations.
14177    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14178    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14179
14180    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14181                                DAG.getUNDEF(SlicedVec.getValueType()),
14182                                ShuffleVec.data());
14183
14184    // Bitcast to the requested type.
14185    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14186    // Replace the original load with the new sequence
14187    // and return the new chain.
14188    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14189    return SDValue(ScalarLoad.getNode(), 1);
14190  }
14191
14192  return SDValue();
14193}
14194
14195/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14196static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14197                                   const X86Subtarget *Subtarget) {
14198  StoreSDNode *St = cast<StoreSDNode>(N);
14199  EVT VT = St->getValue().getValueType();
14200  EVT StVT = St->getMemoryVT();
14201  DebugLoc dl = St->getDebugLoc();
14202  SDValue StoredVal = St->getOperand(1);
14203  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14204
14205  // If we are saving a concatenation of two XMM registers, perform two stores.
14206  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14207  // 128-bit ones. If in the future the cost becomes only one memory access the
14208  // first version would be better.
14209  if (VT.getSizeInBits() == 256 &&
14210    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14211    StoredVal.getNumOperands() == 2) {
14212
14213    SDValue Value0 = StoredVal.getOperand(0);
14214    SDValue Value1 = StoredVal.getOperand(1);
14215
14216    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14217    SDValue Ptr0 = St->getBasePtr();
14218    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14219
14220    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14221                                St->getPointerInfo(), St->isVolatile(),
14222                                St->isNonTemporal(), St->getAlignment());
14223    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14224                                St->getPointerInfo(), St->isVolatile(),
14225                                St->isNonTemporal(), St->getAlignment());
14226    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14227  }
14228
14229  // Optimize trunc store (of multiple scalars) to shuffle and store.
14230  // First, pack all of the elements in one place. Next, store to memory
14231  // in fewer chunks.
14232  if (St->isTruncatingStore() && VT.isVector()) {
14233    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14234    unsigned NumElems = VT.getVectorNumElements();
14235    assert(StVT != VT && "Cannot truncate to the same type");
14236    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14237    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14238
14239    // From, To sizes and ElemCount must be pow of two
14240    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14241    // We are going to use the original vector elt for storing.
14242    // Accumulated smaller vector elements must be a multiple of the store size.
14243    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14244
14245    unsigned SizeRatio  = FromSz / ToSz;
14246
14247    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14248
14249    // Create a type on which we perform the shuffle
14250    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14251            StVT.getScalarType(), NumElems*SizeRatio);
14252
14253    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14254
14255    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14256    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14257    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14258
14259    // Can't shuffle using an illegal type
14260    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14261
14262    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14263                                DAG.getUNDEF(WideVec.getValueType()),
14264                                ShuffleVec.data());
14265    // At this point all of the data is stored at the bottom of the
14266    // register. We now need to save it to mem.
14267
14268    // Find the largest store unit
14269    MVT StoreType = MVT::i8;
14270    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14271         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14272      MVT Tp = (MVT::SimpleValueType)tp;
14273      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14274        StoreType = Tp;
14275    }
14276
14277    // Bitcast the original vector into a vector of store-size units
14278    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14279            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14280    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14281    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14282    SmallVector<SDValue, 8> Chains;
14283    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14284                                        TLI.getPointerTy());
14285    SDValue Ptr = St->getBasePtr();
14286
14287    // Perform one or more big stores into memory.
14288    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14289      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14290                                   StoreType, ShuffWide,
14291                                   DAG.getIntPtrConstant(i));
14292      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14293                                St->getPointerInfo(), St->isVolatile(),
14294                                St->isNonTemporal(), St->getAlignment());
14295      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14296      Chains.push_back(Ch);
14297    }
14298
14299    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14300                               Chains.size());
14301  }
14302
14303
14304  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14305  // the FP state in cases where an emms may be missing.
14306  // A preferable solution to the general problem is to figure out the right
14307  // places to insert EMMS.  This qualifies as a quick hack.
14308
14309  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14310  if (VT.getSizeInBits() != 64)
14311    return SDValue();
14312
14313  const Function *F = DAG.getMachineFunction().getFunction();
14314  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14315  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14316                     && Subtarget->hasSSE2();
14317  if ((VT.isVector() ||
14318       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14319      isa<LoadSDNode>(St->getValue()) &&
14320      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14321      St->getChain().hasOneUse() && !St->isVolatile()) {
14322    SDNode* LdVal = St->getValue().getNode();
14323    LoadSDNode *Ld = 0;
14324    int TokenFactorIndex = -1;
14325    SmallVector<SDValue, 8> Ops;
14326    SDNode* ChainVal = St->getChain().getNode();
14327    // Must be a store of a load.  We currently handle two cases:  the load
14328    // is a direct child, and it's under an intervening TokenFactor.  It is
14329    // possible to dig deeper under nested TokenFactors.
14330    if (ChainVal == LdVal)
14331      Ld = cast<LoadSDNode>(St->getChain());
14332    else if (St->getValue().hasOneUse() &&
14333             ChainVal->getOpcode() == ISD::TokenFactor) {
14334      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14335        if (ChainVal->getOperand(i).getNode() == LdVal) {
14336          TokenFactorIndex = i;
14337          Ld = cast<LoadSDNode>(St->getValue());
14338        } else
14339          Ops.push_back(ChainVal->getOperand(i));
14340      }
14341    }
14342
14343    if (!Ld || !ISD::isNormalLoad(Ld))
14344      return SDValue();
14345
14346    // If this is not the MMX case, i.e. we are just turning i64 load/store
14347    // into f64 load/store, avoid the transformation if there are multiple
14348    // uses of the loaded value.
14349    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14350      return SDValue();
14351
14352    DebugLoc LdDL = Ld->getDebugLoc();
14353    DebugLoc StDL = N->getDebugLoc();
14354    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14355    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14356    // pair instead.
14357    if (Subtarget->is64Bit() || F64IsLegal) {
14358      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14359      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14360                                  Ld->getPointerInfo(), Ld->isVolatile(),
14361                                  Ld->isNonTemporal(), Ld->isInvariant(),
14362                                  Ld->getAlignment());
14363      SDValue NewChain = NewLd.getValue(1);
14364      if (TokenFactorIndex != -1) {
14365        Ops.push_back(NewChain);
14366        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14367                               Ops.size());
14368      }
14369      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14370                          St->getPointerInfo(),
14371                          St->isVolatile(), St->isNonTemporal(),
14372                          St->getAlignment());
14373    }
14374
14375    // Otherwise, lower to two pairs of 32-bit loads / stores.
14376    SDValue LoAddr = Ld->getBasePtr();
14377    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14378                                 DAG.getConstant(4, MVT::i32));
14379
14380    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14381                               Ld->getPointerInfo(),
14382                               Ld->isVolatile(), Ld->isNonTemporal(),
14383                               Ld->isInvariant(), Ld->getAlignment());
14384    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14385                               Ld->getPointerInfo().getWithOffset(4),
14386                               Ld->isVolatile(), Ld->isNonTemporal(),
14387                               Ld->isInvariant(),
14388                               MinAlign(Ld->getAlignment(), 4));
14389
14390    SDValue NewChain = LoLd.getValue(1);
14391    if (TokenFactorIndex != -1) {
14392      Ops.push_back(LoLd);
14393      Ops.push_back(HiLd);
14394      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14395                             Ops.size());
14396    }
14397
14398    LoAddr = St->getBasePtr();
14399    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14400                         DAG.getConstant(4, MVT::i32));
14401
14402    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14403                                St->getPointerInfo(),
14404                                St->isVolatile(), St->isNonTemporal(),
14405                                St->getAlignment());
14406    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14407                                St->getPointerInfo().getWithOffset(4),
14408                                St->isVolatile(),
14409                                St->isNonTemporal(),
14410                                MinAlign(St->getAlignment(), 4));
14411    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14412  }
14413  return SDValue();
14414}
14415
14416/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14417/// and return the operands for the horizontal operation in LHS and RHS.  A
14418/// horizontal operation performs the binary operation on successive elements
14419/// of its first operand, then on successive elements of its second operand,
14420/// returning the resulting values in a vector.  For example, if
14421///   A = < float a0, float a1, float a2, float a3 >
14422/// and
14423///   B = < float b0, float b1, float b2, float b3 >
14424/// then the result of doing a horizontal operation on A and B is
14425///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14426/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14427/// A horizontal-op B, for some already available A and B, and if so then LHS is
14428/// set to A, RHS to B, and the routine returns 'true'.
14429/// Note that the binary operation should have the property that if one of the
14430/// operands is UNDEF then the result is UNDEF.
14431static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14432  // Look for the following pattern: if
14433  //   A = < float a0, float a1, float a2, float a3 >
14434  //   B = < float b0, float b1, float b2, float b3 >
14435  // and
14436  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14437  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14438  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14439  // which is A horizontal-op B.
14440
14441  // At least one of the operands should be a vector shuffle.
14442  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14443      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14444    return false;
14445
14446  EVT VT = LHS.getValueType();
14447
14448  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14449         "Unsupported vector type for horizontal add/sub");
14450
14451  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14452  // operate independently on 128-bit lanes.
14453  unsigned NumElts = VT.getVectorNumElements();
14454  unsigned NumLanes = VT.getSizeInBits()/128;
14455  unsigned NumLaneElts = NumElts / NumLanes;
14456  assert((NumLaneElts % 2 == 0) &&
14457         "Vector type should have an even number of elements in each lane");
14458  unsigned HalfLaneElts = NumLaneElts/2;
14459
14460  // View LHS in the form
14461  //   LHS = VECTOR_SHUFFLE A, B, LMask
14462  // If LHS is not a shuffle then pretend it is the shuffle
14463  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14464  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14465  // type VT.
14466  SDValue A, B;
14467  SmallVector<int, 16> LMask(NumElts);
14468  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14469    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14470      A = LHS.getOperand(0);
14471    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14472      B = LHS.getOperand(1);
14473    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14474    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14475  } else {
14476    if (LHS.getOpcode() != ISD::UNDEF)
14477      A = LHS;
14478    for (unsigned i = 0; i != NumElts; ++i)
14479      LMask[i] = i;
14480  }
14481
14482  // Likewise, view RHS in the form
14483  //   RHS = VECTOR_SHUFFLE C, D, RMask
14484  SDValue C, D;
14485  SmallVector<int, 16> RMask(NumElts);
14486  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14487    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14488      C = RHS.getOperand(0);
14489    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14490      D = RHS.getOperand(1);
14491    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14492    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14493  } else {
14494    if (RHS.getOpcode() != ISD::UNDEF)
14495      C = RHS;
14496    for (unsigned i = 0; i != NumElts; ++i)
14497      RMask[i] = i;
14498  }
14499
14500  // Check that the shuffles are both shuffling the same vectors.
14501  if (!(A == C && B == D) && !(A == D && B == C))
14502    return false;
14503
14504  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14505  if (!A.getNode() && !B.getNode())
14506    return false;
14507
14508  // If A and B occur in reverse order in RHS, then "swap" them (which means
14509  // rewriting the mask).
14510  if (A != C)
14511    CommuteVectorShuffleMask(RMask, NumElts);
14512
14513  // At this point LHS and RHS are equivalent to
14514  //   LHS = VECTOR_SHUFFLE A, B, LMask
14515  //   RHS = VECTOR_SHUFFLE A, B, RMask
14516  // Check that the masks correspond to performing a horizontal operation.
14517  for (unsigned i = 0; i != NumElts; ++i) {
14518    int LIdx = LMask[i], RIdx = RMask[i];
14519
14520    // Ignore any UNDEF components.
14521    if (LIdx < 0 || RIdx < 0 ||
14522        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14523        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14524      continue;
14525
14526    // Check that successive elements are being operated on.  If not, this is
14527    // not a horizontal operation.
14528    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14529    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14530    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14531    if (!(LIdx == Index && RIdx == Index + 1) &&
14532        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14533      return false;
14534  }
14535
14536  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14537  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14538  return true;
14539}
14540
14541/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14542static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14543                                  const X86Subtarget *Subtarget) {
14544  EVT VT = N->getValueType(0);
14545  SDValue LHS = N->getOperand(0);
14546  SDValue RHS = N->getOperand(1);
14547
14548  // Try to synthesize horizontal adds from adds of shuffles.
14549  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14550       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14551      isHorizontalBinOp(LHS, RHS, true))
14552    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14553  return SDValue();
14554}
14555
14556/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14557static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14558                                  const X86Subtarget *Subtarget) {
14559  EVT VT = N->getValueType(0);
14560  SDValue LHS = N->getOperand(0);
14561  SDValue RHS = N->getOperand(1);
14562
14563  // Try to synthesize horizontal subs from subs of shuffles.
14564  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14565       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14566      isHorizontalBinOp(LHS, RHS, false))
14567    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14568  return SDValue();
14569}
14570
14571/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14572/// X86ISD::FXOR nodes.
14573static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14574  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14575  // F[X]OR(0.0, x) -> x
14576  // F[X]OR(x, 0.0) -> x
14577  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14578    if (C->getValueAPF().isPosZero())
14579      return N->getOperand(1);
14580  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14581    if (C->getValueAPF().isPosZero())
14582      return N->getOperand(0);
14583  return SDValue();
14584}
14585
14586/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14587static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14588  // FAND(0.0, x) -> 0.0
14589  // FAND(x, 0.0) -> 0.0
14590  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14591    if (C->getValueAPF().isPosZero())
14592      return N->getOperand(0);
14593  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14594    if (C->getValueAPF().isPosZero())
14595      return N->getOperand(1);
14596  return SDValue();
14597}
14598
14599static SDValue PerformBTCombine(SDNode *N,
14600                                SelectionDAG &DAG,
14601                                TargetLowering::DAGCombinerInfo &DCI) {
14602  // BT ignores high bits in the bit index operand.
14603  SDValue Op1 = N->getOperand(1);
14604  if (Op1.hasOneUse()) {
14605    unsigned BitWidth = Op1.getValueSizeInBits();
14606    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14607    APInt KnownZero, KnownOne;
14608    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14609                                          !DCI.isBeforeLegalizeOps());
14610    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14611    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14612        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14613      DCI.CommitTargetLoweringOpt(TLO);
14614  }
14615  return SDValue();
14616}
14617
14618static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14619  SDValue Op = N->getOperand(0);
14620  if (Op.getOpcode() == ISD::BITCAST)
14621    Op = Op.getOperand(0);
14622  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14623  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14624      VT.getVectorElementType().getSizeInBits() ==
14625      OpVT.getVectorElementType().getSizeInBits()) {
14626    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14627  }
14628  return SDValue();
14629}
14630
14631static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14632                                  TargetLowering::DAGCombinerInfo &DCI,
14633                                  const X86Subtarget *Subtarget) {
14634  if (!DCI.isBeforeLegalizeOps())
14635    return SDValue();
14636
14637  if (!Subtarget->hasAVX())
14638    return SDValue();
14639
14640  // Optimize vectors in AVX mode
14641  // Sign extend  v8i16 to v8i32 and
14642  //              v4i32 to v4i64
14643  //
14644  // Divide input vector into two parts
14645  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14646  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14647  // concat the vectors to original VT
14648
14649  EVT VT = N->getValueType(0);
14650  SDValue Op = N->getOperand(0);
14651  EVT OpVT = Op.getValueType();
14652  DebugLoc dl = N->getDebugLoc();
14653
14654  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14655      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14656
14657    unsigned NumElems = OpVT.getVectorNumElements();
14658    SmallVector<int,8> ShufMask1(NumElems, -1);
14659    for (unsigned i = 0; i < NumElems/2; i++) ShufMask1[i] = i;
14660
14661    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14662                                        ShufMask1.data());
14663
14664    SmallVector<int,8> ShufMask2(NumElems, -1);
14665    for (unsigned i = 0; i < NumElems/2; i++) ShufMask2[i] = i + NumElems/2;
14666
14667    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14668                                        ShufMask2.data());
14669
14670    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14671                                  VT.getVectorNumElements()/2);
14672
14673    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14674    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14675
14676    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14677  }
14678  return SDValue();
14679}
14680
14681static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14682                                  const X86Subtarget *Subtarget) {
14683  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14684  //           (and (i32 x86isd::setcc_carry), 1)
14685  // This eliminates the zext. This transformation is necessary because
14686  // ISD::SETCC is always legalized to i8.
14687  DebugLoc dl = N->getDebugLoc();
14688  SDValue N0 = N->getOperand(0);
14689  EVT VT = N->getValueType(0);
14690  EVT OpVT = N0.getValueType();
14691
14692  if (N0.getOpcode() == ISD::AND &&
14693      N0.hasOneUse() &&
14694      N0.getOperand(0).hasOneUse()) {
14695    SDValue N00 = N0.getOperand(0);
14696    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14697      return SDValue();
14698    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14699    if (!C || C->getZExtValue() != 1)
14700      return SDValue();
14701    return DAG.getNode(ISD::AND, dl, VT,
14702                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14703                                   N00.getOperand(0), N00.getOperand(1)),
14704                       DAG.getConstant(1, VT));
14705  }
14706  // Optimize vectors in AVX mode:
14707  //
14708  //   v8i16 -> v8i32
14709  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14710  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14711  //   Concat upper and lower parts.
14712  //
14713  //   v4i32 -> v4i64
14714  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14715  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14716  //   Concat upper and lower parts.
14717  //
14718  if (Subtarget->hasAVX()) {
14719
14720    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14721      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14722
14723      SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14724      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14725      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14726
14727      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14728        VT.getVectorNumElements()/2);
14729
14730      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14731      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14732
14733      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14734    }
14735  }
14736
14737
14738  return SDValue();
14739}
14740
14741// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14742static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14743  unsigned X86CC = N->getConstantOperandVal(0);
14744  SDValue EFLAG = N->getOperand(1);
14745  DebugLoc DL = N->getDebugLoc();
14746
14747  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14748  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14749  // cases.
14750  if (X86CC == X86::COND_B)
14751    return DAG.getNode(ISD::AND, DL, MVT::i8,
14752                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14753                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14754                       DAG.getConstant(1, MVT::i8));
14755
14756  return SDValue();
14757}
14758
14759static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14760                                        const X86TargetLowering *XTLI) {
14761  SDValue Op0 = N->getOperand(0);
14762  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14763  // a 32-bit target where SSE doesn't support i64->FP operations.
14764  if (Op0.getOpcode() == ISD::LOAD) {
14765    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14766    EVT VT = Ld->getValueType(0);
14767    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14768        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14769        !XTLI->getSubtarget()->is64Bit() &&
14770        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14771      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14772                                          Ld->getChain(), Op0, DAG);
14773      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14774      return FILDChain;
14775    }
14776  }
14777  return SDValue();
14778}
14779
14780// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14781static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14782                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14783  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14784  // the result is either zero or one (depending on the input carry bit).
14785  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14786  if (X86::isZeroNode(N->getOperand(0)) &&
14787      X86::isZeroNode(N->getOperand(1)) &&
14788      // We don't have a good way to replace an EFLAGS use, so only do this when
14789      // dead right now.
14790      SDValue(N, 1).use_empty()) {
14791    DebugLoc DL = N->getDebugLoc();
14792    EVT VT = N->getValueType(0);
14793    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14794    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14795                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14796                                           DAG.getConstant(X86::COND_B,MVT::i8),
14797                                           N->getOperand(2)),
14798                               DAG.getConstant(1, VT));
14799    return DCI.CombineTo(N, Res1, CarryOut);
14800  }
14801
14802  return SDValue();
14803}
14804
14805// fold (add Y, (sete  X, 0)) -> adc  0, Y
14806//      (add Y, (setne X, 0)) -> sbb -1, Y
14807//      (sub (sete  X, 0), Y) -> sbb  0, Y
14808//      (sub (setne X, 0), Y) -> adc -1, Y
14809static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14810  DebugLoc DL = N->getDebugLoc();
14811
14812  // Look through ZExts.
14813  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14814  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14815    return SDValue();
14816
14817  SDValue SetCC = Ext.getOperand(0);
14818  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14819    return SDValue();
14820
14821  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14822  if (CC != X86::COND_E && CC != X86::COND_NE)
14823    return SDValue();
14824
14825  SDValue Cmp = SetCC.getOperand(1);
14826  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14827      !X86::isZeroNode(Cmp.getOperand(1)) ||
14828      !Cmp.getOperand(0).getValueType().isInteger())
14829    return SDValue();
14830
14831  SDValue CmpOp0 = Cmp.getOperand(0);
14832  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14833                               DAG.getConstant(1, CmpOp0.getValueType()));
14834
14835  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14836  if (CC == X86::COND_NE)
14837    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14838                       DL, OtherVal.getValueType(), OtherVal,
14839                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14840  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14841                     DL, OtherVal.getValueType(), OtherVal,
14842                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14843}
14844
14845/// PerformADDCombine - Do target-specific dag combines on integer adds.
14846static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14847                                 const X86Subtarget *Subtarget) {
14848  EVT VT = N->getValueType(0);
14849  SDValue Op0 = N->getOperand(0);
14850  SDValue Op1 = N->getOperand(1);
14851
14852  // Try to synthesize horizontal adds from adds of shuffles.
14853  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14854       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14855      isHorizontalBinOp(Op0, Op1, true))
14856    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14857
14858  return OptimizeConditionalInDecrement(N, DAG);
14859}
14860
14861static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14862                                 const X86Subtarget *Subtarget) {
14863  SDValue Op0 = N->getOperand(0);
14864  SDValue Op1 = N->getOperand(1);
14865
14866  // X86 can't encode an immediate LHS of a sub. See if we can push the
14867  // negation into a preceding instruction.
14868  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14869    // If the RHS of the sub is a XOR with one use and a constant, invert the
14870    // immediate. Then add one to the LHS of the sub so we can turn
14871    // X-Y -> X+~Y+1, saving one register.
14872    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14873        isa<ConstantSDNode>(Op1.getOperand(1))) {
14874      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14875      EVT VT = Op0.getValueType();
14876      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14877                                   Op1.getOperand(0),
14878                                   DAG.getConstant(~XorC, VT));
14879      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14880                         DAG.getConstant(C->getAPIntValue()+1, VT));
14881    }
14882  }
14883
14884  // Try to synthesize horizontal adds from adds of shuffles.
14885  EVT VT = N->getValueType(0);
14886  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14887       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14888      isHorizontalBinOp(Op0, Op1, true))
14889    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
14890
14891  return OptimizeConditionalInDecrement(N, DAG);
14892}
14893
14894SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14895                                             DAGCombinerInfo &DCI) const {
14896  SelectionDAG &DAG = DCI.DAG;
14897  switch (N->getOpcode()) {
14898  default: break;
14899  case ISD::EXTRACT_VECTOR_ELT:
14900    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14901  case ISD::VSELECT:
14902  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
14903  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14904  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
14905  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
14906  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14907  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14908  case ISD::SHL:
14909  case ISD::SRA:
14910  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
14911  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14912  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14913  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
14914  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14915  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14916  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14917  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14918  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14919  case X86ISD::FXOR:
14920  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14921  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14922  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14923  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14924  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
14925  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
14926  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
14927  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14928  case X86ISD::SHUFP:       // Handle all target specific shuffles
14929  case X86ISD::PALIGN:
14930  case X86ISD::UNPCKH:
14931  case X86ISD::UNPCKL:
14932  case X86ISD::MOVHLPS:
14933  case X86ISD::MOVLHPS:
14934  case X86ISD::PSHUFD:
14935  case X86ISD::PSHUFHW:
14936  case X86ISD::PSHUFLW:
14937  case X86ISD::MOVSS:
14938  case X86ISD::MOVSD:
14939  case X86ISD::VPERMILP:
14940  case X86ISD::VPERM2X128:
14941  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14942  }
14943
14944  return SDValue();
14945}
14946
14947/// isTypeDesirableForOp - Return true if the target has native support for
14948/// the specified value type and it is 'desirable' to use the type for the
14949/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14950/// instruction encodings are longer and some i16 instructions are slow.
14951bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14952  if (!isTypeLegal(VT))
14953    return false;
14954  if (VT != MVT::i16)
14955    return true;
14956
14957  switch (Opc) {
14958  default:
14959    return true;
14960  case ISD::LOAD:
14961  case ISD::SIGN_EXTEND:
14962  case ISD::ZERO_EXTEND:
14963  case ISD::ANY_EXTEND:
14964  case ISD::SHL:
14965  case ISD::SRL:
14966  case ISD::SUB:
14967  case ISD::ADD:
14968  case ISD::MUL:
14969  case ISD::AND:
14970  case ISD::OR:
14971  case ISD::XOR:
14972    return false;
14973  }
14974}
14975
14976/// IsDesirableToPromoteOp - This method query the target whether it is
14977/// beneficial for dag combiner to promote the specified node. If true, it
14978/// should return the desired promotion type by reference.
14979bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14980  EVT VT = Op.getValueType();
14981  if (VT != MVT::i16)
14982    return false;
14983
14984  bool Promote = false;
14985  bool Commute = false;
14986  switch (Op.getOpcode()) {
14987  default: break;
14988  case ISD::LOAD: {
14989    LoadSDNode *LD = cast<LoadSDNode>(Op);
14990    // If the non-extending load has a single use and it's not live out, then it
14991    // might be folded.
14992    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14993                                                     Op.hasOneUse()*/) {
14994      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14995             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14996        // The only case where we'd want to promote LOAD (rather then it being
14997        // promoted as an operand is when it's only use is liveout.
14998        if (UI->getOpcode() != ISD::CopyToReg)
14999          return false;
15000      }
15001    }
15002    Promote = true;
15003    break;
15004  }
15005  case ISD::SIGN_EXTEND:
15006  case ISD::ZERO_EXTEND:
15007  case ISD::ANY_EXTEND:
15008    Promote = true;
15009    break;
15010  case ISD::SHL:
15011  case ISD::SRL: {
15012    SDValue N0 = Op.getOperand(0);
15013    // Look out for (store (shl (load), x)).
15014    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15015      return false;
15016    Promote = true;
15017    break;
15018  }
15019  case ISD::ADD:
15020  case ISD::MUL:
15021  case ISD::AND:
15022  case ISD::OR:
15023  case ISD::XOR:
15024    Commute = true;
15025    // fallthrough
15026  case ISD::SUB: {
15027    SDValue N0 = Op.getOperand(0);
15028    SDValue N1 = Op.getOperand(1);
15029    if (!Commute && MayFoldLoad(N1))
15030      return false;
15031    // Avoid disabling potential load folding opportunities.
15032    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15033      return false;
15034    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15035      return false;
15036    Promote = true;
15037  }
15038  }
15039
15040  PVT = MVT::i32;
15041  return Promote;
15042}
15043
15044//===----------------------------------------------------------------------===//
15045//                           X86 Inline Assembly Support
15046//===----------------------------------------------------------------------===//
15047
15048namespace {
15049  // Helper to match a string separated by whitespace.
15050  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15051    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15052
15053    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15054      StringRef piece(*args[i]);
15055      if (!s.startswith(piece)) // Check if the piece matches.
15056        return false;
15057
15058      s = s.substr(piece.size());
15059      StringRef::size_type pos = s.find_first_not_of(" \t");
15060      if (pos == 0) // We matched a prefix.
15061        return false;
15062
15063      s = s.substr(pos);
15064    }
15065
15066    return s.empty();
15067  }
15068  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15069}
15070
15071bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15072  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15073
15074  std::string AsmStr = IA->getAsmString();
15075
15076  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15077  if (!Ty || Ty->getBitWidth() % 16 != 0)
15078    return false;
15079
15080  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15081  SmallVector<StringRef, 4> AsmPieces;
15082  SplitString(AsmStr, AsmPieces, ";\n");
15083
15084  switch (AsmPieces.size()) {
15085  default: return false;
15086  case 1:
15087    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15088    // we will turn this bswap into something that will be lowered to logical
15089    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15090    // lower so don't worry about this.
15091    // bswap $0
15092    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15093        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15094        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15095        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15096        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15097        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15098      // No need to check constraints, nothing other than the equivalent of
15099      // "=r,0" would be valid here.
15100      return IntrinsicLowering::LowerToByteSwap(CI);
15101    }
15102
15103    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15104    if (CI->getType()->isIntegerTy(16) &&
15105        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15106        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15107         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15108      AsmPieces.clear();
15109      const std::string &ConstraintsStr = IA->getConstraintString();
15110      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15111      std::sort(AsmPieces.begin(), AsmPieces.end());
15112      if (AsmPieces.size() == 4 &&
15113          AsmPieces[0] == "~{cc}" &&
15114          AsmPieces[1] == "~{dirflag}" &&
15115          AsmPieces[2] == "~{flags}" &&
15116          AsmPieces[3] == "~{fpsr}")
15117      return IntrinsicLowering::LowerToByteSwap(CI);
15118    }
15119    break;
15120  case 3:
15121    if (CI->getType()->isIntegerTy(32) &&
15122        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15123        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15124        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15125        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15126      AsmPieces.clear();
15127      const std::string &ConstraintsStr = IA->getConstraintString();
15128      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15129      std::sort(AsmPieces.begin(), AsmPieces.end());
15130      if (AsmPieces.size() == 4 &&
15131          AsmPieces[0] == "~{cc}" &&
15132          AsmPieces[1] == "~{dirflag}" &&
15133          AsmPieces[2] == "~{flags}" &&
15134          AsmPieces[3] == "~{fpsr}")
15135        return IntrinsicLowering::LowerToByteSwap(CI);
15136    }
15137
15138    if (CI->getType()->isIntegerTy(64)) {
15139      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15140      if (Constraints.size() >= 2 &&
15141          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15142          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15143        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15144        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15145            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15146            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15147          return IntrinsicLowering::LowerToByteSwap(CI);
15148      }
15149    }
15150    break;
15151  }
15152  return false;
15153}
15154
15155
15156
15157/// getConstraintType - Given a constraint letter, return the type of
15158/// constraint it is for this target.
15159X86TargetLowering::ConstraintType
15160X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15161  if (Constraint.size() == 1) {
15162    switch (Constraint[0]) {
15163    case 'R':
15164    case 'q':
15165    case 'Q':
15166    case 'f':
15167    case 't':
15168    case 'u':
15169    case 'y':
15170    case 'x':
15171    case 'Y':
15172    case 'l':
15173      return C_RegisterClass;
15174    case 'a':
15175    case 'b':
15176    case 'c':
15177    case 'd':
15178    case 'S':
15179    case 'D':
15180    case 'A':
15181      return C_Register;
15182    case 'I':
15183    case 'J':
15184    case 'K':
15185    case 'L':
15186    case 'M':
15187    case 'N':
15188    case 'G':
15189    case 'C':
15190    case 'e':
15191    case 'Z':
15192      return C_Other;
15193    default:
15194      break;
15195    }
15196  }
15197  return TargetLowering::getConstraintType(Constraint);
15198}
15199
15200/// Examine constraint type and operand type and determine a weight value.
15201/// This object must already have been set up with the operand type
15202/// and the current alternative constraint selected.
15203TargetLowering::ConstraintWeight
15204  X86TargetLowering::getSingleConstraintMatchWeight(
15205    AsmOperandInfo &info, const char *constraint) const {
15206  ConstraintWeight weight = CW_Invalid;
15207  Value *CallOperandVal = info.CallOperandVal;
15208    // If we don't have a value, we can't do a match,
15209    // but allow it at the lowest weight.
15210  if (CallOperandVal == NULL)
15211    return CW_Default;
15212  Type *type = CallOperandVal->getType();
15213  // Look at the constraint type.
15214  switch (*constraint) {
15215  default:
15216    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15217  case 'R':
15218  case 'q':
15219  case 'Q':
15220  case 'a':
15221  case 'b':
15222  case 'c':
15223  case 'd':
15224  case 'S':
15225  case 'D':
15226  case 'A':
15227    if (CallOperandVal->getType()->isIntegerTy())
15228      weight = CW_SpecificReg;
15229    break;
15230  case 'f':
15231  case 't':
15232  case 'u':
15233      if (type->isFloatingPointTy())
15234        weight = CW_SpecificReg;
15235      break;
15236  case 'y':
15237      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15238        weight = CW_SpecificReg;
15239      break;
15240  case 'x':
15241  case 'Y':
15242    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15243        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15244      weight = CW_Register;
15245    break;
15246  case 'I':
15247    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15248      if (C->getZExtValue() <= 31)
15249        weight = CW_Constant;
15250    }
15251    break;
15252  case 'J':
15253    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15254      if (C->getZExtValue() <= 63)
15255        weight = CW_Constant;
15256    }
15257    break;
15258  case 'K':
15259    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15260      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15261        weight = CW_Constant;
15262    }
15263    break;
15264  case 'L':
15265    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15266      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15267        weight = CW_Constant;
15268    }
15269    break;
15270  case 'M':
15271    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15272      if (C->getZExtValue() <= 3)
15273        weight = CW_Constant;
15274    }
15275    break;
15276  case 'N':
15277    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15278      if (C->getZExtValue() <= 0xff)
15279        weight = CW_Constant;
15280    }
15281    break;
15282  case 'G':
15283  case 'C':
15284    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15285      weight = CW_Constant;
15286    }
15287    break;
15288  case 'e':
15289    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15290      if ((C->getSExtValue() >= -0x80000000LL) &&
15291          (C->getSExtValue() <= 0x7fffffffLL))
15292        weight = CW_Constant;
15293    }
15294    break;
15295  case 'Z':
15296    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15297      if (C->getZExtValue() <= 0xffffffff)
15298        weight = CW_Constant;
15299    }
15300    break;
15301  }
15302  return weight;
15303}
15304
15305/// LowerXConstraint - try to replace an X constraint, which matches anything,
15306/// with another that has more specific requirements based on the type of the
15307/// corresponding operand.
15308const char *X86TargetLowering::
15309LowerXConstraint(EVT ConstraintVT) const {
15310  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15311  // 'f' like normal targets.
15312  if (ConstraintVT.isFloatingPoint()) {
15313    if (Subtarget->hasSSE2())
15314      return "Y";
15315    if (Subtarget->hasSSE1())
15316      return "x";
15317  }
15318
15319  return TargetLowering::LowerXConstraint(ConstraintVT);
15320}
15321
15322/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15323/// vector.  If it is invalid, don't add anything to Ops.
15324void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15325                                                     std::string &Constraint,
15326                                                     std::vector<SDValue>&Ops,
15327                                                     SelectionDAG &DAG) const {
15328  SDValue Result(0, 0);
15329
15330  // Only support length 1 constraints for now.
15331  if (Constraint.length() > 1) return;
15332
15333  char ConstraintLetter = Constraint[0];
15334  switch (ConstraintLetter) {
15335  default: break;
15336  case 'I':
15337    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15338      if (C->getZExtValue() <= 31) {
15339        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15340        break;
15341      }
15342    }
15343    return;
15344  case 'J':
15345    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15346      if (C->getZExtValue() <= 63) {
15347        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15348        break;
15349      }
15350    }
15351    return;
15352  case 'K':
15353    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15354      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15355        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15356        break;
15357      }
15358    }
15359    return;
15360  case 'N':
15361    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15362      if (C->getZExtValue() <= 255) {
15363        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15364        break;
15365      }
15366    }
15367    return;
15368  case 'e': {
15369    // 32-bit signed value
15370    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15371      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15372                                           C->getSExtValue())) {
15373        // Widen to 64 bits here to get it sign extended.
15374        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15375        break;
15376      }
15377    // FIXME gcc accepts some relocatable values here too, but only in certain
15378    // memory models; it's complicated.
15379    }
15380    return;
15381  }
15382  case 'Z': {
15383    // 32-bit unsigned value
15384    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15385      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15386                                           C->getZExtValue())) {
15387        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15388        break;
15389      }
15390    }
15391    // FIXME gcc accepts some relocatable values here too, but only in certain
15392    // memory models; it's complicated.
15393    return;
15394  }
15395  case 'i': {
15396    // Literal immediates are always ok.
15397    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15398      // Widen to 64 bits here to get it sign extended.
15399      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15400      break;
15401    }
15402
15403    // In any sort of PIC mode addresses need to be computed at runtime by
15404    // adding in a register or some sort of table lookup.  These can't
15405    // be used as immediates.
15406    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15407      return;
15408
15409    // If we are in non-pic codegen mode, we allow the address of a global (with
15410    // an optional displacement) to be used with 'i'.
15411    GlobalAddressSDNode *GA = 0;
15412    int64_t Offset = 0;
15413
15414    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15415    while (1) {
15416      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15417        Offset += GA->getOffset();
15418        break;
15419      } else if (Op.getOpcode() == ISD::ADD) {
15420        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15421          Offset += C->getZExtValue();
15422          Op = Op.getOperand(0);
15423          continue;
15424        }
15425      } else if (Op.getOpcode() == ISD::SUB) {
15426        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15427          Offset += -C->getZExtValue();
15428          Op = Op.getOperand(0);
15429          continue;
15430        }
15431      }
15432
15433      // Otherwise, this isn't something we can handle, reject it.
15434      return;
15435    }
15436
15437    const GlobalValue *GV = GA->getGlobal();
15438    // If we require an extra load to get this address, as in PIC mode, we
15439    // can't accept it.
15440    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15441                                                        getTargetMachine())))
15442      return;
15443
15444    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15445                                        GA->getValueType(0), Offset);
15446    break;
15447  }
15448  }
15449
15450  if (Result.getNode()) {
15451    Ops.push_back(Result);
15452    return;
15453  }
15454  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15455}
15456
15457std::pair<unsigned, const TargetRegisterClass*>
15458X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15459                                                EVT VT) const {
15460  // First, see if this is a constraint that directly corresponds to an LLVM
15461  // register class.
15462  if (Constraint.size() == 1) {
15463    // GCC Constraint Letters
15464    switch (Constraint[0]) {
15465    default: break;
15466      // TODO: Slight differences here in allocation order and leaving
15467      // RIP in the class. Do they matter any more here than they do
15468      // in the normal allocation?
15469    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15470      if (Subtarget->is64Bit()) {
15471	if (VT == MVT::i32 || VT == MVT::f32)
15472	  return std::make_pair(0U, X86::GR32RegisterClass);
15473	else if (VT == MVT::i16)
15474	  return std::make_pair(0U, X86::GR16RegisterClass);
15475	else if (VT == MVT::i8 || VT == MVT::i1)
15476	  return std::make_pair(0U, X86::GR8RegisterClass);
15477	else if (VT == MVT::i64 || VT == MVT::f64)
15478	  return std::make_pair(0U, X86::GR64RegisterClass);
15479	break;
15480      }
15481      // 32-bit fallthrough
15482    case 'Q':   // Q_REGS
15483      if (VT == MVT::i32 || VT == MVT::f32)
15484	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15485      else if (VT == MVT::i16)
15486	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15487      else if (VT == MVT::i8 || VT == MVT::i1)
15488	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15489      else if (VT == MVT::i64)
15490	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15491      break;
15492    case 'r':   // GENERAL_REGS
15493    case 'l':   // INDEX_REGS
15494      if (VT == MVT::i8 || VT == MVT::i1)
15495        return std::make_pair(0U, X86::GR8RegisterClass);
15496      if (VT == MVT::i16)
15497        return std::make_pair(0U, X86::GR16RegisterClass);
15498      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15499        return std::make_pair(0U, X86::GR32RegisterClass);
15500      return std::make_pair(0U, X86::GR64RegisterClass);
15501    case 'R':   // LEGACY_REGS
15502      if (VT == MVT::i8 || VT == MVT::i1)
15503        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15504      if (VT == MVT::i16)
15505        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15506      if (VT == MVT::i32 || !Subtarget->is64Bit())
15507        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15508      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15509    case 'f':  // FP Stack registers.
15510      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15511      // value to the correct fpstack register class.
15512      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15513        return std::make_pair(0U, X86::RFP32RegisterClass);
15514      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15515        return std::make_pair(0U, X86::RFP64RegisterClass);
15516      return std::make_pair(0U, X86::RFP80RegisterClass);
15517    case 'y':   // MMX_REGS if MMX allowed.
15518      if (!Subtarget->hasMMX()) break;
15519      return std::make_pair(0U, X86::VR64RegisterClass);
15520    case 'Y':   // SSE_REGS if SSE2 allowed
15521      if (!Subtarget->hasSSE2()) break;
15522      // FALL THROUGH.
15523    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15524      if (!Subtarget->hasSSE1()) break;
15525
15526      switch (VT.getSimpleVT().SimpleTy) {
15527      default: break;
15528      // Scalar SSE types.
15529      case MVT::f32:
15530      case MVT::i32:
15531        return std::make_pair(0U, X86::FR32RegisterClass);
15532      case MVT::f64:
15533      case MVT::i64:
15534        return std::make_pair(0U, X86::FR64RegisterClass);
15535      // Vector types.
15536      case MVT::v16i8:
15537      case MVT::v8i16:
15538      case MVT::v4i32:
15539      case MVT::v2i64:
15540      case MVT::v4f32:
15541      case MVT::v2f64:
15542        return std::make_pair(0U, X86::VR128RegisterClass);
15543      // AVX types.
15544      case MVT::v32i8:
15545      case MVT::v16i16:
15546      case MVT::v8i32:
15547      case MVT::v4i64:
15548      case MVT::v8f32:
15549      case MVT::v4f64:
15550        return std::make_pair(0U, X86::VR256RegisterClass);
15551
15552      }
15553      break;
15554    }
15555  }
15556
15557  // Use the default implementation in TargetLowering to convert the register
15558  // constraint into a member of a register class.
15559  std::pair<unsigned, const TargetRegisterClass*> Res;
15560  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15561
15562  // Not found as a standard register?
15563  if (Res.second == 0) {
15564    // Map st(0) -> st(7) -> ST0
15565    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15566        tolower(Constraint[1]) == 's' &&
15567        tolower(Constraint[2]) == 't' &&
15568        Constraint[3] == '(' &&
15569        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15570        Constraint[5] == ')' &&
15571        Constraint[6] == '}') {
15572
15573      Res.first = X86::ST0+Constraint[4]-'0';
15574      Res.second = X86::RFP80RegisterClass;
15575      return Res;
15576    }
15577
15578    // GCC allows "st(0)" to be called just plain "st".
15579    if (StringRef("{st}").equals_lower(Constraint)) {
15580      Res.first = X86::ST0;
15581      Res.second = X86::RFP80RegisterClass;
15582      return Res;
15583    }
15584
15585    // flags -> EFLAGS
15586    if (StringRef("{flags}").equals_lower(Constraint)) {
15587      Res.first = X86::EFLAGS;
15588      Res.second = X86::CCRRegisterClass;
15589      return Res;
15590    }
15591
15592    // 'A' means EAX + EDX.
15593    if (Constraint == "A") {
15594      Res.first = X86::EAX;
15595      Res.second = X86::GR32_ADRegisterClass;
15596      return Res;
15597    }
15598    return Res;
15599  }
15600
15601  // Otherwise, check to see if this is a register class of the wrong value
15602  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15603  // turn into {ax},{dx}.
15604  if (Res.second->hasType(VT))
15605    return Res;   // Correct type already, nothing to do.
15606
15607  // All of the single-register GCC register classes map their values onto
15608  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15609  // really want an 8-bit or 32-bit register, map to the appropriate register
15610  // class and return the appropriate register.
15611  if (Res.second == X86::GR16RegisterClass) {
15612    if (VT == MVT::i8) {
15613      unsigned DestReg = 0;
15614      switch (Res.first) {
15615      default: break;
15616      case X86::AX: DestReg = X86::AL; break;
15617      case X86::DX: DestReg = X86::DL; break;
15618      case X86::CX: DestReg = X86::CL; break;
15619      case X86::BX: DestReg = X86::BL; break;
15620      }
15621      if (DestReg) {
15622        Res.first = DestReg;
15623        Res.second = X86::GR8RegisterClass;
15624      }
15625    } else if (VT == MVT::i32) {
15626      unsigned DestReg = 0;
15627      switch (Res.first) {
15628      default: break;
15629      case X86::AX: DestReg = X86::EAX; break;
15630      case X86::DX: DestReg = X86::EDX; break;
15631      case X86::CX: DestReg = X86::ECX; break;
15632      case X86::BX: DestReg = X86::EBX; break;
15633      case X86::SI: DestReg = X86::ESI; break;
15634      case X86::DI: DestReg = X86::EDI; break;
15635      case X86::BP: DestReg = X86::EBP; break;
15636      case X86::SP: DestReg = X86::ESP; break;
15637      }
15638      if (DestReg) {
15639        Res.first = DestReg;
15640        Res.second = X86::GR32RegisterClass;
15641      }
15642    } else if (VT == MVT::i64) {
15643      unsigned DestReg = 0;
15644      switch (Res.first) {
15645      default: break;
15646      case X86::AX: DestReg = X86::RAX; break;
15647      case X86::DX: DestReg = X86::RDX; break;
15648      case X86::CX: DestReg = X86::RCX; break;
15649      case X86::BX: DestReg = X86::RBX; break;
15650      case X86::SI: DestReg = X86::RSI; break;
15651      case X86::DI: DestReg = X86::RDI; break;
15652      case X86::BP: DestReg = X86::RBP; break;
15653      case X86::SP: DestReg = X86::RSP; break;
15654      }
15655      if (DestReg) {
15656        Res.first = DestReg;
15657        Res.second = X86::GR64RegisterClass;
15658      }
15659    }
15660  } else if (Res.second == X86::FR32RegisterClass ||
15661             Res.second == X86::FR64RegisterClass ||
15662             Res.second == X86::VR128RegisterClass) {
15663    // Handle references to XMM physical registers that got mapped into the
15664    // wrong class.  This can happen with constraints like {xmm0} where the
15665    // target independent register mapper will just pick the first match it can
15666    // find, ignoring the required type.
15667    if (VT == MVT::f32)
15668      Res.second = X86::FR32RegisterClass;
15669    else if (VT == MVT::f64)
15670      Res.second = X86::FR64RegisterClass;
15671    else if (X86::VR128RegisterClass->hasType(VT))
15672      Res.second = X86::VR128RegisterClass;
15673  }
15674
15675  return Res;
15676}
15677